US20230097036A1 - Method and Apparatus for Removing Insulation from a Cable - Google Patents

Method and Apparatus for Removing Insulation from a Cable Download PDF

Info

Publication number
US20230097036A1
US20230097036A1 US18/062,616 US202218062616A US2023097036A1 US 20230097036 A1 US20230097036 A1 US 20230097036A1 US 202218062616 A US202218062616 A US 202218062616A US 2023097036 A1 US2023097036 A1 US 2023097036A1
Authority
US
United States
Prior art keywords
insulation
blades
cutting
recited
drive mechanism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US18/062,616
Inventor
Thomas E. Backenstoes
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TE Connectivity Solutions GmbH
Original Assignee
TE Connectivity Solutions GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TE Connectivity Solutions GmbH filed Critical TE Connectivity Solutions GmbH
Priority to US18/062,616 priority Critical patent/US20230097036A1/en
Assigned to TE CONNECTIVITY SOLUTIONS GMBH reassignment TE CONNECTIVITY SOLUTIONS GMBH MERGER (SEE DOCUMENT FOR DETAILS). Assignors: TE Connectivity Services Gmbh
Assigned to TE Connectivity Services Gmbh reassignment TE Connectivity Services Gmbh ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BACKENSTOES, THOMAS
Publication of US20230097036A1 publication Critical patent/US20230097036A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26DCUTTING; DETAILS COMMON TO MACHINES FOR PERFORATING, PUNCHING, CUTTING-OUT, STAMPING-OUT OR SEVERING
    • B26D3/00Cutting work characterised by the nature of the cut made; Apparatus therefor
    • B26D3/08Making a superficial cut in the surface of the work without removal of material, e.g. scoring, incising
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26DCUTTING; DETAILS COMMON TO MACHINES FOR PERFORATING, PUNCHING, CUTTING-OUT, STAMPING-OUT OR SEVERING
    • B26D1/00Cutting through work characterised by the nature or movement of the cutting member or particular materials not otherwise provided for; Apparatus or machines therefor; Cutting members therefor
    • B26D1/01Cutting through work characterised by the nature or movement of the cutting member or particular materials not otherwise provided for; Apparatus or machines therefor; Cutting members therefor involving a cutting member which does not travel with the work
    • B26D1/12Cutting through work characterised by the nature or movement of the cutting member or particular materials not otherwise provided for; Apparatus or machines therefor; Cutting members therefor involving a cutting member which does not travel with the work having a cutting member moving about an axis
    • B26D1/25Cutting through work characterised by the nature or movement of the cutting member or particular materials not otherwise provided for; Apparatus or machines therefor; Cutting members therefor involving a cutting member which does not travel with the work having a cutting member moving about an axis with a non-circular cutting member
    • B26D1/26Cutting through work characterised by the nature or movement of the cutting member or particular materials not otherwise provided for; Apparatus or machines therefor; Cutting members therefor involving a cutting member which does not travel with the work having a cutting member moving about an axis with a non-circular cutting member moving about an axis substantially perpendicular to the line of cut
    • B26D1/30Cutting through work characterised by the nature or movement of the cutting member or particular materials not otherwise provided for; Apparatus or machines therefor; Cutting members therefor involving a cutting member which does not travel with the work having a cutting member moving about an axis with a non-circular cutting member moving about an axis substantially perpendicular to the line of cut with limited pivotal movement to effect cut
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26DCUTTING; DETAILS COMMON TO MACHINES FOR PERFORATING, PUNCHING, CUTTING-OUT, STAMPING-OUT OR SEVERING
    • B26D5/00Arrangements for operating and controlling machines or devices for cutting, cutting-out, stamping-out, punching, perforating, or severing by means other than cutting
    • B26D5/08Means for actuating the cutting member to effect the cut
    • B26D5/16Cam means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G1/00Methods or apparatus specially adapted for installing, maintaining, repairing or dismantling electric cables or lines
    • H02G1/12Methods or apparatus specially adapted for installing, maintaining, repairing or dismantling electric cables or lines for removing insulation or armouring from cables, e.g. from the end thereof
    • H02G1/1202Methods or apparatus specially adapted for installing, maintaining, repairing or dismantling electric cables or lines for removing insulation or armouring from cables, e.g. from the end thereof by cutting and withdrawing insulation
    • H02G1/1248Machines
    • H02G1/1251Machines the cutting element not rotating about the wire or cable
    • H02G1/1253Machines the cutting element not rotating about the wire or cable making a transverse cut
    • H02G1/1258Machines the cutting element not rotating about the wire or cable making a transverse cut not using wire or cable-clamping means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G1/00Methods or apparatus specially adapted for installing, maintaining, repairing or dismantling electric cables or lines
    • H02G1/12Methods or apparatus specially adapted for installing, maintaining, repairing or dismantling electric cables or lines for removing insulation or armouring from cables, e.g. from the end thereof
    • H02G1/1202Methods or apparatus specially adapted for installing, maintaining, repairing or dismantling electric cables or lines for removing insulation or armouring from cables, e.g. from the end thereof by cutting and withdrawing insulation
    • H02G1/1248Machines
    • H02G1/1265Machines the cutting element rotating about the wire or cable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26DCUTTING; DETAILS COMMON TO MACHINES FOR PERFORATING, PUNCHING, CUTTING-OUT, STAMPING-OUT OR SEVERING
    • B26D1/00Cutting through work characterised by the nature or movement of the cutting member or particular materials not otherwise provided for; Apparatus or machines therefor; Cutting members therefor
    • B26D1/0006Cutting members therefor
    • B26D2001/0033Cutting members therefor assembled from multiple blades
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/82Recycling of waste of electrical or electronic equipment [WEEE]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T83/00Cutting
    • Y10T83/869Means to drive or to guide tool
    • Y10T83/8821With simple rectilinear reciprocating motion only
    • Y10T83/8841Tool driver movable relative to tool support
    • Y10T83/8843Cam or eccentric revolving about fixed axis

Definitions

  • the present invention is directed to a method and apparatus for removing insulation from a cable.
  • the invention is directed to a method and apparatus to remove cut resistant insulation from a cable without damaging the other components of the cable.
  • Certain cable types such as those used for electric and hybrid vehicles, require several different process steps to prepare them for termination. These process steps include the need to remove insulation, such as silicone, from the outside of the cable and also from the outside of the center conductor.
  • insulation such as silicone
  • Currently available commercial processes for removing this insulation may nick or cut braid or conductor strands during the removal process, which is unacceptable to certain end users.
  • One process that reduces damage involves using a pair of linear-acting contour blades. When fully closed, these blades produce a circle that closely matches the diameter of the layer beneath the insulation. These blades, however, can produce damage on the sides of the cables where there is a slicing action.
  • Another process that is used to reduce damage is to force the cutting edge through the insulation in a radial, or near radial direction.
  • a radial (“pressing”) motion to cut silicone rubber, or similar materials, is that such materials are designed to be abrasion and cut resistant. Applying the radial motion to the cutting blade, against the surface of the insulation material, results in a temporary compression of the insulation material in the immediate blade contact area. After removing the force applied to the blade, the insulation is left intact without being cut.
  • An embodiment is directed to a method a method of removing insulation from an electrical cable.
  • the method includes: positioning the cable proximate an insulation cutting blade of a cable preparation apparatus; moving a cutting surface of the insulation cutting blade in a rotary direction relative to the insulation of the cable; engaging the insulation with the cutting surface of the insulation cutting blade as the insulation cutting blade is moved in the rotary direction; cutting the insulation to a defined depth with the cutting surface of the insulation cutting blade as the insulation cutting blade is moved in the rotary direction, the defined depth being less than the thickness of the insulation; thereafter, moving the cutting surface of insulation cutting blade in a radial direction relative to the insulation of the cable; engaging the insulation with the cutting surface of the insulation cutting blade as the insulation cutting blade is moved in the radial direction; and cutting the insulation from the defined depth with the cutting surface of the insulation cutting blade as the insulation cutting blade is moved in the radial direction.
  • the entire thickness of the insulation is cut by the sequential combination of the movement of the insulation cutting blade in the rotary direction and the movement of the insulation cutting blade in the
  • An embodiment is directed to a method of removing insulation from an electrical cable.
  • the method includes: positioning the cable between insulation cutting blades of a cable stripping or preparation apparatus; cutting the insulation to a defined depth with cutting surfaces of the insulation cutting blades as the insulation cutting blades are moved in a rotary direction relative to the insulation of the cable, the defined depth being less than the thickness of the insulation; maintaining the insulation cutting blades in the insulation to displace insulation material, creating tension in the insulation in areas directly beneath the blade cutting surfaces of the insulation cutting blades; and cutting the insulation from the defined depth with the cutting surfaces of the insulation cutting blades as the insulation cutting blades are moved in the radial direction.
  • the entire thickness of the insulation is cut by the combination of the movement of the insulation cutting blades in the rotary direction and the movement of the insulation cutting blades in the radial direction.
  • An embodiment is directed to an apparatus for cable stripping and preparation.
  • the apparatus includes a first drive mechanism and a second drive mechanism which is spaced from and in line with the first drive mechanism.
  • Blade control arms with insulation cutting blades are movably mounted relative to the first drive mechanism and the second drive mechanism.
  • the first drive mechanism moves the insulation cutting blades from a first position to a second position.
  • the second drive mechanism rotates the insulation cutting blades when the insulation cutting blades are in the second position.
  • FIG. 1 is a perspective front view of an illustrative cable preparation apparatus according to the present invention.
  • FIG. 2 is a perspective side view of the cable preparation apparatus of FIG. 1 .
  • FIG. 3 is a cross-sectional diagrammatic view of a cable with the insulation cutting blades partially cutting through the outer insulation of the cable.
  • FIG. 4 is an enlarged view of a portion of FIG. 3 , showing the displacement of the material of the outer insulation proximate to the insulation cutting blade.
  • FIG. 5 is a diagrammatic view of the of insulation cutting blades prior to engaging the cable, the arrows indicated the rotational motion of the insulation cutting blades.
  • FIG. 6 is a diagrammatic view of the of insulation cutting blades shown partially cutting through the material of the outer insulation, the arrows indicated the rotational motion of the insulation cutting blades.
  • FIG. 7 is a diagrammatic view of the of insulation cutting blades shown partially cutting through the material of the outer insulation, the arrows indicated the radial motion of the insulation cutting blades.
  • FIG. 8 is a diagrammatic view of the of insulation cutting blades shown fully cut through the material of the outer insulation, the arrows indicated the radial motion of the insulation cutting blades.
  • FIG. 9 is a diagrammatic view of the of insulation cutting blades prior to engaging the inner insulation of the cable, the arrows indicated the rotational motion of the insulation cutting blades.
  • FIG. 10 is a diagrammatic view of the of insulation cutting blades shown partially cutting through the material of the inner insulation, the arrows indicated the rotational motion of the insulation cutting blades.
  • FIG. 11 is a diagrammatic view of the of insulation cutting blades shown partially cutting through the material of the inner insulation, the arrows indicated the radial motion of the insulation cutting blades.
  • FIG. 12 is a diagrammatic view of the of insulation cutting blades shown fully cut through the material of the inner insulation, the arrows indicated the radial motion of the insulation cutting blades.
  • a cable stripping or preparation apparatus 10 has circular base 12 which has a center opening 14 and arcuate slots 16 positioned proximate the circumference of the circular base 12 .
  • arcuate slots 16 are provided.
  • Blade control arms 18 are mounted on the base 12 .
  • Mounting members 20 extend through the blade control arms 18 to the base 12 .
  • the mounting members 20 pivotally mount the blade control arms 18 to the base 12 to allow the blade control arms 18 to move or pivot relative to the base 12 .
  • Each blade control arm 18 has a wheel mounting device (not shown) which extends through the respective slot 16 to mount to a drive wheel mechanism 40 . The movement of the drive wheel mechanism 40 causes the blade control arms 18 to pivot about mounting members 20 .
  • Each blade control arm 18 has a round wheel or braid cutting wheel mounting portion 26 and a contoured or insulation cutting blade mounting portion 28 .
  • a round wheel or braid cutting wheel 30 is mounted in the round wheel mounting portion 26 and a contoured or insulation cutting blade 32 is mounted in the contoured blade mounting portion 28 .
  • the braid cutting wheel 30 is mounted to allow the braid cutting wheel 30 to spin or rotate relative to the round wheel mounting portion 26 .
  • the insulation cutting blade 32 is fixedly mounted to the contoured blade mounting portion 28 .
  • Each of the insulation cutting blades 32 has an arcuate cutting surface 34 , the radius of which may approximate the radius of the cable. Although three insulation cutting blades 32 are shown, other number of cutting blades may be used.
  • cable preparation apparatus 10 has a first drive wheel mechanism 40 and a second drive wheel mechanism 42 which is spaced from but in line with the first drive wheel mechanism 40 .
  • a front or first pulley 44 cooperates with the first drive wheel mechanism 40 .
  • the first pulley 44 extends between the first drive wheel mechanism 40 and a front or first drive motor 46 .
  • the first drive motor 46 may be, but is not limited to, a servo motor.
  • a back or second pulley 48 cooperates with the second drive wheel mechanism 42 .
  • the second pulley 48 extends between the second drive wheel mechanism 42 and a back or second drive motor 50 .
  • the second drive motor 50 may be, but is not limited to, a servo motor.
  • a scrap tube 52 extends from the back of the cable preparation apparatus 10 .
  • the cable stripping or preparation apparatus 10 is just one illustrative embodiment on which the insulation cutting blades 32 can be provided. However, the method as described below can be used with the illustrative cable stripping or preparation apparatus 10 or other types of cable stripping or preparation apparatuses. In addition, the shape of the insulation cutting blade 32 may vary from the description above without effecting the scope of the method.
  • the user or operator places an electrical cable 60 between the insulation cutting blades 32 of the cable stripping or preparation apparatus 10 . With the cable 60 properly positioned, the apparatus 10 is activated.
  • the insulation cutting blades 32 are initially moved to a first position proximate the outer insulation 62 of the cable 60 , as shown by dotted line 64 in FIG. 5 .
  • the insulation cutting blades 32 are moved to the first position by the first drive wheel mechanism 40 . In the first position the insulation cutting blades 32 are positioned proximate to, but do not engage the outer insulation 62 .
  • the insulation cutting blades 32 With the insulation cutting blades 32 properly positioned in the first position, the insulation cutting blades 32 are spun or rotated in the direction of the arrows 66 shown in FIGS. 5 and 6 . While the motion of the cutting blades 32 is shown by arrows 66 , other motions of the cutting blades 32 may be used, such as, but not limited to, moving in the opposite direction or moving in a linear direction tangential to the insulation.
  • the insulation cutting blades 32 are moved from the first position to the second position by the first drive wheel mechanism 40 .
  • the insulation cutting blades 32 are rotated by the second drive wheel mechanism 42 .
