US20230006004A1 - Display substrate and manufacturing method therefor, and display apparatus - Google Patents

Display substrate and manufacturing method therefor, and display apparatus Download PDF

Info

Publication number
US20230006004A1
US20230006004A1 US17/778,891 US202117778891A US2023006004A1 US 20230006004 A1 US20230006004 A1 US 20230006004A1 US 202117778891 A US202117778891 A US 202117778891A US 2023006004 A1 US2023006004 A1 US 2023006004A1
Authority
US
United States
Prior art keywords
region
substrate
sub
pattern
display
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
US17/778,891
Inventor
Yansong LI
Ying Bao
Haidong WU
Xing Fan
Xiaobo Du
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BOE Technology Group Co Ltd
Original Assignee
BOE Technology Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BOE Technology Group Co Ltd filed Critical BOE Technology Group Co Ltd
Assigned to BOE TECHNOLOGY GROUP CO., LTD. reassignment BOE TECHNOLOGY GROUP CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BAO, YING, DU, Xiaobo, FAN, XING, LI, YANSONG, WU, Haidong
Publication of US20230006004A1 publication Critical patent/US20230006004A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • H10K71/166Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using selective deposition, e.g. using a mask
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H10K59/353Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels characterised by the geometrical arrangement of the RGB subpixels
    • H01L27/3218
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H01L27/3216
    • H01L27/3234
    • H01L51/56
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/121Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H10K59/352Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels the areas of the RGB subpixels being different
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/60OLEDs integrated with inorganic light-sensitive elements, e.g. with inorganic solar cells or inorganic photodiodes
    • H10K59/65OLEDs integrated with inorganic image sensors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8052Cathodes
    • H10K59/80522Cathodes combined with auxiliary electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices

Definitions

  • the present disclosure relates to the field of display technologies, and in particular, to a display substrate and a manufacturing method therefor, and a display apparatus.
  • OLEDs Organic light-emitting diodes
  • AMOLEDs Active-matrix organic light-emitting diodes
  • a display substrate has a display region.
  • the display region includes at least a first region, and the first region includes a plurality of first sub-pixel regions.
  • the display substrate includes: a substrate; a plurality of first sub-pixels disposed on a side of the substrate and respectively located at the plurality of first sub-pixel regions, each first sub-pixel including a first anode, a first light-emitting layer and a first cathode that are stacked in sequence; and a pattern layer disposed on a side of the plurality of first sub-pixels away from the substrate.
  • the pattern layer includes a first pattern and a plurality of second patterns.
  • the first pattern has a plurality of openings arranged at intervals, and the plurality of second patterns are disposed in the plurality of openings, respectively.
  • the first pattern is made of a conductive material
  • the second patterns are made of a transparent insulating material. Boundaries of orthographic projections of part of the plurality of second patterns located in the first region on the substrate respectively coincide with boundaries of the plurality of first sub-pixel regions; or boundaries of the plurality of first sub-pixel regions are respectively located within boundaries of orthographic projections of part of the plurality of second patterns located in the first region on the substrate. A portion of the first pattern located in the first region is electrically connected to the first cathode.
  • an orthographic projection of each second pattern on the substrate is at least partially overlapped with an orthogonal projection of a corresponding opening on the substrate.
  • the first pattern and the second patterns are mutually exclusive in material.
  • the second patterns are made of a lithium quinoline complex
  • the first pattern is made of magnesium
  • a side surface of the portion, proximate to the substrate, of the first pattern located in the first region is in direct contact with a side surface of the first cathode away from the substrate.
  • a thickness of the portion of the first pattern located in the first region is greater than or equal to 100 nm.
  • side surfaces of the plurality of second patterns away from the substrate are lower than a side surface of the first pattern away from the substrate.
  • a thickness of the plurality of second patterns is about 5 nm.
  • the display region further includes a second region located beside the first region, and the second region includes a plurality of second sub-pixel regions. A portion of the display substrate located between two adjacent second sub-pixel regions is configured to allow light to pass through the display substrate from a side to another opposite side.
  • the display substrate further includes a plurality of second sub-pixels disposed on the side of the substrate and respectively located at the plurality of second sub-pixel regions.
  • Each second sub-pixel includes a second anode and a second light-emitting layer that are stacked in sequence. Boundaries of the plurality of second sub-pixel regions are located within an orthographic projection of a portion of the first pattern located in the second region on the substrate, and the second light-emitting layer is electrically connected to the portion of the first pattern located in the second region. Orthographic projections of part of the plurality of second patterns located in the second region on the substrate are non-overlapped with the boundaries of the plurality of second sub-pixel regions.
  • a side surface of the portion, proximate to the substrate, of the first pattern located in the second region is in direct contact with a side surface of the second light-emitting layer away from the substrate.
  • the portion of the first pattern located in the second region serves as a second cathode in each second sub-pixel.
  • a thickness of a portion of the first pattern located in the second region is in a range of 10 nm to 15 nm, inclusive.
  • a manufacturing method of a display substrate includes: providing a substrate, the substrate having a display region, the display region including at least a first region, and the first region including a plurality of first sub-pixel regions; forming a plurality of first sub-pixels on a side of the substrate, the plurality of first sub-pixels being respectively located at the plurality of first sub-pixel regions, and each first sub-pixel including a first anode, a first light-emitting layer and a first cathode that are stacked in sequence; and forming a pattern layer on a side of the plurality of first sub-pixels away from the substrate.
  • the pattern layer includes a first pattern and a plurality of second patterns, the first pattern has a plurality of openings arranged at intervals, and the plurality of second patterns are disposed in the plurality of openings, respectively.
  • the first pattern is made of a conductive material
  • the second patterns are made of a transparent insulating material.
  • Forming the pattern layer on the side of the plurality of first sub-pixels away from the substrate includes: forming the plurality of second patterns arranged at intervals on the side of the plurality of first sub-pixels away from the substrate; and forming the first pattern in gaps between the plurality of second patterns.
  • Boundaries of orthographic projections of part of the plurality of second patterns located in the first region on the substrate respectively coincide with boundaries of the plurality of first sub-pixel regions; or boundaries of the plurality of first sub-pixel regions are respectively located within boundaries of orthographic projections of part of the plurality of second patterns located in the first region on the substrate.
  • a portion of the first pattern located in the first region is electrically connected to the first cathode.
  • forming the plurality of second patterns arranged at intervals on the side of the plurality of first sub-pixels away from the substrate includes: disposing a fine metal mask on the side of the plurality of first sub-pixels away from the substrate; and evaporating the transparent insulating material onto the side of the plurality of first sub-pixels away from the substrate by an evaporation process using the fine metal mask, so as to form the plurality of second patterns arranged at intervals.
  • Forming the first pattern in the gaps between the plurality of second patterns includes: disposing an open mask on a side of the plurality of second patterns away from the substrate; and evaporating the conductive material into the gaps between the plurality of second patterns by an evaporation process using the open mask, so as to form the first pattern.
  • the conductive material and the transparent insulating material are mutually exclusive, and a shape of an orthographic projection of the first pattern on the substrate is complementary to shapes of orthographic projections of the plurality of second patterns on the substrate.
  • a display apparatus in yet another aspect, includes the display substrate in any one of the above embodiments.
  • the display apparatus further includes at least one optical sensor disposed on a side of the substrate in the display substrate away from the pattern layer in the display substrate and located in the second region.
  • FIG. 1 is a structural diagram of a display apparatus, in accordance with some embodiments of the present disclosure
  • FIG. 2 is a structural diagram of another display apparatus, in accordance with some embodiments of the present disclosure.
  • FIG. 3 is a structural diagram of a display substrate, in accordance with some embodiments of the present disclosure.
  • FIG. 4 is a structural diagram of a pattern layer, in accordance with some embodiments of the present disclosure.
  • FIG. 5 is a structural diagram of another display substrate, in accordance with some embodiments of the present disclosure.
  • FIG. 6 is a structural diagram of yet another display substrate, in accordance with some embodiments of the present disclosure.
  • FIG. 7 is a cross-sectional view of the display substrate shown in FIG. 6 taken along the M-M′ direction;
  • FIG. 8 a is a partial schematic diagram of the structure shown in FIG. 7 ;
  • FIG. 8 b is another partial schematic diagram of the structure shown in FIG. 7 ;
  • FIG. 9 is a cross-sectional view of the display substrate shown in FIG. 6 taken along the N-N′ direction;
  • FIG. 10 is a partial schematic diagram of the structure shown in FIG. 9 ;
  • FIG. 11 is another partial schematic diagram of the structure shown in FIG. 9 ;
  • FIG. 12 is a structural diagram of yet another display substrate, in accordance with some embodiments of the present disclosure.
  • FIG. 13 is a structural diagram of yet another display substrate, in accordance with some embodiments of the present disclosure.
  • FIG. 14 is a flow diagram of a manufacturing method of a display substrate in accordance with some embodiments of the present disclosure.
  • FIG. 15 is a flow diagram of S 300 of the flow diagram shown in FIG. 14 ;
  • FIG. 16 is a flow diagram of S 310 of the flow diagram shown in FIG. 15 ;
  • FIG. 17 is a flow diagram of S 320 of the flow diagram shown in FIG. 15 ;
  • FIGS. 18 a and 18 b are diagrams showing steps of manufacturing a pattern layer in S 300 of the flow diagram shown in FIG. 14 .
  • the term “comprise” and other forms thereof such as the third-person singular form “comprises” and the present participle form “comprising” are construed as an open and inclusive meaning, i.e., “including, but not limited to.”
  • the terms such as “one embodiment,” “some embodiments,” “exemplary embodiments,” “an example,” “specific example” or “some examples” are intended to indicate that specific features, structures, materials or characteristics related to the embodiment(s) or example(s) are included in at least one embodiment or example of the present disclosure. Schematic representations of the above terms do not necessarily refer to the same embodiment(s) or example(s).
  • the specific features, structures, materials or characteristics may be included in any one or more embodiments or examples in any suitable manner.
  • first and second are only used for descriptive purposes, and are not to be construed as indicating or implying relative importance or implicitly indicating the number of indicated technical features.
  • a feature defined with “first” or “second” may explicitly or implicitly include one or more of the features.
  • the term “a plurality of/the plurality of” means two or more unless otherwise specified.
  • the term “connected” and derivatives thereof may be used.
  • the term “connected” may be used in the description of some embodiments to indicate that two or more components are in direct physical or electrical contact with each other.
  • the term “coupled” may be used in the description of some embodiments to indicate that two or more components are in direct physical or electrical contact with each other.
  • the term “coupled” or “communicatively coupled” may also mean that two or more components are not in direct contact with each other, but still cooperate or interact with each other.
  • the embodiments disclosed herein are not necessarily limited to the contents herein.
  • the term “if” is, optionally, construed to mean “when” or “in a case where” or “in response to determining” or “in response to detecting”, depending on the context.
  • the phrase “if it is determined” or “if [a stated condition or event] is detected” is, optionally, construed to mean “in a case where it is determined” or “in response to determining” or “in a case where [the stated condition or event] is detected” or “in response to detecting [the stated condition or event]”, depending on the context.
  • phase “applicable to” or “configured to” herein means an open and inclusive expression, which does not exclude devices that are applicable to or configured to perform additional tasks or steps.
  • phase “based on” means openness and inclusiveness, since a process, step, calculation or other action that is “based on” one or more stated conditions or values may, in practice, be based on additional conditions or values exceeding those stated.
  • the term such as “about,” “substantially” or “approximately” includes a stated value and an average value within an acceptable range of deviation of a particular value.
  • the acceptable range of deviation is determined by a person of ordinary skill in the art, considering measurement in question and errors associated with measurement of a particular quantity (i.e., limitations of a measurement system).
  • Exemplary embodiments are described herein with reference to sectional views and/or plan views as idealized exemplary drawings.
  • thicknesses of layers and sizes of regions are enlarged for clarity.
  • variations in shape relative to the accompanying drawings due to, for example, manufacturing techniques and/or tolerances may be envisaged. Therefore, the exemplary embodiments should not be construed to be limited to the shapes of regions shown herein, but to include deviations in shape due to, for example, manufacturing.
  • an etched region shown in a rectangular shape generally has a curved feature. Therefore, the regions shown in the accompanying drawings are schematic in nature, and their shapes are not intended to show actual shapes of the regions in a device, and are not intended to limit the scope of the exemplary embodiments.
  • a large current is required to drive a light-emitting device.
  • cathodes of light-emitting devices in an electroluminescent display panel are formed into a whole layer by evaporation (that is, the light-emitting devices share a whole cathode layer).
  • the cathode layer is usually made thin, which results in a large sheet resistance of the cathode layer. In this way, a brightness of an end of the electroluminescent display panel proximate to an integrated circuit is higher than a brightness of an end of the electroluminescent display panel away from the integrated circuit, thereby resulting in a non-uniform display.
  • some embodiments of the present disclosure provide a display substrate. As shown in FIGS. 5 and 6 , the display substrate 100 has a display region A.
  • the display region A includes at least a first region A 1 . That is, as shown in FIG. 5 , the display region A may include only the first region A 1 . Alternatively, the display region A may include the first region A 1 and other region(s). For example, as shown in FIG. 6 , the display region A may include the first region A 1 and a second region A 2 . For the second region A 2 , reference may be made to a following description, which will not be repeated here.
  • the first region A 1 may include a plurality of first sub-pixel regions P 1 .
  • the plurality of first sub-pixel regions P 1 may be arranged in an array.
  • the display substrate 100 may include a substrate 1 .
  • a type of the substrate 1 varies, and may be set according to actual needs.
  • the substrate 1 may be a rigid substrate.
  • the rigid substrate may be a glass substrate or a polymethyl methacrylate (PMMA) substrate.
  • the substrate 1 may be a flexible substrate.
  • the flexible substrate may be a polyethylene terephthalate (PET) substrate, a polyethylene naphthalate two formic acid glycol ester (PEN) substrate or a polyimide (PI) substrate.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate two formic acid glycol ester
  • PI polyimide
  • the display substrate 100 may further include a plurality of first sub-pixels 2 disposed on a side of the substrate 1 .
  • the plurality of first sub-pixels 2 include, for example, at least one of red sub-pixels, green sub-pixels, blue sub-pixels and white sub-pixels.
  • the plurality of first sub-pixels 2 are located at the plurality of first sub-pixel regions P 1 , respectively.
  • the plurality of first sub-pixels 2 and the first sub-pixel regions P 1 are arranged in one-to-one correspondence.
  • the first sub-pixel 2 includes a pixel driving circuit, and a first anode 21 , a first light-emitting layer 22 and a first cathode 23 that are stacked in sequence.
  • the first cathode 23 is farther from the substrate 1 than the first anode 21 .
  • First cathodes 23 in the plurality of first sub-pixels 2 may be connected to each other to be of an integrative structure.
  • the display substrate 100 may further include a pixel defining layer 3 disposed between first anodes 21 and first light-emitting layers 22 in the plurality of first sub-pixels 2 .
  • the pixel defining layer 3 has a plurality of openings M, and at least one portion of each first light-emitting layer 22 is electrically connected to a corresponding first anode 21 through an opening M.
  • the openings M of the pixel defining layer 3 are used for defining the plurality of first sub-pixel regions P 1 .
  • the first sub-pixel region P 1 is a region defined by an upper opening portion of an opening M of the pixel defining layer 3 .
  • a structure of the pixel driving circuit varies, which is not limited.
  • the pixel driving circuit may have a “6T1C” structure, a “7T1C” structure, a “6T2C” structure or a “7T2C” structure.
  • T represents a thin film transistor
  • a number before “T” represents the number of thin film transistors
  • C represents a storage capacitor
  • a number before “C” represents the number of storage capacitors.
  • the pixel driving circuit in each first sub-pixels 2 is electrically connected to the first anode 21 .
  • the thin film transistor electrically connected to the first anode 21 may be a driving transistor DT in the pixel driving circuit, and the driving transistor DT may be electrically connected to the first anode 21 through a via hole in an insulating layer (or a planarization layer).
  • the display substrate 100 may further include a pattern layer 4 disposed on a side of the plurality of first sub-pixels 2 away from the substrate 1 .
  • the pattern layer 4 may include a first pattern 41 and a plurality of second patterns 42 .
  • the first pattern 41 may be of an integrative structure.
  • the first pattern 41 has a plurality of openings K arranged at intervals.
  • the plurality of second patterns 42 are disposed in the plurality of openings K, respectively.
  • the plurality of second patterns 42 are disposed in the plurality of openings K in one-to-one correspondence.
  • the first pattern 41 is made of a conductive material
  • the second patterns 42 are made of a transparent insulating material.
  • boundaries of orthographic projections of part of the plurality of second patterns 42 located in the first region A 1 on the substrate 1 respectively coincide with boundaries of the plurality of first sub-pixel regions P 1 .
  • the boundaries of the plurality of first sub-pixel regions P 1 are respectively located within the boundaries of the orthographic projections of the part of the plurality of second patterns 42 located in the first region A 1 on the substrate 1 . That is, areas of the orthographic projections of the second patterns 42 located in the first region A 1 on the substrate 1 are respectively greater than or equal to areas of orthogonal projections of the first sub-pixel regions P 1 on the substrate 1 .
  • a second pattern 42 is located on a side of a first sub-pixel 2 away from the substrate 1 .
  • a side surface of the second pattern 42 proximate to the substrate 1 is in direct contact with a side surface of a first cathode 23 in a corresponding first sub-pixel 2 away from the substrate 1 .
  • the second patterns 42 are made of the transparent insulating material, and an area of an orthographic projection of each second pattern 42 located in the first region A 1 on the substrate 1 is greater than or equal to an area of an orthogonal projection of a corresponding first sub-pixel region P 1 on the substrate 1 , an electrical performance of the first sub-pixel 2 may be prevented from being affected, and a light extraction efficiency of the first sub-pixel 2 may be prevented from being adversely affected.
  • the plurality of second patterns 42 are all located in the first region A 1 .
  • the part of the plurality of second patterns 42 are located in the first region A 1
  • another part of the plurality of second patterns 42 are located in the second region A 2 .
  • the “part of the second patterns 42 ” and the “another part of the second patterns 42 ” are quantitative limitations.
  • a portion of the first pattern 41 located in the first region A 1 is electrically connected to the first cathodes 23 .
  • the first pattern 41 may cover a portion of each of the first cathodes 23 in the plurality of first sub-pixels 2 .
  • an area of an orthographic projection of each second pattern 42 on the substrate 1 is less than or equal to an area of an orthogonal projection of a corresponding opening K on the substrate 1 .
  • the portion of the first pattern 41 located in the first region A 1 does not shield the first sub-pixel region P 1 , so as to avoid affecting the light extraction efficiency of the first sub-pixel 2 .
  • the portion of the first pattern 41 located in the first region A 1 and the first cathode 23 in the first sub-pixel 2 are able to be connected in parallel, which is also beneficial to reducing a sheet resistance of the first cathode 23 .
  • the first pattern 41 is entirely located in the first region A 1 .
  • the portion of the first pattern 41 is located in the first region A 1
  • another portion of the first pattern 41 is located in the second region A 2 .
  • the “portion of the first pattern 41 ” and the “another portion of the first pattern 41 ” are limitations for the entire film layer.
  • the pattern layer 4 is disposed on the side of the plurality of first sub-pixels 2 away from the substrate 1 .
  • the second patterns formed by using the transparent insulating material respectively correspond to the first sub-pixel regions P 1 , and the areas of the orthographic projections of the part of the second patterns 42 located in the first region A 1 on the substrate 1 are each greater than or equal to an area of an orthogonal projection of a corresponding first sub-pixel region P 1 on the substrate 1 .
  • the first pattern 41 formed by using the conductive material is electrically connected to the first cathode 23 in each first sub-pixel 2 , and the portion of the first pattern 41 located in the first region A 1 and the first cathode 23 in each first sub-pixel 2 are connected in parallel. In this way, it is possible not only to ensure that the light extraction efficiency of the first sub-pixel 2 is not affected, but also to reduce the sheet resistance of the first cathode 23 .
  • a phenomenon that a brightness of an end of the display substrate 100 proximate to an integrated circuit is higher than a brightness of an end of the display substrate 100 away from the integrated circuit may be effectively improved, so as to improve a display uniformity and a display quality.
  • the material of the first pattern 41 and the material of the second patterns 42 are mutually exclusive.
  • the material of the first pattern 41 will not be formed on side surfaces of the second patterns 42 away from the substrate 1 in a subsequent process of manufacturing the first pattern 41 due to the mutual exclusivity of the material of the first pattern 41 and the material of the second patterns 42 .
  • the material of the first pattern 41 is formed in the first sub-pixel region P 1 to affect the light extraction efficiency of the first sub-pixel 2 , but also to simplify a manufacturing process of the first pattern 41 and a manufacturing process of the display substrate 100 .
  • the orthographic projection of each second pattern 42 on the substrate 1 is at least partially overlapped with an orthogonal projection of a corresponding opening K on the substrate 1 . That is, a side surface of each opening K in the first pattern 41 is at least partially in contact with a side surface of a corresponding second pattern 42 .
  • each opening K in first pattern 41 refers to a surface of each opening K opposite to the second pattern 42 .
  • the side surface of the second pattern 42 refers to a surface of the second pattern 42 opposite to the first pattern 41 (or a corresponding opening K).
  • the transparent insulating material may be a lithium quinoline complex.
  • the conductive material may be magnesium.
  • the lithium quinoline complex and magnesium are commonly used materials in a manufacturing process of an existing display panel. Therefore, additional types of materials are not required to be added in an existing process.
  • a shape of the orthographic projection of the second pattern 42 on the substrate 1 may vary, and a shape of a corresponding opening K may vary, which may be specifically set according to actual needs.
  • the orthographic projection of the second pattern 42 shown in FIG. 4 on the substrate 1 has a rectangular shape, and a corresponding opening K also has a rectangular shape.
  • the orthographic projection of the second pattern 42 on the substrate 1 and a corresponding opening K may also have other shapes, which are not limited.
  • the shapes of the orthographic projections of the second patterns 42 on the substrate 1 may be the same or different, and the sizes of the orthographic projections of the second patterns 42 on the substrate 1 may be the same or different, which are not limited in the embodiments of the present disclosure.
  • the side surfaces of the plurality of second patterns 42 away from the substrate 1 are lower than a side surface of the first pattern 41 away from the substrate 1 .
  • the thickness of each of the plurality of second patterns 42 is less than the thickness of the first pattern 41 , which is beneficial to reducing an amount of the material of the second patterns 42 , so as to reduce a manufacturing cost of the display substrate 100 .
  • the thickness of the second pattern 42 may be about 5 nm. Considering a process error of manufacturing the second patterns 42 , the thickness of the second pattern 42 may be changed, slightly increased or decreased.
  • the thickness of the portion of the first pattern 41 located in the first region A 1 is greater than or equal to 100 nm.
  • a sheet resistance of a metal structure composed of the portion of the first pattern 41 located in the first region A 1 and the first cathode 23 together may be effectively reduced.
  • the sheet resistance may be reduced to at least 1 ⁇ / ⁇ .
  • the electrical connection between the portion of the first pattern 41 located in the first region A 1 and the first cathode 23 in each first sub-pixel 2 varies, which may be set according to actual needs.
  • other film layer(s) may be further disposed between the portion of the first pattern 41 located in the first region A 1 and the first cathode 23 in each first sub-pixel 2 , and the film layer(s) have via hole(s).
  • the portion of the first pattern 41 located in the first region A 1 and the first cathode 23 in each first sub-pixel 2 may be electrically connected through the via hole(s) disposed on the other film layer(s).
  • no other film layer is disposed between the portion of the first pattern 41 located in the first region A 1 and the first cathode 23 in each first sub-pixel 2 .
  • a side surface of the portion, proximate to the substrate 1 , of the first pattern 41 located in the first region A 1 is in direct contact with a side surface of the first cathode 23 in each first sub-pixel 2 away from the substrate 1 . That is, the portion of the first pattern 41 located in the first region A 1 is directly manufactured on the side surface of the first cathode 23 , and the electrical connection is realized through the side surfaces of the portion of the first pattern 41 located in the first region A 1 and the first cathode 23 .
  • the side surface of the portion, proximate to the substrate 1 , of the first pattern 41 located in the first region A 1 is in direct contact with the side surface of the first cathode 23 in each first sub-pixel 2 away from the substrate 1 , which is beneficial to increasing a contact area between the portion of the first pattern 41 located in the first region A 1 and the first cathode 23 in each first sub-pixel 2 , so as to realize a better electrical connection therebetween.
  • the display region A further includes the second region A 2 located beside the first region A 1 .
  • the second region A 2 includes a plurality of second sub-pixel regions P 2 .
  • the plurality of second sub-pixel regions P 2 may be arranged in an array.
  • the “beside” may mean that the first region A 1 is located on a side, two sides, or three sides of the second region A 2 .
  • the first region A 1 surrounds the second region A 2 .
  • the second region A 2 is a region other than the first region A 1 in the display region A.
  • a portion of the display substrate 100 located between two adjacent second sub-pixel regions P 2 is configured to allow light to pass through the display substrate 100 from a side to another opposite side. That is, the portion of the display substrate 100 located between two adjacent second sub-pixel regions P 2 may be in a semi-transparent state.
  • an optical sensor e.g., a camera
  • the optical sensor may be disposed on a side of the substrate 1 away from the pattern layer 4 .
  • the external light may pass through the portion of the display substrate 100 located between two adjacent second sub-pixel regions P 2 and reach the optical sensor, so that the optical sensor is able to operate normally. This is beneficial to realizing a full-screen of the display apparatus 1000 .
  • the display substrate 100 further includes a plurality of second sub-pixels 5 disposed on the side of the substrate 1 .
  • the plurality of second sub-pixels 5 are located at the plurality of second sub-pixel regions P 2 , respectively.
  • the plurality of second sub-pixels 2 include, for example, at least one of red sub-pixels, green sub-pixels, blue sub-pixels and white sub-pixels.
  • the second sub-pixel 5 includes a pixel driving circuit, and a second anode 51 and a second light-emitting layer 52 that are stacked in sequence.
  • the second light-emitting layer 52 is farther from the substrate 1 than the second anode 51 .
  • the pixel driving circuit in the second sub-pixel 5 may have the same structure as the pixel driving circuit in the first sub-pixel 2 .
  • the pixel defining layer 3 is also located between second anodes 51 and second light-emitting layers 52 in the plurality of second sub-pixels 5 . At least one portion of each second light-emitting layer 52 is electrically connected to a corresponding second anode 51 through an opening M.
  • the openings M of the pixel defining layer 3 are also used for defining the plurality of second sub-pixel regions P 2 .
  • the second sub-pixel region P 2 is a region defined by an upper opening portion of an opening M of the pixel defining layer 3 .
  • boundaries of the plurality of second sub-pixel regions P 2 are located within an orthographic projection of a portion of the first pattern 41 located in the second region A 2 on the substrate 1 , and each second light-emitting layer 52 is electrically connected to the portion of the first pattern 41 located in the second region A 2 .
  • Orthographic projections of part of the plurality of second patterns 42 located in the second region A 2 on the substrate 1 are non-overlapped with the boundaries of the plurality of second sub-pixel regions P 2 .
  • the portion of the first pattern 41 located in the second region A 2 covers the second light-emitting layer 52 in each second sub-pixel 5 .
  • the part of the second patterns 42 located in the second region A 2 are located in a portion of the second region A 2 other than the second sub-pixel regions P 2 .
  • the second patterns 42 are formed by using the transparent insulating material, and the second patterns 42 located in the second region A 2 are disposed in the portion of the second region A 2 other than the second sub-pixel regions P 2 , a light transmittance of a portion of the display substrate 100 located in the second region A 2 may be prevented from being affected.
  • a shape of the orthographic projection of the second pattern 42 located in the second region A 2 on the substrate 1 varies, which may be set according to actual needs.
  • the orthographic projection of the second pattern 42 located in the second region A 2 on the substrate 1 may have a hexagonal shape as shown in FIG. 13 , and each second pattern 42 located in the second region A 2 is located between two adjacent second sub-pixels 5 .
  • the orthographic projection of the second pattern 42 located in the second region A 2 on the substrate 1 may have a strip shape, and each second pattern 42 located in the second region A 2 may be located between two adjacent rows or columns of second sub-pixels 5 .
  • the orthographic projection of the second pattern 42 located in the second region A 2 on the substrate 1 may have a grid shape, and the second pattern 42 is adjacent to second sub-pixels 5 .
  • the orthographic projection of the second pattern 42 located in the second region A 2 on the substrate 1 By limiting the shape of the orthographic projection of the second pattern 42 located in the second region A 2 on the substrate 1 and a positional relationship of the orthographic projection of the second pattern 42 located in the second region A 2 on the substrate 1 and the second sub-pixels 5 , it is possible to ensure that the portion of the first pattern 41 located in the second region A 2 is a continuous thin film, and the orthographic projection of the second pattern 42 located in the second region A 2 on the substrate 1 has a large area, so as to ensure the light transmittance of the portion of the display substrate 100 located in the second region A 2 .
  • a side surface of the portion, proximate to the substrate 1 , of the first pattern 41 located in the second region A 2 is in direct contact with a side surface of each second light-emitting layer 52 away from the substrate 1 .
  • the portion of the first pattern 41 located in the second region A 2 serves as a second cathode in each second sub-pixel 5 .
  • an optical sensor is required to be disposed on a side of the electroluminescent display panel facing away from a light exit surface of the electroluminescent display panel.
  • the external light needs to pass through the electroluminescent display panel and reach the optical sensor.
  • the cathodes in sub-pixels in the electroluminescent display panel are formed into the whole layer by evaporation. In this way, the cathodes formed into the whole layer by evaporation cause most of light reaching the electroluminescent display panel from the outside to be lost when the light reaches the optical sensor.
  • the portion of the first pattern 41 located in the second region A 2 is electrically connected to the second light-emitting layer 52 in each second sub-pixel 5 , so that the portion of the first pattern 41 located in the second region A 2 serves as the second cathode of each second sub-pixel 5 .
  • the part of the plurality of second patterns 42 located in the second region A 2 are each disposed in a region between two adjacent second sub-pixel regions P 2 , and the second patterns 42 are in a transparent state. In this way, it is beneficial to increasing the light transmittance of the portion of the display substrate 100 located in the second region A 2 .
  • the display apparatus 1000 further includes an optical sensor disposed in the second region A 2 , more light may pass through the display substrate 100 from the outside and reach the optical sensor.
  • a transmittance of the display substrate 100 for a visible light band may be increased by 20% or more, and a transmittance of the display substrate 100 for an infrared light band may be increased by 100% or more.
  • the thickness of the portion of the first pattern 41 located in the second region A 2 is in a range of 10 nm to 15 nm, inclusive.
  • the thickness of the portion of the first pattern 41 located in the second region A 2 may be 10 nm, 11 nm, 12.5 nm, 13.7 nm, or 15 nm.
  • the thickness of the portion of the first pattern 41 located in the second region A 2 is set into the above range, which may ensure that light emitted from the second light-emitting layer 52 in each second sub-pixel 5 is able to pass through the portion of the first pattern 41 located in the second region A 2 , thereby ensuring that the second sub-pixels 5 are able to operate normally to display image(s).
  • a plurality of grooves are provided in a portion of the pixel defining layer 3 located in the second region A 2 .
  • the second patterns 42 located in the second region A 2 may be located in the plurality of grooves, respectively.
  • a side surface of the second pattern 42 located in the second region A 2 is at least partially in contact with a side surface of an opening of the first pattern 41 located in the second region A 2 .
  • Some embodiments of the present disclosure provide a manufacturing method of a display substrate. As shown in FIG. 14 , the manufacturing method includes S 100 to S 300 .
  • a substrate 1 is provided.
  • the substrate 1 has a display region A.
  • the display region A includes at least a first region A 1
  • the first region A 1 includes a plurality of first sub-pixel regions P 1 .
  • a type of the substrate 1 , an arrangement of the first region A 1 , and an arrangement of the first sub-pixel region P 1 may be the same as those in some of the above embodiments, which may refer to the description in some of the above embodiments, and will not be repeated here.
  • a plurality of first sub-pixels 2 are formed on a side of the substrate 1 .
  • the plurality of first sub-pixels 2 are located at the plurality of first sub-pixel regions P 1 , respectively.
  • Each first sub-pixel 2 includes a first anode 21 , a first light-emitting layer 22 and a first cathode 23 that are stacked in sequence.
  • the first anodes 21 in the first sub-pixels 2 may be manufactured by using a photolithography process
  • the first light-emitting layers 22 in the first sub-pixels 2 may be manufactured by using an evaporation process or an inkjet printing process
  • the first cathodes 23 in the first sub-pixels 2 may be formed by using an evaporation process.
  • the first cathodes 23 in the first sub-pixels 2 are connected to each other to be of an integrative structure.
  • S 200 further includes: forming a plurality of second sub-pixels 5 on the side of the substrate 1 .
  • the plurality of second sub-pixels 5 are located at a plurality of second sub-pixel regions P 2 , respectively.
  • the first anodes 21 in the first sub-pixels 2 and second anodes 51 in the second sub-pixels 5 are arranged in a same layer, and the first light-emitting layers 22 in the first sub-pixels 2 and second light-emitting layers 52 in the second sub-pixels 5 are arranged in a same layer.
  • the “same layer” means that a film layer for forming a specific pattern is formed by the same film forming process, and then is patterned by one patterning process using the same mask to form a layer structure.
  • the same patterning process may include several exposure, development or etching processes, the specific patterns in the formed layer structure may be continuous or discontinuous, and these specific patterns may also be at different heights or have different thicknesses.
  • a pattern layer 4 is formed on a side of the plurality of first sub-pixels 2 away from the substrate 1 .
  • the pattern layer 4 includes a first pattern 41 and a plurality of second patterns 42 .
  • the first pattern 41 has a plurality of openings K arranged at intervals.
  • the plurality of second patterns 42 are disposed in the plurality of openings K, respectively.
  • the first pattern 41 is made of a conductive material, and the second patterns 42 are made of a transparent insulating material.
  • Structures of the pattern layer 4 , the first pattern 41 and the second patterns 42 may refer to the descriptions in some of the above embodiments, and will not be repeated here.
  • forming the pattern layer 4 on the side of the plurality of first sub-pixels 2 away from the substrate 1 includes S 310 and S 320 .
  • the plurality of second patterns 42 arranged at intervals are formed on the side of the plurality of first sub-pixels 2 away from the substrate 1 .
  • Boundaries of orthographic projections of part of the plurality of second patterns 42 located in the first region A 1 on the substrate 1 respectively coincide with boundaries of the plurality of first sub-pixel regions P 1 .
  • the boundaries of the plurality of first sub-pixel regions P 1 are respectively located within the boundaries of the orthographic projections of the part of the plurality of second patterns 42 located in the first region A 1 on the substrate 1 .
  • part of the plurality of second patterns 42 may be located in the second region A 2 .
  • the second pattern 42 located in the second region A 2 is disposed between two adjacent second sub-pixel regions P 2 , and orthographic projections of the second patterns 42 located in the second region A 2 on the substrate 1 are non-overlapped with boundaries of the plurality of second sub-pixel regions P 2 .
  • S 310 forming the plurality of second patterns 42 arranged at intervals on the side of the plurality of first sub-pixels 2 away from the substrate 1 , includes S 311 and S 312 .
  • a fine metal mask is disposed on the side of the plurality of first sub-pixels 2 away from the substrate 1 .
  • the FMM has a plurality of patterns. Shapes of the plurality of patterns are respectively the same as shapes of the second patterns 42 to be formed, and arrangement positions of the plurality of patterns are respectively the same as arrangement positions of the second patterns 42 to be formed.
  • the transparent insulating material is evaporated onto the side of the plurality of first sub-pixels 2 away from the substrate 1 by an evaporation process using the fine metal mask, so as to form the plurality of second patterns 42 arranged at intervals.
  • the transparent insulating material may be a lithium quinoline complex.
  • the second patterns 42 with desired shapes and positions may be directly formed by evaporating the transparent insulating material using the evaporation process, which is beneficial to simplifying the manufacturing process of the display substrate 100 .
  • the first pattern 41 is formed in gaps between the plurality of second patterns 42 .
  • a portion of the first pattern 41 located in the first region A 1 is electrically connected to the first cathodes 23 .
  • part of the plurality of second patterns 42 may be located in the second region A 2 .
  • Boundaries of the second sub-pixel regions P 2 are located within an orthographic projection of a portion of the first pattern 41 located in the second region A 2 on the substrate 1 , and each second light-emitting layer 52 is electrically connected to the portion of the first pattern 41 located in the second region A 2 .
  • forming the first pattern 41 in the gaps between the plurality of second patterns 42 includes S 321 and S 322 .
  • an open mask is disposed on a side of the plurality of second patterns 42 away from the substrate 1 .
  • the open mask has a pattern, and a shape and arrangement position of the pattern are respectively the same as a shape and arrangement position of at least one portion of the first pattern 41 to be formed.
  • the conductive material is evaporated into the gaps between the plurality of second patterns 42 by an evaporation process using the open mask, so as to form the first pattern 41 .
  • the conductive material and the transparent insulating material are mutually exclusive.
  • a shape of an orthographic projection of the first pattern 41 on the substrate 1 is complementary to shapes of orthographic projections of the plurality of second patterns 42 on the substrate 1 .
  • the conductive material may be magnesium.
  • Magnesium and the lithium quinoline complex are mutually exclusive.
  • the conductive material is formed between any two adjacent second patterns 42 , and the conductive materials located between any two adjacent second patterns 42 are connected to each other to be of an integrative structure.
  • the plurality of openings K may be spontaneously formed in the first pattern 41 , and a second pattern 42 is located in an opening K.
  • the conductive material may be prevented from being formed on side surfaces of the second patterns 42 away from the substrate 1 .
  • the portion of the first pattern 41 located in the second region A 2 serves as a second cathode in each second sub-pixel 5 .
  • the thickness of the portion of the first pattern 41 located in the second region A 2 is small. That is, the thickness (e.g., 100 nm) of the portion of the first pattern 41 located in the first region A 1 and the thickness (e.g., 15 nm) of the portion of the first pattern 41 located in the second region A 2 are different, and have a large difference therebetween.
  • a thin film with a thickness of 15 nm may be formed in the first region A 1 and the second region A 2 by evaporation, and then the evaporation of the conductive material may be continued in the first region A 1 , so that the thickness of the portion of the first pattern 41 located in the first region A 1 is 100 nm.
  • Beneficial effects that may be realized by the manufacturing method of the display substrate provided in some embodiments of the present disclosure are the same as the beneficial effects that may be realized by the display substrate 100 provided in some of the above embodiments, and will not be repeated here.
  • the program instructions may be stored in a computer-readable storage medium, and when the program instructions executed, the steps included in the above method embodiments are performed.
  • the computer-readable storage medium includes various media capable of storing program codes, such as a read-only memory (ROM), a random-access memory (RAM), a magnetic disk or an optical disk.
  • the display apparatus 1000 includes the display substrate 100 in any one of the above embodiments.
  • the display apparatus 1000 may further include a frame 200 , a circuit board 300 and other electronic accessories.
  • the display apparatus 1000 may further include a cover plate disposed above the display substrate 100 , such as a glass cover plate.
  • a longitudinal section of the frame 200 is, for example, U-shaped.
  • the display substrate 100 , the circuit board 300 and other electronic accessories are all disposed in the frame 200 , and the circuit board 300 is disposed below the display substrate 100 .
  • the display apparatus 1000 may be an electroluminescent display apparatus, and the electroluminescent display apparatus may be an organic light-emitting diode (OLED) display apparatus or a quantum dot light-emitting diode (QLED) display apparatus.
  • OLED organic light-emitting diode
  • QLED quantum dot light-emitting diode
  • Beneficial effects that may be realized by the display apparatus 1000 provided in some embodiments of the present disclosure are the same as the beneficial effects that may be realized by the display substrate 100 provided in some of the above embodiments, and will not be repeated here.
  • the display apparatus 1000 further includes at least one optical sensor 400 disposed on a side of the substrate 1 in the display substrate 100 away from the pattern layer 4 in the display substrate 100 and located in the second region A 2 .
  • a type of the optical sensor 400 varies, and may be set according to actual needs.
  • the optical sensor 400 may be a camera, or an infrared sensor.
  • the display apparatus 1000 may be any product or component with a display function, such as a mobile phone, a tablet computer, a television, a display, a notebook computer, a digital photo frame, or a navigator.
  • a display function such as a mobile phone, a tablet computer, a television, a display, a notebook computer, a digital photo frame, or a navigator.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

A display substrate has a display region. The display region includes at least a first region, and the first region includes a plurality of first sub-pixel regions. The display substrate includes: a substrate; a plurality of first sub-pixels disposed on a side of the substrate; and a pattern layer disposed on a side of the plurality of first sub-pixels away from the substrate. The pattern layer includes a first pattern and a plurality of second patterns. Boundaries of orthographic projections of part of the second patterns located in the first region on the substrate respectively coincide with boundaries of the first sub-pixel regions; or boundaries of the first sub-pixel regions are respectively located within boundaries of orthographic projections of part of the second patterns located in the first region on the substrate. A portion of the first pattern located in the first region is electrically connected to the first cathode.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a national phase entry under 35 USC 371 of International Patent Application No. PCT/CN 2021/079281 filed on Mar. 5, 2021, which claims priority to Chinese Patent Application No. 202010148067.5, filed on Mar. 5, 2020, which are incorporated herein by reference in their entirety.
  • TECHNICAL FIELD
  • The present disclosure relates to the field of display technologies, and in particular, to a display substrate and a manufacturing method therefor, and a display apparatus.
  • BACKGROUND
  • Organic light-emitting diodes (OLEDs) are attracting much attention due to their advantages of high brightness, full viewing angle, fast response speed, and flexible display. Active-matrix organic light-emitting diodes (AMOLEDs) are widely used in the display field due to their advantages of low driving voltage and long service life of a light-emitting device.
  • SUMMARY
  • In an aspect, a display substrate is provided. The display substrate has a display region. The display region includes at least a first region, and the first region includes a plurality of first sub-pixel regions. The display substrate includes: a substrate; a plurality of first sub-pixels disposed on a side of the substrate and respectively located at the plurality of first sub-pixel regions, each first sub-pixel including a first anode, a first light-emitting layer and a first cathode that are stacked in sequence; and a pattern layer disposed on a side of the plurality of first sub-pixels away from the substrate. The pattern layer includes a first pattern and a plurality of second patterns. The first pattern has a plurality of openings arranged at intervals, and the plurality of second patterns are disposed in the plurality of openings, respectively. The first pattern is made of a conductive material, and the second patterns are made of a transparent insulating material. Boundaries of orthographic projections of part of the plurality of second patterns located in the first region on the substrate respectively coincide with boundaries of the plurality of first sub-pixel regions; or boundaries of the plurality of first sub-pixel regions are respectively located within boundaries of orthographic projections of part of the plurality of second patterns located in the first region on the substrate. A portion of the first pattern located in the first region is electrically connected to the first cathode.
  • In some embodiments, an orthographic projection of each second pattern on the substrate is at least partially overlapped with an orthogonal projection of a corresponding opening on the substrate.
  • In some embodiments, the first pattern and the second patterns are mutually exclusive in material.
  • In some embodiments, the second patterns are made of a lithium quinoline complex, and the first pattern is made of magnesium.
  • In some embodiments, a side surface of the portion, proximate to the substrate, of the first pattern located in the first region is in direct contact with a side surface of the first cathode away from the substrate.
  • In some embodiments, a thickness of the portion of the first pattern located in the first region is greater than or equal to 100 nm.
  • In some embodiments, with respect to the substrate, side surfaces of the plurality of second patterns away from the substrate are lower than a side surface of the first pattern away from the substrate.
  • In some embodiments, a thickness of the plurality of second patterns is about 5 nm.
  • In some embodiments, the display region further includes a second region located beside the first region, and the second region includes a plurality of second sub-pixel regions. A portion of the display substrate located between two adjacent second sub-pixel regions is configured to allow light to pass through the display substrate from a side to another opposite side.
  • In some embodiments, the display substrate further includes a plurality of second sub-pixels disposed on the side of the substrate and respectively located at the plurality of second sub-pixel regions. Each second sub-pixel includes a second anode and a second light-emitting layer that are stacked in sequence. Boundaries of the plurality of second sub-pixel regions are located within an orthographic projection of a portion of the first pattern located in the second region on the substrate, and the second light-emitting layer is electrically connected to the portion of the first pattern located in the second region. Orthographic projections of part of the plurality of second patterns located in the second region on the substrate are non-overlapped with the boundaries of the plurality of second sub-pixel regions.
  • In some embodiments, a side surface of the portion, proximate to the substrate, of the first pattern located in the second region is in direct contact with a side surface of the second light-emitting layer away from the substrate. The portion of the first pattern located in the second region serves as a second cathode in each second sub-pixel.
  • In some embodiments, a thickness of a portion of the first pattern located in the second region is in a range of 10 nm to 15 nm, inclusive.
  • In another aspect, a manufacturing method of a display substrate is provided. The manufacturing method of the display substrate includes: providing a substrate, the substrate having a display region, the display region including at least a first region, and the first region including a plurality of first sub-pixel regions; forming a plurality of first sub-pixels on a side of the substrate, the plurality of first sub-pixels being respectively located at the plurality of first sub-pixel regions, and each first sub-pixel including a first anode, a first light-emitting layer and a first cathode that are stacked in sequence; and forming a pattern layer on a side of the plurality of first sub-pixels away from the substrate. The pattern layer includes a first pattern and a plurality of second patterns, the first pattern has a plurality of openings arranged at intervals, and the plurality of second patterns are disposed in the plurality of openings, respectively. The first pattern is made of a conductive material, and the second patterns are made of a transparent insulating material. Forming the pattern layer on the side of the plurality of first sub-pixels away from the substrate, includes: forming the plurality of second patterns arranged at intervals on the side of the plurality of first sub-pixels away from the substrate; and forming the first pattern in gaps between the plurality of second patterns. Boundaries of orthographic projections of part of the plurality of second patterns located in the first region on the substrate respectively coincide with boundaries of the plurality of first sub-pixel regions; or boundaries of the plurality of first sub-pixel regions are respectively located within boundaries of orthographic projections of part of the plurality of second patterns located in the first region on the substrate. A portion of the first pattern located in the first region is electrically connected to the first cathode.
  • In some embodiments, forming the plurality of second patterns arranged at intervals on the side of the plurality of first sub-pixels away from the substrate, includes: disposing a fine metal mask on the side of the plurality of first sub-pixels away from the substrate; and evaporating the transparent insulating material onto the side of the plurality of first sub-pixels away from the substrate by an evaporation process using the fine metal mask, so as to form the plurality of second patterns arranged at intervals. Forming the first pattern in the gaps between the plurality of second patterns, includes: disposing an open mask on a side of the plurality of second patterns away from the substrate; and evaporating the conductive material into the gaps between the plurality of second patterns by an evaporation process using the open mask, so as to form the first pattern. The conductive material and the transparent insulating material are mutually exclusive, and a shape of an orthographic projection of the first pattern on the substrate is complementary to shapes of orthographic projections of the plurality of second patterns on the substrate.
  • In yet another aspect, a display apparatus is provided. The display apparatus includes the display substrate in any one of the above embodiments.
  • In some embodiments, in a case where the display region of the display substrate further includes a second region, the display apparatus further includes at least one optical sensor disposed on a side of the substrate in the display substrate away from the pattern layer in the display substrate and located in the second region.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • In order to describe technical solutions in the present disclosure more clearly, accompanying drawings to be used in some embodiments of the present disclosure will be introduced briefly below. Obviously, the accompanying drawings to be described below are merely accompanying drawings of some embodiments of the present disclosure, and a person of ordinary skill in the art may obtain other drawings according to these drawings. In addition, the accompanying drawings to be described below may be regarded as schematic diagrams, but are not limitations on an actual size of a product and an actual process of a method to which the embodiments of the present disclosure relate.
  • FIG. 1 is a structural diagram of a display apparatus, in accordance with some embodiments of the present disclosure;
  • FIG. 2 is a structural diagram of another display apparatus, in accordance with some embodiments of the present disclosure;
  • FIG. 3 is a structural diagram of a display substrate, in accordance with some embodiments of the present disclosure;
  • FIG. 4 is a structural diagram of a pattern layer, in accordance with some embodiments of the present disclosure;
  • FIG. 5 is a structural diagram of another display substrate, in accordance with some embodiments of the present disclosure;
  • FIG. 6 is a structural diagram of yet another display substrate, in accordance with some embodiments of the present disclosure;
  • FIG. 7 is a cross-sectional view of the display substrate shown in FIG. 6 taken along the M-M′ direction;
  • FIG. 8 a is a partial schematic diagram of the structure shown in FIG. 7 ;
  • FIG. 8 b is another partial schematic diagram of the structure shown in FIG. 7 ;
  • FIG. 9 is a cross-sectional view of the display substrate shown in FIG. 6 taken along the N-N′ direction;
  • FIG. 10 is a partial schematic diagram of the structure shown in FIG. 9 ;
  • FIG. 11 is another partial schematic diagram of the structure shown in FIG. 9 ;
  • FIG. 12 is a structural diagram of yet another display substrate, in accordance with some embodiments of the present disclosure;
  • FIG. 13 is a structural diagram of yet another display substrate, in accordance with some embodiments of the present disclosure;
  • FIG. 14 is a flow diagram of a manufacturing method of a display substrate in accordance with some embodiments of the present disclosure;
  • FIG. 15 is a flow diagram of S300 of the flow diagram shown in FIG. 14 ;
  • FIG. 16 is a flow diagram of S310 of the flow diagram shown in FIG. 15 ;
  • FIG. 17 is a flow diagram of S320 of the flow diagram shown in FIG. 15 ; and
  • FIGS. 18 a and 18 b are diagrams showing steps of manufacturing a pattern layer in S300 of the flow diagram shown in FIG. 14 .
  • DETAILED DESCRIPTION
  • Technical solutions in some embodiments of the present disclosure will be described clearly and completely below with reference to the accompanying drawings. Obviously, the described embodiments are merely some but not all embodiments of the present disclosure. All other embodiments obtained by a person of ordinary skill in the art based on the embodiments of the present disclosure shall be included in the protection scope of the present disclosure.
  • Unless the context requires otherwise, throughout the description and the claims, the term “comprise” and other forms thereof such as the third-person singular form “comprises” and the present participle form “comprising” are construed as an open and inclusive meaning, i.e., “including, but not limited to.” In the description of the specification, the terms such as “one embodiment,” “some embodiments,” “exemplary embodiments,” “an example,” “specific example” or “some examples” are intended to indicate that specific features, structures, materials or characteristics related to the embodiment(s) or example(s) are included in at least one embodiment or example of the present disclosure. Schematic representations of the above terms do not necessarily refer to the same embodiment(s) or example(s). In addition, the specific features, structures, materials or characteristics may be included in any one or more embodiments or examples in any suitable manner.
  • Hereinafter, the terms such as “first” and “second” are only used for descriptive purposes, and are not to be construed as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Thus, a feature defined with “first” or “second” may explicitly or implicitly include one or more of the features. In the description of the embodiments of the present disclosure, the term “a plurality of/the plurality of” means two or more unless otherwise specified.
  • In the description of some embodiments, the term “connected” and derivatives thereof may be used. For example, the term “connected” may be used in the description of some embodiments to indicate that two or more components are in direct physical or electrical contact with each other. For another example, the term “coupled” may be used in the description of some embodiments to indicate that two or more components are in direct physical or electrical contact with each other. However, the term “coupled” or “communicatively coupled” may also mean that two or more components are not in direct contact with each other, but still cooperate or interact with each other. The embodiments disclosed herein are not necessarily limited to the contents herein.
  • As used herein, the term “if” is, optionally, construed to mean “when” or “in a case where” or “in response to determining” or “in response to detecting”, depending on the context. Similarly, the phrase “if it is determined” or “if [a stated condition or event] is detected” is, optionally, construed to mean “in a case where it is determined” or “in response to determining” or “in a case where [the stated condition or event] is detected” or “in response to detecting [the stated condition or event]”, depending on the context.
  • The use of the phase “applicable to” or “configured to” herein means an open and inclusive expression, which does not exclude devices that are applicable to or configured to perform additional tasks or steps.
  • In addition, the use of the phase “based on” means openness and inclusiveness, since a process, step, calculation or other action that is “based on” one or more stated conditions or values may, in practice, be based on additional conditions or values exceeding those stated.
  • As used herein, the term such as “about,” “substantially” or “approximately” includes a stated value and an average value within an acceptable range of deviation of a particular value. The acceptable range of deviation is determined by a person of ordinary skill in the art, considering measurement in question and errors associated with measurement of a particular quantity (i.e., limitations of a measurement system).
  • Exemplary embodiments are described herein with reference to sectional views and/or plan views as idealized exemplary drawings. In the accompanying drawings, thicknesses of layers and sizes of regions are enlarged for clarity. Thus, variations in shape relative to the accompanying drawings due to, for example, manufacturing techniques and/or tolerances may be envisaged. Therefore, the exemplary embodiments should not be construed to be limited to the shapes of regions shown herein, but to include deviations in shape due to, for example, manufacturing. For example, an etched region shown in a rectangular shape generally has a curved feature. Therefore, the regions shown in the accompanying drawings are schematic in nature, and their shapes are not intended to show actual shapes of the regions in a device, and are not intended to limit the scope of the exemplary embodiments.
  • In the related art, for a large-sized display panel such as a vehicle-mounted display panel or a notebook, due to a large light-emitting area of the display panel, a large current is required to drive a light-emitting device. On this basis, cathodes of light-emitting devices in an electroluminescent display panel are formed into a whole layer by evaporation (that is, the light-emitting devices share a whole cathode layer). Moreover, in order to ensure a light extraction efficiency of the light-emitting device, the cathode layer is usually made thin, which results in a large sheet resistance of the cathode layer. In this way, a brightness of an end of the electroluminescent display panel proximate to an integrated circuit is higher than a brightness of an end of the electroluminescent display panel away from the integrated circuit, thereby resulting in a non-uniform display.
  • Based on this, some embodiments of the present disclosure provide a display substrate. As shown in FIGS. 5 and 6 , the display substrate 100 has a display region A.
  • For example, the display region A includes at least a first region A1. That is, as shown in FIG. 5 , the display region A may include only the first region A1. Alternatively, the display region A may include the first region A1 and other region(s). For example, as shown in FIG. 6 , the display region A may include the first region A1 and a second region A2. For the second region A2, reference may be made to a following description, which will not be repeated here.
  • For example, as shown in FIG. 5 , the first region A1 may include a plurality of first sub-pixel regions P1. For example, the plurality of first sub-pixel regions P1 may be arranged in an array.
  • In some examples, as shown in FIGS. 3 and 7 to 11 , the display substrate 100 may include a substrate 1.
  • A type of the substrate 1 varies, and may be set according to actual needs.
  • For example, the substrate 1 may be a rigid substrate. The rigid substrate may be a glass substrate or a polymethyl methacrylate (PMMA) substrate.
  • For example, the substrate 1 may be a flexible substrate. The flexible substrate may be a polyethylene terephthalate (PET) substrate, a polyethylene naphthalate two formic acid glycol ester (PEN) substrate or a polyimide (PI) substrate.
  • In some examples, as shown in FIG. 5 , the display substrate 100 may further include a plurality of first sub-pixels 2 disposed on a side of the substrate 1. The plurality of first sub-pixels 2 include, for example, at least one of red sub-pixels, green sub-pixels, blue sub-pixels and white sub-pixels.
  • For example, the plurality of first sub-pixels 2 are located at the plurality of first sub-pixel regions P1, respectively. For example, the plurality of first sub-pixels 2 and the first sub-pixel regions P1 are arranged in one-to-one correspondence.
  • For example, as shown in FIGS. 8 a and 8 b , the first sub-pixel 2 includes a pixel driving circuit, and a first anode 21, a first light-emitting layer 22 and a first cathode 23 that are stacked in sequence. The first cathode 23 is farther from the substrate 1 than the first anode 21. First cathodes 23 in the plurality of first sub-pixels 2 may be connected to each other to be of an integrative structure.
  • As shown in FIGS. 8 a and 8 b , the display substrate 100 may further include a pixel defining layer 3 disposed between first anodes 21 and first light-emitting layers 22 in the plurality of first sub-pixels 2. The pixel defining layer 3 has a plurality of openings M, and at least one portion of each first light-emitting layer 22 is electrically connected to a corresponding first anode 21 through an opening M.
  • For example, the openings M of the pixel defining layer 3 are used for defining the plurality of first sub-pixel regions P1. The first sub-pixel region P1 is a region defined by an upper opening portion of an opening M of the pixel defining layer 3.
  • A structure of the pixel driving circuit varies, which is not limited. For example, the pixel driving circuit may have a “6T1C” structure, a “7T1C” structure, a “6T2C” structure or a “7T2C” structure. Here, “T” represents a thin film transistor, a number before “T” represents the number of thin film transistors, “C” represents a storage capacitor, and a number before “C” represents the number of storage capacitors.
  • The pixel driving circuit in each first sub-pixels 2 is electrically connected to the first anode 21. The thin film transistor electrically connected to the first anode 21 may be a driving transistor DT in the pixel driving circuit, and the driving transistor DT may be electrically connected to the first anode 21 through a via hole in an insulating layer (or a planarization layer).
  • In some examples, as shown in FIGS. 7, and 8 a and 8 b, the display substrate 100 may further include a pattern layer 4 disposed on a side of the plurality of first sub-pixels 2 away from the substrate 1.
  • For example, as shown in FIG. 4 , the pattern layer 4 may include a first pattern 41 and a plurality of second patterns 42. For example, the first pattern 41 may be of an integrative structure.
  • The first pattern 41 has a plurality of openings K arranged at intervals. The plurality of second patterns 42 are disposed in the plurality of openings K, respectively. For example, the plurality of second patterns 42 are disposed in the plurality of openings K in one-to-one correspondence.
  • It will be noted that the first pattern 41 is made of a conductive material, and the second patterns 42 are made of a transparent insulating material.
  • In some examples, as shown in FIG. 8 a , boundaries of orthographic projections of part of the plurality of second patterns 42 located in the first region A1 on the substrate 1 respectively coincide with boundaries of the plurality of first sub-pixel regions P1. Alternatively, as shown in FIG. 8 b , the boundaries of the plurality of first sub-pixel regions P1 are respectively located within the boundaries of the orthographic projections of the part of the plurality of second patterns 42 located in the first region A1 on the substrate 1. That is, areas of the orthographic projections of the second patterns 42 located in the first region A1 on the substrate 1 are respectively greater than or equal to areas of orthogonal projections of the first sub-pixel regions P1 on the substrate 1.
  • For example, in the first region A1, a second pattern 42 is located on a side of a first sub-pixel 2 away from the substrate 1. For example, a side surface of the second pattern 42 proximate to the substrate 1 is in direct contact with a side surface of a first cathode 23 in a corresponding first sub-pixel 2 away from the substrate 1.
  • Since the second patterns 42 are made of the transparent insulating material, and an area of an orthographic projection of each second pattern 42 located in the first region A1 on the substrate 1 is greater than or equal to an area of an orthogonal projection of a corresponding first sub-pixel region P1 on the substrate 1, an electrical performance of the first sub-pixel 2 may be prevented from being affected, and a light extraction efficiency of the first sub-pixel 2 may be prevented from being adversely affected.
  • Here, in a case where the display region A includes only the first region A1, the plurality of second patterns 42 are all located in the first region A1. In a case where the display region A includes the first region A1 and the second region A2, the part of the plurality of second patterns 42 are located in the first region A1, and another part of the plurality of second patterns 42 are located in the second region A2. The “part of the second patterns 42” and the “another part of the second patterns 42” are quantitative limitations.
  • In some examples, as shown in FIGS. 8 a and 8 b , a portion of the first pattern 41 located in the first region A1 is electrically connected to the first cathodes 23.
  • For example, the first pattern 41 may cover a portion of each of the first cathodes 23 in the plurality of first sub-pixels 2.
  • Since the plurality of second patterns 42 are respectively located in the plurality of openings K of the first pattern 41, an area of an orthographic projection of each second pattern 42 on the substrate 1 is less than or equal to an area of an orthogonal projection of a corresponding opening K on the substrate 1. In this way, the portion of the first pattern 41 located in the first region A1 does not shield the first sub-pixel region P1, so as to avoid affecting the light extraction efficiency of the first sub-pixel 2. In addition, the portion of the first pattern 41 located in the first region A1 and the first cathode 23 in the first sub-pixel 2 are able to be connected in parallel, which is also beneficial to reducing a sheet resistance of the first cathode 23.
  • Here, in the case where the display region A includes only the first region A1, the first pattern 41 is entirely located in the first region A1. In the case where the display region A includes the first region A1 and the second region A2, the portion of the first pattern 41 is located in the first region A1, and another portion of the first pattern 41 is located in the second region A2. The “portion of the first pattern 41” and the “another portion of the first pattern 41” are limitations for the entire film layer.
  • Therefore, in the display substrate 100 provided in some embodiments of the present disclosure, the pattern layer 4 is disposed on the side of the plurality of first sub-pixels 2 away from the substrate 1. The second patterns formed by using the transparent insulating material respectively correspond to the first sub-pixel regions P1, and the areas of the orthographic projections of the part of the second patterns 42 located in the first region A1 on the substrate 1 are each greater than or equal to an area of an orthogonal projection of a corresponding first sub-pixel region P1 on the substrate 1. The first pattern 41 formed by using the conductive material is electrically connected to the first cathode 23 in each first sub-pixel 2, and the portion of the first pattern 41 located in the first region A1 and the first cathode 23 in each first sub-pixel 2 are connected in parallel. In this way, it is possible not only to ensure that the light extraction efficiency of the first sub-pixel 2 is not affected, but also to reduce the sheet resistance of the first cathode 23. In a process of displaying image(s) on the display substrate 100, a phenomenon that a brightness of an end of the display substrate 100 proximate to an integrated circuit is higher than a brightness of an end of the display substrate 100 away from the integrated circuit may be effectively improved, so as to improve a display uniformity and a display quality.
  • In some embodiments, the material of the first pattern 41 and the material of the second patterns 42 are mutually exclusive.
  • For example, if the second patterns 42 are manufactured first, the material of the first pattern 41 will not be formed on side surfaces of the second patterns 42 away from the substrate 1 in a subsequent process of manufacturing the first pattern 41 due to the mutual exclusivity of the material of the first pattern 41 and the material of the second patterns 42.
  • In this way, it is possible not only to avoid that the material of the first pattern 41 is formed in the first sub-pixel region P1 to affect the light extraction efficiency of the first sub-pixel 2, but also to simplify a manufacturing process of the first pattern 41 and a manufacturing process of the display substrate 100.
  • In some examples, as shown in FIG. 4 , the orthographic projection of each second pattern 42 on the substrate 1 is at least partially overlapped with an orthogonal projection of a corresponding opening K on the substrate 1. That is, a side surface of each opening K in the first pattern 41 is at least partially in contact with a side surface of a corresponding second pattern 42.
  • For example, the side surface of each opening K in first pattern 41 refers to a surface of each opening K opposite to the second pattern 42. The side surface of the second pattern 42 refers to a surface of the second pattern 42 opposite to the first pattern 41 (or a corresponding opening K).
  • In the second patterns 42, the transparent insulating material may be a lithium quinoline complex. In the first pattern 41, the conductive material may be magnesium.
  • The lithium quinoline complex and magnesium are commonly used materials in a manufacturing process of an existing display panel. Therefore, additional types of materials are not required to be added in an existing process.
  • It will be noted that a shape of the orthographic projection of the second pattern 42 on the substrate 1 may vary, and a shape of a corresponding opening K may vary, which may be specifically set according to actual needs. For example, the orthographic projection of the second pattern 42 shown in FIG. 4 on the substrate 1 has a rectangular shape, and a corresponding opening K also has a rectangular shape. Of course, as shown in FIG. 12 , the orthographic projection of the second pattern 42 on the substrate 1 and a corresponding opening K may also have other shapes, which are not limited. The shapes of the orthographic projections of the second patterns 42 on the substrate 1 may be the same or different, and the sizes of the orthographic projections of the second patterns 42 on the substrate 1 may be the same or different, which are not limited in the embodiments of the present disclosure.
  • In some examples, in the pattern layer 4, with respect to the substrate 1, the side surfaces of the plurality of second patterns 42 away from the substrate 1 are lower than a side surface of the first pattern 41 away from the substrate 1.
  • For example, in the pattern layer 4, the thickness of each of the plurality of second patterns 42 is less than the thickness of the first pattern 41, which is beneficial to reducing an amount of the material of the second patterns 42, so as to reduce a manufacturing cost of the display substrate 100.
  • The thickness of the second pattern 42 may be about 5 nm. Considering a process error of manufacturing the second patterns 42, the thickness of the second pattern 42 may be changed, slightly increased or decreased.
  • In some examples, the thickness of the portion of the first pattern 41 located in the first region A1 is greater than or equal to 100 nm.
  • On this basis, a sheet resistance of a metal structure composed of the portion of the first pattern 41 located in the first region A1 and the first cathode 23 together may be effectively reduced. For example, the sheet resistance may be reduced to at least 1 Ω/□.
  • The electrical connection between the portion of the first pattern 41 located in the first region A1 and the first cathode 23 in each first sub-pixel 2 varies, which may be set according to actual needs.
  • In some examples, other film layer(s) (e.g., an insulating layer) may be further disposed between the portion of the first pattern 41 located in the first region A1 and the first cathode 23 in each first sub-pixel 2, and the film layer(s) have via hole(s). The portion of the first pattern 41 located in the first region A1 and the first cathode 23 in each first sub-pixel 2 may be electrically connected through the via hole(s) disposed on the other film layer(s).
  • In some other examples, as shown in FIGS. 8 a and 8 b , no other film layer is disposed between the portion of the first pattern 41 located in the first region A1 and the first cathode 23 in each first sub-pixel 2. A side surface of the portion, proximate to the substrate 1, of the first pattern 41 located in the first region A1 is in direct contact with a side surface of the first cathode 23 in each first sub-pixel 2 away from the substrate 1. That is, the portion of the first pattern 41 located in the first region A1 is directly manufactured on the side surface of the first cathode 23, and the electrical connection is realized through the side surfaces of the portion of the first pattern 41 located in the first region A1 and the first cathode 23.
  • The side surface of the portion, proximate to the substrate 1, of the first pattern 41 located in the first region A1 is in direct contact with the side surface of the first cathode 23 in each first sub-pixel 2 away from the substrate 1, which is beneficial to increasing a contact area between the portion of the first pattern 41 located in the first region A1 and the first cathode 23 in each first sub-pixel 2, so as to realize a better electrical connection therebetween.
  • In some embodiments, as shown in FIG. 6 , the display region A further includes the second region A2 located beside the first region A1. The second region A2 includes a plurality of second sub-pixel regions P2. For example, the plurality of second sub-pixel regions P2 may be arranged in an array.
  • For example, the “beside” may mean that the first region A1 is located on a side, two sides, or three sides of the second region A2. For example, the first region A1 surrounds the second region A2.
  • In a case where the display region A includes only the first region A1 and the second region A2, the second region A2 is a region other than the first region A1 in the display region A.
  • In some examples, a portion of the display substrate 100 located between two adjacent second sub-pixel regions P2 is configured to allow light to pass through the display substrate 100 from a side to another opposite side. That is, the portion of the display substrate 100 located between two adjacent second sub-pixel regions P2 may be in a semi-transparent state.
  • In this way, in a case where the display substrate 100 is applied to a display apparatus 1000, an optical sensor (e.g., a camera) may be disposed in the second region A2. The optical sensor may be disposed on a side of the substrate 1 away from the pattern layer 4. The external light may pass through the portion of the display substrate 100 located between two adjacent second sub-pixel regions P2 and reach the optical sensor, so that the optical sensor is able to operate normally. This is beneficial to realizing a full-screen of the display apparatus 1000.
  • In some examples, as shown in FIGS. 6, 10 and 11 , the display substrate 100 further includes a plurality of second sub-pixels 5 disposed on the side of the substrate 1. The plurality of second sub-pixels 5 are located at the plurality of second sub-pixel regions P2, respectively. The plurality of second sub-pixels 2 include, for example, at least one of red sub-pixels, green sub-pixels, blue sub-pixels and white sub-pixels.
  • For example, as shown in FIGS. 10 and 11 , the second sub-pixel 5 includes a pixel driving circuit, and a second anode 51 and a second light-emitting layer 52 that are stacked in sequence. The second light-emitting layer 52 is farther from the substrate 1 than the second anode 51. The pixel driving circuit in the second sub-pixel 5 may have the same structure as the pixel driving circuit in the first sub-pixel 2.
  • It will be noted that the pixel defining layer 3 is also located between second anodes 51 and second light-emitting layers 52 in the plurality of second sub-pixels 5. At least one portion of each second light-emitting layer 52 is electrically connected to a corresponding second anode 51 through an opening M. The openings M of the pixel defining layer 3 are also used for defining the plurality of second sub-pixel regions P2. The second sub-pixel region P2 is a region defined by an upper opening portion of an opening M of the pixel defining layer 3.
  • For example, as shown in FIGS. 10 and 11 , boundaries of the plurality of second sub-pixel regions P2 are located within an orthographic projection of a portion of the first pattern 41 located in the second region A2 on the substrate 1, and each second light-emitting layer 52 is electrically connected to the portion of the first pattern 41 located in the second region A2. Orthographic projections of part of the plurality of second patterns 42 located in the second region A2 on the substrate 1 are non-overlapped with the boundaries of the plurality of second sub-pixel regions P2.
  • That is, the portion of the first pattern 41 located in the second region A2 covers the second light-emitting layer 52 in each second sub-pixel 5. The part of the second patterns 42 located in the second region A2 are located in a portion of the second region A2 other than the second sub-pixel regions P2.
  • Since the second patterns 42 are formed by using the transparent insulating material, and the second patterns 42 located in the second region A2 are disposed in the portion of the second region A2 other than the second sub-pixel regions P2, a light transmittance of a portion of the display substrate 100 located in the second region A2 may be prevented from being affected.
  • For example, a shape of the orthographic projection of the second pattern 42 located in the second region A2 on the substrate 1 varies, which may be set according to actual needs.
  • For example, the orthographic projection of the second pattern 42 located in the second region A2 on the substrate 1 may have a hexagonal shape as shown in FIG. 13 , and each second pattern 42 located in the second region A2 is located between two adjacent second sub-pixels 5. Of course, the orthographic projection of the second pattern 42 located in the second region A2 on the substrate 1 may have a strip shape, and each second pattern 42 located in the second region A2 may be located between two adjacent rows or columns of second sub-pixels 5. Alternatively, the orthographic projection of the second pattern 42 located in the second region A2 on the substrate 1 may have a grid shape, and the second pattern 42 is adjacent to second sub-pixels 5.
  • By limiting the shape of the orthographic projection of the second pattern 42 located in the second region A2 on the substrate 1 and a positional relationship of the orthographic projection of the second pattern 42 located in the second region A2 on the substrate 1 and the second sub-pixels 5, it is possible to ensure that the portion of the first pattern 41 located in the second region A2 is a continuous thin film, and the orthographic projection of the second pattern 42 located in the second region A2 on the substrate 1 has a large area, so as to ensure the light transmittance of the portion of the display substrate 100 located in the second region A2.
  • In some examples, as shown in FIGS. 10 and 11 , a side surface of the portion, proximate to the substrate 1, of the first pattern 41 located in the second region A2 is in direct contact with a side surface of each second light-emitting layer 52 away from the substrate 1. The portion of the first pattern 41 located in the second region A2 serves as a second cathode in each second sub-pixel 5.
  • That is, no other thin film is disposed between the portion of the first pattern 41 located in the second region A2 and the second light-emitting layers 52 in each second sub-pixel 5.
  • It will be noted that in the related art, in order to realize a full-screen, an optical sensor is required to be disposed on a side of the electroluminescent display panel facing away from a light exit surface of the electroluminescent display panel. Thus, the external light needs to pass through the electroluminescent display panel and reach the optical sensor. On this basis, the cathodes in sub-pixels in the electroluminescent display panel are formed into the whole layer by evaporation. In this way, the cathodes formed into the whole layer by evaporation cause most of light reaching the electroluminescent display panel from the outside to be lost when the light reaches the optical sensor.
  • Based on the above, in the display substrate 100 provided in some embodiments of the present disclosure, the portion of the first pattern 41 located in the second region A2 is electrically connected to the second light-emitting layer 52 in each second sub-pixel 5, so that the portion of the first pattern 41 located in the second region A2 serves as the second cathode of each second sub-pixel 5. Moreover, the part of the plurality of second patterns 42 located in the second region A2 are each disposed in a region between two adjacent second sub-pixel regions P2, and the second patterns 42 are in a transparent state. In this way, it is beneficial to increasing the light transmittance of the portion of the display substrate 100 located in the second region A2. In a case where the display substrate 100 is applied to the display apparatus 1000, and the display apparatus 1000 further includes an optical sensor disposed in the second region A2, more light may pass through the display substrate 100 from the outside and reach the optical sensor.
  • It is verified that by using the above arrangement provided in the embodiments of the present disclosure, a transmittance of the display substrate 100 for a visible light band may be increased by 20% or more, and a transmittance of the display substrate 100 for an infrared light band may be increased by 100% or more.
  • In some examples, the thickness of the portion of the first pattern 41 located in the second region A2 is in a range of 10 nm to 15 nm, inclusive. For example, the thickness of the portion of the first pattern 41 located in the second region A2 may be 10 nm, 11 nm, 12.5 nm, 13.7 nm, or 15 nm.
  • After the portion of the first pattern 41 located in the second region A2 serves as the second cathode in each second sub-pixel 5, the thickness of the portion of the first pattern 41 located in the second region A2 is set into the above range, which may ensure that light emitted from the second light-emitting layer 52 in each second sub-pixel 5 is able to pass through the portion of the first pattern 41 located in the second region A2, thereby ensuring that the second sub-pixels 5 are able to operate normally to display image(s).
  • In some examples, as shown in FIG. 11 , a plurality of grooves are provided in a portion of the pixel defining layer 3 located in the second region A2. The second patterns 42 located in the second region A2 may be located in the plurality of grooves, respectively. A side surface of the second pattern 42 located in the second region A2 is at least partially in contact with a side surface of an opening of the first pattern 41 located in the second region A2.
  • Some embodiments of the present disclosure provide a manufacturing method of a display substrate. As shown in FIG. 14 , the manufacturing method includes S100 to S300.
  • In S100, a substrate 1 is provided. The substrate 1 has a display region A. The display region A includes at least a first region A1, and the first region A1 includes a plurality of first sub-pixel regions P1.
  • For example, a type of the substrate 1, an arrangement of the first region A1, and an arrangement of the first sub-pixel region P1 may be the same as those in some of the above embodiments, which may refer to the description in some of the above embodiments, and will not be repeated here.
  • In S200, a plurality of first sub-pixels 2 are formed on a side of the substrate 1. The plurality of first sub-pixels 2 are located at the plurality of first sub-pixel regions P1, respectively. Each first sub-pixel 2 includes a first anode 21, a first light-emitting layer 22 and a first cathode 23 that are stacked in sequence.
  • For example, the first anodes 21 in the first sub-pixels 2 may be manufactured by using a photolithography process, the first light-emitting layers 22 in the first sub-pixels 2 may be manufactured by using an evaporation process or an inkjet printing process, and the first cathodes 23 in the first sub-pixels 2 may be formed by using an evaporation process.
  • For example, the first cathodes 23 in the first sub-pixels 2 are connected to each other to be of an integrative structure.
  • It will be noted that in a case where the display region A further includes a second region A2, S200 further includes: forming a plurality of second sub-pixels 5 on the side of the substrate 1. The plurality of second sub-pixels 5 are located at a plurality of second sub-pixel regions P2, respectively. The first anodes 21 in the first sub-pixels 2 and second anodes 51 in the second sub-pixels 5 are arranged in a same layer, and the first light-emitting layers 22 in the first sub-pixels 2 and second light-emitting layers 52 in the second sub-pixels 5 are arranged in a same layer.
  • Herein, the “same layer” means that a film layer for forming a specific pattern is formed by the same film forming process, and then is patterned by one patterning process using the same mask to form a layer structure. Depending on the different specific patterns, the same patterning process may include several exposure, development or etching processes, the specific patterns in the formed layer structure may be continuous or discontinuous, and these specific patterns may also be at different heights or have different thicknesses.
  • In S300, as shown in FIG. 18 b , a pattern layer 4 is formed on a side of the plurality of first sub-pixels 2 away from the substrate 1. The pattern layer 4 includes a first pattern 41 and a plurality of second patterns 42. The first pattern 41 has a plurality of openings K arranged at intervals. The plurality of second patterns 42 are disposed in the plurality of openings K, respectively. The first pattern 41 is made of a conductive material, and the second patterns 42 are made of a transparent insulating material.
  • Structures of the pattern layer 4, the first pattern 41 and the second patterns 42 may refer to the descriptions in some of the above embodiments, and will not be repeated here.
  • In some examples, as shown in FIG. 15 , in S300, forming the pattern layer 4 on the side of the plurality of first sub-pixels 2 away from the substrate 1, includes S310 and S320.
  • In S310, as shown in FIG. 18 a , the plurality of second patterns 42 arranged at intervals are formed on the side of the plurality of first sub-pixels 2 away from the substrate 1. Boundaries of orthographic projections of part of the plurality of second patterns 42 located in the first region A1 on the substrate 1 respectively coincide with boundaries of the plurality of first sub-pixel regions P1. Alternatively, the boundaries of the plurality of first sub-pixel regions P1 are respectively located within the boundaries of the orthographic projections of the part of the plurality of second patterns 42 located in the first region A1 on the substrate 1.
  • It will be noted that as shown in FIG. 18 a , in the case where the display region A further includes the second region A2, part of the plurality of second patterns 42 may be located in the second region A2. The second pattern 42 located in the second region A2 is disposed between two adjacent second sub-pixel regions P2, and orthographic projections of the second patterns 42 located in the second region A2 on the substrate 1 are non-overlapped with boundaries of the plurality of second sub-pixel regions P2.
  • For example, as shown in FIG. 16 , in S310, forming the plurality of second patterns 42 arranged at intervals on the side of the plurality of first sub-pixels 2 away from the substrate 1, includes S311 and S312.
  • In S311, a fine metal mask (FMM) is disposed on the side of the plurality of first sub-pixels 2 away from the substrate 1.
  • For example, the FMM has a plurality of patterns. Shapes of the plurality of patterns are respectively the same as shapes of the second patterns 42 to be formed, and arrangement positions of the plurality of patterns are respectively the same as arrangement positions of the second patterns 42 to be formed.
  • In S312, as shown in FIG. 18 a , the transparent insulating material is evaporated onto the side of the plurality of first sub-pixels 2 away from the substrate 1 by an evaporation process using the fine metal mask, so as to form the plurality of second patterns 42 arranged at intervals.
  • For example, the transparent insulating material may be a lithium quinoline complex. The second patterns 42 with desired shapes and positions may be directly formed by evaporating the transparent insulating material using the evaporation process, which is beneficial to simplifying the manufacturing process of the display substrate 100.
  • In S320, as shown in FIG. 18 b , the first pattern 41 is formed in gaps between the plurality of second patterns 42. A portion of the first pattern 41 located in the first region A1 is electrically connected to the first cathodes 23.
  • It will be noted that in the case where the display region A further includes the second region A2, part of the plurality of second patterns 42 may be located in the second region A2. Boundaries of the second sub-pixel regions P2 are located within an orthographic projection of a portion of the first pattern 41 located in the second region A2 on the substrate 1, and each second light-emitting layer 52 is electrically connected to the portion of the first pattern 41 located in the second region A2.
  • For example, as shown in FIG. 17 , in S320, forming the first pattern 41 in the gaps between the plurality of second patterns 42, includes S321 and S322.
  • In S321, an open mask is disposed on a side of the plurality of second patterns 42 away from the substrate 1.
  • For example, the open mask has a pattern, and a shape and arrangement position of the pattern are respectively the same as a shape and arrangement position of at least one portion of the first pattern 41 to be formed.
  • In S322, as shown in FIG. 18 b , the conductive material is evaporated into the gaps between the plurality of second patterns 42 by an evaporation process using the open mask, so as to form the first pattern 41. The conductive material and the transparent insulating material are mutually exclusive. A shape of an orthographic projection of the first pattern 41 on the substrate 1 is complementary to shapes of orthographic projections of the plurality of second patterns 42 on the substrate 1.
  • For example, the conductive material may be magnesium. Magnesium and the lithium quinoline complex are mutually exclusive.
  • In a process of forming the first pattern 41 by evaporating the conductive material through the open mask, the conductive material is formed between any two adjacent second patterns 42, and the conductive materials located between any two adjacent second patterns 42 are connected to each other to be of an integrative structure. After the first pattern 41 is formed, the plurality of openings K may be spontaneously formed in the first pattern 41, and a second pattern 42 is located in an opening K.
  • Since the material of the first pattern 41 and the material of the second patterns 42 are mutually exclusive, in a process of evaporating the conductive material, the conductive material may be prevented from being formed on side surfaces of the second patterns 42 away from the substrate 1.
  • It will be noted that in the case where the display region A further includes the second region A2, the portion of the first pattern 41 located in the second region A2 serves as a second cathode in each second sub-pixel 5. In order to ensure a light extraction efficiency of each second sub-pixel 5, the thickness of the portion of the first pattern 41 located in the second region A2 is small. That is, the thickness (e.g., 100 nm) of the portion of the first pattern 41 located in the first region A1 and the thickness (e.g., 15 nm) of the portion of the first pattern 41 located in the second region A2 are different, and have a large difference therebetween.
  • Therefore, in the process of forming the first pattern 41, a thin film with a thickness of 15 nm may be formed in the first region A1 and the second region A2 by evaporation, and then the evaporation of the conductive material may be continued in the first region A1, so that the thickness of the portion of the first pattern 41 located in the first region A1 is 100 nm.
  • Beneficial effects that may be realized by the manufacturing method of the display substrate provided in some embodiments of the present disclosure are the same as the beneficial effects that may be realized by the display substrate 100 provided in some of the above embodiments, and will not be repeated here.
  • A person of ordinary skill in the art will understand that all or part of the steps in the above method embodiments may be implemented by hardware(s) related to program instructions. The program instructions may be stored in a computer-readable storage medium, and when the program instructions executed, the steps included in the above method embodiments are performed. The computer-readable storage medium includes various media capable of storing program codes, such as a read-only memory (ROM), a random-access memory (RAM), a magnetic disk or an optical disk.
  • Some embodiments of the present disclosure provide a display apparatus 1000. As shown in FIG. 1 , the display apparatus 1000 includes the display substrate 100 in any one of the above embodiments.
  • In some examples, as shown in FIG. 2 , the display apparatus 1000 may further include a frame 200, a circuit board 300 and other electronic accessories. Of course, the display apparatus 1000 may further include a cover plate disposed above the display substrate 100, such as a glass cover plate.
  • A longitudinal section of the frame 200 is, for example, U-shaped. The display substrate 100, the circuit board 300 and other electronic accessories are all disposed in the frame 200, and the circuit board 300 is disposed below the display substrate 100.
  • It will be noted that the display apparatus 1000 may be an electroluminescent display apparatus, and the electroluminescent display apparatus may be an organic light-emitting diode (OLED) display apparatus or a quantum dot light-emitting diode (QLED) display apparatus.
  • Beneficial effects that may be realized by the display apparatus 1000 provided in some embodiments of the present disclosure are the same as the beneficial effects that may be realized by the display substrate 100 provided in some of the above embodiments, and will not be repeated here.
  • In some embodiments, as shown in FIG. 1 , in the case where the display region A of the display substrate 100 further includes the second region A2, the display apparatus 1000 further includes at least one optical sensor 400 disposed on a side of the substrate 1 in the display substrate 100 away from the pattern layer 4 in the display substrate 100 and located in the second region A2.
  • A type of the optical sensor 400 varies, and may be set according to actual needs.
  • For example, the optical sensor 400 may be a camera, or an infrared sensor.
  • In some embodiments, the display apparatus 1000 may be any product or component with a display function, such as a mobile phone, a tablet computer, a television, a display, a notebook computer, a digital photo frame, or a navigator.
  • The foregoing descriptions are merely specific implementations of the present disclosure, but the protection scope of the present disclosure is not limited thereto. Changes or replacements that any person skilled in the art could conceive of within the technical scope of the present disclosure shall be included in the protection scope of the present disclosure. Therefore, the protection scope of the present disclosure shall be subject to the protection scope of the claims.

Claims (20)

1. A display substrate having a display region, wherein the display region includes at least a first region, and the first region includes a plurality of first sub-pixel regions; the display substrate comprises:
a substrate;
a plurality of first sub-pixels disposed on a side of the substrate and respectively located at the plurality of first sub-pixel regions; each first sub-pixel including a first anode, a first light-emitting layer and a first cathode that are stacked in sequence; and
a pattern layer disposed on a side of the plurality of first sub-pixels away from the substrate; wherein the pattern layer includes a first pattern and a plurality of second patterns, the first pattern has a plurality of openings arranged at intervals, and the plurality of second patterns are disposed in the plurality of openings, respectively; the first pattern is made of a conductive material, and the second patterns are made of a transparent insulating material; wherein
boundaries of orthographic projections of part of the plurality of second patterns located in the first region on the substrate respectively coincide with boundaries of the plurality of first sub-pixel regions; or boundaries of the plurality of first sub-pixel regions are respectively located within boundaries of orthographic projections of part of the plurality of second patterns located in the first region on the substrate; and
a portion of the first pattern located in the first region is electrically connected to the first cathode.
2. The display substrate according to claim 1, wherein an orthographic projection of each second pattern on the substrate is at least partially overlapped with an orthogonal projection of a corresponding opening on the substrate.
3. The display substrate according to claim 1, wherein the first pattern and the second patterns are mutually exclusive in material.
4. The display substrate according to claim 1, wherein the second patterns are made of a lithium quinoline complex, and the first pattern is made of magnesium.
5. The display substrate according to claim 1, wherein a side surface of the portion, proximate to the substrate, of the first pattern located in the first region is in direct contact with a side surface of the first cathode away from the substrate.
6. The display substrate according to claim 1, wherein a thickness of the portion of the first pattern located in the first region is greater than or equal to 100 nm.
7. The display substrate according to claim 1, wherein with respect to the substrate, side surfaces of the plurality of second patterns away from the substrate are lower than a side surface of the first pattern away from the substrate.
8. The display substrate according to claim 1, wherein a thickness of the plurality of second patterns is about 5 nm.
9. The display substrate according to claim 1, wherein the display region further includes a second region located beside the first region, and the second region includes a plurality of second sub-pixel regions; and
a portion of the display substrate located between two adjacent second sub-pixel regions is configured to allow light to pass through the display substrate from a side to another opposite side.
10. The display substrate according to claim 9; further comprising a plurality of second sub-pixels disposed on the side of the substrate and respectively located at the plurality of second sub-pixel regions; each second sub-pixel including a second anode and a second light-emitting layer that are stacked in sequence; wherein
boundaries of the plurality of second sub-pixel regions are located within an orthographic projection of a portion of the first pattern located in the second region on the substrate, and the second light-emitting layer is electrically connected to the portion of the first pattern located in the second region; and
orthographic projections of part of the plurality of second patterns located in the second region on the substrate are non-overlapped with the boundaries of the plurality of second sub-pixel regions.
11. The display substrate according to claim 10, wherein a side surface of the portion, proximate to the substrate, of the first pattern located in the second region is in direct contact with a side surface of the second light-emitting layer away from the substrate; and
the portion of the first pattern located in the second region serves as a second cathode in each second sub-pixel.
12. The display substrate according to claim 9, wherein a thickness of a portion of the first pattern located in the second region is in a range of 10 nm to 15 nm, inclusive.
13. A manufacturing method of a display substrate, comprising:
providing a substrate, wherein the substrate has a display region, the display region includes at least a first region, and the first region includes a plurality of first sub-pixel regions;
forming a plurality of first sub-pixels on a side of the substrate, wherein the plurality of first sub-pixels are respectively located at the plurality of first sub-pixel regions, and each first sub-pixel includes a first anode, a first light-emitting layer and a first cathode that are stacked in sequence; and
forming a pattern layer on a side of the plurality of first sub-pixels away from the substrate, wherein the pattern layer includes a first pattern and a plurality of second patterns; the first pattern has a plurality of openings arranged at intervals, and the plurality of second patterns are disposed in the plurality of openings, respectively; the first pattern is made of a conductive material, and the second patterns are made of a transparent insulating material; wherein
forming the pattern layer on the side of the plurality of first sub-pixels away from the substrate, includes:
forming the plurality of second patterns arranged at intervals on the side of the plurality of first sub-pixels away from the substrate; wherein boundaries of orthographic projections of part of the plurality of second patterns located in the first region on the substrate respectively coincide with boundaries of the plurality of first sub-pixel regions; or boundaries of the plurality of first sub-pixel regions are respectively located within boundaries of orthographic projections of part of the plurality of second patterns located in the first region on the substrate; and
forming the first pattern in gaps between the plurality of second patterns, wherein a portion of the first pattern located in the first region is electrically connected to the first cathode.
14. The manufacturing method of the display substrate according to claim 13, wherein forming the plurality of second patterns arranged at intervals on the side of the plurality of first sub-pixels away from the substrate, includes:
disposing a fine metal mask on the side of the plurality of first sub-pixels away from the substrate; and
evaporating the transparent insulating material onto the side of the plurality of first sub-pixels away from the substrate by an evaporation process using the fine metal mask, so as to form the plurality of second patterns arranged at intervals; and
forming the first pattern in the gaps between the plurality of second patterns, includes:
disposing an open mask on a side of the plurality of second patterns away from the substrate; and
evaporating the conductive material into the gaps between the plurality of second patterns by an evaporation process using the open mask, so as to form the first pattern, wherein the conductive material and the transparent insulating material are mutually exclusive, and a shape of an orthographic projection of the first pattern on the substrate is complementary to shapes of orthographic projections of the plurality of second patterns on the substrate.
15. A display apparatus comprising the display substrate according to claim 1.
16. The display apparatus according to claim 15, wherein the display region of the display substrate further includes a second region; and
the display apparatus further includes at least one optical sensor disposed on a side of the substrate in the display substrate away from the pattern layer in the display substrate and located in the second region.
17. The display substrate according to claim 2, wherein the display region further includes a second region located beside the first region, and the second region includes a plurality of second sub-pixel regions; and
a portion of the display substrate located between two adjacent second sub-pixel regions is configured to allow light to pass through the display substrate from a side to another opposite side.
18. The display substrate according to claim 3, wherein the display region further includes a second region located beside the first region, and the second region includes a plurality of second sub-pixel regions; and
a portion of the display substrate located between two adjacent second sub-pixel regions is configured to allow light to pass through the display substrate from a side to another opposite side.
19. The display substrate according to claim 5, wherein the display region further includes a second region located beside the first region, and the second region includes a plurality of second sub-pixel regions; and
a portion of the display substrate located between two adjacent second sub-pixel regions is configured to allow light to pass through the display substrate from a side to another opposite side.
20. The display substrate according to claim 7, wherein the display region further includes a second region located beside the first region, and the second region includes a plurality of second sub-pixel regions; and
a portion of the display substrate located between two adjacent second sub-pixel regions is configured to allow light to pass through the display substrate from a side to another opposite side.
US17/778,891 2020-03-05 2021-03-05 Display substrate and manufacturing method therefor, and display apparatus Pending US20230006004A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN202010148067.5 2020-03-05
CN202010148067.5A CN113363282B (en) 2020-03-05 2020-03-05 Display panel, preparation method thereof and display device
PCT/CN2021/079281 WO2021175312A1 (en) 2020-03-05 2021-03-05 Display substrate and preparation method therefor, and display apparatus

Publications (1)

Publication Number Publication Date
US20230006004A1 true US20230006004A1 (en) 2023-01-05

Family

ID=77523771

Family Applications (1)

Application Number Title Priority Date Filing Date
US17/778,891 Pending US20230006004A1 (en) 2020-03-05 2021-03-05 Display substrate and manufacturing method therefor, and display apparatus

Country Status (3)

Country Link
US (1) US20230006004A1 (en)
CN (1) CN113363282B (en)
WO (1) WO2021175312A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220190055A1 (en) * 2020-03-10 2022-06-16 Kunshan Go-Visionox Opto-Electronics Co., Ltd Display panel and display device
US20220328573A1 (en) * 2020-09-10 2022-10-13 Chengdu Boe Optoelectronics Technology Co., Ltd. Pixel array and display device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113991032A (en) * 2021-10-28 2022-01-28 湖南恒显坤光电科技有限公司 Novel transparent OLED device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109950415A (en) * 2019-02-21 2019-06-28 纳晶科技股份有限公司 A kind of top emission light-emitting device and preparation method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7750558B2 (en) * 2006-12-27 2010-07-06 Global Oled Technology Llc OLED with protective electrode
CN104851903B (en) * 2015-04-22 2018-11-02 京东方科技集团股份有限公司 A kind of flexible OLED display and preparation method thereof
CN109904347B (en) * 2019-03-15 2020-07-31 京东方科技集团股份有限公司 Light emitting device, method of manufacturing the same, and display apparatus
CN110649179B (en) * 2019-09-29 2023-05-23 京东方科技集团股份有限公司 Display substrate, preparation method thereof, display device and mask plate

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109950415A (en) * 2019-02-21 2019-06-28 纳晶科技股份有限公司 A kind of top emission light-emitting device and preparation method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220190055A1 (en) * 2020-03-10 2022-06-16 Kunshan Go-Visionox Opto-Electronics Co., Ltd Display panel and display device
US11910683B2 (en) * 2020-03-10 2024-02-20 Kunshan Go-Visionox Opto-Electronics Co., Ltd Display panel and display device
US20220328573A1 (en) * 2020-09-10 2022-10-13 Chengdu Boe Optoelectronics Technology Co., Ltd. Pixel array and display device
US11812648B2 (en) * 2020-09-10 2023-11-07 Chengdu Boe Optoelectronics Technology Co., Ltd. Pixel array and display device

Also Published As

Publication number Publication date
WO2021175312A1 (en) 2021-09-10
CN113363282B (en) 2023-04-18
CN113363282A (en) 2021-09-07

Similar Documents

Publication Publication Date Title
US20230006004A1 (en) Display substrate and manufacturing method therefor, and display apparatus
US11844239B2 (en) Display substrate and preparation method thereof, and display apparatus
US11985840B2 (en) Display substrate, manufacturing method thereof and display device
US10497764B2 (en) Substrate, method of preparing the same, and display device
US11127798B2 (en) Pixel definition layer and manufacturing method thereof, display substrate, and display panel
CN112242494A (en) Organic electroluminescent display panel, preparation method and display device
US20210091153A1 (en) Display Substrate and Preparation Method thereof, and Display Apparatus
US20220238614A1 (en) Display substrates and manufacturing methods thereof, and display devices
US20200176702A1 (en) Organic light-emitting diode display panel and manufacturing method thereof and display device
US20240237411A1 (en) Oled display substrate and display device
US11968859B2 (en) Array substrate and method for manufacturing the same, display panel and display device
US20230032598A1 (en) Display panel, display apparatus, and manufacturing method for display panel
US20220254847A1 (en) Display substrate and method of manufacturing the same, display panel, and display apparatus
US20220399408A1 (en) Display substrate, manufacturing method therefor, and display apparatus
US11462492B2 (en) Substrate and method of manufacturing the same, method of manufacturing motherboard, mask and evaporation device
EP3506379B1 (en) Oled device and manufacturing method therefor, display panel, and display apparatus
CN114420859B (en) Display substrate, display device and preparation method of display substrate
US20240298508A1 (en) Display panel and display apparatus
CN109599430B (en) OLED substrate, preparation method thereof and OLED display device
CN108400153B (en) OLED substrate, preparation method thereof and display device
US11723261B2 (en) Light-emitting component, manufacturing method therefor, mask, and display device
US12089449B2 (en) Display panel and display apparatus
CN113571666B (en) Display panel, preparation method thereof and display device
US20220123252A1 (en) Display substrate and manufacturing method thereof, display panel and display device
US10978664B2 (en) Display substrate and method for manufacturing the same and display device

Legal Events

Date Code Title Description
AS Assignment

Owner name: BOE TECHNOLOGY GROUP CO., LTD., CHINA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LI, YANSONG;BAO, YING;WU, HAIDONG;AND OTHERS;REEL/FRAME:059979/0083

Effective date: 20211228

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED