US20230002019A1 - Positioning and welding method for a ship stern thruster - Google Patents

Positioning and welding method for a ship stern thruster Download PDF

Info

Publication number
US20230002019A1
US20230002019A1 US17/853,893 US202217853893A US2023002019A1 US 20230002019 A1 US20230002019 A1 US 20230002019A1 US 202217853893 A US202217853893 A US 202217853893A US 2023002019 A1 US2023002019 A1 US 2023002019A1
Authority
US
United States
Prior art keywords
hull
model
stern thruster
positioning
stiffener panels
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US17/853,893
Other versions
US11548599B1 (en
Inventor
Zailiang LIU
Jianhua He
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang International Maritime College
Original Assignee
Zhejiang International Maritime College
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang International Maritime College filed Critical Zhejiang International Maritime College
Assigned to Zhejiang International Maritime College reassignment Zhejiang International Maritime College ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HE, JIANHUA, LIU, Zailiang
Publication of US20230002019A1 publication Critical patent/US20230002019A1/en
Application granted granted Critical
Publication of US11548599B1 publication Critical patent/US11548599B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B73/00Building or assembling vessels or marine structures, e.g. hulls or offshore platforms
    • B63B73/20Building or assembling prefabricated vessel modules or parts other than hull blocks, e.g. engine rooms, rudders, propellers, superstructures, berths, holds or tanks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B73/00Building or assembling vessels or marine structures, e.g. hulls or offshore platforms
    • B63B73/40Building or assembling vessels or marine structures, e.g. hulls or offshore platforms characterised by joining methods
    • B63B73/43Welding, e.g. laser welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B73/00Building or assembling vessels or marine structures, e.g. hulls or offshore platforms
    • B63B73/60Building or assembling vessels or marine structures, e.g. hulls or offshore platforms characterised by the use of specific tools or equipment; characterised by automation, e.g. use of robots

Definitions

  • the present invention relates to the technical field of ship manufacturing, and in particular, to the field of positioning and welding methods for a ship stern thruster.
  • the model when cutting the excess of the hull stiffener panels in step 4, the model is driven up or lifted away from the cavity structure, and the model is hoisted to the cavity structure after the cutting is completed.
  • Step 5 setting a line based on rims of an upper and a lower flange of the stern thruster. That line is the academic butt line of the stern thruster and the hull stiffener panel.
  • the device fortified plates can be added with a 30 mm margin as a pre-cut line.
  • Step 6 tack welding and fixing the upper and lower flanges of the stern thruster respectively to the hull platform plate and the bottom plate.
  • CO 2 multi-layer welding includes backing welding and cosmetic welding.
  • the backing welding current cannot exceed 220 A
  • the cosmetic welding current cannot exceed 250 A.
  • the welding length of the welding seam is about 300 mm
  • the height of the welding seam is about 3 mm.

Abstract

This invention discloses a positioning and welding method for a ship stern thruster that relates to the technical field of ship manufacturing. A stern thruster is installed after adjusting and cutting hull stiffener panels according to the fitting condition of a prosthesis and a hull stiffener panel. The actions of manufacturing and installing the model, positioning the model structure by setting wire, adjusting the fitting condition of the model's stiffener panel and the hull stiffener panel can make it convenient to set wire and make it accurate to position the model. So the stern thruster is easy to install. The model can be repeatedly used, and the method is suitable for quantitative production.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application claims priority to Chinese Patent Application No. 202110741963.7 with a filing date of Jul. 1, 2021. The content of the aforementioned applications, including any intervening amendments thereto, are incorporated herein by reference.
  • TECHNICAL FIELD
  • The present invention relates to the technical field of ship manufacturing, and in particular, to the field of positioning and welding methods for a ship stern thruster.
  • BACKGROUND
  • Ship stern push devices mainly include a propeller, an adjustable propeller, a jet propeller, and the like, and are a power source of the ship. When the ship is manufactured, in order to ensure that the hull platform plate meets the installation requirements of the stern push device, the hull can be slightly inclined; the installation plane of the stern push device is an inclined plane. When the stern push equipment is installed, the position of the hull rib plate and the position of the equipment rib plate are adjusted at the same time; so setting wire is inconvenient, which causes the problem that equipment positioning is difficult and inaccurate.
  • SUMMARY
  • In view of the above problem, the following technical solution provides a positioning and welding method for a ship stern thruster and aims to solve the problem of difficult positioning and inaccurate positioning of a stern thruster.
  • A positioning and welding method for a ship stern thruster, includes the following steps:
  • step 1, a model of a stern thruster is manufactured according to a theoretical size of a butt seam between the stern thruster and a hull construction;
  • step 2, the model is positioned by setting a steel wire through a main deck technological hole, a hull platform plate hole, and a bottom plate hole according to requirements on installation position and installation angle of the stern thruster; and a hull platform plate and a bottom plate are proofed according to a position of the steel wire; and the steel wire is vertical to the hull platform plate and the bottom plate; and holes at platform plate and the bottom plate are cut by taking the steel wire as a centre line;
  • step 3, the steel wire is removed; the model is lifted to a cavity structure through the main deck technological hole; the platform plate hole and the bottom plate hole are matched with upper and lower closing plates of the model respectively; the steel wire is set again to make the steel wire passes through centers of upper and lower closing plates of the model; and the upper and lower closing plates are vertical to the steel wire; the model is technologically rotated around the steel wire, and side stiffener panels of the model fit hull stiffener panels;
  • step 4: positions of the hull stiffener panels are readjusted according to a fitting condition between model's stiffener panels and hull stiffener panels to make model's side stiffener panel fit hull stiffener panels; a butt line is scribed on an overlap between the hull stiffener panels and the model's stiffener panels, and cutting an excess of the hull stiffener panels along the butt line; positions and angles of the hull stiffener panels are adjusted according to positions of the model's stiffener panels; and the model's stiffener panels and the hull stiffener panels are combined and in a same plane; the model is hoisted off after welding work of the hull stiffener panels and hull structure;
  • step 5, a line is set based on rims of an upper and a lower flange of the stern thruster; the excess of stern thruster fortified plates is cut along the line; the stern thruster is hoisted to the cavity structure; adjusting a position and angle of the stern thruster to enable the stern thruster fortified plates to be completely combined with the hull stiffener panels; an overlap between the stern thruster fortified plates and the hull stiffener panels are cut with reference to step 4; adjusting an angle of the stern thruster, enable the stern thruster fortified plates to be completely aligned with the hull stiffener panels; and keeping a gap between an upper flat panel of the stern thruster and the hull platform plate is identical to a gap between a lower flat panel of the stern thruster and the bottom plate; and
  • step 6, tack welding and fixing upper and lower flanges of the stern thruster respectively to the hull platform plate and the bottom plate.
  • In a preferred embodiment, the main deck technological hole is provided with a buttress bracing struts for determining an upper locating point.
  • In a preferred embodiment, the buttress bracing struts are angle steel or U-steel.
  • In a preferred embodiment, wire shelves are arranged at two ends of the steel wire.
  • In a preferred embodiment, the upper and lower closing plates of the model are provided with starting screw for adjusting positioning.
  • In a preferred embodiment, when cutting the excess of the hull stiffener panels in step 4, the model is driven up or lifted away from the cavity structure, and the model is hoisted to the cavity structure after the cutting is completed.
  • In a preferred embodiment, in step 5, the stern thruster fortified plates are added with an excess of 30 mm as a pre-cut line, and the excess of the stern thruster fortified plates is cut along the pre-cut line.
  • In a preferred embodiment, in step 6, CO2 multi-layer welding is adopted, and a welding sequence is that the welding is performed on a diagonal symmetry of a flange surface.
  • ADVANTAGES EFFECTS OF PREFERRED EMBODIMENTS
  • Adjusting and cutting hull stiffener panels according to the fitting condition of a prosthesis and a hull stiffener panel, and then a stern thruster is installed; by manufacturing, installing the model, positioning the model structure by setting wire, adjusting the fitting condition of the model's stiffener panel and the hull stiffener panel, setting wire is convenient, the positioning is accurate, the stern thruster is easy to install. The model can be repeatedly used, and the method is suitable for quantitative production.
  • DESCRIPTION OF THE DRAWINGS
  • In order that the invention may be understood more easily, an embodiment according to the invention, by way of example, will now be described by referring to the drawings.
  • FIG. 1 is a diagram of positioning a hull platform plate along a wide line of the hull according to an embodiment.
  • FIG. 2 is a diagram of positioning a hull platform plate along a long line of the hull according to an embodiment.
  • FIG. 3 is a diagram of installation of a hull platform plate according to an embodiment.
  • FIG. 4 is a front view of a model according to an embodiment.
  • FIG. 5 is a diagram of positioning by a wire of a model according to an embodiment.
  • FIG. 6 is a pre-cut diagram of a stiffener panel of a stern thruster according to an embodiment.
  • FIG. 7 is a diagram of a welding sequence of a flange surface of a stern thruster according to an embodiment.
  • FIG. 8 is a diagram of a stern thruster installed on a hull according to an embodiment.
  • In the drawings, 1-model, 2-upper starting screw, 3-lower starting screw, 4-upper wire shelve, 5-buttress bracing strut, 6-main deck technological hole, 7-steel wire, 8-hull platform plate, 9-bottom plate, 10-wire shelve, 11-upper flange, 12-academic butt line, 13-pre-cutting line, 14-lower flange, 15-upper closing plate, 16-lower closing plate, 17-side stiffener panel, 18-hull stiffener panel.
  • DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS
  • Embodiments of the present invention will be further described below with reference to the accompanying drawings.
  • Taking the S1049 liquefied gas ship stern thruster as an example. Before the stern thruster is installed, the splicing work of the platform plate needs to be completed. The platform plate needs to be leveled, the flatness tolerance is ±2 mm. The section of the stern thruster is installed reversely; the ship body platform plate is hoisted to the section for positioning. In order to ensure that the hull platform plate meets the installation requirements that are fore and aft deflection of 5 degrees and the left and right offset of 3 degrees, the ship hull platform plate needs to be positioned by setting wire along the width direction and the length direction of the ship, which is shown in FIGS. 1 and 2 , the specific positioning data is as follows:
  • Along the beam of ship (along the width): amidship locating point (2500 of CL) X=FR0, Y=±2500,
  • Z=6092 (from baseline, A.BL), 1908 (from the main deck, not including deck thickness);
  • starboard side locating point: X=FR 0, Y=±6000,
  • Z=6399 (from baseline, A.BL), 1599 (from the main deck, not including deck thickness);
  • And it is ensured that the linear distance between the platform plate and the steel wire is 734±2 mm;
  • Along the length: stem locating point X=FR8−300, Y=±4336,
  • Z=5974 (from baseline, A.BL), 2026 (from the main deck, not including deck thickness);
  • stern locating point: X=FR-2, Y=±4336,
  • Z=6327 (from baseline, A.BL), 1673 (from the main deck, not including deck thickness);
  • And it is ensured that the linear distance between the platform plate and the steel wire is 735±2 mm.
  • As shown in FIG. 3 , after positioning and welding the hull platform board according to the above-mentioned stay wire requirements, the section is turned over and set horizontalization to meet the equipment installation requirement, and then the stern thruster is positioned and welded.
  • As shown in FIGS. 4,5,6,7, and 8 , the positioning and welding method for a ship stern thruster, comprising the following steps:
  • step 1, manufacturing a model according to a theoretical size of a butt seam between the stern thruster and a hull construction; The model is of a circular truncated cone structure, a part close to the hull platform plate is a wide part of the circular truncated cone structure, a part close to the bottom plate of the hull is a narrow part of the circular truncated cone structure, and starting screws are arranged on the upper and lower closing plates of the prosthesis and are used for adjusting and positioning the model.
  • Step 2, positioning by setting a steel wire through a main deck technological hole, a hull platform plate hole, and a bottom plate hole according to requirements on installation position and installation angle of the stern thruster. At this time, the main deck has been cut a hole, and the buttress bracing struts can be welded at the main deck technological hole to determine the upper locating point; in order to prevent twisting and drooping, the buttress bracing struts is made of materials such as angle steel, U-steel and the like; and a wire shelf is arranged up and down, and the three-dimensional positioning data of the upper and lower locating point on the steel wire is as follows:
  • upper locating point: X=FR0+131, Y=±4183, Z=8010(from baseline);
  • lower locating point: X=FR0−158, Y=±4665, Z=2500(from baseline).
  • Proofing a hull platform plate and the bottom plate according to the steel wire position, and the allowable flatness tolerance is ±3 mm. Make the steel wire vertical to the hull platform plate and the bottom plate, and cut the holes on the platform plate and the bottom plate by taking the steel wire as the centre line. After cutting, the hole size of the platform plate is Ø2650-3 mm; the hole size of the bottom plate is Ø1490-3 mm.
  • Step 3, removing the steel wire, lifting the model to a cavity structure through the main deck technological hole, matching the platform plate hole and the bottom plate hole with upper and lower closing plates of the model respectively, setting the steel wire again to make the steel wire passes through centers of the upper and lower closing plates of the model, and making the upper and lower closing plates vertical to the steel wire; technological rotating the model around the steel wire and making side stiffener panels of the model fit hull stiffener panels.
  • Step 4, readjusting positions of the hull stiffener panels according to a fitting condition between the model's stiffener panels and the hull stiffener panels to make model's side stiffener panel fit hull stiffener panels; scribing an butt line on an overlap between the hull stiffener panels and the model's stiffener panels; before scribing, ensure that the end of the hull stiffener panels away from the equipment is positioned accurately, and the hull stiffener panels are fixed by drop welding, then cut the margin of the hull stiffener panels along the drawn butt line; in order to ensure that the model's stiffener panel is not damaged during cutting and enough construction space, the model is raised or lifted away when the hull structure stiffener panel is being cut, and the model is again in place after cutting is completed, adjusting the positions and angles of the hull stiffener panels according to positions of the model's stiffener panels, and enabling the model's stiffener panels and the hull stiffener panels to be combined and to be in a same plane; hoisting off the model after welding work of the hull stiffener panels and the hull structure.
  • Step 5, setting a line based on rims of an upper and a lower flange of the stern thruster. That line is the academic butt line of the stern thruster and the hull stiffener panel. In order to ensure precise combination, the device fortified plates can be added with a 30 mm margin as a pre-cut line. Cutting the excess of stern thruster fortified plates along the line, hoisting the stern thruster to the cavity structure, adjusting a position and angle of the stern thruster to enable the stern thruster fortified plates to be completely combined with the hull stiffener panels; cutting an overlap between the stern thruster fortified plates and the hull stiffener panels with reference to step 4, adjusting the angle of the stern thruster, enabling the stern thruster fortified plates to be completely aligned with the hull stiffener panels, and keeping a gap between an upper flat panel of the stern thruster and the hull platform plate to be identical to a gap between a lower flat panel of the stern thruster and the bottom plate;
  • Step 6, tack welding and fixing the upper and lower flanges of the stern thruster respectively to the hull platform plate and the bottom plate. CO2 multi-layer welding is adopted. CO2 multi-layer welding includes backing welding and cosmetic welding. The backing welding current cannot exceed 220 A, the cosmetic welding current cannot exceed 250 A. The welding length of the welding seam is about 300 mm, and the height of the welding seam is about 3 mm. After the first welding seam is completed, welding is carried out on the diagonal line of the flange surface, and the weld joints of the multi-pass welding are staggered. Repeat that until the upper and lower flange is respectively backing welded with the hull platform plate and the bottom plate, and do cover welding, so that the upper and lower flanges are connected to the hull platform plate and bottom plate respectively and smoothly.
  • The embodiments should not be construed as limitations of the present disclosure, and any non-creative improvement based on the spirit of the present disclosure should be regarded as the protection scope of the present disclosure

Claims (8)

1. A positioning and welding method for a ship stern thruster, comprising the following steps:
step 1, manufacturing a model according to a theoretical size of a butt seam between the stern thruster and a hull construction;
step 2, positioning by setting a steel wire through a main deck technological hole, a hull platform plate hole, and a bottom plate hole according to requirements on installation position and installation angle of the stern thruster, and proofing a hull platform plate and a bottom plate according to a position of the steel wire, and making the steel wire vertical to the hull platform plate and the bottom plate, and cutting holes at platform plate and the bottom plate by taking the steel wire as a centre line;
step 3, removing the steel wire, lifting the model to a cavity structure through the main deck technological hole, matching the platform plate hole and the bottom plate hole with upper and lower closing plates of the model respectively, setting the steel wire again to make the steel wire passes through centers of upper and lower closing plates of the model, and making the upper and lower closing plates vertical to the steel wire; technological rotating the model around the steel wire, and making side stiffener panels of the model fit hull stiffener panels;
step 4: readjusting positions of the hull stiffener panels according to a fitting condition between model's stiffener panels and hull stiffener panels to make model's side stiffener panel fit hull stiffener panels; scribing an butt line on an overlap between the hull stiffener panels and the model's stiffener panels, and cutting a excess of the hull stiffener panels along the butt line; adjusting positions and angles of the hull stiffener panels according to positions of the model's stiffener panels, and enabling the model's stiffener panels and the hull stiffener panels to be combined and to be in a same plane; hoisting off the model after welding work of the hull stiffener panels and hull structure;
step 5, setting a line based on rims of an upper and a lower flange of the stern thruster, cutting the excess of stern thruster fortified plates along the line, hoisting the stern thruster to the cavity structure according to step 3, adjusting a position and angle of the stern thruster to enable the stern thruster fortified plates to be completely combined with the hull stiffener panels; cutting an overlap between the stern thruster fortified plates and the hull stiffener panels with reference to step 4, adjusting an angle of the stern thruster, enabling the stern thruster fortified plates to be completely aligned with the hull stiffener panels, and keeping a gap between an upper flat panel of the stern thruster and the hull platform plate to be identical to a gap between a lower flat panel of the stern thruster and the bottom plate; and
step 6, tack welding and fixing upper and lower flanges of the stern thruster respectively to the hull platform plate and the bottom plate.
2. The positioning and welding method according to claim 1, wherein the main deck technological hole is provided with a buttress bracing struts for determining an upper locating point.
3. The positioning and welding method according to claim 2, wherein the buttress bracing struts are angle steel or U-steel.
4. The positioning and welding method according to claim 1, wherein wire shelves are arranged at two ends of the steel wire.
5. The positioning and welding method according to claim 1, wherein the upper and lower closing plates of the model are provided with starting screw for adjusting positioning.
6. The positioning and welding method according to claim 1, wherein when cutting the excess of the hull stiffener panels in step 4, the model is driven up or lifted away from the cavity structure, and the model is hoisted to the cavity structure after the cutting completed.
7. The positioning and welding method according to claim 1, wherein in step 5, the stern thruster fortified plates are added with an excess of 30 mm as a pre-cut line, and the excess of the stern thruster fortified plates is cut along the pre-cut line.
8. The positioning and welding method according to claim 1, wherein in step 6, CO2 multi-layer welding is adopted, and a welding sequence is that the welding is performed on a diagonal symmetry of a flange surface.
US17/853,893 2021-07-01 2022-06-29 Positioning and welding method for a ship stern thruster Active US11548599B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110741963.7A CN113428315B (en) 2021-07-01 2021-07-01 Positioning and welding method for ship stern pushing equipment
CN202110741963.7 2021-07-01

Publications (2)

Publication Number Publication Date
US20230002019A1 true US20230002019A1 (en) 2023-01-05
US11548599B1 US11548599B1 (en) 2023-01-10

Family

ID=77758423

Family Applications (1)

Application Number Title Priority Date Filing Date
US17/853,893 Active US11548599B1 (en) 2021-07-01 2022-06-29 Positioning and welding method for a ship stern thruster

Country Status (4)

Country Link
US (1) US11548599B1 (en)
CN (1) CN113428315B (en)
BE (1) BE1029573B1 (en)
NL (1) NL2032319B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113844613B (en) * 2021-09-29 2024-03-26 中船黄埔文冲船舶有限公司 Hull gusset structure connected node
CN113879481B (en) * 2021-10-28 2023-07-25 中船黄埔文冲船舶有限公司 Method for mounting lower sealing plate of full-rotation propeller base

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4230421A (en) * 1978-05-05 1980-10-28 Santa Fe International Corporation Self propelled dynamically positioned reel pipe laying ship
US4345855A (en) * 1979-05-02 1982-08-24 Santa Fe International Corporation Self propelled dynamically positioned reel pipe laying ship
US6047781A (en) * 1996-05-03 2000-04-11 Transocean Offshore Inc. Multi-activity offshore exploration and/or development drilling method and apparatus
US6056478A (en) * 1994-02-19 2000-05-02 Coflexip Stena Offshore Limited Pipelaying vessel and a method of converting a maritime vessel to a pipelaying vessel

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2965974B1 (en) * 1998-08-11 1999-10-18 川崎重工業株式会社 Platform for mounting a propulsion device of a ship and its manufacturing method
US6848382B1 (en) 2002-12-23 2005-02-01 Joannes Raymond Mari Bekker Portable dynamic positioning system with self-contained electric thrusters
US8382538B1 (en) 2007-02-26 2013-02-26 John T. Williams Hydraulic thruster for vessel
CN102358413B (en) * 2011-09-05 2014-03-19 广州中船黄埔造船有限公司 Installation method of full-revolving rudder propeller device with special angle
CN104590487B (en) * 2014-12-11 2016-09-21 中船黄埔文冲船舶有限公司 A kind of working ship is with large-scale stern cylinder flange disk high precision assembling and welding process
DE102015011296A1 (en) 2015-09-02 2017-03-02 Wabco Gmbh Electronically controllable pneumatic braking system in a utility vehicle and method for electronically controlling a pneumatic braking system
CN106184686B (en) * 2016-08-01 2018-11-06 宏华海洋油气装备(江苏)有限公司 Ship stern pipe mounting process
CN109878634A (en) * 2019-03-29 2019-06-14 浙江国际海运职业技术学院 Marine shafting bracing wire technique
CN111071404A (en) * 2019-11-29 2020-04-28 友联船厂(蛇口)有限公司 Ship shafting adjusting method
CN111268055A (en) * 2019-12-04 2020-06-12 天津新港船舶重工有限责任公司 Straight blade propeller mounting method and mounting base
CN111268054B (en) * 2020-03-20 2021-01-01 浙江国际海运职业技术学院 Method for welding front stay wire of stern push base
CN112519981A (en) * 2020-11-26 2021-03-19 江南造船(集团)有限责任公司 Method for mounting laser inertia platform

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4230421A (en) * 1978-05-05 1980-10-28 Santa Fe International Corporation Self propelled dynamically positioned reel pipe laying ship
US4345855A (en) * 1979-05-02 1982-08-24 Santa Fe International Corporation Self propelled dynamically positioned reel pipe laying ship
US6056478A (en) * 1994-02-19 2000-05-02 Coflexip Stena Offshore Limited Pipelaying vessel and a method of converting a maritime vessel to a pipelaying vessel
US6047781A (en) * 1996-05-03 2000-04-11 Transocean Offshore Inc. Multi-activity offshore exploration and/or development drilling method and apparatus

Also Published As

Publication number Publication date
BE1029573B1 (en) 2023-12-06
BE1029573A1 (en) 2023-01-31
NL2032319B1 (en) 2023-05-03
CN113428315A (en) 2021-09-24
CN113428315B (en) 2022-03-25
US11548599B1 (en) 2023-01-10
NL2032319A (en) 2023-01-09

Similar Documents

Publication Publication Date Title
US11548599B1 (en) Positioning and welding method for a ship stern thruster
CN109094723B (en) Anchor chain cylinder and anchor platform manufacturing and mounting method
CN110371240B (en) Ship porthole opening method and ship
CN110155249A (en) A kind of ship's space method of construction with big window
WO2019000751A1 (en) Method for mounting lateral thrust device
CN109606563B (en) Installation method of base of liquid cargo pump of duplex stainless steel chemical tanker
CN109079437A (en) Large size liquefied gas storage multilayer limb end socket arrangement and method for construction peculiar to vessel
CN113247205B (en) Installation method of embedded container fixing seat of ship deck
CN113581408B (en) Ship total section dividing method
CN108995764B (en) Method for installing rudder sleeve of LNG (liquefied Natural gas) transport ship
CN113275664B (en) Panel processing method
CN113320659B (en) Method for assembling flange and barrel of double-angle steering oar of ship
CN102848053B (en) Assembly and flame process for trunk bulkhead deck
CN110789684A (en) Method for assembling large deck machinery body base
CN114228943A (en) Method for accurately positioning ship single-shell block at wharf
CN110615064A (en) Equipment installation point positioning method of saturated diving system
CN102312436A (en) Steel pipe pile sinking construction technology
CN102720371A (en) Butt joint method for multiple upright posts of steel structure module and temporary butt joint fixing device
CN113148058A (en) Process for installing and positioning double-rudder sleeve and tail casting in segmented construction stage
CN112550593A (en) Method for quickly positioning reverse total assembly of double rudder systems
CN113401309B (en) Segmented construction method for bottom side cabin of bulk cargo ship
CN110052848B (en) Supporting device for grooving stage of ship plate and using method thereof
CN205685401U (en) The die-cutting apparatus of welding backing group
CN115123490B (en) Ship steering module positioning and mounting method and auxiliary device
CN115009464B (en) Bulkhead floor construction method and bulk carrier

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO SMALL (ORIGINAL EVENT CODE: SMAL); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

AS Assignment

Owner name: ZHEJIANG INTERNATIONAL MARITIME COLLEGE, CHINA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LIU, ZAILIANG;HE, JIANHUA;REEL/FRAME:061020/0640

Effective date: 20220629

STCF Information on status: patent grant

Free format text: PATENTED CASE