  • the arcuate cutting surface 34 of the blades 32 are moved from the first position toward the center of the cable 60 until a programed, precise second position, as shown by the dotted line 68 in FIG. 6 , is reached.
  • the arcuate cutting surfaces 34 of the blades 32 move in a rotary or tangential direction relative to the outer insulation 62 of the cable 60 which allows the arcuate cutting surface 34 of the blades 32 to slice into the outer insulation 62 .
  • the blades 32 spin around the circumference of the cable 60 , while being driven to a precise depth that partially cuts the outer insulation 62 without completely cutting through the outer insulation 62 .
  • the blades 32 In the second position, the blades 32 have cut through more than one-half of the outer insulation 62 .
  • the precise depth of the cut is determined and controlled by the size or gauge of the cable and by controlling the cutting dynamics of the blade 32 , such as, but not limited to, rotation rate, closing speed, number of rotations, number of chops, depth of chops to impart tensile stress during the process.
  • the rotation of the blades 32 relative to the cable 60 is stopped. In this position, the blades 32 remain embedded in the outer insulation 62 at the second position depth. As shown in FIGS. 3 and 4 , the embedded blade 32 displaces the outer insulation 62 , creating tension in the outer insulation 62 , as indicated by arrows 72 , in the area 74 directly beneath the blade 32 ( FIG. 4 ).
  • the blades 32 are then moved in a radial, or approximately radial, direction, as shown by arrows 76 in FIGS. 7 and 8 .
  • the radial movement of the blades 32 causes the blades 32 to move from the second position shown in FIG. 7 to a third position shown in FIG. 8 , in which the blades 32 extend through the outer insulation 62 .
  • the insulation cutting blades 32 are moved from the second position to the third position by the first drive wheel mechanism 40 .
  • the tension created in the outer insulation 62 by the embedded blades 32 ensures that each radial movement or chop will cut the outer insulation 62 in the area 74 , rather than only deforming the outer insulation 62 .
  • the radial cutting direction and the precise control of the blades 32 ensures that the components of the cable 60 below area 74 , such as the braid strands 78 are not cut.
  • a single or multiple radial movement(s) or chop(s) may be used to cut through the outer insulation 62 .
  • the blades 32 After a radial movement or chop, the blades 32 return to the depth of the second position.
  • the insulation cutting blades 32 are moved from the third position to the second position by the first drive wheel mechanism 40 .
  • the blades 32 are then rotated by a pre-set amount, for example 30 degrees, before the next radial movement or chop.
  • the insulation cutting blades 32 are rotated by a coordinated movement of the first drive wheel mechanism 40 and the second drive wheel mechanism 42 , in order to maintain the cutting blade depth at the second position during the rotation of the cutting blades 32 .
  • the movement of the blades 32 ensures that any insulation that was left uncut between the adjacent contour blades 32 is completely cut.
  • the blades 32 are again moved in a radial, or approximately radial, direction, as shown by arrows 76 in FIGS. 7 .
  • the insulation cutting blades 32 are moved in the radial direction by the first drive wheel mechanism 40 .
  • the repeat radial movement of the blades 32 causes the blades 32 to move from the second position shown in FIG. 7 to a third position shown in FIG. 8 , in which the blades 32 extend through the outer insulation 62 , thereby cutting the insulation 62 of the cable 60 . This is repeated until all of the insulation in line with the arcuate cutting surface 34 of the blades 32 along the circumference of the cable 60 is cut.
  • the arcuate cutting surface 34 of the blades 32 are moved in the radial direction to a predetermined fourth position to prepare for the insulation slug 80 ( FIG. 3 ) removal.
  • the insulation cutting blades 32 are moved from the third position to the fourth position by the first drive wheel mechanism 40 .
  • the blades 32 are spaced from the braid strands 78 while keeping the arcuate cutting surface 34 of the blades 32 engaged with the outer insulation 62 .
  • the fourth position may be similar or different than the second position.
  • the cable 60 is then moved in a direction parallel to the longitudinal axis of the cable 60 away from the arcuate cutting surface 34 of the blades 32 so that the blades 32 pull the cut insulation slug 80 from the cable 60 .
  • the insulation cutting blades 32 are opened such that the arcuate cutting surfaces 34 do not engage the cable 60 , thereby allowing the cable 60 to be moved relative to the insulation cutting blades 32 and the arcuate cutting surfaces 34 without contacting the arcuate cutting surfaces 34 .
  • the insulation blades 32 may also be used to remove the inner insulation 82 from the cable 60 .
  • the cable 60 is positioned between the insulation cutting blades 32 of the cable stripping or preparation apparatus 10 . With the cable 60 properly positioned, the apparatus 10 is activated.
  • the insulation cutting blades 32 are initially moved to a fifth position proximate the inner insulation 82 of the cable 60 , as shown by dotted line 84 in FIG. 9 .
  • the insulation cutting blades 32 are moved to the fifth position by the first drive wheel mechanism 40 .
  • In the fifth position the insulation cutting blades 32 are positioned proximate to, but do not engage the inner insulation 82 .
  • the insulation cutting blades 32 With the insulation cutting blades 32 properly positioned in the fifth position, the insulation cutting blades 32 are spun or rotated in the direction of the arrows 86 shown in FIG. 9 . While the motion of the cutting blades 32 is shown by arrows 86 , other motions of the cutting blades 32 may be used, such as, but not limited to, moving in the opposite direction or moving in a linear direction tangential to the insulation.
  • the insulation cutting blades 32 are moved from the fifth position to the sixth position by the first drive wheel mechanism 40 .
  • the insulation cutting blades 32 are rotated by the second drive wheel mechanism 42 .
  • the arcuate cutting surface 34 of the blades 32 are moved from the fifth position toward the center of the cable 60 until a programmed, precise sixth position, as shown by the dotted line 88 in FIG. 10 , is reached.
  • the arcuate cutting surfaces 34 of the blades 32 move in a rotary or tangential direction relative to the inner insulation 82 of the cable 60 which allows the arcuate cutting surface 34 of the blades 32 to slice through the inner insulation 82 .
  • the blades 32 spin around the circumference of the cable 60 , while being driven to a precise depth that partially cuts the inner insulation 82 without completely cutting through the inner insulation 82 .
  • the blades 32 In the sixth position, the blades 32 have cut through more than one-half of the inner insulation 82 .
  • the precise depth of the cut is determined and controlled by the size or gauge of the cable and by controlling the cutting dynamics of the blade 32 , such as, but not limited to, rotation rate, closing speed, number of rotations, number of chops, depth of chops to impart tensile stress during the process.
  • the rotation of the blades 32 relative to the cable 60 is stopped. In this position, the blades 32 remain embedded in the inner insulation 82 at the second position depth. Similar to that shown in FIGS. 2 and 3 , the embedded blade 32 displaces the insulation material, creating tension in the inner insulation 82 in the area directly beneath the blade 32 .
  • the blades 32 are then moved in a radial, or approximately radial, direction, as shown by arrows 96 in FIGS. 11 and 12 .
  • the radial movement of the blades 32 causes the blades 32 to move from the sixth position shown in FIG. 11 to a seventh position shown in FIG. 12 , in which the blades 32 extend through the inner insulation 82 .
  • the insulation cutting blades 32 are moved from the sixth position to the seventh position by the first drive wheel mechanism 40 .
  • the tension created in the inner insulation 82 by the embedded blades 32 ensures that each radial movement or chop will cut the inner insulation 82 , rather than only deforming the inner insulation 82 .
  • the radial cutting direction and the precise control of the blades 32 ensures that the components of the cable 60 below the blades 32 , such as the braid conductors 98 are not cut.
  • a single or multiple radial movement(s) or chop(s) may be used to cut through the inner insulation 82 .
  • the blades 32 After a radial movement or chop, the blades 32 return to the depth of the sixth position.
  • the insulation cutting blades 32 are moved from the seventh position to the sixth position by a coordinated movement of the first drive wheel mechanism 40 and the second drive wheel mechanism 42 , in order to maintain the cutting blade depth at the sixth position during the rotation of the cutting blades 32 .
  • the blades 32 are then rotated by a pre-set amount, for example 30 degrees, before the next radial movement or chop.
  • the insulation cutting blades 32 are rotated by the second drive wheel mechanism 42 . The movement of the blades 32 ensures that any insulation that was left uncut between the adjacent contour blades 32 is completely cut.
  • the blades 32 are again moved in a radial, or approximately radial, direction, as shown by arrows 96 in FIG. 11 .
  • the insulation cutting blades 32 are moved in the radial direction by the first drive wheel mechanism 40 .
  • the repeat radial movement of the blades 32 causes the blades 32 to move from the sixth position shown in FIG. 11 to the seventh position shown in FIG. 12 , in which the blades 32 extend through the inner insulation 82 , thereby cutting the inner insulation 82 of the cable 60 . This is repeated until all of the insulation in line with the arcuate cutting surface 34 of the blades 32 along the circumference of the cable 60 is cut.
  • the arcuate cutting surface 34 of the blades 32 are moved in the radial direction to a predetermined eighth position to prepare for the cut inner insulation 82 or inner insulation slug removal.
  • the insulation cutting blades 32 are moved from the seventh position to the eighth position by the first drive wheel mechanism 40 .
  • the blades 32 are spaced from the conductors 98 while keeping the arcuate cutting surface 34 of the blades 32 engaged with the inner insulation 82 .
  • the eighth position may be similar or different than the sixth position.
  • the cable 60 is then moved in a direction parallel to the longitudinal axis of the cable 60 away from the arcuate cutting surface 34 of the blades 32 so that the blades 32 pull the cut insulation 82 from the cable 60 .
  • the insulation cutting blades 32 are opened such that the arcuate cutting surfaces 34 do not engage the cable 60 , thereby allowing the cable 60 to be moved relative to the insulation cutting blades 32 and the arcuate cutting surfaces 34 without contacting the arcuate cutting surfaces 34 .

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Forests & Forestry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Removal Of Insulation Or Armoring From Wires Or Cables (AREA)

Abstract

An apparatus for cable stripping and preparation. The apparatus includes a first drive mechanism and a second drive mechanism which is spaced from and in line with the first drive mechanism. Blade control arms with insulation cutting blades are movably mounted relative to the first drive mechanism and the second drive mechanism. The first drive mechanism moves the insulation cutting blades from a first position to a second position. The second drive mechanism rotates the insulation cutting blades when the insulation cutting blades are in the second position.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This application is a Divisional of and claims priority to U.S. application Ser. No. 17/065,237 filed on Oct. 7, 2020 which is incorporated herein by reference in its entirety.
  • FIELD OF THE INVENTION
  • The present invention is directed to a method and apparatus for removing insulation from a cable. In particular, the invention is directed to a method and apparatus to remove cut resistant insulation from a cable without damaging the other components of the cable.
  • BACKGROUND OF THE INVENTION
  • Certain cable types, such as those used for electric and hybrid vehicles, require several different process steps to prepare them for termination. These process steps include the need to remove insulation, such as silicone, from the outside of the cable and also from the outside of the center conductor. Currently available commercial processes for removing this insulation may nick or cut braid or conductor strands during the removal process, which is unacceptable to certain end users. One process that reduces damage involves using a pair of linear-acting contour blades. When fully closed, these blades produce a circle that closely matches the diameter of the layer beneath the insulation. These blades, however, can produce damage on the sides of the cables where there is a slicing action.
  • Another process that is used to reduce damage is to force the cutting edge through the insulation in a radial, or near radial direction. The limitation of using a radial (“pressing”) motion to cut silicone rubber, or similar materials, is that such materials are designed to be abrasion and cut resistant. Applying the radial motion to the cutting blade, against the surface of the insulation material, results in a temporary compression of the insulation material in the immediate blade contact area. After removing the force applied to the blade, the insulation is left intact without being cut.
  • There is a need for a method and apparatus for stripping the insulation from the cable which is effective in removing the insulation without damaging the other components of the cable, such as the braid strands or conductor strands.
  • SUMMARY OF THE INVENTION
  • An embodiment is directed to a method a method of removing insulation from an electrical cable. The method includes: positioning the cable proximate an insulation cutting blade of a cable preparation apparatus; moving a cutting surface of the insulation cutting blade in a rotary direction relative to the insulation of the cable; engaging the insulation with the cutting surface of the insulation cutting blade as the insulation cutting blade is moved in the rotary direction; cutting the insulation to a defined depth with the cutting surface of the insulation cutting blade as the insulation cutting blade is moved in the rotary direction, the defined depth being less than the thickness of the insulation; thereafter, moving the cutting surface of insulation cutting blade in a radial direction relative to the insulation of the cable; engaging the insulation with the cutting surface of the insulation cutting blade as the insulation cutting blade is moved in the radial direction; and cutting the insulation from the defined depth with the cutting surface of the insulation cutting blade as the insulation cutting blade is moved in the radial direction. The entire thickness of the insulation is cut by the sequential combination of the movement of the insulation cutting blade in the rotary direction and the movement of the insulation cutting blade in the radial direction.
  • An embodiment is directed to a method of removing insulation from an electrical cable. The method includes: positioning the cable between insulation cutting blades of a cable stripping or preparation apparatus; cutting the insulation to a defined depth with cutting surfaces of the insulation cutting blades as the insulation cutting blades are moved in a rotary direction relative to the insulation of the cable, the defined depth being less than the thickness of the insulation; maintaining the insulation cutting blades in the insulation to displace insulation material, creating tension in the insulation in areas directly beneath the blade cutting surfaces of the insulation cutting blades; and cutting the insulation from the defined depth with the cutting surfaces of the insulation cutting blades as the insulation cutting blades are moved in the radial direction. The entire thickness of the insulation is cut by the combination of the movement of the insulation cutting blades in the rotary direction and the movement of the insulation cutting blades in the radial direction.
  • An embodiment is directed to an apparatus for cable stripping and preparation. The apparatus includes a first drive mechanism and a second drive mechanism which is spaced from and in line with the first drive mechanism. Blade control arms with insulation cutting blades are movably mounted relative to the first drive mechanism and the second drive mechanism. The first drive mechanism moves the insulation cutting blades from a first position to a second position. The second drive mechanism rotates the insulation cutting blades when the insulation cutting blades are in the second position.
  • Other features and advantages of the present invention will be apparent from the following more detailed description of the illustrative embodiment, taken in conjunction with the accompanying drawings which illustrate, by way of example, the principles of the invention.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a perspective front view of an illustrative cable preparation apparatus according to the present invention.
  • FIG. 2 is a perspective side view of the cable preparation apparatus of FIG. 1 .
  • FIG. 3 is a cross-sectional diagrammatic view of a cable with the insulation cutting blades partially cutting through the outer insulation of the cable.
  • FIG. 4 is an enlarged view of a portion of FIG. 3 , showing the displacement of the material of the outer insulation proximate to the insulation cutting blade.
  • FIG. 5 is a diagrammatic view of the of insulation cutting blades prior to engaging the cable, the arrows indicated the rotational motion of the insulation cutting blades.
  • FIG. 6 is a diagrammatic view of the of insulation cutting blades shown partially cutting through the material of the outer insulation, the arrows indicated the rotational motion of the insulation cutting blades.
  • FIG. 7 is a diagrammatic view of the of insulation cutting blades shown partially cutting through the material of the outer insulation, the arrows indicated the radial motion of the insulation cutting blades.
  • FIG. 8 is a diagrammatic view of the of insulation cutting blades shown fully cut through the material of the outer insulation, the arrows indicated the radial motion of the insulation cutting blades.
  • FIG. 9 is a diagrammatic view of the of insulation cutting blades prior to engaging the inner insulation of the cable, the arrows indicated the rotational motion of the insulation cutting blades.
  • FIG. 10 is a diagrammatic view of the of insulation cutting blades shown partially cutting through the material of the inner insulation, the arrows indicated the rotational motion of the insulation cutting blades.
  • FIG. 11 is a diagrammatic view of the of insulation cutting blades shown partially cutting through the material of the inner insulation, the arrows indicated the radial motion of the insulation cutting blades.
  • FIG. 12 is a diagrammatic view of the of insulation cutting blades shown fully cut through the material of the inner insulation, the arrows indicated the radial motion of the insulation cutting blades.
  • DETAILED DESCRIPTION OF THE INVENTION
  • The description of illustrative embodiments according to principles of the present invention is intended to be read in connection with the accompanying drawings, which are to be considered part of the entire written description. In the description of embodiments of the invention disclosed herein, any reference to direction or orientation is merely intended for convenience of description and is not intended in any way to limit the scope of the present invention. Relative terms such as “lower,” “upper,” “horizontal,” “vertical,” “above,” “below,” “up,” “down,” “top” and “bottom” as well as derivative thereof (e.g., “horizontally,” “downwardly,” “upwardly,” etc.) should be construed to refer to the orientation as then described or as shown in the drawing under discussion. These relative terms are for convenience of description only and do not require that the apparatus be constructed or operated in a particular orientation unless explicitly indicated as such. Terms such as “attached,” “affixed,” “connected,” “coupled,” “interconnected,” and similar refer to a relationship wherein structures are secured or attached to one another either directly or indirectly through intervening structures, as well as both movable or rigid attachments or relationships, unless expressly described otherwise.
  • Moreover, the features and benefits of the invention are illustrated by reference to the preferred embodiments. Accordingly, the invention expressly should not be limited to such embodiments illustrating some possible non-limiting combination of features that may exist alone or in other combinations of features, the scope of the invention being defined by the claims appended hereto.
  • As shown in FIG. 1 , a cable stripping or preparation apparatus 10 has circular base 12 which has a center opening 14 and arcuate slots 16 positioned proximate the circumference of the circular base 12. In the illustrative embodiment shown, three arcuate slots 16 are provided.
  • Blade control arms 18 are mounted on the base 12. Mounting members 20 extend through the blade control arms 18 to the base 12. The mounting members 20 pivotally mount the blade control arms 18 to the base 12 to allow the blade control arms 18 to move or pivot relative to the base 12. Each blade control arm 18 has a wheel mounting device (not shown) which extends through the respective slot 16 to mount to a drive wheel mechanism 40. The movement of the drive wheel mechanism 40 causes the blade control arms 18 to pivot about mounting members 20.
  • Each blade control arm 18 has a round wheel or braid cutting wheel mounting portion 26 and a contoured or insulation cutting blade mounting portion 28. As shown in FIG. 1 , a round wheel or braid cutting wheel 30 is mounted in the round wheel mounting portion 26 and a contoured or insulation cutting blade 32 is mounted in the contoured blade mounting portion 28. The braid cutting wheel 30 is mounted to allow the braid cutting wheel 30 to spin or rotate relative to the round wheel mounting portion 26. The insulation cutting blade 32 is fixedly mounted to the contoured blade mounting portion 28. Each of the insulation cutting blades 32 has an arcuate cutting surface 34, the radius of which may approximate the radius of the cable. Although three insulation cutting blades 32 are shown, other number of cutting blades may be used.
  • Referring to FIG. 2 , cable preparation apparatus 10 has a first drive wheel mechanism 40 and a second drive wheel mechanism 42 which is spaced from but in line with the first drive wheel mechanism 40. A front or first pulley 44 cooperates with the first drive wheel mechanism 40. The first pulley 44 extends between the first drive wheel mechanism 40 and a front or first drive motor 46. The first drive motor 46 may be, but is not limited to, a servo motor. A back or second pulley 48 cooperates with the second drive wheel mechanism 42. The second pulley 48 extends between the second drive wheel mechanism 42 and a back or second drive motor 50. The second drive motor 50 may be, but is not limited to, a servo motor. A scrap tube 52 extends from the back of the cable preparation apparatus 10.
  • The cable stripping or preparation apparatus 10 is just one illustrative embodiment on which the insulation cutting blades 32 can be provided. However, the method as described below can be used with the illustrative cable stripping or preparation apparatus 10 or other types of cable stripping or preparation apparatuses. In addition, the shape of the insulation cutting blade 32 may vary from the description above without effecting the scope of the method.
  • In use, the user or operator places an electrical cable 60 between the insulation cutting blades 32 of the cable stripping or preparation apparatus 10. With the cable 60 properly positioned, the apparatus 10 is activated.
  • The insulation cutting blades 32 are initially moved to a first position proximate the outer insulation 62 of the cable 60, as shown by dotted line 64 in FIG. 5 . The insulation cutting blades 32 are moved to the first position by the first drive wheel mechanism 40. In the first position the insulation cutting blades 32 are positioned proximate to, but do not engage the outer insulation 62.
  • With the insulation cutting blades 32 properly positioned in the first position, the insulation cutting blades 32 are spun or rotated in the direction of the arrows 66 shown in FIGS. 5 and 6 . While the motion of the cutting blades 32 is shown by arrows 66, other motions of the cutting blades 32 may be used, such as, but not limited to, moving in the opposite direction or moving in a linear direction tangential to the insulation.
  • The insulation cutting blades 32 are moved from the first position to the second position by the first drive wheel mechanism 40. The insulation cutting blades 32 are rotated by the second drive wheel mechanism 42. As the blades 32 are rotated about the longitudinal axis of the cable 60, the arcuate cutting surface 34 of the blades 32 are moved from the first position toward the center of the cable 60 until a programed, precise second position, as shown by the dotted line 68 in FIG. 6 , is reached. As this occurs, the arcuate cutting surfaces 34 of the blades 32 move in a rotary or tangential direction relative to the outer insulation 62 of the cable 60 which allows the arcuate cutting surface 34 of the blades 32 to slice into the outer insulation 62.
  • As the blades 32 are moved from the first position to the second position, the blades 32 spin around the circumference of the cable 60, while being driven to a precise depth that partially cuts the outer insulation 62 without completely cutting through the outer insulation 62. In the second position, the blades 32 have cut through more than one-half of the outer insulation 62. The precise depth of the cut is determined and controlled by the size or gauge of the cable and by controlling the cutting dynamics of the blade 32, such as, but not limited to, rotation rate, closing speed, number of rotations, number of chops, depth of chops to impart tensile stress during the process.
  • Upon cutting the outer insulation 62 to the precise depth of the second position, the rotation of the blades 32 relative to the cable 60 is stopped. In this position, the blades 32 remain embedded in the outer insulation 62 at the second position depth. As shown in FIGS. 3 and 4 , the embedded blade 32 displaces the outer insulation 62, creating tension in the outer insulation 62, as indicated by arrows 72, in the area 74 directly beneath the blade 32 (FIG. 4 ).
  • The blades 32 are then moved in a radial, or approximately radial, direction, as shown by arrows 76 in FIGS. 7 and 8 . The radial movement of the blades 32 causes the blades 32 to move from the second position shown in FIG. 7 to a third position shown in FIG. 8 , in which the blades 32 extend through the outer insulation 62. The insulation cutting blades 32 are moved from the second position to the third position by the first drive wheel mechanism 40. The tension created in the outer insulation 62 by the embedded blades 32 ensures that each radial movement or chop will cut the outer insulation 62 in the area 74, rather than only deforming the outer insulation 62. The radial cutting direction and the precise control of the blades 32 ensures that the components of the cable 60 below area 74, such as the braid strands 78 are not cut. A single or multiple radial movement(s) or chop(s) may be used to cut through the outer insulation 62.
  • After a radial movement or chop, the blades 32 return to the depth of the second position. The insulation cutting blades 32 are moved from the third position to the second position by the first drive wheel mechanism 40. The blades 32 are then rotated by a pre-set amount, for example 30 degrees, before the next radial movement or chop. The insulation cutting blades 32 are rotated by a coordinated movement of the first drive wheel mechanism 40 and the second drive wheel mechanism 42, in order to maintain the cutting blade depth at the second position during the rotation of the cutting blades 32. The movement of the blades 32 ensures that any insulation that was left uncut between the adjacent contour blades 32 is completely cut. The blades 32 are again moved in a radial, or approximately radial, direction, as shown by arrows 76 in FIGS. 7 . The insulation cutting blades 32 are moved in the radial direction by the first drive wheel mechanism 40. The repeat radial movement of the blades 32 causes the blades 32 to move from the second position shown in FIG. 7 to a third position shown in FIG. 8 , in which the blades 32 extend through the outer insulation 62, thereby cutting the insulation 62 of the cable 60. This is repeated until all of the insulation in line with the arcuate cutting surface 34 of the blades 32 along the circumference of the cable 60 is cut.
  • With the radial movement complete, the arcuate cutting surface 34 of the blades 32 are moved in the radial direction to a predetermined fourth position to prepare for the insulation slug 80 (FIG. 3 ) removal. The insulation cutting blades 32 are moved from the third position to the fourth position by the first drive wheel mechanism 40. In the fourth position, the blades 32 are spaced from the braid strands 78 while keeping the arcuate cutting surface 34 of the blades 32 engaged with the outer insulation 62. The fourth position may be similar or different than the second position. The cable 60 is then moved in a direction parallel to the longitudinal axis of the cable 60 away from the arcuate cutting surface 34 of the blades 32 so that the blades 32 pull the cut insulation slug 80 from the cable 60. With the insulation slug 80 removed, the insulation cutting blades 32 are opened such that the arcuate cutting surfaces 34 do not engage the cable 60, thereby allowing the cable 60 to be moved relative to the insulation cutting blades 32 and the arcuate cutting surfaces 34 without contacting the arcuate cutting surfaces 34.
  • After the removal of the insulation slug 80 the insulation blades 32 may also be used to remove the inner insulation 82 from the cable 60. The cable 60 is positioned between the insulation cutting blades 32 of the cable stripping or preparation apparatus 10. With the cable 60 properly positioned, the apparatus 10 is activated.
  • The insulation cutting blades 32 are initially moved to a fifth position proximate the inner insulation 82 of the cable 60, as shown by dotted line 84 in FIG. 9 . The insulation cutting blades 32 are moved to the fifth position by the first drive wheel mechanism 40. In the fifth position the insulation cutting blades 32 are positioned proximate to, but do not engage the inner insulation 82.
  • With the insulation cutting blades 32 properly positioned in the fifth position, the insulation cutting blades 32 are spun or rotated in the direction of the arrows 86 shown in FIG. 9 . While the motion of the cutting blades 32 is shown by arrows 86, other motions of the cutting blades 32 may be used, such as, but not limited to, moving in the opposite direction or moving in a linear direction tangential to the insulation.
  • The insulation cutting blades 32 are moved from the fifth position to the sixth position by the first drive wheel mechanism 40. The insulation cutting blades 32 are rotated by the second drive wheel mechanism 42. As the blades 32 are rotated about the longitudinal axis of the cable 60, the arcuate cutting surface 34 of the blades 32 are moved from the fifth position toward the center of the cable 60 until a programmed, precise sixth position, as shown by the dotted line 88 in FIG. 10 , is reached. As this occurs, the arcuate cutting surfaces 34 of the blades 32 move in a rotary or tangential direction relative to the inner insulation 82 of the cable 60 which allows the arcuate cutting surface 34 of the blades 32 to slice through the inner insulation 82.
  • As the blades 32 are moved from the fifth position to the sixth position, the blades 32 spin around the circumference of the cable 60, while being driven to a precise depth that partially cuts the inner insulation 82 without completely cutting through the inner insulation 82. In the sixth position, the blades 32 have cut through more than one-half of the inner insulation 82. The precise depth of the cut is determined and controlled by the size or gauge of the cable and by controlling the cutting dynamics of the blade 32, such as, but not limited to, rotation rate, closing speed, number of rotations, number of chops, depth of chops to impart tensile stress during the process.
  • Upon cutting the inner insulation 82 to the precise depth of the sixth position, the rotation of the blades 32 relative to the cable 60 is stopped. In this position, the blades 32 remain embedded in the inner insulation 82 at the second position depth. Similar to that shown in FIGS. 2 and 3 , the embedded blade 32 displaces the insulation material, creating tension in the inner insulation 82 in the area directly beneath the blade 32.
  • The blades 32 are then moved in a radial, or approximately radial, direction, as shown by arrows 96 in FIGS. 11 and 12 . The radial movement of the blades 32 causes the blades 32 to move from the sixth position shown in FIG. 11 to a seventh position shown in FIG. 12 , in which the blades 32 extend through the inner insulation 82. The insulation cutting blades 32 are moved from the sixth position to the seventh position by the first drive wheel mechanism 40. The tension created in the inner insulation 82 by the embedded blades 32 ensures that each radial movement or chop will cut the inner insulation 82, rather than only deforming the inner insulation 82. The radial cutting direction and the precise control of the blades 32 ensures that the components of the cable 60 below the blades 32, such as the braid conductors 98 are not cut. A single or multiple radial movement(s) or chop(s) may be used to cut through the inner insulation 82.
  • After a radial movement or chop, the blades 32 return to the depth of the sixth position. The insulation cutting blades 32 are moved from the seventh position to the sixth position by a coordinated movement of the first drive wheel mechanism 40 and the second drive wheel mechanism 42, in order to maintain the cutting blade depth at the sixth position during the rotation of the cutting blades 32. The blades 32 are then rotated by a pre-set amount, for example 30 degrees, before the next radial movement or chop. The insulation cutting blades 32 are rotated by the second drive wheel mechanism 42. The movement of the blades 32 ensures that any insulation that was left uncut between the adjacent contour blades 32 is completely cut. The blades 32 are again moved in a radial, or approximately radial, direction, as shown by arrows 96 in FIG. 11 . The insulation cutting blades 32 are moved in the radial direction by the first drive wheel mechanism 40. The repeat radial movement of the blades 32 causes the blades 32 to move from the sixth position shown in FIG. 11 to the seventh position shown in FIG. 12 , in which the blades 32 extend through the inner insulation 82, thereby cutting the inner insulation 82 of the cable 60. This is repeated until all of the insulation in line with the arcuate cutting surface 34 of the blades 32 along the circumference of the cable 60 is cut.
  • With the radial movement complete, the arcuate cutting surface 34 of the blades 32 are moved in the radial direction to a predetermined eighth position to prepare for the cut inner insulation 82 or inner insulation slug removal. The insulation cutting blades 32 are moved from the seventh position to the eighth position by the first drive wheel mechanism 40. In the eighth position, the blades 32 are spaced from the conductors 98 while keeping the arcuate cutting surface 34 of the blades 32 engaged with the inner insulation 82. The eighth position may be similar or different than the sixth position. The cable 60 is then moved in a direction parallel to the longitudinal axis of the cable 60 away from the arcuate cutting surface 34 of the blades 32 so that the blades 32 pull the cut insulation 82 from the cable 60. With the cut insulation 82 removed, the insulation cutting blades 32 are opened such that the arcuate cutting surfaces 34 do not engage the cable 60, thereby allowing the cable 60 to be moved relative to the insulation cutting blades 32 and the arcuate cutting surfaces 34 without contacting the arcuate cutting surfaces 34.
  • While the invention has been described with reference to a preferred embodiment, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the spirit and scope of the invention as defined in the accompanying claims. One skilled in the art will appreciate that the invention may be used with many modifications of structure, arrangement, proportions, sizes, materials and components and otherwise used in the practice of the invention, which are particularly adapted to specific environments and operative requirements without departing from the principles of the present invention. The presently disclosed embodiments are therefore to be considered in all respects as illustrative and not restrictive, the scope of the invention being defined by the appended claims, and not limited to the foregoing description or embodiments.

Claims (18)

1. An apparatus for cable stripping and preparation, the apparatus comprising:
a first drive mechanism;
a second drive mechanism which is spaced from and in line with the first drive mechanism;
blade control arms having insulation cutting blades, the blade control arms being movably mounted relative to the first drive mechanism and the second drive mechanism, the first drive mechanism moves the insulation cutting blades from a first position to a second position, the second drive mechanism rotates the insulation cutting blades when the insulation cutting blades are in the second position.
2. The apparatus as recited in claim 1, wherein the blade control arms are mounted on a base of the apparatus, mounting members extend through the blade control arms to the base to pivotally mount the blade control arms to the base, the blade control arms extend through slots of the base.
3. The apparatus as recited in claim 1, wherein the blade control arms have the insulation cutting blades and braid cutting wheels provided thereon.
4. The apparatus as recited in claim 1, wherein the apparatus has a circular base with a center opening and arcuate slots positioned proximate the circumference of the circular base.
5. The apparatus as recited in claim 4, wherein three arcuate slots are provided.
6. The apparatus as recited in claim 4, wherein the blade control arms are mounted on the base.
7. The apparatus as recited in claim 6, wherein mounting members extend through the blade control arms to the base, the mounting members pivotally mount the blade control arms to the base to allow the blade control arms to move or pivot relative to the base.
8. The apparatus as recited in claim 7, wherein each blade control arm has a wheel mounting device which extends through a respective slot of the arcuate slots to mount to the first drive mechanism.
9. The apparatus as recited in claim 8, wherein the blade control arms have braid cutting wheel mounting portions and insulation cutting blade mounting portions.
10. The apparatus as recited in claim 9, wherein braid cutting wheels are mounted in the braid cutting wheel mounting portions and the insulation cutting blades are mounted in the insulation cutting blade mounting portions, the braid cutting wheels are mounted to allow the braid cutting wheels to spin or rotate relative to the braid cutting wheel mounting portions, the insulation cutting blades are fixedly mounted to the insulation cutting blade mounting portions.
11. The apparatus as recited in claim 10, wherein the insulation cutting blades have arcuate cutting surfaces, the radius of which is approximate the radius of the cable.
12. The apparatus as recited in claim 1, wherein a first pulley cooperates with the first drive mechanism.
13. The apparatus as recited in claim 12, wherein the first pulley extends between the first drive mechanism and a first drive motor.
14. The apparatus as recited in claim 13, wherein the first drive motor is a servo motor.
15. The apparatus as recited in claim 13, wherein a second pulley cooperates with the second drive mechanism.
16. The apparatus as recited in claim 15, wherein the second pulley extends between the second drive mechanism and a second drive motor.
17. The apparatus as recited in claim 16, wherein the second drive motor is a servo motor.
18. The apparatus as recited in claim 11, wherein a scrap tube extends from a back of the apparatus.
US18/062,616 2019-10-22 2022-12-07 Method and Apparatus for Removing Insulation from a Cable Abandoned US20230097036A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/062,616 US20230097036A1 (en) 2019-10-22 2022-12-07 Method and Apparatus for Removing Insulation from a Cable

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201962924402P 2019-10-22 2019-10-22
US17/065,237 US11557885B2 (en) 2019-10-22 2020-10-07 Method and apparatus for removing insulation from a cable
US18/062,616 US20230097036A1 (en) 2019-10-22 2022-12-07 Method and Apparatus for Removing Insulation from a Cable

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US17/065,237 Division US11557885B2 (en) 2019-10-22 2020-10-07 Method and apparatus for removing insulation from a cable

Publications (1)

Publication Number Publication Date
US20230097036A1 true US20230097036A1 (en) 2023-03-30

Family

ID=73040176

Family Applications (2)

Application Number Title Priority Date Filing Date
US17/065,237 Active US11557885B2 (en) 2019-10-22 2020-10-07 Method and apparatus for removing insulation from a cable
US18/062,616 Abandoned US20230097036A1 (en) 2019-10-22 2022-12-07 Method and Apparatus for Removing Insulation from a Cable

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US17/065,237 Active US11557885B2 (en) 2019-10-22 2020-10-07 Method and apparatus for removing insulation from a cable

Country Status (4)

Country Link
US (2) US11557885B2 (en)
EP (1) EP4049353A1 (en)
CN (1) CN114830470B (en)
WO (1) WO2021079317A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220069552A1 (en) * 2020-08-27 2022-03-03 TE Connectivity Services Gmbh Cutting arm for a cable preparation machine
US11710950B2 (en) * 2021-01-20 2023-07-25 Te Connectivity Solutions Gmbh Cutting blade and cutting depth control device
US11715940B2 (en) * 2021-06-08 2023-08-01 Komax Holding Ag Circular cutting unit and drive for multilayer wire
CN115441364B (en) * 2022-08-16 2024-03-05 国网江苏省电力有限公司无锡供电分公司 Light-weight high-precision cutting mechanism for cable insulation stripping and cutting intelligent robot

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200067289A1 (en) * 2018-08-27 2020-02-27 Te Connectivity Corporation Cable braid flare mechanism for cable preparation machine

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5010797A (en) 1987-06-30 1991-04-30 Jiri Stepan Arrangement for cutting and/or stripping apparatuses
US4972582A (en) * 1988-05-20 1990-11-27 Mechtrix Corporation Notch for aligning insulation cutters
US4993147A (en) 1989-03-03 1991-02-19 Carpenter Manufacturing Co., Inc. Automated wire insulation cutting and stripping method with improved means to prevent conductor scoring
US4951530A (en) * 1989-11-27 1990-08-28 The Boeing Company Wire guide for rotary wire stripper
EP0761029B1 (en) * 1994-05-24 1999-09-15 Schleuniger Holding AG Process and device for stripping insulated wires or cables with a possibly non-circular cross-section
US5950505A (en) * 1994-05-24 1999-09-14 Locher; Beat Process for stripping an insulated wire or cable having a cross-section which may be non-circular and stripping device for carrying out the process
US7013782B2 (en) 2000-08-16 2006-03-21 Orbital Technologies, Inc. Apparatus and method for cutting and stripping covering layers from a filamentary core including both rotary and reciprocating cutting blades
JP2005328649A (en) * 2004-05-14 2005-11-24 Olympus Corp Shielded cable terminal processing apparatus and method
EP1867022B1 (en) * 2005-03-25 2016-11-02 Schleuniger Holding AG Rotating stripping head for cable stripping apparatus
US20090100681A1 (en) * 2007-10-19 2009-04-23 Capewell Components Company, Llc Coaxial cable stripping tool with adjustable strip stop
KR200448140Y1 (en) 2008-05-28 2010-03-23 김정민 An apparatus for peeling coat from cable
EP2717399A1 (en) * 2012-10-08 2014-04-09 Komax Holding AG Method for stripping the insulation from a cable
CN203707680U (en) * 2014-01-20 2014-07-09 江苏苏中电缆厂有限公司 Wire stripping machine with avoidance of conductor damage
CN103944114B (en) * 2014-04-30 2017-04-26 国家电网公司 Cable stripper
US9981397B2 (en) * 2014-11-17 2018-05-29 Key Technology, Inc. Cutting knife
US20180069384A1 (en) * 2016-09-06 2018-03-08 Q Factory 33 Llc Electrical insulation stripping systems, methods, and devices
EP3309915B1 (en) * 2016-10-14 2019-11-13 Wezag GmbH Werkzeugfabrik Stripper, stripping knife and method for stripping
EP3322053B1 (en) * 2016-11-15 2022-03-16 Schleuniger AG Apparatus and method for removing a sheath for an electrical conductor
CN206992610U (en) * 2017-06-28 2018-02-09 中国神华能源股份有限公司 Cable insulation cutter device
CN108206491A (en) * 2018-01-19 2018-06-26 济南大学 A kind of sample of cable insulation displacement method and sample of cable preparation method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200067289A1 (en) * 2018-08-27 2020-02-27 Te Connectivity Corporation Cable braid flare mechanism for cable preparation machine

Also Published As

Publication number Publication date
US20210119426A1 (en) 2021-04-22
CN114830470B (en) 2024-05-14
US11557885B2 (en) 2023-01-17
WO2021079317A1 (en) 2021-04-29
CN114830470A (en) 2022-07-29
EP4049353A1 (en) 2022-08-31

Similar Documents

Publication Publication Date Title
US20230097036A1 (en) Method and Apparatus for Removing Insulation from a Cable
EP2747225B1 (en) Method and device for removing a screen from a cable
CN110867778B (en) Cable braid opening mechanism for cable preparation machine
EP0352038B1 (en) Apparatus for step stripping wire means
US4019409A (en) Stripping and defillering method and apparatus
CN113594975B (en) Cable insulation girdling machine
US20180138672A1 (en) Apparatus and method for removing an inner sheathing of electrical conductors
JPH0919019A (en) Apparatus and method for processing wire
US10790649B2 (en) Removing apparatus and method
US20240063617A1 (en) Method for removing a shielding foil of an electrical cable by means of a rotary stripping machine, and device for supporting the removal of a shielding foil of an electrical cable
CN114883983B (en) Coaxial cable rotary cutting mechanism and wire cutting method thereof
US11705699B2 (en) Sheath removal device and sheath removal method
CN113169535B (en) Cable preparation machine
CN106030945A (en) Method and device for severing a freely insulated section of a cable shield
US10986853B2 (en) Retracting food processing device in a food processing machine
JPH01209909A (en) Apparatus and method for cutting multilayer covering of cable selective ly
JP2008092623A (en) Terminal treatment device for power cord
US4380256A (en) Cable slitting and spreading tool
CN220255651U (en) Clamping mechanism and hawthorn processing equipment
CN220144646U (en) Differential rotary cutter
CN116937444A (en) Automatic peeling device based on distribution network live working
CN113991547A (en) Seat circle heater cable is with high-speed recovery plant of skinning
JP2515859B2 (en) Air core coil winding machine
KR200449910Y1 (en) Cutter for stripping of coating material on coated cable
JP2000136068A (en) Winding method of filamentary body

Legal Events

Date Code Title Description
AS Assignment

Owner name: TE CONNECTIVITY SERVICES GMBH, SWITZERLAND

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BACKENSTOES, THOMAS;REEL/FRAME:062005/0312

Effective date: 20201007

Owner name: TE CONNECTIVITY SOLUTIONS GMBH, SWITZERLAND

Free format text: MERGER;ASSIGNOR:TE CONNECTIVITY SERVICES GMBH;REEL/FRAME:062079/0754

Effective date: 20220301

STPP Information on status: patent application and granting procedure in general

Free format text: SENT TO CLASSIFICATION CONTRACTOR

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION