US20230070741A1 - Tire - Google Patents

Tire Download PDF

Info

Publication number
US20230070741A1
US20230070741A1 US17/889,208 US202217889208A US2023070741A1 US 20230070741 A1 US20230070741 A1 US 20230070741A1 US 202217889208 A US202217889208 A US 202217889208A US 2023070741 A1 US2023070741 A1 US 2023070741A1
Authority
US
United States
Prior art keywords
tire
recess
land
groove
tire according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
US17/889,208
Other languages
English (en)
Inventor
Yuya MEGURO
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Rubber Industries Ltd
Original Assignee
Sumitomo Rubber Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Rubber Industries Ltd filed Critical Sumitomo Rubber Industries Ltd
Assigned to SUMITOMO RUBBER INDUSTRIES, LTD. reassignment SUMITOMO RUBBER INDUSTRIES, LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MEGURO, Yuya
Publication of US20230070741A1 publication Critical patent/US20230070741A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/0306Patterns comprising block rows or discontinuous ribs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/13Tread patterns characterised by the groove cross-section, e.g. for buttressing or preventing stone-trapping
    • B60C11/1307Tread patterns characterised by the groove cross-section, e.g. for buttressing or preventing stone-trapping with special features of the groove walls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/04Tread patterns in which the raised area of the pattern consists only of continuous circumferential ribs, e.g. zig-zag
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/13Tread patterns characterised by the groove cross-section, e.g. for buttressing or preventing stone-trapping
    • B60C11/1369Tie bars for linking block elements and bridging the groove
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/13Tread patterns characterised by the groove cross-section, e.g. for buttressing or preventing stone-trapping
    • B60C11/1376Three dimensional block surfaces departing from the enveloping tread contour
    • B60C11/1392Three dimensional block surfaces departing from the enveloping tread contour with chamfered block edges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C2011/0337Tread patterns characterised by particular design features of the pattern
    • B60C2011/0339Grooves
    • B60C2011/0358Lateral grooves, i.e. having an angle of 45 to 90 degees to the equatorial plane
    • B60C2011/0362Shallow grooves, i.e. having a depth of less than 50% of other grooves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C2011/0337Tread patterns characterised by particular design features of the pattern
    • B60C2011/0339Grooves
    • B60C2011/0358Lateral grooves, i.e. having an angle of 45 to 90 degees to the equatorial plane
    • B60C2011/0365Lateral grooves, i.e. having an angle of 45 to 90 degees to the equatorial plane characterised by width
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C2011/0337Tread patterns characterised by particular design features of the pattern
    • B60C2011/0339Grooves
    • B60C2011/0358Lateral grooves, i.e. having an angle of 45 to 90 degees to the equatorial plane
    • B60C2011/0367Lateral grooves, i.e. having an angle of 45 to 90 degees to the equatorial plane characterised by depth
    • B60C2011/0369Lateral grooves, i.e. having an angle of 45 to 90 degees to the equatorial plane characterised by depth with varying depth of the groove
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C2011/0337Tread patterns characterised by particular design features of the pattern
    • B60C2011/0339Grooves
    • B60C2011/0381Blind or isolated grooves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/13Tread patterns characterised by the groove cross-section, e.g. for buttressing or preventing stone-trapping
    • B60C11/1307Tread patterns characterised by the groove cross-section, e.g. for buttressing or preventing stone-trapping with special features of the groove walls
    • B60C2011/133Tread patterns characterised by the groove cross-section, e.g. for buttressing or preventing stone-trapping with special features of the groove walls comprising recesses

Definitions

  • the present disclosure relates to a tire.
  • Patent Document 1 has proposed a tire with improved steering stability on a dry road surface by specifying main grooves extending continuously in the tire circumferential direction and lateral grooves extending in the tire axial direction.
  • Patent document 1 Japanese Unexamined Patent Application Publication 2020-200018
  • the present disclosure has been made in view of the above circumstances, and has a main object to provide a tire capable of improving steering stability on dry road surfaces while maintaining wet performance.
  • a tire in one aspect of the present disclosure, includes a tread portion being provided with a first circumferential groove extending continuously in a tire circumferential direction, and a first land portion adjacent to the first circumferential groove, the first land portion including a ground contact surface, a land sidewall on a first circumferential groove side, and at least one recess that opens across both the ground contact surface and the land sidewall, wherein the at least one recess has an opening defined by a V-shaped first edge and a V-shaped second edge respectively extending on the ground contact surface and the land sidewall, the at least one recess has a maximum length L 1 in the tire circumferential direction of from 6.0 to 9.0 mm, the at least one recess has a maximum depth d 1 of from 15% to 40% of a maximum depth of the first circumferential groove, and the at least one recess has a maximum length L 2 in a tire axial direction of from 3.0 to 5.0 times the depth d 1 .
  • FIG. 1 is a meridian cross-sectional view showing an embodiment of a tire in accordance with the present disclosure
  • FIG. 2 is an enlarged plan view of a first land portion, a second land portion and a first circumferential groove of FIG. 1 ;
  • FIG. 3 is an enlarged perspective view of the first land portion
  • FIG. 4 is a cross-sectional view taken along the line A-A of FIG. 2 ;
  • FIG. 5 is a side view of the first land portion and a recess
  • FIG. 6 is a cross-sectional view taken along the line B-B of FIG. 2 ;
  • FIG. 7 is a cross-sectional view taken along the line C-C of FIG. 2 .
  • FIG. 1 is a meridian cross-sectional view showing an embodiment of a tire 1 under a normal state in accordance with the present disclosure.
  • the present disclosure may preferably be applied to a pneumatic tire for passenger car, for example.
  • the present disclosure is not limited to such an embodiment, and the present disclosure may be applied to, for example, tires for motorcycle and heavy loads.
  • the “normal state” is such that the tire 1 is mounted onto a standard wheel rim with a standard pressure but loaded with no tire load. If a tire is not based on the standards, or if a tire is a non-pneumatic tire, the normal state is a standard state of use according to the purpose of use of the tire and means a state of no load. As used herein, unless otherwise noted, dimensions of portions of the tire are values measured under the normal state.
  • the “standard wheel rim” is a wheel rim officially approved for each tire by standards organizations on which the tire is based, wherein the standard wheel rim is the “standard rim” specified in JATMA, the “Design Rim” in TRA, and the “Measuring Rim” in ETRTO, for example.
  • the “standard pressure” is a standard pressure officially approved for each tire by standards organizations on which the tire is based, wherein the standard pressure is the “maximum air pressure” in JATMA, the maximum pressure given in the “Tire Load Limits at Various Cold Inflation Pressures” table in TRA, and the “Inflation Pressure” in ETRTO, for example.
  • Tire components such as a carcass 6 and a belt layer 7 are arranged inside the tire 1 according to the present embodiment.
  • tire components such as a carcass 6 and a belt layer 7 are arranged inside the tire 1 according to the present embodiment.
  • conventional aspects are appropriately adopted.
  • the tire 1 includes a tread portion 2 , a pair of sidewall portions 3 , a pair of bead portions 4 , the carcass 6 extending from one of the bead portions 4 to the other one of the bead portions 4 through one of the sidewall portions 3 , the tread portion 2 , and the other one of the sidewall portions 3 , and the belt layer 7 .
  • the carcass 6 for example, is composed of a single carcass ply.
  • the carcass ply for example, includes a plurality of organic fiber carcass cords oriented at an angle of from 75 to 90 degrees with respect to the tire circumferential direction.
  • the bely layer 7 is composed of two bely plies 7 A and 7 B.
  • Each of the belt plies 7 A and 7 B for example, includes a plurality of belt cords oriented at an angle of from 10 to 45 degrees with respect to the tire circumferential direction.
  • the belt cords for example, organic fiber cords and steel cords may be adopted as appropriate.
  • a tread reinforcing layer such as a band layer may be further arranged on radially outwardly of the belt layer 7 .
  • the tread portion 2 is provided with a plurality of circumferential grooves 8 extending continuously in the tire circumferential direction.
  • the circumferential grooves 8 provided on the tread portion 2 include two first circumferential grooves 11 and two second circumferential grooves 12 .
  • One of the first circumferential grooves 11 is provided between the tire equator C and one of the tread edges Te, and the other one of the first circumferential grooves 11 is provided between the tire equator C and the other one of the tread edges Te.
  • the second circumferential grooves 12 are located between the first circumferential grooves 11 such that the tire equator C is located therebetween.
  • the first circumferential grooves 11 are located on the respective tread edges Te side
  • the second circumferential grooves 12 are located on the inside of the first circumferential grooves 11 in the tire axial direction.
  • the tread edges Te are the axial outermost edges of the ground contact surface of the tire 1 which occurs under the condition such that the tire 1 under the normal state is grounded on a plane with a 70% of the standard tire load at zero camber angles.
  • the “standard tire load” is a tire load officially approved for each tire by the standards organization in which the tire is based, wherein the standard tire load is the “maximum load capacity” in JATMA, the maximum value given in the above-mentioned table in TRA, and the “Load Capacity” in ETRTO, for example. If a tire is not based on the standards, the “standard tire load” refers to the maximum load that can be applied when using the tire in accordance with the above-mentioned standards.
  • the tread portion 2 includes a plurality of land portions 9 which is divided by the circumferential grooves 8 .
  • the land portions 9 include first land portions 13 , second land portions 14 and a third land portion 15 .
  • the first land portions 13 are adjacent to the first circumferential grooves 11 .
  • the first land portions 13 are demarcated between the first circumferential grooves 11 and the second circumferential grooves 12 .
  • the second land portions 14 are adjacent to the first land portions 13 via the first circumferential grooves 11 .
  • the second land portions 14 are arranged outwardly in the tire axial direction of the first land portions 13 to include the tread edges Te.
  • the third land portion 15 is demarcated between the second circumferential grooves 12 . Note that the present disclosure is not limited to the above-mentioned embodiment as long as the tread portion 2 includes at least one first circumferential groove 11 and at least one first land portion 13 adjacent thereto.
  • FIG. 2 illustrates an enlarged plan view of one of the first land portions 13 , one of the second land portions 14 and one of the first circumferential grooves 11 .
  • FIG. 3 is an enlarged perspective view of the first land portion 13 .
  • the first land portion 13 includes a ground contact surface 17 , a land sidewall 18 on the first circumferential groove 11 side, and at least one recess 20 that opens across both the ground contact surface 17 and the land sidewall 18 .
  • the at least one recess 20 has an opening defined by a V-shaped first edge 20 a and a V-shaped second edge 20 b respectively extending on the ground contact surface 17 and the land sidewall 18 .
  • the first edge 20 a of the recess 20 is a ridge formed by the ground contact surface 17 of the first land portion 13 and the inner surface 20 i of the recess 20 .
  • the second edge 20 b of the recess 20 is a ridge formed by the land sidewall 18 of the first land portion 13 and the inner surface 20 i of the recess 20 . Since the tire 1 is a rubber product, the ridges may have a minute width in the cross section in the direction orthogonal to the length direction thereof.
  • the ridges may be microscopically curved in the cross section.
  • the width of the ridges is preferably equal to or less than 1.0 mm, more preferably equal to or less than 0.5 mm. If the ridges have a width, each dimension of the recess 20 described below shall be measured at the center of the width of the ridges.
  • the recess 20 has a maximum length L 1 in the tire circumferential direction of from 6.0 to 9.0 mm.
  • FIG. 4 illustrates a cross-sectional view taken along the line A-A of FIG. 2 .
  • the recess 20 has a maximum depth d 1 of from 15% to 40% of a maximum depth d 2 of the first circumferential groove 11 .
  • the recess 20 has a maximum length L 2 in the tire axial direction of from 3.0 to 5.0 times the maximum depth d 1 .
  • the present disclosure can improve steering stability on dry road surfaces (hereinafter, may be simply referred to as “steering stability”) while maintaining the wet performance.
  • the following mechanism can be inferred as the reason.
  • the recess 20 whose shape and dimensions are specified as described above can be appropriately deformed when the ground pressure is applied to the first land portion 13 , and the inner surface 20 i of the recess 20 can be grounded. Thus, it is possible to suppress that excessively high ground pressure acts on the vertical edge 13 a of the first land portion 13 . Accordingly, problems such as the ground contact surface 17 of the first land portion 13 being locally lifted can be suppressed, and a large grip force can be provided.
  • the recess 20 according to the present disclosure does not excessively impair the rubber volume of the first land portion 13 while exerting the above-mentioned effect.
  • the rigidity of the first land portion 13 can be maintained, which further improves the steering stability.
  • the recess 20 having the above-mentioned shape and dimensions can efficiently guide the water pushed by the ground contact surface 17 of the first land portion 13 to the first circumferential groove 11 side during wet driving, and can maintain the wet performance. For this reason, the tire 1 according to the present disclosure can improve the steering stability while maintaining the wet performance.
  • each configuration described below shows a specific aspect of the present embodiment.
  • the present disclosure can exert the above-mentioned effects even if the tire does not include the configuration described below.
  • the performance improvement according to each additional configuration can be expected.
  • the first land portion 13 is not provided with any lateral grooves that extend across the first land portion 13 completely in the tire axial direction.
  • the ground contact surface 17 of the first land portion 13 extends continuously in the tire circumferential direction over the entire circumference of the tire.
  • Such a first land portion 13 has high rigidity and can exert excellent steering stability.
  • the first land portion 13 is provided with a plurality of recesses 20 spaced in the tire circumferential direction.
  • a pitch length of the plurality of recesses 20 in the tire circumferential direction for example, is in a range from 4.0 to 8.0 times the length L 1 of the tire circumferential direction of the recesses 20 .
  • the arrangement of the recesses 20 can improve steering stability and wet performance in a well-balanced manner.
  • each recess 20 preferably has a triangular pyramid space surrounded by the inner surface 20 i of the recess 20 , a virtual extension surface of the ground contact surface 17 , and a virtual extension surface of the land sidewall 18 .
  • the inner surface 20 i of the recesses 20 in the ground contact patch can be easily grounded, and the above-mentioned effect can be surely obtained.
  • the length L 1 of the tire circumferential direction of the recesses 20 is preferably equal to or more than 6.5 mm, more preferably equal to or more than 7.0 mm, but preferably equal to or less than 8.5 mm, more preferably equal to or less than 8.0 mm.
  • the maximum depth d 1 of the recesses 20 is preferably in a range from 25% to 40%, more preferably 35% to 40%, of the maximum depth d 2 of the first circumferential groove 11 .
  • the maximum length L 2 of the recesses 20 in the tire axial direction is preferably in a range from 3.0 to 4.0 times the depth d 1 , more preferably 3.0 to 3.5 times.
  • the present disclosure is not limited to such a range.
  • an opening area of each recess 20 at the ground contact surface 17 is preferably greater than an opening area of the recess 20 at the land sidewall 18 . This makes it easier for the inner surface 20 i of the recess 20 to come into contact with the ground, exerting excellent steering stability.
  • a vertex angle ⁇ 1 of the first edge 20 a on the ground contact surface 17 of each recess 20 is preferably an acute angle, more preferably from 45 to 80 degrees, even more preferably from 50 to 70 degrees.
  • FIG. 5 illustrates a side view of the first land portion 13 and one of the recesses 20 .
  • a vertex angle ⁇ 2 of the second edge 20 b on the land sidewall 18 of the first land portion 13 is greater than the vertex angle ⁇ 1 .
  • the vertex angle ⁇ 2 is preferably an obtuse angle, more preferably from 110 to 140 degrees, even more preferably from 120 to 130 degrees.
  • Such a recess 20 can help to improve wet performance while maintaining the rigidity of the first land portion 13 .
  • the inner surface 20 i of each recess 20 includes a first inner surface 21 and a second inner surface 22 .
  • the first inner surface 21 is connected to the second inner surface 22 through a boundary ridge 23 .
  • the first inner surface 21 has a triangle shape surrounded by an edge segment 20 a 1 of the first edge 20 a on the ground contact surface 17 of the recess 20 , an edge segment 20 b 1 of the second edge 20 b on the land sidewall 18 of the recess 20 , and the boundary ridge 23 .
  • the second inner surface 22 has a triangle shape surrounded by an edge segment 20 a 2 of the first edge 20 a on the ground contact surface 17 of the recess 20 , an edge segment 20 b 2 of the second edge 20 b on the land sidewall 18 of the recess 20 , and the boundary ridge 23 .
  • the first inner surface 21 and the second inner surface 22 are each configured to be flat, but may be curved convexly toward the tire outer surface side, for example.
  • the boundary ridge 23 corresponds to the bottom of the recess 20 in each cross section when the recess 20 is cut by a virtual plane parallel to the tire circumferential direction.
  • the boundary ridge 23 extends linearly from the apex 20 c of the first edge 20 a formed on the ground contact surface 17 of the recess 20 to the apex of the second edge 20 b formed on the land sidewall 18 of the recess 20 .
  • the depth of the recess 20 continuously increases from the apex 20 c toward the land sidewall 18 . This makes it easier for the inner surface 20 i of the recess 20 to come into contact with the ground, and excellent steering stability can be exhibited.
  • each boundary ridge 23 of each recess 20 is inclined at an angle ⁇ 3 with respect to the tire axial direction.
  • the angle ⁇ 3 of each boundary ridge 23 with respect to the tire axial direction is of from 20 to 50 degrees, preferably from 30 to 40 degrees. This makes it easier for the inner surface 20 i of each recess 20 to come into contact with the ground when a slip angle is given to the tire 1 , thus further improving steering stability.
  • the tire 1 may have a specified orientation to be mounted on a vehicle.
  • the first land portion 13 having the recesses 20 described above may preferably be located outside a vehicle with respect to the tire equator C when mounted on the vehicle.
  • the recesses 20 are arranged in the region where the change in ground pressure tends to be large, so that the above effect can further be exhibited.
  • the first land portion 13 is provided with a plurality of termination grooves 25 extending from the second circumferential groove 12 and terminating within the first land portion 13 .
  • Such termination grooves 25 can improve wet performance while maintaining the rigidity of the first land portion 13 .
  • a groove width W 1 of the termination grooves 25 is preferably smaller than the length L 1 in the tire circumferential direction of the recesses 20 .
  • the groove width W 1 of the termination grooves 25 is 70% to 90% of the length L 1 of the recesses 20 , for example.
  • a length L 3 of the termination grooves 25 in the tire axial direction is preferably 2.0 to 3.5 times the length L 2 of the recesses 20 (shown in FIG. 4 ).
  • the termination grooves 25 are preferably slightly inclined at an angle with respect to the tire axial direction.
  • the angle ⁇ 4 of the termination grooves 25 with respect to the tire axial direction is preferably in a range from 5 to 20 degrees, for example.
  • the angle ⁇ 4 of the termination grooves 25 is smaller than the angle ⁇ 3 of the boundary ridges 23 of the recesses 20 with respect to the tire axial direction.
  • Such termination grooves 25 can moderately relax the rigidity of the tire circumferential direction of the first land portion 13 .
  • the inner surface 20 i of each recess 20 can be more easily grounded.
  • a distance L 4 in the tire circumferential direction from the terminating ends 25 a on the first land portion 13 of the termination grooves 25 to the respective apexes 20 c of the V-shaped edges 20 a on the ground contact surface 17 of the recesses 20 is smaller than the length L 1 in the tire circumferential direction of the recesses 20 .
  • the distance L 4 is in a range from 20% to 35% of the length L 1 of the recesses.
  • the second land portions 14 each are provided with a plurality of lateral grooves 30 .
  • the lateral grooves 30 for example, extend in the tire axial direction from the first circumferential grooves 11 .
  • the lateral grooves 30 extend from the first circumferential grooves 11 outwardly in the tire axial direction beyond the tread edges Te.
  • the lateral grooves 30 have ends 30 a at the first circumferential groove, and the ends 30 a preferably face the respective recesses 20 .
  • the recesses 20 and the lateral grooves 30 can work together to improve the wet performance.
  • the ends 30 a faces the respective recesses 20 means that in a tread plan view, regions in which the recesses 20 are extended in parallel with the tire axial direction overlap with the respective openings of the lateral grooves 30 at the first circumferential groove 11 .
  • the ends 30 a of the lateral grooves 30 have a groove width W 2 which is greater than the length L 1 of recesses 20 .
  • the groove width W 2 of the lateral grooves 30 is preferably in a range from 120% to 140% of the length L 1 of the recesses 20 .
  • Such lateral grooves 30 can help to improve steering stability and wet performance in a well-balanced manner.
  • the lateral grooves 30 extend at an angle ⁇ 5 of from 0 to 10 degrees with respect to the tire axial direction.
  • the angle ⁇ 5 of the lateral grooves 30 with respect to the tire axial direction is smaller than the angle ⁇ 3 of the boundary ridges 23 with respect to the tire axial direction, for example.
  • FIG. 6 illustrates a cross-sectional view taken along the line B-B of FIG. 2 .
  • at least one of the lateral grooves 30 is preferably provided with a tie-bar 31 in which a groove bottom thereof raises locally.
  • the tie-bar 31 is provided in a region including the end 30 a of the lateral groove 30 on the first circumferential groove 11 side. Such a tie-bar 31 can improve steering stability while maintaining wet performance.
  • a depth d 3 from the ground contact surface of the second land portion 14 to an outer surface of the tie-bar 31 is preferably 25% to 60% of the depth d 2 of the first circumferential groove 11 .
  • a length L 5 of the tie-bar 31 in the tire axial direction is preferably 4.0 to 11.0 times the depth d 3 .
  • Such a tie-bar 31 can help to achieve a good balance between wet performance and steering stability. If the length of the tie-bar 31 in the tire axial direction changes in the tire radial direction, the length L 5 shall be measured at the center position of the tie-bar 31 in the tire radial direction.
  • FIG. 7 illustrates a cross-sectional view taken along the line C-C of FIG. 2 .
  • the lateral grooves 30 each have a pair of groove edges. At least one of the pair of groove edges of at least one of the lateral grooves 30 may have a chamfer 33 . In the present embodiment, each of the pair of groove edges has the chamfer 33 .
  • Each chamfer 33 includes an inclined surface 34 extending between the respect ground contact surface of the second land portion 14 and a groove wall. The lateral groove 30 with one or more chamfers 33 can mitigate the localized high ground pressure on their edges.
  • the chamfer 33 has a width W 3 in a range from 1.0 to 2.5 mm, for example.
  • a depth d 4 of the chamfer 33 is preferably in a range from 1.0 to 2.0 mm.
  • the lateral grooves 30 with the chamfer 33 like this can help to improve the balance between steering stability and wet performance.
  • pneumatic tires of size 235/35ZR19 having the basic structure shown in FIG. 1 and having the above-mentioned recesses in the first land portion were prepared.
  • Comparative Examples 1-6 tires with recesses having dimensions outside the scope of the present disclosure were prepared.
  • the tires of Comparative Examples 1-6 were substantially the same as the tires of Examples except for the above items. These tires were tested for steering stability and wet performance on a dry road.
  • the common specifications and test methods for each test tires are as follows.
  • Test vehicle displacement 2000 cc, front-wheel drive
  • the wet performance when driving on a wet road surface with the test vehicle was evaluated by the driver's sensuality.
  • the test results are indicated in Tables 1 to 3 by a score with Comparative Example 1 as 100. The larger the value, the better the wet performance.
  • Examples 1 to 17 show high scores of 105 to 108 points for steering stability on a dry road surface.
  • steering stability of Comparative Examples 1, 3 and 5 was 100 to 101 points. Since Comparative Examples 1, 3 and 5 had the recesses having the sizes which are smaller than those specified in the present disclosure, these tires can be presumed that the inner surfaces of the recesses could not be sufficiently grounded to improve steering stability.
  • Comparative Examples 2, 4 and 6 also had the steering stability of 100 to 101 points. Since Comparative Examples 2, 4 and 6 had the recesses having the sizes which are larger than those specified in the present disclosure, the rigidity of the first land portions can be reduced, resulting in lower steering stability. As shown in Tables 1 to 3, it is also confirmed that the specific specification of the recesses in the present disclosure can improve the steering stability on a dry road surface while maintaining the wet performance.
  • the disclosure includes the following aspects.
  • a tire comprising:
  • a tread portion being provided with a first circumferential groove extending continuously in a tire circumferential direction, and a first land portion adjacent to the first circumferential groove,
  • the first land portion comprising a ground contact surface, a land sidewall on a first circumferential groove side, and at least one recess that opens across both the ground contact surface and the land sidewall, wherein
  • the at least one recess has an opening defined by a V-shaped first edge and a V-shaped second edge respectively extending on the ground contact surface and the land sidewall,
  • the at least one recess has a maximum length L 1 in the tire circumferential direction of from 6.0 to 9.0 mm,
  • the at least one recess has a maximum depth d 1 of from 15% to 40% of a maximum depth of the first circumferential groove
  • the at least one recess has a maximum length L 2 in a tire axial direction of from 3.0 to 5.0 times the depth d 1 .
  • the at least one recess has a triangular pyramid space surrounded by an inner surface of the recess, a virtual extension surface of the ground contact surface, and a virtual extension surface of the land sidewall.
  • the at least one recess has an opening area on the ground contact surface larger than an opening area on the land sidewall.
  • the tread portion is provided with a second circumferential groove extending continuously in the tire circumferential direction inside in the tire axial direction of the first circumferential groove, and
  • the first land portion is divided between the first circumferential groove and the second circumferential groove.
  • the ground contact surface of the first land portion extends continuously in the tire circumferential direction over an entire circumference of the tire.
  • the tread portion comprises a second land portion adjacent to the first land portion via the first circumferential groove
  • the second land portion is provided with at least one lateral groove extending in the tire axial direction from the first circumferential groove
  • the at least one lateral groove has an end at the first circumferential groove
  • the end faces the at least one recess.
  • the end of the at least one lateral groove has a groove width greater than the length L 1 of the at least one recess.
  • the at least one lateral groove is provided with a tie-bar in which a groove bottom raises locally.
  • the at least one lateral groove has a pair of groove edges
  • At least one of the pair of groove edges has a chamfer.
  • the chamfer has a maximum chamfer depth smaller than the depth d 1 of the at least one recess.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Tires In General (AREA)
US17/889,208 2021-09-07 2022-08-16 Tire Pending US20230070741A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021145688A JP2023038788A (ja) 2021-09-07 2021-09-07 タイヤ
JP2021-145688 2021-09-07

Publications (1)

Publication Number Publication Date
US20230070741A1 true US20230070741A1 (en) 2023-03-09

Family

ID=82786798

Family Applications (1)

Application Number Title Priority Date Filing Date
US17/889,208 Pending US20230070741A1 (en) 2021-09-07 2022-08-16 Tire

Country Status (3)

Country Link
US (1) US20230070741A1 (de)
EP (1) EP4144540B1 (de)
JP (1) JP2023038788A (de)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0253608A (ja) * 1988-08-12 1990-02-22 Sumitomo Rubber Ind Ltd 空気入りラジアルタイヤ
JP2006224791A (ja) * 2005-02-17 2006-08-31 Yokohama Rubber Co Ltd:The 空気入りタイヤ
JP4957786B2 (ja) * 2009-02-12 2012-06-20 横浜ゴム株式会社 空気入りタイヤ
JP5141719B2 (ja) * 2010-06-02 2013-02-13 横浜ゴム株式会社 空気入りタイヤ
DE102012105403A1 (de) * 2012-06-21 2013-12-24 Continental Reifen Deutschland Gmbh Fahrzeugluftreifen
JP7400429B2 (ja) 2019-06-05 2023-12-19 住友ゴム工業株式会社 タイヤ

Also Published As

Publication number Publication date
EP4144540B1 (de) 2024-04-10
EP4144540A1 (de) 2023-03-08
JP2023038788A (ja) 2023-03-17

Similar Documents

Publication Publication Date Title
US10752057B2 (en) Pneumatic tire
US10202007B2 (en) Pneumatic tire
US11207922B2 (en) Tire
US10780743B2 (en) Tire
US11433711B2 (en) Tire
US11285762B2 (en) Tyre
WO2018131475A1 (ja) 空気入りタイヤ
US11897290B2 (en) Tire
US11535066B2 (en) Tire
US11904639B2 (en) Tire
JP2000006616A (ja) 空気入りタイヤ
US20230070741A1 (en) Tire
EP3805017A2 (de) Reifen
US11724549B2 (en) Pneumatic tire
US20230191848A1 (en) Tire
US11766898B2 (en) Tire
US11780270B2 (en) Tire
US20220402308A1 (en) Tire and tire-vehicle combination
US11878555B2 (en) Tire
US11897287B2 (en) Tire
US12030344B2 (en) Tire
US11738603B2 (en) Tire
US11498366B2 (en) Tire
US20220001697A1 (en) Tire
US20230150312A1 (en) Tire

Legal Events

Date Code Title Description
AS Assignment

Owner name: SUMITOMO RUBBER INDUSTRIES, LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MEGURO, YUYA;REEL/FRAME:060837/0190

Effective date: 20220621

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: ADVISORY ACTION MAILED