US20230165304A1 - Aerosol generating material - Google Patents

Aerosol generating material Download PDF

Info

Publication number
US20230165304A1
US20230165304A1 US17/997,313 US202117997313A US2023165304A1 US 20230165304 A1 US20230165304 A1 US 20230165304A1 US 202117997313 A US202117997313 A US 202117997313A US 2023165304 A1 US2023165304 A1 US 2023165304A1
Authority
US
United States
Prior art keywords
generating material
aerosol generating
aerosol
particles
active substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
US17/997,313
Other languages
English (en)
Inventor
Biniam TESFATSION
David Bishop
Simon POYNTON
Tatiana BETSON
Ugurhan Yilmaz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nicoventures Trading Ltd
Original Assignee
Nicoventures Trading Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nicoventures Trading Ltd filed Critical Nicoventures Trading Ltd
Publication of US20230165304A1 publication Critical patent/US20230165304A1/en
Assigned to Nicoventures Trading Limited reassignment Nicoventures Trading Limited ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BETSON, Tatiana, BISHOP, DAVID, POYNTON, SIMON, TESFATSION, Biniam, Yilmaz, Ugurhan
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24BMANUFACTURE OR PREPARATION OF TOBACCO FOR SMOKING OR CHEWING; TOBACCO; SNUFF
    • A24B15/00Chemical features or treatment of tobacco; Tobacco substitutes, e.g. in liquid form
    • A24B15/10Chemical features of tobacco products or tobacco substitutes
    • A24B15/12Chemical features of tobacco products or tobacco substitutes of reconstituted tobacco
    • A24B15/14Chemical features of tobacco products or tobacco substitutes of reconstituted tobacco made of tobacco and a binding agent not derived from tobacco
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24BMANUFACTURE OR PREPARATION OF TOBACCO FOR SMOKING OR CHEWING; TOBACCO; SNUFF
    • A24B15/00Chemical features or treatment of tobacco; Tobacco substitutes, e.g. in liquid form
    • A24B15/10Chemical features of tobacco products or tobacco substitutes
    • A24B15/16Chemical features of tobacco products or tobacco substitutes of tobacco substitutes
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/10Devices using liquid inhalable precursors
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24BMANUFACTURE OR PREPARATION OF TOBACCO FOR SMOKING OR CHEWING; TOBACCO; SNUFF
    • A24B13/00Tobacco for pipes, for cigars, e.g. cigar inserts, or for cigarettes; Chewing tobacco; Snuff
    • A24B13/02Flakes or shreds of tobacco
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24BMANUFACTURE OR PREPARATION OF TOBACCO FOR SMOKING OR CHEWING; TOBACCO; SNUFF
    • A24B15/00Chemical features or treatment of tobacco; Tobacco substitutes, e.g. in liquid form
    • A24B15/18Treatment of tobacco products or tobacco substitutes
    • A24B15/28Treatment of tobacco products or tobacco substitutes by chemical substances
    • A24B15/30Treatment of tobacco products or tobacco substitutes by chemical substances by organic substances
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24BMANUFACTURE OR PREPARATION OF TOBACCO FOR SMOKING OR CHEWING; TOBACCO; SNUFF
    • A24B15/00Chemical features or treatment of tobacco; Tobacco substitutes, e.g. in liquid form
    • A24B15/18Treatment of tobacco products or tobacco substitutes
    • A24B15/28Treatment of tobacco products or tobacco substitutes by chemical substances
    • A24B15/30Treatment of tobacco products or tobacco substitutes by chemical substances by organic substances
    • A24B15/301Treatment of tobacco products or tobacco substitutes by chemical substances by organic substances by aromatic compounds
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24BMANUFACTURE OR PREPARATION OF TOBACCO FOR SMOKING OR CHEWING; TOBACCO; SNUFF
    • A24B15/00Chemical features or treatment of tobacco; Tobacco substitutes, e.g. in liquid form
    • A24B15/18Treatment of tobacco products or tobacco substitutes
    • A24B15/28Treatment of tobacco products or tobacco substitutes by chemical substances
    • A24B15/30Treatment of tobacco products or tobacco substitutes by chemical substances by organic substances
    • A24B15/302Treatment of tobacco products or tobacco substitutes by chemical substances by organic substances by natural substances obtained from animals or plants
    • A24B15/303Plant extracts other than tobacco
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24BMANUFACTURE OR PREPARATION OF TOBACCO FOR SMOKING OR CHEWING; TOBACCO; SNUFF
    • A24B15/00Chemical features or treatment of tobacco; Tobacco substitutes, e.g. in liquid form
    • A24B15/18Treatment of tobacco products or tobacco substitutes
    • A24B15/28Treatment of tobacco products or tobacco substitutes by chemical substances
    • A24B15/30Treatment of tobacco products or tobacco substitutes by chemical substances by organic substances
    • A24B15/34Treatment of tobacco products or tobacco substitutes by chemical substances by organic substances containing a carbocyclic ring other than a six-membered aromatic ring
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24BMANUFACTURE OR PREPARATION OF TOBACCO FOR SMOKING OR CHEWING; TOBACCO; SNUFF
    • A24B15/00Chemical features or treatment of tobacco; Tobacco substitutes, e.g. in liquid form
    • A24B15/18Treatment of tobacco products or tobacco substitutes
    • A24B15/28Treatment of tobacco products or tobacco substitutes by chemical substances
    • A24B15/30Treatment of tobacco products or tobacco substitutes by chemical substances by organic substances
    • A24B15/36Treatment of tobacco products or tobacco substitutes by chemical substances by organic substances containing a heterocyclic ring
    • A24B15/38Treatment of tobacco products or tobacco substitutes by chemical substances by organic substances containing a heterocyclic ring having only nitrogen as hetero atom
    • A24B15/385Treatment of tobacco products or tobacco substitutes by chemical substances by organic substances containing a heterocyclic ring having only nitrogen as hetero atom in a five-membered ring
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24BMANUFACTURE OR PREPARATION OF TOBACCO FOR SMOKING OR CHEWING; TOBACCO; SNUFF
    • A24B15/00Chemical features or treatment of tobacco; Tobacco substitutes, e.g. in liquid form
    • A24B15/18Treatment of tobacco products or tobacco substitutes
    • A24B15/28Treatment of tobacco products or tobacco substitutes by chemical substances
    • A24B15/42Treatment of tobacco products or tobacco substitutes by chemical substances by organic and inorganic substances
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24CMACHINES FOR MAKING CIGARS OR CIGARETTES
    • A24C5/00Making cigarettes; Making tipping materials for, or attaching filters or mouthpieces to, cigars or cigarettes
    • A24C5/01Making cigarettes for simulated smoking devices
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24DCIGARS; CIGARETTES; TOBACCO SMOKE FILTERS; MOUTHPIECES FOR CIGARS OR CIGARETTES; MANUFACTURE OF TOBACCO SMOKE FILTERS OR MOUTHPIECES
    • A24D1/00Cigars; Cigarettes
    • A24D1/20Cigarettes specially adapted for simulated smoking devices
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/46Shape or structure of electric heating means
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/20Devices using solid inhalable precursors
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/30Devices using two or more structurally separated inhalable precursors, e.g. using two liquid precursors in two cartridges

Definitions

  • the invention relates to aerosol generating material for inclusion in an aerosol provision system, such as an apparatus for heating aerosol generating material to volatilize at least one component of thereof, the aerosol generating material including an active substance and a volatile component incorporated in liquid form.
  • the invention also relates to methods for preparing such materials.
  • Smoking articles such as cigarettes, cigars and the like burn tobacco during use to create tobacco smoke. Attempts have been made to provide alternatives to these articles by creating products that release compounds without combusting. Examples of such products are so-called “heat not burn” products or tobacco heating devices or products, which release compounds by heating, but not burning, smokeable material.
  • an aerosol generating material comprising at least one particle comprising an active substance, and a volatile component, wherein the volatile component has a vapor pressure at 20° C. which is greater than or equal to the vapor pressure of the active substance at 20° C., wherein the volatile component is incorporated into the aerosol generating material in liquid form, and wherein the release of the active substance from the aerosol generating material is controlled by competition with the release of the volatile component.
  • the aerosol generating material is for inclusion in an aerosol provision system.
  • the active substance is nicotine.
  • the particles comprising the active substance are tobacco particles.
  • the vapor pressure of the volatile component is at least 6 Pa at 20° C.
  • the volatile component is a volatile flavor. In some embodiments, the volatile component is selected from the group consisting of menthol, limonene, linalool, camphene and eucalyptol.
  • the volatile component does not have a distinctive or characteristic flavor.
  • the pH of the aerosol generating material is from about 4 to about 9.5.
  • the pH of the aerosol generating material is increased by the addition of one or more bases or a basic buffer system.
  • the one or more base is selected from the group consisting of hydroxides, carbonates and hydrogen carbonates, optionally wherein the one or more base is selected from the group consisting of: potassium hydroxide, sodium hydroxide, sodium carbonate and sodium bicarbonate.
  • the particles comprising an active substance have an average diameter no greater than 3 mm, no greater than 1 mm, no greater than 0.5 mm, or no greater than 0.3 mm.
  • the liquid volatile component comprises the volatile component and a solvent.
  • the solvent is propylene glycol.
  • the aerosol generating material further comprises one or more aerosol forming agent.
  • the aerosol forming agent is selected from the group consisting of glycerol, propylene glycol and glyceryl triacetate.
  • the aerosol generating material further comprises one or more binder.
  • the one or more binder is selected from the group consisting of: thermoreversible gelling agents, such as gelatin; starches; polysaccharides; pectins; celluloses; cellulose derivatives, such as carboxymethylcellulose; and alginates.
  • a precursor composition comprising the particles comprising an active substance is granulated or spheronized to form the agglomerated structure.
  • a precursor composition comprising the particles comprising an active substance is extruded to form the agglomerated structure.
  • the aerosol generating material is in the form of granules.
  • an aerosol provision system comprising an aerosol generating material according to the first aspect.
  • the system is an aerosol generating material heating system comprising an aerosol generating material which is to be heated to volatilize constituents, and optionally including a filter or filter element.
  • the system is a hybrid system comprising an aerosol generating material which is to be heated to volatilize constituents, and a liquid which is to be heated to form a vapor, and optionally including a filter or filter element.
  • the aerosol generating material is heated by the vapor.
  • the liquid is a nicotine-free liquid.
  • the system includes a means for heating the liquid to form a vapor, but does not include a separate means for heating the aerosol generating material.
  • a method for preparing an aerosol generating material comprising particles comprising an active substance and a volatile component for use in an aerosol provision system, the method comprising forming an agglomerated structure comprising the particles comprising an active substance and incorporating the volatile component into the agglomerated structure in liquid form, wherein the volatile component has a vapor pressure at 20° C. which is greater than or equal to the vapor pressure of the active substance at 20° C.
  • the aerosol generating material is formed from a precursor composition comprising particles comprising an active substance and the liquid volatile component is applied to the surface of the agglomerated structure formed from the precursor composition.
  • the precursor composition is granulated or spheronized to form the agglomerated structure.
  • the precursor composition is extruded to form the agglomerated structure.
  • an apparatus for heating aerosol generating material to volatilize at least one component of the aerosol generating material, and a nicotine-free liquid which is to be heated to form a vapor wherein the aerosol generating material comprises an aerosol generating material according to the first aspect, and wherein the aerosol generating material is heated by the vapor.
  • the apparatus includes a means for heating the liquid to form a vapor, but not including a separate means for heating the aerosol generating material.
  • the pH is increased by the addition of one or more bases or a basic buffer system.
  • a particle incorporating a volatile component in liquid form wherein the volatile component has a vapor pressure at 20° C. which is greater than or equal to the vapor pressure of the active substance at 20° C., for use in controlling the release of nicotine in an aerosol generating material.
  • FIG. 1 is a flow chart showing key steps of a process according to embodiments of the present invention
  • FIG. 2 is a schematic representation of some extruded granules
  • FIG. 3 is a schematic cross-sectional view of a product for heating aerosol generating material to volatilize at least one component of the aerosol generating material;
  • FIG. 4 is a schematic view of a hybrid system for heating aerosol generating material to volatilize at least one component of the aerosol generating material
  • FIG. 5 is a schematic cross-sectional view of an example of a cartridge containing multiple particles of aerosol generating material.
  • the invention relates to an aerosol generating material comprising an active substance and a volatile component added to the material in liquid form.
  • the material is able to release the volatile component and active substance when heated.
  • the aerosol generating material is in particulate or monolithic form. In some embodiments, the aerosol generating material is an agglomerated structure. This means that they are a mass or cluster formed by fusing or adhering multiple particles to one another.
  • the aerosol generating material is able to provide a consistent and extended release of the active substance from the aerosol generating material as a result of the presence in the aerosol generating material of a volatile component that has a vapor pressure at 20° C. that is greater than or equal to the vapor pressure of the active substance at 20° C. Whilst not wishing to be bound by any particular theory, it is believed that the active substance and volatile component compete to volatize from the aerosol generating material. The presence of the volatile component, which is readily volatilized upon heating, is thought to suppress the volatilization of the active substance, slowing its release from the aerosol generating material. This is particularly advantageous in tobacco heating devices and hybrid devices where the active substance, such as nicotine, is generally seen to be rapidly volatilize, providing an initial rapid release which is then followed by a sharp drop off in active substance release, leading to an inconsistent delivery and user experience.
  • the presence of the volatile component controls the release of the active substance from the aerosol generating material. This is an unexpected and highly beneficial effect of the compositions described herein.
  • the composition comprises a volatile component added in liquid form.
  • the volatile component remains in liquid form following addition to the aerosol generating material, for example, until use of the material.
  • the volatile component may dry and convert to a solid form or coating on the aerosol generating material.
  • the volatile material is dissolved in a solvent.
  • the volatile component is menthol.
  • the menthol may be provided in liquid form by dissolving the menthol in a solvent such as a propylene glycol, a lower alcohol or ether.
  • a solvent such as a propylene glycol, a lower alcohol or ether.
  • peppermint oil is a natural product that is in liquid form and contains menthol.
  • the use of menthol with a carrier liquid/solvent such as propylene glycol is preferred. The propylene glycol readily solubilizes the menthol and it also helps the menthol to become integrated into the aerosol generating material it is applied to.
  • the liquid volatile component is applied to the aerosol generating material.
  • the liquid composition is applied to the surface of particles of the aerosol generating material. This may be done by spraying or at least partially immersing the particles in the liquid. In some embodiments, this results in the liquid volatile component being predominantly present on the surface of the aerosol generating material. In other embodiments, as a result of the low viscosity of the liquid volatile component and the density of the particles of aerosol generating material, the liquid component can spread through the particles, so that the volatile component becomes integrated within the structure of the particles of aerosol generating material.
  • the liquid volatile component may be incorporated into the aerosol generating material, for example by injection.
  • the liquid volatile component may be incorporated into the aerosol generating material as it is formed from particles of active substance and optionally other components.
  • the liquid volatile component may be added before or during an extrusion step used to prepare the aerosol generating material.
  • the volatile component can become generally homogenously distributed within the aerosol generating material.
  • the distribution of the volatile component is not homogenous and is designed to provide release of the volatile component at a predetermined point during the heating of the aerosol generating material.
  • the active substance as used herein may be a physiologically active material, which is a material intended to achieve or enhance a physiological response.
  • the active substance may for example be selected from nutraceuticals, nootropics, psychoactives.
  • the active substance may be naturally occurring or synthetically obtained.
  • the active substance may comprise for example nicotine, caffeine, taurine, theine, vitamins such as B6 or B12 or C, melatonin, cannabinoids, or constituents, derivatives, or combinations thereof.
  • the active substance may comprise one or more constituents, derivatives or extracts of tobacco, cannabis or another botanical.
  • the active substance comprises nicotine. In some embodiments, the active substance comprises caffeine, melatonin or vitamin B12.
  • the active substance may comprise or be derived from one or more botanicals or constituents, derivatives or extracts thereof.
  • botanical includes any material derived from plants including, but not limited to, extracts, leaves, bark, fibers, stems, roots, seeds, flowers, fruits, pollen, husk, shells or the like.
  • the material may comprise an active compound naturally existing in a botanical, obtained synthetically.
  • the material may be in the form of liquid, gas, solid, powder, dust, crushed particles, granules, pellets, shreds, strips, sheets, or the like.
  • Example botanicals are tobacco, eucalyptus , star anise, hemp, cocoa, cannabis , fennel, lemongrass, peppermint, spearmint, rooibos, chamomile, flax, ginger, Ginkgo biloba , hazel, hibiscus, laurel, licorice (liquorice), matcha, mate, orange skin, papaya , rose, sage, tea such as green tea or black tea, thyme, clove, cinnamon, coffee, aniseed (anise), basil, bay leaves, cardamom, coriander, cumin, nutmeg, oregano, paprika, rosemary, saffron, lavender, lemon peel, mint, juniper, elderflower, vanilla, wintergreen, beefsteak plant, curcuma , turmeric, sandalwood, cilantro, bergamot, orange blossom, myrtle, cassis, valerian, pimento, mace, damien, marjoram
  • the mint may be chosen from the following mint varieties: Mentha Arventis, Mentha c.v., Mentha niliaca, Mentha piperita, Mentha piperita citrata c.v., Mentha piperita c.v, Mentha spicata crispa, Mentha cardifolia, Mentha longifolia, Mentha suaveolens variegata, Mentha pulegium, Mentha spicata c.v. and Mentha suaveolens
  • the active substance comprises or is derived from one or more botanicals or constituents, derivatives or extracts thereof and the botanical is tobacco.
  • the active substance comprises or is derived from one or more botanicals or constituents, derivatives or extracts thereof and the botanical is selected from eucalyptus , star anise, cocoa and hemp.
  • the active substance comprises or is derived from one or more botanicals or constituents, derivatives or extracts thereof and the botanical is selected from rooibos and fennel.
  • the aerosol generating material comprises a particle or particles comprising an active substance.
  • particles of an active substance are also referred to as “active particles”.
  • the active substance is a plant derived active substance.
  • the particles of active substance may be plant particles comprising the active substance.
  • the particles of active substance may comprise the active substance deposited in or on particles of carrier material.
  • the active substance is nicotine.
  • the nicotine particles may be particles of tobacco material.
  • the nicotine particles may comprise a carrier material and nicotine.
  • the particles comprising the active substance present in the aerosol generating material have a size small enough to ensure that multiple such particles can be agglomerated to form an aerosol provision system having desired dimensions based upon their intended use.
  • Smaller particles of active substance have a greater surface area to volume ratio and they may therefore exhibit enhanced release of the active substance compared to particles of larger sizes.
  • the size of the active particles (and of other particles in the precursor composition) will have an effect on the porosity and density of the agglomerated structures and the aerosol generating material.
  • the size of the active particles may be selected to produce a more porous agglomerated structure, which will have an impact on the release of the active substance.
  • the size of the active particles is another factor that may be adjusted in order to influence the release of the active substance, in particular where the aerosol generating material has an agglomerated structure made by granulation as opposed to extrusion.
  • the preferred size of the active particles may also depend upon the method used to form the agglomerated structures.
  • extrusion processes can be sensitive to the size of the particles within the composition being extruded.
  • the particles in the precursor composition, including the active particles, such as tobacco particles it may be desirable for the particles in the precursor composition, including the active particles, such as tobacco particles, to have an average particle size of no greater than about 3 mm, of no greater than 1 mm, of no greater than about 0.5 mm, or to have an average particle size of no greater than about 0.3 mm, when measured by sieving.
  • the active particles in the precursor composition and/or in the aerosol generating material may be desirable for the active particles in the precursor composition and/or in the aerosol generating material to have an average particle size of no greater than about 3 mm, of no greater than 1 mm, of no greater than about 0.5 mm, or to have an average particle size of no greater than about 0.3 mm, when measured by sieving.
  • the average particle size is within the range of about 0.1 to about 3 mm, of about 0.1 to about 1 mm, of about 0.1 to about 0.5 mm, of about 0.1 to about 0.4 mm, or in the range of about 0.2 to about 0.3 mm.
  • At least about 90% of the particles of the precursor composition will have a particle size within the range of about 0.1 to about 3 mm, or of about 0.1 to about 1 m, or of about 0.1 to about 0.5 mm. In some embodiments, at least about 90% of the active particles of the precursor composition will have a particle size within the range of about 0.1 to about 3 mm, or of about 0.1 to about 1 mm, or of about 0.1 to 0.5 mm. In some embodiments, none of the particles in the precursor composition have a particle size greater than 5 mm, greater than 4 mm, greater than 2 mm, greater than 1.5 mm, or greater than about 1 mm.
  • the active particles are particles of plant material. Where the active substance is or includes nicotine, the active particles may be particles of tobacco material (referred to herein as tobacco particles).
  • Particles of the desired size may be formed by grinding, shredding, cutting or crushing plant material such as tobacco material.
  • Suitable machinery to create such plant particles includes, for example, shredders, cutters, or mills, such as hammer mills, roller mills or other types of commercially available milling machinery.
  • the size of the plant particles is selected to provide particles which can be readily prepared from a variety of different types of plant material, which can be formed into agglomerated structures using the processes described herein and having the properties described herein, and which provide a source of active substances that are readily released.
  • the chopping of the tobacco to form the tobacco particles enhances the release of tobacco constituents including volatile flavor flavors and aromatic constituents, as well as nicotine.
  • the increased surface area of the tobacco particles is also thought to aid volatilization.
  • the smaller tobacco particles also improve the homogeneity of agglomerated structures formed therefrom together with other components.
  • the tobacco material used to form the tobacco particles may be any type of tobacco and any part of the tobacco plant, including tobacco lamina, stem, stalk, ribs, scraps and shorts or mixtures of two or more thereof. Suitable tobacco materials include the following types: Virginia or flue-cured tobacco, Burley tobacco, Oriental tobacco, or blends of tobacco materials, optionally including those listed here.
  • the tobacco may be expanded, such as dry-ice expanded tobacco (DIET), or processed by any other means.
  • the tobacco material may be reconstituted tobacco material.
  • the tobacco may be pre-processed or unprocessed, and may be, for instance, solid stems (SS); shredded dried stems (SDS); steam treated stems (STS); or any combination thereof.
  • the tobacco material may be fermented, cured, uncured, toasted, or otherwise pre-treated.
  • the aerosol generating material is formed from a precursor composition comprising the active particles, wherein the pH of the active particles has been adjusted to a basic pH.
  • the pH may be adjusted to at least about 7.5.
  • the pH may be adjusted by the addition of one or more bases.
  • the pH may be adjusted by the use of a buffer solution.
  • the active substance in the pH-adjusted material is nicotine.
  • the aerosol generating material comprises active particles and one or more bases or a basic buffer system, so that the active particles have a basic pH.
  • the pH may be at least about 7.5.
  • the purpose of adjusting the pH of the active particles and/or of the precursor composition is to provide the active substance in a chemical form that is readily released from the aerosol generating material, and/or they are readily transferred to the aerosol generated by the smoking article.
  • the pH of the active particles is adjusted to at least about 7.5, at least about 8, at least about 8.5, at least about 9, at least about 9.5 or at least about 10. In some embodiments, the pH is adjusted to no higher than about 14, no higher than about 13.5, no higher than about 13, no higher than about 12.5, no higher than about 12, no higher than about 11.5, no higher than about 11, no higher than about 10.5 or no higher than about 10. In some embodiments, the pH of the active particles is adjusted to from about 8 to about 10, or from about 8.5 to about 9.5.
  • the pH of the aerosol generating material is at least about 7.5, at least about 8, at least about 8.5, at least about 9, at least about 9.5 or at least about 10. In some embodiments, the pH is no higher than about 14, no higher than about 13.5, no higher than about 13, no higher than about 12.5, no higher than about 12, no higher than about 11.5, no higher than about 11, no higher than about 10.5 or no higher than about 10. In some embodiments, the pH of the aerosol generating material is adjusted to from about 8 to about 10, or from about 8.5 to about 9.5.
  • the pH of the aerosol generating material is adjusted to from about 7.5 to about 10, or from about 8 to about 9, or to about 8.5, about 9, about 9.5 or about 10.
  • the base used to adjust the pH is a hydroxide or a carbonate.
  • Hydroxides used may be monoacidic bases, diacidic bases or triacidic bases.
  • Suitable bases include, for example, potassium hydroxide, calcium hydroxide, silver hydroxide, ammonium hydroxide, magnesium hydroxide, sodium carbonate, sodium bicarbonate (also known as sodium hydrogen carbonate), and potassium carbonate.
  • the base may be added in the form of a liquid, such as an aqueous or non-aqueous solution or suspension, or in the form of a solid, such as a powder.
  • the pH of the particles comprising a volatile component is not adjusted.
  • the aerosol generating material is formed from a precursor composition comprising a mixture of particles incorporating a volatile component and particles comprising an active substance.
  • the precursor composition further comprises a pH adjuster.
  • the pH of the precursor composition will be adjusted (compared to the pH of the particles without the pH adjuster) once water is added to the composition.
  • the pH of the precursor composition or of the aerosol generating material refers to the pH once water is added to the composition where the composition is dry.
  • the buffer system used to adjust the pH is a mixture of a weak base and its conjugate acid.
  • Suitable buffer systems include, for example, ones having a pH of at least about 7.5, at least about 8, at least about 8.5 or at least about 9.
  • the pH of the buffer system is from about 8 to about 10, or from about 8.5 to about 9.5.
  • Suitable buffer systems include, for example, those based on ammonia, carbonates or hydroxides, with suitable counterions.
  • An example of a specific buffer system is a mixture of ammonia and ammonium chloride.
  • the aerosol generating material having an agglomerated structure are formed from a precursor composition comprising active particles.
  • the precursor composition and/or the aerosol generating material does not include a binder or binding additive.
  • the precursor composition comprises a binder or binding additive.
  • the binding additive may be selected to assist in the formation of an agglomerated structure by helping to adhere the particles to each other and to other components in the composition.
  • Suitable binding additives include, for example, thermoreversible gelling agents such as gelatin, starches, polysaccharides, pectins, alginates, wood pulp, celluloses, and cellulose derivatives such as carboxymethylcellulose.
  • the precursor composition and/or the aerosol generating material further comprises a diluent.
  • the diluent may be in solid or liquid form. In some embodiments, the diluent is inert or substantially inert.
  • the agglomerated structure formed from the precursor composition may have an increased surface area by including in the precursor composition particles of an inert filler material.
  • Suitable inert fillers may be porous or non-porous.
  • the precursor composition and/or the aerosol generating material further comprises at least one aerosol forming agent which may be, for instance, a polyol aerosol generator or a non-polyol aerosol generator, preferably a non-polyol aerosol generator. It may be a solid or liquid at room temperature, but preferably is a liquid at room temperature.
  • Suitable polyols include sorbitol, glycerol, and glycols like propylene glycol or triethylene glycol.
  • Suitable non-polyols include monohydric alcohols, high boiling point hydrocarbons, acids such as lactic acid, and esters such as diacetin, triacetin, triethyl citrate or isopropyl myristate.
  • a combination of aerosol forming agents may be used, in equal or differing proportions. Glycerol and propylene glycol may be particularly preferred.
  • the precursor composition and/or aerosol generating material may include a flavor-modifier, to modify the flavor provided by the active particles or to add flavor.
  • the flavor-modifier may be included in the precursor composition.
  • the flavor-modifier may be added to or applied to the agglomerated structure.
  • the terms “flavor” and “flavorant” refer to materials which, where local regulations permit, may be used to create a desired taste, aroma or other somatosensorial sensation in a product for adult consumers.
  • They may include naturally occurring flavor materials, botanicals, extracts of botanicals, synthetically obtained materials, or combinations thereof (e.g., tobacco, cannabis , licorice (liquorice), hydrangea , eugenol, Japanese white bark magnolia leaf, chamomile, fenugreek, clove, maple, matcha, menthol, Japanese mint, aniseed (anise), cinnamon, turmeric, Indian spices, Asian spices, herb, wintergreen, cherry, berry, red berry, cranberry, peach, apple, orange, mango, clementine, lemon, lime, tropical fruit, papaya , rhubarb, grape, durian, dragon fruit, cucumber, blueberry, mulberry, citrus fruits, Drambuie, bourbon, scotch, whiskey, gin, tequila, rum, spearmint, peppermint, lavender, aloe vera, cardamom, celery, cascarilla, nutmeg, sandalwood, berga
  • the flavor comprises menthol, spearmint and/or peppermint. In some embodiments, the flavor comprises flavor components of cucumber, blueberry, citrus fruits and/or redberry. In some embodiments, the flavor comprises eugenol. In some embodiments, the flavor comprises flavor components extracted from tobacco. In some embodiments, the flavor comprises flavor components extracted from cannabis.
  • the flavor may comprise a sensate, which is intended to achieve a somatosensorial sensation which are usually chemically induced and perceived by the stimulation of the fifth cranial nerve (trigeminal nerve), in addition to or in place of aroma or taste nerves, and these may include agents providing heating, cooling, tingling, numbing effect.
  • a suitable heat effect agent may be, but is not limited to, vanillyl ethyl ether and a suitable cooling agent may be, but not limited to eucalyptol, WS-3.
  • the precursor composition and/or the aerosol generating material further comprises a preservative.
  • Suitable preservatives would be readily known to the skilled person and would include, for example, those that are safe for use in products producing inhalable aerosols. Examples of preservatives that might be used include: propylene glycol, carvacrol, thymol, L-menthol, 1,8-cineole, phenoxyethanol, PhytoCide, sorbic acid and its salts, sodium hydroxymethylglycinate, ethylhexylglycerin, parabens and vitamins such as vitamin E or vitamin C.
  • neither the precursor composition nor the aerosol generating material includes a gelling agent.
  • the aerosol generating material is in particulate form, being small, separate particles. In most embodiments, multiple particles will be incorporated into an apparatus in order to have the desired effect on the aerosol of the apparatus.
  • the particulate aerosol generating material has an average size (as measured by sieving) of from about 0.5 mm to about 4 mm. In some embodiments, it may be preferable for the granules to have an average size of from about 0.7 mm to about 3 mm. Where, for example, the granules are to be dispersed within the filter material of a filter element (as in a Dalmatian style filter element), it may be preferable for the granules to have an average size of from about 0.3 mm to about 1 mm. Where, for example, the granules are to be included in a cavity, such as a cavity within a filter, it may be preferable for the granules to have an average size of from about 0.5 mm to about 4 mm.
  • the aerosol generating material is in monolithic form, being larger articles.
  • a single monolithic component will be incorporated into an apparatus in order to have the desired effect on the aerosol of the apparatus.
  • the monolithic components are roughly spherical or cylindrical in shape. They may have a diameter of from about 4 mm to about 10 mm. In some embodiments, the diameter may be from about 5 mm to about 8 mm. Cylindrical components may additionally have a length of from about 5 mm to about 80 mm, from about 15 mm to about 50 mm, or from about 20 mm to about 30 mm.
  • FIG. 1 is a flow chart showing the key steps in the processes of some embodiments of the present invention.
  • a tobacco starting material which may be pre-treated or pre-processed, is ground to the desired particle size.
  • the pH is optionally adjusted, either by adding one or more bases or by adding a buffer solution to the tobacco particles.
  • Any additional components may be added to the precursor material. These additional components may be in liquid form or is solid form. Additional solid components are preferably in particulate or powder form. The additional components may be added before, during or after the pH adjustment step.
  • An agglomerated structure is then formed from the resultant precursor composition, by adhering the pH-adjusted tobacco particles and optional other components to form multi-particle entities.
  • water may be added to the precursor composition as a processing aid.
  • the presence of water may help to dissolve components of the precursor composition, such as the pH adjusting agent and sugars, and/or it may assist with binding or improve agglomeration.
  • the agglomerated structure may be formed from the precursor composition by a process including one or more steps selected from the group consisting of granulation, extrusion and spheronization.
  • a liquid volatile component is applied to the particles, for example by spraying.
  • Granulation of the precursor composition involves the binding or fusing together of the particles of the precursor composition to form larger, multi-particle entities which are referred to herein as agglomerated structures.
  • the multi-particle entities formed by granulation are called granules and they may have various geometric shapes, including, for example, the general form of spheres, cylinders, and the like.
  • the granulation step used is wet granulation.
  • wet granulation granules are formed by the addition of a granulation liquid onto a powder bed. Agitation in the system, along with the wetting of the components within the precursor composition, results in the aggregation of the particles to produce wet granules.
  • the granulation liquid may be at least partially removed by drying to provide dry granules.
  • the granulation liquid may be water-based or solvent-based. Suitable granulation liquids include, for example, water, glycerol, ethanol and isopropanol, either alone or in combination.
  • the granulation liquid comprises an aerosol forming agent, such as glycerol or one of the other agents mentioned herein, and/or a binder or binding agent. In some embodiments, no water is added to the precursor composition to aid granulation.
  • the granulation step used is dry granulation.
  • dry granulation granules are formed without using a granulation liquid. This type of process has the advantage that it does not expose the precursor composition to moisture and so there is no requirement to expose the granules to heat in order to dry them.
  • Forming granules by dry granulation involves compacting and densifying the precursor composition, usually under high pressure.
  • Extrusion of the precursor composition involves the feeding of the precursor composition through an orifice to produce an extruded agglomerate.
  • the process which applies pressure to the precursor composition combined with shear forces, results in agglomerated structures.
  • Extrusion may be performed using one of the main classes of extruders: screw, sieve and basket, roll, ram and pin barrel extruders.
  • a single screw or twin screw extruder may be used.
  • Forming the aerosol generating material by extrusion has the advantage that this processing combines mixing, conditioning, homogenizing and molding of the precursor composition.
  • the free-flowing precursor composition is exposed to elevated pressure and temperature and is forced though an orifice, such as a shaping nozzle or die, to form an extruded agglomerate.
  • the extruded agglomerate has a rod-like form and/or it may be cut into segments of a desired length as it exits the orifice. A rod-like extruded agglomerate may subsequently be cut into segments of desired length.
  • the precursor composition is exposed to temperatures from about 40° C. to about 150° C., or from about 80° C. to about 130° C., or from about 60° C. to about 95° C. within the extruder. In some embodiments, including those using double extrusion, the precursor composition is exposed to temperatures from about 70° C. to about 95° C. within the extruder. In some embodiments, including those using single extrusion, the precursor composition is exposed to temperatures from about 60° C. to about 80° C. within the extruder.
  • the composition may be exposed to pressures (immediately before the die or nozzle) ranging from about 2 bar to about 100 bar, or from about 5 bar to about 60 bar, depending on the design of the die or nozzle being used.
  • the aerosol generating material formed from the extruded agglomerate exhibit good heat transfer and mass transfer, which has a positive impact on the release of active substance and the volatile component.
  • the extrusion may be a generally dry process, with the precursor composition being a dry or substantially dry material that includes active particles, as well as optionally other particulate materials including, for example, base, diluent, solid aerosol forming agents, solid flavor modifiers, etc.
  • liquids may be added to the precursor composition during the extrusion process.
  • water may be added to the precursor composition, for example as a processing aid to assist dissolution or solubilization of components of the composition, or to aid binding or agglomeration.
  • a wetting agent may be added to the precursor composition.
  • the liquid volatile component may be added to the precursor composition as a liquid component. This may be in addition to or instead of applying the liquid volatile component to the agglomerated structures once they have been formed (as shown in FIG. 1 ).
  • the liquid added to the precursor composition may be an aerosol forming agent such as glycerol or others discussed herein.
  • the liquid is applied not only on the surface, but, as a result of the extruder pressure combined with the intensive mixing by high shear forces, the extruded agglomerate becomes impregnated with the liquid.
  • the liquid is an aerosol forming agent
  • this can result in a high availability of the aerosol forming agent in the agglomerated product to enhance evaporation and release of the active substance and other volatile components from the agglomerated structure.
  • This same integration or impregnation of the agglomerated structure can be achieved if the liquid volatile component is added to the precursor composition and is extruded with the other components such as the active particles.
  • the amount of aerosol forming agent incorporated into the aerosol generating material may be at least about 1% by weight, at least about 1.5% by weight, at least about 2% by weight, at least about 3% by weight, at least about 5%, at least about 10%, at least about 15% or at least about 20% by weight.
  • the amount of aerosol forming agent incorporated into the aerosol generating material may be up to about 30% by weight and even up to about 40% by weight.
  • High amounts of aerosol forming agent such as at least about 10% or at least about 20% by weight, may be advantageous where the aerosol generating material is to generate an aerosol in addition to releasing the nicotine and volatile components.
  • Smaller amounts of aerosol forming agent such as up to about 5% by weight, may be sufficient where the aerosol generating material's primary function is to release the active substance and volatile components carried by the material into an existing aerosol or air flow.
  • the extruded agglomerate will be shaped by the nozzle or die through which it is forced. In some embodiments, the extruded agglomerate is cut into pieces of desired length. The pieces formed in this way may be used as the aerosol generating material or they may undergo further processing.
  • the nozzle or die is shaped to provide a solid strand of extruded agglomerate.
  • the extruded agglomerate may have the form of a solid cylindrical rod.
  • the extruded agglomerate may have different cross-sectional shapes, including oval, polygonal (such as triangular, square, etc.), and stars.
  • the extruded composition is formed into a desired shape selected to enhance or promote the release of the active substance and volatile components, for example by providing a form having a large surface area per unit volume.
  • This large surface area may be provided on the outer surface of the extruded agglomerate, for example by selecting cross-sectional shapes with large perimeter. Alternatively or in addition, the large surface area may be provided through the creation of channels within the extruded agglomerate.
  • the nozzle is shaped to provide an extruded agglomerate with inner channels. These inner channels provide further surface area and can enhance constituent release.
  • Aerosol generating materials formed from such shaped extruded agglomerate sections have an inner channel structure which have advantageous adjustable strand ventilation properties and a significantly enlarged inner surface leading to improved heat and mass transfer.
  • such shaped materials exhibit better, more uniform release of active substance and flavor by evaporation.
  • the structure with inner channels exhibits significantly improved strength in both the radial and axial directions, which is beneficial for the further processing of the extruded agglomerate, for example when it is cut into segments.
  • extruded agglomerates with different physical properties may be prepared, including different heat transfer properties, draft resistance, and capable of producing different aerosols and/or of modifying aerosols being drawn through the extruded agglomerate.
  • the extruded agglomerate is shaped upon discharge from the extruder. In some embodiments, the extruded agglomerate is cut to an initial length, for example 1 meter, and allowed to cool before then being cut into sections of the desired length to provide the nicotine delivery composition in the form of particles of the desired dimensions.
  • the extruded agglomerate may be cooled just before or just as it leaves the extruder.
  • the cooling is intensive and involves exposing the extruded agglomerate, which will be at an elevated temperature, for example from about 30° C. to about 100° C., or from about 40° C. to about 70° C., to a cooling means that will reduce the temperature to within a range of from about 0° C. to about 70° C., from about 0° C. to about 50° C., from about 5° C. to about 25° C. or from about 5° C. to about 15° C.
  • This rapid cooling of the extruded agglomerate may enhance the internal and external stability of the extruded agglomerate.
  • it is the nozzle or die that is cooled to achieve this effect.
  • extrusion of the precursor composition includes reducing the temperature of the precursor composition before it reaches the nozzle or die.
  • Such cooling of the precursor composition may result in the formation of an extruded agglomerate with beneficial properties, or may improve the strand-shaping process, for example where channels are to be formed within the extruded agglomerate strand.
  • spheronization is used to further process extruded segments. These segments are typically cylindrically-shaped and are cut or broken into uniform lengths following extrusion. They are then gradually transformed into spherical shapes by spheronization. This shaping occurs as a result of plastic deformation and spheronization can lead to spherical agglomerated structures, often with a nearly uniform diameter.
  • One or more particles of the aerosol generating material may be incorporated into an aerosol provision system, such as an apparatus for heating aerosol generating material to volatilize at least one component of the aerosol generating material.
  • the aerosol generating material included in the aerosol provision system may comprise, consist essentially of, or consist of the aerosol generating material as described herein.
  • the aerosol generating material used in the aerosol provision system further comprises one or more other aerosol generating materials, such as tobacco material.
  • an aerosol provision system includes non-combustible aerosol provision systems that release compounds from an aerosol generating material without combusting the aerosol-generating material, such as tobacco heating products, and hybrid systems to generate aerosol using a combination of aerosol-generating materials.
  • a “non-combustible” aerosol provision system is one where a constituent aerosol-generating material of the aerosol provision system (or component thereof) is not combusted or burned in order to facilitate delivery of at least one substance to a user.
  • the delivery system is a non-combustible aerosol provision system, such as a powered non-combustible aerosol provision system.
  • the non-combustible aerosol provision system is an electronic cigarette, also known as a vaping device or electronic nicotine delivery system (END), although it is noted that the presence of nicotine in the aerosol-generating material is not a requirement.
  • END electronic nicotine delivery system
  • the non-combustible aerosol provision system is an aerosol-generating material heating system, also known as a heat-not-burn system.
  • a heat-not-burn system is a tobacco heating system.
  • the non-combustible aerosol provision system is a hybrid system to generate aerosol using a combination of aerosol-generating materials, one or a plurality of which may be heated.
  • Each of the aerosol-generating materials may be, for example, in the form of a solid, liquid or gel and may or may not contain nicotine.
  • the hybrid system comprises a liquid or gel aerosol-generating material and a solid aerosol-generating material.
  • the solid aerosol-generating material may comprise, for example, tobacco or a non-tobacco product.
  • the non-combustible aerosol provision system may comprise a non-combustible aerosol provision device and a consumable for use with the non-combustible aerosol provision device.
  • the disclosure relates to consumables comprising aerosol-generating material and configured to be used with non-combustible aerosol provision devices. These consumables are sometimes referred to as articles throughout the disclosure.
  • the non-combustible aerosol provision system may comprise a power source and a controller.
  • the power source may, for example, be an electric power source or an exothermic power source.
  • the exothermic power source comprises a carbon substrate which may be energized so as to distribute power in the form of heat to an aerosol-generating material or to a heat transfer material in proximity to the exothermic power source.
  • the non-combustible aerosol provision system may comprise an area for receiving the consumable, an aerosol generator, an aerosol generation area, a housing, a mouthpiece, a filter and/or an aerosol-modifying agent.
  • the consumable for use with the non-combustible aerosol provision device may comprise aerosol-generating material, an aerosol-generating material storage area, an aerosol-generating material transfer component, an aerosol generator, an aerosol generation area, a housing, a wrapper, a filter, a mouthpiece, and/or an aerosol-modifying agent.
  • the aerosol generating material may be positioned within the apparatus or device so that the active substance and volatile components that are released become entrained in an aerosol generated by the apparatus or device upon use, modifying the properties of the aerosol. Additionally or alternatively, the aerosol generating material may itself generate an aerosol during use, said aerosol including the released active substance and volatile components.
  • one or more particles of aerosol generating material are included in an aerosol provision system to volatilize components of the aerosol generating material by heating but not combusting the material (i.e., a tobacco heating product or so-called Heat-not-Burn product). In some of these products, the aerosol generating material is heated to generate an aerosol.
  • one or more particles of aerosol generating material are to be heated by such products.
  • one or more particles of aerosol generating material may be incorporated into tobacco material to form the material to be heated.
  • the one or more particles of aerosol generating material may be dispersed within the tobacco material, such as cut tobacco or reconstituted tobacco, to contribute to the active substances and flavor imparted by the tobacco.
  • the tobacco included in the material to be heated by the aerosol generating material heating system consists or consists essentially of one or more particles of aerosol generating material.
  • the aerosol generating material may be heated directly. Where there are multiple particles of aerosol generating material, these may be held in a container or cartridge. At least portions of the container or cartridge may be permeable to air, to allow air to flow over or through the particles of aerosol generating material.
  • FIG. 3 shows a cross-sectional view of an example of a tobacco heating product for heating an aerosol generating material.
  • the apparatus 11 has a heating chamber 14 which in use contains the aerosol generating material to be heated and volatilized.
  • the aerosol generating material is in the form of a monolithic nicotine delivery composition 13 .
  • the aerosol generating material could however be multiple particles of aerosol generating material held in the heating chamber or provided in a cartridge like the one illustrated in FIG. 5 .
  • the apparatus 11 of FIG. 3 further has an electronics/power chamber 16 which may, for example, contain electrical control circuitry and/or a power source (not shown).
  • the electrical control circuitry may include a controller, such as a microprocessor arrangement, configured and arranged to control the heating of the aerosol generating material via a heating element (not shown).
  • the electrical control circuitry may in use receive a signal from for example a puff-actuated sensor which is sensitive to for example changes in pressure or changes in rate of air flow that occur upon initiation of a draw on the apparatus 11 by a user. The electrical control circuitry can then operate so as to cause heating of the aerosol generating material “on demand”.
  • a puff-actuated sensor including for example a thermistor, an electro-mechanical device, a mechanical device, an optical device, an opto-mechanical device and a micro electro mechanical systems (MEMS) based sensor.
  • the apparatus may have a manually operable switch for a user to initiate a puff.
  • the heating chamber 14 is contained within the housing 12 .
  • the housing 12 includes an inlet 15 through which air is drawn into the apparatus.
  • the housing 12 also includes an outlet 17 at a mouthpiece 18 of the apparatus 11 . Air is drawn into the apparatus 11 through the inlet 15 , travels through the apparatus picking up the active substance and other volatile constituents released by the aerosol generating material 13 , and the resulting aerosol generated by the apparatus 11 leaves the apparatus 11 through the outlet 19 and is inhaled by the user.
  • one or more particles of the aerosol generating material are included in a so-called hybrid system for heating aerosol generating material to volatilize at least one component of an aerosol generating material.
  • the aerosol generating material is heated to generate an aerosol, in addition to the heating of a liquid, such as a nicotine-containing liquid or a nicotine-free liquid, which is heated by a heat source to form an aerosol or vapor.
  • the aerosol or vapor formed from the liquid is drawn over or through the aerosol generating material, picking up the active substance(s) and other volatilized components.
  • the aerosol or vapor formed from the liquid is not drawn over or through the aerosol generating material.
  • the material to be heated comprises the aerosol generating material and tobacco material, such as cut tobacco.
  • tobacco material such as cut tobacco.
  • one or more particles of aerosol generating material may be incorporated into tobacco.
  • the one or more particles of aerosol generating material may be dispersed within the tobacco material, such as cut tobacco or reconstituted tobacco, to contribute to the flavor and active substances provided by the tobacco.
  • the aerosol generating material of the hybrid system consists of the particles of aerosol generating material.
  • FIG. 4 shows a cross-sectional view of an example of a hybrid product for heating an aerosol generating material and a liquid.
  • the apparatus 21 has a housing 22 containing a chamber 24 which in use contains the aerosol generating material to be heated and volatilized.
  • the aerosol generating material is in the form of a monolithic aerosol generating material 23 .
  • the aerosol generating material could however be multiple particles of aerosol generating material held in the chamber or provided in a cartridge like the one illustrated in FIG. 5 .
  • the housing 22 also contains a liquid reservoir 25 containing a liquid 26 to be heated to form a vapor.
  • the apparatus 21 further has an electronics/power chamber 27 which may, for example, contain electrical control circuitry and/or a power source (not shown).
  • the electrical control circuitry may include a controller, such as a microprocessor arrangement, configured and arranged to control the heating of the aerosol generating material and of the liquid 26 via one or more heating elements (not shown).
  • the electrical control circuitry may allow the apparatus 21 to be puff-actuated, so as to cause heating of the aerosol generating material “on demand”.
  • the apparatus 22 may have a manually operable switch for a user to initiate a puff.
  • the housing 22 also includes an inlet 28 through which air is drawn into the apparatus.
  • the housing 22 also includes an outlet 29 at a mouthpiece 30 of the apparatus 21 . Air is drawn into the apparatus 21 through the inlet 28 , travels through the apparatus picking up the vapor created by heating the liquid 26 in the liquid reservoir 25 , and active substance(s) and volatile component released by the aerosol generating material 23 , and the resulting aerosol generated by the apparatus 21 leaves the apparatus 21 through the outlet 29 and is inhaled by the user.
  • the hybrid device 21 shown schematically in FIG. 4 represents just one possible configuration of such an apparatus.
  • the relative positions of the liquid reservoir 25 and the aerosol generating material chamber 24 can be changed, as can the path of the air flowing through the apparatus.
  • the liquid reservoir is positioned upstream of the aerosol generating material to be volatilized.
  • the liquid reservoir may be positioned downstream of the aerosol generating material to be volatilized.
  • the two sources of aerosol in the apparatus may be arranged side-by-side, etc.
  • the vapor produced by heating the liquid in the liquid reservoir flows over or through the aerosol generating material comprising or consisting of one or more aerosol generating material.
  • the elevated temperature of the vapor causes the active substance and volatile components to be released.
  • the aerosol generating material may be separately heated by a heating means.
  • a hybrid device in which the vapor created by heating a liquid heats the aerosol generating material in order to volatilize at least one component of the aerosol generating material.
  • the liquid is a nicotine-free liquid.
  • the liquid contains nicotine.
  • the vapor produced by heating the liquid in the liquid reservoir does not flows over or through the aerosol generating material. Rather, this vapor and the aerosol generated by heating the aerosol generating material only mix after they are both formed.
  • the tobacco heating products and hybrid products described herein may, in some embodiments, include aerosol generating material in the form of containers or cartridges containing the aerosol generating material. These containers or cartridges may be removable. They may replace both the chamber holding the aerosol generating material and the aerosol generating material in the apparatus described above with reference to FIGS. 3 and 4 , and in the alternative embodiments discussed.
  • a tobacco segment cartridge 31 comprising a housing 32 defining a cavity within which are held one or more particles of aerosol generating material (not shown).
  • the housing 32 may, for example be made from molded plastic or the like.
  • ventilation holes 33 are provided in the housing 32 of the cartridge 31 .
  • the cartridge 31 may further comprise heating means that is heatable by a suitable means in order to heat the one or more particles of aerosol generating material held therein.
  • menthol was used in the form of a liquid-menthol solution as the volatile component.
  • the solution comprised menthol solubilized in propylene glycol.
  • the performance of the mentholated extruded granules was tested to assess the impact of the incorporation of the menthol in the composition when the granules were incorporated into a Hybrid device.
  • the extruded tobacco granules were formed from a feedstock comprising ground tobacco particles, sodium carbonate (Na 2 CO 3 ), carboxymethylcellulose (CMC) and water.
  • the pH of the feedstock used was 8.5 for each of the samples produced.
  • the menthol solution was sprayed onto the surface of the extruded tobacco granules. It was observed that the menthol became integrated within the granule so that it was then be available to be delivered when the resultant nicotine releasing composition was heated. The spraying could be conducted on bulk granule or during tobacco pod manufacture.
  • the target amount of menthol added was 0 (a control composition), 5% and 20% by weight.
  • the propylene glycol-menthol solution was include in the amounts shown in the table below. Here the granules were dosed in the pod during tobacco pod manufacturing.
  • the nicotine delivery composition was incorporated into a Hybrid device.
  • the liquid included in the device to form the aerosol for the purpose of this experiment was SK IM liquid.
  • the figures shown for menthol delivery are in addition to what was delivered from the liquid.
  • Aerosol PG-Menthol menthol Target solution [ ⁇ g/puff] menthol added (average over Blend (% w/w) (per pod) 60 puffs) Blend 101 pH 8.5 0 0 0 Blend 101 pH 8.5 5 42 ⁇ l 53 Blend 101 pH 8.5 20 165 ⁇ l 177
  • the data shows that the nicotine delivery composition provides a steady release of the volatile component, menthol.
  • the delivery system described herein can be implemented as a combustible aerosol provision system, a non-combustible aerosol provision system or an aerosol-free delivery system.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Agronomy & Crop Science (AREA)
  • Botany (AREA)
  • Manufacture Of Tobacco Products (AREA)
  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
US17/997,313 2020-05-05 2021-05-04 Aerosol generating material Pending US20230165304A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GBGB2006633.8A GB202006633D0 (en) 2020-05-05 2020-05-05 Aerosol generating material
GB2006633.8 2020-05-05
PCT/GB2021/051062 WO2021224600A1 (en) 2020-05-05 2021-05-04 Aerosol generating material

Publications (1)

Publication Number Publication Date
US20230165304A1 true US20230165304A1 (en) 2023-06-01

Family

ID=71080507

Family Applications (1)

Application Number Title Priority Date Filing Date
US17/997,313 Pending US20230165304A1 (en) 2020-05-05 2021-05-04 Aerosol generating material

Country Status (8)

Country Link
US (1) US20230165304A1 (ja)
EP (1) EP4146019A1 (ja)
JP (1) JP2023526173A (ja)
KR (1) KR20230004875A (ja)
CA (1) CA3173503A1 (ja)
GB (1) GB202006633D0 (ja)
MX (1) MX2022013775A (ja)
WO (1) WO2021224600A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW202423308A (zh) * 2022-10-20 2024-06-16 英商尼可創業貿易有限公司 形式為一或多個非線形股線之氣溶膠產生材料
TW202421010A (zh) * 2022-10-20 2024-06-01 英商尼可創業貿易有限公司 包含形式為一或多個非線形股線之氣溶膠產生材料的氣溶膠產生組成物
WO2024084062A1 (en) * 2022-10-20 2024-04-25 Nicoventures Trading Limited An aerosol-generating material in the form of one or more non-linear strands
TW202421011A (zh) * 2022-10-20 2024-06-01 英商尼可創業貿易有限公司 形式為一或多個非線形股線之氣溶膠產生材料
GB202215504D0 (en) * 2022-10-20 2022-12-07 Nicoventures Trading Ltd Aerosol generating composition

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4917120A (en) * 1986-05-21 1990-04-17 Advanced Tobacco Products, Inc. Nicotine impact modification
TW201247115A (en) * 2011-02-17 2012-12-01 British American Tobacco Co Smoking articles
AU2012360820B2 (en) * 2011-12-30 2017-07-13 Philip Morris Products S.A. Aerosol generating system with consumption monitoring and feedback
TW201427719A (zh) * 2012-12-18 2014-07-16 Philip Morris Products Sa 氣溶膠產生系統用之經封裝的揮發性液體源
EP3042576B1 (en) * 2013-09-30 2018-06-13 Japan Tobacco, Inc. Non-burning type flavor inhaler
US20170273351A1 (en) * 2014-09-30 2017-09-28 Philip Morris Products S.A. Recovery of tobacco constituents from processing
DE102016114718B4 (de) * 2016-08-09 2021-02-25 Hauni Maschinenbau Gmbh Inhalator
GB201620352D0 (en) * 2016-11-30 2017-01-11 British American Tobacco Investments Ltd Smoking article
GB201711534D0 (en) * 2017-07-18 2017-08-30 British American Tobacco Investments Ltd Tobacco constituent releasing components
GB201807305D0 (en) * 2018-05-03 2018-06-20 Nicoventures Trading Ltd Vaporisable formulation
KR20210009334A (ko) * 2018-05-17 2021-01-26 가부시키가이샤 도아 산교 방향 카트리지
GB201812494D0 (en) * 2018-07-31 2018-09-12 Nicoventures Trading Ltd Aerosol generation
GB201812492D0 (en) * 2018-07-31 2018-09-12 Nicoventures Trading Ltd Consumable for use with apparatus for heating aerosolisable material
EP4223164A3 (en) * 2018-09-28 2023-08-16 Philip Morris Products S.A. Aerosol-generating system providing preferential evaporation of nicotine

Also Published As

Publication number Publication date
KR20230004875A (ko) 2023-01-06
CA3173503A1 (en) 2021-11-11
WO2021224600A1 (en) 2021-11-11
EP4146019A1 (en) 2023-03-15
GB202006633D0 (en) 2020-06-17
MX2022013775A (es) 2022-11-30
JP2023526173A (ja) 2023-06-21

Similar Documents

Publication Publication Date Title
AU2018304943B2 (en) Tobacco constituent releasing components
US20230165298A1 (en) Aerosol generating material
US20230165304A1 (en) Aerosol generating material
US20230165297A1 (en) Aerosol generating material
US20240074487A1 (en) Aerosol-generating material and uses thereof
KR20240100459A (ko) 에어로졸 생성 재료
CA3241342A1 (en) Aerosol provision systems and articles for use therein
KR20240101704A (ko) 에어로졸화 가능한 재료를 가열하기 위한 장치와 함께 사용하기 위한 물품
EP4451937A2 (en) Aerosol provision systems and articles for use therein
EP4451927A2 (en) An aerosol generating material
EP4451938A2 (en) Article for use with an apparatus for heating aerosolisable material
CA3241445A1 (en) An article for use in an aerosol provision system and a method of manufacturing an article for use in an aerosol provision system

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: APPLICATION UNDERGOING PREEXAM PROCESSING

AS Assignment

Owner name: NICOVENTURES TRADING LIMITED, UNITED KINGDOM

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:TESFATSION, BINIAM;BISHOP, DAVID;POYNTON, SIMON;AND OTHERS;REEL/FRAME:064210/0697

Effective date: 20221027

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION