US20230175992A1 - Geological analysis system, devices and methods using x-ray fluorescence and spectroscopy - Google Patents
Geological analysis system, devices and methods using x-ray fluorescence and spectroscopy Download PDFInfo
- Publication number
- US20230175992A1 US20230175992A1 US18/161,389 US202318161389A US2023175992A1 US 20230175992 A1 US20230175992 A1 US 20230175992A1 US 202318161389 A US202318161389 A US 202318161389A US 2023175992 A1 US2023175992 A1 US 2023175992A1
- Authority
- US
- United States
- Prior art keywords
- geological
- sample
- sample material
- spectrometer
- tray
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N23/00—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
- G01N23/22—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
- G01N23/223—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material by irradiating the sample with X-rays or gamma-rays and by measuring X-ray fluorescence
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N23/00—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
- G01N23/22—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
- G01N23/2204—Specimen supports therefor; Sample conveying means therefore
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N23/00—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
- G01N23/22—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
- G01N23/2206—Combination of two or more measurements, at least one measurement being that of secondary emission, e.g. combination of secondary electron [SE] measurement and back-scattered electron [BSE] measurement
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N23/00—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
- G01N23/22—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
- G01N23/2206—Combination of two or more measurements, at least one measurement being that of secondary emission, e.g. combination of secondary electron [SE] measurement and back-scattered electron [BSE] measurement
- G01N23/2208—Combination of two or more measurements, at least one measurement being that of secondary emission, e.g. combination of secondary electron [SE] measurement and back-scattered electron [BSE] measurement all measurements being of a secondary emission, e.g. combination of SE measurement and characteristic X-ray measurement
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/24—Earth materials
- G01N33/241—Earth materials for hydrocarbon content
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2223/00—Investigating materials by wave or particle radiation
- G01N2223/07—Investigating materials by wave or particle radiation secondary emission
- G01N2223/076—X-ray fluorescence
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2223/00—Investigating materials by wave or particle radiation
- G01N2223/50—Detectors
- G01N2223/507—Detectors secondary-emission detector
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2223/00—Investigating materials by wave or particle radiation
- G01N2223/60—Specific applications or type of materials
- G01N2223/616—Specific applications or type of materials earth materials
Definitions
- Apparatuses and methods consistent with exemplary embodiments relate to analysis of soil and other geological samples, using x-ray fluorescence (XRF) and spectroscopy, among other techniques, and, more specifically to systems, devices, and methods according to which multiple analysis techniques may be applied to the samples simultaneously, or in close sequence.
- XRF x-ray fluorescence
- Hydrocarbon exploration, geothermal evaluation, and other applications involving subsurface geostatistics often involve large volumes of data and numerous techniques and parameters for modeling geostatistical information.
- This data can include many combination(s) and permutations of enterprise, geological, and geostatistical data, which may be generated, stored, and or made available by large and diverse numbers of public, private, academic, and government sources.
- Target zones can be identified via analysis of cored exploration wells, seismic surveys of structure, and other methods, but can only be estimated throughout the reservoir for purposes of well planning. Therefore, even if the well bore position can be accurately assessed, the determination of actual geological properties during drilling are required to be determined if the planned path is actually in the target zone.
- Parameters of interest may be measureable directly from geological cuttings.
- Related art wellsite geology involves subjective visual analysis of cuttings which may not accurately distinguish target zones from non-target zones.
- Related art measurement methods for cuttings may be slow and expensive, potentially requiring sample preparation and lengthy analyses to detect properties of interest, along with manual data entry, transfer, and aggregation to obtain usable results. This process may not be time- or cost-effective, even for retroactively determining well placement accuracy, as a typical sampling collection rate of one sample per five meters generates over 500 samples for a typical 2500 meter horizontal well.
- Related art methods may be incapable of throughput matching a drilling rate of up to six samples per hour.
- An XRF spectrometer is an x-ray instrument used for routine, relatively non-destructive chemical analyses of rocks, minerals, sediments, and fluids. It works on wavelength-dispersive spectroscopic principles that are similar to an electron microprobe (EPMA). However, an XRF spectrometer cannot generally make analyses at the small spot sizes typical of EPMA work (about 2-5 microns), so it is typically used for bulk analyses of larger fractions of geological materials. The relative ease and low cost of sample preparation, and the stability and ease of use of X-ray spectrometers make this one of the most widely used methods for analysis of major and trace elements in rocks, minerals, and sediment.
- XRF methods depend on fundamental principles that are common to several other instrumental methods involving interactions between electron beams and X-rays with samples, including X-ray spectroscopy (e.g., scanning electron microscopy/energy dispersive x-ray spectroscopy (SEM-EDS)), X-ray diffraction (XRD), and wavelength dispersive spectroscopy (microprobe WDS).
- X-ray spectroscopy e.g., scanning electron microscopy/energy dispersive x-ray spectroscopy (SEM-EDS)
- XRD X-ray diffraction
- microprobe WDS wavelength dispersive spectroscopy
- XRF X-ray-like ray-like material
- materials When materials are excited with high-energy, short wavelength radiation (e.g., X-rays), they can become ionized. If the energy of the radiation is sufficient to dislodge a tightly-held inner electron, the atom becomes unstable and an outer electron replaces the missing inner electron. When this happens, energy is released due to the decreased binding energy of the inner electron orbital compared with an outer one.
- the emitted radiation is of lower energy than the primary incident X-rays and is termed fluorescent radiation. Because the energy of the emitted photon is characteristic of a transition between specific electron orbitals in a particular element, the resulting fluorescent X-rays can be used to detect the abundances of elements that are present in the sample.
- An XRF spectrometer works because if a sample is illuminated by an intense X-ray beam, known as the incident beam, some of the energy is scattered, but some is also absorbed within the sample in a manner that depends on its chemistry.
- the incident X-ray beam is typically produced from a Rh target, although W, Mo, Cr and others can also be used, depending on the application.
- this primary X-ray beam illuminates the sample material
- the material is said to be excited.
- the excited material in turn emits X-rays along a spectrum of wavelengths characteristic of the types of atoms present in the material.
- the atoms in the material absorb X-ray energy by ionizing, ejecting electrons from the lower (usually K and L) energy levels.
- the ejected electrons are replaced by electrons from an outer, higher energy orbital.
- This energy release is in the form of emission of characteristic X-rays indicating the type of atom present.
- Wavelength Dispersive Spectrometer much like that in an EPMA allows the separation of a complex emitted X-ray spectrum into characteristic wavelengths for each element present.
- Various types of detectors gas flow proportional and scintillation are used to measure the intensity of the emitted beam.
- the flow counter is commonly utilized for measuring long wavelength (>0.15 nm) X-rays that are typical of K spectra from elements lighter than Zn.
- the scintillation detector is commonly used to analyze shorter wavelengths in the X-ray spectrum (K spectra of element from Nb to I; L spectra of Th and U).
- X-rays of intermediate wavelength K spectra produced from Zn to Zr and L spectra from Ba and the rare earth elements
- K spectra produced from Zn to Zr and L spectra from Ba and the rare earth elements K spectra produced from Zn to Zr and L spectra from Ba and the rare earth elements
- the intensity of the energy measured by these detectors is proportional to the abundance of the element in the sample material.
- the exact value of this proportionality for each element is derived by comparison to mineral or rock standards whose composition is known from X-ray fluorescence is somewhat limited to analysis of relatively large samples, typically >1 gram; materials that can be prepared in a powder form and effectively homogenized; materials for which compositionally similar, well-characterized standards are available; and materials containing high abundances of elements for which absorption and fluorescence effects are reasonably well understood.
- the sample material is ground to a fine powder. At this point it may be analyzed directly, especially in the case of trace element analyses.
- the very wide range in abundances of different elements, especially iron, and the wide range of sizes of grains in a powdered material makes the proportionality comparison to the standards particularly troublesome. For this reason, it is related art practice to mix the powdered material with a chemical flux and use a furnace or gas burner to melt the powdered material. Melting creates a homogenous glass that can be analyzed and the abundances of the (now somewhat diluted) elements can be calculated.
- XRF is particularly well-suited for investigations that involve bulk chemical analyses of major elements (Si, Ti, Al, Fe, Mn, Mg, Ca, Na, K, P) in rock and sediment; and bulk chemical analyses of trace elements (>1 ppm; Ba, Ce, Co, Cr, Cu, Ga, La, Nb, Ni, Rb, Sc, Sr, Rh, U, V, Y, Zr, Zn) in rock and sediment.
- major elements Si, Ti, Al, Fe, Mn, Mg, Ca, Na, K, P
- trace elements >1 ppm; Ba, Ce, Co, Cr, Cu, Ga, La, Nb, Ni, Rb, Sc, Sr, Rh, U, V, Y, Zr, Zn
- XRF has the ability to detect X-ray emission from virtually all elements, depending on the wavelength and intensity of incident x-rays.
- most commercially-available instruments are very limited in their ability to precisely and accurately measure the abundances of elements with Z ⁇ 11 in most natural earth materials.
- XRF analyses cannot distinguish variations among isotopes of an element, so these analyses are routinely done with other processes, such as thermal ionization mass spectrometry (TIMS) and secondary ion mass spectrometry (SIMS). Furthermore, XRF analyses cannot distinguish ions of the same element in different valence states, so these analyses of rocks and minerals are done with techniques such as wet chemical analysis or Mossbauer spectroscopy.
- TMS thermal ionization mass spectrometry
- SIMS secondary ion mass spectrometry
- any solid or liquid material can be analyzed, if adequate standards are available.
- related art commercial instruments require a sample constituting at least several grams of material, although the sample collected may be much larger.
- samples are collected that are several times larger than the largest size grain or particle in the rock. This initial material then suffers a series of crushing steps to reduce it to an average grain size of a few millimeters to a centimeter, when it can be reduced by splitting to a small representative sample of a few tens to hundreds of grams. This small sample split is then ground into a fine powder by any of a variety of techniques to create the XRF sample material. Care must be taken particularly at this step to be aware of the composition of the crushing implements, which will inevitably contaminate the material to some extent.
- Exemplary embodiments may address at least the above problems and/or disadvantages and other disadvantages not described above. Also, exemplary embodiments are not required to overcome the disadvantages described above, and may not overcome any of the problems described above.
- Exemplary embodiments may provide robotics capable of accurately positioning samples so that multiple sensors can quickly measure the same precise points.
- one or more exemplary embodiments may be capable of determining atomic composition, molecular composition, and structure.
- one or more exemplary embodiments may achieve measurements otherwise unattainable from non-destructive, non-prepped testing, including detection of sodium and magnesium, imaging down to nanometer resolution, and sub-mm mineralogical/saturation mapping.
- possible resultant data sets may result in a large volume of high-resolution and high-meaningful-degrees-of-freedom data sets directly tied to all aspects of geological composition.
- One or more exemplary embodiments may provide a system of geoscience technologies enabling a methodology of assessing directional well placement leading to a geosteering solution.
- One or more exemplary embodiments may provide a system of geoscience technologies enabling an accelerated and improved data collection from geological samples, and the ability to go from data to decision in time to affect drilling decisions.
- a sample tray comprising: an elongate housing defining a plurality of sample chambers formed in an upper surface of the elongate housing, a plurality of ports, and a plurality of passages, each providing communication between an interior of one of the plurality of chambers and an interior of one of the plurality of ports; wherein each of the plurality of passages forms an angle with respect to the upper surface of the elongate housing of the sample tray such that material disposed within one of the plurality of chambers is maintained within the chamber when the sample tray is positioned such that the upper surface of the elongate housing is substantially horizontal and such that the material disposed within the one of the plurality of chambers is transferred, via an associated opening of the plurality of openings, into an associated port of the plurality of ports, when the sample tray is positioned such that the upper surface of the elongate housing is angled with respect to horizontal; wherein each of the plurality of ports is configured to attach to
- a geological analysis system comprising: at least one frame; a plurality of sensors, each sensor in the plurality of sensors moveably mounted on the at least one frame, the plurality of sensors comprising an X-ray fluorescence (XRF) sensor and a spectrometer, the XFR sensor comprising an X-ray emitter and an X-ray fluorescence detector; a sample tray defining a plurality of sample chambers; and a processor configured, for each of one or more sample chambers in the plurality of sample chambers, to: (i) cause one or both of the sample tray and the plurality of sensors to be positioned with respect to the other so that a respective one of the plurality of sample chambers of the sample tray is positioned in a first analysis position with respect to the XRF sensor such that the XRF sensor is positioned to perform X-ray fluorescence on the geological sample material; (ii) cause a geological sample material disposed in
- the sample tray comprises: an elongate housing defining a plurality of sample chambers formed in an upper surface of the elongate housing, a plurality of ports, and a plurality of passages, each providing communication between an interior of one of the plurality of chambers and an interior of one of the plurality of ports; wherein each of the plurality of passages forms an angle with respect to the upper surface of the elongate housing of the sample tray such that material disposed within one of the plurality of chambers is maintained within the chamber when the sample tray is positioned such that the upper surface of the elongate housing is substantially horizontal and such that the material disposed within the one of the plurality of chambers is transferred, via an associated opening of the plurality of openings, into an associated port of the plurality of ports, when the sample tray is positioned such that the upper surface of the elongate housing is angled with respect to horizontal; wherein each of the plurality of ports is configured to attach to a vial such that a seal
- the positioning of the sample tray is performed semi-automatically or fully-automatically.
- the spectrometer is configured to measure a relative absorption of light in a range of wavelengths of about 1710 nm, about 1910 nm and/or about 2450 nm to determine a presence of hydrocarbons.
- the spectrometer is a short-wave infrared (SWIR) spectrometer, a visible-light spectrometer, or a passive gamma spectrometer.
- SWIR short-wave infrared
- the spectrometer is an imaging spectrometer, a line-scanning spectrometer, or a point spectrometer.
- the spectrometer utilizes any one of a prism, a diffraction grating, and an interferometer.
- a geological analysis system comprising: at least one frame; a plurality of sensors, each sensor in the plurality of sensors moveably mounted on the at least one frame, the plurality of sensors comprising an X-ray fluorescence (XRF) sensor and a spectrometer, the XFR sensor comprising an X-ray emitter and an X-ray fluorescence detector; a sample tray defining a plurality of sample chambers; and a processor configured to: control a position of sample tray by moving one or both of the sample tray and the plurality of sensors with respect to the other, wherein the sample tray is positionable in a first analysis position with respect to the XRF sensor such that a geological sample material disposed in one of the plurality of sample chambers is irradiated by X-ray radiation emitted from the X-ray emitter and that X-ray fluorescence emitted from the geological sample material is detected by the X-ray fluor
- the sample tray comprises: an elongate housing defining a plurality of sample chambers formed in an upper surface of the elongate housing, a plurality of ports, and a plurality of passages, each providing communication between an interior of one of the plurality of chambers and an interior of one of the plurality of ports; wherein each of the plurality of passages forms an angle with respect to the upper surface of the elongate housing of the sample tray such that material disposed within one of the plurality of chambers is maintained within the chamber when the sample tray is positioned such that the upper surface of the elongate housing is substantially horizontal and such that the material disposed within the one of the plurality of chambers is transferred, via an associated opening of the plurality of openings, into an associated port of the plurality of ports, when the sample tray is positioned such that the upper surface of the elongate housing is angled with respect to horizontal; wherein each of the plurality of ports is configured to attach to a vial such that a seal
- the positioning of the sample tray is performed semi-automatically or fully-automatically.
- the spectrometer is configured to measure a relative absorption of light in a range of wavelengths of about 1710 nm, about 1910 nm and/or about 2450 nm to determine a presence of hydrocarbons.
- the spectrometer is a short-wave infrared (SWIR) spectrometer, a visible-light spectrometer, or a passive gamma spectrometer.
- SWIR short-wave infrared
- the spectrometer is an imaging spectrometer, a line-scanning spectrometer, or a point spectrometer.
- the spectrometer utilizes any one of a prism, a diffraction grating, and an interferometer.
- the processor is configured to: cause the sample tray to be positioned with respect to the spectrometer such that the first geological sample material disposed in the first sample chamber in the plurality of sample chambers is positioned with respect to the spectrometer such that the spectrometer is positioned to sense one or more properties of the first geological sample material; cause an absorption of light of the first geological sample material to be detected by the spectrometer; cause the sample tray to be positioned with respect to the X-ray emitter such that the second geological sample material disposed in the second sample chamber in the plurality of sample chambers is positioned with respect to the spectrometer such that the spectrometer is positioned to sense one or more properties of the first geological sample material; cause an absorption of light of the second geological sample material to be detected by the spectrometer; and determine an abundance of the target substance in the first geological sample material and the second geological sample material based on the absorption of light of the first geological sample material and the
- the processor is configured to: cause the sample tray to be positioned with respect to the X-ray-emitter such that a first geological sample material disposed in a first sample chamber in the plurality of sample chambers is positioned with respect to the XRF sensor; cause the first geological sample material to be irradiated with the X-ray radiation emitted from the X-ray emitter; cause X-ray fluorescence emitted from the first geological sample material to be detected by the X-ray fluorescence detector; cause the sample tray to be positioned with respect to the X-ray emitter such that a second geological sample material disposed in a second sample chamber in the plurality of sample chambers is positioned with respect to the XRF sensor; cause the second geological sample material to be irradiated with the X-ray radiation emitted from the X-ray-emitter; cause X-ray fluorescence emitted from the second geological sample material to be detected
- the one or more properties comprise salinity.
- the geological formation comprises a reservoir.
- the processor is configured to: cause the sample tray to be positioned with respect to the spectrometer such that the first geological sample material disposed in the first sample chamber in the plurality of sample chambers is positioned with respect to the spectrometer such that the spectrometer is positioned to sense one or more properties of the first geological sample material; cause an absorption of light of the first geological sample material to be detected by the spectrometer; cause the sample tray to be positioned with respect to the X-ray emitter such that the second geological sample material disposed in the second sample chamber in the plurality of sample chambers is positioned with respect to the spectrometer such that the spectrometer is positioned to sense one or more properties of the first geological sample material; cause an absorption of light of the second geological sample material to be detected by the spectrometer; and determine an abundance of the target substance in the first geological sample material and the second geological sample material based on the absorption of light of the first geological sample material and the
- the location of the target substance in the geological formation is further based on the abundance of target substance in the first geological sample material and the second geological sample material.
- the target substance comprises one or more hydrocarbons.
- an X-ray fluorescence (XRF) unit comprising: a body; and a head comprising: an X-ray emitter positioned to emit X-ray radiation onto a geological sample material; an X-ray fluorescence detector configured to detect X-ray fluorescence emitted from the geological sample material; and wherein the head is configured such that X-ray radiation emitted from the X-ray emitter is incident directly on the geological sample material without being transmitted through any solid material between the X-ray emitter and the geological sample material.
- XRF X-ray fluorescence
- the XRF unit further comprises: an output port for emitting an inert gas onto the geological sample material.
- a first passage is formed in the head; the XRF unit further comprises an attachment portion mechanically attached to the head, the attachment portion forming a second passage corresponding to the first passage formed in the head; and the first passage and the second passage, together, form a conduit for the inert gas to pass therethrough between the output port and the geological sample material.
- a method of determining an abundance of a target substance in a geological formation comprising: causing a sample tray to be positioned with respect to a spectrometer such that a first geological sample material disposed in a first sample chamber in a plurality of sample chambers formed within the sample tray with respect to the spectrometer such that the spectrometer is positioned to sense one or more properties of the first geological sample material; causing an absorption of light of the first geological sample material to be detected by the spectrometer; causing the sample tray to be positioned with respect to the X-ray emitter such that the second geological sample material disposed in the second sample chamber in the plurality of sample chambers formed within the sample tray is positioned with respect to the spectrometer such that the spectrometer is positioned to sense one or more properties of the first geological sample material; causing an absorption of light of the second geological sample material to be detected by the spect
- the method further comprises: determining a location of the target substance in the geological formation based on the abundance of the target substance in the first geological sample material and the second geological sample material.
- the method further comprises: providing a plurality of geological sample materials, obtained from a geological formation, within the plurality of sample chambers formed within the sample tray.
- the target substance comprises one or more hydrocarbons.
- the geological formation comprises a reservoir.
- a method of determining a location of a target substance in a geological formation comprising: causing a sample tray to be positioned with respect to an X-ray-emitter such that a first geological sample material disposed in a first sample chamber in the plurality of sample chambers formed within the sample tray is positioned with respect to the XRF sensor; causing the first geological sample material to be irradiated with the X-ray radiation emitted from the X-ray emitter; causing X-ray fluorescence emitted from the first geological sample material to be detected by an X-ray fluorescence detector; causing the sample tray to be positioned with respect to the X-ray emitter such that a second geological sample material disposed in a second sample chamber in the plurality of sample chambers formed within the sample tray is positioned with respect to the XRF sensor; causing the second geological sample material to be irradiated with
- the one or more properties comprise salinity.
- the geological formation comprises a reservoir.
- the method further comprises: causing the sample tray to be positioned with respect to the spectrometer such that the first geological sample material disposed in the first sample chamber in the plurality of sample chambers is positioned with respect to the spectrometer such that the spectrometer is positioned to sense one or more properties of the first geological sample material; causing an absorption of light of the first geological sample material to be detected by the spectrometer; causing the sample tray to be positioned with respect to the X-ray emitter such that the second geological sample material disposed in the second sample chamber in the plurality of sample chambers positioned with respect to the spectrometer such that the spectrometer is positioned to sense one or more properties of the first geological sample material; causing an absorption of light of the second geological sample material to be detected by the spectrometer; and determining an abundance of the target substance in the first geological sample material and the second geological sample material based on the absorption of light of the first geological sample
- the location of the target substance in the geological formation is further based on the abundance of target substance in the first geological sample material and the second geological sample material.
- the method further comprises: providing a plurality of geological sample materials, obtained from a geological formation, within the plurality of sample chambers formed within the sample tray.
- the target substance comprises one or more hydrocarbons.
- a geological analysis system comprises: at least one frame; a plurality of sensors each mounted on the at least one frame.
- the plurality of sensors may include an X-ray fluorescence (XRF) sensor comprising an X-ray emitter and an X-ray fluorescence detector.
- the system further includes a sample tray having a plurality of concave chambers formed therein. The sample tray is positionable in a first analysis position with respect to the XRF sensor such that a geological sample material disposed in one of the plurality of concave chambers is irradiated by X-ray radiation emitted from the X-ray emitter.
- the sample tray is positionable in a second analysis position with respect to a second sensor in the plurality of sensors such that the second sensor in the plurality of sensors may obtain data regarding the geological sample material.
- the system further includes a processor configured to: control a position of at least one of the sample tray and the plurality of sensors; control operation of the plurality of sensors; output data received from the plurality of sensors; and effect semi-automatic or fully-automatic robotic positioning of one or both of the sample tray and the plurality of sensors with respect to the other.
- a sample tray is configured to hold geologic samples for analysis, and includes a plurality of concave chambers formed in an upper surface thereof; a plurality of ports; and a plurality of passages, each of the plurality of passages providing a passage in communication between an interior of one of the plurality of chambers and an interior of one of the plurality of ports.
- Each of the plurality of passages forms an angle with respect to the upper surface of the tray, such that material disposed within one of the plurality of chambers is maintained within the chamber when the tray is positioned such that the upper surface is substantially horizontal and such that the material disposed within the one of the plurality of chambers is transferred, via an associated opening of the plurality of openings, into an associated port of the plurality of ports, when the tray is positioned such that the upper surface is angled with respect to horizontal.
- Each of the plurality of ports is configured to attach to a vial, such that a seal between the vial and the port may be maintained by friction therebetween.
- an X-ray fluorescence (XRF) unit includes a body; and a head configured to be removably attached to the body.
- the head comprises an X-ray emitter positioned to emit X-ray radiation onto a geological sample material, an X-ray fluorescence detector configured to detect X-ray fluorescence emitted from the geological sample material, and an output port through which helium may be emitted onto the geological sample material.
- the head is configured such that X-ray radiation emitted from the X-ray emitter is incident directly on the geological sample material without being transmitted through any solid material between the X-ray emitter and the geological sample material.
- the XRF unit may also include an attachment portion mechanically attached to the head, a first passage formed in the head and a second passage, corresponding to the first passage, formed in the attachment portion.
- the first passage and the second passage together, form a conduit for helium to pass therethrough between the output port and the geological sample material.
- the head may be configured to detect sodium in the geological sample material.
- a method of determining a location of recoverable hydrocarbons in a reservoir includes: placing a plurality of geological sample materials, obtained within the reservoir, into a plurality of chambers formed within a tray; measuring a salinity, and/or other elemental properties of the plurality of geological sample materials.
- the measuring the salinity of the plurality of geological sample materials may comprise: positioning the tray with respect to an X-ray radiation emitter such that a first geological sample material disposed in a first concave chamber is irradiated by X-ray radiation emitted from the X-ray radiation emitter; irradiating the first geological sample material with the X-ray radiation emitted from the X-ray radiation emitter; detecting, with an X-ray fluorescence detector, X-ray fluorescence emitted from the first geological sample material; positioning the tray with respect to the X-ray radiation emitter such that a second geological sample material disposed in a second concave chamber is irradiated by X-ray radiation emitted from the X-ray radiation emitter; irradiating the second geological sample material with the X-ray radiation emitted from the X-ray radiation emitter; detecting, with the X-ray fluorescence detector, X-ray fluorescence emitted from the
- the method may further include measuring an abundance of recoverable hydrocarbons in the plurality of geological sample materials, and the determining the location of recoverable hydrocarbons in the reservoir may be further based on the abundance of recoverable hydrocarbons in the geological sample materials.
- the measuring the abundance of recoverable hydrocarbons may include: positioning the tray with respect to a second sensor; detecting, by the second sensor, one or more properties of the first geological sample material and the second geological sample material; outputting data of the one or more properties of the first geological sample material and the second geological sample material to the processor; calculating, by the processor, the abundance of recoverable hydrocarbons in the first geological sample material and the second geological sample material based on the data of the one or more properties of the first geological sample material and the second geological sample material.
- the second sensor may be a spectrometer configured to measure a relative absorption of light to determine the presence of hydrocarbons, and the one or more properties of the first geological sample material and the second geological sample material may be a light absorption of the first geological sample material and the second geological sample material.
- the spectrometer may be configured to measure a relative absorption of light in a range of wavelengths of about 1710 nm, about 1910 nm and/or about 2450 nm to determine the presence of hydrocarbons.
- the spectrometer may be a short-wave infrared (SWIR) spectrometer, a visible light spectrometer, or a passive gamma spectrometer.
- SWIR short-wave infrared
- the spectrometer may be an imaging, line scanning, or point spectrometer.
- the spectrometer may utilize any one of prism, diffraction grating, and interferometer acquisition techniques
- a computing device comprising one or more processors and a memory.
- the memory having tangibly stored thereon executable instructions for execution by the one or more processors.
- the executable instructions in response to execution by the one or more processors, cause the computing device to perform at least some of the methods described above and herein.
- a non-transitory machine-readable medium having tangibly stored thereon executable instructions for execution by one or more processors.
- the executable instructions in response to execution by the one or more processors, cause the one or more processors to perform at least some of the methods described above and herein.
- FIG. 1 is a schematic block diagram of a multi-component sample-scanning system according to an exemplary embodiment
- FIG. 2 is a perspective view of a multi-component sample-scanning system according to an exemplary embodiment
- FIG. 3 is another perspective view of a multi-component sample-scanning system according to an exemplary embodiment
- FIGS. 4 A and 4 B are perspective views of a multi-chamber sample tray according to an exemplary embodiment
- FIGS. 4 C, 4 D, and 4 E are sectional views of the sample tray of FIGS. 4 A and 4 B ;
- FIG. 5 A is a perspective view of an XRF sensor body without a head
- FIG. 5 B is a bottom view of the XRF sensor body of FIG. 5 A without the head
- FIG. 5 C is a perspective view of the XRF sensor body of FIG. 5 A with a head attached thereto;
- FIGS. 6 A- 6 C are perspective views of an exemplary head of the x XRF sensor of FIG. 5 C ; and FIG. 6 D is a cross-sectional view of the exemplary head.
- the term “and/or” includes any and all combinations of one or more of the associated listed items. Expressions such as “at least one of,” when preceding a list of elements, modify the entire list of elements and do not modify the individual elements of the list.
- the terms such as “unit,” “-er (-or),” and ‘module” described in the specification refer to an element for performing at least one function or operation, and may be implemented in hardware, software, or the combination of hardware and software.
- One or more exemplary embodiments provide systems, devices, methods and computer program products for fully- and partially-automated analysis of soil and other geological samples including solids, fluids, and fluid-solid mixtures, and may include single- and multi-stage components and/or material analysis devices, and sample material holders such as trays.
- FIGS. 1 - 3 illustrate a multi-component sample scanning system 1000 according to an exemplary embodiment.
- the system 1000 may include a plurality of sensors 100 , one or more processors 600 , a visual display, or other output device 500 and an input device 400 connected to the processor 600 .
- system 1000 can be provided in any of a very wide variety of forms, using a wide variety of type(s) and combination(s) of devices, components, and subsystems.
- the examples described herein are meant to be exemplary and not in any way limiting.
- the processor(s) 600 may include any suitable general and/or specific-purpose processing unit(s), microprocessors, graphics processing units, digital signal processors, or any electromagnetic or other suitable digital signal processor, as would be understood by one of skill in the art.
- the input device 400 can, for example, include one or more of a locally-connected keyboard, a keypad, a pointing device, and the like; and/or remotely-connected stand-alone computers such as laptops, desktops, notebooks, tablets, any mobile or networked computing device, and/or any other signal-generating device(s) suitable for providing control and/or other input commands to, and/or otherwise interacting with the processor 600 and associated devices.
- a locally-connected keyboard such as a locally-connected keyboard, a keypad, a pointing device, and the like
- stand-alone computers such as laptops, desktops, notebooks, tablets, any mobile or networked computing device, and/or any other signal-generating device(s) suitable for providing control and/or other input commands to, and/or otherwise interacting with the processor 600 and associated devices.
- the output device 500 may include any output device consistent with the purposes disclosed herein, including for example liquid-crystal displays (LCDs), light-emitting diode (LED) displays, cathode ray tube (CRT) displays, printer(s), audio speakers, and/or any other display device(s) suitable for use in displaying or otherwise reviewing, memorializing, or considering data in accordance with the purposes disclosed herein.
- LCDs liquid-crystal displays
- LED light-emitting diode
- CRT cathode ray tube
- printer(s) printer(s)
- audio speakers and/or any other display device(s) suitable for use in displaying or otherwise reviewing, memorializing, or considering data in accordance with the purposes disclosed herein.
- Devices such as the sensors 100 , bed 200 , input device 400 , and output device 500 , connected to the processor(s) 600 may be connected to the processor(s) 600 locally or remotely via a physical line or network, such as a wireless local area network (WLAN).
- WLAN wireless local area network
- the system 1000 may further include one or more memories (not shown).
- the sensors 100 are each configured to provide signals representing various physical attributes of soil and/or geological sample materials, useful in their analysis to determine, for example, various aspects of their composition.
- FIG. 1 illustrates three sensors: an XRF unit 100 a , and additional sensors 100 b and 100 c . However, greater than or fewer than three sensors may be included in the system 1000 , and the three sensors illustrated in FIG. 1 are merely exemplary.
- the XRF sensor 100 a may be, for example, a fast-flooded XRF sensor.
- the sensors 100 may further include one or more of a spectroscope, for example a short-wave infrared (SWIR) spectroscope, a visible light spectroscope, or a passive gamma spectroscope; a photo-sensitive camera, for example, an ultra-high resolution camera; a confocal laser; a microscope; a core gamma logger; a micro-lidar sensor; and a pressure decay sensor.
- a spectroscope for example a short-wave infrared (SWIR) spectroscope, a visible light spectroscope, or a passive gamma spectroscope
- a photo-sensitive camera for example, an ultra-high resolution camera
- a confocal laser for example, a confocal laser
- microscope a microscope
- a core gamma logger a micro-lidar sensor
- a pressure decay sensor for example, a pressure decay sensor.
- the processor(s) 600 is configured, for example by executing software instructions stored on a non-volatile memory, to receive input command signals generated by a user of the system 1000 , and/or accessed in volatile or persistent memory, and to use such input signals to generate command signals suitable for use by one or more motors, hydraulic actuators, and/or other motive devices in moving each of the plurality of sensors 100 into an analysis position, relative to one or more of a plurality of samples, in accordance with either or both of predetermined sequence(s) and specific commands entered by an operator of the system 1000 .
- the processor(s) 600 may additionally generate signals useful for controlling the sensors 100 to conduct analysis of the sample materials in such predetermined or specifically-commanded sequence.
- the system 1000 comprises at least one frame 220 on which a bed 200 is received.
- the bed 200 may support the sample materials and may be moveable, as controlled manually or in accordance with commands generated by the processor(s) 600 or other device(s), to place sample materials in analysis positions with respect to the sensors 100 .
- the bed 200 may be moveable in x- and y-directions, as shown in FIG. 3 .
- the bed 200 may additionally be moveable in the z-axis direction, towards and away from the sensors 100 positioned thereabove, as shown. In other words, one or both of the sensors 100 and the sample materials may be moved, manually or via the processor(s) 600 into the relative analysis position(s).
- the bed 200 may thereby position a tray 300 in any desired position, such that a sensor 100 may efficiently and effectively analyze a batch of samples on the tray 300 .
- multiple sensors 100 are provided, in order to analyze a plurality of trays 300 of sample materials simultaneously.
- webcams and/or other optical devices may be positioned around the system 1000 and may obtain meta-data and aid in performance of quality control.
- FIGS. 4 A and 4 B illustrate a sample tray 300 which holds sample materials 306 for simultaneous or sequential analysis by one or more of the sensors 100 , according to an exemplary embodiment.
- the sample tray 300 may be supported by the bed 200 .
- FIGS. 4 C, 4 D, and 4 E are sectional views of the sample tray 300 .
- the sample tray 300 is configured to hold multiple geologic samples, simultaneously, in a plurality of sample chambers 304 . Such samples may be from a single sample set, such as various portions of a single core sample, or from a plurality of generally unrelated sample sets, such as geographically-dispersed samples.
- the tray 300 may be 3D printed and may be made of aluminum or another metal or plastic. However, it is possible that a plastic tray will reflect light that undesirably interferes with a sensor 100 , such as a short wave hyperspectral sensor, used in analysis of the sample materials 306 in the tray.
- the tray 300 also includes ports 302 , respectively associated with the chambers 304 , such that each port 302 is in communication with the interior of a chamber 304 .
- Each port 302 is configured to be attachable to a sample vial 305 .
- a passage 303 provides communication between the interior of the chamber 304 and the port 302 , such that sample material 306 may move between the vial 305 attached opt the port 302 and the interior of the chamber 304 .
- FIG. 4 C shows a sectional view of a single chamber 304 , passage 303 , and port 302 of the tray 300 and a vial 305 attached to the port 302 .
- the tray 300 may additionally include a removable lid 350 , associated with each chamber 304 , as shown.
- FIG. 4 C illustrates a state in which the vial 305 is attached to the port 302 by friction, and the sample material 306 is disposed within the vial 305 .
- the port 302 may include threading on its interior surface such that a vial 305 , including its own threading, may be screwed onto the port 302 .
- the port 302 may be configured to be attached to a vial 305 by any of a variety of other mechanisms, as would be understood by one of skill in the art.
- FIG. 4 D illustrates a state in which the tray 300 and the vial 305 have been turned such that the sample material 306 previously within the vial 305 is pulled into the chamber 304 by gravity. As shown, some extra sample material 306 remains within the passage 303 .
- the lid securely seals the upper, open side of the chamber 304 .
- the lid 350 may be mechanically attached to the tray 300 in any of a variety of manners, so long as the lid 350 is removable, and, when attached to the tray 300 , seals the chamber 304 so that none of the sample material 306 is lost.
- FIG. 4 E illustrates a state in which the tray 300 and the vial 305 have been turned such that the tray 300 is in a horizontal position and the lid 350 has been removed therefrom.
- the vial 305 may be attached to the port 302 , such that when the tray 300 is in the horizontal position, a label on the vial 305 faces upward so as to be readable and/or scanable for purposes of metadata capture.
- the area and depth of the chambers 304 may be determined, as would be understood by one of skill in the art, in accordance with the samples to be held therein so that the chamber 304 may be entirely filled with the sample material 306 with some extra material to block the passage 303 opening at a minimum depth of about 5 mm.
- the passage 303 between the port 302 and the chamber 304 may be configured and angled with an appropriately-sized opening so as to allow the sample material 306 to flow back and forth smoothly when tilted, but not when in the horizontal position, as shown in FIG. 4 E .
- the passage 303 may be of sufficient length, relative its width, so that any light reflected by a vial 305 attached thereto is not incident through the passage 303 to thereby interfere with the signal from a sensor 100 .
- the port 302 may be substantially cylindrical and an external diameter of the port 302 must be sized such that sufficient friction is provided between the port 350 and the vial 305 attached thereto to hold the vial 305 in place on the port 302 .
- a sample material 306 may be placed within a vial 305 which is attached to a port 302 of the tray 300 .
- the tray 300 and vial(s) 305 may be moved so that the sample material 306 in a vial 305 is transferred into a corresponding chamber 304 through the port 302 and passage 303 .
- the tray 300 may then be moved into the horizontal position, as shown in FIG. 4 E , for scanning by the sensors 100 .
- the sample material 306 may then be transferred back into the vial 305 , via the passage 303 and the port 302 .
- the sample material 306 in the vial 305 may then be subjected to storage and/or further analysis.
- a sample material 306 may be positioned for analysis by a sensor 100 without use of a tray 300
- the use of the tray 300 may make the process of scanning and retaining the sample material 306 substantially easier and more effective, as it may be both easier to collect, handle, and store the sample material 306 , using a tray 300 , without losing or adulterating the sample material 306 .
- FIG. 5 A is a perspective view of an XRF sensor body without a head
- FIG. 5 B is a bottom view of the XRF sensor body of FIG. 5 A without the head
- FIG. 5 C is a perspective view of the XRF sensor body of FIG. 5 A with a head attached thereto.
- An XRF sensor 100 a as shown in FIGS. 5 A- 5 C includes a body 110 and an XRF head 120 , which may be removeably attached to the body 110 .
- the XRF head 120 includes an x-ray emitter 150 and an x-ray fluorescence detector 152 which may seal holes 112 in the body 110 of the XRF head 120 , as shown in FIG. 6 C .
- the XRF head 120 includes an opening 102 through which helium and/or other substances may be introduced to the XRF head 120 ; and an opening 103 through which the helium and/or other substances may be transmitted from the head to the sample material 306 .
- the XRF head 120 may include an attachment portion 125 which is attachable to the body 110 of the XRF head 120 by bolts threaded through bolt holes 115 or by another mechanical means as would be understood by one of skill in the art.
- Corresponding passages 103 b and 103 c in the body 110 of the XRF head 120 and in the attachment portion 125 guide the helium and/or other substances from the XRF head 120 to the sample material 306 in order to facilitate XRF analysis.
- a protective film 104 may be disposed between the body 110 of the XRF head 120 and the attachment portion 125 .
- Related art XRF units commonly include a window or lens, through which the detection fluorescence must be transmitted, in order to protect the delicate detector.
- such a window or lens often affects the detected signal. Therefore, such a window or lens may be omitted from the XRF head 120 according to an exemplary aspect. Thus, there is nothing in the way of the fluorescence signal from the sample material 306 being incident on the detector. The omission of the window or lens is possible because the contents of the detector are otherwise protected by having the XRF sensor 100 a mounted on a rail or linkage arm of the system 1000 , such that the rail or linkage arm maintains the XRF sensor 100 a in a vertical alignment respective to the horizontal surface to be scanned.
- the system 1000 maintains between the sample tray 300 and the XRF sensor 100 a , there is a single volume of space between the XRF sensor 100 a and the sample material 306 so that helium or other gas can be released inside the XRF head 120 between the detector and the sample material 306 .
- the helium may fill the entire space, such that the only way for the helium to escape is by pushing out the air and other gasses present in the sample material 306 .
- Atmospheric argon and other gasses present in the sample material 306 may interfere with the XRF signal by masking the ability to detect light elements and reducing the quality of detection of other elements.
- an XRF head 120 is configured to detect sodium through the use of a vacuum or by flooding a sample material with a light gas, such as helium.
- the XRF head 120 may be configured to detect chlorine via the use of a non-rhodium X-ray source.
- one or more additional sensors 100 may be used, including, but not limited to spectrometers of various types, including imaging, line scanning, and point spectrometers, spectrometers utilizing any of various acquisition techniques including, but not limited to, prisms, diffraction gratings, and interferometers (e.g. Fourier transforms).
- Another exemplary sensor 100 may be configured to measure the relative absorption of light in a range of wavelengths around 1710 nm, 1910 nm, and/or 2450 nm, in order to determine the presence of hydrocarbons.
- measurements obtained by the sensors 100 may be used to identify continuous zones where the hydrocarbon abundance is above a technically/economically recoverable threshold; the salinity is below a technically/economically recoverable threshold; and the zone thickness is technically/economically drillable and completable.
- a salinity of a sample material can be determined based on fluorescence output by the sample material in response to irradiation of the sample material with X-ray radiation, as would be understood by one of skill in the art.
- the data output from the scanner(s) 100 may also be compared to a library or database of rock properties to determine the categorization of the geological sample materials against known formations, lithology or other classifiers, including categorization of the sample materials into one or the classifiers known to exist in the reservoir.
- the data output from the scanner(s) 100 may be used to determine characteristics important to evaluating resources in place and selecting and optimizing recovery methods, including determining resource volumes, separating recoverable and non-recoverable resource volumes, and selecting engineering and completions methods and parameter for those methods, such as fluid and proppant types, rates, and pressures.
- measurements obtained by the sensors 100 may be used to select drilling equipment and methods; completions equipment and methods; and/or production equipment and methods most appropriate for the targeted reservoir characteristics and size.
- any of various aspects of exemplary embodiments described herein may be used in conjunction with any of a wide variety of data reduction, analysis, and other data processing techniques and applications thereof include, but are not limited to optimization of well or drilling paths, or other geosteering applications; maximization of recovery of data or materials from geological formations; machine vision detection of trace fossils and structural markers; big data mining for markers and correlations between geology and production; and machine learning optimization of tying cuttings to core data and other analysis workflows.
- a method of analyzing geological sample material may include placing geological sample material in a chamber 304 of a plurality of chambers 304 of a sample tray 300 .
- the sample material may be placed such that the chamber 304 is filled with the material and the material has a substantially planar upper, horizontal surface.
- the tray 300 (and/or the XRF sensor 100 a ) may be positioned with respect to an XRF sensor 100 a , manually, by a fully- or semi-automatically controlled robotic bed 200 , or by another mechanism as would be understood by one of skill in the art, such that the substantially planar upper surface of the material in the chamber 304 is in close or otherwise-desired proximity and orientation to the substantially vertically-oriented XRF sensor 100 a .
- the tray 300 and/or XRF sensor 100 a may be positioned such that a substantially enclose space is formed between the sample material and the detector of the XRF sensor 100 a .
- the method may further include introducing helium, and/or another gas, into the space between the detector of the XRF sensor 100 a and the sample material.
- the XRF sensor 100 a is operated, in accordance with command signals generated by the processor(s) 600 , to direct X-ray radiation onto the sample material and to detect fluorescence output from the sample material.
- the XRF sensor 100 a outputs signals representing data regarding the detected fluorescence to the processor(s) 600 .
- the tray 300 may be repositioned such that analysis may be performed on the sample material by another sensor 100 .
- analysis may also be performed on the sample material in the tray 300 prior to analysis by the XRF sensor 100 a.
- the material in the chamber 304 of the tray 300 may be transferred from the chamber 304 into a vial 305 attached to the tray 300 .
- the tray 300 may be moved from a substantially horizontal position to a tilted position such that the sample material moves into the vial 305 via a port 302 in the tray 300 providing a transition between the chamber 304 and the vial 305 .
- Data from the analysis by one or more sensors 100 may be used for any of a number of purposes, including, but not limited to: determining a salinity of the sample materials and/or measuring an abundance of recoverable hydrocarbons in the sample material and thereby determining the location of recoverable hydrocarbons in a reservoir.
- the systems and methods described herein may be embodied as software instructions on non-transitory computer-readable media.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Immunology (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Pathology (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Remote Sensing (AREA)
- Food Science & Technology (AREA)
- Medicinal Chemistry (AREA)
- Analysing Materials By The Use Of Radiation (AREA)
Abstract
Description
- The present application is a continuation of non-provisional U.S. patent application Ser. No. 17/056,110, which is a national stage entry of international PCT application no. PCT/CA2019/000072, filed May 17, 2019, which claims priority to provisional U.S. patent application No. 62/673,507, filed May 18, 2018, the content of all of these documents being incorporated herein by reference.
- Apparatuses and methods consistent with exemplary embodiments relate to analysis of soil and other geological samples, using x-ray fluorescence (XRF) and spectroscopy, among other techniques, and, more specifically to systems, devices, and methods according to which multiple analysis techniques may be applied to the samples simultaneously, or in close sequence.
- Hydrocarbon exploration, geothermal evaluation, and other applications involving subsurface geostatistics often involve large volumes of data and numerous techniques and parameters for modeling geostatistical information. This data can include many combination(s) and permutations of enterprise, geological, and geostatistical data, which may be generated, stored, and or made available by large and diverse numbers of public, private, academic, and government sources.
- Development of unconventional resources can require accurate placement of well paths in highly adverse or sensitive environments, for example, placement of horizontal/directional well paths within vertically narrow zones containing both high saturation of hydrocarbons and geological properties favorable to production, such as fracture propagation. Target zones can be identified via analysis of cored exploration wells, seismic surveys of structure, and other methods, but can only be estimated throughout the reservoir for purposes of well planning. Therefore, even if the well bore position can be accurately assessed, the determination of actual geological properties during drilling are required to be determined if the planned path is actually in the target zone. Related art measurement-while-drilling geosteering methods using downhole logs may be insufficient for differentiating between target and non-target zones because they are limited to measuring proxy characteristics such as resistivity and passive gamma radiation, which may not differ between target zones and adjacent zones.
- Parameters of interest may be measureable directly from geological cuttings. Related art wellsite geology involves subjective visual analysis of cuttings which may not accurately distinguish target zones from non-target zones. Related art measurement methods for cuttings may be slow and expensive, potentially requiring sample preparation and lengthy analyses to detect properties of interest, along with manual data entry, transfer, and aggregation to obtain usable results. This process may not be time- or cost-effective, even for retroactively determining well placement accuracy, as a typical sampling collection rate of one sample per five meters generates over 500 samples for a typical 2500 meter horizontal well. Related art methods may be incapable of throughput matching a drilling rate of up to six samples per hour.
- An XRF spectrometer is an x-ray instrument used for routine, relatively non-destructive chemical analyses of rocks, minerals, sediments, and fluids. It works on wavelength-dispersive spectroscopic principles that are similar to an electron microprobe (EPMA). However, an XRF spectrometer cannot generally make analyses at the small spot sizes typical of EPMA work (about 2-5 microns), so it is typically used for bulk analyses of larger fractions of geological materials. The relative ease and low cost of sample preparation, and the stability and ease of use of X-ray spectrometers make this one of the most widely used methods for analysis of major and trace elements in rocks, minerals, and sediment.
- XRF methods depend on fundamental principles that are common to several other instrumental methods involving interactions between electron beams and X-rays with samples, including X-ray spectroscopy (e.g., scanning electron microscopy/energy dispersive x-ray spectroscopy (SEM-EDS)), X-ray diffraction (XRD), and wavelength dispersive spectroscopy (microprobe WDS).
- The analysis of major and trace elements in geological materials by XRF is made possible by the behavior of atoms when they interact with radiation. When materials are excited with high-energy, short wavelength radiation (e.g., X-rays), they can become ionized. If the energy of the radiation is sufficient to dislodge a tightly-held inner electron, the atom becomes unstable and an outer electron replaces the missing inner electron. When this happens, energy is released due to the decreased binding energy of the inner electron orbital compared with an outer one. The emitted radiation is of lower energy than the primary incident X-rays and is termed fluorescent radiation. Because the energy of the emitted photon is characteristic of a transition between specific electron orbitals in a particular element, the resulting fluorescent X-rays can be used to detect the abundances of elements that are present in the sample.
- An XRF spectrometer works because if a sample is illuminated by an intense X-ray beam, known as the incident beam, some of the energy is scattered, but some is also absorbed within the sample in a manner that depends on its chemistry. The incident X-ray beam is typically produced from a Rh target, although W, Mo, Cr and others can also be used, depending on the application.
- When this primary X-ray beam illuminates the sample material, the material is said to be excited. The excited material in turn emits X-rays along a spectrum of wavelengths characteristic of the types of atoms present in the material. The atoms in the material absorb X-ray energy by ionizing, ejecting electrons from the lower (usually K and L) energy levels. The ejected electrons are replaced by electrons from an outer, higher energy orbital. When this happens, energy is released due to the decreased binding energy of the inner electron orbital compared with an outer one. This energy release is in the form of emission of characteristic X-rays indicating the type of atom present. If a material has many elements present, as is typical for most minerals and rocks, the use of a Wavelength Dispersive Spectrometer much like that in an EPMA allows the separation of a complex emitted X-ray spectrum into characteristic wavelengths for each element present. Various types of detectors (gas flow proportional and scintillation) are used to measure the intensity of the emitted beam. The flow counter is commonly utilized for measuring long wavelength (>0.15 nm) X-rays that are typical of K spectra from elements lighter than Zn. The scintillation detector is commonly used to analyze shorter wavelengths in the X-ray spectrum (K spectra of element from Nb to I; L spectra of Th and U). X-rays of intermediate wavelength (K spectra produced from Zn to Zr and L spectra from Ba and the rare earth elements) are generally measured by using both detectors in tandem. The intensity of the energy measured by these detectors is proportional to the abundance of the element in the sample material. The exact value of this proportionality for each element is derived by comparison to mineral or rock standards whose composition is known from X-ray fluorescence is somewhat limited to analysis of relatively large samples, typically >1 gram; materials that can be prepared in a powder form and effectively homogenized; materials for which compositionally similar, well-characterized standards are available; and materials containing high abundances of elements for which absorption and fluorescence effects are reasonably well understood.
- In most cases of rocks, ores, sediments and minerals, the sample material is ground to a fine powder. At this point it may be analyzed directly, especially in the case of trace element analyses. However, the very wide range in abundances of different elements, especially iron, and the wide range of sizes of grains in a powdered material, makes the proportionality comparison to the standards particularly troublesome. For this reason, it is related art practice to mix the powdered material with a chemical flux and use a furnace or gas burner to melt the powdered material. Melting creates a homogenous glass that can be analyzed and the abundances of the (now somewhat diluted) elements can be calculated.
- In view of these features, XRF is particularly well-suited for investigations that involve bulk chemical analyses of major elements (Si, Ti, Al, Fe, Mn, Mg, Ca, Na, K, P) in rock and sediment; and bulk chemical analyses of trace elements (>1 ppm; Ba, Ce, Co, Cr, Cu, Ga, La, Nb, Ni, Rb, Sc, Sr, Rh, U, V, Y, Zr, Zn) in rock and sediment. In theory XRF has the ability to detect X-ray emission from virtually all elements, depending on the wavelength and intensity of incident x-rays. However, in practice, most commercially-available instruments are very limited in their ability to precisely and accurately measure the abundances of elements with Z<11 in most natural earth materials. Related art XRF analyses cannot distinguish variations among isotopes of an element, so these analyses are routinely done with other processes, such as thermal ionization mass spectrometry (TIMS) and secondary ion mass spectrometry (SIMS). Furthermore, XRF analyses cannot distinguish ions of the same element in different valence states, so these analyses of rocks and minerals are done with techniques such as wet chemical analysis or Mossbauer spectroscopy.
- Virtually any solid or liquid material can be analyzed, if adequate standards are available. For rocks and minerals, related art commercial instruments require a sample constituting at least several grams of material, although the sample collected may be much larger. For XRF chemical analyses of rocks, samples are collected that are several times larger than the largest size grain or particle in the rock. This initial material then suffers a series of crushing steps to reduce it to an average grain size of a few millimeters to a centimeter, when it can be reduced by splitting to a small representative sample of a few tens to hundreds of grams. This small sample split is then ground into a fine powder by any of a variety of techniques to create the XRF sample material. Care must be taken particularly at this step to be aware of the composition of the crushing implements, which will inevitably contaminate the material to some extent.
- In view of the above, there is a need in the art for a system and method of obtaining relevant data from samples more quickly and efficiently for use in real-time in the field.
- Exemplary embodiments may address at least the above problems and/or disadvantages and other disadvantages not described above. Also, exemplary embodiments are not required to overcome the disadvantages described above, and may not overcome any of the problems described above.
- Exemplary embodiments may provide robotics capable of accurately positioning samples so that multiple sensors can quickly measure the same precise points. By directly integrating with sensor technologies spanning the electromagnetic spectrum, one or more exemplary embodiments may be capable of determining atomic composition, molecular composition, and structure. Through direct control and purpose-built engineering improvements, of a variety of sensor types, one or more exemplary embodiments may achieve measurements otherwise unattainable from non-destructive, non-prepped testing, including detection of sodium and magnesium, imaging down to nanometer resolution, and sub-mm mineralogical/saturation mapping. Thus, according to one of more exemplary embodiments, possible resultant data sets may result in a large volume of high-resolution and high-meaningful-degrees-of-freedom data sets directly tied to all aspects of geological composition.
- One or more exemplary embodiments may provide a system of geoscience technologies enabling a methodology of assessing directional well placement leading to a geosteering solution.
- One or more exemplary embodiments may provide a system of geoscience technologies enabling an accelerated and improved data collection from geological samples, and the ability to go from data to decision in time to affect drilling decisions.
- In accordance with an embodiment of a first aspect of the present disclosure, there is provided a sample tray, comprising: an elongate housing defining a plurality of sample chambers formed in an upper surface of the elongate housing, a plurality of ports, and a plurality of passages, each providing communication between an interior of one of the plurality of chambers and an interior of one of the plurality of ports; wherein each of the plurality of passages forms an angle with respect to the upper surface of the elongate housing of the sample tray such that material disposed within one of the plurality of chambers is maintained within the chamber when the sample tray is positioned such that the upper surface of the elongate housing is substantially horizontal and such that the material disposed within the one of the plurality of chambers is transferred, via an associated opening of the plurality of openings, into an associated port of the plurality of ports, when the sample tray is positioned such that the upper surface of the elongate housing is angled with respect to horizontal; wherein each of the plurality of ports is configured to attach to a vial such that a seal between the vial and a respective port is maintained by friction therebetween when the vial is attached to a respective port.
- In accordance with a first embodiment of a second aspect of the present disclosure, there is provided a geological analysis system comprising: at least one frame; a plurality of sensors, each sensor in the plurality of sensors moveably mounted on the at least one frame, the plurality of sensors comprising an X-ray fluorescence (XRF) sensor and a spectrometer, the XFR sensor comprising an X-ray emitter and an X-ray fluorescence detector; a sample tray defining a plurality of sample chambers; and a processor configured, for each of one or more sample chambers in the plurality of sample chambers, to: (i) cause one or both of the sample tray and the plurality of sensors to be positioned with respect to the other so that a respective one of the plurality of sample chambers of the sample tray is positioned in a first analysis position with respect to the XRF sensor such that the XRF sensor is positioned to perform X-ray fluorescence on the geological sample material; (ii) cause a geological sample material disposed in the respective one of the plurality of sample chambers to be irradiated with X-ray radiation emitted from the X-ray emitter; (iii) cause X-ray fluorescence emitted from the geological sample material disposed in the respective one of the plurality of sample chambers to be detected by the X-ray fluorescence detector; (iv) cause one or both of the sample tray and the plurality of sensors be positioned with respect to the other so that the respective one of the plurality of sample chambers of the sample tray is positioned a second analysis position with respect to the spectrometer such that the spectrometer is positioned to sense one or more properties of the geological sample material; and (v) cause the spectrometer to sense one or more properties of the geological sample material disposed in the respective one of the plurality of sample chambers.
- In some or all examples of the first embodiment of the second aspect, the sample tray comprises: an elongate housing defining a plurality of sample chambers formed in an upper surface of the elongate housing, a plurality of ports, and a plurality of passages, each providing communication between an interior of one of the plurality of chambers and an interior of one of the plurality of ports; wherein each of the plurality of passages forms an angle with respect to the upper surface of the elongate housing of the sample tray such that material disposed within one of the plurality of chambers is maintained within the chamber when the sample tray is positioned such that the upper surface of the elongate housing is substantially horizontal and such that the material disposed within the one of the plurality of chambers is transferred, via an associated opening of the plurality of openings, into an associated port of the plurality of ports, when the sample tray is positioned such that the upper surface of the elongate housing is angled with respect to horizontal; wherein each of the plurality of ports is configured to attach to a vial such that a seal between the vial and a respective port is maintained by friction therebetween when the vial is attached to a respective port.
- In some or all examples of the first embodiment of the second aspect, the positioning of the sample tray is performed semi-automatically or fully-automatically.
- In some or all examples of the first embodiment of the second aspect, the spectrometer is configured to measure a relative absorption of light in a range of wavelengths of about 1710 nm, about 1910 nm and/or about 2450 nm to determine a presence of hydrocarbons.
- In some or all examples of the first embodiment of the second aspect, the spectrometer is a short-wave infrared (SWIR) spectrometer, a visible-light spectrometer, or a passive gamma spectrometer.
- In some or all examples of the first embodiment of the second aspect, the spectrometer is an imaging spectrometer, a line-scanning spectrometer, or a point spectrometer.
- In some or all examples of the first embodiment of the second aspect, the spectrometer utilizes any one of a prism, a diffraction grating, and an interferometer.
- In accordance with a second embodiment of the second aspect of the present disclosure, there is provided a geological analysis system comprising: at least one frame; a plurality of sensors, each sensor in the plurality of sensors moveably mounted on the at least one frame, the plurality of sensors comprising an X-ray fluorescence (XRF) sensor and a spectrometer, the XFR sensor comprising an X-ray emitter and an X-ray fluorescence detector; a sample tray defining a plurality of sample chambers; and a processor configured to: control a position of sample tray by moving one or both of the sample tray and the plurality of sensors with respect to the other, wherein the sample tray is positionable in a first analysis position with respect to the XRF sensor such that a geological sample material disposed in one of the plurality of sample chambers is irradiated by X-ray radiation emitted from the X-ray emitter and that X-ray fluorescence emitted from the geological sample material is detected by the X-ray fluorescence detector, and wherein the sample tray is positionable in a second analysis position with respect to the spectrometer such that the spectrometer is positioned to sense one or more properties of the geological sample material; and control an operation of the plurality of sensors.
- In some or all examples of the second embodiment of the second aspect, the sample tray comprises: an elongate housing defining a plurality of sample chambers formed in an upper surface of the elongate housing, a plurality of ports, and a plurality of passages, each providing communication between an interior of one of the plurality of chambers and an interior of one of the plurality of ports; wherein each of the plurality of passages forms an angle with respect to the upper surface of the elongate housing of the sample tray such that material disposed within one of the plurality of chambers is maintained within the chamber when the sample tray is positioned such that the upper surface of the elongate housing is substantially horizontal and such that the material disposed within the one of the plurality of chambers is transferred, via an associated opening of the plurality of openings, into an associated port of the plurality of ports, when the sample tray is positioned such that the upper surface of the elongate housing is angled with respect to horizontal; wherein each of the plurality of ports is configured to attach to a vial such that a seal between the vial and a respective port is maintained by friction therebetween when the vial is attached to a respective port.
- In some or all examples of the second embodiment of the second aspect, the positioning of the sample tray is performed semi-automatically or fully-automatically.
- In some or all examples of the second embodiment of the second aspect, the spectrometer is configured to measure a relative absorption of light in a range of wavelengths of about 1710 nm, about 1910 nm and/or about 2450 nm to determine a presence of hydrocarbons.
- In some or all examples of the second embodiment of the second aspect, the spectrometer is a short-wave infrared (SWIR) spectrometer, a visible-light spectrometer, or a passive gamma spectrometer.
- In some or all examples of the second embodiment of the second aspect, the spectrometer is an imaging spectrometer, a line-scanning spectrometer, or a point spectrometer.
- In some or all examples of the second embodiment of the second aspect, the spectrometer utilizes any one of a prism, a diffraction grating, and an interferometer.
- In some or all examples of the second embodiment of the second aspect, the processor is configured to: cause the sample tray to be positioned with respect to the spectrometer such that the first geological sample material disposed in the first sample chamber in the plurality of sample chambers is positioned with respect to the spectrometer such that the spectrometer is positioned to sense one or more properties of the first geological sample material; cause an absorption of light of the first geological sample material to be detected by the spectrometer; cause the sample tray to be positioned with respect to the X-ray emitter such that the second geological sample material disposed in the second sample chamber in the plurality of sample chambers is positioned with respect to the spectrometer such that the spectrometer is positioned to sense one or more properties of the first geological sample material; cause an absorption of light of the second geological sample material to be detected by the spectrometer; and determine an abundance of the target substance in the first geological sample material and the second geological sample material based on the absorption of light of the first geological sample material and the absorption of light of the second geological sample material.
- In some or all examples of the second embodiment of the second aspect, wherein the processor is configured to: cause the sample tray to be positioned with respect to the X-ray-emitter such that a first geological sample material disposed in a first sample chamber in the plurality of sample chambers is positioned with respect to the XRF sensor; cause the first geological sample material to be irradiated with the X-ray radiation emitted from the X-ray emitter; cause X-ray fluorescence emitted from the first geological sample material to be detected by the X-ray fluorescence detector; cause the sample tray to be positioned with respect to the X-ray emitter such that a second geological sample material disposed in a second sample chamber in the plurality of sample chambers is positioned with respect to the XRF sensor; cause the second geological sample material to be irradiated with the X-ray radiation emitted from the X-ray-emitter; cause X-ray fluorescence emitted from the second geological sample material to be detected by the X-ray fluorescence detector; determine one or more properties of the first geological sample material and one or more properties of the second geological sample material based on the X-ray fluorescence of the first geological sample material and the on the X-ray fluorescence of the second geological sample material; and determine a location of target substance in a geological formation based on the one or more properties of the first geological sample material and the one or more properties of the second geological sample material.
- In some or all examples of the second embodiment of the second aspect, the one or more properties comprise salinity.
- In some or all examples of the second embodiment of the second aspect, the geological formation comprises a reservoir.
- In some or all examples of the second embodiment of the second aspect, the processor is configured to: cause the sample tray to be positioned with respect to the spectrometer such that the first geological sample material disposed in the first sample chamber in the plurality of sample chambers is positioned with respect to the spectrometer such that the spectrometer is positioned to sense one or more properties of the first geological sample material; cause an absorption of light of the first geological sample material to be detected by the spectrometer; cause the sample tray to be positioned with respect to the X-ray emitter such that the second geological sample material disposed in the second sample chamber in the plurality of sample chambers is positioned with respect to the spectrometer such that the spectrometer is positioned to sense one or more properties of the first geological sample material; cause an absorption of light of the second geological sample material to be detected by the spectrometer; and determine an abundance of the target substance in the first geological sample material and the second geological sample material based on the absorption of light of the first geological sample material and the absorption of light of the second geological sample material.
- In some or all examples of the second embodiment of the second aspect, the location of the target substance in the geological formation is further based on the abundance of target substance in the first geological sample material and the second geological sample material.
- In some or all examples of the second embodiment of the second aspect, the target substance comprises one or more hydrocarbons.
- In accordance with a first embodiment of a third aspect of the present disclosure, there is provided an X-ray fluorescence (XRF) unit comprising: a body; and a head comprising: an X-ray emitter positioned to emit X-ray radiation onto a geological sample material; an X-ray fluorescence detector configured to detect X-ray fluorescence emitted from the geological sample material; and wherein the head is configured such that X-ray radiation emitted from the X-ray emitter is incident directly on the geological sample material without being transmitted through any solid material between the X-ray emitter and the geological sample material.
- In some or all examples of the first embodiment of the third aspect of the present disclosure, the XRF unit further comprises: an output port for emitting an inert gas onto the geological sample material.
- In some or all examples of the first embodiment of the third aspect of the present disclosure, a first passage is formed in the head; the XRF unit further comprises an attachment portion mechanically attached to the head, the attachment portion forming a second passage corresponding to the first passage formed in the head; and the first passage and the second passage, together, form a conduit for the inert gas to pass therethrough between the output port and the geological sample material.
- In accordance with a first embodiment of a fourth aspect of the present disclosure, there is provided a method of determining an abundance of a target substance in a geological formation, the method comprising: causing a sample tray to be positioned with respect to a spectrometer such that a first geological sample material disposed in a first sample chamber in a plurality of sample chambers formed within the sample tray with respect to the spectrometer such that the spectrometer is positioned to sense one or more properties of the first geological sample material; causing an absorption of light of the first geological sample material to be detected by the spectrometer; causing the sample tray to be positioned with respect to the X-ray emitter such that the second geological sample material disposed in the second sample chamber in the plurality of sample chambers formed within the sample tray is positioned with respect to the spectrometer such that the spectrometer is positioned to sense one or more properties of the first geological sample material; causing an absorption of light of the second geological sample material to be detected by the spectrometer; and determining an abundance of the target substance in the first geological sample material and the second geological sample material based on the absorption of light of the first geological sample material and the absorption of light of the second geological sample material.
- In some or all examples of the first embodiment of the fourth aspect, the method further comprises: determining a location of the target substance in the geological formation based on the abundance of the target substance in the first geological sample material and the second geological sample material.
- In some or all examples of the first embodiment of the fourth aspect, the method further comprises: providing a plurality of geological sample materials, obtained from a geological formation, within the plurality of sample chambers formed within the sample tray.
- In some or all examples of the first embodiment of the fourth aspect, the target substance comprises one or more hydrocarbons.
- In some or all examples of the first embodiment of the fourth aspect, the geological formation comprises a reservoir.
- In accordance with a first embodiment of a fifth aspect of the present disclosure, there is provided a method of determining a location of a target substance in a geological formation, the method comprising: causing a sample tray to be positioned with respect to an X-ray-emitter such that a first geological sample material disposed in a first sample chamber in the plurality of sample chambers formed within the sample tray is positioned with respect to the XRF sensor; causing the first geological sample material to be irradiated with the X-ray radiation emitted from the X-ray emitter; causing X-ray fluorescence emitted from the first geological sample material to be detected by an X-ray fluorescence detector; causing the sample tray to be positioned with respect to the X-ray emitter such that a second geological sample material disposed in a second sample chamber in the plurality of sample chambers formed within the sample tray is positioned with respect to the XRF sensor; causing the second geological sample material to be irradiated with the X-ray radiation emitted from the X-ray-emitter; causing X-ray fluorescence emitted from the second geological sample material to be detected by the X-ray fluorescence detector; determining one or more properties of the first geological sample material and one or more properties of the second geological sample material based on the X-ray fluorescence of the first geological sample material and the on the X-ray fluorescence of the second geological sample material; and determining a location of target substance in the geological formation based on the one or more properties of the first geological sample material and the one or more properties of the second geological sample material.
- In some or all examples of the first embodiment of the fifth aspect, the one or more properties comprise salinity.
- In some or all examples of the first embodiment of the fifth aspect, the geological formation comprises a reservoir.
- In some or all examples of the first embodiment of the fifth aspect, the method further comprises: causing the sample tray to be positioned with respect to the spectrometer such that the first geological sample material disposed in the first sample chamber in the plurality of sample chambers is positioned with respect to the spectrometer such that the spectrometer is positioned to sense one or more properties of the first geological sample material; causing an absorption of light of the first geological sample material to be detected by the spectrometer; causing the sample tray to be positioned with respect to the X-ray emitter such that the second geological sample material disposed in the second sample chamber in the plurality of sample chambers positioned with respect to the spectrometer such that the spectrometer is positioned to sense one or more properties of the first geological sample material; causing an absorption of light of the second geological sample material to be detected by the spectrometer; and determining an abundance of the target substance in the first geological sample material and the second geological sample material based on the absorption of light of the first geological sample material and the absorption of light of the second geological sample material.
- In some or all examples of the first embodiment of the fifth aspect, the location of the target substance in the geological formation is further based on the abundance of target substance in the first geological sample material and the second geological sample material.
- In some or all examples of the first embodiment of the fifth aspect, the method further comprises: providing a plurality of geological sample materials, obtained from a geological formation, within the plurality of sample chambers formed within the sample tray.
- In some or all examples of the first embodiment of the fifth aspect, the target substance comprises one or more hydrocarbons.
- In accordance with another embodiment of the present disclosure, there is provided a geological analysis system comprises: at least one frame; a plurality of sensors each mounted on the at least one frame. The plurality of sensors may include an X-ray fluorescence (XRF) sensor comprising an X-ray emitter and an X-ray fluorescence detector. The system further includes a sample tray having a plurality of concave chambers formed therein. The sample tray is positionable in a first analysis position with respect to the XRF sensor such that a geological sample material disposed in one of the plurality of concave chambers is irradiated by X-ray radiation emitted from the X-ray emitter. The sample tray is positionable in a second analysis position with respect to a second sensor in the plurality of sensors such that the second sensor in the plurality of sensors may obtain data regarding the geological sample material. The system further includes a processor configured to: control a position of at least one of the sample tray and the plurality of sensors; control operation of the plurality of sensors; output data received from the plurality of sensors; and effect semi-automatic or fully-automatic robotic positioning of one or both of the sample tray and the plurality of sensors with respect to the other.
- In accordance with a further embodiment of the present disclosure, there is provided a sample tray is configured to hold geologic samples for analysis, and includes a plurality of concave chambers formed in an upper surface thereof; a plurality of ports; and a plurality of passages, each of the plurality of passages providing a passage in communication between an interior of one of the plurality of chambers and an interior of one of the plurality of ports. Each of the plurality of passages forms an angle with respect to the upper surface of the tray, such that material disposed within one of the plurality of chambers is maintained within the chamber when the tray is positioned such that the upper surface is substantially horizontal and such that the material disposed within the one of the plurality of chambers is transferred, via an associated opening of the plurality of openings, into an associated port of the plurality of ports, when the tray is positioned such that the upper surface is angled with respect to horizontal. Each of the plurality of ports is configured to attach to a vial, such that a seal between the vial and the port may be maintained by friction therebetween.
- In accordance with a further embodiment of the present disclosure, there is provided an X-ray fluorescence (XRF) unit includes a body; and a head configured to be removably attached to the body. The head comprises an X-ray emitter positioned to emit X-ray radiation onto a geological sample material, an X-ray fluorescence detector configured to detect X-ray fluorescence emitted from the geological sample material, and an output port through which helium may be emitted onto the geological sample material. The head is configured such that X-ray radiation emitted from the X-ray emitter is incident directly on the geological sample material without being transmitted through any solid material between the X-ray emitter and the geological sample material.
- The XRF unit according may also include an attachment portion mechanically attached to the head, a first passage formed in the head and a second passage, corresponding to the first passage, formed in the attachment portion. The first passage and the second passage, together, form a conduit for helium to pass therethrough between the output port and the geological sample material. The head may be configured to detect sodium in the geological sample material.
- In accordance with a further embodiment of the present disclosure, there is provided a method of determining a location of recoverable hydrocarbons in a reservoir, includes: placing a plurality of geological sample materials, obtained within the reservoir, into a plurality of chambers formed within a tray; measuring a salinity, and/or other elemental properties of the plurality of geological sample materials. The measuring the salinity of the plurality of geological sample materials may comprise: positioning the tray with respect to an X-ray radiation emitter such that a first geological sample material disposed in a first concave chamber is irradiated by X-ray radiation emitted from the X-ray radiation emitter; irradiating the first geological sample material with the X-ray radiation emitted from the X-ray radiation emitter; detecting, with an X-ray fluorescence detector, X-ray fluorescence emitted from the first geological sample material; positioning the tray with respect to the X-ray radiation emitter such that a second geological sample material disposed in a second concave chamber is irradiated by X-ray radiation emitted from the X-ray radiation emitter; irradiating the second geological sample material with the X-ray radiation emitted from the X-ray radiation emitter; detecting, with the X-ray fluorescence detector, X-ray fluorescence emitted from the second geological sample material; outputting data of the X-ray fluorescence emitted by the first geological sample material and by the second geological sample material to a processor; and calculating, by the processor, a salinity of the first geological sample material and a salinity of the second geological sample material based on the data of the X-ray fluorescence output to the processor. The method additionally includes determining the location of recoverable hydrocarbons in the reservoir based on the salinity of the first geological sample material and the salinity of the second geological sample material.
- The method may further include measuring an abundance of recoverable hydrocarbons in the plurality of geological sample materials, and the determining the location of recoverable hydrocarbons in the reservoir may be further based on the abundance of recoverable hydrocarbons in the geological sample materials. The measuring the abundance of recoverable hydrocarbons may include: positioning the tray with respect to a second sensor; detecting, by the second sensor, one or more properties of the first geological sample material and the second geological sample material; outputting data of the one or more properties of the first geological sample material and the second geological sample material to the processor; calculating, by the processor, the abundance of recoverable hydrocarbons in the first geological sample material and the second geological sample material based on the data of the one or more properties of the first geological sample material and the second geological sample material. The second sensor may be a spectrometer configured to measure a relative absorption of light to determine the presence of hydrocarbons, and the one or more properties of the first geological sample material and the second geological sample material may be a light absorption of the first geological sample material and the second geological sample material. The spectrometer may be configured to measure a relative absorption of light in a range of wavelengths of about 1710 nm, about 1910 nm and/or about 2450 nm to determine the presence of hydrocarbons. The spectrometer may be a short-wave infrared (SWIR) spectrometer, a visible light spectrometer, or a passive gamma spectrometer. The spectrometer may be an imaging, line scanning, or point spectrometer. The spectrometer may utilize any one of prism, diffraction grating, and interferometer acquisition techniques
- In accordance with a further aspect of the present disclosure, there is provided a computing device comprising one or more processors and a memory. The memory having tangibly stored thereon executable instructions for execution by the one or more processors. The executable instructions, in response to execution by the one or more processors, cause the computing device to perform at least some of the methods described above and herein.
- In accordance with a further aspect of the present disclosure, there is provided a non-transitory machine-readable medium having tangibly stored thereon executable instructions for execution by one or more processors. The executable instructions, in response to execution by the one or more processors, cause the one or more processors to perform at least some of the methods described above and herein.
- Other aspects and features of the present disclosure will become apparent to those of ordinary skill in the art upon review of the following description of specific implementations of the application in conjunction with the accompanying figures.
- The above and/or other aspects will become apparent and more readily appreciated from the following description of example embodiments, taken in conjunction with the accompanying drawings in which:
-
FIG. 1 is a schematic block diagram of a multi-component sample-scanning system according to an exemplary embodiment; -
FIG. 2 is a perspective view of a multi-component sample-scanning system according to an exemplary embodiment; -
FIG. 3 is another perspective view of a multi-component sample-scanning system according to an exemplary embodiment; -
FIGS. 4A and 4B are perspective views of a multi-chamber sample tray according to an exemplary embodiment; -
FIGS. 4C, 4D, and 4E are sectional views of the sample tray ofFIGS. 4A and 4B ; -
FIG. 5A is a perspective view of an XRF sensor body without a head,FIG. 5B is a bottom view of the XRF sensor body ofFIG. 5A without the head; andFIG. 5C is a perspective view of the XRF sensor body ofFIG. 5A with a head attached thereto; and -
FIGS. 6A-6C are perspective views of an exemplary head of the x XRF sensor ofFIG. 5C ; andFIG. 6D is a cross-sectional view of the exemplary head. - The present disclosure is made with reference to the accompanying drawings, in which embodiments are shown. However, many different embodiments may be used, and thus the description should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this application will be thorough and complete. Wherever possible, the same reference numbers are used in the drawings and the following description to refer to the same elements, and prime notation is used to indicate similar elements, operations or steps in alternative embodiments. Separate boxes or illustrated separation of functional elements of illustrated systems and devices does not necessarily require physical separation of such functions, as communication between such elements may occur by way of messaging, function calls, shared memory space, and so on, without any such physical separation. As such, functions need not be implemented in physically or logically separated platforms, although such functions are illustrated separately for ease of explanation herein. Different devices may have different designs, such that although some devices implement some functions in fixed function hardware, other devices may implement such functions in a programmable processor with code obtained from a machine-readable medium. Lastly, elements referred to in the singular may be plural and vice versa, except wherein indicated otherwise either explicitly or inherently by context.
- Reference will now be made in detail to exemplary embodiments which are illustrated in the accompanying drawings, wherein like reference numerals refer to like elements throughout. In this regard, the exemplary embodiments may have different forms and may not be construed as being limited to the descriptions set forth herein.
- It will be understood that the terms “include,” “including”, “comprise, and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.
- It will be further understood that, although the terms “first,” “second,” “third,” etc., may be used herein to describe various elements, components, regions, layers and/or sections, these elements, components, regions, layers and/or sections may not be limited by these terms. These terms are only used to distinguish one element, component, region, layer or section from another element, component, region, layer or section.
- As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items. Expressions such as “at least one of,” when preceding a list of elements, modify the entire list of elements and do not modify the individual elements of the list. In addition, the terms such as “unit,” “-er (-or),” and ‘module” described in the specification refer to an element for performing at least one function or operation, and may be implemented in hardware, software, or the combination of hardware and software.
- Various terms are used to refer to particular system components. Different companies may refer to a component by different names—this document does not intend to distinguish between components that differ in name but not function.
- Details of these exemplary embodiments that are obvious to those of ordinary skill in the technical field to which these exemplary embodiments pertain may not be described herein in detail.
- One or more exemplary embodiments provide systems, devices, methods and computer program products for fully- and partially-automated analysis of soil and other geological samples including solids, fluids, and fluid-solid mixtures, and may include single- and multi-stage components and/or material analysis devices, and sample material holders such as trays.
-
FIGS. 1-3 illustrate a multi-componentsample scanning system 1000 according to an exemplary embodiment. - As shown in
FIG. 1 , thesystem 1000 may include a plurality ofsensors 100, one ormore processors 600, a visual display, orother output device 500 and aninput device 400 connected to theprocessor 600. - As will be apparent to one of skill in the art, the
system 1000 can be provided in any of a very wide variety of forms, using a wide variety of type(s) and combination(s) of devices, components, and subsystems. The examples described herein are meant to be exemplary and not in any way limiting. - The processor(s) 600 may include any suitable general and/or specific-purpose processing unit(s), microprocessors, graphics processing units, digital signal processors, or any electromagnetic or other suitable digital signal processor, as would be understood by one of skill in the art.
- The
input device 400 can, for example, include one or more of a locally-connected keyboard, a keypad, a pointing device, and the like; and/or remotely-connected stand-alone computers such as laptops, desktops, notebooks, tablets, any mobile or networked computing device, and/or any other signal-generating device(s) suitable for providing control and/or other input commands to, and/or otherwise interacting with theprocessor 600 and associated devices. - The
output device 500 may include any output device consistent with the purposes disclosed herein, including for example liquid-crystal displays (LCDs), light-emitting diode (LED) displays, cathode ray tube (CRT) displays, printer(s), audio speakers, and/or any other display device(s) suitable for use in displaying or otherwise reviewing, memorializing, or considering data in accordance with the purposes disclosed herein. - Devices, such as the
sensors 100,bed 200,input device 400, andoutput device 500, connected to the processor(s) 600 may be connected to the processor(s) 600 locally or remotely via a physical line or network, such as a wireless local area network (WLAN). - The
system 1000 may further include one or more memories (not shown). - The
sensors 100 are each configured to provide signals representing various physical attributes of soil and/or geological sample materials, useful in their analysis to determine, for example, various aspects of their composition.FIG. 1 illustrates three sensors: anXRF unit 100 a, and 100 b and 100 c. However, greater than or fewer than three sensors may be included in theadditional sensors system 1000, and the three sensors illustrated inFIG. 1 are merely exemplary. TheXRF sensor 100 a may be, for example, a fast-flooded XRF sensor. Thesensors 100 may further include one or more of a spectroscope, for example a short-wave infrared (SWIR) spectroscope, a visible light spectroscope, or a passive gamma spectroscope; a photo-sensitive camera, for example, an ultra-high resolution camera; a confocal laser; a microscope; a core gamma logger; a micro-lidar sensor; and a pressure decay sensor. - The processor(s) 600 is configured, for example by executing software instructions stored on a non-volatile memory, to receive input command signals generated by a user of the
system 1000, and/or accessed in volatile or persistent memory, and to use such input signals to generate command signals suitable for use by one or more motors, hydraulic actuators, and/or other motive devices in moving each of the plurality ofsensors 100 into an analysis position, relative to one or more of a plurality of samples, in accordance with either or both of predetermined sequence(s) and specific commands entered by an operator of thesystem 1000. The processor(s) 600 may additionally generate signals useful for controlling thesensors 100 to conduct analysis of the sample materials in such predetermined or specifically-commanded sequence. - As best shown in
FIG. 2 , thesystem 1000 comprises at least oneframe 220 on which abed 200 is received. Thebed 200 may support the sample materials and may be moveable, as controlled manually or in accordance with commands generated by the processor(s) 600 or other device(s), to place sample materials in analysis positions with respect to thesensors 100. Thebed 200 may be moveable in x- and y-directions, as shown inFIG. 3 . In certain embodiments, thebed 200 may additionally be moveable in the z-axis direction, towards and away from thesensors 100 positioned thereabove, as shown. In other words, one or both of thesensors 100 and the sample materials may be moved, manually or via the processor(s) 600 into the relative analysis position(s). - The
bed 200 may thereby position atray 300 in any desired position, such that asensor 100 may efficiently and effectively analyze a batch of samples on thetray 300. In various exemplary embodiments,multiple sensors 100 are provided, in order to analyze a plurality oftrays 300 of sample materials simultaneously. - According to one or more exemplary embodiments, webcams and/or other optical devices may be positioned around the
system 1000 and may obtain meta-data and aid in performance of quality control. -
FIGS. 4A and 4B illustrate asample tray 300 which holdssample materials 306 for simultaneous or sequential analysis by one or more of thesensors 100, according to an exemplary embodiment. Thesample tray 300 may be supported by thebed 200.FIGS. 4C, 4D, and 4E are sectional views of thesample tray 300. - The
sample tray 300 is configured to hold multiple geologic samples, simultaneously, in a plurality ofsample chambers 304. Such samples may be from a single sample set, such as various portions of a single core sample, or from a plurality of generally unrelated sample sets, such as geographically-dispersed samples. Thetray 300 may be 3D printed and may be made of aluminum or another metal or plastic. However, it is possible that a plastic tray will reflect light that undesirably interferes with asensor 100, such as a short wave hyperspectral sensor, used in analysis of thesample materials 306 in the tray. Thetray 300 also includesports 302, respectively associated with thechambers 304, such that eachport 302 is in communication with the interior of achamber 304. Eachport 302 is configured to be attachable to asample vial 305. Apassage 303 provides communication between the interior of thechamber 304 and theport 302, such thatsample material 306 may move between thevial 305 attached opt theport 302 and the interior of thechamber 304. -
FIG. 4C shows a sectional view of asingle chamber 304,passage 303, andport 302 of thetray 300 and avial 305 attached to theport 302. Thetray 300 may additionally include a removable lid 350, associated with eachchamber 304, as shown.FIG. 4C illustrates a state in which thevial 305 is attached to theport 302 by friction, and thesample material 306 is disposed within thevial 305. According to an exemplary aspect, theport 302 may include threading on its interior surface such that avial 305, including its own threading, may be screwed onto theport 302. Alternately, theport 302 may be configured to be attached to avial 305 by any of a variety of other mechanisms, as would be understood by one of skill in the art. -
FIG. 4D illustrates a state in which thetray 300 and thevial 305 have been turned such that thesample material 306 previously within thevial 305 is pulled into thechamber 304 by gravity. As shown, someextra sample material 306 remains within thepassage 303. The lid securely seals the upper, open side of thechamber 304. The lid 350 may be mechanically attached to thetray 300 in any of a variety of manners, so long as the lid 350 is removable, and, when attached to thetray 300, seals thechamber 304 so that none of thesample material 306 is lost. -
FIG. 4E illustrates a state in which thetray 300 and thevial 305 have been turned such that thetray 300 is in a horizontal position and the lid 350 has been removed therefrom. Thevial 305 may be attached to theport 302, such that when thetray 300 is in the horizontal position, a label on thevial 305 faces upward so as to be readable and/or scanable for purposes of metadata capture. The area and depth of thechambers 304 may be determined, as would be understood by one of skill in the art, in accordance with the samples to be held therein so that thechamber 304 may be entirely filled with thesample material 306 with some extra material to block thepassage 303 opening at a minimum depth of about 5 mm. Thepassage 303 between theport 302 and thechamber 304 may be configured and angled with an appropriately-sized opening so as to allow thesample material 306 to flow back and forth smoothly when tilted, but not when in the horizontal position, as shown inFIG. 4E . Thepassage 303 may be of sufficient length, relative its width, so that any light reflected by avial 305 attached thereto is not incident through thepassage 303 to thereby interfere with the signal from asensor 100. Theport 302 may be substantially cylindrical and an external diameter of theport 302 must be sized such that sufficient friction is provided between the port 350 and thevial 305 attached thereto to hold thevial 305 in place on theport 302. - As shown in
FIGS. 4C through 4E , asample material 306 may be placed within avial 305 which is attached to aport 302 of thetray 300. When one ormore vials 305, each holdingsample material 306, are attached to respective one ormore ports 302 of thetray 300, thetray 300 and vial(s) 305 may be moved so that thesample material 306 in avial 305 is transferred into acorresponding chamber 304 through theport 302 andpassage 303. Thetray 300 may then be moved into the horizontal position, as shown inFIG. 4E , for scanning by thesensors 100. Once in thechamber 304, thesample material 306 may then be transferred back into thevial 305, via thepassage 303 and theport 302. Thesample material 306 in thevial 305 may then be subjected to storage and/or further analysis. As would be understood by one of skill in the art, while asample material 306 may be positioned for analysis by asensor 100 without use of atray 300, the use of thetray 300 may make the process of scanning and retaining thesample material 306 substantially easier and more effective, as it may be both easier to collect, handle, and store thesample material 306, using atray 300, without losing or adulterating thesample material 306. -
FIG. 5A is a perspective view of an XRF sensor body without a head,FIG. 5B is a bottom view of the XRF sensor body ofFIG. 5A without the head; andFIG. 5C is a perspective view of the XRF sensor body ofFIG. 5A with a head attached thereto. - An
XRF sensor 100 a, as shown inFIGS. 5A-5C includes abody 110 and anXRF head 120, which may be removeably attached to thebody 110. - Exemplary embodiments of the
XRF head 120 are shown inFIGS. 6A-6D . As best shown inFIG. 6D , theXRF head 120 includes anx-ray emitter 150 and anx-ray fluorescence detector 152 which may sealholes 112 in thebody 110 of theXRF head 120, as shown inFIG. 6C . TheXRF head 120 includes anopening 102 through which helium and/or other substances may be introduced to theXRF head 120; and anopening 103 through which the helium and/or other substances may be transmitted from the head to thesample material 306. TheXRF head 120 may include anattachment portion 125 which is attachable to thebody 110 of theXRF head 120 by bolts threaded throughbolt holes 115 or by another mechanical means as would be understood by one of skill in the art. Corresponding 103 b and 103 c in thepassages body 110 of theXRF head 120 and in theattachment portion 125 guide the helium and/or other substances from theXRF head 120 to thesample material 306 in order to facilitate XRF analysis. Aprotective film 104 may be disposed between thebody 110 of theXRF head 120 and theattachment portion 125. Related art XRF units commonly include a window or lens, through which the detection fluorescence must be transmitted, in order to protect the delicate detector. Unfortunately, such a window or lens often affects the detected signal. Therefore, such a window or lens may be omitted from theXRF head 120 according to an exemplary aspect. Thus, there is nothing in the way of the fluorescence signal from thesample material 306 being incident on the detector. The omission of the window or lens is possible because the contents of the detector are otherwise protected by having theXRF sensor 100 a mounted on a rail or linkage arm of thesystem 1000, such that the rail or linkage arm maintains theXRF sensor 100 a in a vertical alignment respective to the horizontal surface to be scanned. In view of this maintained vertical alignment, and thetray 300, as described above, which enablessample materials 306 to fill thechambers 304 and provide a flush horizontal surface to be scanned, there is little concern that thesample material 306 will undesirably enter the detector and cause damage. - Additionally, in view of the alignment that the
system 1000 maintains between thesample tray 300 and theXRF sensor 100 a, there is a single volume of space between theXRF sensor 100 a and thesample material 306 so that helium or other gas can be released inside theXRF head 120 between the detector and thesample material 306. The helium may fill the entire space, such that the only way for the helium to escape is by pushing out the air and other gasses present in thesample material 306. Atmospheric argon and other gasses present in thesample material 306 may interfere with the XRF signal by masking the ability to detect light elements and reducing the quality of detection of other elements. - According to an exemplary aspect, an
XRF head 120 is configured to detect sodium through the use of a vacuum or by flooding a sample material with a light gas, such as helium. Alternately, theXRF head 120 may be configured to detect chlorine via the use of a non-rhodium X-ray source. - In addition to the
XRF sensor 100 a, one or moreadditional sensors 100 may be used, including, but not limited to spectrometers of various types, including imaging, line scanning, and point spectrometers, spectrometers utilizing any of various acquisition techniques including, but not limited to, prisms, diffraction gratings, and interferometers (e.g. Fourier transforms). Anotherexemplary sensor 100 may be configured to measure the relative absorption of light in a range of wavelengths around 1710 nm, 1910 nm, and/or 2450 nm, in order to determine the presence of hydrocarbons. - Using the
system 1000 equipped with the sensor(s) 100 andtray 300 according to one or more exemplary embodiments, measurements obtained by thesensors 100 may be used to identify continuous zones where the hydrocarbon abundance is above a technically/economically recoverable threshold; the salinity is below a technically/economically recoverable threshold; and the zone thickness is technically/economically drillable and completable. A salinity of a sample material can be determined based on fluorescence output by the sample material in response to irradiation of the sample material with X-ray radiation, as would be understood by one of skill in the art. - According to one or more exemplary embodiments, the data output from the scanner(s) 100 may also be compared to a library or database of rock properties to determine the categorization of the geological sample materials against known formations, lithology or other classifiers, including categorization of the sample materials into one or the classifiers known to exist in the reservoir.
- According to one or more exemplary embodiments the data output from the scanner(s) 100 may be used to determine characteristics important to evaluating resources in place and selecting and optimizing recovery methods, including determining resource volumes, separating recoverable and non-recoverable resource volumes, and selecting engineering and completions methods and parameter for those methods, such as fluid and proppant types, rates, and pressures.
- According to one or more exemplary embodiments, measurements obtained by the
sensors 100 may be used to select drilling equipment and methods; completions equipment and methods; and/or production equipment and methods most appropriate for the targeted reservoir characteristics and size. - As would be understood by one of skill in the art, any of various aspects of exemplary embodiments described herein may be used in conjunction with any of a wide variety of data reduction, analysis, and other data processing techniques and applications thereof include, but are not limited to optimization of well or drilling paths, or other geosteering applications; maximization of recovery of data or materials from geological formations; machine vision detection of trace fossils and structural markers; big data mining for markers and correlations between geology and production; and machine learning optimization of tying cuttings to core data and other analysis workflows.
- According to an exemplary embodiment, a method of analyzing geological sample material may include placing geological sample material in a
chamber 304 of a plurality ofchambers 304 of asample tray 300. The sample material may be placed such that thechamber 304 is filled with the material and the material has a substantially planar upper, horizontal surface. The tray 300 (and/or theXRF sensor 100 a) may be positioned with respect to anXRF sensor 100 a, manually, by a fully- or semi-automatically controlledrobotic bed 200, or by another mechanism as would be understood by one of skill in the art, such that the substantially planar upper surface of the material in thechamber 304 is in close or otherwise-desired proximity and orientation to the substantially vertically-orientedXRF sensor 100 a. Thetray 300 and/orXRF sensor 100 a may be positioned such that a substantially enclose space is formed between the sample material and the detector of theXRF sensor 100 a. The method may further include introducing helium, and/or another gas, into the space between the detector of theXRF sensor 100 a and the sample material. TheXRF sensor 100 a is operated, in accordance with command signals generated by the processor(s) 600, to direct X-ray radiation onto the sample material and to detect fluorescence output from the sample material. TheXRF sensor 100 a outputs signals representing data regarding the detected fluorescence to the processor(s) 600. After analysis is performed by theXRF sensor 100 a and/or processor(s) 600, thetray 300 may be repositioned such that analysis may be performed on the sample material by anothersensor 100. Of course, analysis may also be performed on the sample material in thetray 300 prior to analysis by theXRF sensor 100 a. - The material in the
chamber 304 of thetray 300 may be transferred from thechamber 304 into avial 305 attached to thetray 300. Thetray 300 may be moved from a substantially horizontal position to a tilted position such that the sample material moves into thevial 305 via aport 302 in thetray 300 providing a transition between thechamber 304 and thevial 305. - Data from the analysis by one or
more sensors 100 may be used for any of a number of purposes, including, but not limited to: determining a salinity of the sample materials and/or measuring an abundance of recoverable hydrocarbons in the sample material and thereby determining the location of recoverable hydrocarbons in a reservoir. - The systems and methods described herein may be embodied as software instructions on non-transitory computer-readable media.
- All values and sub-ranges within disclosed ranges are also disclosed. Also, although the systems, devices and processes disclosed and shown herein may comprise a specific plurality of elements, the systems, devices and assemblies may be modified to comprise additional or fewer of such elements. Although several example embodiments are described herein, modifications, adaptations, and other implementations are possible. For example, substitutions, additions, or modifications may be made to the elements illustrated in the drawings, and the example methods described herein may be modified by substituting, reordering, or adding steps to the disclosed methods.
- Features from one or more of the above-described embodiments may be selected to create alternate embodiments comprised of a subcombination of features which may not be explicitly described above. In addition, features from one or more of the above-described embodiments may be selected and combined to create alternate embodiments comprised of a combination of features which may not be explicitly described above. Features suitable for such combinations and subcombinations would be readily apparent to persons skilled in the art upon review of the present disclosure as a whole.
- In addition, numerous specific details are set forth to provide a thorough understanding of the example embodiments described herein. It will, however, be understood by those of ordinary skill in the art that the example embodiments described herein may be practiced without these specific details. Furthermore, well-known methods, procedures, and elements have not been described in detail so as not to obscure the example embodiments described herein. The subject matter described herein and in the recited claims intends to cover and embrace all suitable changes in technology.
- Although the present invention and its advantages have been described in detail, it should be understood that various changes, substitutions and alterations can be made herein without departing from the invention as defined by the appended claims.
- The present invention may be embodied in other specific forms without departing from the subject matter of the claims. The described example embodiments are to be considered in all respects as being only illustrative and not restrictive. The present disclosure intends to cover and embrace all suitable changes in technology. The scope of the present disclosure is, therefore, described by the appended claims rather than by the foregoing description. The scope of the claims should not be limited by the embodiments set forth in the examples but should be given the broadest interpretation consistent with the description as a whole.
Claims (35)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US18/161,389 US20230175992A1 (en) | 2018-05-18 | 2023-01-30 | Geological analysis system, devices and methods using x-ray fluorescence and spectroscopy |
Applications Claiming Priority (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US201862673507P | 2018-05-18 | 2018-05-18 | |
| PCT/CA2019/000072 WO2019218051A1 (en) | 2018-05-18 | 2019-05-17 | Systems, devices, and methods for analysis of geological samples |
| US202017056110A | 2020-11-17 | 2020-11-17 | |
| US18/161,389 US20230175992A1 (en) | 2018-05-18 | 2023-01-30 | Geological analysis system, devices and methods using x-ray fluorescence and spectroscopy |
Related Parent Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/CA2019/000072 Continuation WO2019218051A1 (en) | 2018-05-18 | 2019-05-17 | Systems, devices, and methods for analysis of geological samples |
| US17/056,110 Continuation US11592407B2 (en) | 2018-05-18 | 2019-05-17 | Systems, devices, and methods for x-ray fluorescence analysis of geological samples |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20230175992A1 true US20230175992A1 (en) | 2023-06-08 |
Family
ID=68540644
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US17/056,110 Active US11592407B2 (en) | 2018-05-18 | 2019-05-17 | Systems, devices, and methods for x-ray fluorescence analysis of geological samples |
| US18/161,389 Pending US20230175992A1 (en) | 2018-05-18 | 2023-01-30 | Geological analysis system, devices and methods using x-ray fluorescence and spectroscopy |
Family Applications Before (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US17/056,110 Active US11592407B2 (en) | 2018-05-18 | 2019-05-17 | Systems, devices, and methods for x-ray fluorescence analysis of geological samples |
Country Status (6)
| Country | Link |
|---|---|
| US (2) | US11592407B2 (en) |
| AU (1) | AU2019268796B2 (en) |
| CA (1) | CA3100580A1 (en) |
| CL (1) | CL2020002976A1 (en) |
| WO (1) | WO2019218051A1 (en) |
| ZA (1) | ZA202007161B (en) |
Families Citing this family (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CA3100580A1 (en) * | 2018-05-18 | 2019-11-21 | Enersoft Inc. | Geological analysis system and methods using x-ray flurescence and spectroscopy |
| JP2022505390A (en) * | 2018-10-18 | 2022-01-14 | セキュリティ マターズ リミテッド | Systems and methods for detecting and identifying foreign substances in substances |
| GB2602913B (en) * | 2019-09-06 | 2024-03-27 | Alltrista Plastics Llc | Rapid measurement systems and methods for plastic articles |
| AU2021342788B2 (en) * | 2020-09-16 | 2025-02-13 | Enersoft Inc. | Multiple-sensor analysis of geological samples |
| CN113155880B (en) * | 2021-05-08 | 2023-06-27 | 电子科技大学 | Detection method for heavy metal pollution of soil by adopting unmanned aerial vehicle and XRF technology |
| US20240353388A1 (en) * | 2023-04-24 | 2024-10-24 | Saudi Arabian Oil Company | System for automated legacy drill cutting samples digitization |
| WO2024249261A2 (en) * | 2023-05-26 | 2024-12-05 | Veracio Ltd. | X-ray fluorescence assembly and systems and methods comprising same |
| CN118311077B (en) * | 2024-04-09 | 2024-09-17 | 中国科学院地质与地球物理研究所 | Multifunctional soil sample injection device applied to rock core scanner and use method |
Citations (35)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6677162B1 (en) * | 2000-07-18 | 2004-01-13 | Uop Llc | Process of parallel sample preparation |
| US6801595B2 (en) * | 2001-05-04 | 2004-10-05 | Niton Corporation | X-ray fluorescence combined with laser induced photon spectroscopy |
| US6806093B2 (en) * | 2000-07-18 | 2004-10-19 | Uop Llc | Process of parallel sample preparation |
| US6881363B2 (en) * | 2001-12-07 | 2005-04-19 | Symyx Technologies, Inc. | High throughput preparation and analysis of materials |
| US7410804B2 (en) * | 2000-07-18 | 2008-08-12 | Uop Llc | Process of parallel sample presentation |
| US7518722B2 (en) * | 2004-08-19 | 2009-04-14 | Headwall Photonics, Inc. | Multi-channel, multi-spectrum imaging spectrometer |
| US7657414B2 (en) * | 2005-02-23 | 2010-02-02 | M-I L.L.C. | Three-dimensional wellbore visualization system for hydraulics analyses |
| US8018586B2 (en) * | 2008-10-23 | 2011-09-13 | Applied Materials, Inc. | Metrology of thin film devices using an addressable micromirror array |
| US8068583B2 (en) * | 2008-07-01 | 2011-11-29 | Sii Nanotechnology Inc. | X-ray analysis apparatus and X-ray analysis method |
| US8154732B2 (en) * | 2007-04-27 | 2012-04-10 | Bodkin Design And Engineering, Llc | Multiband spatial heterodyne spectrometer and associated methods |
| US8238515B2 (en) * | 2007-08-16 | 2012-08-07 | Caldera Pharmaceuticals, Inc. | Well plate |
| US8515720B2 (en) * | 2010-04-06 | 2013-08-20 | Schlumberger Technology Corporation | Determine field fractures using geomechanical forward modeling |
| US8793111B2 (en) * | 2009-01-20 | 2014-07-29 | Schlumberger Technology Corporation | Automated field development planning |
| US8982338B2 (en) * | 2012-05-31 | 2015-03-17 | Thermo Scientific Portable Analytical Instruments Inc. | Sample analysis |
| US9244026B2 (en) * | 2010-02-10 | 2016-01-26 | Schlumberger Norge As | X-ray fluorescence analyzer |
| US9360367B2 (en) * | 2013-01-21 | 2016-06-07 | Sciaps, Inc. | Handheld LIBS spectrometer |
| US9449781B2 (en) * | 2013-12-05 | 2016-09-20 | Sigray, Inc. | X-ray illuminators with high flux and high flux density |
| US9476810B2 (en) * | 2011-04-22 | 2016-10-25 | Fei Company | Automated sample preparation |
| US9696260B2 (en) * | 2012-09-25 | 2017-07-04 | Universite Claude Bernard Lyon I | Device for taking spectroscopic measurements of laser-induced plasma |
| US9739729B2 (en) * | 2012-09-07 | 2017-08-22 | Carl Zeiss X-ray Microscopy, Inc. | Combined confocal X-ray fluorescence and X-ray computerised tomographic system and method |
| US9756219B2 (en) * | 2013-12-11 | 2017-09-05 | Ricoh Company, Ltd. | Image sensing device, image reading device, image forming apparatus and image sensing method |
| US9791386B2 (en) * | 2009-01-20 | 2017-10-17 | Spectro Scientific, Inc. | Integrated, portable sample analysis system and method |
| US10168290B2 (en) * | 2013-05-27 | 2019-01-01 | Shimadzu Corporation | X-ray fluorescence spectrometer |
| US10242126B2 (en) * | 2012-01-06 | 2019-03-26 | Technoimaging, Llc | Method of simultaneous imaging of different physical properties using joint inversion of multiple datasets |
| US10429238B2 (en) * | 2016-09-09 | 2019-10-01 | Otsuka Electronics Co., Ltd. | Optical measurement method and optical measurement apparatus |
| US10570732B2 (en) * | 2014-11-19 | 2020-02-25 | Minex Crc Ltd | Sampling and analysis system and method for use in exploration drilling |
| US10983062B2 (en) * | 2015-09-02 | 2021-04-20 | Elemission Inc. | Method and system for analysis of samples using laser induced breakdown spectroscopy |
| US11037283B2 (en) * | 2018-12-11 | 2021-06-15 | Samsung Electronics Co., Ltd. | Inspecting apparatus based on hyperspectral imaging |
| US11120540B2 (en) * | 2018-08-16 | 2021-09-14 | Thai Union Group Public Company Limited | Multi-view imaging system and methods for non-invasive inspection in food processing |
| US11352879B2 (en) * | 2017-03-14 | 2022-06-07 | Saudi Arabian Oil Company | Collaborative sensing and prediction of source rock properties |
| US11519868B2 (en) * | 2018-02-07 | 2022-12-06 | Sorterra Global Pty Ltd | Apparatus and method for analysing and processing granular material |
| US11592407B2 (en) * | 2018-05-18 | 2023-02-28 | Enersoft Inc. | Systems, devices, and methods for x-ray fluorescence analysis of geological samples |
| US11733185B2 (en) * | 2018-07-04 | 2023-08-22 | Rigaku Corporation | Fluorescent X-ray analysis apparatus comprising a plurality of X-ray detectors and an X-ray irradiation unit including a multi-wavelength mirror |
| US12174111B2 (en) * | 2019-10-07 | 2024-12-24 | Innopix, Inc. | Spectral imaging and analysis for remote and noninvasive detection of plant responses to herbicide treatments |
| US12181429B2 (en) * | 2019-03-28 | 2024-12-31 | De.Tec.Tor S.R.L. | Apparatus to operate a quality control in industrial production lines, corresponding method and computer program product |
Family Cites Families (97)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3889113A (en) * | 1973-05-03 | 1975-06-10 | Columbia Scient Ind Inc | Radioisotope-excited, energy-dispersive x-ray fluorescence apparatus |
| FI80524C (en) * | 1986-06-02 | 1990-06-11 | Outokumpu Oy | FOERFARANDE OCH ANORDNING FOER ANALYZING AV SLAMARTADE MATERIAL. |
| FI873627A7 (en) * | 1987-08-25 | 1989-02-22 | Leningradskoe Nauchno Proizvodstvennoe | Multichannel X-ray spectrometer |
| DE4021617C2 (en) * | 1990-07-06 | 1993-12-02 | Kugelfischer G Schaefer & Co | Device for the continuous measurement of the iron content in zinc layers |
| US5325416A (en) * | 1993-10-25 | 1994-06-28 | Nisshin Steel Co., Ltd. | Method for measuring Fe coating weight of Fe-coated stainless steel sheet |
| FI97647C (en) * | 1994-11-14 | 1997-01-27 | Ima Engineering Ltd Oy | Method and apparatus for determining the content of an element |
| US5657363A (en) * | 1995-10-10 | 1997-08-12 | Advanced Micro Devices, Inc. | Method and apparatus for determining the thickness and elemental composition of a thin film using radioisotopic X-ray fluorescence (RXRF) |
| FR2741155B1 (en) * | 1995-11-15 | 1997-12-05 | Commissariat Energie Atomique | APPARATUS FOR ANALYZING A FLUORESCENCE X SOLUTION |
| US5742658A (en) * | 1996-05-23 | 1998-04-21 | Advanced Micro Devices, Inc. | Apparatus and method for determining the elemental compositions and relative locations of particles on the surface of a semiconductor wafer |
| JPH09329557A (en) * | 1996-06-11 | 1997-12-22 | Seiko Instr Inc | Fluorescent x-ray microanalyzer |
| JP3166638B2 (en) * | 1996-11-29 | 2001-05-14 | 株式会社島津製作所 | X-ray fluorescence analyzer |
| US6052429A (en) * | 1997-02-20 | 2000-04-18 | Dkk Corporation | X-ray analyzing apparatus |
| DE19820321B4 (en) * | 1998-05-07 | 2004-09-16 | Bruker Axs Gmbh | Compact x-ray spectrometer |
| US6108398A (en) * | 1998-07-13 | 2000-08-22 | Jordan Valley Applied Radiation Ltd. | X-ray microfluorescence analyzer |
| JP3062685B2 (en) * | 1998-07-23 | 2000-07-12 | セイコーインスツルメンツ株式会社 | X-ray fluorescence analyzer |
| US6266390B1 (en) * | 1998-09-21 | 2001-07-24 | Spectramet, Llc | High speed materials sorting using x-ray fluorescence |
| US6292532B1 (en) * | 1998-12-28 | 2001-09-18 | Rigaku Industrial Corporation | Fluorescent X-ray analyzer useable as wavelength dispersive type and energy dispersive type |
| JP3921872B2 (en) * | 1999-05-20 | 2007-05-30 | 株式会社島津製作所 | Data processing device for X-ray fluorescence analysis |
| US6421415B1 (en) * | 1999-05-21 | 2002-07-16 | Metso Paper Automation Oy | On-line system for quantitative analysis of multi-component additives and coatings in sheet material |
| EP1076222A1 (en) * | 1999-08-10 | 2001-02-14 | Corus Aluminium Walzprodukte GmbH | X-ray fluorescence measurement of aluminium sheet thickness |
| US6345086B1 (en) * | 1999-09-14 | 2002-02-05 | Veeco Instruments Inc. | X-ray fluorescence system and method |
| US6381303B1 (en) * | 1999-09-29 | 2002-04-30 | Jordan Valley Applied Radiation Ltd. | X-ray microanalyzer for thin films |
| DE10050116A1 (en) * | 1999-10-21 | 2001-04-26 | Koninkl Philips Electronics Nv | Substrate and thin layer examination method, involves irradiating sample and determining thickness of thin layer and concentration of its constituent chemical elements using detected X-ray lines |
| RU2180439C2 (en) * | 2000-02-11 | 2002-03-10 | Кумахов Мурадин Абубекирович | Process of generation of image of internal structure of object with use of x-rays and device for its realization |
| US6453002B1 (en) * | 2000-04-18 | 2002-09-17 | Jordan Valley Applied Radiation Ltd. | Differential measurement of X-ray microfluorescence |
| US6697454B1 (en) * | 2000-06-29 | 2004-02-24 | X-Ray Optical Systems, Inc. | X-ray analytical techniques applied to combinatorial library screening |
| JP2002031522A (en) * | 2000-07-18 | 2002-01-31 | Seiko Instruments Inc | Fluorescent x-ray film thickness gauge |
| JP2002039973A (en) * | 2000-07-27 | 2002-02-06 | Seiko Instruments Inc | Fluorescent x-ray analyzer |
| JP2002107134A (en) * | 2000-07-27 | 2002-04-10 | Seiko Instruments Inc | Thickness meter for x-ray fluorescence film |
| JP4574815B2 (en) * | 2000-08-25 | 2010-11-04 | エスアイアイ・ナノテクノロジー株式会社 | Energy dispersive X-ray detection system |
| US6477227B1 (en) * | 2000-11-20 | 2002-11-05 | Keymaster Technologies, Inc. | Methods for identification and verification |
| US6577705B1 (en) * | 2001-04-02 | 2003-06-10 | William Chang | Combinatorial material analysis using X-ray capillary optics |
| DE10143991A1 (en) * | 2001-09-07 | 2003-04-10 | Bruker Axs Gmbh | X-ray analyzer |
| DE10143990A1 (en) * | 2001-09-07 | 2003-04-10 | Bruker Axs Gmbh | Gripping system for the automatic changing of elongated samples in an X-ray analyzer |
| US6850592B2 (en) * | 2002-04-12 | 2005-02-01 | Keymaster Technologies, Inc. | Methods for identification and verification using digital equivalent data system |
| US7763820B1 (en) * | 2003-01-27 | 2010-07-27 | Spectramet, Llc | Sorting pieces of material based on photonic emissions resulting from multiple sources of stimuli |
| WO2004089056A2 (en) * | 2003-04-01 | 2004-10-21 | Keymaster Technologies, Inc. | Exempt source for an x-ray fluorescence device |
| US7375359B1 (en) * | 2003-05-22 | 2008-05-20 | Thermo Niton Analyzers Llc | Portable X-ray fluorescence instrument with tapered absorption collar |
| JP4786533B2 (en) * | 2003-06-17 | 2011-10-05 | エックス−レイ オプティカル システムズ インコーポレーテッド | Movable permeability barrier for X-ray analysis of pressurized samples |
| JP4458513B2 (en) * | 2003-08-18 | 2010-04-28 | 株式会社リガク | Equipment for evaluating specific polymer crystals |
| FI20031753A7 (en) * | 2003-12-01 | 2005-06-02 | Metorex Int Oy | Improved measurement setup for X-ray fluorescence analysis |
| US7298817B2 (en) * | 2003-12-01 | 2007-11-20 | X-Ray Optical Systems, Inc. | Portable and on-line arsenic analyzer for drinking water |
| DE102004019030A1 (en) * | 2004-04-17 | 2005-11-03 | Katz, Elisabeth | Device for elemental analysis |
| WO2005106439A1 (en) * | 2004-04-28 | 2005-11-10 | Matsushita Electric Industrial Co., Ltd. | Fluorescent x-ray analysis method and equipment |
| EP1811291B1 (en) * | 2004-11-08 | 2014-04-30 | Hitachi High-Tech Science Corporation | Fluorescent x-ray analysis device |
| US7020238B1 (en) * | 2005-01-31 | 2006-03-28 | Oxford Instruments Analytical Oy | Adapter and analyzer device for performing X-ray fluorescence analysis on hot surfaces |
| US7233643B2 (en) * | 2005-05-20 | 2007-06-19 | Oxford Instruments Analytical Oy | Measurement apparatus and method for determining the material composition of a sample by combined X-ray fluorescence analysis and laser-induced breakdown spectroscopy |
| JP4262734B2 (en) * | 2005-09-14 | 2009-05-13 | 株式会社リガク | X-ray fluorescence analyzer and method |
| US7796726B1 (en) * | 2006-02-14 | 2010-09-14 | University Of Maryland, Baltimore County | Instrument and method for X-ray diffraction, fluorescence, and crystal texture analysis without sample preparation |
| JP4854005B2 (en) * | 2006-02-24 | 2012-01-11 | エスアイアイ・ナノテクノロジー株式会社 | X-ray fluorescence analyzer |
| JP5045999B2 (en) * | 2006-03-30 | 2012-10-10 | エスアイアイ・ナノテクノロジー株式会社 | X-ray fluorescence analyzer |
| US7409037B2 (en) * | 2006-05-05 | 2008-08-05 | Oxford Instruments Analytical Oy | X-ray fluorescence analyzer having means for producing lowered pressure, and an X-ray fluorescence measurement method using lowered pressure |
| JP4849957B2 (en) * | 2006-05-26 | 2012-01-11 | エスアイアイ・ナノテクノロジー株式会社 | X-ray fluorescence analyzer |
| US7535989B2 (en) * | 2006-10-17 | 2009-05-19 | Innov-X Systems, Inc. | XRF system with novel sample bottle |
| US8064570B2 (en) * | 2006-12-20 | 2011-11-22 | Innov-X-Systems, Inc. | Hand-held XRF analyzer |
| US7440541B2 (en) * | 2006-12-27 | 2008-10-21 | Innov-X-Systems, Inc. | Dual source XRF system |
| IL180482A0 (en) * | 2007-01-01 | 2007-06-03 | Jordan Valley Semiconductors | Inspection of small features using x - ray fluorescence |
| US7587025B2 (en) * | 2007-01-23 | 2009-09-08 | Sii Nanotechnology Inc. | X-ray analysis apparatus and X-ray analysis method |
| US7680248B2 (en) * | 2007-01-30 | 2010-03-16 | Sii Nanotechnology Inc. | X-ray tube and X-ray analyzing apparatus |
| US7916834B2 (en) * | 2007-02-12 | 2011-03-29 | Thermo Niton Analyzers Llc | Small spot X-ray fluorescence (XRF) analyzer |
| US7430273B2 (en) * | 2007-02-23 | 2008-09-30 | Thermo Fisher Scientific Inc. | Instrument having X-ray fluorescence and spark emission spectroscopy analysis capabilities |
| US7430274B2 (en) * | 2007-02-27 | 2008-09-30 | Innov-X-Systems, Inc. | XRF analyzer |
| GB2447252B (en) * | 2007-03-06 | 2012-03-14 | Thermo Fisher Scientific Inc | X-ray analysis instrument |
| US7623625B2 (en) * | 2007-04-11 | 2009-11-24 | Searete Llc | Compton scattered X-ray visualization, imaging, or information provider with scattering event locating |
| JP4956701B2 (en) * | 2007-07-28 | 2012-06-20 | エスアイアイ・ナノテクノロジー株式会社 | X-ray tube and X-ray analyzer |
| JP5135602B2 (en) * | 2007-07-28 | 2013-02-06 | エスアイアイ・ナノテクノロジー株式会社 | X-ray tube and X-ray analyzer |
| US7680243B2 (en) * | 2007-09-06 | 2010-03-16 | Jordan Valley Semiconductors Ltd. | X-ray measurement of properties of nano-particles |
| US7623621B1 (en) * | 2008-03-13 | 2009-11-24 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Method and system for identifying and authenticating an object |
| JP5269521B2 (en) * | 2008-08-22 | 2013-08-21 | 株式会社日立ハイテクサイエンス | X-ray analyzer and X-ray analysis method |
| JP5307504B2 (en) * | 2008-08-22 | 2013-10-02 | 株式会社日立ハイテクサイエンス | X-ray analyzer and X-ray analysis method |
| CA2741366A1 (en) * | 2008-11-04 | 2010-05-14 | Thermo Niton Analyzers Llc | Dynamic modification of shaping time in x-ray detectors |
| EP2368107A4 (en) * | 2008-12-12 | 2012-05-30 | Thermo Niton Analyzers Llc | Automated sum-peak suppression in x-ray fluorescence analyzer |
| CN104722342B (en) * | 2009-03-24 | 2017-01-11 | 芝加哥大学 | Slip chip device and method |
| US8155268B2 (en) * | 2009-04-23 | 2012-04-10 | Thermo Niton Analyzers Llc | Rapid screening for lead concentration compliance by X-ray fluorescence (XRF) analysis |
| EP2425234B1 (en) * | 2009-04-30 | 2019-10-23 | Thermo Scientific Portable Analytical Instruments Inc. | Localization of an element of interest by xrf analysis of different inspection volumes |
| JP5461924B2 (en) * | 2009-08-28 | 2014-04-02 | 株式会社日立ハイテクサイエンス | X-ray analyzer and X-ray analysis method |
| CN102042991A (en) * | 2009-10-09 | 2011-05-04 | 株式会社堀场制作所 | Sample cell for fluorescent X-ray analysis and sample cell assembly instrument |
| US7978820B2 (en) * | 2009-10-22 | 2011-07-12 | Panalytical B.V. | X-ray diffraction and fluorescence |
| JP2011099749A (en) * | 2009-11-05 | 2011-05-19 | Horiba Ltd | Concentration measuring method and x-ray fluorescence spectrometer |
| JP5481321B2 (en) * | 2010-08-31 | 2014-04-23 | 株式会社日立ハイテクサイエンス | X-ray fluorescence analyzer and X-ray fluorescence analysis method |
| JP5684612B2 (en) * | 2011-03-09 | 2015-03-18 | 株式会社日立ハイテクサイエンス | X-ray analyzer |
| US8787523B2 (en) * | 2011-07-01 | 2014-07-22 | Olympus Ndt, Inc. | X-ray analysis apparatus with radiation monitoring feature |
| DE102011109822B4 (en) * | 2011-08-09 | 2019-10-10 | Ketek Gmbh | Device for a radiation detector and radiation detector with the device |
| JP6084222B2 (en) * | 2011-08-15 | 2017-02-22 | エックス−レイ オプティカル システムズ インコーポレーテッド | Sample viscosity / flow rate control for heavy samples and its X-ray analysis application |
| WO2013033572A2 (en) * | 2011-09-01 | 2013-03-07 | Spectramet, Llc | Material sorting technology |
| US8380541B1 (en) | 2011-09-25 | 2013-02-19 | Theranos, Inc. | Systems and methods for collecting and transmitting assay results |
| WO2015162528A1 (en) | 2014-04-22 | 2015-10-29 | Basf Se | Detector for optically detecting at least one object |
| KR102144281B1 (en) * | 2014-10-14 | 2020-08-13 | 가부시키가이샤 리가쿠 | X-ray thin film inspection device |
| JP6305327B2 (en) * | 2014-12-04 | 2018-04-04 | 株式会社日立ハイテクサイエンス | X-ray fluorescence analyzer |
| CN108027331B (en) * | 2015-07-03 | 2023-09-15 | 株式会社岛津制作所 | Fluorescence X-ray analysis device and spectrum display method used therein |
| PL3322544T3 (en) * | 2015-07-16 | 2022-08-29 | Sortera Technologies, Inc. | Material sorting system |
| US10295486B2 (en) * | 2015-08-18 | 2019-05-21 | Sigray, Inc. | Detector for X-rays with high spatial and high spectral resolution |
| IL296369A (en) * | 2016-08-30 | 2022-11-01 | Soreq Nuclear Res Ct | Method for marking and authenticating diamonds and precious stones |
| US10800315B2 (en) * | 2016-09-09 | 2020-10-13 | Bly Ip Inc. | Systems and methods for analyzing core using x-ray fluorescence |
| US10247683B2 (en) * | 2016-12-03 | 2019-04-02 | Sigray, Inc. | Material measurement techniques using multiple X-ray micro-beams |
| WO2018110265A1 (en) * | 2016-12-15 | 2018-06-21 | 株式会社堀場製作所 | Radiation detection device |
| US10634628B2 (en) * | 2017-06-05 | 2020-04-28 | Bruker Technologies Ltd. | X-ray fluorescence apparatus for contamination monitoring |
-
2019
- 2019-05-17 CA CA3100580A patent/CA3100580A1/en active Pending
- 2019-05-17 AU AU2019268796A patent/AU2019268796B2/en active Active
- 2019-05-17 WO PCT/CA2019/000072 patent/WO2019218051A1/en not_active Ceased
- 2019-05-17 US US17/056,110 patent/US11592407B2/en active Active
-
2020
- 2020-11-16 CL CL2020002976A patent/CL2020002976A1/en unknown
- 2020-11-17 ZA ZA2020/07161A patent/ZA202007161B/en unknown
-
2023
- 2023-01-30 US US18/161,389 patent/US20230175992A1/en active Pending
Patent Citations (35)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6806093B2 (en) * | 2000-07-18 | 2004-10-19 | Uop Llc | Process of parallel sample preparation |
| US7410804B2 (en) * | 2000-07-18 | 2008-08-12 | Uop Llc | Process of parallel sample presentation |
| US6677162B1 (en) * | 2000-07-18 | 2004-01-13 | Uop Llc | Process of parallel sample preparation |
| US6801595B2 (en) * | 2001-05-04 | 2004-10-05 | Niton Corporation | X-ray fluorescence combined with laser induced photon spectroscopy |
| US6881363B2 (en) * | 2001-12-07 | 2005-04-19 | Symyx Technologies, Inc. | High throughput preparation and analysis of materials |
| US7518722B2 (en) * | 2004-08-19 | 2009-04-14 | Headwall Photonics, Inc. | Multi-channel, multi-spectrum imaging spectrometer |
| US7657414B2 (en) * | 2005-02-23 | 2010-02-02 | M-I L.L.C. | Three-dimensional wellbore visualization system for hydraulics analyses |
| US8154732B2 (en) * | 2007-04-27 | 2012-04-10 | Bodkin Design And Engineering, Llc | Multiband spatial heterodyne spectrometer and associated methods |
| US8238515B2 (en) * | 2007-08-16 | 2012-08-07 | Caldera Pharmaceuticals, Inc. | Well plate |
| US8068583B2 (en) * | 2008-07-01 | 2011-11-29 | Sii Nanotechnology Inc. | X-ray analysis apparatus and X-ray analysis method |
| US8018586B2 (en) * | 2008-10-23 | 2011-09-13 | Applied Materials, Inc. | Metrology of thin film devices using an addressable micromirror array |
| US9791386B2 (en) * | 2009-01-20 | 2017-10-17 | Spectro Scientific, Inc. | Integrated, portable sample analysis system and method |
| US8793111B2 (en) * | 2009-01-20 | 2014-07-29 | Schlumberger Technology Corporation | Automated field development planning |
| US9244026B2 (en) * | 2010-02-10 | 2016-01-26 | Schlumberger Norge As | X-ray fluorescence analyzer |
| US8515720B2 (en) * | 2010-04-06 | 2013-08-20 | Schlumberger Technology Corporation | Determine field fractures using geomechanical forward modeling |
| US9476810B2 (en) * | 2011-04-22 | 2016-10-25 | Fei Company | Automated sample preparation |
| US10242126B2 (en) * | 2012-01-06 | 2019-03-26 | Technoimaging, Llc | Method of simultaneous imaging of different physical properties using joint inversion of multiple datasets |
| US8982338B2 (en) * | 2012-05-31 | 2015-03-17 | Thermo Scientific Portable Analytical Instruments Inc. | Sample analysis |
| US9739729B2 (en) * | 2012-09-07 | 2017-08-22 | Carl Zeiss X-ray Microscopy, Inc. | Combined confocal X-ray fluorescence and X-ray computerised tomographic system and method |
| US9696260B2 (en) * | 2012-09-25 | 2017-07-04 | Universite Claude Bernard Lyon I | Device for taking spectroscopic measurements of laser-induced plasma |
| US9360367B2 (en) * | 2013-01-21 | 2016-06-07 | Sciaps, Inc. | Handheld LIBS spectrometer |
| US10168290B2 (en) * | 2013-05-27 | 2019-01-01 | Shimadzu Corporation | X-ray fluorescence spectrometer |
| US9449781B2 (en) * | 2013-12-05 | 2016-09-20 | Sigray, Inc. | X-ray illuminators with high flux and high flux density |
| US9756219B2 (en) * | 2013-12-11 | 2017-09-05 | Ricoh Company, Ltd. | Image sensing device, image reading device, image forming apparatus and image sensing method |
| US10570732B2 (en) * | 2014-11-19 | 2020-02-25 | Minex Crc Ltd | Sampling and analysis system and method for use in exploration drilling |
| US10983062B2 (en) * | 2015-09-02 | 2021-04-20 | Elemission Inc. | Method and system for analysis of samples using laser induced breakdown spectroscopy |
| US10429238B2 (en) * | 2016-09-09 | 2019-10-01 | Otsuka Electronics Co., Ltd. | Optical measurement method and optical measurement apparatus |
| US11352879B2 (en) * | 2017-03-14 | 2022-06-07 | Saudi Arabian Oil Company | Collaborative sensing and prediction of source rock properties |
| US11519868B2 (en) * | 2018-02-07 | 2022-12-06 | Sorterra Global Pty Ltd | Apparatus and method for analysing and processing granular material |
| US11592407B2 (en) * | 2018-05-18 | 2023-02-28 | Enersoft Inc. | Systems, devices, and methods for x-ray fluorescence analysis of geological samples |
| US11733185B2 (en) * | 2018-07-04 | 2023-08-22 | Rigaku Corporation | Fluorescent X-ray analysis apparatus comprising a plurality of X-ray detectors and an X-ray irradiation unit including a multi-wavelength mirror |
| US11120540B2 (en) * | 2018-08-16 | 2021-09-14 | Thai Union Group Public Company Limited | Multi-view imaging system and methods for non-invasive inspection in food processing |
| US11037283B2 (en) * | 2018-12-11 | 2021-06-15 | Samsung Electronics Co., Ltd. | Inspecting apparatus based on hyperspectral imaging |
| US12181429B2 (en) * | 2019-03-28 | 2024-12-31 | De.Tec.Tor S.R.L. | Apparatus to operate a quality control in industrial production lines, corresponding method and computer program product |
| US12174111B2 (en) * | 2019-10-07 | 2024-12-24 | Innopix, Inc. | Spectral imaging and analysis for remote and noninvasive detection of plant responses to herbicide treatments |
Also Published As
| Publication number | Publication date |
|---|---|
| US11592407B2 (en) | 2023-02-28 |
| BR112020023596A2 (en) | 2021-04-20 |
| CL2020002976A1 (en) | 2021-03-19 |
| ZA202007161B (en) | 2023-06-28 |
| AU2019268796A1 (en) | 2020-12-17 |
| US20210208089A1 (en) | 2021-07-08 |
| WO2019218051A1 (en) | 2019-11-21 |
| CA3100580A1 (en) | 2019-11-21 |
| AU2019268796B2 (en) | 2025-05-29 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US20230175992A1 (en) | Geological analysis system, devices and methods using x-ray fluorescence and spectroscopy | |
| Nachon et al. | Chemistry of diagenetic features analyzed by ChemCam at Pahrump Hills, Gale crater, Mars | |
| Craigie | Principles of elemental chemostratigraphy | |
| EP3583295B1 (en) | Rock mechanical properties from drill cuttings | |
| Fisher et al. | Resolution of geochemical and lithostratigraphic complexity: a workflow for application of portable X-ray fluorescence to mineral exploration | |
| De Vleeschouwer et al. | Quantitative WD‐XRF calibration for small ceramic samples and their source material | |
| Marsala et al. | Real-time mineralogy, lithology, and chemostratigraphy while drilling using portable energy-dispersive X-ray fluorescence | |
| Mohamed et al. | Chemical and mineralogical mapping of platinum‐group element ore samples using laser‐induced breakdown spectroscopy and micro‐X‐Ray fluorescence | |
| Richard et al. | Synchrotron XRF and XANES investigation of uranium speciation and element distribution in fluid inclusions from unconformity‐related uranium deposits | |
| WO2017008078A2 (en) | Apparatuses, methods and systems for downhole imaging | |
| AU2010359603B2 (en) | Method and system of determining elemental content of an earth formation | |
| Ohlendorf et al. | Experiences with XRF-scanning of long sediment records | |
| Croudace et al. | Future developments and innovations in high-resolution core scanning | |
| Huber et al. | Expedition 369 summary | |
| US20090326825A1 (en) | Method for determining formation water resistivity from a wireline pulsed neutron device | |
| VanBommel et al. | Rare earth element assessment in Jezero crater using the Planetary Instrument for X-ray Lithochemistry on the Mars 2020 rover Perseverance: A case study of cerium | |
| Gergely et al. | Analytical performance of a versatile laboratory microscopic X-ray fluorescence system for metal uptake studies on argillaceous rocks | |
| Haese et al. | Enhanced reservoir characterization using hyperspectral core logging | |
| Suchéras‐Marx et al. | Perspectives on heterococcolith geochemical proxies based on high‐resolution X‐ray fluorescence mapping | |
| Hashem et al. | Enhanced Petrophysical Evaluation in Complex Lithology Using Advanced Analysis of Cuttings Data: A Case Study from Saudi Arabia | |
| CN108931545B (en) | Method for determining mineral types and contents | |
| BR112020023596B1 (en) | SYSTEMS, DEVICES AND METHODS FOR ANALYZING GEOLOGICAL SAMPLES | |
| Harris et al. | Empowering geologists in the exploration process—maximizing data use from enabling scanning technologies | |
| Fahmy et al. | The Vital Role of Advanced Cutting Analysis in Unconventional Reservoir Characterization | |
| Hodgskiss et al. | Direct dating of deposition and rift-related alteration of fossil-barren red bed units in the North Sea |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: ALLOWED -- NOTICE OF ALLOWANCE NOT YET MAILED |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS |
|
| AS | Assignment |
Owner name: ENERSOFT INC., CANADA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SEGAL, YANNI Z. R.;SANDEN, GRANT I.;REEL/FRAME:072086/0917 Effective date: 20201201 |