US20230083383A1 - Compositions and methods for targeting, editing or modifying human genes - Google Patents
Compositions and methods for targeting, editing or modifying human genes Download PDFInfo
- Publication number
- US20230083383A1 US20230083383A1 US17/797,986 US202117797986A US2023083383A1 US 20230083383 A1 US20230083383 A1 US 20230083383A1 US 202117797986 A US202117797986 A US 202117797986A US 2023083383 A1 US2023083383 A1 US 2023083383A1
- Authority
- US
- United States
- Prior art keywords
- sequence
- human
- gene
- nucleic acid
- engineered
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 108090000623 proteins and genes Proteins 0.000 title claims abstract description 375
- 238000000034 method Methods 0.000 title claims abstract description 140
- 241000282414 Homo sapiens Species 0.000 title claims abstract description 54
- 239000000203 mixture Substances 0.000 title claims abstract description 34
- 230000008685 targeting Effects 0.000 title abstract description 54
- 150000007523 nucleic acids Chemical class 0.000 claims description 501
- 102000039446 nucleic acids Human genes 0.000 claims description 497
- 108020004707 nucleic acids Proteins 0.000 claims description 497
- 125000003729 nucleotide group Chemical group 0.000 claims description 337
- 239000002773 nucleotide Substances 0.000 claims description 334
- 210000004027 cell Anatomy 0.000 claims description 249
- 125000006850 spacer group Chemical group 0.000 claims description 241
- 210000005260 human cell Anatomy 0.000 claims description 120
- 101710163270 Nuclease Proteins 0.000 claims description 99
- 108020004414 DNA Proteins 0.000 claims description 91
- 101710153660 Nuclear receptor corepressor 2 Proteins 0.000 claims description 68
- 125000003275 alpha amino acid group Chemical group 0.000 claims description 67
- 229920002477 rna polymer Polymers 0.000 claims description 61
- 210000001744 T-lymphocyte Anatomy 0.000 claims description 55
- 101000617285 Homo sapiens Tyrosine-protein phosphatase non-receptor type 6 Proteins 0.000 claims description 45
- 210000002865 immune cell Anatomy 0.000 claims description 44
- 108010007707 Hepatitis A Virus Cellular Receptor 2 Proteins 0.000 claims description 37
- 108010081734 Ribonucleoproteins Proteins 0.000 claims description 36
- 102000004389 Ribonucleoproteins Human genes 0.000 claims description 36
- 238000003776 cleavage reaction Methods 0.000 claims description 28
- 230000007017 scission Effects 0.000 claims description 28
- 101001137987 Homo sapiens Lymphocyte activation gene 3 protein Proteins 0.000 claims description 27
- 101000611936 Homo sapiens Programmed cell death protein 1 Proteins 0.000 claims description 26
- 101000831007 Homo sapiens T-cell immunoreceptor with Ig and ITIM domains Proteins 0.000 claims description 21
- 101150117561 TRBC2 gene Proteins 0.000 claims description 18
- 230000003213 activating effect Effects 0.000 claims description 17
- 101150053558 TRBC1 gene Proteins 0.000 claims description 16
- 238000007385 chemical modification Methods 0.000 claims description 13
- 238000000338 in vitro Methods 0.000 claims description 10
- 101150117674 Cd247 gene Proteins 0.000 claims description 9
- 101150066050 IL7R gene Proteins 0.000 claims description 9
- 101150028321 Lck gene Proteins 0.000 claims description 9
- 101150080509 Plcg1 gene Proteins 0.000 claims description 9
- 238000004520 electroporation Methods 0.000 claims description 9
- 230000008826 genomic mutation Effects 0.000 claims description 9
- 101001068133 Homo sapiens Hepatitis A virus cellular receptor 2 Proteins 0.000 claims description 8
- 101150051188 Adora2a gene Proteins 0.000 claims description 5
- 101150076800 B2M gene Proteins 0.000 claims description 5
- 101150043916 Cd52 gene Proteins 0.000 claims description 5
- 101150091887 Ctla4 gene Proteins 0.000 claims description 5
- 101150064015 FAS gene Proteins 0.000 claims description 5
- 101100321871 Homo sapiens ADORA2A gene Proteins 0.000 claims description 5
- 101100437218 Homo sapiens B2M gene Proteins 0.000 claims description 5
- 101100112778 Homo sapiens CD247 gene Proteins 0.000 claims description 5
- 101100383049 Homo sapiens CD52 gene Proteins 0.000 claims description 5
- 101100382122 Homo sapiens CIITA gene Proteins 0.000 claims description 5
- 101100061678 Homo sapiens CTLA4 gene Proteins 0.000 claims description 5
- 101100169880 Homo sapiens DCK gene Proteins 0.000 claims description 5
- 101100099899 Homo sapiens FAS gene Proteins 0.000 claims description 5
- 101100508562 Homo sapiens IL7R gene Proteins 0.000 claims description 5
- 101100510618 Homo sapiens LAG3 gene Proteins 0.000 claims description 5
- 101100342754 Homo sapiens LCK gene Proteins 0.000 claims description 5
- 101000582254 Homo sapiens Nuclear receptor corepressor 2 Proteins 0.000 claims description 5
- 101100519206 Homo sapiens PDCD1 gene Proteins 0.000 claims description 5
- 101100520225 Homo sapiens PLCG1 gene Proteins 0.000 claims description 5
- 101100369640 Homo sapiens TIGIT gene Proteins 0.000 claims description 5
- 101150087384 PDCD1 gene Proteins 0.000 claims description 5
- 101150096852 dck gene Proteins 0.000 claims description 5
- RYYWUUFWQRZTIU-UHFFFAOYSA-K thiophosphate Chemical compound [O-]P([O-])([O-])=S RYYWUUFWQRZTIU-UHFFFAOYSA-K 0.000 claims description 5
- 108091033409 CRISPR Proteins 0.000 claims description 4
- 108700002010 MHC class II transactivator Proteins 0.000 claims description 4
- NAGJZTKCGNOGPW-UHFFFAOYSA-K dioxido-sulfanylidene-sulfido-$l^{5}-phosphane Chemical compound [O-]P([O-])([S-])=S NAGJZTKCGNOGPW-UHFFFAOYSA-K 0.000 claims description 3
- 229930185560 Pseudouridine Natural products 0.000 claims description 2
- PTJWIQPHWPFNBW-UHFFFAOYSA-N Pseudouridine C Natural products OC1C(O)C(CO)OC1C1=CNC(=O)NC1=O PTJWIQPHWPFNBW-UHFFFAOYSA-N 0.000 claims description 2
- WGDUUQDYDIIBKT-UHFFFAOYSA-N beta-Pseudouridine Natural products OC1OC(CN2C=CC(=O)NC2=O)C(O)C1O WGDUUQDYDIIBKT-UHFFFAOYSA-N 0.000 claims description 2
- PTJWIQPHWPFNBW-GBNDHIKLSA-N pseudouridine Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1C1=CNC(=O)NC1=O PTJWIQPHWPFNBW-GBNDHIKLSA-N 0.000 claims description 2
- 238000010354 CRISPR gene editing Methods 0.000 claims 1
- 108091028113 Trans-activating crRNA Proteins 0.000 claims 1
- 108091028043 Nucleic acid sequence Proteins 0.000 abstract description 21
- 108020005004 Guide RNA Proteins 0.000 abstract description 10
- 102000004169 proteins and genes Human genes 0.000 description 263
- 235000018102 proteins Nutrition 0.000 description 262
- 230000014509 gene expression Effects 0.000 description 66
- 102100030569 Nuclear receptor corepressor 2 Human genes 0.000 description 63
- 230000000694 effects Effects 0.000 description 62
- 230000004048 modification Effects 0.000 description 59
- 238000012986 modification Methods 0.000 description 59
- 108091079001 CRISPR RNA Proteins 0.000 description 45
- 102100021657 Tyrosine-protein phosphatase non-receptor type 6 Human genes 0.000 description 36
- 108010077850 Nuclear Localization Signals Proteins 0.000 description 33
- 239000002585 base Substances 0.000 description 33
- 102000007346 Hepatitis A Virus Cellular Receptor 2 Human genes 0.000 description 32
- 230000001105 regulatory effect Effects 0.000 description 31
- 102100022089 Acyl-[acyl-carrier-protein] hydrolase Human genes 0.000 description 30
- 101000964894 Bos taurus 14-3-3 protein zeta/delta Proteins 0.000 description 30
- 101000824278 Homo sapiens Acyl-[acyl-carrier-protein] hydrolase Proteins 0.000 description 30
- 101000611023 Homo sapiens Tumor necrosis factor receptor superfamily member 6 Proteins 0.000 description 30
- 102000015736 beta 2-Microglobulin Human genes 0.000 description 30
- 108010081355 beta 2-Microglobulin Proteins 0.000 description 30
- 230000000875 corresponding effect Effects 0.000 description 27
- -1 CIITA Proteins 0.000 description 26
- 230000027455 binding Effects 0.000 description 26
- 102100037906 T-cell surface glycoprotein CD3 zeta chain Human genes 0.000 description 24
- 239000012636 effector Substances 0.000 description 23
- 108010033174 Deoxycytidine kinase Proteins 0.000 description 22
- 102100029588 Deoxycytidine kinase Human genes 0.000 description 22
- 102000017578 LAG3 Human genes 0.000 description 22
- 102100039498 Cytotoxic T-lymphocyte protein 4 Human genes 0.000 description 21
- 101000889276 Homo sapiens Cytotoxic T-lymphocyte protein 4 Proteins 0.000 description 21
- 102100040678 Programmed cell death protein 1 Human genes 0.000 description 21
- 230000035772 mutation Effects 0.000 description 20
- 239000013598 vector Substances 0.000 description 20
- 101000738335 Homo sapiens T-cell surface glycoprotein CD3 zeta chain Proteins 0.000 description 19
- 102100037298 T cell receptor beta constant 2 Human genes 0.000 description 19
- 230000000295 complement effect Effects 0.000 description 19
- 239000008194 pharmaceutical composition Substances 0.000 description 19
- 101000783751 Homo sapiens Adenosine receptor A2a Proteins 0.000 description 18
- 108091008874 T cell receptors Proteins 0.000 description 18
- 230000009977 dual effect Effects 0.000 description 18
- 102000016266 T-Cell Antigen Receptors Human genes 0.000 description 17
- 102100024834 T-cell immunoreceptor with Ig and ITIM domains Human genes 0.000 description 16
- 230000001965 increasing effect Effects 0.000 description 16
- 230000007018 DNA scission Effects 0.000 description 15
- 102100021593 Interleukin-7 receptor subunit alpha Human genes 0.000 description 15
- 102100037272 T cell receptor beta constant 1 Human genes 0.000 description 15
- 150000001875 compounds Chemical class 0.000 description 15
- 230000001681 protective effect Effects 0.000 description 15
- DRTQHJPVMGBUCF-XVFCMESISA-N Uridine Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C=C1 DRTQHJPVMGBUCF-XVFCMESISA-N 0.000 description 14
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 14
- 108010065524 CD52 Antigen Proteins 0.000 description 13
- 102000013135 CD52 Antigen Human genes 0.000 description 13
- 101000662902 Homo sapiens T cell receptor beta constant 2 Proteins 0.000 description 13
- 230000034431 double-strand break repair via homologous recombination Effects 0.000 description 13
- 230000006870 function Effects 0.000 description 13
- 239000002502 liposome Substances 0.000 description 13
- 101000952182 Homo sapiens Max-like protein X Proteins 0.000 description 12
- 102100037423 Max-like protein X Human genes 0.000 description 12
- 239000000427 antigen Substances 0.000 description 12
- 108091007433 antigens Proteins 0.000 description 12
- 102000036639 antigens Human genes 0.000 description 12
- 239000000872 buffer Substances 0.000 description 12
- 108090000765 processed proteins & peptides Proteins 0.000 description 12
- 108010019670 Chimeric Antigen Receptors Proteins 0.000 description 11
- HMFHBZSHGGEWLO-SOOFDHNKSA-N D-ribofuranose Chemical compound OC[C@H]1OC(O)[C@H](O)[C@@H]1O HMFHBZSHGGEWLO-SOOFDHNKSA-N 0.000 description 11
- 108700028146 Genetic Enhancer Elements Proteins 0.000 description 11
- PYMYPHUHKUWMLA-LMVFSUKVSA-N Ribose Natural products OC[C@@H](O)[C@@H](O)[C@@H](O)C=O PYMYPHUHKUWMLA-LMVFSUKVSA-N 0.000 description 11
- 102100024036 Tyrosine-protein kinase Lck Human genes 0.000 description 11
- HMFHBZSHGGEWLO-UHFFFAOYSA-N alpha-D-Furanose-Ribose Natural products OCC1OC(O)C(O)C1O HMFHBZSHGGEWLO-UHFFFAOYSA-N 0.000 description 11
- 239000002105 nanoparticle Substances 0.000 description 11
- 102100035990 Adenosine receptor A2a Human genes 0.000 description 10
- 102100024965 Caspase recruitment domain-containing protein 11 Human genes 0.000 description 10
- 101001043809 Homo sapiens Interleukin-7 receptor subunit alpha Proteins 0.000 description 10
- ISAKRJDGNUQOIC-UHFFFAOYSA-N Uracil Chemical compound O=C1C=CNC(=O)N1 ISAKRJDGNUQOIC-UHFFFAOYSA-N 0.000 description 10
- 235000001014 amino acid Nutrition 0.000 description 10
- 238000013459 approach Methods 0.000 description 10
- 230000015556 catabolic process Effects 0.000 description 10
- 230000003247 decreasing effect Effects 0.000 description 10
- 238000006731 degradation reaction Methods 0.000 description 10
- 201000010099 disease Diseases 0.000 description 10
- 230000002829 reductive effect Effects 0.000 description 10
- 230000001225 therapeutic effect Effects 0.000 description 10
- 210000001519 tissue Anatomy 0.000 description 10
- 102000037982 Immune checkpoint proteins Human genes 0.000 description 9
- 108091008036 Immune checkpoint proteins Proteins 0.000 description 9
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 9
- 230000015572 biosynthetic process Effects 0.000 description 9
- 239000012634 fragment Substances 0.000 description 9
- 230000008569 process Effects 0.000 description 9
- 102000004196 processed proteins & peptides Human genes 0.000 description 9
- 108020004705 Codon Proteins 0.000 description 8
- 102000053602 DNA Human genes 0.000 description 8
- 101000691599 Homo sapiens 1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase gamma-1 Proteins 0.000 description 8
- 239000003937 drug carrier Substances 0.000 description 8
- 239000003623 enhancer Substances 0.000 description 8
- 102000055905 human ADORA2A Human genes 0.000 description 8
- 238000003780 insertion Methods 0.000 description 8
- 230000037431 insertion Effects 0.000 description 8
- 108020004999 messenger RNA Proteins 0.000 description 8
- 229920001223 polyethylene glycol Polymers 0.000 description 8
- 102000040430 polynucleotide Human genes 0.000 description 8
- 108091033319 polynucleotide Proteins 0.000 description 8
- 239000002157 polynucleotide Substances 0.000 description 8
- 102100026205 1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase gamma-1 Human genes 0.000 description 7
- 101000860090 Acidaminococcus sp. (strain BV3L6) CRISPR-associated endonuclease Cas12a Proteins 0.000 description 7
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 7
- 101000662909 Homo sapiens T cell receptor beta constant 1 Proteins 0.000 description 7
- 241000124008 Mammalia Species 0.000 description 7
- 206010028980 Neoplasm Diseases 0.000 description 7
- 239000002202 Polyethylene glycol Substances 0.000 description 7
- 101800005109 Triakontatetraneuropeptide Proteins 0.000 description 7
- 238000003556 assay Methods 0.000 description 7
- DRTQHJPVMGBUCF-PSQAKQOGSA-N beta-L-uridine Natural products O[C@H]1[C@@H](O)[C@H](CO)O[C@@H]1N1C(=O)NC(=O)C=C1 DRTQHJPVMGBUCF-PSQAKQOGSA-N 0.000 description 7
- NMEHNETUFHBYEG-IHKSMFQHSA-N tttn Chemical compound C([C@@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC=1NC=NC=1)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](C)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](C(C)C)C(=O)NCC(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N1[C@@H](CCC1)C(=O)NCC(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCCN)C(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCSC)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CC(O)=O)NC(=O)[C@@H](NC(=O)[C@H]1N(CCC1)C(=O)[C@H](CCC(N)=O)NC(=O)[C@@H](N)[C@@H](C)O)[C@@H](C)O)C1=CC=CC=C1 NMEHNETUFHBYEG-IHKSMFQHSA-N 0.000 description 7
- DRTQHJPVMGBUCF-UHFFFAOYSA-N uracil arabinoside Natural products OC1C(O)C(CO)OC1N1C(=O)NC(=O)C=C1 DRTQHJPVMGBUCF-UHFFFAOYSA-N 0.000 description 7
- 229940045145 uridine Drugs 0.000 description 7
- 230000003612 virological effect Effects 0.000 description 7
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 6
- 102000040650 (ribonucleotides)n+m Human genes 0.000 description 6
- 101000860092 Francisella tularensis subsp. novicida (strain U112) CRISPR-associated endonuclease Cas12a Proteins 0.000 description 6
- 101000761179 Homo sapiens Caspase recruitment domain-containing protein 11 Proteins 0.000 description 6
- 101001047681 Homo sapiens Tyrosine-protein kinase Lck Proteins 0.000 description 6
- 108700018351 Major Histocompatibility Complex Proteins 0.000 description 6
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 6
- 229940024606 amino acid Drugs 0.000 description 6
- 150000001413 amino acids Chemical class 0.000 description 6
- 230000001580 bacterial effect Effects 0.000 description 6
- 238000002716 delivery method Methods 0.000 description 6
- 230000001939 inductive effect Effects 0.000 description 6
- 125000005647 linker group Chemical group 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 150000003839 salts Chemical class 0.000 description 6
- 238000012216 screening Methods 0.000 description 6
- 238000006467 substitution reaction Methods 0.000 description 6
- 230000020382 suppression by virus of host antigen processing and presentation of peptide antigen via MHC class I Effects 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 5
- 208000009329 Graft vs Host Disease Diseases 0.000 description 5
- 101100219559 Homo sapiens CARD11 gene Proteins 0.000 description 5
- 101001000302 Homo sapiens Max-interacting protein 1 Proteins 0.000 description 5
- 101000957259 Homo sapiens Mitotic spindle assembly checkpoint protein MAD2A Proteins 0.000 description 5
- 102100038792 Mitotic spindle assembly checkpoint protein MAD2A Human genes 0.000 description 5
- 230000008901 benefit Effects 0.000 description 5
- 201000011510 cancer Diseases 0.000 description 5
- 239000003795 chemical substances by application Substances 0.000 description 5
- 230000002068 genetic effect Effects 0.000 description 5
- 208000024908 graft versus host disease Diseases 0.000 description 5
- 210000003958 hematopoietic stem cell Anatomy 0.000 description 5
- 230000003993 interaction Effects 0.000 description 5
- 150000002632 lipids Chemical class 0.000 description 5
- 230000004044 response Effects 0.000 description 5
- 239000002904 solvent Substances 0.000 description 5
- 238000013518 transcription Methods 0.000 description 5
- 230000035897 transcription Effects 0.000 description 5
- 238000011144 upstream manufacturing Methods 0.000 description 5
- 229940035893 uracil Drugs 0.000 description 5
- 239000013603 viral vector Substances 0.000 description 5
- OVONXEQGWXGFJD-UHFFFAOYSA-N 4-sulfanylidene-1h-pyrimidin-2-one Chemical compound SC=1C=CNC(=O)N=1 OVONXEQGWXGFJD-UHFFFAOYSA-N 0.000 description 4
- OIVLITBTBDPEFK-UHFFFAOYSA-N 5,6-dihydrouracil Chemical compound O=C1CCNC(=O)N1 OIVLITBTBDPEFK-UHFFFAOYSA-N 0.000 description 4
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 4
- 239000004215 Carbon black (E152) Substances 0.000 description 4
- 108091026890 Coding region Proteins 0.000 description 4
- 108700010070 Codon Usage Proteins 0.000 description 4
- 241000701022 Cytomegalovirus Species 0.000 description 4
- 108060002716 Exonuclease Proteins 0.000 description 4
- 101000829367 Homo sapiens Src substrate cortactin Proteins 0.000 description 4
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 4
- 241001465754 Metazoa Species 0.000 description 4
- 102000002488 Nucleoplasmin Human genes 0.000 description 4
- 108091034117 Oligonucleotide Proteins 0.000 description 4
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 4
- 102100031463 Serine/threonine-protein kinase PLK1 Human genes 0.000 description 4
- 102100023719 Src substrate cortactin Human genes 0.000 description 4
- 108020004566 Transfer RNA Proteins 0.000 description 4
- 102100024717 Tubulin beta chain Human genes 0.000 description 4
- 101150018082 U6 gene Proteins 0.000 description 4
- 239000002253 acid Substances 0.000 description 4
- 230000004075 alteration Effects 0.000 description 4
- 210000004369 blood Anatomy 0.000 description 4
- 239000008280 blood Substances 0.000 description 4
- 239000000969 carrier Substances 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 230000001419 dependent effect Effects 0.000 description 4
- 238000011161 development Methods 0.000 description 4
- 230000018109 developmental process Effects 0.000 description 4
- 239000003085 diluting agent Substances 0.000 description 4
- 208000035475 disorder Diseases 0.000 description 4
- 102000013165 exonuclease Human genes 0.000 description 4
- 238000009472 formulation Methods 0.000 description 4
- 238000010362 genome editing Methods 0.000 description 4
- 238000009396 hybridization Methods 0.000 description 4
- 229930195733 hydrocarbon Natural products 0.000 description 4
- 238000010348 incorporation Methods 0.000 description 4
- 230000006780 non-homologous end joining Effects 0.000 description 4
- 108060005597 nucleoplasmin Proteins 0.000 description 4
- 210000004940 nucleus Anatomy 0.000 description 4
- 239000013612 plasmid Substances 0.000 description 4
- 108010056274 polo-like kinase 1 Proteins 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- 229920001184 polypeptide Polymers 0.000 description 4
- 230000010076 replication Effects 0.000 description 4
- 238000011160 research Methods 0.000 description 4
- 238000012163 sequencing technique Methods 0.000 description 4
- 210000000130 stem cell Anatomy 0.000 description 4
- 238000011191 terminal modification Methods 0.000 description 4
- WYWHKKSPHMUBEB-UHFFFAOYSA-N tioguanine Chemical compound N1C(N)=NC(=S)C2=C1N=CN2 WYWHKKSPHMUBEB-UHFFFAOYSA-N 0.000 description 4
- 238000013519 translation Methods 0.000 description 4
- 239000003981 vehicle Substances 0.000 description 4
- JKMHFZQWWAIEOD-UHFFFAOYSA-N 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid Chemical compound OCC[NH+]1CCN(CCS([O-])(=O)=O)CC1 JKMHFZQWWAIEOD-UHFFFAOYSA-N 0.000 description 3
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 description 3
- WVDDGKGOMKODPV-UHFFFAOYSA-N Benzyl alcohol Chemical compound OCC1=CC=CC=C1 WVDDGKGOMKODPV-UHFFFAOYSA-N 0.000 description 3
- 102100038078 CD276 antigen Human genes 0.000 description 3
- 108090000565 Capsid Proteins Proteins 0.000 description 3
- 102100024423 Carbonic anhydrase 9 Human genes 0.000 description 3
- 102100023321 Ceruloplasmin Human genes 0.000 description 3
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 3
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 3
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 3
- 101710177611 DNA polymerase II large subunit Proteins 0.000 description 3
- 101710184669 DNA polymerase II small subunit Proteins 0.000 description 3
- 108010052167 Dihydroorotate Dehydrogenase Proteins 0.000 description 3
- 102100032823 Dihydroorotate dehydrogenase (quinone), mitochondrial Human genes 0.000 description 3
- 102100038390 Diphosphomevalonate decarboxylase Human genes 0.000 description 3
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 3
- 102100031780 Endonuclease Human genes 0.000 description 3
- 102000004190 Enzymes Human genes 0.000 description 3
- 108090000790 Enzymes Proteins 0.000 description 3
- 102100031940 Epithelial cell adhesion molecule Human genes 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- 102100028970 HLA class I histocompatibility antigen, alpha chain E Human genes 0.000 description 3
- 102100028967 HLA class I histocompatibility antigen, alpha chain G Human genes 0.000 description 3
- 108010024164 HLA-G Antigens Proteins 0.000 description 3
- 102100034458 Hepatitis A virus cellular receptor 2 Human genes 0.000 description 3
- 101000986085 Homo sapiens HLA class I histocompatibility antigen, alpha chain E Proteins 0.000 description 3
- 229930195725 Mannitol Natural products 0.000 description 3
- 108010008707 Mucin-1 Proteins 0.000 description 3
- 102100034256 Mucin-1 Human genes 0.000 description 3
- 102000011931 Nucleoproteins Human genes 0.000 description 3
- 108010061100 Nucleoproteins Proteins 0.000 description 3
- 241000714474 Rous sarcoma virus Species 0.000 description 3
- 238000009825 accumulation Methods 0.000 description 3
- 230000009471 action Effects 0.000 description 3
- 230000004913 activation Effects 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 230000022131 cell cycle Effects 0.000 description 3
- 230000021615 conjugation Effects 0.000 description 3
- 238000012217 deletion Methods 0.000 description 3
- 230000037430 deletion Effects 0.000 description 3
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 3
- 230000001973 epigenetic effect Effects 0.000 description 3
- 150000002148 esters Chemical class 0.000 description 3
- 210000003527 eukaryotic cell Anatomy 0.000 description 3
- 210000001808 exosome Anatomy 0.000 description 3
- 102000037865 fusion proteins Human genes 0.000 description 3
- 108020001507 fusion proteins Proteins 0.000 description 3
- 235000011187 glycerol Nutrition 0.000 description 3
- 230000002779 inactivation Effects 0.000 description 3
- 238000001990 intravenous administration Methods 0.000 description 3
- 239000000594 mannitol Substances 0.000 description 3
- 235000010355 mannitol Nutrition 0.000 description 3
- 239000003550 marker Substances 0.000 description 3
- 210000003071 memory t lymphocyte Anatomy 0.000 description 3
- 238000007837 multiplex assay Methods 0.000 description 3
- 239000000546 pharmaceutical excipient Substances 0.000 description 3
- 239000002953 phosphate buffered saline Substances 0.000 description 3
- 229920002401 polyacrylamide Polymers 0.000 description 3
- 102000005962 receptors Human genes 0.000 description 3
- 108020003175 receptors Proteins 0.000 description 3
- 230000008439 repair process Effects 0.000 description 3
- 125000000548 ribosyl group Chemical group C1([C@H](O)[C@H](O)[C@H](O1)CO)* 0.000 description 3
- 238000010187 selection method Methods 0.000 description 3
- 239000011780 sodium chloride Substances 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 239000000600 sorbitol Substances 0.000 description 3
- 235000000346 sugar Nutrition 0.000 description 3
- 238000013268 sustained release Methods 0.000 description 3
- 231100000419 toxicity Toxicity 0.000 description 3
- 230000001988 toxicity Effects 0.000 description 3
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 3
- 241000701161 unidentified adenovirus Species 0.000 description 3
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 2
- RJBDSRWGVYNDHL-XNJNKMBASA-N (2S,4R,5S,6S)-2-[(2S,3R,4R,5S,6R)-5-[(2S,3R,4R,5R,6R)-3-acetamido-4,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-2-[(2R,3S,4R,5R,6R)-4,5-dihydroxy-2-(hydroxymethyl)-6-[(E,2R,3S)-3-hydroxy-2-(octadecanoylamino)octadec-4-enoxy]oxan-3-yl]oxy-3-hydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-5-amino-6-[(1S,2R)-2-[(2S,4R,5S,6S)-5-amino-2-carboxy-4-hydroxy-6-[(1R,2R)-1,2,3-trihydroxypropyl]oxan-2-yl]oxy-1,3-dihydroxypropyl]-4-hydroxyoxane-2-carboxylic acid Chemical compound CCCCCCCCCCCCCCCCCC(=O)N[C@H](CO[C@@H]1O[C@H](CO)[C@@H](O[C@@H]2O[C@H](CO)[C@H](O[C@@H]3O[C@H](CO)[C@H](O)[C@H](O)[C@H]3NC(C)=O)[C@H](O[C@@]3(C[C@@H](O)[C@H](N)[C@H](O3)[C@H](O)[C@@H](CO)O[C@@]3(C[C@@H](O)[C@H](N)[C@H](O3)[C@H](O)[C@H](O)CO)C(O)=O)C(O)=O)[C@H]2O)[C@H](O)[C@H]1O)[C@@H](O)\C=C\CCCCCCCCCCCCC RJBDSRWGVYNDHL-XNJNKMBASA-N 0.000 description 2
- WRMNZCZEMHIOCP-UHFFFAOYSA-N 2-phenylethanol Chemical compound OCCC1=CC=CC=C1 WRMNZCZEMHIOCP-UHFFFAOYSA-N 0.000 description 2
- DVLFYONBTKHTER-UHFFFAOYSA-N 3-(N-morpholino)propanesulfonic acid Chemical compound OS(=O)(=O)CCCN1CCOCC1 DVLFYONBTKHTER-UHFFFAOYSA-N 0.000 description 2
- RYVNIFSIEDRLSJ-UHFFFAOYSA-N 5-(hydroxymethyl)cytosine Chemical compound NC=1NC(=O)N=CC=1CO RYVNIFSIEDRLSJ-UHFFFAOYSA-N 0.000 description 2
- DCPSTSVLRXOYGS-UHFFFAOYSA-N 6-amino-1h-pyrimidine-2-thione Chemical compound NC1=CC=NC(S)=N1 DCPSTSVLRXOYGS-UHFFFAOYSA-N 0.000 description 2
- PEHVGBZKEYRQSX-UHFFFAOYSA-N 7-deaza-adenine Chemical compound NC1=NC=NC2=C1C=CN2 PEHVGBZKEYRQSX-UHFFFAOYSA-N 0.000 description 2
- MSSXOMSJDRHRMC-UHFFFAOYSA-N 9H-purine-2,6-diamine Chemical compound NC1=NC(N)=C2NC=NC2=N1 MSSXOMSJDRHRMC-UHFFFAOYSA-N 0.000 description 2
- 108010008014 B-Cell Maturation Antigen Proteins 0.000 description 2
- 102000006942 B-Cell Maturation Antigen Human genes 0.000 description 2
- 102100024222 B-lymphocyte antigen CD19 Human genes 0.000 description 2
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 description 2
- 108010008629 CA-125 Antigen Proteins 0.000 description 2
- 108700012439 CA9 Proteins 0.000 description 2
- 101710185679 CD276 antigen Proteins 0.000 description 2
- 108010040467 CRISPR-Associated Proteins Proteins 0.000 description 2
- 101100120909 Caenorhabditis briggsae gpd-3.2 gene Proteins 0.000 description 2
- 101100120910 Caenorhabditis elegans gpd-2 gene Proteins 0.000 description 2
- 101000909256 Caldicellulosiruptor bescii (strain ATCC BAA-1888 / DSM 6725 / Z-1320) DNA polymerase I Proteins 0.000 description 2
- 241001040999 Candidatus Methanoplasma termitum Species 0.000 description 2
- 108010022366 Carcinoembryonic Antigen Proteins 0.000 description 2
- 102100025475 Carcinoembryonic antigen-related cell adhesion molecule 5 Human genes 0.000 description 2
- 108010009685 Cholinergic Receptors Proteins 0.000 description 2
- 102100028757 Chondroitin sulfate proteoglycan 4 Human genes 0.000 description 2
- 102000004127 Cytokines Human genes 0.000 description 2
- 108090000695 Cytokines Proteins 0.000 description 2
- 108010006124 DNA-Activated Protein Kinase Proteins 0.000 description 2
- 102000005768 DNA-Activated Protein Kinase Human genes 0.000 description 2
- 108010008532 Deoxyribonuclease I Proteins 0.000 description 2
- 102000007260 Deoxyribonuclease I Human genes 0.000 description 2
- 241000702421 Dependoparvovirus Species 0.000 description 2
- 102100030340 Ephrin type-A receptor 2 Human genes 0.000 description 2
- 101710116743 Ephrin type-A receptor 2 Proteins 0.000 description 2
- 108010066687 Epithelial Cell Adhesion Molecule Proteins 0.000 description 2
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 2
- 102100041003 Glutamate carboxypeptidase 2 Human genes 0.000 description 2
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 2
- 239000004471 Glycine Substances 0.000 description 2
- 102000010956 Glypican Human genes 0.000 description 2
- 108050001154 Glypican Proteins 0.000 description 2
- 108050007237 Glypican-3 Proteins 0.000 description 2
- 108010043121 Green Fluorescent Proteins Proteins 0.000 description 2
- 102000004144 Green Fluorescent Proteins Human genes 0.000 description 2
- 239000007995 HEPES buffer Substances 0.000 description 2
- 102000000310 HNH endonucleases Human genes 0.000 description 2
- 108050008753 HNH endonucleases Proteins 0.000 description 2
- 101000980825 Homo sapiens B-lymphocyte antigen CD19 Proteins 0.000 description 2
- 101000958922 Homo sapiens Diphosphomevalonate decarboxylase Proteins 0.000 description 2
- 101000892862 Homo sapiens Glutamate carboxypeptidase 2 Proteins 0.000 description 2
- 101000581981 Homo sapiens Neural cell adhesion molecule 1 Proteins 0.000 description 2
- 101000655352 Homo sapiens Telomerase reverse transcriptase Proteins 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- 102100020793 Interleukin-13 receptor subunit alpha-2 Human genes 0.000 description 2
- 101710112634 Interleukin-13 receptor subunit alpha-2 Proteins 0.000 description 2
- 101710192602 Latent membrane protein 1 Proteins 0.000 description 2
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 2
- 239000007993 MOPS buffer Substances 0.000 description 2
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 2
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 2
- 102100025169 Max-binding protein MNT Human genes 0.000 description 2
- 102100023123 Mucin-16 Human genes 0.000 description 2
- YNLCVAQJIKOXER-UHFFFAOYSA-N N-[tris(hydroxymethyl)methyl]-3-aminopropanesulfonic acid Chemical compound OCC(CO)(CO)NCCCS(O)(=O)=O YNLCVAQJIKOXER-UHFFFAOYSA-N 0.000 description 2
- 102100027347 Neural cell adhesion molecule 1 Human genes 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 2
- 229920001213 Polysorbate 20 Polymers 0.000 description 2
- 101000902592 Pyrococcus furiosus (strain ATCC 43587 / DSM 3638 / JCM 8422 / Vc1) DNA polymerase Proteins 0.000 description 2
- 230000026279 RNA modification Effects 0.000 description 2
- 239000013614 RNA sample Substances 0.000 description 2
- 230000007022 RNA scission Effects 0.000 description 2
- 230000004570 RNA-binding Effects 0.000 description 2
- 108010092799 RNA-directed DNA polymerase Proteins 0.000 description 2
- 101001039269 Rattus norvegicus Glycine N-methyltransferase Proteins 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 241001037426 Smithella sp. Species 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 2
- DWAQJAXMDSEUJJ-UHFFFAOYSA-M Sodium bisulfite Chemical compound [Na+].OS([O-])=O DWAQJAXMDSEUJJ-UHFFFAOYSA-M 0.000 description 2
- 101150040605 TUBB gene Proteins 0.000 description 2
- 108010073062 Transcription Activator-Like Effectors Proteins 0.000 description 2
- 108091023040 Transcription factor Proteins 0.000 description 2
- 102000040945 Transcription factor Human genes 0.000 description 2
- 239000007983 Tris buffer Substances 0.000 description 2
- 108010053099 Vascular Endothelial Growth Factor Receptor-2 Proteins 0.000 description 2
- 102100033177 Vascular endothelial growth factor receptor 2 Human genes 0.000 description 2
- 241000251539 Vertebrata <Metazoa> Species 0.000 description 2
- 241000700605 Viruses Species 0.000 description 2
- 102100022748 Wilms tumor protein Human genes 0.000 description 2
- 101710127857 Wilms tumor protein Proteins 0.000 description 2
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 2
- 102000034337 acetylcholine receptors Human genes 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- DZBUGLKDJFMEHC-UHFFFAOYSA-N acridine Chemical compound C1=CC=CC2=CC3=CC=CC=C3N=C21 DZBUGLKDJFMEHC-UHFFFAOYSA-N 0.000 description 2
- 230000023445 activated T cell autonomous cell death Effects 0.000 description 2
- 239000004480 active ingredient Substances 0.000 description 2
- OIRDTQYFTABQOQ-KQYNXXCUSA-N adenosine group Chemical group [C@@H]1([C@H](O)[C@H](O)[C@@H](CO)O1)N1C=NC=2C(N)=NC=NC12 OIRDTQYFTABQOQ-KQYNXXCUSA-N 0.000 description 2
- 208000026935 allergic disease Diseases 0.000 description 2
- 230000000735 allogeneic effect Effects 0.000 description 2
- 150000001408 amides Chemical class 0.000 description 2
- 239000005557 antagonist Substances 0.000 description 2
- 239000003963 antioxidant agent Substances 0.000 description 2
- 235000006708 antioxidants Nutrition 0.000 description 2
- 235000010323 ascorbic acid Nutrition 0.000 description 2
- 239000011668 ascorbic acid Substances 0.000 description 2
- 229960005070 ascorbic acid Drugs 0.000 description 2
- 210000003719 b-lymphocyte Anatomy 0.000 description 2
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 2
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 2
- 230000008499 blood brain barrier function Effects 0.000 description 2
- 210000001218 blood-brain barrier Anatomy 0.000 description 2
- 210000001185 bone marrow Anatomy 0.000 description 2
- RYYVLZVUVIJVGH-UHFFFAOYSA-N caffeine Chemical compound CN1C(=O)N(C)C(=O)C2=C1N=CN2C RYYVLZVUVIJVGH-UHFFFAOYSA-N 0.000 description 2
- 238000004113 cell culture Methods 0.000 description 2
- 210000000170 cell membrane Anatomy 0.000 description 2
- 239000002738 chelating agent Substances 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 description 2
- 108010039524 chondroitin sulfate proteoglycan 4 Proteins 0.000 description 2
- 210000000349 chromosome Anatomy 0.000 description 2
- 150000001860 citric acid derivatives Chemical class 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000000205 computational method Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 239000003599 detergent Substances 0.000 description 2
- 230000004069 differentiation Effects 0.000 description 2
- 239000002612 dispersion medium Substances 0.000 description 2
- 239000002552 dosage form Substances 0.000 description 2
- 229940079593 drug Drugs 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- 230000009881 electrostatic interaction Effects 0.000 description 2
- 239000000839 emulsion Substances 0.000 description 2
- 230000002708 enhancing effect Effects 0.000 description 2
- 108010087914 epidermal growth factor receptor VIII Proteins 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 210000002950 fibroblast Anatomy 0.000 description 2
- 108091006047 fluorescent proteins Proteins 0.000 description 2
- 102000034287 fluorescent proteins Human genes 0.000 description 2
- OVBPIULPVIDEAO-LBPRGKRZSA-N folic acid Chemical compound C=1N=C2NC(N)=NC(=O)C2=NC=1CNC1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 OVBPIULPVIDEAO-LBPRGKRZSA-N 0.000 description 2
- ZXQYGBMAQZUVMI-GCMPRSNUSA-N gamma-cyhalothrin Chemical compound CC1(C)[C@@H](\C=C(/Cl)C(F)(F)F)[C@H]1C(=O)O[C@H](C#N)C1=CC=CC(OC=2C=CC=CC=2)=C1 ZXQYGBMAQZUVMI-GCMPRSNUSA-N 0.000 description 2
- 238000001415 gene therapy Methods 0.000 description 2
- 239000005090 green fluorescent protein Substances 0.000 description 2
- 125000001475 halogen functional group Chemical group 0.000 description 2
- 238000003306 harvesting Methods 0.000 description 2
- 210000003494 hepatocyte Anatomy 0.000 description 2
- FDGQSTZJBFJUBT-UHFFFAOYSA-N hypoxanthine Chemical compound O=C1NC=NC2=C1NC=N2 FDGQSTZJBFJUBT-UHFFFAOYSA-N 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 230000000415 inactivating effect Effects 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 238000007918 intramuscular administration Methods 0.000 description 2
- 230000007794 irritation Effects 0.000 description 2
- DRAVOWXCEBXPTN-UHFFFAOYSA-N isoguanine Chemical compound NC1=NC(=O)NC2=C1NC=N2 DRAVOWXCEBXPTN-UHFFFAOYSA-N 0.000 description 2
- 208000032839 leukemia Diseases 0.000 description 2
- 210000000265 leukocyte Anatomy 0.000 description 2
- 239000003446 ligand Substances 0.000 description 2
- 230000000670 limiting effect Effects 0.000 description 2
- 210000004185 liver Anatomy 0.000 description 2
- 210000004698 lymphocyte Anatomy 0.000 description 2
- 210000004962 mammalian cell Anatomy 0.000 description 2
- 210000001161 mammalian embryo Anatomy 0.000 description 2
- 235000010270 methyl p-hydroxybenzoate Nutrition 0.000 description 2
- LXCFILQKKLGQFO-UHFFFAOYSA-N methylparaben Chemical compound COC(=O)C1=CC=C(O)C=C1 LXCFILQKKLGQFO-UHFFFAOYSA-N 0.000 description 2
- 238000002493 microarray Methods 0.000 description 2
- 238000000520 microinjection Methods 0.000 description 2
- 239000011859 microparticle Substances 0.000 description 2
- 210000003205 muscle Anatomy 0.000 description 2
- 239000002070 nanowire Substances 0.000 description 2
- 210000000822 natural killer cell Anatomy 0.000 description 2
- 210000002569 neuron Anatomy 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 238000005457 optimization Methods 0.000 description 2
- 210000000496 pancreas Anatomy 0.000 description 2
- 230000036961 partial effect Effects 0.000 description 2
- 235000021317 phosphate Nutrition 0.000 description 2
- 125000002467 phosphate group Chemical group [H]OP(=O)(O[H])O[*] 0.000 description 2
- 150000004713 phosphodiesters Chemical group 0.000 description 2
- 108010079892 phosphoglycerol kinase Proteins 0.000 description 2
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 2
- 229920001983 poloxamer Polymers 0.000 description 2
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 description 2
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 description 2
- 229920000136 polysorbate Polymers 0.000 description 2
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 2
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 2
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 2
- 239000001103 potassium chloride Substances 0.000 description 2
- 235000011164 potassium chloride Nutrition 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 239000003755 preservative agent Substances 0.000 description 2
- 210000001236 prokaryotic cell Anatomy 0.000 description 2
- 230000002062 proliferating effect Effects 0.000 description 2
- YPFDHNVEDLHUCE-UHFFFAOYSA-N propane-1,3-diol Chemical compound OCCCO YPFDHNVEDLHUCE-UHFFFAOYSA-N 0.000 description 2
- QELSKZZBTMNZEB-UHFFFAOYSA-N propylparaben Chemical compound CCCOC(=O)C1=CC=C(O)C=C1 QELSKZZBTMNZEB-UHFFFAOYSA-N 0.000 description 2
- 125000006239 protecting group Chemical group 0.000 description 2
- 108020001580 protein domains Proteins 0.000 description 2
- 230000006798 recombination Effects 0.000 description 2
- 238000005215 recombination Methods 0.000 description 2
- YGSDEFSMJLZEOE-UHFFFAOYSA-N salicylic acid Chemical compound OC(=O)C1=CC=CC=C1O YGSDEFSMJLZEOE-UHFFFAOYSA-N 0.000 description 2
- 230000011664 signaling Effects 0.000 description 2
- 210000003491 skin Anatomy 0.000 description 2
- 235000010267 sodium hydrogen sulphite Nutrition 0.000 description 2
- GEHJYWRUCIMESM-UHFFFAOYSA-L sodium sulfite Chemical compound [Na+].[Na+].[O-]S([O-])=O GEHJYWRUCIMESM-UHFFFAOYSA-L 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 241000894007 species Species 0.000 description 2
- 239000003381 stabilizer Substances 0.000 description 2
- 239000007858 starting material Substances 0.000 description 2
- 230000001954 sterilising effect Effects 0.000 description 2
- 238000004659 sterilization and disinfection Methods 0.000 description 2
- 238000007920 subcutaneous administration Methods 0.000 description 2
- 230000004083 survival effect Effects 0.000 description 2
- 239000012730 sustained-release form Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 230000004797 therapeutic response Effects 0.000 description 2
- RWQNBRDOKXIBIV-UHFFFAOYSA-N thymine Chemical compound CC1=CNC(=O)NC1=O RWQNBRDOKXIBIV-UHFFFAOYSA-N 0.000 description 2
- 229960003087 tioguanine Drugs 0.000 description 2
- 108091006107 transcriptional repressors Proteins 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 210000003171 tumor-infiltrating lymphocyte Anatomy 0.000 description 2
- 239000000277 virosome Substances 0.000 description 2
- 239000000080 wetting agent Substances 0.000 description 2
- 210000005253 yeast cell Anatomy 0.000 description 2
- ALNDFFUAQIVVPG-NGJCXOISSA-N (2r,3r,4r)-3,4,5-trihydroxy-2-methoxypentanal Chemical compound CO[C@@H](C=O)[C@H](O)[C@H](O)CO ALNDFFUAQIVVPG-NGJCXOISSA-N 0.000 description 1
- YIMATHOGWXZHFX-WCTZXXKLSA-N (2r,3r,4r,5r)-5-(hydroxymethyl)-3-(2-methoxyethoxy)oxolane-2,4-diol Chemical compound COCCO[C@H]1[C@H](O)O[C@H](CO)[C@H]1O YIMATHOGWXZHFX-WCTZXXKLSA-N 0.000 description 1
- JNYAEWCLZODPBN-JGWLITMVSA-N (2r,3r,4s)-2-[(1r)-1,2-dihydroxyethyl]oxolane-3,4-diol Chemical class OC[C@@H](O)[C@H]1OC[C@H](O)[C@H]1O JNYAEWCLZODPBN-JGWLITMVSA-N 0.000 description 1
- XMQUEQJCYRFIQS-YFKPBYRVSA-N (2s)-2-amino-5-ethoxy-5-oxopentanoic acid Chemical compound CCOC(=O)CC[C@H](N)C(O)=O XMQUEQJCYRFIQS-YFKPBYRVSA-N 0.000 description 1
- BRCNMMGLEUILLG-NTSWFWBYSA-N (4s,5r)-4,5,6-trihydroxyhexan-2-one Chemical group CC(=O)C[C@H](O)[C@H](O)CO BRCNMMGLEUILLG-NTSWFWBYSA-N 0.000 description 1
- GUAHPAJOXVYFON-ZETCQYMHSA-N (8S)-8-amino-7-oxononanoic acid zwitterion Chemical compound C[C@H](N)C(=O)CCCCCC(O)=O GUAHPAJOXVYFON-ZETCQYMHSA-N 0.000 description 1
- WHBMMWSBFZVSSR-GSVOUGTGSA-N (R)-3-hydroxybutyric acid Chemical compound C[C@@H](O)CC(O)=O WHBMMWSBFZVSSR-GSVOUGTGSA-N 0.000 description 1
- IIZPXYDJLKNOIY-JXPKJXOSSA-N 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCC\C=C/C\C=C/C\C=C/C\C=C/CCCCC IIZPXYDJLKNOIY-JXPKJXOSSA-N 0.000 description 1
- MPXDAIBTYWGBSL-UHFFFAOYSA-N 2,4-difluoro-1-methylbenzene Chemical compound CC1=CC=C(F)C=C1F MPXDAIBTYWGBSL-UHFFFAOYSA-N 0.000 description 1
- SXGZJKUKBWWHRA-UHFFFAOYSA-N 2-(N-morpholiniumyl)ethanesulfonate Chemical compound [O-]S(=O)(=O)CC[NH+]1CCOCC1 SXGZJKUKBWWHRA-UHFFFAOYSA-N 0.000 description 1
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 1
- XQCZBXHVTFVIFE-UHFFFAOYSA-N 2-amino-4-hydroxypyrimidine Chemical compound NC1=NC=CC(O)=N1 XQCZBXHVTFVIFE-UHFFFAOYSA-N 0.000 description 1
- MWBWWFOAEOYUST-UHFFFAOYSA-N 2-aminopurine Chemical compound NC1=NC=C2N=CNC2=N1 MWBWWFOAEOYUST-UHFFFAOYSA-N 0.000 description 1
- 125000004200 2-methoxyethyl group Chemical group [H]C([H])([H])OC([H])([H])C([H])([H])* 0.000 description 1
- JHRPHASLIZOEBJ-UHFFFAOYSA-N 2-methylpyridine-3-carbaldehyde Chemical compound CC1=NC=CC=C1C=O JHRPHASLIZOEBJ-UHFFFAOYSA-N 0.000 description 1
- OALHHIHQOFIMEF-UHFFFAOYSA-N 3',6'-dihydroxy-2',4',5',7'-tetraiodo-3h-spiro[2-benzofuran-1,9'-xanthene]-3-one Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC(I)=C(O)C(I)=C1OC1=C(I)C(O)=C(I)C=C21 OALHHIHQOFIMEF-UHFFFAOYSA-N 0.000 description 1
- WCKQPPQRFNHPRJ-UHFFFAOYSA-N 4-[[4-(dimethylamino)phenyl]diazenyl]benzoic acid Chemical compound C1=CC(N(C)C)=CC=C1N=NC1=CC=C(C(O)=O)C=C1 WCKQPPQRFNHPRJ-UHFFFAOYSA-N 0.000 description 1
- LQLQRFGHAALLLE-UHFFFAOYSA-N 5-bromouracil Chemical compound BrC1=CNC(=O)NC1=O LQLQRFGHAALLLE-UHFFFAOYSA-N 0.000 description 1
- JDBGXEHEIRGOBU-UHFFFAOYSA-N 5-hydroxymethyluracil Chemical compound OCC1=CNC(=O)NC1=O JDBGXEHEIRGOBU-UHFFFAOYSA-N 0.000 description 1
- KSNXJLQDQOIRIP-UHFFFAOYSA-N 5-iodouracil Chemical compound IC1=CNC(=O)NC1=O KSNXJLQDQOIRIP-UHFFFAOYSA-N 0.000 description 1
- LRSASMSXMSNRBT-UHFFFAOYSA-N 5-methylcytosine Chemical compound CC1=CNC(=O)N=C1N LRSASMSXMSNRBT-UHFFFAOYSA-N 0.000 description 1
- UJBCLAXPPIDQEE-UHFFFAOYSA-N 5-prop-1-ynyl-1h-pyrimidine-2,4-dione Chemical compound CC#CC1=CNC(=O)NC1=O UJBCLAXPPIDQEE-UHFFFAOYSA-N 0.000 description 1
- VOBFOFTXJVSVTJ-UHFFFAOYSA-N 5-prop-2-enyl-1h-pyrimidine-2,4-dione Chemical compound C=CCC1=CNC(=O)NC1=O VOBFOFTXJVSVTJ-UHFFFAOYSA-N 0.000 description 1
- PPYAFPNEHGRGIQ-UHFFFAOYSA-N 6-amino-5-ethynyl-1h-pyrimidin-2-one Chemical compound NC1=NC(=O)NC=C1C#C PPYAFPNEHGRGIQ-UHFFFAOYSA-N 0.000 description 1
- QNNARSZPGNJZIX-UHFFFAOYSA-N 6-amino-5-prop-1-ynyl-1h-pyrimidin-2-one Chemical compound CC#CC1=CNC(=O)N=C1N QNNARSZPGNJZIX-UHFFFAOYSA-N 0.000 description 1
- LHCPRYRLDOSKHK-UHFFFAOYSA-N 7-deaza-8-aza-adenine Chemical compound NC1=NC=NC2=C1C=NN2 LHCPRYRLDOSKHK-UHFFFAOYSA-N 0.000 description 1
- LOSIULRWFAEMFL-UHFFFAOYSA-N 7-deazaguanine Chemical compound O=C1NC(N)=NC2=C1CC=N2 LOSIULRWFAEMFL-UHFFFAOYSA-N 0.000 description 1
- VKKXEIQIGGPMHT-UHFFFAOYSA-N 7h-purine-2,8-diamine Chemical compound NC1=NC=C2NC(N)=NC2=N1 VKKXEIQIGGPMHT-UHFFFAOYSA-N 0.000 description 1
- 229960005508 8-azaguanine Drugs 0.000 description 1
- 102100031585 ADP-ribosyl cyclase/cyclic ADP-ribose hydrolase 1 Human genes 0.000 description 1
- 208000035657 Abasia Diseases 0.000 description 1
- 241000093740 Acidaminococcus sp. Species 0.000 description 1
- 102100022900 Actin, cytoplasmic 1 Human genes 0.000 description 1
- 241000251468 Actinopterygii Species 0.000 description 1
- 108010085238 Actins Proteins 0.000 description 1
- 229930024421 Adenine Natural products 0.000 description 1
- GFFGJBXGBJISGV-UHFFFAOYSA-N Adenine Chemical compound NC1=NC=NC2=C1N=CN2 GFFGJBXGBJISGV-UHFFFAOYSA-N 0.000 description 1
- 108010052875 Adenine deaminase Proteins 0.000 description 1
- 241000972680 Adeno-associated virus - 6 Species 0.000 description 1
- 241001164825 Adeno-associated virus - 8 Species 0.000 description 1
- 102100038910 Alpha-enolase Human genes 0.000 description 1
- 241000099173 Anaerovibrio sp. Species 0.000 description 1
- 102100037435 Antiviral innate immune response receptor RIG-I Human genes 0.000 description 1
- 101710127675 Antiviral innate immune response receptor RIG-I Proteins 0.000 description 1
- 108091023037 Aptamer Proteins 0.000 description 1
- 239000004475 Arginine Substances 0.000 description 1
- 108010031480 Artificial Receptors Proteins 0.000 description 1
- DCXYFEDJOCDNAF-UHFFFAOYSA-N Asparagine Natural products OC(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-N 0.000 description 1
- 108090001008 Avidin Proteins 0.000 description 1
- 102100029822 B- and T-lymphocyte attenuator Human genes 0.000 description 1
- 102100038080 B-cell receptor CD22 Human genes 0.000 description 1
- 102100022005 B-lymphocyte antigen CD20 Human genes 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 241000218495 Bactrocera correcta Species 0.000 description 1
- 206010061692 Benign muscle neoplasm Diseases 0.000 description 1
- 239000005711 Benzoic acid Substances 0.000 description 1
- 102100034159 Beta-3 adrenergic receptor Human genes 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- 241001536303 Botryococcus braunii Species 0.000 description 1
- 241000168061 Butyrivibrio proteoclasticus Species 0.000 description 1
- 239000002126 C01EB10 - Adenosine Substances 0.000 description 1
- 102100027207 CD27 antigen Human genes 0.000 description 1
- 102000017420 CD3 protein, epsilon/gamma/delta subunit Human genes 0.000 description 1
- 108050005493 CD3 protein, epsilon/gamma/delta subunit Proteins 0.000 description 1
- 102100032912 CD44 antigen Human genes 0.000 description 1
- 102100025221 CD70 antigen Human genes 0.000 description 1
- 238000010356 CRISPR-Cas9 genome editing Methods 0.000 description 1
- 101100174607 Caenorhabditis briggsae gpd-3.1 gene Proteins 0.000 description 1
- 101100174608 Caenorhabditis elegans gpd-3 gene Proteins 0.000 description 1
- 101100174614 Caenorhabditis elegans gpd-4 gene Proteins 0.000 description 1
- 102100025570 Cancer/testis antigen 1 Human genes 0.000 description 1
- 241000949035 Candidatus Microgenomates Species 0.000 description 1
- 241000223283 Candidatus Peregrinibacteria bacterium GW2011_GWA2_33_10 Species 0.000 description 1
- 241001316580 Candidatus Roizmanbacteria Species 0.000 description 1
- 102100033040 Carbonic anhydrase 12 Human genes 0.000 description 1
- 108010067225 Cell Adhesion Molecules Proteins 0.000 description 1
- 102000016289 Cell Adhesion Molecules Human genes 0.000 description 1
- 108010051109 Cell-Penetrating Peptides Proteins 0.000 description 1
- 102000020313 Cell-Penetrating Peptides Human genes 0.000 description 1
- 102100025064 Cellular tumor antigen p53 Human genes 0.000 description 1
- 108091007741 Chimeric antigen receptor T cells Proteins 0.000 description 1
- 241000195597 Chlamydomonas reinhardtii Species 0.000 description 1
- 244000249214 Chlorella pyrenoidosa Species 0.000 description 1
- 235000007091 Chlorella pyrenoidosa Nutrition 0.000 description 1
- GHXZTYHSJHQHIJ-UHFFFAOYSA-N Chlorhexidine Chemical compound C=1C=C(Cl)C=CC=1NC(N)=NC(N)=NCCCCCCN=C(N)N=C(N)NC1=CC=C(Cl)C=C1 GHXZTYHSJHQHIJ-UHFFFAOYSA-N 0.000 description 1
- 241000938605 Crocodylia Species 0.000 description 1
- 229920000858 Cyclodextrin Polymers 0.000 description 1
- 102100026846 Cytidine deaminase Human genes 0.000 description 1
- 108010031325 Cytidine deaminase Proteins 0.000 description 1
- WQZGKKKJIJFFOK-QTVWNMPRSA-N D-mannopyranose Chemical compound OC[C@H]1OC(O)[C@@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-QTVWNMPRSA-N 0.000 description 1
- 108010060248 DNA Ligase ATP Proteins 0.000 description 1
- 230000005778 DNA damage Effects 0.000 description 1
- 231100000277 DNA damage Toxicity 0.000 description 1
- 238000007400 DNA extraction Methods 0.000 description 1
- 102100033195 DNA ligase 4 Human genes 0.000 description 1
- 241000450599 DNA viruses Species 0.000 description 1
- 102000052510 DNA-Binding Proteins Human genes 0.000 description 1
- 230000004568 DNA-binding Effects 0.000 description 1
- 101710096438 DNA-binding protein Proteins 0.000 description 1
- 108090000626 DNA-directed RNA polymerases Proteins 0.000 description 1
- 102000004163 DNA-directed RNA polymerases Human genes 0.000 description 1
- 241000252212 Danio rerio Species 0.000 description 1
- 239000004375 Dextrin Substances 0.000 description 1
- 229920001353 Dextrin Polymers 0.000 description 1
- SHIBSTMRCDJXLN-UHFFFAOYSA-N Digoxigenin Natural products C1CC(C2C(C3(C)CCC(O)CC3CC2)CC2O)(O)C2(C)C1C1=CC(=O)OC1 SHIBSTMRCDJXLN-UHFFFAOYSA-N 0.000 description 1
- 206010061818 Disease progression Diseases 0.000 description 1
- 102000001301 EGF receptor Human genes 0.000 description 1
- 108060006698 EGF receptor Proteins 0.000 description 1
- 241000258955 Echinodermata Species 0.000 description 1
- 108010042407 Endonucleases Proteins 0.000 description 1
- 241000588724 Escherichia coli Species 0.000 description 1
- 108700039887 Essential Genes Proteins 0.000 description 1
- 241001109644 Eubacterium coprostanoligenes Species 0.000 description 1
- 108700024394 Exon Proteins 0.000 description 1
- 239000001116 FEMA 4028 Substances 0.000 description 1
- 102000010451 Folate receptor alpha Human genes 0.000 description 1
- 102100035139 Folate receptor alpha Human genes 0.000 description 1
- 108050001931 Folate receptor alpha Proteins 0.000 description 1
- 102000010449 Folate receptor beta Human genes 0.000 description 1
- 108050001930 Folate receptor beta Proteins 0.000 description 1
- 108010009306 Forkhead Box Protein O1 Proteins 0.000 description 1
- 102100035427 Forkhead box protein O1 Human genes 0.000 description 1
- 241000589602 Francisella tularensis Species 0.000 description 1
- 241000589599 Francisella tularensis subsp. novicida Species 0.000 description 1
- 241000588088 Francisella tularensis subsp. novicida U112 Species 0.000 description 1
- 102100022629 Fructose-2,6-bisphosphatase Human genes 0.000 description 1
- 102100022277 Fructose-bisphosphate aldolase A Human genes 0.000 description 1
- 230000010190 G1 phase Effects 0.000 description 1
- 241000287828 Gallus gallus Species 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- 230000010596 Gene Editing or Modification Effects 0.000 description 1
- 108700039691 Genetic Promoter Regions Proteins 0.000 description 1
- 102100031181 Glyceraldehyde-3-phosphate dehydrogenase Human genes 0.000 description 1
- 102100039262 Glycogen [starch] synthase, muscle Human genes 0.000 description 1
- 102000003886 Glycoproteins Human genes 0.000 description 1
- 108090000288 Glycoproteins Proteins 0.000 description 1
- HVLSXIKZNLPZJJ-TXZCQADKSA-N HA peptide Chemical compound C([C@@H](C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](C(C)C)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H](C)C(O)=O)NC(=O)[C@H]1N(CCC1)C(=O)[C@@H](N)CC=1C=CC(O)=CC=1)C1=CC=C(O)C=C1 HVLSXIKZNLPZJJ-TXZCQADKSA-N 0.000 description 1
- 102100030595 HLA class II histocompatibility antigen gamma chain Human genes 0.000 description 1
- 102000025850 HLA-A2 Antigen Human genes 0.000 description 1
- 108010074032 HLA-A2 Antigen Proteins 0.000 description 1
- 102100031573 Hematopoietic progenitor cell antigen CD34 Human genes 0.000 description 1
- 102100021519 Hemoglobin subunit beta Human genes 0.000 description 1
- 108091005904 Hemoglobin subunit beta Proteins 0.000 description 1
- 101800000637 Hemokinin Proteins 0.000 description 1
- 102100039869 Histone H2B type F-S Human genes 0.000 description 1
- 102000011787 Histone Methyltransferases Human genes 0.000 description 1
- 108010036115 Histone Methyltransferases Proteins 0.000 description 1
- 108010033040 Histones Proteins 0.000 description 1
- 101000600756 Homo sapiens 3-phosphoinositide-dependent protein kinase 1 Proteins 0.000 description 1
- 101000777636 Homo sapiens ADP-ribosyl cyclase/cyclic ADP-ribose hydrolase 1 Proteins 0.000 description 1
- 101000882335 Homo sapiens Alpha-enolase Proteins 0.000 description 1
- 101000864344 Homo sapiens B- and T-lymphocyte attenuator Proteins 0.000 description 1
- 101000884305 Homo sapiens B-cell receptor CD22 Proteins 0.000 description 1
- 101000897405 Homo sapiens B-lymphocyte antigen CD20 Proteins 0.000 description 1
- 101000914511 Homo sapiens CD27 antigen Proteins 0.000 description 1
- 101000868273 Homo sapiens CD44 antigen Proteins 0.000 description 1
- 101000934356 Homo sapiens CD70 antigen Proteins 0.000 description 1
- 101000856237 Homo sapiens Cancer/testis antigen 1 Proteins 0.000 description 1
- 101000867855 Homo sapiens Carbonic anhydrase 12 Proteins 0.000 description 1
- 101000721661 Homo sapiens Cellular tumor antigen p53 Proteins 0.000 description 1
- 101100246662 Homo sapiens DHODH gene Proteins 0.000 description 1
- 101000823463 Homo sapiens Fructose-2,6-bisphosphatase Proteins 0.000 description 1
- 101000755879 Homo sapiens Fructose-bisphosphate aldolase A Proteins 0.000 description 1
- 101000886596 Homo sapiens Geminin Proteins 0.000 description 1
- 101000926939 Homo sapiens Glucocorticoid receptor Proteins 0.000 description 1
- 101001036130 Homo sapiens Glycogen [starch] synthase, muscle Proteins 0.000 description 1
- 101001082627 Homo sapiens HLA class II histocompatibility antigen gamma chain Proteins 0.000 description 1
- 101000777663 Homo sapiens Hematopoietic progenitor cell antigen CD34 Proteins 0.000 description 1
- 101000840551 Homo sapiens Hexokinase-2 Proteins 0.000 description 1
- 101001035372 Homo sapiens Histone H2B type F-S Proteins 0.000 description 1
- 101000994365 Homo sapiens Integrin alpha-6 Proteins 0.000 description 1
- 101001078143 Homo sapiens Integrin alpha-IIb Proteins 0.000 description 1
- 101001082073 Homo sapiens Interferon-induced helicase C domain-containing protein 1 Proteins 0.000 description 1
- 101000998120 Homo sapiens Interleukin-3 receptor subunit alpha Proteins 0.000 description 1
- 101001050577 Homo sapiens Kinesin-like protein KIF2A Proteins 0.000 description 1
- 101001090713 Homo sapiens L-lactate dehydrogenase A chain Proteins 0.000 description 1
- 101000972918 Homo sapiens MAX gene-associated protein Proteins 0.000 description 1
- 101100025322 Homo sapiens MVD gene Proteins 0.000 description 1
- 101000962483 Homo sapiens Max dimerization protein 1 Proteins 0.000 description 1
- 101001036580 Homo sapiens Max dimerization protein 4 Proteins 0.000 description 1
- 101000576320 Homo sapiens Max-binding protein MNT Proteins 0.000 description 1
- 101001005728 Homo sapiens Melanoma-associated antigen 1 Proteins 0.000 description 1
- 101000615488 Homo sapiens Methyl-CpG-binding domain protein 2 Proteins 0.000 description 1
- 101000653374 Homo sapiens Methylcytosine dioxygenase TET2 Proteins 0.000 description 1
- 101000957106 Homo sapiens Mitotic spindle assembly checkpoint protein MAD1 Proteins 0.000 description 1
- 101000934338 Homo sapiens Myeloid cell surface antigen CD33 Proteins 0.000 description 1
- 101000904196 Homo sapiens Pancreatic secretory granule membrane major glycoprotein GP2 Proteins 0.000 description 1
- 101000579123 Homo sapiens Phosphoglycerate kinase 1 Proteins 0.000 description 1
- 101001026214 Homo sapiens Potassium voltage-gated channel subfamily A member 5 Proteins 0.000 description 1
- 101000610551 Homo sapiens Prominin-1 Proteins 0.000 description 1
- 101001048456 Homo sapiens Protein Hook homolog 2 Proteins 0.000 description 1
- 101001091538 Homo sapiens Pyruvate kinase PKM Proteins 0.000 description 1
- 101001012157 Homo sapiens Receptor tyrosine-protein kinase erbB-2 Proteins 0.000 description 1
- 101000932478 Homo sapiens Receptor-type tyrosine-protein kinase FLT3 Proteins 0.000 description 1
- 101000874179 Homo sapiens Syndecan-1 Proteins 0.000 description 1
- 101000914496 Homo sapiens T-cell antigen CD7 Proteins 0.000 description 1
- 101000934341 Homo sapiens T-cell surface glycoprotein CD5 Proteins 0.000 description 1
- 101000914514 Homo sapiens T-cell-specific surface glycoprotein CD28 Proteins 0.000 description 1
- 101000799181 Homo sapiens TP53-binding protein 1 Proteins 0.000 description 1
- 101100206114 Homo sapiens TUBB gene Proteins 0.000 description 1
- 101000831496 Homo sapiens Toll-like receptor 3 Proteins 0.000 description 1
- 101000669402 Homo sapiens Toll-like receptor 7 Proteins 0.000 description 1
- 101000800483 Homo sapiens Toll-like receptor 8 Proteins 0.000 description 1
- 101000625727 Homo sapiens Tubulin beta chain Proteins 0.000 description 1
- 101000788517 Homo sapiens Tubulin beta-2A chain Proteins 0.000 description 1
- 101000851376 Homo sapiens Tumor necrosis factor receptor superfamily member 8 Proteins 0.000 description 1
- 101000851370 Homo sapiens Tumor necrosis factor receptor superfamily member 9 Proteins 0.000 description 1
- 101000666896 Homo sapiens V-type immunoglobulin domain-containing suppressor of T-cell activation Proteins 0.000 description 1
- 101001117146 Homo sapiens [Pyruvate dehydrogenase (acetyl-transferring)] kinase isozyme 1, mitochondrial Proteins 0.000 description 1
- 206010020460 Human T-cell lymphotropic virus type I infection Diseases 0.000 description 1
- 241000714260 Human T-lymphotropic virus 1 Species 0.000 description 1
- UGQMRVRMYYASKQ-UHFFFAOYSA-N Hypoxanthine nucleoside Natural products OC1C(O)C(CO)OC1N1C(NC=NC2=O)=C2N=C1 UGQMRVRMYYASKQ-UHFFFAOYSA-N 0.000 description 1
- 229940076838 Immune checkpoint inhibitor Drugs 0.000 description 1
- 108060003951 Immunoglobulin Proteins 0.000 description 1
- 102100032816 Integrin alpha-6 Human genes 0.000 description 1
- 102100025306 Integrin alpha-IIb Human genes 0.000 description 1
- 102100027353 Interferon-induced helicase C domain-containing protein 1 Human genes 0.000 description 1
- 108010002352 Interleukin-1 Proteins 0.000 description 1
- 102000013462 Interleukin-12 Human genes 0.000 description 1
- 108010065805 Interleukin-12 Proteins 0.000 description 1
- 102000003812 Interleukin-15 Human genes 0.000 description 1
- 108090000172 Interleukin-15 Proteins 0.000 description 1
- 102000003810 Interleukin-18 Human genes 0.000 description 1
- 108090000171 Interleukin-18 Proteins 0.000 description 1
- 102100030703 Interleukin-22 Human genes 0.000 description 1
- 102100033493 Interleukin-3 receptor subunit alpha Human genes 0.000 description 1
- 108010002586 Interleukin-7 Proteins 0.000 description 1
- 102000000704 Interleukin-7 Human genes 0.000 description 1
- LPHGQDQBBGAPDZ-UHFFFAOYSA-N Isocaffeine Natural products CN1C(=O)N(C)C(=O)C2=C1N(C)C=N2 LPHGQDQBBGAPDZ-UHFFFAOYSA-N 0.000 description 1
- 102000002698 KIR Receptors Human genes 0.000 description 1
- 108010043610 KIR Receptors Proteins 0.000 description 1
- 102100023426 Kinesin-like protein KIF2A Human genes 0.000 description 1
- ODKSFYDXXFIFQN-BYPYZUCNSA-P L-argininium(2+) Chemical compound NC(=[NH2+])NCCC[C@H]([NH3+])C(O)=O ODKSFYDXXFIFQN-BYPYZUCNSA-P 0.000 description 1
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical compound OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 description 1
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 1
- 102100034671 L-lactate dehydrogenase A chain Human genes 0.000 description 1
- KDXKERNSBIXSRK-YFKPBYRVSA-N L-lysine Chemical compound NCCCC[C@H](N)C(O)=O KDXKERNSBIXSRK-YFKPBYRVSA-N 0.000 description 1
- 241000416293 Lachnospiraceae bacterium COE1 Species 0.000 description 1
- 241000448224 Lachnospiraceae bacterium MA2020 Species 0.000 description 1
- 241000448225 Lachnospiraceae bacterium MC2017 Species 0.000 description 1
- 241000689670 Lachnospiraceae bacterium ND2006 Species 0.000 description 1
- 101710128836 Large T antigen Proteins 0.000 description 1
- 241000270322 Lepidosauria Species 0.000 description 1
- 241001148627 Leptospira inadai Species 0.000 description 1
- 239000004472 Lysine Substances 0.000 description 1
- 102100022621 MAX gene-associated protein Human genes 0.000 description 1
- 101710120903 Malignant T-cell-amplified sequence 1 Proteins 0.000 description 1
- 101710186853 Malignant T-cell-amplified sequence 1 homolog Proteins 0.000 description 1
- 102100039185 Max dimerization protein 1 Human genes 0.000 description 1
- 102100039515 Max dimerization protein 4 Human genes 0.000 description 1
- 102000008840 Melanoma-associated antigen 1 Human genes 0.000 description 1
- 102100025050 Melanoma-associated antigen 1 Human genes 0.000 description 1
- 108050000731 Melanoma-associated antigen 1 Proteins 0.000 description 1
- 102000003735 Mesothelin Human genes 0.000 description 1
- 108090000015 Mesothelin Proteins 0.000 description 1
- 102100021299 Methyl-CpG-binding domain protein 2 Human genes 0.000 description 1
- 102100030803 Methylcytosine dioxygenase TET2 Human genes 0.000 description 1
- 108060004795 Methyltransferase Proteins 0.000 description 1
- 102100034068 Monocarboxylate transporter 1 Human genes 0.000 description 1
- 241001193016 Moraxella bovoculi 237 Species 0.000 description 1
- 241000293008 Moraxella caprae Species 0.000 description 1
- 102100025748 Mothers against decapentaplegic homolog 3 Human genes 0.000 description 1
- 101710143111 Mothers against decapentaplegic homolog 3 Proteins 0.000 description 1
- 101000590284 Mus musculus 26S proteasome non-ATPase regulatory subunit 14 Proteins 0.000 description 1
- 102100038895 Myc proto-oncogene protein Human genes 0.000 description 1
- 101710135898 Myc proto-oncogene protein Proteins 0.000 description 1
- 102100025243 Myeloid cell surface antigen CD33 Human genes 0.000 description 1
- 201000004458 Myoma Diseases 0.000 description 1
- OVBPIULPVIDEAO-UHFFFAOYSA-N N-Pteroyl-L-glutaminsaeure Natural products C=1N=C2NC(N)=NC(=O)C2=NC=1CNC1=CC=C(C(=O)NC(CCC(O)=O)C(O)=O)C=C1 OVBPIULPVIDEAO-UHFFFAOYSA-N 0.000 description 1
- 241001250129 Nannochloropsis gaditana Species 0.000 description 1
- 241000244206 Nematoda Species 0.000 description 1
- 102000003729 Neprilysin Human genes 0.000 description 1
- 108090000028 Neprilysin Proteins 0.000 description 1
- 108010069196 Neural Cell Adhesion Molecules Proteins 0.000 description 1
- 102100023616 Neural cell adhesion molecule L1-like protein Human genes 0.000 description 1
- 229940122426 Nuclease inhibitor Drugs 0.000 description 1
- 108091005461 Nucleic proteins Proteins 0.000 description 1
- 241000283973 Oryctolagus cuniculus Species 0.000 description 1
- KJWZYMMLVHIVSU-IYCNHOCDSA-N PGK1 Chemical compound CCCCC[C@H](O)\C=C\[C@@H]1[C@@H](CCCCCCC(O)=O)C(=O)CC1=O KJWZYMMLVHIVSU-IYCNHOCDSA-N 0.000 description 1
- 102100024019 Pancreatic secretory granule membrane major glycoprotein GP2 Human genes 0.000 description 1
- 241000182952 Parcubacteria group bacterium GW2011_GWC2_44_17 Species 0.000 description 1
- 241001494479 Pecora Species 0.000 description 1
- 241000009328 Perro Species 0.000 description 1
- 102100028251 Phosphoglycerate kinase 1 Human genes 0.000 description 1
- 108091000080 Phosphotransferase Proteins 0.000 description 1
- RVGRUAULSDPKGF-UHFFFAOYSA-N Poloxamer Chemical compound C1CO1.CC1CO1 RVGRUAULSDPKGF-UHFFFAOYSA-N 0.000 description 1
- 102000012338 Poly(ADP-ribose) Polymerases Human genes 0.000 description 1
- 108010061844 Poly(ADP-ribose) Polymerases Proteins 0.000 description 1
- 229920000776 Poly(Adenosine diphosphate-ribose) polymerase Polymers 0.000 description 1
- 229920002873 Polyethylenimine Polymers 0.000 description 1
- 108010039918 Polylysine Proteins 0.000 description 1
- 241000878522 Porphyromonas crevioricanis Species 0.000 description 1
- 241001135241 Porphyromonas macacae Species 0.000 description 1
- 241001302521 Prevotella albensis Species 0.000 description 1
- 241001299661 Prevotella bryantii Species 0.000 description 1
- 241001135219 Prevotella disiens Species 0.000 description 1
- 102100040120 Prominin-1 Human genes 0.000 description 1
- 101710120463 Prostate stem cell antigen Proteins 0.000 description 1
- 102100036735 Prostate stem cell antigen Human genes 0.000 description 1
- 102000007327 Protamines Human genes 0.000 description 1
- 108010007568 Protamines Proteins 0.000 description 1
- 102100023602 Protein Hook homolog 1 Human genes 0.000 description 1
- 102000004022 Protein-Tyrosine Kinases Human genes 0.000 description 1
- 108090000412 Protein-Tyrosine Kinases Proteins 0.000 description 1
- 241001053116 Proteocatella sphenisci Species 0.000 description 1
- 102100034911 Pyruvate kinase PKM Human genes 0.000 description 1
- 239000012980 RPMI-1640 medium Substances 0.000 description 1
- 102000002490 Rad51 Recombinase Human genes 0.000 description 1
- 108010068097 Rad51 Recombinase Proteins 0.000 description 1
- 241000773293 Rappaport Species 0.000 description 1
- 102100030086 Receptor tyrosine-protein kinase erbB-2 Human genes 0.000 description 1
- 102100020718 Receptor-type tyrosine-protein kinase FLT3 Human genes 0.000 description 1
- 108700005075 Regulator Genes Proteins 0.000 description 1
- 108091028664 Ribonucleotide Proteins 0.000 description 1
- 241000283984 Rodentia Species 0.000 description 1
- 108091006296 SLC2A1 Proteins 0.000 description 1
- 108091006298 SLC2A3 Proteins 0.000 description 1
- 108091006647 SLC9A1 Proteins 0.000 description 1
- 241000593524 Sargassum patens Species 0.000 description 1
- 102000007562 Serum Albumin Human genes 0.000 description 1
- 108010071390 Serum Albumin Proteins 0.000 description 1
- 108020004682 Single-Stranded DNA Proteins 0.000 description 1
- 102100030980 Sodium/hydrogen exchanger 1 Human genes 0.000 description 1
- 102100023536 Solute carrier family 2, facilitated glucose transporter member 1 Human genes 0.000 description 1
- 102100022722 Solute carrier family 2, facilitated glucose transporter member 3 Human genes 0.000 description 1
- PFNFFQXMRSDOHW-UHFFFAOYSA-N Spermine Natural products NCCCNCCCCNCCCN PFNFFQXMRSDOHW-UHFFFAOYSA-N 0.000 description 1
- 108010090804 Streptavidin Proteins 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 241001602708 Sulfuricurvum sp. Species 0.000 description 1
- 229940100514 Syk tyrosine kinase inhibitor Drugs 0.000 description 1
- 102100035721 Syndecan-1 Human genes 0.000 description 1
- 102100027208 T-cell antigen CD7 Human genes 0.000 description 1
- 102100025244 T-cell surface glycoprotein CD5 Human genes 0.000 description 1
- 102100027213 T-cell-specific surface glycoprotein CD28 Human genes 0.000 description 1
- 101710156963 TP53-binding protein 1 Proteins 0.000 description 1
- 102100034107 TP53-binding protein 1 Human genes 0.000 description 1
- 210000000447 Th1 cell Anatomy 0.000 description 1
- 210000004241 Th2 cell Anatomy 0.000 description 1
- RYYWUUFWQRZTIU-UHFFFAOYSA-N Thiophosphoric acid Chemical class OP(O)(S)=O RYYWUUFWQRZTIU-UHFFFAOYSA-N 0.000 description 1
- 108010022394 Threonine synthase Proteins 0.000 description 1
- 102000008235 Toll-Like Receptor 9 Human genes 0.000 description 1
- 108010060818 Toll-Like Receptor 9 Proteins 0.000 description 1
- 102100024324 Toll-like receptor 3 Human genes 0.000 description 1
- 102100039390 Toll-like receptor 7 Human genes 0.000 description 1
- 102100033110 Toll-like receptor 8 Human genes 0.000 description 1
- 101710150448 Transcriptional regulator Myc Proteins 0.000 description 1
- 101800000385 Transmembrane protein Proteins 0.000 description 1
- 102100022153 Tumor necrosis factor receptor superfamily member 4 Human genes 0.000 description 1
- 101710165473 Tumor necrosis factor receptor superfamily member 4 Proteins 0.000 description 1
- 102100036857 Tumor necrosis factor receptor superfamily member 8 Human genes 0.000 description 1
- 102100036856 Tumor necrosis factor receptor superfamily member 9 Human genes 0.000 description 1
- 101710128901 Tyrosine-protein phosphatase non-receptor type 6 Proteins 0.000 description 1
- 108010079206 V-Set Domain-Containing T-Cell Activation Inhibitor 1 Proteins 0.000 description 1
- 102100038929 V-set domain-containing T-cell activation inhibitor 1 Human genes 0.000 description 1
- 102100038282 V-type immunoglobulin domain-containing suppressor of T-cell activation Human genes 0.000 description 1
- 108010073929 Vascular Endothelial Growth Factor A Proteins 0.000 description 1
- 102000005789 Vascular Endothelial Growth Factors Human genes 0.000 description 1
- 108010019530 Vascular Endothelial Growth Factors Proteins 0.000 description 1
- 108091093126 WHP Posttrascriptional Response Element Proteins 0.000 description 1
- 108010017070 Zinc Finger Nucleases Proteins 0.000 description 1
- 241001531273 [Eubacterium] eligens Species 0.000 description 1
- 102100024148 [Pyruvate dehydrogenase (acetyl-transferring)] kinase isozyme 1, mitochondrial Human genes 0.000 description 1
- 239000003070 absorption delaying agent Substances 0.000 description 1
- 150000001242 acetic acid derivatives Chemical class 0.000 description 1
- 230000021736 acetylation Effects 0.000 description 1
- 238000006640 acetylation reaction Methods 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- 230000004721 adaptive immunity Effects 0.000 description 1
- 229960000643 adenine Drugs 0.000 description 1
- 229960005305 adenosine Drugs 0.000 description 1
- 239000002671 adjuvant Substances 0.000 description 1
- 239000000048 adrenergic agonist Substances 0.000 description 1
- 229940126157 adrenergic receptor agonist Drugs 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000000556 agonist Substances 0.000 description 1
- 229910001508 alkali metal halide Inorganic materials 0.000 description 1
- 150000008045 alkali metal halides Chemical class 0.000 description 1
- 102000009899 alpha Karyopherins Human genes 0.000 description 1
- 108010077099 alpha Karyopherins Proteins 0.000 description 1
- SRHNADOZAAWYLV-XLMUYGLTSA-N alpha-L-Fucp-(1->2)-beta-D-Galp-(1->4)-[alpha-L-Fucp-(1->3)]-beta-D-GlcpNAc Chemical compound O[C@H]1[C@H](O)[C@H](O)[C@H](C)O[C@H]1O[C@H]1[C@H](O[C@H]2[C@@H]([C@@H](NC(C)=O)[C@H](O)O[C@@H]2CO)O[C@H]2[C@H]([C@H](O)[C@H](O)[C@H](C)O2)O)O[C@H](CO)[C@H](O)[C@@H]1O SRHNADOZAAWYLV-XLMUYGLTSA-N 0.000 description 1
- 125000003368 amide group Chemical group 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 210000004102 animal cell Anatomy 0.000 description 1
- 238000010171 animal model Methods 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 102000025171 antigen binding proteins Human genes 0.000 description 1
- 108091000831 antigen binding proteins Proteins 0.000 description 1
- 239000004599 antimicrobial Substances 0.000 description 1
- 238000002617 apheresis Methods 0.000 description 1
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 229960001230 asparagine Drugs 0.000 description 1
- 235000009582 asparagine Nutrition 0.000 description 1
- 230000003385 bacteriostatic effect Effects 0.000 description 1
- 210000003651 basophil Anatomy 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 229960000686 benzalkonium chloride Drugs 0.000 description 1
- 235000010233 benzoic acid Nutrition 0.000 description 1
- 229960004365 benzoic acid Drugs 0.000 description 1
- 235000019445 benzyl alcohol Nutrition 0.000 description 1
- CADWTSSKOVRVJC-UHFFFAOYSA-N benzyl(dimethyl)azanium;chloride Chemical compound [Cl-].C[NH+](C)CC1=CC=CC=C1 CADWTSSKOVRVJC-UHFFFAOYSA-N 0.000 description 1
- 108010014502 beta-3 Adrenergic Receptors Proteins 0.000 description 1
- WHGYBXFWUBPSRW-FOUAGVGXSA-N beta-cyclodextrin Chemical compound OC[C@H]([C@H]([C@@H]([C@H]1O)O)O[C@H]2O[C@@H]([C@@H](O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O3)[C@H](O)[C@H]2O)CO)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@@H]3O[C@@H]1CO WHGYBXFWUBPSRW-FOUAGVGXSA-N 0.000 description 1
- 235000011175 beta-cyclodextrine Nutrition 0.000 description 1
- 229960004853 betadex Drugs 0.000 description 1
- 230000003115 biocidal effect Effects 0.000 description 1
- 230000031018 biological processes and functions Effects 0.000 description 1
- 238000001574 biopsy Methods 0.000 description 1
- 229960002685 biotin Drugs 0.000 description 1
- 235000020958 biotin Nutrition 0.000 description 1
- 239000011616 biotin Substances 0.000 description 1
- 210000000988 bone and bone Anatomy 0.000 description 1
- 210000002449 bone cell Anatomy 0.000 description 1
- 239000012888 bovine serum Substances 0.000 description 1
- KQNZDYYTLMIZCT-KQPMLPITSA-N brefeldin A Chemical compound O[C@@H]1\C=C\C(=O)O[C@@H](C)CCC\C=C\[C@@H]2C[C@H](O)C[C@H]21 KQNZDYYTLMIZCT-KQPMLPITSA-N 0.000 description 1
- JUMGSHROWPPKFX-UHFFFAOYSA-N brefeldin-A Natural products CC1CCCC=CC2(C)CC(O)CC2(C)C(O)C=CC(=O)O1 JUMGSHROWPPKFX-UHFFFAOYSA-N 0.000 description 1
- 239000007975 buffered saline Substances 0.000 description 1
- 239000006172 buffering agent Substances 0.000 description 1
- 239000004067 bulking agent Substances 0.000 description 1
- DQXBYHZEEUGOBF-UHFFFAOYSA-N but-3-enoic acid;ethene Chemical compound C=C.OC(=O)CC=C DQXBYHZEEUGOBF-UHFFFAOYSA-N 0.000 description 1
- 229960001948 caffeine Drugs 0.000 description 1
- VJEONQKOZGKCAK-UHFFFAOYSA-N caffeine Natural products CN1C(=O)N(C)C(=O)C2=C1C=CN2C VJEONQKOZGKCAK-UHFFFAOYSA-N 0.000 description 1
- 210000000234 capsid Anatomy 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 235000014633 carbohydrates Nutrition 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 210000003855 cell nucleus Anatomy 0.000 description 1
- 238000002659 cell therapy Methods 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 230000005754 cellular signaling Effects 0.000 description 1
- 235000013330 chicken meat Nutrition 0.000 description 1
- 229960003260 chlorhexidine Drugs 0.000 description 1
- 229940107161 cholesterol Drugs 0.000 description 1
- 235000012000 cholesterol Nutrition 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 230000000536 complexating effect Effects 0.000 description 1
- 239000008139 complexing agent Substances 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000013270 controlled release Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 230000000139 costimulatory effect Effects 0.000 description 1
- 230000002338 cryopreservative effect Effects 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 229940104302 cytosine Drugs 0.000 description 1
- 230000001086 cytosolic effect Effects 0.000 description 1
- 210000001151 cytotoxic T lymphocyte Anatomy 0.000 description 1
- 238000012350 deep sequencing Methods 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 239000003405 delayed action preparation Substances 0.000 description 1
- 230000017858 demethylation Effects 0.000 description 1
- 238000010520 demethylation reaction Methods 0.000 description 1
- 239000005547 deoxyribonucleotide Substances 0.000 description 1
- 125000002637 deoxyribonucleotide group Chemical group 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 235000019425 dextrin Nutrition 0.000 description 1
- 239000008121 dextrose Substances 0.000 description 1
- 239000005546 dideoxynucleotide Substances 0.000 description 1
- QONQRTHLHBTMGP-UHFFFAOYSA-N digitoxigenin Natural products CC12CCC(C3(CCC(O)CC3CC3)C)C3C11OC1CC2C1=CC(=O)OC1 QONQRTHLHBTMGP-UHFFFAOYSA-N 0.000 description 1
- SHIBSTMRCDJXLN-KCZCNTNESA-N digoxigenin Chemical compound C1([C@@H]2[C@@]3([C@@](CC2)(O)[C@H]2[C@@H]([C@@]4(C)CC[C@H](O)C[C@H]4CC2)C[C@H]3O)C)=CC(=O)OC1 SHIBSTMRCDJXLN-KCZCNTNESA-N 0.000 description 1
- 102000004419 dihydrofolate reductase Human genes 0.000 description 1
- 150000002016 disaccharides Chemical class 0.000 description 1
- 230000005750 disease progression Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 230000005782 double-strand break Effects 0.000 description 1
- 238000012377 drug delivery Methods 0.000 description 1
- 241001493065 dsRNA viruses Species 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 210000002308 embryonic cell Anatomy 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- JOZGNYDSEBIJDH-UHFFFAOYSA-N eniluracil Chemical compound O=C1NC=C(C#C)C(=O)N1 JOZGNYDSEBIJDH-UHFFFAOYSA-N 0.000 description 1
- 238000001952 enzyme assay Methods 0.000 description 1
- 210000003979 eosinophil Anatomy 0.000 description 1
- 230000004049 epigenetic modification Effects 0.000 description 1
- 238000012236 epigenome editing Methods 0.000 description 1
- 235000019441 ethanol Nutrition 0.000 description 1
- BEFDCLMNVWHSGT-UHFFFAOYSA-N ethenylcyclopentane Chemical compound C=CC1CCCC1 BEFDCLMNVWHSGT-UHFFFAOYSA-N 0.000 description 1
- 239000005038 ethylene vinyl acetate Substances 0.000 description 1
- 230000029142 excretion Effects 0.000 description 1
- 230000001036 exonucleolytic effect Effects 0.000 description 1
- 239000013604 expression vector Substances 0.000 description 1
- VLMZMRDOMOGGFA-WDBKCZKBSA-N festuclavine Chemical compound C1=CC([C@H]2C[C@H](CN(C)[C@@H]2C2)C)=C3C2=CNC3=C1 VLMZMRDOMOGGFA-WDBKCZKBSA-N 0.000 description 1
- 230000001605 fetal effect Effects 0.000 description 1
- 210000003754 fetus Anatomy 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000000796 flavoring agent Substances 0.000 description 1
- 238000000684 flow cytometry Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000007850 fluorescent dye Substances 0.000 description 1
- IJJVMEJXYNJXOJ-UHFFFAOYSA-N fluquinconazole Chemical compound C=1C=C(Cl)C=C(Cl)C=1N1C(=O)C2=CC(F)=CC=C2N=C1N1C=NC=N1 IJJVMEJXYNJXOJ-UHFFFAOYSA-N 0.000 description 1
- 235000019152 folic acid Nutrition 0.000 description 1
- 239000011724 folic acid Substances 0.000 description 1
- 229960000304 folic acid Drugs 0.000 description 1
- 229940118764 francisella tularensis Drugs 0.000 description 1
- 238000004108 freeze drying Methods 0.000 description 1
- 230000002538 fungal effect Effects 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 230000000799 fusogenic effect Effects 0.000 description 1
- 150000002270 gangliosides Chemical class 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 238000012239 gene modification Methods 0.000 description 1
- 230000005017 genetic modification Effects 0.000 description 1
- 230000007614 genetic variation Effects 0.000 description 1
- 235000013617 genetically modified food Nutrition 0.000 description 1
- 210000004602 germ cell Anatomy 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 229960002989 glutamic acid Drugs 0.000 description 1
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 1
- 108020004445 glyceraldehyde-3-phosphate dehydrogenase Proteins 0.000 description 1
- 210000002288 golgi apparatus Anatomy 0.000 description 1
- 101150087371 gpd1 gene Proteins 0.000 description 1
- 210000003714 granulocyte Anatomy 0.000 description 1
- 230000012010 growth Effects 0.000 description 1
- 229940093915 gynecological organic acid Drugs 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 210000002443 helper t lymphocyte Anatomy 0.000 description 1
- 208000006454 hepatitis Diseases 0.000 description 1
- 231100000283 hepatitis Toxicity 0.000 description 1
- 125000005842 heteroatom Chemical group 0.000 description 1
- 210000003630 histaminocyte Anatomy 0.000 description 1
- 229940088597 hormone Drugs 0.000 description 1
- 239000005556 hormone Substances 0.000 description 1
- 230000005099 host tropism Effects 0.000 description 1
- 102000054910 human GMNN Human genes 0.000 description 1
- 102000055958 human TP53BP1 Human genes 0.000 description 1
- 210000003917 human chromosome Anatomy 0.000 description 1
- 239000000017 hydrogel Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229960002163 hydrogen peroxide Drugs 0.000 description 1
- 229920001477 hydrophilic polymer Polymers 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 102000027596 immune receptors Human genes 0.000 description 1
- 108091008915 immune receptors Proteins 0.000 description 1
- 210000000987 immune system Anatomy 0.000 description 1
- 239000012274 immune-checkpoint protein inhibitor Substances 0.000 description 1
- 102000018358 immunoglobulin Human genes 0.000 description 1
- 229940072221 immunoglobulins Drugs 0.000 description 1
- 238000003364 immunohistochemistry Methods 0.000 description 1
- 230000003308 immunostimulating effect Effects 0.000 description 1
- 230000003116 impacting effect Effects 0.000 description 1
- 230000001976 improved effect Effects 0.000 description 1
- 238000000099 in vitro assay Methods 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 239000000411 inducer Substances 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 230000036512 infertility Effects 0.000 description 1
- 108700032552 influenza virus INS1 Proteins 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 108010074108 interleukin-21 Proteins 0.000 description 1
- 210000000936 intestine Anatomy 0.000 description 1
- 230000003834 intracellular effect Effects 0.000 description 1
- 230000029225 intracellular protein transport Effects 0.000 description 1
- 238000007912 intraperitoneal administration Methods 0.000 description 1
- 239000007951 isotonicity adjuster Substances 0.000 description 1
- 239000000787 lecithin Substances 0.000 description 1
- 235000010445 lecithin Nutrition 0.000 description 1
- 229940067606 lecithin Drugs 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000004811 liquid chromatography Methods 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 210000004072 lung Anatomy 0.000 description 1
- 210000001165 lymph node Anatomy 0.000 description 1
- 210000003738 lymphoid progenitor cell Anatomy 0.000 description 1
- 125000003588 lysine group Chemical group [H]N([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])(N([H])[H])C(*)=O 0.000 description 1
- 210000002540 macrophage Anatomy 0.000 description 1
- 229910001629 magnesium chloride Inorganic materials 0.000 description 1
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 1
- 239000002122 magnetic nanoparticle Substances 0.000 description 1
- NUJOXMJBOLGQSY-UHFFFAOYSA-N manganese dioxide Inorganic materials O=[Mn]=O NUJOXMJBOLGQSY-UHFFFAOYSA-N 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 1
- 239000004292 methyl p-hydroxybenzoate Substances 0.000 description 1
- 229960002216 methylparaben Drugs 0.000 description 1
- YACKEPLHDIMKIO-UHFFFAOYSA-N methylphosphonic acid Chemical compound CP(O)(O)=O YACKEPLHDIMKIO-UHFFFAOYSA-N 0.000 description 1
- 239000000693 micelle Substances 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 239000003094 microcapsule Substances 0.000 description 1
- 230000000394 mitotic effect Effects 0.000 description 1
- 210000001616 monocyte Anatomy 0.000 description 1
- 150000002772 monosaccharides Chemical class 0.000 description 1
- 210000000663 muscle cell Anatomy 0.000 description 1
- 210000000066 myeloid cell Anatomy 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 238000007481 next generation sequencing Methods 0.000 description 1
- 239000000346 nonvolatile oil Substances 0.000 description 1
- 230000012223 nuclear import Effects 0.000 description 1
- 230000030648 nucleus localization Effects 0.000 description 1
- 230000009437 off-target effect Effects 0.000 description 1
- 229920001542 oligosaccharide Polymers 0.000 description 1
- 150000002482 oligosaccharides Chemical class 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- FJKROLUGYXJWQN-UHFFFAOYSA-N papa-hydroxy-benzoic acid Natural products OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 description 1
- 238000007911 parenteral administration Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 238000010647 peptide synthesis reaction Methods 0.000 description 1
- 230000000144 pharmacologic effect Effects 0.000 description 1
- XUYJLQHKOGNDPB-UHFFFAOYSA-N phosphonoacetic acid Chemical compound OC(=O)CP(O)(O)=O XUYJLQHKOGNDPB-UHFFFAOYSA-N 0.000 description 1
- ZJAOAACCNHFJAH-UHFFFAOYSA-N phosphonoformic acid Chemical compound OC(=O)P(O)(O)=O ZJAOAACCNHFJAH-UHFFFAOYSA-N 0.000 description 1
- 150000008298 phosphoramidates Chemical class 0.000 description 1
- 102000020233 phosphotransferase Human genes 0.000 description 1
- 239000002504 physiological saline solution Substances 0.000 description 1
- 229960000502 poloxamer Drugs 0.000 description 1
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 1
- 229920000747 poly(lactic acid) Polymers 0.000 description 1
- 230000008488 polyadenylation Effects 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 239000008389 polyethoxylated castor oil Substances 0.000 description 1
- 229920000656 polylysine Polymers 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 108010000222 polyserine Proteins 0.000 description 1
- 229950008882 polysorbate Drugs 0.000 description 1
- 229940068977 polysorbate 20 Drugs 0.000 description 1
- 229940068965 polysorbates Drugs 0.000 description 1
- 239000013641 positive control Substances 0.000 description 1
- 230000029279 positive regulation of transcription, DNA-dependent Effects 0.000 description 1
- 210000004986 primary T-cell Anatomy 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000035755 proliferation Effects 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 235000010232 propyl p-hydroxybenzoate Nutrition 0.000 description 1
- 239000004405 propyl p-hydroxybenzoate Substances 0.000 description 1
- 229960003415 propylparaben Drugs 0.000 description 1
- 229940048914 protamine Drugs 0.000 description 1
- 235000004252 protein component Nutrition 0.000 description 1
- 229940076155 protein modulator Drugs 0.000 description 1
- 230000017854 proteolysis Effects 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 239000002213 purine nucleotide Substances 0.000 description 1
- 150000003212 purines Chemical class 0.000 description 1
- 239000011535 reaction buffer Substances 0.000 description 1
- 230000008707 rearrangement Effects 0.000 description 1
- 108700015048 receptor decoy activity proteins Proteins 0.000 description 1
- 230000007115 recruitment Effects 0.000 description 1
- 108010054624 red fluorescent protein Proteins 0.000 description 1
- 210000003289 regulatory T cell Anatomy 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 230000001177 retroviral effect Effects 0.000 description 1
- 239000002336 ribonucleotide Substances 0.000 description 1
- 125000002652 ribonucleotide group Chemical group 0.000 description 1
- 210000003705 ribosome Anatomy 0.000 description 1
- 229960004889 salicylic acid Drugs 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 229940126586 small molecule drug Drugs 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 235000015424 sodium Nutrition 0.000 description 1
- 235000017557 sodium bicarbonate Nutrition 0.000 description 1
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 229940079827 sodium hydrogen sulfite Drugs 0.000 description 1
- 229940001482 sodium sulfite Drugs 0.000 description 1
- 235000010265 sodium sulphite Nutrition 0.000 description 1
- 210000001082 somatic cell Anatomy 0.000 description 1
- 235000010199 sorbic acid Nutrition 0.000 description 1
- 239000004334 sorbic acid Substances 0.000 description 1
- 229940075582 sorbic acid Drugs 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 230000009870 specific binding Effects 0.000 description 1
- 229940063675 spermine Drugs 0.000 description 1
- 210000000952 spleen Anatomy 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 238000011146 sterile filtration Methods 0.000 description 1
- 150000003431 steroids Chemical class 0.000 description 1
- 210000002784 stomach Anatomy 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000012536 storage buffer Substances 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 150000005846 sugar alcohols Chemical class 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 239000000375 suspending agent Substances 0.000 description 1
- 230000002459 sustained effect Effects 0.000 description 1
- 208000024891 symptom Diseases 0.000 description 1
- 238000010809 targeting technique Methods 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- RTKIYNMVFMVABJ-UHFFFAOYSA-L thimerosal Chemical compound [Na+].CC[Hg]SC1=CC=CC=C1C([O-])=O RTKIYNMVFMVABJ-UHFFFAOYSA-L 0.000 description 1
- 229940033663 thimerosal Drugs 0.000 description 1
- 210000001541 thymus gland Anatomy 0.000 description 1
- 108010078373 tisagenlecleucel Proteins 0.000 description 1
- 230000009258 tissue cross reactivity Effects 0.000 description 1
- 230000001256 tonic effect Effects 0.000 description 1
- 239000012443 tonicity enhancing agent Substances 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 230000005030 transcription termination Effects 0.000 description 1
- 108091006106 transcriptional activators Proteins 0.000 description 1
- 230000002103 transcriptional effect Effects 0.000 description 1
- 230000037426 transcriptional repression Effects 0.000 description 1
- 238000001890 transfection Methods 0.000 description 1
- 230000014621 translational initiation Effects 0.000 description 1
- 102000027257 transmembrane receptors Human genes 0.000 description 1
- 108091008578 transmembrane receptors Proteins 0.000 description 1
- ODLHGICHYURWBS-LKONHMLTSA-N trappsol cyclo Chemical compound CC(O)COC[C@H]([C@H]([C@@H]([C@H]1O)O)O[C@H]2O[C@@H]([C@@H](O[C@H]3O[C@H](COCC(C)O)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](COCC(C)O)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](COCC(C)O)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](COCC(C)O)[C@H]([C@@H]([C@H]3O)O)O3)[C@H](O)[C@H]2O)COCC(O)C)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@@H]3O[C@@H]1COCC(C)O ODLHGICHYURWBS-LKONHMLTSA-N 0.000 description 1
- GPRLSGONYQIRFK-MNYXATJNSA-N triton Chemical compound [3H+] GPRLSGONYQIRFK-MNYXATJNSA-N 0.000 description 1
- 229960000281 trometamol Drugs 0.000 description 1
- 230000010415 tropism Effects 0.000 description 1
- MDYZKJNTKZIUSK-UHFFFAOYSA-N tyloxapol Chemical compound O=C.C1CO1.CC(C)(C)CC(C)(C)C1=CC=C(O)C=C1 MDYZKJNTKZIUSK-UHFFFAOYSA-N 0.000 description 1
- 229960004224 tyloxapol Drugs 0.000 description 1
- 229920001664 tyloxapol Polymers 0.000 description 1
- 210000000623 ulna Anatomy 0.000 description 1
- 241001430294 unidentified retrovirus Species 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
- 239000011782 vitamin Substances 0.000 description 1
- 235000013343 vitamin Nutrition 0.000 description 1
- 229940088594 vitamin Drugs 0.000 description 1
- 229930003231 vitamin Natural products 0.000 description 1
- 150000003722 vitamin derivatives Chemical class 0.000 description 1
- 239000008215 water for injection Substances 0.000 description 1
- 238000001262 western blot Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
- C12N15/113—Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/16—Hydrolases (3) acting on ester bonds (3.1)
- C12N9/22—Ribonucleases RNAses, DNAses
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
- C12N15/113—Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
- C12N15/1138—Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing against receptors or cell surface proteins
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/87—Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
- C12N15/90—Stable introduction of foreign DNA into chromosome
- C12N15/902—Stable introduction of foreign DNA into chromosome using homologous recombination
- C12N15/907—Stable introduction of foreign DNA into chromosome using homologous recombination in mammalian cells
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
- C07K2319/01—Fusion polypeptide containing a localisation/targetting motif
- C07K2319/09—Fusion polypeptide containing a localisation/targetting motif containing a nuclear localisation signal
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/10—Type of nucleic acid
- C12N2310/20—Type of nucleic acid involving clustered regularly interspaced short palindromic repeats [CRISPRs]
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/50—Physical structure
- C12N2310/53—Physical structure partially self-complementary or closed
- C12N2310/531—Stem-loop; Hairpin
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2320/00—Applications; Uses
- C12N2320/10—Applications; Uses in screening processes
- C12N2320/11—Applications; Uses in screening processes for the determination of target sites, i.e. of active nucleic acids
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2320/00—Applications; Uses
- C12N2320/30—Special therapeutic applications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2800/00—Nucleic acids vectors
- C12N2800/80—Vectors containing sites for inducing double-stranded breaks, e.g. meganuclease restriction sites
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y301/00—Hydrolases acting on ester bonds (3.1)
Definitions
- the present invention relates to engineered Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) systems and corresponding guide RNAs that target specific nucleotide sequences at certain gene loci in the human genome, methods of targeting, editing, and/or modifying human genes using the engineered CRISPR systems, and compositions and cells comprising the engineered CRISPR systems.
- CRISPR Clustered Regularly Interspaced Short Palindromic Repeats
- CRISPR-Cas systems of bacterial and archaeal adaptive immunity have been adapted for precise targeting of genomic DNA in eukaryotic cells.
- the CRISPR-Cas systems are easy to set up, scalable, and amenable to targeting multiple positions within the eukaryotic genome, thereby providing a major resource for new applications in genome engineering.
- Class 1 CRISPR-Cas systems utilize multi-protein effector complexes
- class 2 CRISPR-Cas systems utilize single-protein effectors (see, Makarova et al. (2017) C ELL , 168: 328).
- type II and type V systems typically target DNA and type VI systems typically target RNA (id.).
- Naturally occurring type II effector complexes consist of Cas9, CRISPR RNA (crRNA), and trans-activating CRISPR RNA (tracrRNA), but the crRNA and tracrRNA can be fused as a single guide RNA in an engineered system for simplicity (see, Wang et al. (2016) A NNU . R EV . B IOCHEM ., 85: 227).
- Certain naturally occurring type V systems such as type V-A, type V-C, and type V-D systems, do not require tracrRNA and use crRNA alone as the guide for cleavage of target DNA (see, Zetsche et al. (2015) C ELL , 163: 759; Makarova et al. (2017) C ELL , 168: 328).
- the CRISPR-Cas systems have been engineered for various purposes, such as genomic DNA cleavage, base editing, epigenome editing, and genomic imaging (see, e.g., Wang et al. (2016) A NNU . R EV . B IOCHEM ., 85: 227 and Rees et al. (2016) N AT . R EV . G ENET ., 19: 770). Although significant developments have been made, there remains a need for new and useful CRISPR-Cas systems as powerful genome targeting tools.
- the present invention is based, in part, upon the development of engineered CRISPR-Cas systems (e.g., type V-A CRISPR-Cas systems) that can be used to target, edit, or otherwise modify specific target nucleotide sequences in human ADORA2A, B2M, CD52, CIITA, CTLA4, DCK, FAS, HAVCR2 (also called TIM3), LAG3, PDCD1 (also called PD-1), PTPN6, TIGIT, TRAC, TRBC1, TRBC2, CARD11, CD247, IL7R, LCK, or PLCG1 gene.
- CRISPR-Cas systems e.g., type V-A CRISPR-Cas systems
- guide nucleic acids such as single guide nucleic acids and dual guide nucleic acids
- CRISPR-Cas systems comprising such guide nucleic acids are also useful for targeting or modifying the human genes.
- a CRISPR-Cas system generally comprises a Cas protein and one or more guide nucleic acids (e.g., RNAs).
- the Cas protein can be directed to a specific location in a double-stranded DNA target by recognizing a protospacer adjacent motif (PAM) in the non-target strand of the DNA, and the one or more guide nucleic acids can be directed to a specific location by hybridizing with a target nucleotide sequence in the target strand of the DNA.
- PAM protospacer adjacent motif
- a guide nucleic acid when creating a CRISPR-Cas system, can be designed to comprise a nucleotide sequence called spacer sequence that hybridizes with a target nucleotide sequence, where target nucleotide sequence is located adjacent to a PAM in an orientation operable with the Cas protein. It has been observed that not all CRISPR-Cas systems designed by these criteria are equally effective.
- the present invention identifies target nucleotide sequences in particular human genes that can be efficiently edited, and provides CRISPR-Cas systems directed to these target nucleotide sequences.
- the present invention provides a guide nucleic acid comprising a targeter stem sequence and a spacer sequence, wherein the spacer sequence comprises a nucleotide sequence listed in Table 1, 2, or 3.
- the targeter stem sequence comprises a nucleotide sequence of GUAGA. In certain embodiments, the targeter stem sequence is 5′ to the spacer sequence, optionally wherein the targeter stem sequence is linked to the spacer sequence by a linker consisting of 1, 2, 3, 4, or 5 nucleotides.
- the guide nucleic acid is capable of activating a CRISPR Associated (Cas) nuclease in the absence of a tracrRNA (e.g., the guide nucleic acid being a single guide nucleic acid).
- the guide nucleic acid comprises from 5′ to 3′ a modulator stem sequence, a loop sequence, a targeter stem sequence, and the spacer sequence.
- the guide nucleic acid is a targeter nucleic acid that, in combination with a modulator nucleic acid, is capable of activating a Cas nuclease.
- the guide nucleic acid comprises from 5′ to 3′ a targeter stem sequence and the spacer sequence.
- the Cas nuclease is a type V Cas nuclease. In certain embodiments, the Cas nuclease is a type V-A Cas nuclease. In certain embodiments, the Cas nuclease comprises an amino acid sequence at least 80% identical to SEQ ID NO: 1. In certain embodiments, the Cas nuclease is Cpf1. In certain embodiments, the Cas nuclease recognizes a protospacer adjacent motif(PAM) consisting of the nucleotide sequence of TITN or CTTN.
- PAM protospacer adjacent motif
- the guide nucleic acid comprises a ribonucleic acid (RNA). In certain embodiments, the guide nucleic acid comprises a modified RNA. In certain embodiments, the guide nucleic acid comprises a combination of RNA and DNA. In certain embodiments, the guide nucleic acid comprises a chemical modification. In certain embodiments, the chemical modification is present in one or more nucleotides at the 5′ end of the guide nucleic acid. In certain embodiments, the chemical modification is present in one or more nucleotides at the 3′ end of the guide nucleic acid.
- the chemical modification is selected from the group consisting of 2′-O-methyl, 2′-fluoro, 2′-O-methoxyethyl, phosphorothioate, phosphorodithioate, pseudouridine, and any combinations thereof.
- the present invention also provides an engineered, non-naturally occurring system comprising a guide nucleic acid (e.g., a single guide nucleic acid) disclosed herein.
- a guide nucleic acid e.g., a single guide nucleic acid
- the engineered, non-naturally occurring system further comprising the Cas nuclease.
- the guide nucleic acid and the Cas nuclease are present in a ribonucleoprotein (RNP) complex.
- RNP ribonucleoprotein
- the present invention also provides an engineered, non-naturally occurring system comprising the guide nucleic acid (e.g., targeter nucleic acid) disclosed herein, wherein the engineered, non-naturally occurring system further comprises the modulator nucleic acid.
- the engineered, non-naturally occurring system further comprises the Cas nuclease.
- the guide nucleic acid, the modulator nucleic acid, and the Cas nuclease are present in an RNP complex.
- the spacer sequence comprises a nucleotide sequence selected from the group consisting of SEQ ID NOs: 51 and 131-137, wherein the spacer sequence is capable of hybridizing with the human ADORA2A gene.
- the genomic sequence at the ADORA2A gene locus is edited in at least 1.5% of the cells.
- the spacer sequence comprises a nucleotide sequence selected from the group consisting of SEQ ID NOs: 52, 64-66, 138-145, 622, 625-626, and 634-635, wherein the spacer sequence is capable of hybridizing with the human B2M gene.
- the genomic sequence at the B2M gene locus is edited in at least 1.5% of the cells.
- the spacer sequence comprises a nucleotide sequence selected from the group consisting of SEQ ID NOs: 724, 726-727, 730-732, 735-738, 741-742, and 744-745, wherein the spacer sequence is capable of hybridizing with the human CD247 gene.
- the genomic sequence at the CD247 gene locus is edited in at least 1.5% of the cells.
- the spacer sequence comprises a nucleotide sequence selected from the group consisting of SEQ ID NOs: 53 and 146, wherein the spacer sequence is capable of hybridizing with the human CD52 gene.
- the genomic sequence at the CD52 gene locus is edited in at least 1.5% of the cells.
- the spacer sequence comprises a nucleotide sequence selected from the group consisting of SEQ ID NOs: 54, 147-148, 636-640, 642, 644-648, 650-652, 655-656, 660-663, 666, 668, 670-671, 673-676, 678-679, and 682-685, wherein the spacer sequence is capable of hybridizing with the human CIITA gene.
- the genomic sequence at the CIITA gene locus is edited in at least 1.5% of the cells.
- the spacer sequence comprises a nucleotide sequence selected from the group consisting of SEQ ID NOs: 55, 67-70, and 149-155, wherein the spacer sequence is capable of hybridizing with the human CTLA4 gene.
- the genomic sequence at the CTLA4 gene locus is edited in at least 1.5% of the cells.
- the spacer sequence comprises a nucleotide sequence selected from the group consisting of SEQ ID NOs: 56, 71-74, and 156-159, wherein the spacer sequence is capable of hybridizing with the human DCK gene.
- the genomic sequence at the DCK gene locus is edited in at least 1.5% of the cells.
- the spacer sequence comprises a nucleotide sequence selected from the group consisting of SEQ ID NOs: 57, 75-79, and 160-173, wherein the spacer sequence is capable of hybridizing with the human FAS gene.
- the genomic sequence at the FAS gene locus is edited in at least 1.5% of the cells.
- the spacer sequence comprises a nucleotide sequence selected from the group consisting of SEQ ID NOs: 58, 80-86, and 174-187, wherein the spacer sequence is capable of hybridizing with the human HAVCR2 gene.
- the genomic sequence at the HAVCR2 gene locus is edited in at least 1.5% of the cells.
- the spacer sequence comprises a nucleotide sequence selected from the group consisting of SEQ ID NOs: 748-749 and 753-754, wherein the spacer sequence is capable of hybridizing with the human IL7R gene.
- the genomic sequence at the IL7R gene locus is edited in at least 1.5% of the cells.
- the spacer sequence comprises a nucleotide sequence selected from the group consisting of SEQ ID NOs: 59, 87, 88, and 188-198, wherein the spacer sequence is capable of hybridizing with the human LAG3 gene.
- the genomic sequence at the LAG3 gene locus is edited in at least 1.5% of the cells.
- the spacer sequence comprises the nucleotide sequence of SEQ ID NO: 757, wherein the spacer sequence is capable of hybridizing with the human LCK gene.
- the genomic sequence at the LCK gene locus is edited in at least 1.5% of the cells.
- the spacer sequence comprises a nucleotide sequence selected from the group consisting of SEQ ID NOs: 60, 89-92, and 199-201, wherein the spacer sequence is capable of hybridizing with the human PDCD1 gene.
- the genomic sequence at the PDCD1 gene locus is edited in at least 1.5% of the cells.
- the spacer sequence comprises a nucleotide sequence selected from the group consisting of of SEQ ID NOs: 759 and 761-762, wherein the spacer sequence is capable of hybridizing with the human PLCG1 gene.
- the genomic sequence at the PLCG1 gene locus is edited in at least 1.5% of the cells.
- the spacer sequence comprises a nucleotide sequence selected from the group consisting of SEQ ID NOs: 61, 93-104, and 202-213, wherein the spacer sequence is capable of hybridizing with the human PTPN6 gene.
- the genomic sequence at the PTPN6 gene locus is edited in at least 1.5% of the cells.
- the spacer sequence comprises a nucleotide sequence selected from the group consisting of SEQ ID NOs: 62, 105, and 214-217, wherein the spacer sequence is capable of hybridizing with the human TIGIT gene.
- the genomic sequence at the TIGIT gene locus is edited in at least 1.5% of the cells.
- the spacer sequence comprises a nucleotide sequence selected from the group consisting of SEQ ID NOs: 63, 106-130, and 218-241, wherein the spacer sequence is capable of hybridizing with the human TRAC gene.
- the genomic sequence at the TRAC gene locus is edited in at least 1.5% of the cells.
- the spacer sequence comprises a nucleotide sequence selected from the group consisting of SEQ ID NOs: 705-706, 711-712, 714-715, 717, and 719-720, wherein the spacer sequence is capable of hybridizing with the human TRBC2 gene.
- the genomic sequence at the TRBC2 gene locus is edited in at least 1.5% of the cells.
- the spacer sequence comprises a nucleotide sequence selected from the group consisting of SEQ ID NOs: 705-706, wherein the spacer sequence is capable of hybridizing with both the human TRBC1 gene and the human TRBC2 gene.
- the genomic sequence at the TRBC1 gene locus is edited in at least 1.5% of the cells.
- genomic mutations are detected in no more than 2% of the cells at any off-target loci by CIRCLE-Seq. In certain embodiments, genomic mutations are detected in no more than 1% of the cells at any off-target loci by CIRCLE-Seq.
- the present invention provides a human cell comprising an engineered, non-naturally occurring system disclosed herein.
- the present invention provides a composition comprising a guide nucleic acid, engineered, non-naturally occurring system, or human cell disclosed herein.
- the present invention provides a method of cleaving a target DNA comprising the sequence of a preselected target gene or a portion thereof, the method comprising contacting the target DNA with an engineered, non-naturally occurring system disclosed herein, thereby resulting in cleavage of the target DNA.
- the contacting occurs in vitro.
- the contacting occurs in a cell ex vivo.
- the target DNA is genomic DNA of the cell.
- the present invention provides a method of editing human genomic sequence at a preselected target gene locus, the method comprising delivering an engineered, non-naturally occurring system disclosed herein into a human cell, thereby resulting in editing of the genomic sequence at the target gene locus in the human cell.
- the cell is an immune cell.
- the immune cell is a T lymphocyte.
- the method of editing human genomic sequence at a preselected target gene locus comprises delivering an engineered, non-naturally occurring system disclosed herein into a population of human cells, thereby resulting in editing of the genomic sequence at the target gene locus in at least a portion of the human cells.
- the population of human cells comprises human immune cells.
- the population of human cells is an isolated population of human immune cells.
- the immune cells are T lymphocytes.
- the engineered, non-naturally occurring system is delivered into the cell(s) as a pre-formed RNP complex.
- the pre-formed RNP complex is delivered into the cell(s) by electroporation.
- the target gene is human ADORA2A gene, wherein the spacer sequence comprises a nucleotide sequence selected from the group consisting of SEQ ID NOs: 51 and 131-137.
- the genomic sequence at the ADORA2A gene locus is edited in at least 1.5% of the human cells.
- the target gene is human B2M gene, wherein the spacer sequence comprises a nucleotide sequence selected from the group consisting of SEQ ID NOs: 52, 64-66, 138-145, 622, 625-626, and 634-635.
- the genomic sequence at the B2M gene locus is edited in at least 1.5% of the human cells.
- the target gene is human CD52 gene, wherein the spacer sequence comprises a nucleotide sequence selected from the group consisting of SEQ ID NOs: 53 and 146.
- the genomic sequence at the CD52 gene locus is edited in at least 1.5% of the human cells.
- the target gene is human CD247 gene
- the spacer sequence comprises a nucleotide sequence selected from the group consisting of SEQ ID NOs: 724, 726-727, 730-732, 735-738, 741-742, and 744-745.
- the genomic sequence at the CD247 gene locus is edited in at least 1.5% of the human cells.
- the target gene is human CIITA gene
- the spacer sequence comprises a nucleotide sequence selected from the group consisting of SEQ ID NOs: 54, 147-148, 636-640, 642, 644-648, 650-652, 655-656, 660-663, 666, 668, 670-671, 673-676, 678-679, and 682-685.
- the genomic sequence at the CIITA gene locus is edited in at least 1.5% of the human cells.
- the target gene is human CTLA4 gene, wherein the spacer sequence comprises a nucleotide sequence selected from the group consisting of SEQ ID NOs: 55, 67-70, and 149-155.
- the genomic sequence at the CTLA4 gene locus is edited in at least 1.5% of the human cells.
- the target gene is human DCK gene, wherein the spacer sequence comprises a nucleotide sequence selected from the group consisting of SEQ ID NOs: 56, 71-74, and 156-159.
- the genomic sequence at the DCK gene locus is edited in at least 1.5% of the human cells.
- the target gene is human FAS gene, wherein the spacer sequence comprises a nucleotide sequence selected from the group consisting of SEQ ID NOs: 57, 75-79, and 160-173.
- the genomic sequence at the FAS gene locus is edited in at least 1.5% of the human cells.
- the target gene is human HAVCR2 gene, wherein the spacer sequence comprises a nucleotide sequence selected from the group consisting of SEQ ID NOs: 58, 80-86, and 174-187.
- the genomic sequence at the HAVCR2 gene locus is edited in at least 1.5% of the human cells.
- the target gene is human IL7R gene, wherein the spacer sequence comprises a nucleotide sequence selected from the group consisting of SEQ ID NOs: 748-749 and 753-754.
- the genomic sequence at the IL7R gene locus is edited in at least 1.5% of the human cells.
- the target gene is human LAG3 gene, wherein the spacer sequence comprises a nucleotide sequence selected from the group consisting of SEQ ID NOs: 59, 87, 88, and 188-198.
- the genomic sequence at the LAG3 gene locus is edited in at least 1.5% of the human cells.
- the target gene is human LCK gene, wherein the spacer sequence comprises the nucleotide sequence of SEQ ID NO: 757.
- the genomic sequence at the LCK gene locus is edited in at least 1.5% of the human cells.
- the target gene is human PDCD1 gene, wherein the spacer sequence comprises a nucleotide sequence selected from the group consisting of SEQ ID NOs: 60, 89-92, and 199-201.
- the genomic sequence at the PDCD1 gene locus is edited in at least 1.5% of the human cells.
- the target gene is human PLCG1 gene, wherein the spacer sequence comprises a sequence of SEQ ID NO: 759 and 761-762.
- the genomic sequence at the PLCG1 gene locus is edited in at least 1.5% of the human cells.
- the target gene is human PTPN6 gene, wherein the spacer sequence comprises a nucleotide sequence selected from the group consisting of SEQ ID NOs: 61, 93-104, and 202-213.
- the genomic sequence at the PTPN6 gene locus is edited in at least 1.5% of the human cells.
- the target gene is human TIGIT gene, wherein the spacer sequence comprises a nucleotide sequence selected from the group consisting of SEQ ID NOs: 62, 105, and 214-217.
- the genomic sequence at the TIGIT gene locus is edited in at least 1.5% of the human cells.
- the target gene is human TRAC gene, wherein the spacer sequence comprises a nucleotide sequence selected from the group consisting of SEQ ID NOs: 63, 106-130, and 218-241.
- the genomic sequence at the TRAC gene locus is edited in at least 1.5% of the human cells.
- the target gene is human TRBC2 gene
- the spacer sequence comprises a nucleotide sequence selected from the group consisting of SEQ ID NOs: 705-706, 711-712, 714-715, 717, and 719-720.
- the genomic sequence at the TRBC2 gene locus is edited in at least 1.5% of the human cells.
- the method further results in editing of the genomic sequence at human TRBC1 gene locus in the human cell, wherein the spacer sequence comprises a nucleotide sequence selected from the group consisting of SEQ ID NOs: 705-706.
- the genomic sequence at the TRBC1 gene locus is edited in at least 1.5% of the human cells.
- genomic mutations are detected in no more than 2% of the cells at any off-target loci by CIRCLE-Seq. In certain embodiments, genomic mutations are detected in no more than 1% of the cells at any off-target loci by CIRCLE-Seq.
- FIG. 1 A is a schematic representation showing the structure of an exemplary single guide type V-A CRISPR system.
- FIG. 1 B is a schematic representation showing the structure of an exemplary dual guide type V-A CRISPR system.
- FIGS. 2 A- 2 C are a series of schematic representation showing incorporation of a protecting group (e.g., a protective nucleotide sequence or a chemical modification) ( FIG. 2 A ), a donor template-recruiting sequence ( FIG. 2 B ), and an editing enhancer ( FIG. 2 C ) into a type V-A CRISPR-Cas system.
- a protecting group e.g., a protective nucleotide sequence or a chemical modification
- FIG. 2 B e.g., a donor template-recruiting sequence
- an editing enhancer FIG. 2 C
- the present invention is based, in part, upon the development of engineered CRISPR-Cas systems (e.g., type V-A CRISPR-Cas systems) that can be used to target, edit, or otherwise modify specific target nucleotide sequences in human ADORA2A, B2M, CD52, CIITA, CTLA4, DCK, FAS, HAVCR2 (also called TIM3), LAG3, PDCD1 (also called PD-1), PTPN6, TIGIT, TRAC, TRBC1, TRBC2, CARD11, CD247, IL7R, LCK, or PLCG1 gene.
- CRISPR-Cas systems e.g., type V-A CRISPR-Cas systems
- guide nucleic acids such as single guide nucleic acids and dual guide nucleic acids
- CRISPR-Cas systems comprising such guide nucleic acids are also useful for targeting or modifying the human genes.
- a CRISPR-Cas system generally comprises a Cas protein and one or more guide nucleic acids (e.g., RNAs).
- the Cas protein can be directed to a specific location in a double-stranded DNA target by recognizing a protospacer adjacent motif (PAM) in the non-target strand of the DNA, and the one or more guide nucleic acids can be directed to a specific location by hybridizing with a target nucleotide sequence in the target strand of the DNA.
- PAM protospacer adjacent motif
- a guide nucleic acid when creating a CRISPR-Cas system, can be designed to comprise a nucleotide sequence called spacer sequence that hybridizes with a target nucleotide sequence, where target nucleotide sequence is located adjacent to a PAM in an orientation operable with the Cas protein. It has been observed that not all CRISPR-Cas systems designed by these criteria are equally effective.
- the present invention identifies target nucleotide sequences in particular human genes that can be efficiently edited, and provides CRISPR-Cas systems directed to these target nucleotide sequences.
- Type V-A, type V-C, and type V-D CRISPR-Cas systems lack a tracrRNA and rely on a single crRNA to guide the CRISPR-Cas complex to the target DNA.
- Dual guide nucleic acids capable of activating type V-A, type V-C, or type V-D Cas nucleases have been developed, for example, by splitting the single crRNA into a targeter nucleic acid and a modulator nucleic acid (see, U.S. Provisional Patent Application No. 62/910,055).
- Naturally occurring type V-A Cas proteins comprise a RuvC-like nuclease domain but lack an HNH endonuclease domain, and recognize a 5′ T-rich PAM located immediately upstream from the target nucleotide sequence, the orientation determined using the non-target strand (i.e., the strand not hybridized with the spacer sequence) as the coordinate.
- the CRISPR-Cas systems cleave a double-stranded DNA to generate a staggered double-stranded break rather than a blunt end.
- the cleavage site is distant from the PAM site (e.g., separated by at least 10, 11, 12, 13, 14, or 15 nucleotides downstream from the PAM on the non-target strand and/or separated by at least 15, 16, 17, 18, or 19 nucleotides upstream from the sequence complementary to PAM on the target strand).
- Naturally occurring type II CRISPR-Cas systems (e.g., CRISPR-Cas9 systems) generally comprise two guide nucleic acids, called crRNA and tracrRNA, which form a complex by nucleotide hybridization.
- Single guide nucleic acids capable of activating type 11 Cas nucleases have been developed, for example, by linking the crRNA and the tracrRNA (see, e.g., U.S. Patent Application Publication Nos. 2014/0242664 and 2014/0068797).
- Naturally occurring type II Cas proteins comprise a RuvC-like nuclease domain and an HNH endonuclease domain, and recognize a 3′ G-rich PAM located immediately downstream from the target nucleotide sequence, the orientation determined using the non-target strand (i.e., the strand not hybridized with the spacer sequence) as the coordinate.
- the CRISPR-Cas systems cleave a double-stranded DNA to generate a blunt end.
- the cleavage site is generally 3-4 nucleotides upstream from the PAM on the non-target strand.
- the single guide nucleic acid is also called a “crRNA” where it is present in the form of an RNA. It comprises, from 5′ to 3′, an optional 5′ tail, a modulator stem sequence, a loop, a targeter stem sequence complementary to the modulator stem sequence, and a spacer sequence that hybridizes with the target strand of the target DNA. Where a 5′ tail is present, the sequence including the 5′ tail and the modulator stem sequence is also called a “modulator sequence” herein.
- a fragment of the single guide nucleic acid from the optional 5′ tail to the targeter stem sequence also called a “scaffold sequence” herein, bind the Cas protein.
- the PAM in the non-target strand of the target DNA binds the Cas protein.
- the first guide nucleic acid comprises, from 5′ to 3′, an optional 5′ tail and a modulator stem sequence. Where a 5′ tail is present, the sequence including the 5′ tail and the modulator stem sequence is also called a “modulator sequence” herein.
- the second guide nucleic acid comprises, from 5′ to 3′, a targeter stem sequence complementary to the modulator stem sequence and a spacer sequence that hybridizes with the target strand of the target DNA.
- the duplex between the modulator stem sequence and the targeter stem sequence, plus the optional 5′ tail constitute a structure that binds the Cas protein.
- the PAM in the non-target strand of the target DNA binds the Cas protein.
- targeter stem sequence and “modulator stem sequence,” as used herein, refer to a pair of nucleotide sequences in one or more guide nucleic acids that hybridize with each other.
- the targeter stem sequence is proximal to a spacer sequence designed to hybridize with a target nucleotide sequence
- the modulator stem sequence is proximal to the targeter stem sequence.
- the targeter stem sequence is in the same nucleic acid as a spacer sequence designed to hybridize with a target nucleotide sequence.
- the duplex formed between the targeter stem sequence and the modulator stem sequence corresponds to the duplex formed between the crRNA and the tracrRNA.
- the duplex formed between the targeter stem sequence and the modulator stem sequence corresponds to the stem portion of a stem-loop structure in the scaffold sequence (also called direct repeat sequence) of the crRNA. It is understood that 100% complementarity is not required between the targeter stem sequence and the modulator stem sequence. In a type V-A CRISPR-Cas system, however, the targeter stem sequence is typically 100% complementary to the modulator stem sequence.
- targeter nucleic acid refers to a nucleic acid comprising (i) a spacer sequence designed to hybridize with a target nucleotide sequence; and (ii) a targeter stem sequence capable of hybridizing with an additional nucleic acid to form a complex, wherein the complex is capable of activating a Cas nuclease (e.g., a type II or type V-A Cas nuclease) under suitable conditions, and wherein the targeter nucleic acid alone, in the absence of the additional nucleic acid, is not capable of activating the Cas nuclease under the same conditions.
- Cas nuclease e.g., a type II or type V-A Cas nuclease
- modulator nucleic acid refers to a nucleic acid capable of hybridizing with the targeter nucleic acid to form a complex, wherein the complex, but not the modulator nucleic acid alone, is capable of activating the type Cas nuclease under suitable conditions.
- suitable conditions refers to the conditions under which a naturally occurring CRISPR-Cas system is operative, such as in a prokaryotic cell, in a eukaryotic (e.g., mammalian or human) cell, or in an in vitro assay.
- a naturally occurring CRISPR-Cas system such as in a prokaryotic cell, in a eukaryotic (e.g., mammalian or human) cell, or in an in vitro assay.
- the present invention provides a guide nucleic acid comprising a targeter stem sequence and a spacer sequence, wherein the spacer sequence comprises a nucleotide sequence listed Table 1, 2, or 3, or a portion thereof sufficient to hybridize with the corresponding target gene listed in the table.
- Table 1 lists the guide nucleic acid that showed the best editing efficiency for each target gene using the method described in Example 1.
- Table 2 lists the guide nucleic acids that showed at least 10% editing efficiency using the method described in Example 1.
- Table 3 lists the guide nucleic acids that showed at least 1.5% and lower than 10% editing efficiency using the method described in Example 1.
- a guide nucleic acid of the present invention is capable of binding the genomic locus of the corresponding target gene in the human genome.
- a guide nucleic acid of the present invention, alone or in combination with a modulator nucleic acid is capable of directing a Cas protein to the genomic locus of the corresponding target gene in the human genome.
- a guide nucleic acid of the present invention, alone or in combination with a modulator nucleic acid is capable of directing a Cas nuclease to the genomic locus of the corresponding target gene in the human genome, thereby resulting in cleavage of the genomic DNA at the genomic locus.
- the spacer sequences provided in Tables 1-3 are designed based upon identification of target nucleotide sequences associated with a PAM in a given target gene locus, and are selected based upon the editing efficiency detected in human cells.
- the spacer sequence is generally 16 or more nucleotides in length. In certain embodiments, the spacer sequence is at least 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 35, 40, 45, 50, or 75 nucleotides in length. In certain embodiments, the spacer sequence is shorter than or equal to 75, 50, 45, 40, 35, 30, 25, or 20 nucleotides in length. Shorter spacer sequence may be desirable for reducing off-target events. Accordingly, in certain embodiments, the spacer sequence is shorter than or equal to 21, 20, 19, 18, or 17 nucleotides.
- the spacer sequence is 17-30 nucleotides in length, e.g., 17-21, 17-22, 17-23, 17-24, 17-25, 17-30, 20-21, 20-22, 20-23, 20-24, 20-25, or 20-30 nucleotides in length. In certain embodiments, the spacer sequence is about 20 nucleotides in length. In certain embodiments, the spacer sequence is about 21 nucleotides in length. In certain embodiments, the spacer sequence is 20 nucleotides in length.
- the spacer sequence comprises a portion of a spacer sequence listed in Table 1, 2, or 3, wherein the portion is 16, 17, 18, 19, or 20 nucleotides in length.
- the spacer sequence comprises nucleotides 1-16, 1-17, 1-18, 1-19, or 1-20 of a spacer sequence listed in Table 1, 2, or 3.
- the spacer sequence consists of nucleotides 1-16, 1-17, 1-18, 1-19, or 1-20 of a spacer sequence listed in Table 1, 2, or 3.
- the spacer sequence is 21 nucleotides in length. In certain embodiments, the spacer sequence consists of a spacer sequence shown in Table 1, 2, or 3.
- the spacer sequence where it is longer than 21 nucleotides in length, comprises a spacer sequence shown in Table 1, 2, or 3 and one or more nucleotides. In certain embodiments, the one or more nucleotides are 3′ to the spacer sequence shown in Table 1, 2, or 3.
- the spacer sequence is at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% complementary to the target nucleotide sequence.
- the spacer sequence is 100% complementary to the target nucleotide sequence in the seed region (about 5 base pairs proximal to the PAM).
- the spacer sequence is 100% complementary to the target nucleotide sequence.
- the spacer sequences listed in Tables 1-3 are designed to be 100% complementary to the wild-type sequence of the corresponding target gene.
- a spacer sequence useful for targeting a gene listed in Table 1, 2, or 3 can be at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to a corresponding spacer sequence listed in Table 1, 2, or 3, or a portion thereof disclosed herein.
- the spacer sequence is 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 nucleotides different from a sequence listed in Table 1, 2, or 3.
- the spacer sequence is 100% identical to a sequence listed in Table 1, 2, or 3 in the seed region (about 5 base pairs proximal to the PAM).
- a guide nucleic acid to be used with a Cas nuclease comprises a spacer sequence 100% complementary to the target nucleotide sequence.
- a guide nucleic acid to be used with a Cas nuclease comprises a spacer sequence listed in Table 1, 2, or 3, or a portion thereof disclosed herein.
- the present invention also provides guide nucleic acids targeting human DHODH, PLK1, MVD, TUBB, or U6 gene comprising the spacer sequences provided below in Table 25.
- DHODH, PLK1, MVD, and TUBB are known to be essential genes. It is contemplated that the guide nucleic acids targeting these genes, particularly the ones that edit the respective genomic locus at height efficiency (e.g., at least 50%, at least 60%, at least 70%, at least 80%, or at least 90%), can be used as positive controls for assessing transfection efficiency and other experimental processes.
- the spacer sequences targeting U6 in Table 25 are designed to hybridize with the promoter region of human U6 gene and can be used to assess expression of an inserted gene from the endogenous U6 promoter.
- the guide nucleic acid of the present invention is capable of binding a CRISPR Associated (Cas) protein.
- the guide nucleic acid is capable of activating a Cas nuclease.
- CRISPR-Associated protein refers to a naturally occurring Cas protein or an engineered Cas protein.
- Non-limiting examples of Cas protein engineering includes but are not limited to mutations and modifications of the Cas protein that alter the activity of the Cas, alter the PAM specificity, broaden the range of recognized PAMs, and/or reduce the ability to modify one or more off-target loci as compared to a corresponding unmodified Cas.
- the altered activity of the engineered Cas comprises altered ability (e.g., specificity or kinetics) to bind the naturally occurring crRNA or engineered dual guide nucleic acids, altered ability (e.g., specificity or kinetics) to bind the target nucleotide sequence, altered processivity of nucleic acid scanning, and/or altered effector (e.g., nuclease) activity.
- a Cas protein having the nuclease activity is referred to as a “CRISPR-Associated nuclease” or “Cas nuclease,” as used interchangeably herein.
- the Cas protein is a type V-A, type V-C, or type V-D Cas protein. In certain embodiments, the Cas protein is a type V-A Cas protein. In other embodiments, the Cas protein is a type II Cas protein, e.g., a Cas9 protein.
- the Cas nuclease is a type V-A, type V-C, or type V-D Cas nuclease. In certain embodiments, the Cas nuclease is a type V-A Cas nuclease. In other embodiments, the Cas protein is a type II Cas nuclease, e.g., a Cas9 nuclease.
- the type V-A Cas protein comprises Cpf1.
- Cpf1 proteins are known in the art and are described in U.S. Pat. Nos. 9,790,490 and 10,113,179.
- Cpf1 orthologs can be found in various bacterial and archaeal genomes.
- the Cpf1 protein is derived from Francisella novicida U112 (Fn), Acidaminococcus sp. BV3L6 (As), Lachnospiraceae bacterium ND2006 (Lb), Lachnospiraceae bacterium MA2020 (Lb2).
- Candidatus Methanoplasma termitum (CMt), Moraxella bovoculi 237 (Mb), Porphyromonas crevioricanis (Pc), Prevotella disiens (Pd), Francisella tularensis 1 , Francisella tularensis subsp. novicida, Prevotella albensis, Lachnospiraceae bacterium MC2017 1, Butyrivibrio proteoclasticus, Peregrinibacteria bacterium GW2011_GWA2_33_10 , Parcubacteria bacterium GW2011_GWC2_44_17 , Smithella sp.
- SCADC Eubacterium eligens, Leptospira inadai, Porphyromonas macacae. Prevotella bryantii (Pb), Proteocatella sphenisci (Ps), Anaerovibrio sp. RM50 (As2), Moraxella caprae (Mc), Lachnospiraceae bacterium COE1 (Lb3), or Eubacterium coprostanoligenes (Ec).
- the type V-A Cas protein comprises AsCpf1 or a variant thereof.
- the type V-A Cas protein comprises an amino acid sequence at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to the amino acid sequence set forth in SEQ ID NO: 3.
- the type V-A Cas protein comprises the amino acid sequence set forth in SEQ ID NO: 3.
- the type V-A Cas protein comprises LbCpf1 or a variant thereof.
- the type V-A Cas protein comprises an amino acid sequence at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to the amino acid sequence set forth in SEQ ID NO: 4.
- the type V-A Cas protein comprises the amino acid sequence set forth in SEQ ID NO: 4.
- LbCpf1 (SEQ ID NO: 4) MSKLEKFTNCYSLSKTLRFKAIPVGKTQENIDNKRLLVEDEKRAEDYKGV KKLLDRYYLSFINDVLHSIKLKNLNNYISLFRKKTRTEKENKELENLEIN LRKEIAKAFKGNEGYKSLFKKDIIETILPEFLDDKDEIALVNSFNGFTTA FTGFFDNRENMFSEEAKSTSIAFRCINENLTRYISNMDIFEKVDAIFDKH EVQEIKEKILNSDYDVEDFFEGEFFNFVLTQEGIDVYNAIIGGFVTESGE KIKGLNEYINLYNQKTKQKLPKFKPLYKQVLSDRESLSFYGEGYTSDEEV LEVFRNTLNKNSEIFSSIKKLEKLFKNFDEYSSAGIFVKNGPAISTISKD IFGEWNVIRDKWNAEYDDIHLKKKAVVTEKYEDDRRKSFKKIGSF
- the type V-A Cas protein comprises FnCpf1 or a variant thereof.
- the type V-A Cas protein comprises an amino acid sequence at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to the amino acid sequence set forth in SEQ ID NO: 5.
- the type V-A Cas protein comprises the amino acid sequence set forth in SEQ ID NO: 5.
- FnCpf1 (SEQ ID NO: 5) MSIYQEFVNKYSLSKTLRFELIPQGKTLENIKARGLILDDEKRAKDYKKA KQIIDKYHQFFIEEILSSVCISEDLLQNYSDVYFKLKKSDDDNLQKDFKS AKDTTKKQISEYIKDSEKFKNLFNQNLIDAKKGQESDLILWLKQSKDNGI ELFKANSDITDIDEALEIIKSFKGWTIYFKGFHENRKNVYSSNDIPTSII YRIVDDNLPKFLENKAKYESLKDKAPEAINYEQIKKDLAEELTFDIDYKT SEVNQRVFSLDEVFEIANFNNYLNQSGITKFNTIIGGKFVNGENTKRKGI NEYINLYSQQINDKTLKKYKMSVLFKQILSDTESKSFVIDKLEDDSDWTT MQSFYEQIAAFKTVEEKSIKETLSLLFDDLKAQKLDLS
- the type V-A Cas protein comprises PbCpf1 or a variant thereof.
- the type V-A Cas protein comprises an amino acid sequence at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to the amino acid sequence set forth in SEQ ID NO: 6.
- the type V-A Cas protein comprises the amino acid sequence set forth in SEQ ID NO: 6.
- PbCpf1 (SEQ ID NO: 6) MQINNLKIIYMKFTDFTGLYSLSKTLRFELKPIGKTLENIKKAGLLEQDQ HRADSYKKVKKIIDEYHKAFIEKSLSNFELKYQSEDKLDSLEEYLMYYSM KRIEKTEKDKEAKIQDNLRKQIADHLKGDESYKTIFSKDLIRKNLPDFVK SDEERTLIKEFKDFTTYFKGFYENRENMYSAEDKSTAISHRIIHENLPKF VDNINAFSKIILIPELREKLNQIYQDFEEYLNVESIDEIFHLDYFSMVMT QKQIEVYNAIIGGKSTNDKKIQGLNEYINLYNQKHKDCKLPKLKLLFKQI LSDRIAISWLPDNFKDDQEALDSIDTCYKNLLNDGNVLGEGNLKLLLENI DTYNLKGIFIRNDLQLTDISQKMYASWNVIQDAVILDLKKQVSRKKKESA E
- the type V-A Cas protein comprises PsCpf1 or a variant thereof.
- the type V-A Cas protein comprises an amino acid sequence at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to the amino acid sequence set forth in SEQ ID NO: 7.
- the type V-A Cas protein comprises the amino acid sequence set forth in SEQ ID NO: 7.
- PsCpf1 (SEQ ID NO: 7) MENFKNLYPINKTLRFELRPYGKTLENFKKSGLLEKDAFKANSRRSMQAI IDEKFKETIEERLKYTEFSECDLGNMTSKDKKITDKAATNLKKQVILSFD DEIFNNYLKPDKNIDALFKNDPSNPVISTFKGFTTYFVNFFEIRKHIFKG ESSGSMAYRIIDENLTTYLNNIEKIKKLPEELKSQLEGIDQIDKLNNYNE FITQSGITHYNEIIGGISKSENVKIQGINEGINLYCQKNKVKLPRLTPLY KMILSDRVSNSFVLDTIENDTELIEMISDLINKTEISQDVIMSDIQNIFI KYKQLGNLPGISYSSIVNAICSDYDNNFGDGKRKKSYENDRKKHLETNVY SINYISELLTDTDVSSNIKMRYKELEQNYQVCKENFNATNWMNIKNIKQS EKTNLIKDLLDILKSIQRFYDL
- the type V-A Cas protein comprises As2Cpf1 or a variant thereof.
- the type V-A Cas protein comprises an amino acid sequence at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to the amino acid sequence set forth in SEQ ID NO: 8.
- the type V-A Cas protein comprises the amino acid sequence set forth in SEQ ID NO: 8.
- As2Cpf1 (SEQ ID NO: 8) MVAFIDEFVGQYPVSKTLRFEARPVPETKKWLESDQCSVLFNDQKRNEYY GVLKELLDDYYRAYIEDALTSFTLDKALLENAYDLYCNRDTNAFSSCCEK LRKDLVKAFGNLKDYLLGSDQLKDLVKLKAKVDAPAGKGKKKIEVDSRLI NWLNNNAKYSAEDREKYIKAIESFEGFVTYLTNYKQARENMFSSEDKSTA IAFRVIDQNMVTYFGNIRIYEKIKAKYPELYSALKGFEKFFSPTAYSEIL SQSKIDEYNYQCIGRPIDDADFKGVNSLINEYRQKNGIKARELPVMSMLY KQILSDRDNSFMSEVINRNEEAIECAKNGYKVSYALFNELLQLYKKIFTE DNYGNIYVKTQPLTELSQALFGDWSILRNALDNGKYDKDIINLAELEKYF SEYCK
- the type V-A Cas protein comprises McCpf1 or a variant thereof.
- the type V-A Cas protein comprises an amino acid sequence at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to the amino acid sequence set forth in SEQ ID NO: 9.
- the type V-A Cas protein comprises the amino acid sequence set forth in SEQ ID NO: 9.
- McCpf1 (SEQ ID NO: 9) MLFQDFTHLYPLSKTMRFELKPIGKTLEHIHAKNFLSQDETMADMYQKVK AILDDYHRDFIADMMGEVKLTKLAEFYDVYLKFRKNPKDDGLQKQLKDLQ AVLRKEIVKPIGNGGKYKAGYDRLFGAKLFKDGKELGDLAKFVIAQEGES SPKLAHLAHFEKFSTYFTGFHDNRKNMYSDEDKHTAITYRLIHENLPRFI DNLQILATIKQKHSALYDQIINELTASGLDVSLASHLDGYHKLITQEGIT AYNTLLGGISGEAGSRKIQGINEIINSHHNQHCHKSERIAKLRPLHKQIL SDGMGVSFLPSKFADDSEMCQAVNEFYRHYADVFAKVQSLFDGFDDHQKD GIYVEHKNLNELSKQAFGDFALLGRVLDGYYVDVVNPEFNERFAKAKTDN AKAKLTKE
- the type V-A Cas protein comprises Lb3Cpf1 or a variant thereof.
- the t % p V-A Cas protein comprises an amino acid sequence at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least W4%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to the amino acid sequence set forth in SEQ ID NO: 10.
- the type V-A Cas protein comprises the amino acid sequence set forth in SEQ ID NO: 10.
- LbCpf1 (SEO ID NO: 10) MHENNGKIADNFIGIYPVSKTLRFELKPVGKTQEYIEKHGILDEDLKRAG DYKSVKKIIDAYHKYFIDEALNGIQLDGLKNYYELYEKKRDNNEEKEFQK IQMSLRKQIVKRFSEHPQYKYLFKKELIKNVLPEFTKDNAEEQTLVKSFQ EFTTYFEGFHQNRKNMYSDEEKSTAIAYRVVHQNLPKYIDNMRIFSMILN TDIRSDLTELFNNLKTKMDITIVEEYFAIDGFNKVVNQKGIDVYNTILGA FSTDDNTKIKGLNEYINLYNQKNKAKLPKLKPLFKQILSDRDKISFIPEQ FDSDTEVLEAVDMFYNRLLQFVIENEGQITISKLLTNFSAYDLNKIYVKN DTTISAISNDLFDDWSYISKAVRENYDSENVDKNKRAAAYEEKKEK
- the type V-A Cas protein comprises EcCpf1 or a variant thereof.
- the type V-A Cas protein comprises an amino acid sequence at least 301%, at least 40%, at least 50%, at least 60%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to the amino acid sequence set forth in SEQ ID NO: 11.
- the type V-A Cas protein comprises the amino acid sequence set forth in SEQ ID NO: 11.
- EcCpf1 (SEO ID NO: 11) MDFFKNDMYFLCINGIIVISKLFAYLFLMYKRGVVMIKDNFVNVYSLSKT IRMALIPWGKTEDNFYKKFLLEEDEERAKNYIKVKGYMDEYHKNFIESAL NSVVLNGVDEYCELYFKQNKSDSEVKKIESLEASMRKQISKAMKEYTVDG VKIYPLLSKKEFIRELLPEFLTQDEEIETLEQFNDFSTYFQGFWENRKNI YTDEEKSTGVPYRCINDNLPKFLDNVKSFEKVILALPQKAVDELNANFNG VYNVDVQDVFSVDYFNFVLSQSGIEKYNNIIGGYSNSDASKVQGLNEKIN LYNQQIAKSDKSKKLPLLKPLYKQILSDRSSLSFIPEKFKDDNEVLNSIN VLYDNIAESLEKANDLMSDIANYNTDNIFISSGVAVTDISKKVFGDWSLI R
- the type V-A Cas protein is not Cpf1. In certain embodiments, the type V-A Cas nuclease is not AsCpf1.
- the type V-A Cas protein comprises MAD1, MAD2, MAD3, MAD4, MAD5, MAD6, MAD7, MAD8, MAD9, MAD10, MAD11, MAD12, MAD73, MAD14, MAD15, MAD16, MAD17, MAD18, MAD19 or MAD20, or variants thereof.
- MAD1-MAD20 are known in the art and are described in U.S. Pat. No. 9,982,279.
- the type V-A Cas protein comprises MAD7 or a variant thereof.
- the type V-A Cas protein comprises an amino acid sequence at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to the amino acid sequence set forth in SEQ ID NO: 1.
- the type V-A Cas protein comprises the amino acid sequence set forth in SEQ ID NO: 1.
- MAD7 (SEO ID NO: 1) MNNGTNNFQNFGISSLQKTLKNALIPTETTQQHVKNGIIKEDELRGENRQ ILKDIMDDYYRGFISETLSSIDDIDWTSLFEKMEIQLKNGDNKDTLIKEQ TEYRKAIHKKFANDDRFKNMFSAKLISDILPEFVIHNNNYSASEKEEKTQ VIKLFSRFATSFKDYFKNRANCFSADDISSSSCHRIVNDNAEIFFSNALV YRRIVKSLSNDDINKISGDMKDSLKEMSLEEIYSYEKYGEFITQEGISFY NDICGKVNSFMNLYCQKNKENKNLYKLQKLHKQILCIADTSYEVPYKFES DEEVYQSVNGFLDNISSKHIVERLRKIGDNYNGYNLDKIYIVSKFYESVS QKTYRDWETINTALEIHYNNILPGNGKSKADKVKKAVKNDLQKSITEINE L
- the type V-A Cas protein comprises MAD2 or a variant thereof.
- the type V-A Cas protein comprises an amino acid sequence at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to the amino acid sequence set forth in SEQ ID NO: 2.
- the type V-A Cas protein comprises the amino acid sequence set forth in SEQ ID NO: 2.
- MAD2 (SEO ID NO: 2) MSSLTKFTNKYSKQLTIKNELIPVGKTLENIKENGLIDGDEQLNENYQKA KIIVDDFLRDFINKALNNTQIGNWRELADALNKEDEDNIEKLQDKIRGII VSKFETFDLFSSYSIKKDEKIIDDDNDVEEEELDLGKKTSSFKYIFKKNL FKLVLPSYLKTTNQDKLKIISSFDNFSTYFRGFFENRKNIFTKKPISTSI AYRIVHDNFPKFLDNIRCFNVWQTECPQLIVKADNYLKSKNVIAKDKSLA NYFTVGAYDYFLSQNGIDFYNNIIGGLPAFAGHEKIQGLNEFINQECQKD SELKSKLKNRHAFKMAVLFKQILSDREKSFVIDEFESDAQVIDAVKNFYA EQCKDNNVIFNLLNLIKNIAFLSDDELDGIFIEGKYLSSVSQKLYSDWSK LRNDIEDSANSK
- the type V-A Cas protein comprises Csm1.
- Csm1 proteins are known in the art and are described in U.S. Pat. No. 9,896,696.
- Csm1 orthologs can be found in various bacterial and archaeal genomes.
- the Csm1 protein is derived from Smithella sp. SCADC (Sm), Sulfuricurvum sp. (Ss), or Microgenomates ( Roizmanbacteria ) bacterium (Mb).
- the type V-A Cas protein comprises SmCsm1 or a variant thereof.
- the type V-A Cas protein comprises an amino acid sequence at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to the amino acid sequence set forth in SEQ ID NO: 12.
- the type V-A Cas protein comprises the amino acid sequence set forth in SEQ ID NO: 12.
- SmCsm1 (SEO ID NO: 12) MEKYKITKTIRFKLLPDKIQDISRQVAVLQNSTNAEKKNNLLRLVQRGQE LPKLLNEYIRYSDNHKLKSNVTVHFRWLRLFTKDLFYNWKKDNTEKKIKI SDVVYLSHVFEAFLKEWESTIERVNADCNKPEESKTRDAEIALSIRKLGI KHQLPFIKGFVDNSNDKNSEDTKSKLTALLSEFEAVLKICEQNYLPSQSS GIAIAKASFNYYTINKKQKDFEAEIVALKKQLHARYGNKKYDQLLRELNL IPLKELPLKELPLIEFYSEIKKRKSTKKSEFLEAVSNGLVFDDLKSKFPL FQTESNKYDEYLKLSNKITQKSTAKSLLSKDSPEAQKLQTEITKLKKNRG EYFKKAFGKYVQLCELYKEIAGKRGKLKGQIKGIENERIDSQRLQYWA
- the type V-A Cas protein comprises SsCsm1 or a variant thereof.
- the type V-A Cas protein comprises an amino acid sequence at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to the amino acid sequence set forth in SEQ ID NO: 13.
- the type V-A Cas protein comprises the amino acid sequence set forth in SEQ ID NO: 13.
- SsCsm1 (SEQ ID NO: 13) MLHAFTNQYQLSKTLRFGATLKEDEKKCKSHEELKGFVDISYENMKSSAT IAESLNENELVKKCERCYSEIVKFHNAWEKIYYRTDQIAVYKDFYRQLSR KARFDAGKQNSQLITLASLCGMYQGAKLSRYITNYWKDNITRQKSFLKDF SQQLHQYTRALEKSDKAHTKPNLINFNKTFMVLANLVNEIVIPLSNGAIS FPNISKLEDGEESHLIEFALNDYSQLSELIGELKDAIATNGGYTPPAKVT INHYTAEQKPHVIKNDIDAKIRELKLIGIVETLKGKSSEQIEEYFSNLDK FSTYNDRNQSVIVRTQCFKYKPIPFLVKHQLAKYISEPNGWDEDAVAKVL DAVGAIRSPAHDYANNQEGFDLNHYPIKVAFDYAWEQLANSLYTTVTFPQ EMCEK
- the type V-A Cas protein comprises MbCsm1 or a variant thereof.
- the type V-A Cas protein comprises an amino acid sequence at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 989%, or at least 99% identical to the amino acid sequence set forth in SEQ ID NO: 14.
- the type V-A Cas protein comprises the amino acid sequence set forth in SEQ ID NO: 14.
- MbCsm1 (SEO ID NO: 14) MEIQELKNLYEVKKTVRFELKPSKKKIFEGGDVIKLQKDFEKVQKFFLDI FVYKNEHTKLEFKKKREIKYTWLRTNTKNEFYNWRGKSDTGKNYALNKIG FLAEEILRWLNEWQELTKSLKDLTQREEHKQERKSDIAFVLRNFLKRQNL PFIKDFFNAVIDIQGKQGKESDDKIRKFREEIKEIEKNLNACSREYLPTQ SNGVLLYKASFSYYTLNKTPKEYEDLKKEKESELSSVLLKEIYRRKRFNR TTNQKDTLFECTSDWLVKIKLGKDIYEWTLDEAYQKMKIWKANQKSNFIE AVAGDKLTHQNFRKQFPLFDASDEDFETFYRLTKALDKNPENAKKIAQKR GKFFNAPNETVQTKNYHELCELYKRIAVKRG
- More type V-A Cas proteins and their corresponding naturally occurring CRISPR-Cas systems can be identified by computational and experimental methods known in the art, e.g., as described in U.S. Pat. No. 9,790,490 and Shmakov et al. (2015) M OL . C ELL , 60: 385.
- Exemplary computational methods include analysis of putative Cas proteins by homology modeling, structural BLAST, PSI-BLAST, or HHPred, and analysis of putative CRISPR loci by identification of CRISPR arrays.
- Exemplary experimental methods include in vitro cleavage assays and in-cell nuclease assays (e.g., the Surveyor assay) as described in Zetsche et al. (2015) C ELL , 163: 759.
- the Cas protein is a Cas nuclease that directs cleavage of one or both strands at the target locus, such as the target strand (i.e., the strand having the target nucleotide sequence that hybridizes with a single guide nucleic acid or dual guide nucleic acids) and/or the non-target strand.
- the Cas nuclease directs cleavage of one or both strands within about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 50, 100, 200, 500, or more nucleotides from the first or last nucleotide of the target nucleotide sequence or its complementary sequence.
- the cleavage is staggered, i.e. generating sticky ends. In certain embodiments, the cleavage generates a staggered cut with a 5′ overhang. In certain embodiments, the cleavage generates a staggered cut with a 5′ overhang of 1 to 5 nucleotides, e.g., of 4 or 5 nucleotides. In certain embodiments, the cleavage site is distant from the PAM, e.g., the cleavage occurs after the 18th nucleotide on the non-target strand and after the 23rd nucleotide on the target strand.
- the Cas protein lacks substantially all DNA cleavage activity.
- a Cas protein can be generated by introducing one or more mutations to an active Cas nuclease (e.g., a naturally occurring Cas nuclease).
- a mutated Cas protein is considered to substantially lack all DNA cleavage activity when the DNA cleavage activity of the protein has no more than about 25%, 10%, 5%, 1%, 0.1%, 0.01%, or less of the DNA cleavage activity of the corresponding non-mutated form, for example, nil or negligible as compared with the non-mutated form.
- the Cas protein may comprise one or more mutations (e.g., a mutation in the RuvC domain of a type V-A Cas protein) and be used as a generic DNA binding protein with or without fusion to an effector domain.
- Exemplary mutations include D908A. E993A, and D1263A with reference to the amino acid positions in AsCpf1; D832A, E925A, and D1180A with reference to the amino acid positions in LbCpf1; and D917A, E1006A, and D1255A with reference to the amino acid position numbering of the FnCpf1. More mutations can be designed and generated according to the crystal structure described in Yamano er al. (2016) C ELL , 165: 949.
- the Cas protein rather than losing nuclease activity to cleave all DNA, may lose the ability to cleave only the target strand or only the non-target strand of a double-stranded DNA, thereby being functional as a nickase (see, Gao et al. (2016) C ELL R ES ., 26: 901). Accordingly, in certain embodiments, the Cas nuclease is a Cas nickase. In certain embodiments, the Cas nuclease has the activity to cleave the non-target strand but substantially lacks the activity to cleave the target strand, e.g., by a mutation in the Nuc domain. In certain embodiments, the Cas nuclease has the cleavage activity to cleave the target strand but substantially lacks the activity to cleave the non-target strand.
- the Cas nuclease has the activity to cleave a double-stranded DNA and result in a double-strand break.
- Cas proteins that lack substantially all DNA cleavage activity or have the ability to cleave only one strand may also be identified from naturally occurring systems.
- certain naturally occurring CRISPR-Cas systems may retain the ability to bind the target nucleotide sequence but lose entire or partial DNA cleavage activity in eukaryotic (e.g., mammalian or human) cells.
- eukaryotic e.g., mammalian or human
- Such type V-A proteins are disclosed, for example, in Kim et al. (2017) ACS S YNTH . B IOL . 6(7): 1273-82 and Zhang et al. (2017) C ELL D ISCOV . 3:17018.
- the activity of the Cas protein can be altered, thereby creating an engineered Cas protein.
- the altered activity of the engineered Cas protein comprises increased targeting efficiency and/or decreased off-target binding. While not wishing to be bound by theory, it is hypothesized that off-target binding can be recognized by the Cas protein, for example, by the presence of one or more mismatches between the spacer sequence and the target nucleotide sequence, which may affect the stability and/or conformation of the CRISPR-Cas complex.
- the altered activity comprises modified binding, e.g., increased binding to the target locus (e.g., the target strand or the non-target strand) and/or decreased binding to off-target loci.
- the altered activity comprises altered charge in a region of the protein that associates with a single guide nucleic acid or dual guide nucleic acids.
- the altered activity of the engineered Cas protein comprises altered charge in a region of the protein that associates with the target strand and/or the non-target strand.
- the altered activity of the engineered Cas protein comprises altered charge in a region of the protein that associates with an off-target locus.
- the altered charge can include decreased positive charge, decreased negative charge, increased positive charge, and increased negative charge.
- decreased negative charge and increased positive charge may generally strengthen the binding to the nucleic acid(s) whereas decreased positive charge and increased negative charge may weaken the binding to the nucleic acid(s).
- the altered activity comprises increased or decreased steric hindrance between the protein and a single guide nucleic acid or dual guide nucleic acids.
- the altered activity comprises increased or decreased steric hindrance between the protein and the target strand and/or the non-target strand.
- the altered activity comprises increased or decreased steric hindrance between the protein and an off-target locus.
- the modification or mutation comprises a substitution of Lys, His, Arg, Glu, Asp, Ser, Gly, or Thr. In certain embodiments, the modification or mutation comprises a substitution with Gly, Ala, Ile, Glu, or Asp. In certain embodiments, the modification or mutation comprises an amino acid substitution in the groove between the WED and RuvC domain of the Cas protein (e.g., a type V-A Cas protein).
- the altered activity of the engineered Cas protein comprises increased nuclease activity to cleave the target locus. In certain embodiments, the altered activity of the engineered Cas protein comprises decreased nuclease activity to cleave an off-target locus. In certain embodiments, the altered activity of the engineered Cas protein comprises altered helicase kinetics. In certain embodiments, the engineered Cas protein comprises a modification that alters formation of the CRISPR complex.
- a protospacer adjacent motif (PAM) or PAM-like motif directs binding of the Cas protein complex to the target locus.
- Many Cas proteins have PAM specificity. The precise sequence and length requirements for the PAM differ depending on the Cas protein used.
- PAM sequences are typically 2-5 base pairs in length and are adjacent to (but located on a different strand of target DNA from) the target nucleotide sequence.
- PAM sequences can be identified using a method known in the art, such as testing cleavage, targeting, or modification of oligonucleotides having the target nucleotide sequence and different PAM sequences.
- Exemplary PAM sequences are provided in Tables 4 and 5.
- the Cas protein is MAD7 and the PAM is TITN, wherein N is A, C. G. or T.
- the Cas protein is MAD7 and the PAM is CTTN, wherein N is A, C, G, or T.
- the Cas protein is AsCpf1 and the PAM is TITN, wherein N is A, C, G, or T.
- the Cas protein is FnCpf1 and the PAM is 5′ TTN, wherein N is A, C, G, or T.
- PAM sequences for certain other type V-A Cas proteins are disclosed in Zetsche et al.
- the engineered Cas protein comprises a modification that alters the Cas protein specificity in concert with modification to targeting range.
- Cas mutants can be designed to have increased target specificity as well as accommodating modifications in PAM recognition, for example by choosing mutations that alter PAM specificity (e.g., in the Pi domain) and combining those mutations with groove mutations that increase (or if desired, decrease) specificity for the on-target locus versus off-target loci.
- the Cas modifications described herein can be used to counter loss of specificity resulting from alteration of PAM recognition, enhance gain of specificity resulting from alteration of PAM recognition, counter gain of specificity resulting from alteration of PAM recognition, or enhance loss of specificity resulting from alteration of PAM recognition.
- the engineered Cas protein comprises one or more nuclear localization signal (NLS) motifs. In certain embodiments, the engineered Cas protein comprises at least 2 (e.g., at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, or at least 10) NLS motifs.
- NLS nuclear localization signal
- Non-limiting examples of NLS motifs include: the NLS of SV40 large T-antigen, having the amino acid sequence of PKKKRKV (SEQ ID NO: 35); the NLS from nucleoplasmin, e.g., the nucleoplasmin bipartite NLS having the amino acid sequence of KRPAATKKAGQAKKKK (SEQ ID NO: 36); the c-myc NLS, having the amino acid sequence of PAAKRVKLD (SEQ ID NO: 37) or RQRRNELKRSP (SEQ ID NO: 38); the hRNPA1 M9 NLS, having the amino acid sequence of NQSSNFGPMKGGNFGGRSSGPYGGGGQYFAKPRNQGGY (SEQ ID NO: 39); the importin- ⁇ IBB domain NLS, having the amino acid sequence of RMRIZFKNKGKDTAELRRRRVEVSVELRKAKKDEQILKRRNV (SEQ ID NO: 40); the myoma T protein NLS, having the amino acid sequence
- the one or more NLS motifs are of sufficient strength to drive accumulation of the Cas protein in a detectable amount in the nucleus of a cukaryotic cell.
- the strength of nuclear localization activity may derive from the number of NLS motifs) in the Cas protein, the particular NLS motifs) used, the position(s) of the NLS motifs), or a combination of these factors.
- the engineered Cas protein comprises at least 1 (e.g., at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, or at least 10) NLS motifs) at or near the N-terminus (e.g., within about 1, 2, 3, 4, 5, 10, 15, 20, 25, 30, 40, 50, or more amino acids along the polypeptide chain from the N-terminus).
- the engineered Cas protein comprises at least 1 (e.g., at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, or at least 10) NLS motif(s) at or near the C-terminus (e.g., within about 1, 2, 3, 4, 5, 10, 15, 20, 25, 30, 40, 50, or more amino acids along the polypeptide chain from the C-terminus).
- the engineered Cas protein comprises at least 1 (e.g., at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, or at least 10) NLS motifs) at or near the C-terminus and at least 1 (e.g., at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, or at least 10) NLS motif(s) at or near the N-terminus.
- the engineered Cas protein comprises one, two, or three NLS motifs at or near the C-terminus.
- the engineered Cas protein comprises one NLS motif at or near the N-terminus and one, two, or three NLS motifs at or near the C-terminus.
- the engineered Cas protein comprises a nucleoplasmin NLS at or near the C-terminus.
- Detection of accumulation in the nucleus may be performed by any suitable technique.
- a detectable marker may be fused to the nucleic acid-targeting protein, such that location within a cell may be visualized.
- Cell nuclei may also be isolated from cells, the contents of which may then be analyzed by any suitable process for detecting the protein, such as immunohistochemistry, Western blot, or enzyme activity assay.
- Accumulation in the nucleus may also be determined indirectly, such as by an assay that detects the effect of the nuclear import of a Cas protein complex (e.g., assay for DNA cleavage or mutation at the target locus, or assay for altered gene expression activity) as compared to a control not exposed to the Cas protein or exposed to a Cas protein lacking one or more of the NLS motifs.
- an assay that detects the effect of the nuclear import of a Cas protein complex e.g., assay for DNA cleavage or mutation at the target locus, or assay for altered gene expression activity
- the Cas protein is a chimeric Cas protein, e.g., a Cas protein having enhanced function by being a chimera.
- Chimeric Cas proteins may be new Cas proteins containing fragments from more than one naturally occurring Cas proteins or variants thereof.
- fragments of multiple type V-A Cas homologs e.g., orthologs
- the chimeric Cas protein comprises fragments of Cpf1 orthologs from multiple species and/or strains.
- the Cas protein comprises one or more effector domains.
- the one or more effector domains may be located at or near the N-terminus of the Cas protein and/or at or near the C-terminus of the Cas protein.
- an effector domain comprised in the Cas protein is a transcriptional activation domain (e.g., VP64), a transcriptional repression domain (e.g., a KRAB domain or an SID domain), an exogenous nuclease domain (e.g., FokI), a deaminase domain (e.g., cytidine deaminase or adenine deaminase), or a reverse transcriptase domain (e.g., a high fidelity reverse transcriptase domain).
- a transcriptional activation domain e.g., VP64
- a transcriptional repression domain e.g., a KRAB domain or an SID domain
- effector domains include but are not limited to methylase activity, demethylase activity, transcription release factor activity, translational initiation activity, translational activation activity, translational repression activity, histone modification (e.g., acetylation or demethylation) activity, single-stranded RNA cleavage activity, double-strand RNA cleavage activity, single-strand DNA cleavage activity, double-strand DNA cleavage activity, and nucleic acid binding activity.
- the Cas protein comprises one or more protein domains that enhance homology-directed repair (HDR) and/or inhibit non-homologous end joining (NHEJ).
- HDR homology-directed repair
- NHEJ non-homologous end joining
- Exemplary protein domains having such functions are described in Jayavaradhan et al. (2019) N AT . C OMMUN . 10(1): 2866 and Janssen et al. (2019) M OL . T HER . N UCLEIC A CIDS 16: 141-54.
- the Cas protein comprises a dominant negative version of p53-binding protein 1 (53BP1), for example, a fragment of 53BP1 comprising a minimum focus forming region (e.g., amino acids 1231-1644 of human 53BP1).
- the Cas protein comprises a motif that is targeted by APC-Cdh1, such as amino acids 1-110 of human Geminin, thereby resulting in degradation of the fusion protein during the HDR non-permissive G1 phase of the cell cycle.
- the Cas protein comprises an inducible or controllable domain.
- inducers or controllers include light, hormones, and small molecule drugs.
- the Cas protein comprises a light inducible or controllable domain.
- the Cas protein comprises a chemically inducible or controllable domain.
- the Cas protein comprises a tag protein or peptide for ease of tracking or purification.
- tag proteins and peptides include fluorescent proteins (e.g., green fluorescent protein (GFP), YFP, RFP, CFP, mCherry, tdTomato), HIS tags (e.g., 6 ⁇ His tag, (SEQ ID NO: 789)), hemagglutinin (HA) tag, FLAG tag, and Myc tag.
- fluorescent proteins e.g., green fluorescent protein (GFP), YFP, RFP, CFP, mCherry, tdTomato
- HIS tags e.g., 6 ⁇ His tag, (SEQ ID NO: 789)
- HA hemagglutinin
- the Cas protein is conjugated to a non-protein moiety, such as a fluorophore useful for genomic imaging. In certain embodiments, the Cas protein is covalently conjugated to the non-protein moiety.
- CRISPR-Associated protein Cas protein
- Cas CRISPR-Associated nuclease
- Cas nuclease CRISPR-Associated nuclease
- the guide nucleic acid of the present invention is a guide nucleic acid that is capable of binding a Cas protein alone (e.g., in the absence of a tracrRNA). Such guide nucleic acid is also called a single guide nucleic acid.
- the single guide nucleic acid is capable of activating a Cas nuclease alone (e.g., in the absence of a tracrRNA).
- the present invention also provides an engineered, non-naturally occurring system comprising the single guide nucleic acid.
- the system further comprises the Cas protein that the single guide nucleic acid is capable of binding or the Cas nuclease that the single guide nucleic acid is capable of activating.
- the guide nucleic acid of the present invention is a targeter nucleic acid that, in combination with a modulator nucleic acid, is capable of binding a Cas protein.
- the guide nucleic acid is a targeter nucleic acid that, in combination with a modulator nucleic acid, is capable of activating a Cas nuclease.
- the present invention also provides an engineered, non-naturally occurring system comprising the targeter nucleic acid and the cognate modulator nucleic acid.
- the system further comprises the Cas protein that the targeter nucleic acid and the modulator nucleic acid are capable of binding or the Cas nuclease that the targeter nucleic acid and the modulator nucleic acid are capable of activating.
- the single or dual guide nucleic acids need to be the compatible with a Cas protein (e.g., Cas nuclease) to provide an operative CRISPR system.
- a Cas protein e.g., Cas nuclease
- the targeter stem sequence and the modulator stem sequence can be derived from a naturally occurring crRNA capable of activating a Cas nuclease in the absence of a tracrRNA.
- the targeter stem sequence and the modulator stem sequence can be derived from a naturally occurring set of crRNA and tracrRNA, respectively, that are capable of activating a Cas nuclease.
- the nucleotide sequences of the targeter stem sequence and the modulator stem sequence are identical to the corresponding stem sequences of a stem-loop structure in such naturally occurring crRNA.
- Guide nucleic acid sequences that are operative with a type 11 or type V Cas protein are known in the art and are disclosed, for example, in U.S. Pat. Nos. 9,790,490, 9,896,696, and 10,113,179, and U.S. Patent Application Publication Nos. 2014/0242664 and 2014/0068797.
- Exemplary single guide and dual guide sequences that are operative with certain type V-A Cas proteins are provided in Tables 4 and 5, respectively. It is understood that these sequences are merely illustrative, and other guide nucleic acid sequences may also be used with these Cas proteins.
- a “scaffold sequence” listed herein constitutes a portion of a single guide nucleic acid. Additional nucleotide sequences, oilier than the spacer sequence, can be comprised in the single guide nucleic acid. 2 In the consensus PAM sequences, N represents A, C, G, or T. Where the PAM sequence is preceded by “5′,” it means that the PAM is located immediately upstream of the target nucleotide sequence when using the non-target strand (i.e., the strand not hybridized with the spacer sequence) as the coordinate.
- nucleotide sequences can be comprised in the modulator nucleic acid 5′ and/or 3′ to a “modulator sequence” listed herein. 2
- N represents A, C, G, or T.
- the PAM sequence is preceded by “5′,” it means that the PAM is located immediately upstream of the target nucleotide sequence when using the non-target strand (z.e., the strand not hybridized with the spacer sequence) as the coordinate.
- the guide nucleic acid of the present invention in the context of a type V-A CRISPR-Cas system, comprises a targeter stem sequence listed in Table 5.
- the same targeter stem sequences, as a portion of scaffold sequences, are bold-underlined in Table 4.
- the guide nucleic acid is a single guide nucleic acid that comprises, from 5′ to 3′, a modulator stem sequence, a loop sequence, a targeter stem sequence, and a spacer sequence disclosed herein.
- the targeter stem sequence in the single guide nucleic acid is listed in Table 4 as a bold-underlined portion of scaffold sequence, and the modulator stem sequence is complementary (e.g., 100% complementary) to the targeter stem sequence.
- the single guide nucleic acid comprises, from 5′ to 3′, a modulator sequence listed in Table 4 as an underlined portion of a scaffold sequence, a loop sequence, a targeter stem sequence a bold-underlined portion of the same scaffold sequence, and a spacer sequence disclosed herein.
- an engineered, non-naturally occurring system of the present invention comprises the single guide nucleic acid comprising a scaffold sequence listed in Table 4.
- the system further comprises a Cas protein (e.g., Cas nuclease) comprising an amino acid sequence at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to the amino acid sequence set forth in the SEQ ID NO listed in the same line of Table 4.
- the system further comprises a Cas protein (e.g., Cas nuclease) comprising the amino acid sequence set forth in the SEQ ID NO listed in the same line of Table 4.
- the system is useful for targeting, editing, or modifying a nucleic acid comprising a target nucleotide sequence close or adjacent to (e. g., immediately downstream of) a PAM listed in the same line of Table 4 when using the non-target strand (i.e., the strand not hybridized with the spacer sequence) as the coordinate.
- the guide nucleic acid is a targeter guide nucleic acid that comprises, from 5′ to 3′, a targeter stem sequence and a spacer sequence disclosed herein.
- the targeter stem sequence in the targeter nucleic acid is listed in Table 5.
- an engineered, non-naturally occurring system of the present invention comprises the targeter nucleic acid and a modulator stem sequence complementary (e.g., 100% complementary) to the targeter stem sequence.
- the modulator nucleic acid comprises a modulator sequence listed in the same line of Table 5.
- the system further comprises a Cas protein (e.g., Cas nuclease) comprising an amino acid sequence at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to the amino acid sequence set forth in the SEQ ID NO listed in the same line of Table 5.
- the system further comprises a Cas protein (e.g., Cas nuclease) comprising the amino acid sequence set forth in the SEQ ID NO listed in the same line of Table 5.
- the system is useful for targeting, editing, or modifying a nucleic acid comprising a target nucleotide sequence close or adjacent to (e.g., immediately downstream of) a PAM listed in the same line of Table 5 when using the non-target strand (i.e., the strand not hybridized with the spacer sequence) as the coordinate.
- the single guide nucleic acid, the targeter nucleic acid, and/or the modulator nucleic acid can be synthesized chemically or produced in a biological process (e.g., catalyzed by an RNA polymerase in an in vitro reaction). Such reaction or process may limit the lengths of the single guide nucleic acid, targeter nucleic acid, and modulator nucleic acid.
- the single guide nucleic acid is no more than 100, 90, 80, 70, 60, 50, 40, 30, or 25 nucleotides in length. In certain embodiments, the single guide nucleic acid is at least 20, 25, 30, 40, 50, 60, 70, 80, or 90 nucleotides in length.
- the single guide nucleic acid is 20-100, 20-90, 20-80, 20-70, 20-60, 20-50, 20-40, 20-30, 20-25, 25-100, 25-90, 25-80, 25-70, 25-60, 25-50, 25-40, 25-30, 30-100, 30-90, 30-80, 30-70, 30-60, 30-50, 30-40, 40-100, 40-90, 40-80, 40-70, 40-60, 40-50, 50-100, 50-90, 50-80, 50-70, 50-60, 60-100, 60-90, 60-80, 60-70, 70-100, 70-90, 70-80, 80-100, 80-90, or 90-100 nucleotides in length.
- the targeter nucleic acid is no more than 100, 90, 80, 70, 60, 50, 40, 30, or 25 nucleotides in length. In certain embodiments, the targeter nucleic acid is at least 20, 25, 30, 40, 50, 60, 70, 80, or 90 nucleotides in length.
- the targeter nucleic acid is 20-100, 20-90, 20-80, 20-70, 20-60, 20-50, 20-40, 20-30, 20-25, 25-100, 25-90, 25-80, 25-70, 25-60, 25-50, 25-40, 25-30, 30-100, 30-90, 30-80, 30-70, 30-60, 30-50, 3040, 40-100, 40-90, 40-80, 40-70, 40-60, 40-50, 50-100, 50-90, 50-80, 50-70, 50-60, 60-100, 60-90, 60-80, 60-70, 70-100, 70-90, 70-80, 80-100, 80-90, or 90-100 nucleotides in length.
- the modulator nucleic acid is no more than 100, 90, 80, 70, 60, 50, 40, 30, or 20 nucleotides in length. In certain embodiments, the modulator nucleic acid is at least 10, 15, 20, 25, 30, 40, 50, 60, 70, 80, or 90 nucleotides in length.
- the modulator nucleic acid is 10-100, 10-90, 10-80, 10-70, 10-60, 10-50, 10-40, 10-30, 10-20, 15-100, 15-90, 15-80, 15-70, 15-60, 15-50, 15-40, 15-30, 15-20, 20-100, 20-90, 20-80, 20-70, 20-60, 20-50, 2040, 20-30, 25-100, 25-90, 25-80, 25-70, 25-60, 25-50, 25-40, 25-30, 30-100, 30-90, 30-80, 30-70, 30-60, 30-50, 30-40, 40-100, 40-90, 40-80, 40-70, 40-60, 40-50, 50-100, 50-90, 50-80, 50-70, 50-60, 60-100, 60-90, 60-80, 60-70, 70-100, 70-90, 70-80, 80-100, 80-90, or 90-100 nucleotides in length.
- the length of the duplex formed within the single guide nuclei acid or formed between the targeter nucleic acid and the modulator nucleic acid may be a factor in providing an operative CRISPR system.
- the targeter stem sequence and the modulator stem sequence each consist of 4-10 nucleotides that base pair with each other.
- the targeter stem sequence and the modulator stem sequence each consist of 4-9, 4-8, 4-7, 4-6, 4-5, 5-10, 5-9, 5-8, 5-7, or 5-6 nucleotides that base pair with each other.
- the targeter stem sequence and the modulator stem sequence each consist of 4, 5, 6, 7, 8, 9, or 10 nucleotides.
- composition of the nucleotides in each sequence affects the stability of the duplex, and a C-G base pair confers greater stability than an A-U base pair.
- 20%-80%, 20%-70%, 20%-60%, 20%-50%, 20%-40%, 20%-30%, 30%-80%, 30%-70%, 30%-60%, 30%-50%, 30%-40%, 40%-80%, 40%-70%, 40%-60%, 40%-50%, 50%-80%, 50%-70%, 50%-60%, 60%-80%, 60%-70%, or 70%-80% of the base pairs are C-G base pairs.
- the targeter stem sequence and the modulator stem sequence each consist of 5 nucleotides. As such, the targeter stem sequence and the modulator stem sequence form a duplex of 5 base pairs. In certain embodiments, 0-4, 0-3, 0-2, 0-1, 1-5, 1-4, 1-3, 1-2, 2-5, 2-4, 2-3, 3-5, 3-4, or 4-5 out of the 5 base pairs are C-G base pairs. In certain embodiments, 0, 1, 2, 3, 4, or 5 out of the 5 base pairs are C-G base pairs. In certain embodiments, the targeter stem sequence consists of 5′-GUAGA-3′ and the modulator stem sequence consists of 5′-UCUAC-3′. In certain embodiments, the targeter stem sequence consists of 5′-GUGGG-3′ and the modulator stem sequence consists of 5′-CCCAC-3′.
- the 3′ end of the targeter stem sequence is linked by no more than 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 nucleotides to the 5′ end of the spacer sequence.
- the targeter stem sequence and the spacer sequence are adjacent to each other, directly linked by an internucleotide bond.
- the targeter stem sequence and the spacer sequence are linked by one nucleotide, e.g., a uridine.
- the targeter stem sequence and the spacer sequence are linked by two or more nucleotides.
- the targeter stem sequence and the spacer sequence are linked by 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 nucleotides.
- the targeter nucleic acid further comprises an additional nucleotide sequence 5′ to the targeter stem sequence.
- the additional nucleotide sequence comprises at least 1 (e.g., at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 15, at least 20, at least 25, at least 30, at least 35, at least 40, at least 45, or at least 50) nucleotides.
- the additional nucleotide sequence consists of 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45, or 50 nucleotides.
- the additional nucleotide sequence consists of 2 nucleotides.
- the additional nucleotide sequence is reminiscent to the loop or a fragment thereof (e.g., one, two, three, or four nucleotides at the 3′ end of the loop) in a crRNA of a corresponding single guide CRISPR-Cas system. It is understood that an additional nucleotide sequence 5′ to the targeter stem sequence is dispensable. Accordingly, in certain embodiments, the targeter nucleic acid does not comprise any additional nucleotide 5′ to the targeter stem sequence.
- the targeter nucleic acid or the single guide nucleic acid further comprises an additional nucleotide sequence containing one or more nucleotides at the 3′ end that does not hybridize with the target nucleotide sequence.
- the additional nucleotide sequence may protect the targeter nucleic acid from degradation by 3′-5′ exonuclease.
- the additional nucleotide sequence is no more than 100 nucleotides in length. In certain embodiments, the additional nucleotide sequence is no more than 90, 80, 70, 60, 50, 40, 30, 20, or 10 nucleotides in length.
- the additional nucleotide sequence is at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45, or 50 nucleotides in length.
- the additional nucleotide sequence is 5-100, 5-50, 5-40, 5-30, 5-25, 5-20, 5-15, 5-10, 10-100, 10-50, 10-40, 10-30, 10-25, 10-20, 10-15, 15-100, 15-50, 15-40, 15-30, 15-25, 15-20, 20-100, 20-50, 20-40, 20-30, 20-25, 25-100, 25-50, 25-40, 25-30, 30-100, 30-50, 30-40, 40-100, 40-50, or 50-100 nucleotides in length.
- the additional nucleotide sequence forms a hairpin with the spacer sequence.
- Such secondary structure may increase the specificity of guide nucleic acid or the engineered, non-naturally occurring system (see. Kocak et al. (2019) N AT . B IOTECH . 37: 657-66).
- the free energy change during the hairpin formation is greater than or equal to ⁇ 20 kcal/mol, ⁇ 15 kcal/mol, ⁇ 14 kcal/mol, ⁇ 13 kcal/mol, ⁇ 12 kcal/mol, ⁇ 11 kcal/mol, or ⁇ 10 kcal/mol.
- the free energy change during the hairpin formation is greater than or equal to ⁇ 5 kcal/mol, ⁇ 6 kcal/mol, ⁇ 7 kcal/mol, ⁇ 8 kcal/mol, ⁇ 9 kcal/mol, ⁇ 10 kcal/mol, ⁇ 11 kcal/mol, ⁇ 12 kcal/mol, ⁇ 13 kcal/mol, ⁇ 14 kcal/mol, or ⁇ 15 kcal/mol.
- the free energy change during the hairpin formation is in the range of ⁇ 20 to ⁇ 10 kcal/mol, ⁇ 20 to ⁇ 11 kcal/mol, ⁇ 20 to ⁇ 12 kcal/mol, ⁇ 20 to ⁇ 13 kcal/mol, ⁇ 20 to ⁇ 14 kcal/mol, ⁇ 20 to ⁇ 15 kcal/mol, ⁇ 15 to ⁇ 10 kcal/mol, ⁇ 15 to ⁇ 11 kcal/mol, ⁇ 15 to ⁇ 12 kcal/mol, ⁇ 15 to ⁇ 13 kcal/mol, ⁇ 15 to ⁇ 14 kcal/mol, ⁇ 14 to ⁇ 10 kcal/mol, ⁇ 14 to ⁇ 11 kcal/mol, ⁇ 14 to ⁇ 12 kcal/mol, ⁇ 14 to ⁇ 13 kcal/mol, ⁇ 13 to ⁇ 10 kcal/mol, ⁇ 13 to ⁇ 11 kcal/mol, ⁇ 13 to ⁇ 12 kcal/mol, ⁇ 13 to ⁇
- the modulator nucleic acid further comprises an additional nucleotide sequence 3′ to the modulator stem sequence.
- the additional nucleotide sequence comprises at least 1 (e.g., at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 15, at least 20, at least 25, at least 30, at least 35, at least 40, at least 45, or at least 50) nucleotides.
- the additional nucleotide sequence consists of 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45, or 50 nucleotides.
- the additional nucleotide sequence consists of 1 nucleotide (e.g., uridine).
- the additional nucleotide sequence consists of 2 nucleotides.
- the additional nucleotide sequence is reminiscent to the loop or a fragment thereof (e.g., one, two, three, or four nucleotides at the 5′ end of the loop) in a crRNA of a corresponding single guide CRISPR-Cas system. It is understood that an additional nucleotide sequence 3′ to the modulator stem sequence is dispensable. Accordingly, in certain embodiments, the modulator nucleic acid does not comprise any additional nucleotide 3′ to the modulator stem sequence.
- the additional nucleotide sequence 5′ to the targeter stem sequence and the additional nucleotide sequence 3′ to the modulator stem sequence may interact with each other.
- the nucleotide immediately 5′ to the targeter stem sequence and the nucleotide immediately 3′ to the modulator stem sequence do not form a Watson-Crick base pair (otherwise they would constitute part of the targeter stem sequence and part of the modulator stem sequence, respectively)
- other nucleotides in the additional nucleotide sequence 5′ to the targeter stem sequence and the additional nucleotide sequence 3′ to the modulator stem sequence may form one, two, three, or more base pairs (e.g., Watson-Crick base pairs).
- Such interaction may affect the stability of the complex comprising the targeter nucleic acid and the modulator nucleic acid.
- the stability of a complex comprising a targeter nucleic acid and a modulator nucleic acid can be assessed by the Gibbs free energy change ( ⁇ G) during the formation of the complex, either calculated or actually measured.
- ⁇ G Gibbs free energy change
- RNAfold (ma.tbi.univie.ac.at/cgi-bin/RNAWebSuite/RNAfold.cgi) as disclosed in Gruber et al. (2008) N UCLEIC A CIDS R ES ., 36(Web Server issue): W70-W74. Unless indicated otherwise, the ⁇ G values in the present disclosure are calculated by RNAfold for the formation of a secondary structure within a corresponding single guide nucleic acid.
- the ⁇ G is lower than or equal to ⁇ 1 kcal/mol, e.g., lower than or equal to ⁇ 2 kcal/mol, lower than or equal to ⁇ 3 kcal/mol, lower than or equal to ⁇ 4 kcal/mol, lower than or equal to ⁇ 5 kcal/mol, lower than or equal to ⁇ 6 kcal/mol, lower than or equal to ⁇ 7 kcal/mol, lower than or equal to ⁇ 7.5 kcal/mol, or lower than or equal to ⁇ 8 kcal/mol.
- the ⁇ G is greater than or equal to ⁇ 10 kcal/mol, e.g., greater than or equal to ⁇ 9 kcal/mol, greater than or equal to ⁇ 8.5 kcal/mol, or greater than or equal to ⁇ 8 kcal/mol. In certain embodiments, the ⁇ G is in the range of ⁇ 10 to ⁇ 4 kcal/mol.
- the ⁇ G is in the range of ⁇ 8 to ⁇ 4 kcal/mol, ⁇ 7 to ⁇ 4 kcal/mol, ⁇ 6 to ⁇ 4 kcal/mol, ⁇ 5 to ⁇ 4 kcal/mol, ⁇ 8 to ⁇ 4.5 kcal/mol, ⁇ 7 to ⁇ 4.5 kcal/mol, ⁇ 6 to ⁇ 4.5 kcal/mol, or ⁇ 5 to ⁇ 4.5 kcal/mol.
- the ⁇ G is about ⁇ 8 kcal/mol, ⁇ 7 kcal/mol, ⁇ 6 kcal/mol, ⁇ 5 kcal/mol, ⁇ 4.9 kcal/mol, ⁇ 4.8 kcal/mol, ⁇ 4.7 kcal/mol, ⁇ 4.6 kcal/mol, ⁇ 4.5 kcal/mol, ⁇ 4.4 kcal/mol, ⁇ 4.3 kcal/mol, ⁇ 4.2 kcal/mol, ⁇ 4.1 kcal/mol, or ⁇ 4 kcal/mol.
- the ⁇ G may be affected by a sequence in the targeter nucleic acid that is not within the targeter stem sequence, and/or a sequence in the modulator nucleic acid that is not within the modulator stem sequence.
- one or more base pairs e.g., Watson-Crick base pair
- Watson-Crick base pair may reduce the ⁇ G, i.e., stabilize the nucleic acid complex.
- the nucleotide immediately 5′ to the targeter stem sequence comprises a uracil or is a uridine
- the nucleotide immediately 3′ to the modulator stem sequence comprises a uracil or is a uridine, thereby forming a nonconventional U-U base pair.
- the modulator nucleic acid or the single guide nucleic acid comprises a nucleotide sequence referred to herein as a “5′ tail” positioned 5′ to the modulator stem sequence.
- the 5′ tail is a nucleotide sequence positioned 5′ to the stem-loop structure of the crRNA.
- a 5′ tail in an engineered type V-A CRISPR-Cas system, whether single guide or dual guide, can be reminiscent to the 5′ tail in a corresponding naturally occurring type V-A CRISPR-Cas system.
- the 5′ tail may participate in the formation of the CRISPR-Cas complex.
- the 5′ tail forms a pseudoknot structure with the modulator stem sequence, which is recognized by the Cas protein (see, Yamano et al. (2016) C ELL , 165: 949).
- the 5′ tail is at least 3 (e.g., at least 4 or at least 5) nucleotides in length.
- the 5′ tail is 3, 4, or 5 nucleotides in length.
- the nucleotide at the 3′ end of the 5′ tail comprises a uracil or is a uridine.
- the second nucleotide in the 5′ tail, the position counted from the 3′ end comprises a uracil or is a uridine.
- the third nucleotide in the 5′ tail, the position counted from the 3′ end comprises an adenine or is an adenosine.
- This third nucleotide may form a base pair (e.g., a Watson-Crick base pair) with a nucleotide 5′ to the modulator stem sequence.
- the modulator nucleic acid comprises a uridine or a uracil-containing nucleotide 5′ to the modulator stem sequence.
- the 5′ tail comprises the nucleotide sequence of 5′-AUU-3′. In certain embodiments, the 5′ tail comprises the nucleotide sequence of 5′-AAUU-3′. In certain embodiments, the 5′ tail comprises the nucleotide sequence of 5′-UAAUU-3′. In certain embodiments, the 5′ tail is positioned immediately 5′ to the modulator stem sequence.
- the single guide nucleic acid, the targeter nucleic acid, and/or the modulator nucleic acid are designed to reduce the degree of secondary structure other than the hybridization between the targeter stem sequence and the modulator stem sequence. In certain embodiments, no more than about 75%, 50%, 40%, 30%, 25%, 20%, 15%, 10%, 5%, 1%, or fewer of the nucleotides of the single guide nucleic acid other than the targeter stem sequence and the modulator stem sequence participate in self-complementary base pairing when optimally folded.
- nucleotides of the targeter nucleic acid and/or the modulator nucleic acid participate in self-complementary base pairing when optimally folded.
- Optimal folding may be determined by any suitable polynucleotide folding algorithm. Some programs are based on calculating the minimal Gibbs free energy. An example of one such algorithm is mFold, as described by Zuker and Stiegler (Nucleic Acids Res. 9 (1981), 133-148).
- Another example folding algorithm is the online webserver RNAfold, developed at Institute for Theoretical Chemistry at the University of Vienna, using the centroid structure prediction algorithm (see e.g., A. R. Gruber et al., 2008, Cell 106(1): 23-24: and PA Carr and GM Church, 2009, Nature Biotechnology 27(12): 1151-62).
- the targeter nucleic acid is directed to a specific target nucleotide sequence, and a donor template can be designed to modify the target nucleotide sequence or a sequence nearby. It is understood, therefore, that association of the single guide nucleic acid, the targeter nucleic acid, or the modulator nucleic acid with a donor template can increase editing efficiency and reduce off-targeting. Accordingly, in certain embodiments, the single guide nucleic acid or the modulator nucleic acid further comprises a donor template-recruiting sequence capable of hybridizing with a donor template (see FIG. 2 B ). Donor templates are described in the “Donor Templates” subsection of section II infra. The donor template and donor template-recruiting sequence can be designed such that they bear sequence complementarity.
- the donor template-recruiting sequence is at least 90% (e.g., at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%) complementary to at least a portion of the donor template. In certain embodiments, the donor template-recruiting sequence is 100% complementary to at least a portion of the donor template. In certain embodiments, where the donor template comprises an engineered sequence not homologous to the sequence to be repaired, the donor template-recruiting sequence is capable of hybridizing with the engineered sequence in the donor template.
- the donor template-recruiting sequence is at least 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, or 100 nucleotides in length. In certain embodiments, the donor template-recruiting sequence is positioned at or near the 5′ end of the single guide nucleic acid or at or near the 5′ end of the modulator nucleic acid. In certain embodiments, the donor template-recruiting sequence is linked to the 5′ tail, if present, or to the modulator stem sequence, of the single guide nucleic acid or the modulator nucleic acid through an internucleotide bond or a nucleotide linker.
- the single guide nucleic acid or the modulator nucleic acid further comprises an editing enhancer sequence, which increases the efficiency of gene editing and/or homology-directed repair (HDR) (see FIG. 2 C ).
- HDR homology-directed repair
- Exemplary editing enhancer sequences are described in Park et al. (2016) N AT . C OMMUN . 9: 3313.
- the editing enhancer sequence is positioned 5′ to the 5′ tail, if present, or 5′ to the single guide nucleic acid or the modulator stem sequence.
- the editing enhancer sequence is 1-50, 4-50, 9-50, 15-50, 25-50, 1-25, 4-25, 9-25, 15-25, 1-15, 4-15, 9-15, 1-9, 4-9, or 1-4 nucleotides in length. In certain embodiments, the editing enhancer sequence is about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45, 50, or 55 nucleotides in length.
- the editing enhancer sequence is designed to minimize homology to the target nucleotide sequence or any other sequence that the engineered, non-naturally occurring system may be contacted to, e.g., the genome sequence of a cell into which the engineered, non-naturally occurring system is delivered. In certain embodiments, the editing enhancer is designed to minimize the presence of hairpin structure.
- the editing enhancer can comprise one or more of the chemical modifications disclosed herein.
- the single guide nucleic acid, the modulator nucleic acid, and/or the targeter nucleic acid can further comprise a protective nucleotide sequence that prevents or reduces nucleic acid degradation.
- the protective nucleotide sequence is at least 5 (e.g., at least 10, at least 15, at least 20, at least 25, at least 30, at least 35, at least 40, at least 45, or at least 50) nucleotides in length.
- the length of the protective nucleotide sequence increases the time for an exonuclease to reach the 5′ tail, modulator stem sequence, targeter stem sequence, and/or spacer sequence, thereby protecting these portions of the single guide nucleic acid, the modulator nucleic acid, and/or the targeter nucleic acid from degradation by an exonuclease.
- the protective nucleotide sequence forms a secondary structure, such as a hairpin or a tRNA structure, to reduce the speed of degradation by an exonuclease (see, for example, Wu et al. (2016) C ELL . M OL . L IFE S CI ., 75(19): 3593-3607).
- a protective nucleotide sequence is typically located at the 5′ or 3′ end of the single guide nucleic acid, the modulator nucleic acid, and/or the targeter nucleic acid.
- the single guide nucleic acid comprises a protective nucleotide sequence at the 5′ end, at the 3′ end, or at both ends, optionally through a nucleotide linker.
- the modulator nucleic acid comprises a protective nucleotide sequence at the 5′ end, at the 3′ end, or at both ends, optionally through a nucleotide linker.
- the modulator nucleic acid comprises a protective nucleotide sequence at the 5′ end (see FIG. 2 A ).
- the targeter nucleic acid comprises a protective nucleotide sequence at the 5′ end, at the 3′ end, or at both ends, optionally through a nucleotide linker.
- nucleotide sequences can be present in the 5′ portion of a single nucleic acid or a modulator nucleic acid, including but not limited to a donor template-recruiting sequence, an editing enhancer sequence, a protective nucleotide sequence, and a linker connecting such sequence to the 5′ tail, if present, or to the modulator stem sequence. It is understood that the functions of donor template recruitment, editing enhancement, protection against degradation, and linkage are not exclusive to each other, and one nucleotide sequence can have one or more of such functions.
- the single guide nucleic acid or the modulator nucleic acid comprises a nucleotide sequence that is both a donor template-recruiting sequence and an editing enhancer sequence.
- the single guide nucleic acid or the modulator nucleic acid comprises a nucleotide sequence that is both a donor template-recruiting sequence and a protective sequence.
- the single guide nucleic acid or the modulator nucleic acid comprises a nucleotide sequence that is both an editing enhancer sequence and a protective sequence.
- the single guide nucleic acid or the modulator nucleic acid comprises a nucleotide sequence that is a donor template-recruiting sequence, an editing enhancer sequence, and a protective sequence.
- the nucleotide sequence 5′ to the 5′ tail, if present, or 5′ to the modulator stem sequence is 1-90, 1-80, 1-70, 1-60, 1-50, 1-40, 1-30, 1-20, 1-10, 10-90, 10-80, 10-70, 10-60, 10-50, 10-40, 10-30, 10-20, 20-90, 20-80, 20-70, 20-60, 20-50, 20-40, 20-30, 30-90, 30-80, 30-70, 30-60, 30-50, 30-40, 40-90, 40-80, 40-70, 40-60, 40-50, 50-90, 50-80, 50-70, 50-60, 60-90, 60-80, 60-70, 70-90, 70-80, or 80-90 nucleotides in length.
- the engineered, non-naturally occurring system further comprises one or more compounds (e.g., small molecule compounds) that enhance HDR and/or inhibit NHEJ.
- compounds e.g., small molecule compounds
- Exemplary compounds having such functions are described in Maruyama et al. (2015) N AT B IOTECHNOL . 33(5): 538-42; Chu et al. (2015) N AT B IOTECHNOL . 33(5): 543-48; Yu et al. (2015) C ELL S TEM C ELL 16(2): 142-47; Pinder et al. (2015) N UCLEIC A CIDS R ES . 43(19): 9379-92; and Yagiz et al. (2019) C OMMUN . B IOL . 2: 198.
- the engineered, non-naturally occurring system further comprises one or more compounds selected from the group consisting of DNA ligase IV antagonists (e.g., SCR7 compound, Ad4 EIB55K protein, and Ad4 E4orf6 protein), RAD51 agonists (e.g., RS-1), DNA-dependent protein kinase (DNA-PK) antagonists (e.g., NU7441 and KU0060648), ⁇ 3-adrenergic receptor agonists (e.g., L755507), inhibitors of intracellular protein transport from the ER to the Golgi apparatus (e.g., brefeldin A), and any combinations thereof.
- DNA ligase IV antagonists e.g., SCR7 compound, Ad4 EIB55K protein, and Ad4 E4orf6 protein
- RAD51 agonists e.g., RS-1
- DNA-PK DNA-dependent protein kinase
- ⁇ 3-adrenergic receptor agonists
- the engineered, non-naturally occurring system comprising a targeter nucleic acid and a modulator nucleic acid is tunable or inducible.
- the targeter nucleic acid, the modulator nucleic acid, and/or the Cas protein can be introduced to the target nucleotide sequence at different times, the system becoming active only when all components are present.
- the amounts of the targeter nucleic acid, the modulator nucleic acid, and/or the Cas protein can be titrated to achieve desired efficiency and specificity.
- excess amount of a nucleic acid comprising the targeter stem sequence or the modulator stem sequence can be added to the system, thereby dissociating the complex of the targeter nucleic and modulator nucleic acid and turning off the system.
- the guide nucleic acids disclosed herein may comprise a DNA (e.g., modified DNA), an RNA (e.g., modified RNA), or a combination thereof.
- the single guide nucleic acid comprises a DNA (e.g., modified DNA), an RNA (e.g., modified RNA), or a combination thereof.
- the targeter nucleic acid comprises a DNA (e.g., modified DNA), an RNA (e.g., modified RNA), or a combination thereof.
- the modulator nucleic acid comprises a DNA (e.g., modified DNA), an RNA (e.g., modified RNA), or a combination thereof.
- the spacer sequences disclosed herein are presented as DNA sequences by including thymidines (T) rather than uridines (U). It is understood that corresponding RNA sequences and DNA/RNA chimeric sequences are also contemplated.
- T thymidines
- U uridines
- the single guide nucleic acid is an RNA.
- a single guide nucleic acid in the form of an RNA is also called a single guide RNA.
- the targeter nucleic acid is an RNA and the modulator nucleic acid is an RNA.
- a targeter nucleic acid in the form of an RNA is also called targeter RNA, and a modulator nucleic acid in the form of an RNA is also called modulator RNA.
- the single guide nucleic acid, the targeter nucleic acid, and/or the modulator nucleic acid are RNAs with one or more modifications in a ribose group, one or more modifications in a phosphate group, one or more modifications in a nucleobase, one or more terminal modifications, or a combination thereof.
- Exemplary modifications are disclosed in U.S. Patent Application Publication Nos. 2016/0289675, 2017/0355985, 2018/0119140. Watts et al. (2008) Drug Discov. Today 13: 842-55, and Hendel et al. (2015) N AT . B IOTECHNOL . 33: 985.
- Modifications in a ribose group include but are not limited to modifications at the 2′ position or modifications at the 4′ position.
- the ribose comprises 2′-O-C1-4alkyl, such as 2′-O-methyl (2′-OMe).
- the ribose comprises 2′-O-C1-3alkyl-O-C1-3alkyl, such as 2′-methoxyethoxy (2′-O—CH 2 CH 2 OCH 3 ) also known as 2′-O-(2-methoxyethyl) or 2′-MOE.
- the ribose comprises 2′-O-allyl.
- the ribose comprises 2′-O-2,4-Dinitrophenol (DNP).
- the ribose comprises 2′-halo, such as 2′-F, 2′-Br, 2′-Cl, or 2′-I.
- the ribose comprises 2′-NH 2 .
- the ribose comprises 2′-H (e.g., a deoxynucleotide).
- the ribose comprises 2′-arabino or 2′-F-arabino.
- the ribose comprises 2′-LNA or 2′-ULNA.
- the ribose comprises a 4′-thioribosyl.
- Modifications in a phosphate group include but are not limited to a phosphorothioate internucleotide linkage, a chiral phosphorothioate internucleotide linkage, a phosphorodithioate internucleotide linkage, a boranophosphonate internucleotide linkage, a C 1-4 alkyl phosphonate internucleotide linkage such as a methylphosphonate internucleotide linkage, a boranophosphonate internucleotide linkage, a phosphonocarboxylate internucleotide linkage such as a phosphonoacetate internucleotide linkage, a phosphonocarboxylate ester internucleotide linkage such as a phosphonoacetate ester internucleotide linkage, an amide linkage, a thiophosphonocarboxylate internucleotide linkage such as a thiophospho
- Modifications in a nucleobase include but are not limited to 2-thiouracil, 2-thiocytosine, 4-thiouracil, 6-thioguanine, 2-aminoadenine, 2-aminopurine, pseudouracil, hypoxanthine, 7-deazaguanine, 7-deaza-8-azaguanine, 7-deazaadenine, 7-deaza-8-azaadenine, 5-methylcytosine, 5-methyluracil, 5-hydroxymethylcytosine, 5-hydroxymethyluracil, 5,6-dihydrouracil, 5-propynylcytosine, 5-propynyluracil, 5-ethynylcytosine, 5-ethynyluracil, 5-allyluracil, 5-allylcytosine, 5-aminoallyluracil, 5-aminoallyl-cytosine, 5-bromouracil, 5-iodouracil, diaminopurine, difluorotoluene, dihydrour
- Terminal modifications include but are not limited to polyethyleneglycol (PEG), hydrocarbon linkers (such as heteroatom (O,S,N)-substituted hydrocarbon spacers; halo-substituted hydrocarbon spacers; keto-, carboxyl-, amido-, thionyl-, carbamoyl-, thionocarbamaoyl-containing hydrocarbon spacers), spermine linkers, dyes such as fluorescent dyes (for example, fluoresceins, rhodamines, cyanines), quenchers (for example, dabcyl, BHQ), and other labels (for example biotin, digoxigenin, acridine, streptavidin, avidin, peptides and/or proteins).
- PEG polyethyleneglycol
- hydrocarbon linkers such as heteroatom (O,S,N)-substituted hydrocarbon spacers; halo-substituted hydrocarbon spacers; keto-, carboxyl-,
- a terminal modification comprises a conjugation (or ligation) of the RNA to another molecule comprising an oligonucleotide (such as deoxyribonucleotides and/or ribonucleotides), a peptide, a protein, a sugar, an oligosaccharide, a steroid, a lipid, a folic acid, a vitamin and/or other molecule.
- an oligonucleotide such as deoxyribonucleotides and/or ribonucleotides
- a terminal modification incorporated into the RNA is located internally in the RNA sequence via a linker such as 2-(4-butylamidofluorescein)propane-1,3-diol bis(phosphodiester) linker, which is incorporated as a phosphodiester linkage and can be incorporated anywhere between two nucleotides in the RNA.
- a linker such as 2-(4-butylamidofluorescein)propane-1,3-diol bis(phosphodiester) linker, which is incorporated as a phosphodiester linkage and can be incorporated anywhere between two nucleotides in the RNA.
- the modifications disclosed above can be combined in the single guide RNA, the targeter RNA, and/or the modulator RNA.
- the modification in the RNA is selected from the group consisting of incorporation of 2′-O-methyl-3′phosphorothioate, 2′-O-methyl-3′-phosphonoacetate, 2′-O-methyl-3′-thiophosphonoacetate, 2′-halo-3′-phosphorothioate (e.g., 2′-fluoro-3′-phosphorothioate), 2′-halo-3′-phosphonoacetate (e.g., 2′-fluoro-3′-phosphonoacetate), and 2′-halo-3′-thiophosphonoacetate (e.g., 2′-fluoro-3′-thiophosphonoacetate).
- the modification alters the stability of the RNA.
- the modification enhances the stability of the RNA, e.g., by increasing nuclease resistance of the RNA relative to a corresponding RNA without the modification.
- Stability-enhancing modifications include but are not limited to incorporation of 2′-O-methyl, a 2′-O—C 1-4 alkyl, 2′-halo (e.g., 2′-F, 2′-Br, 2′-Cl, or 2′-I), 2′MOE, a 2′-O—C 1-3 alkyl-O—C 1-3 alkyl, 2′-NH 2 , 2′-H (or 2′-deoxy), 2′-arabino, 2′-F-arabino, 4′-thioribosyl sugar moiety, 3′-phosphorothioate, 3′-phosphonoacetate, 3′-thiophosphonoacetate, 3′-methylphosphonate, 3′-boranophosphate,
- the modification alters the specificity of the engineered, non-naturally occurring system.
- the modification enhances the specification of the engineered, non-naturally occurring system, e.g., by enhancing on-target binding and/or cleavage, or reducing off-target binding and/or cleavage, or a combination thereof.
- Specificity-enhancing modifications include but are not limited to 2-thiouracil, 2-thiocytosine, 4-thiouracil, 6-thioguanine, 2-aminoadenine, and pseudouracil.
- the modification alters the immunostimulatory effect of the RNA relative to a corresponding RNA without the modification.
- the modification reduces the ability of the RNA to activate TLR7, TLR8, TLR9, TLR3, RIG-I, and/or MDA5.
- the single guide nucleic acid, the targeter nucleic acid, and/or the modulator nucleic acid comprise at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, or 40 modified nucleotides.
- the modification can be made at one or more positions in the single guide nucleic acid, the targeter nucleic acid, and/or the modulator nucleic acid such that these nucleic acids retain functionality.
- the modified nucleic acids can still direct the Cas protein to the target nucleotide sequence and allow the Cas protein to exert its effector function.
- the particular modification(s) at a position may be selected based on the functionality of the nucleotide at the position.
- a specificity-enhancing modification may be suitable for a nucleotide in the spacer sequence, the targeter stem sequence, or the modulator stem sequence.
- a stability-enhancing modification may be suitable for one or more terminal nucleotides in the single guide nucleic acid, the targeter nucleic acid, and/or the modulator nucleic acid.
- At least 1 e.g., at least 2, at least 3, at least 4, or at least 5 terminal nucleotides at the 5′ end and/or at least 1 (e.g., at least 2, at least 3, at least 4, or at least 5) terminal nucleotides at the 3′ end of the single guide nucleic acid are modified nucleotides.
- 5 or fewer (e.g., 1 or fewer, 2 or fewer, 3 or fewer, or 4 or fewer) terminal nucleotides at the 5′ end and/or 5 or fewer (e.g., 1 or fewer, 2 or fewer, 3 or fewer, or 4 or fewer) terminal nucleotides at the 3′ end of the single guide nucleic acid are modified nucleotides.
- At least 1 e.g., at least 2, at least 3, at least 4, or at least 5 terminal nucleotides at the 5′ end and/or at least 1 (e.g., at least 2, at least 3, at least 4, or at least 5) terminal nucleotides at the 3′ end of the targeter nucleic acid are modified nucleotides.
- 5 or fewer (e.g., 1 or fewer, 2 or fewer, 3 or fewer, or 4 or fewer) terminal nucleotides at the 5′ end and/or 5 or fewer (e.g., 1 or fewer, 2 or fewer, 3 or fewer, or 4 or fewer) terminal nucleotides at the 3′ end of the targeter nucleic acid are modified nucleotides.
- At least 1 e.g., at least 2, at least 3, at least 4, or at least 5 terminal nucleotides at the 5′ end and/or at least 1 (e.g., at least 2, at least 3, at least 4, or at least 5) terminal nucleotides at the 3′ end of the modulator nucleic acid are modified nucleotides.
- 5 or fewer (e.g., 1 or fewer, 2 or fewer, 3 or fewer, or 4 or fewer) terminal nucleotides at the 5′ end and/or 5 or fewer (e.g., 1 or fewer, 2 or fewer, 3 or fewer, or 4 or fewer) terminal nucleotides at the 3′ end of the modulator nucleic acid are modified nucleotides. Selection of positions for modifications is described in U.S. Patent Application Publication Nos. 2016/0289675 and 2017/0355985.
- the targeter or modulator nucleic acid is a combination of DNA and RNA
- the nucleic acid as a whole is considered as an RNA
- the DNA nucleotide(s) are considered as modification(s) of the RNA, including a 2′-H modification of the ribose and optionally a modification of the nucleobase.
- targeter nucleic acid and the modulator nucleic acid while not in the same nucleic acids, i.e., not linked end-to-end through a traditional internucleotide bond, can be covalently conjugated to each other through one or more chemical modifications introduced into these nucleic acids, thereby increasing the stability of the double-stranded complex and/or improving other characteristics of the system.
- an engineered, non-naturally occurring system disclosed herein are useful for targeting, editing, and/or modifying a target nucleic acid, such as a DNA (e.g., genomic DNA) in a cell or organism.
- a target nucleic acid such as a DNA (e.g., genomic DNA) in a cell or organism.
- a target nucleic acid such as a DNA (e.g., genomic DNA) in a cell or organism.
- a target nucleic acid such as a DNA (e.g., genomic DNA) in a cell or organism.
- a target nucleic acid such as a DNA (e.g., genomic DNA) in a cell or organism.
- a target gene e.g., genomic DNA
- an engineered, non-naturally occurring system disclosed herein that comprises a guide nucleic acid comprising a corresponding spacer sequence, when delivered into a population of human cells (e.g., Jurkat cells) ex vivo, edits the genomic sequence at the loc
- the present invention provides a method of cleaving a target nucleic acid (e.g., DNA) comprising the sequence of a preselected target gene or a portion thereof, the method comprising contacting the target DNA with an engineered, non-naturally occurring system disclosed herein, thereby resulting in cleavage of the target DNA.
- a target nucleic acid e.g., DNA
- the present invention provides a method of binding a target nucleic acid (e.g., DNA) comprising the sequence of a preselected target gene or a portion thereof, the method comprising contacting the target DNA with an engineered, non-naturally occurring system disclosed herein, thereby resulting in binding of the system to the target DNA.
- a target nucleic acid e.g., DNA
- This method is useful for detecting the presence and/or location of the preselected target gene, for example, if a component of the system (e.g., the Cas protein) comprises a detectable marker.
- the present invention provides a method of modifying a target nucleic acid (e.g., DNA) comprising the sequence of a preselected target gene or a portion thereof, or a structure (e.g., protein) associated with the target DNA (e.g., a histone protein in a chromosome), the method comprising contacting the target DNA with an engineered, non-naturally occurring system disclosed herein, wherein the Cas protein comprises an effector domain or is associated with an effector protein, thereby resulting in modification of the target DNA or the structure associated with the target DNA.
- the modification corresponds to the function of the effector domain or effector protein. Exemplary functions described in the “Cas Proteins” subsection in Section 1 supra are applicable hereto.
- the method comprises contacting the target nucleic acid with a CRISPR-Cas complex comprising a targeter nucleic acid, a modulator nucleic acid, and a Cas protein disclosed herein.
- the Cas protein is a type V-A, type V-C, or type V-D Cas protein (e.g., Cas nuclease).
- the Cas protein is a type V-A Cas protein (e.g., Cas nuclease).
- the preselected target genes include human ADORA2A, B2M, CD52, CIITA, CTLA4, DCK, FAS, HAVCR2, LAG3, PDCD1, PTPN6, TIGIT, TRAC, TRBC1, TRBC2, CARD11, CD247, IL7R, LCK, and PLCG1 genes. Accordingly, the present invention also provides a method of editing a human genomic sequence at one of these preselected target gene loci, the method comprising delivering the engineered, non-naturally occurring system disclosed herein into a human cell, thereby resulting in editing of the genomic sequence at the target gene locus in the human cell.
- the present invention provides a method of detecting a human genomic sequence at one of these preselected target gene loci, the method comprising delivering the engineered, non-naturally occurring system disclosed herein into a human cell, wherein a component of the system (e.g., the Cas protein) comprises a detectable marker, thereby detecting the target gene locus in the human cell.
- a component of the system e.g., the Cas protein
- the present invention provides a method of modifying a human chromosome at one of these preselected target gene loci, the method comprising delivering the engineered, non-naturally occurring system disclosed herein into a human cell, wherein the Cas protein comprises an effector domain or is associated with an effector protein, thereby resulting in modification of the chromosome at the target gene locus in the human cell.
- the CRISPR-Cas complex may be delivered to a cell by introducing a pre-formed ribonucleoprotein (RNP) complex into the cell.
- RNP ribonucleoprotein
- one or more components of the CRISPR-Cas complex may be expressed in the cell.
- Exemplary methods of delivery are known in the art and described in, for example, U.S. Pat. Nos. 10,113,167 and 8,697,359 and U.S. Patent Application Publication Nos. 2015/0344912, 2018/0044700, 2018/0003696, 2018/0119140, 2017/0107539, 2018/0282763, and 2018/0363009.
- contacting a DNA (e.g., genomic DNA) in a cell with a CRISPR-Cas complex does not require delivery of all components of the complex into the cell.
- a DNA e.g., genomic DNA
- one or more of the components may be pre-existing in the cell.
- the cell (or a parental/ancestral cell thereof) has been engineered to express the Cas protein, and the single guide nucleic acid (or a nucleic acid comprising a regulatory element operably linked to a nucleotide sequence encoding the single guide nucleic acid), the targeter nucleic acid (or a nucleic acid comprising a regulatory element operably linked to a nucleotide sequence encoding the targeter nucleic acid), and/or the modulator nucleic acid (or a nucleic acid comprising a regulatory element operably linked to a nucleotide sequence encoding the modulator nucleic acid) are delivered into the cell.
- the single guide nucleic acid or a nucleic acid comprising a regulatory element operably linked to a nucleotide sequence encoding the single guide nucleic acid
- the targeter nucleic acid or a nucleic acid comprising a regulatory element operably linked to a nucleotide sequence encoding the targeter nucleic
- the cell (or a parental/ancestral cell thereof) has been engineered to express the modulator nucleic acid, and the Cas protein (or a nucleic acid comprising a regulatory element operably linked to a nucleotide sequence encoding the Cas protein) and the targeter nucleic acid (or a nucleic acid comprising a regulatory element operably linked to a nucleotide sequence encoding the targeter nucleic acid) are delivered into the cell.
- the Cas protein or a nucleic acid comprising a regulatory element operably linked to a nucleotide sequence encoding the Cas protein
- the targeter nucleic acid or a nucleic acid comprising a regulatory element operably linked to a nucleotide sequence encoding the targeter nucleic acid
- the cell (or a parental/ancestral cell thereof) has been engineered to express the Cas protein and the modulator nucleic acid, and the targeter nucleic acid (or a nucleic acid comprising a regulatory element operably linked to a nucleotide sequence encoding the targeter nucleic acid) is delivered into the cell.
- the target DNA is in the genome of a target cell.
- the present invention also provides a cell comprising the non-naturally occurring system or a CRISPR expression system described herein.
- the present invention provides a cell whose genome has been modified by the CRISPR-Cas system or complex disclosed herein.
- the target cells can be mitotic or post-mitotic cells from any organism, such as a bacterial cell, an archaeal cell, a cell of a single-cell eukaryotic organism, a plant cell, an algal cell, e.g., Botryococcus braunii, Chlamydomonas reinhardtii, Nannochloropsis gaditana, Chlorella pyrenoidosa, Sargassum patens C. agardh , and the like, a fungal cell (e.g., a yeast cell), an animal cell, a cell from an invertebrate animal (e.g.
- fruit fly enidarian, echinoderm, nematode, etc.
- a cell from a vertebrate animal e.g., fish, amphibian, reptile, bird, mammal
- a cell from a mammal e.g., a cell from a rodent, or a cell from a human.
- target cells include but are not limited to a stem cell (e.g., an embryonic stem (ES) cell, an induced pluripotent stem (iPS) cell, a germ cell), a somatic cell (e.g., a fibroblast, a hematopoietic cell, a T lymphocyte (e.g., CD8 + T lymphocyte), an NK cell, a neuron, a muscle cell, a bone cell, a hepatocyte, a pancreatic cell), an in vitro or in vivo embryonic cell of an embryo at any stage (e.g., a 1-cell, 2-cell, 4-cell, 8-cell; stage zebrafish embryo).
- a stem cell e.g., an embryonic stem (ES) cell, an induced pluripotent stem (iPS) cell, a germ cell
- a somatic cell e.g., a fibroblast, a hematopoietic cell, a T lymphocyte (e.g., CD8
- Cells may be from established cell lines or may be primary cells (i.e., cells and cells cultures that have been derived from a subject and allowed to grow in vitro for a limited number of passages of the culture).
- primary cultures are cultures that may have been passaged within 0 times, 1 time, 2 times, 4 times, 5 times, 10 times, or 15 times, but not enough times to go through the crisis stage.
- the primary cell lines of the present invention are maintained for fewer than 10 passages in vitro. If the cells are primary cells, they may be harvest from an individual by any suitable method.
- leukocytes may be harvested by apheresis, leukocytapheresis, or density gradient separation, while cells from tissues such as skin, muscle, bone marrow, spleen, liver, pancreas, lung, intestine, or stomach can be harvested by biopsy.
- the harvested cells may be used immediately, or may be stored under frozen conditions with a cryopreservative and thawed at a later time in a manner as commonly known in the art.
- RNP Ribonucleoprotein
- Cas RNA Delivery
- the engineered, non-naturally occurring system disclosed herein can be delivered into a cell by suitable methods known in the art, including but not limited to ribonucleoprotein (RNP) delivery and “Cas RNA” delivery described below.
- RNP ribonucleoprotein
- Cas RNA RNA
- a CRISPR-Cas system including a single guide nucleic acid and a Cas protein or a CRISPR-Cas system including a targeter nucleic acid, a modulator nucleic acid, and a Cas protein, can be combined into a RNP complex and then delivered into the cell as a pre-formed complex.
- This method is suitable for active modification of the genetic or epigenetic information in a cell during a limited time period.
- the Cas protein has nuclease activity to modify the genomic DNA of the cell, the nuclease activity only needs to be retained for a period of time to allow DNA cleavage, and prolonged nuclease activity may increase off-targeting.
- certain epigenetic modifications can be maintained in a cell once established and can be inherited by daughter cells.
- a “nucleoprotein” as provided herein refers to a protein capable of binding a nucleic acid (e.g., RNA, DNA). Where the nucleoprotein binds a ribonucleic acid it is referred to as “ribonucleoprotein.”
- the interaction between the ribonucleoprotein and the ribonucleic acid may be direct, e.g., by covalent bond, or indirect, e.g., by non-covalent bond (e.g. electrostatic interactions (e.g.
- the ribonucleoprotein includes an RNA-binding motif non-covalently bound to the ribonucleic acid.
- positively charged aromatic amino acid residues e.g., lysine residues
- the RNA-binding motif may form electrostatic interactions with the negative nucleic acid phosphate backbones of the RNA.
- the single guide nucleic acid, or the combination of the targeter nucleic acid and the modulator nucleic acid can be provided in excess molar amount (e.g., about 2 fold, about 3 fold, about 4 fold, or about 5 fold) relative to the Cas protein.
- the targeter nucleic acid and the modulator nucleic acid are annealed under suitable conditions prior to complexing with the Cas protein.
- the targeter nucleic acid, the modulator nucleic acid, and the Cas protein are directly mixed together to form an RNP.
- a variety of delivery methods can be used to introduce an RNP disclosed herein into a cell.
- exemplary delivery methods or vehicles include but are not limited to microinjection, liposomes (see, e.g., U.S. Patent Publication No. 2017/0107539) such as molecular trojan horses liposomes that delivers molecules across the blood brain barrier (see, Pardridge et al. (2010) C OLD S PRING H ARB .
- the dual guide CRISPR-Cas system is delivered into a cell in a “Cas RNA” approach, i.e., delivering (a) a single guide nucleic acid, or a combination of a targeter nucleic acid and a modulator nucleic acid, and (b) an RNA (e.g., messenger RNA (mRNA)) encoding a Cas protein.
- RNA e.g., messenger RNA (mRNA)
- the RNA encoding the Cas protein can be translated in the cell and form a complex with the single guide nucleic acid or combination of the targeter nucleic acid and the modulator nucleic acid intracellularly.
- RNAs Similar to the RNP approach, RNAs have limited half-lives in cells, even though stability-increasing modification(s) can be made in one or more of the RNAs. Accordingly, the “Cas RNA” approach is suitable for active modification of the genetic or epigenetic information in a cell during a limited time period, such as DNA cleavage, and has the advantage of reducing off-targeting.
- the mRNA can be produced by transcription of a DNA comprising a regulatory element operably linked to a Cas coding sequence.
- the targeter nucleic acid and the modulator nucleic acid are generally provided in excess molar amount (e.g., at least 5 fold, at least 10 fold, at least 20 fold, at least 30 fold, at least 50 fold, or at least 100 fold) relative to the mRNA.
- the targeter nucleic acid and the modulator nucleic acid are annealed under suitable conditions prior to delivery into the cells.
- the targeter nucleic acid and the modulator nucleic acid are delivered into the cells without annealing in vitro.
- Non-limiting examples of delivery methods or vehicles include microinjection, biolistic particles, liposomes (see, e.g., U.S. Patent Publication No. 2017/0107539) such as molecular trojan horses liposomes that delivers molecules across the blood brain barrier (see, Pardridge et al. (2010) C OLD S PRING H ARB . P ROTC ., doi:10.1101/pdb.prot5407), immunoliposomes, virosomes, polycations, lipid:nucleic acid conjugates, electroporation, nanoparticles, nanowires (see, Shalek et al.
- the CRISPR-Cas system is delivered into a cell in the form of (a) a single guide nucleic acid or a combination of a targeter nucleic acid and a modulator nucleic acid, and (b) a DNA comprising a regulatory element operably linked to a Cas coding sequence.
- the DNA can be provided in a plasmid, viral vector, or any other form described in the “CRISPR Expression Systems” subsection.
- Such delivery method may result in constitutive expression of Cas protein in the target cell (e.g., if the DNA is maintained in the cell in an episomal vector or is integrated into the genome), and may increase the risk of off-targeting which is undesirable when the Cas protein has nuclease activity.
- this approach is useful when the Cas protein comprises a non-nuclease effector (e.g., a transcriptional activator or repressor). It is also useful for research purposes and for genome editing of plants.
- the present invention also provides a nucleic acid comprising a regulatory element operably linked to a nucleotide sequence encoding a guide nucleic acid disclosed herein.
- the nucleic acid comprises a regulatory element operably linked to a nucleotide sequence encoding a single guide nucleic acid disclosed herein; this nucleic acid alone can constitute a CRISPR expression system.
- the nucleic acid comprises a regulatory element operably linked to a nucleotide sequence encoding a targeter nucleic acid disclosed herein.
- the nucleic acid further comprises a nucleotide sequence encoding a modulator nucleic acid disclosed herein, wherein the nucleotide sequence encoding the modulator nucleic acid is operably linked to the same regulatory element as the nucleotide sequence encoding the targeter nucleic acid or a different regulatory element; this nucleic acid alone can constitute a CRISPR expression system.
- the present invention provides a CRISPR expression system comprising: (a) a nucleic acid comprising a first regulatory element operably linked to a nucleotide sequence encoding a targeter nucleic acid disclosed herein and (b) a nucleic acid comprising a second regulatory element operably linked to a nucleotide sequence encoding a modulator nucleic acid disclosed herein.
- the CRISPR expression system disclosed herein further comprises a nucleic acid comprising a third regulatory element operably linked to a nucleotide sequence encoding a Cas protein disclosed herein.
- the Cas protein is a type V-A, type V-C, or type V-D Cas protein (e.g., Cas nuclease).
- the Cas protein is a type V-A Cas protein (e.g., Cas nuclease).
- operably linked is intended to mean that the nucleotide sequence of interest is linked to the regulatory element in a manner that allows for expression of the nucleotide sequence (e.g., in an in vitro transcription/translation system or in a host cell when the vector is introduced into the host cell).
- the nucleic acids of the CRISPR expression system described above may be independently selected from various nucleic acids such as DNA (e.g., modified DNA) and RNA (e.g., modified RNA).
- the nucleic acids comprising a regulatory element operably linked to one or more nucleotide sequences encoding the guide nucleic acids are in the form of DNA.
- the nucleic acid comprising a third regulatory element operably linked to a nucleotide sequence encoding the Cas protein is in the form of DNA.
- the third regulatory element can be a constitutive or inducible promoter that drives the expression of the Cas protein.
- the nucleic acid comprising a third regulatory element operably linked to a nucleotide sequence encoding the Cas protein is in the form of RNA (e.g., mRNA).
- the nucleic acids of the CRISPR expression system can be provided in one or more vectors.
- vector refers to a nucleic acid molecule capable of transporting another nucleic acid to which it has been linked.
- Conventional viral and non-viral based gene transfer methods can be used to introduce nucleic acids in cells, such as prokaryotic cells, eukaryotic cells, mammalian cells, or target tissues.
- Non-viral vector delivery systems include DNA plasmids, RNA (e.g. a transcript of a vector described herein), naked nucleic acid, and nucleic acid complexed with a delivery vehicle, such as a liposome.
- Viral vector delivery systems include DNA and RNA viruses, which have either episomal or integrated genomes after delivery to the cell.
- Gene therapy procedures are known in the art and disclosed in Van Brunt (1988) B IOTECHNOLOGY , 6: 1149; Anderson (1992) S CIENCE , 256: 808; Nabel & Feigner (1993) TIBTECH, 11: 211; Mitani & Caskey (1993) TIBTECH, 11: 162; Dillon (1993) TIBTECH, 11: 167; Miller (1992) N ATURE , 357: 455; Vigne, (1995) R ESTORATIVE N EUROLOGY AND N EUROSCIENCE , 8: 35; Kremer & Perricaudet (1995) B RITISH M EDICAL B ULLETIN , 51: 31; Haddada et al.
- At least one of the vectors is a DNA plasmid.
- at least one of the vectors is a viral vector (e.g., retrovirus, adenovirus, or adeno-associated virus).
- vectors are capable of autonomous replication in a host cell into which they are introduced (e.g., bacterial vectors having a bacterial origin of replication and episomal mammalian vectors). Other vectors (e.g., non-episomal mammalian vectors and replication defective viral vectors) do not autonomously replicate in the host cell. Certain vectors, however, may be integrated into the genome of the host cell and thereby are replicated along with the host genome. A skilled person in the art will appreciate that different vectors may be suitable for different delivery methods and have different host tropism, and will be able to select one or more vectors suitable for the use.
- regulatory element refers to a transcriptional and/or translational control sequence, such as a promoter, enhancer, transcription termination signal (e.g., polyadenylation signal), internal ribosomal entry sites (IRES), protein degradation signal, and the like, that provide for and/or regulate transcription of a non-coding sequence (e.g., a targeter nucleic acid or a modulator nucleic acid) or a coding sequence (e.g., a Cas protein) and/or regulate translation of an encoded polypeptide.
- a transcriptional and/or translational control sequence such as a promoter, enhancer, transcription termination signal (e.g., polyadenylation signal), internal ribosomal entry sites (IRES), protein degradation signal, and the like, that provide for and/or regulate transcription of a non-coding sequence (e.g., a targeter nucleic acid or a modulator nucleic acid) or a coding sequence (e.g., a Cas protein) and/or regulate translation
- Regulatory elements include those that direct constitutive expression of a nucleotide sequence in many types of host cell and those that direct expression of the nucleotide sequence only in certain host cells (e.g., tissue-specific regulatory sequences).
- tissue-specific regulatory sequences may direct expression primarily in a desired tissue of interest, such as muscle, neuron, bone, skin, blood, specific organs (e.g., liver, pancreas), or particular cell types (e.g., lymphocytes).
- a vector comprises one or more pol III promoter (e. g., 1, 2, 3, 4, 5, or more pol III promoters), one or more pol II promoters (e.g., 1, 2, 3, 4, 5, or more pol II promoters), one or more pol I promoters (e.g., 1, 2, 3, 4, 5, or more pol I promoters), or combinations thereof.
- pol III promoters include, but are not limited to, U6 and H1 promoters.
- pol II promoters include, but are not limited to, the retroviral Rous sarcoma virus (RSV) LTR promoter (optionally with the RSV enhancer), the cytomegalovirus (CMV) promoter (optionally with the CMV enhancer), the SV40 promoter, the dihydrofolate reductase promoter, the ⁇ -actin promoter, the phosphoglycerol kinase (PGK) promoter, and the EF1 ⁇ promoter.
- RSV Rous sarcoma virus
- CMV cytomegalovirus
- SV40 promoter the dihydrofolate reductase promoter
- ⁇ -actin promoter the phosphoglycerol kinase (PGK) promoter
- PGK phosphoglycerol kinase
- a vector can be introduced into host cells to produce transcripts, proteins, or peptides, including fusion proteins or peptides, encoded by nucleic acids as described herein (e.g., CRISPR transcripts, proteins, enzymes, mutant forms thereof, or fusion proteins thereof).
- the nucleotide sequence encoding the Cas protein is codon optimized for expression in a eukaryotic host cell, e.g., a yeast cell, a mammalian cell (e.g., a mouse cell, a rat cell, or a human cell), or a plant cell.
- a eukaryotic host cell e.g., a yeast cell, a mammalian cell (e.g., a mouse cell, a rat cell, or a human cell), or a plant cell.
- mRNA messenger RNA
- tRNA transfer RNA
- the predominance of selected tRNAs in a cell is generally a reflection of the codons used most frequently in peptide synthesis. Accordingly, genes can be tailored for optimal gene expression in a given organism based on codon optimization. Codon usage tables are readily available, for example, at the “Codon Usage Database” available at kazusa.or.jp/codon/ and these tables can be adapted in a number of ways (see. Nakamura et al. (2000) N UCL . A CIDS R ES ., 28: 292). Computer algorithms for codon optimizing a particular sequence for expression in a particular host cell, such as Gene Forge (Aptagen; Jacobus, Pa.), are also available. In certain embodiments, the codon optimization facilitates or improves expression of the Cas protein in the host cell.
- Cleavage of a target nucleotide sequence in the genome of a cell by the CRISPR-Cas system or complex disclosed herein can activate the DNA damage pathways, which may rejoin the cleaved DNA fragments by NHEJ or HDR.
- HDR requires a repair template, either endogenous or exogenous, to transfer the sequence information from the repair template to the target.
- the engineered, non-naturally occurring system or CRISPR expression system further comprises a donor template.
- the term “donor template” refers to a nucleic acid designed to serve as a repair template at or near the target nucleotide sequence upon introduction into a cell or organism.
- the donor template is complementary to a polynucleotide comprising the target nucleotide sequence or a portion thereof.
- a donor template may overlap with one or more nucleotides of a target nucleotide sequences (e.g. about or more than about 1, 5, 10, 15, 20, 25, 30, 35, 40, or more nucleotides).
- the nucleotide sequence of the donor template is typically not identical to the genomic sequence that it replaces. Rather, the donor template may contain one or more substitutions, insertions, deletions, inversions or rearrangements with respect to the genomic sequence, so long as sufficient homology is present to support homology-directed repair.
- the donor template comprises a non-homologous sequence flanked by two regions of homology (i.e., homology arms), such that homology-directed repair between the target DNA region and the two flanking sequences results in insertion of the non-homologous sequence at the target region.
- the donor template comprises a non-homologous sequence 10-100 nucleotides, 50-500 nucleotides, 100-1,000 nucleotides, 200-2,000 nucleotides, or 500-5,000 nucleotides in length positioned between two homology arms.
- the homologous region(s) of a donor template has at least 50% sequence identity to a genomic sequence with which recombination is desired.
- the homology arms are designed or selected such that they are capable of recombining with the nucleotide sequences flanking the target nucleotide sequence under intracellular conditions.
- the donor template comprises a first homology arm homologous to a sequence 5′ to the target nucleotide sequence and a second homology arm homologous to a sequence 3′ to the target nucleotide sequence.
- the first homology arm is at least 50% (e.g., at least 60%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100%) identical to a sequence 5′ to the target nucleotide sequence.
- the second homology arm is at least 50% (e.g., at least 60%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100%) identical to a sequence 3′ to the target nucleotide sequence.
- the nearest nucleotide of the donor template is within about 1, 5, 10, 15, 20, 25, 50, 75, 100, 200, 300, 400, 500, 1000, 2000, 3000, 4000, or more nucleotides from the target nucleotide sequence.
- the donor template further comprises an engineered sequence not homologous to the sequence to be repaired.
- engineered sequence can harbor a barcode and/or a sequence capable of hybridizing with a donor template-recruiting sequence disclosed herein.
- the donor template further comprises one or more mutations relative to the genomic sequence, wherein the one or more mutations reduce or prevent cleavage, by the same CRISPR-Cas system, of the donor template or of a modified genomic sequence with at least a portion of the donor template sequence incorporated.
- the PAM adjacent to the target nucleotide sequence and recognized by the Cas nuclease is mutated to a sequence not recognized by the same Cas nuclease.
- the target nucleotide sequence e.g., the seed region
- the one or more mutations are silent with respect to the reading frame of a protein-coding sequence encompassing the mutated sites.
- the donor template can be provided to the cell as single-stranded DNA, single-stranded RNA, double-stranded DNA, or double-stranded RNA. It is understood that the CRISPR-Cas system disclosed herein may possess nuclease activity to cleave the target strand, the non-target strand, or both. When HDR of the target strand is desired, a donor template having a nucleic acid sequence complementary to the target strand is also contemplated.
- the donor template can be introduced into a cell in linear or circular form. If introduced in linear form, the ends of the donor template may be protected (e.g., from exonucleolytic degradation) by methods known to those of skill in the art. For example, one or more dideoxynucleotide residues are added to the 3′ terminus of a linear molecule and/or self-complementary oligonucleotides are ligated to one or both ends (see, for example. Chang et al. (1987) P ROC . N ATL . A CAD S CI USA, 84: 4959; Nehls et al.
- Additional methods for protecting exogenous polynucleotides from degradation include, but are not limited to, addition of terminal amino group(s) and the use of modified internucleotide linkages such as, for example, phosphorothioates, phosphoramidates, and O-methyl ribose or deoxyribose residues.
- additional lengths of sequence may be included outside of the regions of homology that can be degraded without impacting recombination.
- a donor template can be a component of a vector as described herein, contained in a separate vector, or provided as a separate polynucleotide, such as an oligonucleotide, linear polynucleotide, or synthetic polynucleotide.
- the donor template is a DNA.
- a donor template is in the same nucleic acid as a sequence encoding the single guide nucleic acid, a sequence encoding the targeter nucleic acid, a sequence encoding the modulator nucleic acid, and/or a sequence encoding the Cas protein, where applicable.
- a donor template is provided in a separate nucleic acid.
- a donor template polynucleotide may be of any suitable length, such as about or at least about 50, 75, 100, 150, 200, 500, 1000, 2000, 3000, 4000, or more nucleotides in length.
- a donor template can be introduced into a cell as an isolated nucleic acid.
- a donor template can be introduced into a cell as part of a vector (e.g., a plasmid) having additional sequences such as, for example, replication origins, promoters and genes encoding antibiotic resistance, that are not intended for insertion into the DNA region of interest.
- a donor template can be delivered by viruses (e.g., adenovirus, adeno-associated virus (AAV)).
- viruses e.g., adenovirus, adeno-associated virus (AAV)
- the donor template is introduced as an AAV, e.g., a pseudotyped AAV.
- the capsid proteins of the AAV can be selected by a person skilled in the art based upon the tropism of the AAV and the target cell type.
- the donor template is introduced into a hepatocyte as AAV8 or AAV9.
- the donor template is introduced into a hematopoietic stem cell, a hematopoietic progenitor cell, or a T lymphocyte (e.g., CD8 + T lymphocyte) as AAV6 or an AAVHSC (see, U.S. Pat. No. 9,890,396).
- sequence of a capsid protein may be modified from a wild-type AAV capsid protein, for example, having at least 50% (e.g., at least 60%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%) sequence identity to a wild-type AAV capsid sequence.
- at least 50% e.g., at least 60%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%
- the donor template can be delivered to a cell (e.g., a primary cell) by various delivery methods, such as a viral or non-viral method disclosed herein.
- a non-viral donor template is introduced into the target cell as a naked nucleic acid or in complex with a liposome or poloxamer.
- a non-viral donor template is introduced into the target cell by electroporation.
- a viral donor template is introduced into the target cell by infection.
- the engineered, non-naturally occurring system can be delivered before, after, or simultaneously with the donor template (see, International (PCT) Application Publication No. WO2017/053729).
- the donor template e.g., as an AAV
- the donor template is introduced into the cell within 4 hours (e.g., within 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 25, 30, 35, 40, 45, 50, 55, 60, 90, 120, 150, 180, 210, or 240 minutes) after the introduction of the engineered, non-naturally occurring system.
- the donor template is conjugated covalently to the modulator nucleic acid.
- Covalent linkages suitable for this conjugation are known in the art and are described, for example, in U.S. Pat. No. 9,982,278 and Savic et al. (2016) ELIFE 7:e33761.
- the donor template is covalently linked to the modulator nucleic acid (e.g., the 5′ end of the modulator nucleic acid) through an internucleotide bond.
- the donor template is covalently linked to the modulator nucleic acid (e.g., the 5′ end of the modulator nucleic acid) through a linker.
- the engineered, non-naturally occurring system of the present invention has the advantage of high efficiency and/or high specificity in nucleic acid targeting, cleavage, or modification.
- the engineered, non-naturally occurring system has high efficiency.
- the engineered, non-naturally occurring system comprises a guide nucleic acid comprising a spacer sequence listed in Table 2 or a portion thereof
- the genomes of at least 10%, at least 15%, at least 20%, at least 25%, at least 30%, at least 35%, at least 40%, at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% of a population of human cells are targeted, cleaved, edited, or modified when the engineered, non-naturally occurring system is delivered into the cells.
- the engineered, non-naturally occurring system comprises a guide nucleic acid comprising a spacer sequence listed in Table 2 or a portion thereof
- the genomes of at least 10%, at least 15%, at least 20%, at least 25%, at least 30%, at least 35%, at least 40%, at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% of a population of human cells are edited when the engineered, non-naturally occurring system is delivered into the cells.
- the engineered, non-naturally occurring system comprises a guide nucleic acid comprising a spacer sequence listed in Table 3 or a portion thereof
- the engineered, non-naturally occurring system comprises a guide nucleic acid comprising a spacer sequence listed in Table 3 or a portion thereof
- the genome sequence at the ADORA2A gene locus is edited in at least 15%, at least 20%, at least 25%, at least 30%, at least 35%, at least 40%, at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% of the cells.
- the genome sequence at the B2M gene locus is edited in at least 30%, at least 35%, at least 40%, at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% of the cells.
- the genome sequence at the CD52 gene locus is edited in at least 25%, at least 30%, at least 35%, at least 40%, at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% of the cells.
- the genome sequence at the CIITA gene locus is edited in at least 10%, at least 15%, at least 20%, at least 25%, at least 30%, at least 35%, at least 40%, at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% of the cells.
- the genome sequence at the CTLA4 gene locus is edited in at least 30%, at least 35%, at least 40%, at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% of the cells.
- the genome sequence at the DCK gene locus is edited in at least 30%, at least 35%, at least 40%, at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% of the cells.
- the genome sequence at the FAS gene locus is edited in at least 20%, at least 25%, at least 30%, at least 35%, at least 40%, at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% of the cells.
- the genome sequence at the HAVCR2 gene locus is edited in at least 30%, at least 35%, at least 40%, at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% of the cells.
- the genome sequence at the LAG3 gene locus is edited in at least 30%, at least 35%, at least 40%, at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% of the cells.
- the genome sequence at the PDCD1 gene locus is edited in at least 20%, at least 25%, at least 30%, at least 35%, at least 40%, at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% of the cells.
- the genome sequence at the PTPN6 gene locus is edited in at least 30%, at least 35%, at least 40%, at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% of the cells.
- the genome sequence at the TIGIT gene locus is edited in at least 30%, at least 35%, at least 40%, at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% of the cells.
- the genome sequence at the TRAC gene locus is edited in at least 30%, at least 35%, at least 40%, at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% of the cells.
- the frequency of off-target events e.g., targeting, cleavage, or modification, depending on the function of the CRISPR-Cas system
- off-target events were summarized in Lazzarotto er al. (2016) N AT P ROTOC . 13(11): 2615-42, and include discovery of in situ Cas off-targets and verification by sequencing (DISCOVER-seq) as disclosed in Wienert et al.
- the off-target events include targeting, cleavage, or modification at a given off-target locus (e.g., the locus with the highest occurrence of off-target events detected). In certain embodiments, the off-target events include targeting, cleavage, or modification at all the loci with detectable off-target events, collectively.
- genomic mutations are detected in no more than 0.0001%, 0.0002%, 0.0003%, 0.0004%, 0.0005%, 0.0006%, 0.0007%, 0.0008%, 0.0009%, 0.001%, 0.002%, 0.003%, 0.004%, 0.005%, 0.006%, 0.007%, 0.008%, 0.009%, 0.01%, 0.02%, 0.03%, 0.04%, 0.05%, 0.06%, 0.07%, 0.08%, 0.09%, 0.1%, 0.2%, 0.3%, 0.4%, 0.5%, 0.6%, 0.7%, 0.8%, 0.9%, 1%, 2%, 3%, 4%, or 5% of the cells at any off-target loci (in aggregate).
- the ratio of the percentage of cells having an on-target event to the percentage of cells having any off-target event is at least 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000, or 10000. It is understood that genetic variation may be present in a population of cells, for example, by spontaneous mutations, and such mutations are not included as off-target events.
- the method of targeting, editing, and/or modifying a genomic DNA disclosed herein can be conducted in multiplicity.
- a library of targeter nucleic acids can be used to target multiple genomic loci: a library of donor templates can also be used to generate multiple insertions, deletions, and/or substitutions.
- the multiplex assay can be conducted in a screening method wherein each separate cell culture (e.g., in a well of a 96-well plate or a 384-well plate) is exposed to a different guide nucleic acid having a different targeter stem sequence and/or a different donor template.
- the multiplex assay can also be conducted in a selection method wherein a cell culture is exposed to a mixed population of different guide nucleic acids and/or donor templates, and the cells with desired characteristics (e.g., functionality) are enriched or selected by advantageous survival or growth, resistance to a certain agent, expression of a detectable protein (e.g., a fluorescent protein that is detectable by flow cytometry), etc.
- desired characteristics e.g., functionality
- a detectable protein e.g., a fluorescent protein that is detectable by flow cytometry
- the plurality of guide nucleic acids and/or the plurality of donor templates are designed for saturation editing.
- each nucleotide position in a sequence of interest is systematically modified with each of all four traditional bases, A, T, G and C.
- at least one sequence in each gene from a pool of genes of interest is modified, for example, according to a CRISPR design algorithm.
- each sequence from a pool of exogenous elements of interest e.g., protein coding sequences, non-protein coding genes, regulatory elements
- the multiplex methods suitable for the purpose of carrying out a screening or selection method may be different from the methods suitable for therapeutic purposes.
- constitutive expression of certain elements e.g., a Cas nuclease and/or a guide nucleic acid
- constitutive expression of a Cas nuclease and/or a guide nucleic acid may be desirable.
- the constitutive expression provides a large window during which other elements can be introduced. When a stable cell line is established for the constitutive expression, the number of exogenous elements that need to be co-delivered into a single cell is also reduced.
- constitutive expression of certain elements can increase the efficiency and reduce the complexity of a screening or selection process.
- Inducible expression of certain elements of the system disclosed herein may also be used for research purposes given similar advantages. Expression may be induced by an exogenous agent (e.g., a small molecule) or by an endogenous molecule or complex present in a particular cell type (e.g., at a particular stage of differentiation). Methods known in the art, such as those described in the “CRISPR Expression Systems” subsection supra, can be used for constitutively or inducibly expressing one or more elements.
- the method disclosed herein further comprises a step of identifying a guide nucleic acid, a Cas protein, a donor template, or a combination of two or more of these elements from the screening or selection process.
- a set of barcodes may be used, for example, in the donor template between two homology arms, to facilitate the identification.
- the method further comprises harvesting the population of cells; selectively amplifying a genomic DNA or RNA sample including the target nucleotide sequence(s) and/or the barcodes; and/or sequencing the genomic DNA or RNA sample and/or the barcodes that has been selectively amplified.
- the present invention provides a library comprising a plurality of guide nucleic acids disclosed herein.
- the present invention provides a library comprising a plurality of nucleic acids each comprising a regulatory element operably linked to a different guide nucleic acid disclosed herein.
- These libraries can be used in combination with one or more Cas proteins or Cas-coding nucleic acids disclosed herein, and/or one or more donor templates as disclosed herein for a screening or selection method.
- the present invention provides a composition (e.g., pharmaceutical composition) comprising a guide nucleic acid, an engineered, non-naturally occurring system, or a eukaryotic cell disclosed herein.
- the composition comprises an RNP comprising a guide nucleic acid disclosed herein and a Cas protein (e.g., Cas nuclease).
- the composition comprises a complex of a targeter nucleic acid and a modulator nucleic acid disclosed herein.
- the composition comprises an RNP comprising the targeter nucleic acid, the modulator nucleic acid, and a Cas protein (e.g., Cas nuclease).
- the present invention provides a method of producing a composition, the method comprising incubating a single guide nucleic acid disclosed herein with a Cas protein, thereby producing a complex of the single guide nucleic acid and the Cas protein (e.g., an RNP).
- the method further comprises purifying the complex (e.g., the RNP).
- the present invention provides a method of producing a composition, the method comprising incubating a targeter nucleic acid and a modulator nucleic acid disclosed herein under suitable conditions, thereby producing a composition (e.g., pharmaceutical composition) comprising a complex of the targeter nucleic acid and the modulator nucleic acid.
- a composition e.g., pharmaceutical composition
- the method further comprises incubating the targeter nucleic acid and the modulator nucleic acid with a Cas protein (e.g., the Cas nuclease that the targeter nucleic acid and the modulator nucleic acid are capable of activating or a related Cas protein), thereby producing a complex of the targeter nucleic acid, the modulator nucleic acid, and the Cas protein (e.g., an RNP).
- a Cas protein e.g., the Cas nuclease that the targeter nucleic acid and the modulator nucleic acid are capable of activating or a related Cas protein
- the method further comprises purifying the complex (e.g., the RNP).
- a guide nucleic acid, an engineered, non-naturally occurring system, a CRISPR expression system, or a cell comprising such system or modified by such system disclosed herein is combined with a pharmaceutically acceptable carrier.
- pharmaceutically acceptable refers to those compounds, materials, compositions, and/or dosage forms which are, within the scope of sound medical judgment, suitable for use in contact with the tissues of human beings and animals without excessive toxicity, irritation, allergic response, or other problem or complication, commensurate with a reasonable benefit-to-risk ratio.
- pharmaceutically acceptable carrier refers to buffers, carriers, and excipients suitable for use in contact with the tissues of human beings and animals without excessive toxicity, irritation, allergic response, or other problem or complication, commensurate with a reasonable benefit/risk ratio.
- Pharmaceutically acceptable carriers include any of the standard pharmaceutical carriers, such as a phosphate buffered saline solution, water, emulsions (e.g., such as an oil/water or water/oil emulsions), and various types of wetting agents.
- the compositions also can include stabilizers and preservatives.
- Pharmaceutically acceptable carriers include buffers, solvents, dispersion media, coatings, isotonic and absorption delaying agents, and the like, that are compatible with pharmaceutical administration. The use of such media and agents for pharmaceutically active substances is known in the art.
- a pharmaceutical composition disclosed herein comprises a salt, e.g., NaCl, MgCl 2 , KCl, MgSO 4 , etc.; a buffering agent, e.g., a Tris buffer.
- a salt e.g., NaCl, MgCl 2 , KCl, MgSO 4 , etc.
- a buffering agent e.g., a Tris buffer.
- a subject composition comprises a subject DNA-targeting RNA and a buffer for stabilizing nucleic acids.
- a pharmaceutical composition may contain formulation materials for modifying, maintaining or preserving, for example, the pH, osmolarity, viscosity, clarity, color, isotonicity, odor, sterility, stability, rate of dissolution or release, adsorption or penetration of the composition.
- suitable formulation materials include, but are not limited to, amino acids (such as glycine, glutamine, asparagine, arginine or lysine); antimicrobials; antioxidants (such as ascorbic acid, sodium sulfite or sodium hydrogen-sulfite); buffers (such as borate, bicarbonate, Tris-HCl, citrates, phosphates or other organic acids); bulking agents (such as mannitol or glycine); chelating agents (such as ethylenediamine tetraacetic acid (EDTA)); complexing agents (such as caffeine, polyvinylpyrrolidone, beta-cyclodextrin or hydroxypropyl-beta-cyclodextrin); fillers; monosaccharides; disaccharides; and other carbohydrates (such as glucose, mannose or dextrins); proteins (such as serum albumin, gelatin or immunoglobulins): coloring, flavoring and diluting agents; emulsifying agents
- a pharmaceutical composition may contain nanoparticles, e.g., polymeric nanoparticles, liposomes, or micelles (See Anselmo et al. (2016) B IOENG . T RANSL . M ED . 1: 10-29).
- the pharmaceutical composition comprises an inorganic nanoparticle.
- Exemplary inorganic nanoparticles include, e.g., magnetic nanoparticles (e.g., Fe 3 MnO 2 ) or silica.
- the outer surface of the nanoparticle can be conjugated with a positively charged polymer (e.g., polyethylenimine, polylysine, polyserine) which allows for attachment (e.g., conjugation or entrapment) of payload.
- the pharmaceutical composition comprises an organic nanoparticle (e.g., entrapment of the payload inside the nanoparticle).
- organic nanoparticles include, e.g., SNALP liposomes that contain cationic lipids together with neutral helper lipids which are coated with polyethylene glycol (PEG) and protamine and nucleic acid complex coated with lipid coating.
- PEG polyethylene glycol
- the pharmaceutical composition comprises a liposome, for example, a liposome disclosed in International Application Publication No. WO 2015/148863.
- the pharmaceutical composition comprises a targeting moiety to increase target cell binding or update of nanoparticles and liposomes.
- targeting moieties include cell specific antigens, monoclonal antibodies, single chain antibodies, aptamers, polymers, sugars, and cell penetrating peptides.
- the pharmaceutical composition comprises a fusogenic or endosome-destabilizing peptide or polymer.
- a pharmaceutical composition may contain a sustained- or controlled-delivery formulation.
- sustained- or controlled-delivery means such as liposome carriers, bio-erodible microparticles or porous beads and depot injections, are also known to those skilled in the art.
- Sustained-release preparations may include, e.g., porous polymeric microparticles or semipermeable polymer matrices in the form of shaped articles, e.g., films, or microcapsules.
- Sustained release matrices may include polyesters, hydrogels, polylactides, copolymers of L-glutamic acid and gamma ethyl-L-glutamate, poly (2-hydroxyethyl-inethacrylate), ethylene vinyl acetate, or poly-D(-)-3-hydroxybutyric acid.
- Sustained release compositions may also include liposomes that can be prepared by any of several methods known in the art.
- a pharmaceutical composition of the invention can be administered by a variety of methods known in the art.
- the route and/or mode of administration vary depending upon the desired results. Administration can be intravenous, intramuscular, intraperitoneal, or subcutaneous, or administered proximal to the site of the target.
- the pharmaceutically acceptable carrier should be suitable for intravenous, intramuscular, subcutaneous, parenteral, spinal or epidermal administration (e.g., by injection or infusion).
- the active compound e.g., the guide nucleic acid, engineered, non-naturally occurring system, or CRISPR expression system of the invention
- Formulation components suitable for parenteral administration include a sterile diluent such as water for injection, saline solution, fixed oils, polyethylene glycols, glycerin, propylene glycol or other synthetic solvents; antibacterial agents such as benzyl alcohol or methyl parabens; antioxidants such as ascorbic acid or sodium bisulfite; chelating agents such as EDTA; buffers such as acetates, citrates or phosphates; and agents for the adjustment of tonicity such as sodium chloride or dextrose.
- a sterile diluent such as water for injection, saline solution, fixed oils, polyethylene glycols, glycerin, propylene glycol or other synthetic solvents
- antibacterial agents such as benzyl alcohol or methyl parabens
- antioxidants such as ascorbic acid or sodium bisulfite
- chelating agents such as EDTA
- buffers such as acetates, citrates or phosphates
- suitable carriers include physiological saline, bacteriostatic water, Cremophor ELTM (BASF, Parsippany, N.J.) or phosphate buffered saline (PBS).
- the carrier should be stable under the conditions of manufacture and storage, and should be preserved against microorganisms.
- the carrier can be a solvent or dispersion medium containing, for example, water, ethanol, polyol (for example, glycerol, propylene glycol, and liquid polyethylene glycol), and suitable mixtures thereof.
- compositions preferably are sterile. Sterilization can be accomplished by any suitable method, e.g., filtration through sterile filtration membranes. Where the composition is lyophilized, filter sterilization can be conducted prior to or following lyophilization and reconstitution. In certain embodiments, the pharmaceutical composition is lyophilized, and then reconstituted in buffered saline, at the time of administration.
- compositions of the invention can be prepared in accordance with methods well known and routinely practiced in the art. See, e.g., Remington: The Science and Practice of Pharmacy, Mack Publishing Co., 20th ed., 2000; and Sustained and Controlled Release Drug Delivery Systems, J. R. Robinson, ed., Marcel Dekker. Inc., New York, 1978. Pharmaceutical compositions are preferably manufactured under GMP conditions. Typically, a therapeutically effective dose or efficacious dose of the guide nucleic acid, engineered, non-naturally occurring system, or CRISPR expression system of the invention is employed in the pharmaceutical compositions of the invention.
- the multispecific antibodies of the invention are formulated into pharmaceutically acceptable dosage forms by conventional methods known to those of skill in the art.
- Dosage regimens are adjusted to provide the optimum desired response (e.g., a therapeutic response). For example, a single bolus may be administered, several divided doses may be administered over time or the dose may be proportionally reduced or increased as indicated by the exigencies of the therapeutic situation. It is especially advantageous to formulate parenteral compositions in dosage unit form for ease of administration and uniformity of dosage.
- Dosage unit form as used herein refers to physically discrete units suited as unitary dosages for the subjects to be treated; each unit contains a predetermined quantity of active compound calculated to produce the desired therapeutic effect in association with the required pharmaceutical carrier.
- Actual dosage levels of the active ingredients in the pharmaceutical compositions of the invention can be varied so as to obtain an amount of the active ingredient which is effective to achieve the desired therapeutic response for a particular patient, composition, and mode of administration, without being toxic to the patient.
- the selected dosage level depends upon a variety of pharmacokinetic factors including the activity of the particular compositions of the present invention employed, or the ester, salt or amide thereof, the route of administration, the time of administration, the rate of excretion of the particular compound being employed, the duration of the treatment, other drugs, compounds and/or materials used in combination with the particular compositions employed, the age, sex, weight, condition, general health and prior medical history of the patient being treated, and like factors.
- the guide nucleic acids, the engineered, non-naturally occurring systems, and the CRISPR expression systems disclosed herein are useful for targeting, editing, and/or modifying the genomic DNA in a cell or organism.
- These guide nucleic acids and systems, as well as a cell comprising one of the systems or a cell whose genome has been modified by one of the systems, can be used to treat a disease or disorder in which modification of genetic or epigenetic information is desirable.
- the present invention provides a method of treating a disease or disorder, the method comprising administering to a subject in need thereof a guide nucleic acid, a non-naturally occurring system, a CRISPR expression system, or a cell disclosed herein.
- subject includes human and non-human animals.
- Non-human animals include all vertebrates, e.g., mammals and non-mammals, such as non-human primates, sheep, dog, cow, chickens, amphibians, and reptiles. Except when noted, the terms “patient” or “subject” are used herein interchangeably.
- treatment refers to obtaining a desired pharmacologic and/or physiologic effect.
- the effect may be therapeutic in terms of a partial or complete cure for a disease and/or adverse effect attributable to the disease or delaying the disease progression.
- Treatment covers any treatment of a disease in a mammal, e.g., in a human, and includes: (a) inhibiting the disease, i.e., arresting its development: and (b) relieving the disease, i.e., causing regression of the disease. It is understood that a disease or disorder may be identified by genetic methods and treated prior to manifestation of any medical symptom.
- Optimal concentrations can be determined by testing different concentrations in a cellular, tissue, or non-human eukaryote animal model and using deep sequencing to analyze the extent of modification at potential off-target genomic loci. The concentration that gives the highest level of on-target modification while minimizing the level of off-target modification should be selected for ex vivo or n vivo delivery.
- the guide nucleic acid, the engineered, non-naturally occurring system, and the CRISPR expression system disclosed herein can be used to treat any disease or disorder that can be improved by editing or modifying human ADORA2A, B2M, CD52, CIITA, CTLA4, DCK, FAS, HAVCR2, LAG3, PDCD1, PTPN6, TIGIT, TRAC, TRBC1, TRBC2, CARD11, CD247, IL7R, LCK, or PLCG1 gene in a cell.
- the guide nucleic acid, the engineered, non-naturally occurring system, and the CRISPR expression system disclosed herein can be used to engineer an immune cell.
- Immune cells include but are not limited to lymphocytes (e.g., B lymphocytes or B cells, T lymphocytes or T cells, and natural killer cells), myeloid cells (e.g., monocytes, macrophages, eosinophils, mast cells, basophils, and granulocytes), and the stem and progenitor cells that can differentiate into these cell types (e.g., hematopoietic stem cells, hematopoietic progenitor cells, and lymphoid progenitor cells).
- the cells can include autologous cells derived from a subject to be treated, or alternatively allogenic cells derived from a donor.
- the immune cell is a T cell, which can be, for example, a cultured T cell, a primary T cell, a T cell from a cultured T cell line (e.g., Jurkat, SupTi), or a T cell obtained from a mammal, for example, from a subject to be treated. If obtained from a mammal, the T cell can be obtained from numerous sources, including but not limited to blood, bone marrow, lymph node, the thymus, or other tissues or fluids. T cells can also be enriched or purified.
- the T cell can be any type of T cell and can be of any developmental stage, including but not limited to, CD4 + /CD8 + double positive T cells, CD4 + helper T cells (e.g., Th1 and Th2 cells), CD8 + T cells (e.g., cytotoxic T cells), tumor infiltrating lymphocytes (TILs), memory T cells (e.g., central memory T cells and effector memory T cells), regulatory T cells, na ⁇ ve T cells, and the like.
- CD4 + /CD8 + double positive T cells CD4 + helper T cells (e.g., Th1 and Th2 cells), CD8 + T cells (e.g., cytotoxic T cells), tumor infiltrating lymphocytes (TILs), memory T cells (e.g., central memory T cells and effector memory T cells), regulatory T cells, na ⁇ ve T cells, and the like.
- CD4 + helper T cells e.g., Th1 and Th2 cells
- CD8 + T cells e.
- an immune cell e.g., a T cell
- the guide nucleic acid, the engineered, non-naturally occurring system, and the CRISPR expression system disclosed herein may be used to engineer an immune cell to express an exogenous gene at the locus of a human ADORA2A, B2M, CD52, CIITA, CTLA4, DCK, FAS, HAVCR2, LAG3, PDCD1, PTPN6, TIGIT, TRAC, TRBC1, TRBC2, CARD11, CD247, IL7R, LCK, or PLCG1 gene.
- an engineered CRISPR system disclosed herein may catalyze DNA cleavage at the gene locus, allowing for site-specific integration of the exogenous gene at the gene locus by HDR.
- an immune cell e.g., a T cell
- a chimeric antigen receptor i.e., the T cell comprises an exogenous nucleotide sequence encoding a CAR.
- the term “chimeric antigen receptor” or “CAR” refers to any artificial receptor including an antigen-specific binding moiety and one or more signaling chains derived from an immune receptor.
- CARs can comprise a single chain fragment variable (scFv) of an antibody specific for an antigen coupled via hinge and transmembrane regions to cytoplasmic domains of T cell signaling molecules, e.g.
- a T cell costimulatory domain e.g., from CD28, CD137, OX40, ICOS, or CD27
- a T cell triggering domain e.g. from CD3 ⁇
- a T cell expressing a chimeric antigen receptor is referred to as a CAR T cell.
- Exemplary CART cells include CD19 targeted CTL019 cells (see, Grupp et al. (2015) B LOOD , 126: 4983), 19-28z cells (see, Park et al. (2015) J. C LN . O NCOL ., 33: 7010), and KTE-C19 cells (see, Locke et al. (2015) BLOOD, 126: 3991). Additional exemplary CAR T cells are described in U.S.
- an immune cell binds an antigen, e.g., a cancer antigen, through an endogenous T cell receptor (TCR).
- an immune cell e.g., a T cell
- an immune cell is engineered to express an exogenous TCR, e.g., an exogenous naturally occurring TCR or an exogenous engineered TCR.
- T cell receptors comprise two chains referred to as the ⁇ - and ⁇ -chains, that combine on the surface of a T cell to form a heterodimeric receptor that can recognize MHC-restricted antigens.
- Each of ⁇ - and ⁇ -chain comprises a constant region and a variable region.
- Each variable region of the ⁇ - and ⁇ -chains defines three loops, referred to as complementary determining regions (CDRs) known as CDR 1 , CDR 2 , and CDR 3 that confer the T cell receptor with antigen binding activity and binding specificity.
- CDRs complementary determining regions
- a CAR or TCR binds a cancer antigen selected from B-cell maturation antigen (BCMA), mesothelin, prostate specific membrane antigen (PSMA), prostate stem cell antigen (PCSA), carbonic anhydrase IX (CAIX), carcinoembryonic antigen (CEA), CD5, CD7, CD10, CD19, CD20, CD22, CD30, CD33, CD34, CD38, CD41, CD44, CD49f, CD56, CD70, CD74, CD123, CD133, CD138, epithelial glycoprotein2 (EGP 2), epithelial glycoprotein-40 (EGP-40), epithelial cell adhesion molecule (EpCAM), receptor-type tyrosine-protein kinase (FLT3), folate-binding protein (FBP), fetal acetylcholine receptor (AChR), folate receptor- ⁇ and ⁇ (FR ⁇ and ⁇ ), Ganglioside G2 (GD2), Ganglioside G2 (GD
- Interleukin-13 receptor subunit alpha-2 (IL-13Ra2), K-light chain, kinase insert domain receptor (KDR), Lewis A (CA19.9), Lewis Y (LeY), LI cell adhesion molecule (LICAM), melanoma-associated antigen 1 (melanoma antigen family A1, MAGE-A1), Mucin 16 (MUC-16), Mucin 1 (MUC-1; e.g., a truncated MUC-1), KG2D ligands, cancer-testis antigen NY-ESO-1, oncofetal antigen (h5T4), tumor-associated glycoprotein 72 (TAG-72), vascular endothelial growth factor R2 (VEGF-R2), Wilms tumor protein (WT-1), type 1 tyrosme-protein kinase transmembrane receptor (ROR1), B7-H3 (CD276), B7-H6 (Nkp30), Chondroitin sulfate proteogly
- TCR subunit loci e.g., the TCR ⁇ constant (TRAC) locus, the TCR ⁇ constant 1 (TRBC1) locus, and the TCR ⁇ constant 2 (TRBC2) locus. It is understood that insertion in the TRAC locus reduces tonic CAR signaling and enhances T cell potency (see, Eyquem et al. (2017) N ATURE , 543: 113).
- an immune cell e.g., a T cell
- an immune cell is engineered to have reduced expression of an endogenous TCR or TCR subunit, e.g., TRAC, TRBC1, and/or TRBC2.
- the cell may be engineered to have partially reduced or no expression of the endogenous TCR or TCR subunit.
- the immune cell e.g., a T cell
- the immune cell is engineered to have less than 80% (e.g., less than 70%, less than 60%, less than 50%, less than 40%, less than 30%, less than 20%, less than 10%, or less than 5%) of the expression of the endogenous TCR or TCR subunit relative to a corresponding unmodified or parental cell.
- the immune cell e.g., a T cell
- the immune cell is engineered to have no detectable expression of the endogenous TCR or TCR subunit. Exemplary approaches to reduce expression of TCRs using CRISPR systems are described in U.S. Pat. No. 9,181,527, Liu et al.
- an immune cell e.g., a T-cell
- MHC major histocompatibility complex
- HLA human leukocyte antigen
- an immune cell e.g., a T-cell
- is engineered to have reduced expression of one or more endogenous class I or class II MHCs or HLAs e.g., beta 2-microglobulin (B2M), class 11 major histocompatibility complex transactivator (CIITA), HLA-E, and/or HLA-G).
- the cell may be engineered to have partially reduced or no expression of an endogenous MHC or HLA.
- the immune cell e.g., a T-cell
- the immune cell is engineered to have less than less than 80% (e.g., less than 70%, less than 60%, less than 50%, less than 40%, less than 30%, less than 20%, less than 10%, or less than 5%) of the expression of endogenous MHC (e.g., B2M. CIITA, HLA-E, or HLA-G) relative to a corresponding unmodified or parental cell.
- the immune cell e.g., a T cell
- is engineered to have no detectable expression of an endogenous MHC e.g., B2M, CIITA, HLA-E, or HLA-G.
- an endogenous MHC e.g., B2M, CIITA, HLA-E, or HLA-G.
- Exemplary approaches to reduce expression of MHCs using CRISPR systems are described in Liu et al. (2017) C ELL R ES . 27: 154, Ren et al. (2017) C LIN C ANCER R ES , 23: 2255, and Ren et al. (2017) O NCOTARGET , 8: 17002.
- genes that may be inactivated to reduce a GVHD response include but are not limited to CD3, CD52, and deoxycytidine kinase (DCK).
- DCK deoxycytidine kinase
- inactivation of DCK may render the immune cells (e.g., T cells) resistant to purine nucleotide analogue (PNA) compounds, which are often used to compromise the host immune system in order to reduce a GVHD response during an immune cell therapy.
- PNA purine nucleotide analogue
- the immune cell e.g., a T-cell
- the immune cell is engineered to have less than less than 80% (e.g., less than 70%, less than 60%, less than 50%, less than 40%, less than 30%, less than 20%, less than 10%, or less than 5%) of the expression of endogenous CD52 or DCK relative to a corresponding unmodified or parental cell.
- an immune cell e.g., T cell
- an immune cell is engineered to have reduced expression of an immune checkpoint protein.
- immune checkpoint proteins expressed by wild-type T cells include but are not limited to PDCD1 (PD-1), CTLA4, ADORA2A (A2AR), B7-H3, B7-H4, BTLA, KIR, LAG3, HAVCR2 (TIM3), TIGIT, VISTA, PTPN6 (SHP-1), and FAS.
- the cell may be modified to have partially reduced or no expression of the immune checkpoint protein.
- the immune cell e.g., a T cell
- the immune cell is engineered to have less than 80% (e.g., less than 70%, less than 60%, less than 50%, less than 40%, less than 30%, less than 20%, less than 10%, or less than 5%) of the expression of the immune checkpoint protein relative to a corresponding unmodified or parental cell.
- the immune cell e.g., a T cell
- the immune cell is engineered to have no detectable expression of the immune checkpoint protein.
- Exemplary approaches to reduce expression of immune checkpoint proteins using CRISPR systems are described in International (PCT) Publication No. WO2017/017184, Cooper et al. (2016) L EUKEMIA , 32: 1970, Su et al. (2016) O NCOINIMUNOLOGY , 6: e1249558, and Zhang et al. (2017) F RONT M ED . 11: 554.
- the immune cell can be engineered to have reduced expression of an endogenous gene, e.g., an endogenous genes described above, by gene editing or modification.
- an engineered CRISPR system disclosed herein may result in DNA cleavage at a gene locus, thereby inactivating the targeted gene.
- an engineered CRISPR system disclosed herein may be fused to an effector domain (e.g., a transcriptional repressor or histone methylase) to reduce the expression of the target gene.
- the immune cell can also be engineered to express an exogenous protein (besides an antigen-binding protein described above) at the locus of a human ADORA2A, B2M, CD52, CIITA, CTLA4, DCK, FAS, HAVCR2, LAG3, PDCD1, PTPN6, TIGIT, TRAC.
- an exogenous protein besides an antigen-binding protein described above
- an immune cell e.g., a T cell
- the dominant-negative form of the checkpoint inhibitor can act as a decoy receptor to bind or otherwise sequester the natural ligand that would otherwise bind and activate the wild-type immune checkpoint protein.
- engineered immune cells for example, T cells containing dominant-negative forms of an immune suppressor are described, for example, in International (PCT) Publication No. WO2017/040945.
- an immune cell e.g., a T cell
- a gene e.g., a transcription factor, a cytokine, or an enzyme
- the immune cell is modified to express TET2, FOXO1, IL-12, IL-15, IL-18, IL-21, IL-7, GLUT1, GLUT3, HK1, HK2, GAPDH, LDHA, PDK1, PKM2, PFKFB3.
- the modification is an insertion of a nucleotide sequence encoding the protein operably linked to a regulatory element.
- the modification is a substitution of a single nucleotide polymorphism (SNP) site in the endogenous gene.
- an immune cell e.g., a T cell, is modified to express a variant of a gene, for example, a variant that has greater activity than the respective wild-type gene.
- the immune cell is modified to express a variant of CARD11, CD247, IL7R, LCK, or PLCG1.
- certain gain-of-function variants of IL7R were disclosed in Zenatti et al., (2011) N AT .
- the variant can be expressed from the native locus of the respective wild-type gene by delivering an engineered system described herein for targeting the native locus in combination with a donor template that carries the variant or a portion thereof.
- an immune cell e.g., a T cell
- a protein e.g., a cytokine or an enzyme
- the immune cell is modified to express CA9, CA12, a V-ATPase subunit, NHE1, and/or MCT-1.
- kits containing any one or more of the elements disclosed in the above systems, libraries, methods, and compositions can be packaged in a kit suitable for use by a medical provider.
- the invention provides kits containing any one or more of the elements disclosed in the above systems, libraries, methods, and compositions.
- the kit comprises an engineered, non-naturally occurring system as disclosed herein and instructions for using the kit. The instructions may be specific to the applications and methods described herein.
- one or more of the elements of the system are provided in a solution.
- one or more of the elements of the system are provided in lyophilized form, and the kit further comprises a diluent.
- kits may be provided individually or in combinations, and may be provided in any suitable container, such as a vial, a bottle, a tube, or immobilized on the surface of a solid base (e.g., chip or microarray).
- the kit comprises one or more of the nucleic acids and/or proteins described herein.
- the kit provides all elements of the systems of the invention.
- the targeter nucleic acid and the modulator nucleic acid are provided in separate containers.
- the targeter nucleic acid and the modulator nucleic acid are pre-complexed, and the complex is provided in a single container.
- the kit comprises a Cas protein or a nucleic acid comprising a regulatory element operably linked to a nucleic acid encoding a Cas protein provided in a separate container.
- the kit comprises a Cas protein pre-complexed with the single guide nucleic acid or a combination of the targeter nucleic acid and the modulator nucleic acid, and the complex is provided in a single container.
- the kit further comprises one or more donor templates provided in one or more separate containers.
- the kit comprises a plurality of donor templates as disclosed herein (e.g., in separate tubes or immobilized on the surface of a solid base such as a chip or a microarray), one or more guide nucleic acids disclosed herein, and optionally a Cas protein or a regulatory element operably linked to a nucleic acid encoding a Cas protein as disclosed herein.
- Such kits are useful for identifying a donor template that introduces optimal genetic modification in a multiplex assay.
- the CRISPR expression systems as disclosed herein are also suitable for use in a kit.
- a kit further comprises one or more reagents and/or buffers for use in a process utilizing one or more of the elements described herein.
- Reagents may be provided in any suitable container and may be provided in a form that is usable in a particular assay, or in a form that requires addition of one or more other components before use (e.g., in concentrate or lyophilized form).
- a buffer may be a reaction or storage buffer, including but not limited to a sodium carbonate buffer, a sodium bicarbonate buffer, a borate buffer, a Tris buffer, a MOPS buffer, a HEPES buffer, and combinations thereof.
- the buffer is alkaline.
- the buffer has a pH from about 7 to about 10.
- the kit further comprises a pharmaceutically acceptable carrier.
- the kit further comprises one or more devices or other materials for administration to a subject.
- compositions are described as having, including, or comprising specific components, or where processes and methods are described as having, including, or comprising specific steps, it is contemplated that, additionally, there are compositions of the present invention that consist essentially of, or consist of, the recited components, and that there are processes and methods according to the present invention that consist essentially of, or consist of, the recited processing steps.
- an element or component is said to be included in and/or selected from a list of recited elements or components, it should be understood that the element or component can be any one of the recited elements or components, or the element or component can be selected from a group consisting of two or more of the recited elements or components.
- a cell includes a plurality of cells, including mixtures thereof. Where the plural form is used for compounds, salts, and the like, this is taken to mean also a single compound, salt, or the like.
- MAD7 is a type V-A Cas protein that has endonuclease activity when complexed with a single guide RNA, also known as a crRNA in a type V-A system (see, U.S. Pat. No. 9,982,279).
- This example describes cleavage of the genomic DNA of Jurkat cells using MAD7 in complex with single guide nucleic acids targeting human ADORA2A, B2M, CARD11, CD247, CD52, CIITA, CTLA4, DCK, DHODH, FAS, HAVCR2, IL7R, LAG3, LCK, MDV, PDCD1, PLCG1, PLK1, PTPN6, TIGIT, TRAC, TRBC1, TRBC2, TUBB, or U6 gene.
- Jurkat cells were grown in RPMI 1640 medium (Thermo Fisher Scientific, A1049101) supplemented with 10% fetus bovine serum at 37° C. in a 5% CO2 environment, and split every 2-3 days to a density of 100,000 cells/mL.
- MAD7 protein which contained a nucleoplasmin NLS at the C-terminus, was expressed in E. coli and purified by fast protein liquid chromatography (FPLC).
- FPLC fast protein liquid chromatography
- RNP complexes were prepared by incubating 66 pmol MAD7 protein with 100 pmol chemically synthesized single guide RNA for 10 minutes at room temperature. The RNPs were mixed with 200,000 Jurkat cells in a final volume of 25 ⁇ L. Electroporation was carried out on a 4D-Nucleofector (Lonza) using program CL-120. Following electroporation, the cells were cultured for three days.
- Genomic DNA of the cells was extracted using the Quick Extract DNA extraction solution 1.0 (Epicentre).
- the genes were amplified from the genomic DNA samples in a PCR reaction with primers with or without overhang adaptors and processed using the Nestera XT Index Kit v2 Set A (Illumina, FC-131-2001) or the KAPA HyperPlus kit (Roche, cat. no. KK8514), respectively.
- the final PCR products were analyzed by next-generation sequencing, and the data were analyzed with the AmpliCan package (see, Labun et al. (2019), Accurate analysis of genuine CRISPR editing events with ampliCan. Genome Res., electronically published in advance). Editing efficiency was determined by the number of edited reads relative to the total number of reads obtained under each condition.
- each single guide RNA used in this example consisted of, from 5′ to 3′, UAAUU UCUAC UCUU GUAGA U (SEQ ID NO: 50) and a spacer sequence.
- SEQ ID NO: 50 the modulator stem sequence (UCUAC) and the targeter stem sequence (GUAGA) are underlined.
- the editing efficiency of each single guide RNA was measured as the percentage of cells having one or more insertion or deletion at the target site (% indel).
- the spacer sequences tested for targeting human ADORA2A, B2M CARD11, CD247, CD52, CIITA, CTLA4, DCK, DHODH, FAS, HAVCR2, IL7R, LAG3, LCK, MVD, PDCD1, PLCG1, PLK1, PTPN6, TIGIT, TRAC, TRBC1, TRBC2, TUBB, or U6 gene and the editing efficiency of each single guide RNA are shown in Tables 6-25 and illustrated in FIGS. 3 - 15 , respectively. In Tables 6-25, N.D. means not determined.
- gCD52_4 GCTGGTGTCGTTTTGTCCTGA 146 4.1 gCD52_5 TGTTGCTGGATGCTOAGGGGC 276 1.1 gCD52_6 CCTTTTCTTCGTGGCCAATGC 277 0.2 gCD52_7 TCTTCGTGGCCAATGCCATAA 278 0.2 gCD52_8 CTTCGTGGCCAATGCCATAAT 279 0.15
- gCIITA_56 CCAGAAGAAGCTGCTCCGAGG 659 0.52 gCIITA_57 CAGAAGAAGCTGCTCCGAGGT 660 12.02 gCIITA_58 AGCTGTCCGGCTTCTCCATGG 661 3.25 gCIITA_59 AGAGCTCAGGGATGACAGAGC 662 16.35 gCIITA_60 TGCCGGGCAGTGTGCCAGCTC 663 11.98 gCIITA_61 ATGTCTGCGGCCCAGCTCCCA 664 1.25 gCIITA_62 GCCATCGCCCAGGTCCTCACG 665 1.29 gCIITA_63 GCCACTCAGAGCCAGCCACAG 666 35.47 gCIITA_64 TGGCTGGGCTGATCTTCCAGC 667 0.50 gCIITA_65 GCAGCACGTGGTACAGGAGCT 668 70.73 gCIITA_66 CTGGGCACCCGCCTCACGCCT 669 0.31 gCIITA_67 TGGGCACCCGCCTCACGCCTC 670 12.57 gCI
- gLAG3_8 TCGCTATGGCTGCGCCCAGCC 466 0.1 gLAG3_9 TCCTTGCACAGTGACTGCCAG 467 N.D. gLAG3_10 CACAGTGACTGCCAGCCCC 468 N.D.
- gPTPN6_45 GTGGAGATGTTCTCCATGAGC 547 N.D.
- gPTPN6_46 ACTGCCCCCCACCCAGGCCTG 93 80.3 gPTPN6_47 TACTGCGCCTCCGTCTGCACC 548 0.1 gPTPN6_48 AATGAACTGGGCGATGGCCAC 211 3.3 gPTPN6_49 TTCTTAGTGGTTTCAATGAAC 549 0.1 gPTPN6_50 GCATGGGCATTCTTCATGGCT 550 N.D.
- gPTPN6_52 GAGTCTAGTGCAGGGACCGTG 552 0.1 gPTPN6_53 CCCCCCTGCACCCGGCTGCAG 204 7.0 gPTPN6_54 TGTCTGCAGCCGGGTGCAGGG 553 0.9 gPTPN6_55 TCCTCCCTCTTGTTCTTAGTG 554 0.0 gPTPN6_56 CTCCTCCCTCTTGTTCTTAGT 555 0.1 gPTPN6_57 TTCACTTTCTCCTCCCTCTTG 556 0.2
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Biomedical Technology (AREA)
- Zoology (AREA)
- Organic Chemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Wood Science & Technology (AREA)
- Molecular Biology (AREA)
- General Engineering & Computer Science (AREA)
- Biotechnology (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Microbiology (AREA)
- Physics & Mathematics (AREA)
- Biophysics (AREA)
- Plant Pathology (AREA)
- Medicinal Chemistry (AREA)
- Cell Biology (AREA)
- Mycology (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/797,986 US20230083383A1 (en) | 2020-02-05 | 2021-02-05 | Compositions and methods for targeting, editing or modifying human genes |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US202062970455P | 2020-02-05 | 2020-02-05 | |
US17/797,986 US20230083383A1 (en) | 2020-02-05 | 2021-02-05 | Compositions and methods for targeting, editing or modifying human genes |
PCT/US2021/016823 WO2021158918A1 (fr) | 2020-02-05 | 2021-02-05 | Compositions et procédés de ciblage, d'édition ou de modification de gènes humains |
Publications (1)
Publication Number | Publication Date |
---|---|
US20230083383A1 true US20230083383A1 (en) | 2023-03-16 |
Family
ID=77199388
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/797,986 Pending US20230083383A1 (en) | 2020-02-05 | 2021-02-05 | Compositions and methods for targeting, editing or modifying human genes |
Country Status (5)
Country | Link |
---|---|
US (1) | US20230083383A1 (fr) |
EP (1) | EP4100524A1 (fr) |
AU (1) | AU2021216418A1 (fr) |
CA (1) | CA3166430A1 (fr) |
WO (1) | WO2021158918A1 (fr) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20230107265A (ko) * | 2020-10-30 | 2023-07-14 | 아버 바이오테크놀로지스, 인크. | Pdcd1을 표적화하는 rna 가이드를 포함하는 조성물 및 이의 용도 |
WO2022236147A1 (fr) | 2021-05-06 | 2022-11-10 | Artisan Development Labs, Inc. | Nucléases modifiées |
WO2022256448A2 (fr) | 2021-06-01 | 2022-12-08 | Artisan Development Labs, Inc. | Compositions et procédés de ciblage, d'édition ou de modification de gènes |
TW202334421A (zh) * | 2021-11-05 | 2023-09-01 | 美商阿伯生物技術公司 | 包含靶向ciita之rna引導之組合物及其用途 |
WO2023137233A2 (fr) * | 2022-01-17 | 2023-07-20 | Danmarks Tekniske Universitet | Compositions et méthodes d'édition de génomes |
WO2023167882A1 (fr) | 2022-03-01 | 2023-09-07 | Artisan Development Labs, Inc. | Composition et méthodes d'insertion de transgène |
WO2023225410A2 (fr) | 2022-05-20 | 2023-11-23 | Artisan Development Labs, Inc. | Systèmes et procédés d'évaluation du risque d'événements d'édition génomique |
WO2024081383A2 (fr) * | 2022-10-12 | 2024-04-18 | Artisan Development Labs, Inc. | Compositions et procédés de ciblage, d'édition ou de modification de gènes |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
MX2017012407A (es) * | 2015-03-27 | 2018-03-07 | Harvard College | Celulas t modificadas y métodos para hacer y usar las mismas. |
WO2017152015A1 (fr) * | 2016-03-04 | 2017-09-08 | Editas Medicine, Inc. | Méthodes, compositions et constituants associés à crispr/cpf1 pour l'immunothérapie du cancer |
US9982279B1 (en) * | 2017-06-23 | 2018-05-29 | Inscripta, Inc. | Nucleic acid-guided nucleases |
-
2021
- 2021-02-05 AU AU2021216418A patent/AU2021216418A1/en active Pending
- 2021-02-05 EP EP21751292.0A patent/EP4100524A1/fr active Pending
- 2021-02-05 US US17/797,986 patent/US20230083383A1/en active Pending
- 2021-02-05 CA CA3166430A patent/CA3166430A1/fr active Pending
- 2021-02-05 WO PCT/US2021/016823 patent/WO2021158918A1/fr unknown
Also Published As
Publication number | Publication date |
---|---|
AU2021216418A1 (en) | 2022-09-01 |
EP4100524A1 (fr) | 2022-12-14 |
WO2021158918A1 (fr) | 2021-08-12 |
CA3166430A1 (fr) | 2021-08-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20230083383A1 (en) | Compositions and methods for targeting, editing or modifying human genes | |
US20230235363A1 (en) | Crispr systems with engineered dual guide nucleic acids | |
US11331346B2 (en) | Targeted replacement of endogenous T cell receptors | |
JP6608807B2 (ja) | Rnaガイドcasヌクレアーゼ系を用いることによって免疫療法のためにt細胞を操作するための方法 | |
US20230021636A1 (en) | Compositions and methods for treatment of liquid cancers | |
KR20200075000A (ko) | 면역요법을 위한 t 세포 내 tgfbr2의 crispr-cas9 편집 방법, 조성물 및 성분 | |
KR20180031671A (ko) | 이식의 개선을 위한 crispr/cas-관련 방법 및 조성물 | |
KR20200079312A (ko) | 면역요법을 위한 t 세포 내 cblb의 crispr-cas9 편집 방법, 조성물 및 성분 | |
JP2024512608A (ja) | Tリンパ球における効率的なtcr遺伝子編集 | |
WO2022067089A1 (fr) | Cellules immunitaires modifiées résistantes au fratricide et leurs méthodes d'utilisation | |
WO2022266538A2 (fr) | Compositions et procédés de ciblage, d'édition ou de modification de gènes humains | |
WO2022256448A2 (fr) | Compositions et procédés de ciblage, d'édition ou de modification de gènes | |
JP2024534720A (ja) | 遺伝子改変細胞を作製するための方法 | |
WO2023225035A2 (fr) | Compositions et méthodes d'ingénierie de cellules | |
WO2024081383A2 (fr) | Compositions et procédés de ciblage, d'édition ou de modification de gènes | |
WO2024025908A2 (fr) | Compositions et méthodes d'édition de génome | |
WO2023183434A2 (fr) | Compositions et méthodes pour générer des cellules à immunogénicité réduite | |
WO2023167882A1 (fr) | Composition et méthodes d'insertion de transgène | |
WO2023137233A2 (fr) | Compositions et méthodes d'édition de génomes | |
WO2022104344A2 (fr) | Knock-in d'adn de grande longueur pour une expression génomique élevée à long terme | |
Gill et al. | DTU DTU Library |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STPP | Information on status: patent application and granting procedure in general |
Free format text: APPLICATION UNDERGOING PREEXAM PROCESSING |
|
AS | Assignment |
Owner name: DANMARKS TEKNISKE UNIVERSITET, DENMARK Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:GILL, RYAN T.;WARNECKE, TANYA;BAUMGARTNER, ROLAND FRANZ;SIGNING DATES FROM 20220621 TO 20220626;REEL/FRAME:060985/0853 Owner name: DANMARKS TEKNISKE UNIVERSITET, DENMARK Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:GILL, RYAN T.;WARNECKE, TANYA;BAUMGARTNER, ROLAND FRANZ;SIGNING DATES FROM 20220621 TO 20220626;REEL/FRAME:060985/0836 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |