US20220365473A1 - Skew detection - Google Patents
Skew detection Download PDFInfo
- Publication number
- US20220365473A1 US20220365473A1 US17/754,612 US201917754612A US2022365473A1 US 20220365473 A1 US20220365473 A1 US 20220365473A1 US 201917754612 A US201917754612 A US 201917754612A US 2022365473 A1 US2022365473 A1 US 2022365473A1
- Authority
- US
- United States
- Prior art keywords
- contact roller
- axis
- skew
- sensor
- print media
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000001514 detection method Methods 0.000 title claims abstract description 56
- 238000000034 method Methods 0.000 claims description 17
- 238000006073 displacement reaction Methods 0.000 claims description 7
- 238000004891 communication Methods 0.000 claims description 6
- 238000005259 measurement Methods 0.000 description 4
- 230000006399 behavior Effects 0.000 description 2
- 239000000428 dust Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000001052 transient effect Effects 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 239000011111 cardboard Substances 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000007373 indentation Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000000123 paper Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 239000004753 textile Substances 0.000 description 1
- 239000011135 tin Substances 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
- 230000037303 wrinkles Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G15/00—Apparatus for electrographic processes using a charge pattern
- G03G15/65—Apparatus which relate to the handling of copy material
- G03G15/6555—Handling of sheet copy material taking place in a specific part of the copy material feeding path
- G03G15/6558—Feeding path after the copy sheet preparation and up to the transfer point, e.g. registering; Deskewing; Correct timing of sheet feeding to the transfer point
- G03G15/6567—Feeding path after the copy sheet preparation and up to the transfer point, e.g. registering; Deskewing; Correct timing of sheet feeding to the transfer point for deskewing or aligning
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65H—HANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
- B65H5/00—Feeding articles separated from piles; Feeding articles to machines
- B65H5/06—Feeding articles separated from piles; Feeding articles to machines by rollers or balls, e.g. between rollers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65H—HANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
- B65H7/00—Controlling article feeding, separating, pile-advancing, or associated apparatus, to take account of incorrect feeding, absence of articles, or presence of faulty articles
- B65H7/02—Controlling article feeding, separating, pile-advancing, or associated apparatus, to take account of incorrect feeding, absence of articles, or presence of faulty articles by feelers or detectors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65H—HANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
- B65H7/00—Controlling article feeding, separating, pile-advancing, or associated apparatus, to take account of incorrect feeding, absence of articles, or presence of faulty articles
- B65H7/02—Controlling article feeding, separating, pile-advancing, or associated apparatus, to take account of incorrect feeding, absence of articles, or presence of faulty articles by feelers or detectors
- B65H7/06—Controlling article feeding, separating, pile-advancing, or associated apparatus, to take account of incorrect feeding, absence of articles, or presence of faulty articles by feelers or detectors responsive to presence of faulty articles or incorrect separation or feed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41J—TYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
- B41J11/00—Devices or arrangements of selective printing mechanisms, e.g. ink-jet printers or thermal printers, for supporting or handling copy material in sheet or web form
- B41J11/008—Controlling printhead for accurately positioning print image on printing material, e.g. with the intention to control the width of margins
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65H—HANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
- B65H2404/00—Parts for transporting or guiding the handled material
- B65H2404/10—Rollers
- B65H2404/15—Roller assembly, particular roller arrangement
- B65H2404/154—Rollers conveyor
- B65H2404/1542—Details of pattern of rollers
- B65H2404/15421—Chevron or herringbone configuration
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65H—HANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
- B65H2511/00—Dimensions; Position; Numbers; Identification; Occurrences
- B65H2511/20—Location in space
- B65H2511/21—Angle
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65H—HANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
- B65H2511/00—Dimensions; Position; Numbers; Identification; Occurrences
- B65H2511/20—Location in space
- B65H2511/24—Irregularities, e.g. in orientation or skewness
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65H—HANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
- B65H2511/00—Dimensions; Position; Numbers; Identification; Occurrences
- B65H2511/40—Identification
- B65H2511/417—Identification of state of the machine
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65H—HANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
- B65H2553/00—Sensing or detecting means
- B65H2553/51—Encoders, e.g. linear
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65H—HANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
- B65H2553/00—Sensing or detecting means
- B65H2553/60—Details of intermediate means between the sensing means and the element to be sensed
- B65H2553/61—Mechanical means, e.g. contact arms
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65H—HANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
- B65H2553/00—Sensing or detecting means
- B65H2553/80—Arangement of the sensing means
- B65H2553/82—Arangement of the sensing means with regard to the direction of transport of the handled material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65H—HANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
- B65H2557/00—Means for control not provided for in groups B65H2551/00 - B65H2555/00
- B65H2557/60—Details of processes or procedures
- B65H2557/61—Details of processes or procedures for calibrating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65H—HANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
- B65H2801/00—Application field
- B65H2801/03—Image reproduction devices
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65H—HANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
- B65H2801/00—Application field
- B65H2801/03—Image reproduction devices
- B65H2801/06—Office-type machines, e.g. photocopiers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65H—HANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
- B65H2801/00—Application field
- B65H2801/39—Scanning
Definitions
- print media may become skewed relative to a media path. Skewed print media may cause misalignment of a printed image, media jam or even damages to the print media, such as wrinkles.
- skew detection sensors have been developed to determine whether print media is skewed. By detecting media skew, printing operations may be modified to prevent damage.
- FIG. 1 shows a top view of a skew detection device, according to an example of the present disclosure
- FIG. 2 shows a skew detection device, according to an example of the present disclosure
- FIG. 3 a shows a top view of a skew detection device to determine a skew in a print media, according to an example of the present disclosure
- FIG. 3 b shows a top view of a plurality of skew detection devices to determine a skew in a print media, according to an example of the present disclosure
- FIG. 4 shows a graph representing a skew angle related to a media advance, according to an example of the present disclosure
- FIG. 5 schematically shows a printing system comprising a skew detection device, according to an example of the present disclosure
- FIG. 6 shows a printing system comprising a plurality of skew detection devices, according to an example of the present disclosure
- FIG. 7 shows a method to determine a skew in a print media, according to an example of the present disclosure
- FIG. 8 shows a method to determine skew detection in a print media comprising calculating a calibration value, according to an example of the present disclosure.
- the terms “a” and “an” are intended to denote at least one of a particular element.
- the term “includes” means includes but not limited to, the term “including” means including but not limited to.
- print media may comprise any media which may be printed on.
- Some examples of print media may include paper, textile, cardboard, wood, tin, and/or metal.
- a print media may move in a media direction different than the nominal direction when performing a printing operation.
- the differences between the nominal direction and the actual direction may be caused by either internal or external factors.
- An internal factor which may affect the performance may be a type of print media. Since different types of print media may be used within a printing system, different behaviors in the print media may be obtained.
- an external factor that may affect the performance of the printing system may be the dust. Printing systems may be used in dusty environments, and hence, dust may have a direct impact on the performance of the mechanisms of a printing system.
- devices, systems and methods In order to reduce differences between a nominal result and an actual result, devices, systems and methods have been designed. These devices, systems, and methods can determine whether a media is skewed relative to a reference direction or not. From the determined skew of the media, the printing operation may be modified to reduce the impact of the skew in the final result.
- a skew detection device 100 comprises a first contact roller 110 a , a second contact roller 110 b , a first sensor 120 a , and a second sensor 120 b .
- the first contact roller 110 a is rotatable around a first axis 115 a and the second contact roller 110 b is rotatable around a second axis 115 b , wherein the first axis 115 a and the second axis are not parallel and converge forming an angle 151 .
- the first sensor 120 a captures a first rotation parameter from the first roller 110 a and the second sensor 120 b captures a second rotation parameter from the second roller 110 b .
- the first and the second parameters comprise an angular displacement.
- the first dashed line 130 a and the second dashed line 130 b are perpendicular respectively to each of the first axis 115 a and the second axis 115 b , forming a configuration angle 151 which is equal to the angle 150 .
- the configuration angle may be comprised in a range between 0.5 degrees and 5 degrees, for instance. In other examples, the configuration angle may be comprised in a range between 0.5 and 2 degrees.
- the first sensor 120 a and the second sensor 120 b capture the first and second parameters from the first contact roller 110 a and the second contact roller 110 b .
- a controller (not shown in FIG. 1 ), in communication with the first sensor 120 a and the second sensor 120 b , determines if a print media is skewed based on the first parameter and the second parameter. In other examples, the controller may further calculate a degree of skew as a skew angle and/or a calibration value to adjust a printing operation.
- the skew detection device 100 determines through a controller an actual media direction 153 .
- a deviation angle 154 is formed between the first dashed line 130 a and the media direction 153 .
- a nominal media path direction 152 i.e., the expected direction of the media during a normal print operation (without skewed media), forms a skew angle 155 with the actual media direction 153 . If the actual media direction 153 is not parallel to the nominal media path direction 152 , the print media is considered to be skewed. In contrast, if the media direction 153 is parallel to the media path direction 152 , the print media is considered as not skewed. In the example of FIG. 1 a bisector of the angle 150 is to the media path direction 152 , however, in other examples, the media path direction 152 may have a different orientation from that depicted in FIG. 1 .
- a skew detection device as shown in FIG. 1 may be positioned in a media path at different positions and/or configurations.
- the different positions may enable to measure a skew at different stages of the printing operation and the different configurations may allow the media direction to be measured in an accurate way.
- FIG. 1 shows a “V-shape” configuration, however, other configurations such as “ ⁇ -shape” (or inverted V shape) are also possible.
- the skew detection device may be positioned upstream of the printing operation, hence, enabling to determine a skew in the print media before executing an action over the print media.
- the media path direction term will be used to refer to a direction in which a print media should move while performing a printing operation.
- the skew detection device 200 may comprise a first contact roller 210 a , a second contact roller 210 b , a first sensor 220 a , and a second sensor 220 b .
- the first contact roller 210 a is rotatable around a first axis 215 a
- the second contact roller 210 b is rotatable around a second axis 215 b .
- the first contact roller 210 a and the second contact roller 210 b form an angle 250 , and hence, the first axis 215 a is not parallel to the second axis 215 b .
- a first dashed line 230 a and a second dashed line 230 b are shown in FIG. 2 as perpendicular to each of the first axis 215 a and the second axis 215 b , hence, intersecting at the angle 250 .
- the first axis 215 a , the second axis 215 b , the first dashed line 230 a , and the second dashed line 230 b lie in a plane.
- a print media is moving in a plane parallel to the plane in which the first axis 215 a , the second axis 215 b , the first dashed line 230 a and the second dashed line 230 b lie.
- the first contact roller 210 a and the second contact roller 210 b comprise contact surfaces 215 .
- the contact surfaces 215 may be made of a material having mechanical properties to enable proper frictional contact between the print media and the contact roller. Contact between the contact surfaces 215 and the media enables the rotation of each of the first contact roller 210 a and the second contact roller 210 b while the media moves over the skew detection device 200 .
- the material of the contacting surfaces 215 is ABS.
- the first sensor 220 a and the second sensor 220 b may capture a first parameter and a second parameter from each of the first encoder 225 a and the second encoder 225 b .
- the first encoder 225 a is attached to the first contact roller 210 a and the second encoder 225 b is attached to the second contact roller 210 b.
- the first parameter and the second parameter comprise an angular displacement of each of the first encoder 225 a and the second encoder 225 b .
- the first sensor 220 a and the second sensor 220 b may comprise optical encoders to measure the displacement. However, other alternatives may be possible.
- the skew detection device 200 further comprises a first reference encoder 227 a and a second reference encoder 227 b attached to each of the first contact roller 210 a and the second contact roller 210 b .
- a first reference sensor 226 a and a second reference sensor 226 b determine a rotation of the first reference encoder 227 a and the second reference encoder 227 b .
- Each reference encoder comprises an indentation. From an encoder's rotation, a correction value is determined for each roller. The correction values can be applied to the measurements of the first sensor 220 a and the second sensor 220 b .
- the skew detection device 200 does not comprise the reference encoders.
- a plurality of skew detection devices may be used instead of one.
- the plurality of skew detection devices may comprise at least two skew detection devices aligned in a direction perpendicular to the media path direction.
- other configurations for the plurality of skew detection devices may be possible, such as a staggered distribution.
- the controller may determine if the print media is skewed from an average first parameter and an average second parameter. In some other examples, the controller may determine a calibration value and/or a skew angle based on the average first parameter and the average second parameter captured by the plurality of skew detection devices.
- the skew detection device 300 a comprises a first contact roller 320 , a second contact roller 370 , a first sensor 330 and a second sensor 380 .
- a first print media 310 a is moving over the skew detection device 300 a , contacting the first contact roller 320 and the second contact roller 370 .
- a controller (not shown in FIG. 3 a ), determines that the first print media 310 a is moving in a media direction 315 a . Since the first print media 310 a is moving in a direction parallel to the media path direction, the first print media 310 a is considered as not skewed.
- the skew detection device 300 a may determine from the measurements of the first sensor 330 and the second sensor 380 that a second print media 310 b is skewed.
- the controller may determine a second media direction 315 b for the second print media 310 b .
- a skew angle 316 may be formed between the media direction 315 a and the second media direction 315 b.
- a print media may be considered as skewed when a skew threshold is exceeded.
- the skew threshold may be set as a maximum difference between the measurements of each of the first sensor(s) and the second sensor(s).
- the media path direction 315 a indicates a direction in which a first print media 310 a is having a null skew.
- the first skew detection device and the second skew detection device through each of the first sensor and the second sensor, send the first parameters and second parameters to a controller.
- the controller determines the averages values for the first parameters and the second parameters in order to determine whether a print media is skewed.
- the first skew detection device determines a first media direction 315 b and the second skew detection device determines a second media direction 315 c .
- a first skew angle 316 a is calculated for the first skew detection device and a second skew angle 316 b is calculated for the second skew detection device. As represented in FIG. 3 b , the first skew angle 316 a is greater than the second skew angle 316 b .
- the controller may determine the skew angle average value for the second print media.
- a graph 400 shows a behavior of a print media skew angle within a printing system.
- a skew angle for a print media may oscillate before stabilizing when it is first loaded in a printing system.
- the Y-axis of the graph 400 shows a skew angle 416
- the X-axis represents a media movement 410 .
- the media movement 410 may be defined as the movement of the print media within a printing system when performing a printing operation.
- the print media Before reaching a steady-state 415 b , the print media may be in a transient state 415 a , in which the skew angle 416 oscillates. In the steady-state 415 b , the skew angle 416 stabilizes at a value.
- the skew angle obtained in the steady-state 415 b may be used to obtain the calibration value for the remaining printing operation. However, the skew angle(s) obtained during the transient state 415 a may be used to calibrate the printing operation through a calibration value.
- a printing system 500 comprising a print media 520 , a skew detection device 530 and a controller 540 is represented.
- the print media 520 is within a media path having a media path direction 520 a and contacts the skew detection device 530 while moving.
- the skew detection device 530 comprises a first contact roller 531 , a second contact roller 536 , a first sensor 532 , and a second sensor 537 .
- the first contact roller 531 and the second contact roller 536 are rotatable around a first axis 531 a and a second axis 536 a , respectively.
- the first contact roller 531 and the second contact roller 536 are angled relative to the media path direction 520 a .
- first contact roller and the second contact roller are angled relative to the media path direction forming an angle with each other.
- the first sensor 532 measures a first rotation parameter 532 a from the first contact roller 531 and the second sensor 537 measures a second rotation parameter 537 a from the second contact roller 536 .
- the first rotation parameter 532 a and the second rotation parameter 537 a comprise an angular displacement of the roller.
- the controller 540 is in communication with the skew detection device 530 .
- a signal 530 a is sent by the skew detection device 530 to the controller 540 , the signal 530 a being associated to the first rotation parameter 532 a and the second rotation parameter 537 a .
- the controller 540 determines a skew 515 of the print media 520 based on the signal 530 a , for example, based on the first parameter 532 a and the second parameter 537 a . From the skew 515 , the controller 540 may determine a degree of skew as a skew angle 516 . From the skew angle 516 , a calibration value 517 may be determined. The calibration value 517 may be used to adjust a printing operation performed by the printing system 500 . In other examples, the controller 540 may directly determine the calibration value 517 from the skew 515 , without determining the skew angle 516 .
- a plurality of skew detection devices may be possible. As explained previously in the description, having a plurality of skew detection devices within the printing system 500 may allow a series of first parameters and second parameters to be measured. These series of first and second parameters may be comprised within the signal 530 a . In other examples, the controller 540 may further apply other adjustments in the printing operation based on printing system characteristics.
- a print media 620 moves over a platen 610 having a media path direction 620 a .
- the print media 620 is moving parallel to the platen 610 .
- a plurality of skew detection devices 630 a , 630 b and 630 c are within a media path, the skew detection devices being positioned upstream the printing operation.
- the first axis and the second axis of each of the skew detection devices are not parallel, and hence, are forming a configuration angle as described previously in FIG. 1 .
- portions of the contact rollers protrude from the platen 610 .
- Each skew detection device 630 a , 630 b , and 630 c is in communication with a controller (not represented in FIG. 6 ), the controller to determine a skew of the print media 620 a .
- the controller may further determine a skew angle and/or a calibration value.
- the printing operation may be adjusted based on the calibration value determined by the controller. In an example, the printing operation comprises scanning or printing.
- the skew detection devices are positioned in a “V” configuration, however, other alternatives such as “ ⁇ ” configuration are possible.
- the skew detection devices 630 a , 630 b , and 630 c may not be symmetrically disposed relative to the media path direction 620 a.
- the method 700 comprises capturing 710 a first and second parameters from a pair of angled first and second contact rollers, sending 720 a signal associated with the first and the second rotation parameters to a controller, and determining 730 a skew in the print media based on the signal.
- a first sensor and a second sensor capture from the first contact roller and the second contact roller the first and the second rotation parameters.
- the first and the second parameters comprise an angular displacement of the rollers.
- the first contact roller is rotatable around a first axis and the second contact roller is rotatable around a second axis, wherein the first and the second axis lie in a plane parallel to the print media.
- Contact between the print media and the first and second contact rollers may cause the rollers to rotate as the print media is moving over the rollers.
- the controller may calculate a skew angle and/or a calibration value based on the signal. By comparing the first rotation parameter with the second rotation parameter, the skew angle and/or a calibration value may be determined. The comparison may comprise applying a correction to each of the first rotation parameter and the second rotation parameters. The correction may be obtained by other measuring means from the first and second contact rollers. In an example, the correction is obtained from the first reference encoder 227 a and the second reference encoder 227 b comprised in the skew detection device 200 of FIG. 2 .
- the method 800 comprises the method previously described with reference to FIG. 7 , such as capturing 810 , sending 820 and determining 830 .
- the method 800 further comprises the steps of calculating 840 a calibration value based on the signal and adjusting 850 the printing operation with the calibration value.
- the calibration value may correct the skew deficiencies in a printing operation, such as printing or scanning.
- the method further includes applying a correction to the calibration value, as explained above.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Controlling Sheets Or Webs (AREA)
Abstract
According to some examples, a skew detection device comprises a first roller rotatable around a first axis, a second roller rotatable around a second axis, a first sensor, and a second sensor. The first sensor measures a first rotation parameter from the first roller and the second sensor measures a second rotation parameter from the second roller. A movement of a print media over the device rotates the first contact roller and the second roller, and a controller determines a skew of the print media based on the first and second rotation parameters captured by the first sensor and the second sensor.
Description
- During a printing operation, print media may become skewed relative to a media path. Skewed print media may cause misalignment of a printed image, media jam or even damages to the print media, such as wrinkles. To prevent this, skew detection sensors have been developed to determine whether print media is skewed. By detecting media skew, printing operations may be modified to prevent damage.
- Features of the present disclosure are illustrated by way of example and are not limited in the following figure(s), in which like numerals indicate like elements, in which:
-
FIG. 1 shows a top view of a skew detection device, according to an example of the present disclosure; -
FIG. 2 shows a skew detection device, according to an example of the present disclosure; -
FIG. 3a shows a top view of a skew detection device to determine a skew in a print media, according to an example of the present disclosure; -
FIG. 3b shows a top view of a plurality of skew detection devices to determine a skew in a print media, according to an example of the present disclosure; -
FIG. 4 shows a graph representing a skew angle related to a media advance, according to an example of the present disclosure; -
FIG. 5 schematically shows a printing system comprising a skew detection device, according to an example of the present disclosure; -
FIG. 6 shows a printing system comprising a plurality of skew detection devices, according to an example of the present disclosure; -
FIG. 7 shows a method to determine a skew in a print media, according to an example of the present disclosure; -
FIG. 8 shows a method to determine skew detection in a print media comprising calculating a calibration value, according to an example of the present disclosure. - For simplicity and illustrative purposes, the present disclosure is described by referring mainly to examples. In the following description, numerous specific details are set forth in order to provide a thorough understanding of the present disclosure. It will be readily apparent, however, that the present disclosure may be practiced without limitation to these specific details. In other instances, some methods and structures have not been described in detail so as not to unnecessarily obscure the present disclosure.
- Throughout the present disclosure, the terms “a” and “an” are intended to denote at least one of a particular element. As used herein, the term “includes” means includes but not limited to, the term “including” means including but not limited to.
- In the examples herein, the term print media may comprise any media which may be printed on. Some examples of print media may include paper, textile, cardboard, wood, tin, and/or metal.
- A print media may move in a media direction different than the nominal direction when performing a printing operation. The differences between the nominal direction and the actual direction may be caused by either internal or external factors. An internal factor which may affect the performance may be a type of print media. Since different types of print media may be used within a printing system, different behaviors in the print media may be obtained. On the other hand, an external factor that may affect the performance of the printing system may be the dust. Printing systems may be used in dusty environments, and hence, dust may have a direct impact on the performance of the mechanisms of a printing system.
- In order to reduce differences between a nominal result and an actual result, devices, systems and methods have been designed. These devices, systems, and methods can determine whether a media is skewed relative to a reference direction or not. From the determined skew of the media, the printing operation may be modified to reduce the impact of the skew in the final result.
- Referring now to
FIG. 1 , askew detection device 100 comprises afirst contact roller 110 a, asecond contact roller 110 b, afirst sensor 120 a, and asecond sensor 120 b. Thefirst contact roller 110 a is rotatable around afirst axis 115 a and thesecond contact roller 110 b is rotatable around asecond axis 115 b, wherein thefirst axis 115 a and the second axis are not parallel and converge forming anangle 151. Thefirst sensor 120 a captures a first rotation parameter from thefirst roller 110 a and thesecond sensor 120 b captures a second rotation parameter from thesecond roller 110 b. In an example, the first and the second parameters comprise an angular displacement. The firstdashed line 130 a and the seconddashed line 130 b are perpendicular respectively to each of thefirst axis 115 a and thesecond axis 115 b, forming aconfiguration angle 151 which is equal to theangle 150. The configuration angle may be comprised in a range between 0.5 degrees and 5 degrees, for instance. In other examples, the configuration angle may be comprised in a range between 0.5 and 2 degrees. - While a print media is moving over the
skew detection device 100, contact between the print media and the rollers may cause a rotation of thefirst contact roller 110 a andsecond contact roller 110 b around thefirst axis 115 a and thesecond axis 115 b. Thefirst sensor 120 a and thesecond sensor 120 b capture the first and second parameters from thefirst contact roller 110 a and thesecond contact roller 110 b. A controller (not shown inFIG. 1 ), in communication with thefirst sensor 120 a and thesecond sensor 120 b, determines if a print media is skewed based on the first parameter and the second parameter. In other examples, the controller may further calculate a degree of skew as a skew angle and/or a calibration value to adjust a printing operation. - As depicted in
FIG. 1 , theskew detection device 100 determines through a controller anactual media direction 153. Adeviation angle 154 is formed between the firstdashed line 130 a and themedia direction 153. A nominalmedia path direction 152, i.e., the expected direction of the media during a normal print operation (without skewed media), forms askew angle 155 with theactual media direction 153. If theactual media direction 153 is not parallel to the nominalmedia path direction 152, the print media is considered to be skewed. In contrast, if themedia direction 153 is parallel to themedia path direction 152, the print media is considered as not skewed. In the example ofFIG. 1 a bisector of theangle 150 is to themedia path direction 152, however, in other examples, themedia path direction 152 may have a different orientation from that depicted inFIG. 1 . - A skew detection device as shown in
FIG. 1 may be positioned in a media path at different positions and/or configurations. The different positions may enable to measure a skew at different stages of the printing operation and the different configurations may allow the media direction to be measured in an accurate way. InFIG. 1 shows a “V-shape” configuration, however, other configurations such as “∧-shape” (or inverted V shape) are also possible. The skew detection device may be positioned upstream of the printing operation, hence, enabling to determine a skew in the print media before executing an action over the print media. - Throughout this description, the media path direction term will be used to refer to a direction in which a print media should move while performing a printing operation.
- Referring now to
FIG. 2 , askew detection device 200 is represented. Theskew detection device 200 may comprise afirst contact roller 210 a, asecond contact roller 210 b, a first sensor 220 a, and asecond sensor 220 b. Thefirst contact roller 210 a is rotatable around afirst axis 215 a and thesecond contact roller 210 b is rotatable around asecond axis 215 b. InFIG. 2 , thefirst contact roller 210 a and thesecond contact roller 210 b form anangle 250, and hence, thefirst axis 215 a is not parallel to thesecond axis 215 b. For the purposes of illustration, a firstdashed line 230 a and a seconddashed line 230 b are shown inFIG. 2 as perpendicular to each of thefirst axis 215 a and thesecond axis 215 b, hence, intersecting at theangle 250. Thefirst axis 215 a, thesecond axis 215 b, the first dashedline 230 a, and the second dashedline 230 b lie in a plane. In an example, a print media is moving in a plane parallel to the plane in which thefirst axis 215 a, thesecond axis 215 b, the first dashedline 230 a and the second dashedline 230 b lie. - The
first contact roller 210 a and thesecond contact roller 210 b comprise contact surfaces 215. The contact surfaces 215 may be made of a material having mechanical properties to enable proper frictional contact between the print media and the contact roller. Contact between the contact surfaces 215 and the media enables the rotation of each of thefirst contact roller 210 a and thesecond contact roller 210 b while the media moves over theskew detection device 200. In an example, the material of the contactingsurfaces 215 is ABS. - The first sensor 220 a and the
second sensor 220 b may capture a first parameter and a second parameter from each of thefirst encoder 225 a and thesecond encoder 225 b. Thefirst encoder 225 a is attached to thefirst contact roller 210 a and thesecond encoder 225 b is attached to thesecond contact roller 210 b. In an example, the first parameter and the second parameter comprise an angular displacement of each of thefirst encoder 225 a and thesecond encoder 225 b. The first sensor 220 a and thesecond sensor 220 b may comprise optical encoders to measure the displacement. However, other alternatives may be possible. - In the example of
FIG. 2 , theskew detection device 200 further comprises afirst reference encoder 227 a and asecond reference encoder 227 b attached to each of thefirst contact roller 210 a and thesecond contact roller 210 b. Afirst reference sensor 226 a and asecond reference sensor 226 b determine a rotation of thefirst reference encoder 227 a and thesecond reference encoder 227 b. Each reference encoder comprises an indentation. From an encoder's rotation, a correction value is determined for each roller. The correction values can be applied to the measurements of the first sensor 220 a and thesecond sensor 220 b. Since the first sensor 220 and thesecond sensor 220 b may need to be referenced, having the correction value of thefirst reference encoder 227 a and thesecond reference encoder 227 b enables the correction of the measurements. However, in other examples, theskew detection device 200 does not comprise the reference encoders. - In order to increase the accuracy of the skew detection device, a plurality of skew detection devices may be used instead of one. The plurality of skew detection devices may comprise at least two skew detection devices aligned in a direction perpendicular to the media path direction. However, other configurations for the plurality of skew detection devices may be possible, such as a staggered distribution. By determining in each of the skew detection devices the first and the second parameter, the controller may determine if the print media is skewed from an average first parameter and an average second parameter. In some other examples, the controller may determine a calibration value and/or a skew angle based on the average first parameter and the average second parameter captured by the plurality of skew detection devices.
- Referring now to
FIG. 3a , askew detection device 300 a is shown. Theskew detection device 300 a comprises afirst contact roller 320, asecond contact roller 370, afirst sensor 330 and asecond sensor 380. Afirst print media 310 a is moving over theskew detection device 300 a, contacting thefirst contact roller 320 and thesecond contact roller 370. A controller (not shown inFIG. 3a ), determines that thefirst print media 310 a is moving in amedia direction 315 a. Since thefirst print media 310 a is moving in a direction parallel to the media path direction, thefirst print media 310 a is considered as not skewed. - However, the
skew detection device 300 a may determine from the measurements of thefirst sensor 330 and thesecond sensor 380 that asecond print media 310 b is skewed. The controller may determine asecond media direction 315 b for thesecond print media 310 b. Askew angle 316 may be formed between themedia direction 315 a and thesecond media direction 315 b. - In other examples, a print media may be considered as skewed when a skew threshold is exceeded. The skew threshold may be set as a maximum difference between the measurements of each of the first sensor(s) and the second sensor(s).
- Referring now to
FIG. 3b , a plurality ofskew detection devices 300 b is shown. Themedia path direction 315 a indicates a direction in which afirst print media 310 a is having a null skew. The first skew detection device and the second skew detection device, through each of the first sensor and the second sensor, send the first parameters and second parameters to a controller. The controller determines the averages values for the first parameters and the second parameters in order to determine whether a print media is skewed. When asecond print media 310 b is moving over the plurality ofskew detection devices 300 b, the first skew detection device determines afirst media direction 315 b and the second skew detection device determines asecond media direction 315 c. Afirst skew angle 316 a is calculated for the first skew detection device and asecond skew angle 316 b is calculated for the second skew detection device. As represented inFIG. 3b , thefirst skew angle 316 a is greater than thesecond skew angle 316 b. The controller may determine the skew angle average value for the second print media. - Referring now to
FIG. 4 , agraph 400 shows a behavior of a print media skew angle within a printing system. A skew angle for a print media may oscillate before stabilizing when it is first loaded in a printing system. The Y-axis of thegraph 400 shows askew angle 416, and the X-axis represents amedia movement 410. Themedia movement 410 may be defined as the movement of the print media within a printing system when performing a printing operation. Before reaching a steady-state 415 b, the print media may be in atransient state 415 a, in which theskew angle 416 oscillates. In the steady-state 415 b, theskew angle 416 stabilizes at a value. The skew angle obtained in the steady-state 415 b may be used to obtain the calibration value for the remaining printing operation. However, the skew angle(s) obtained during thetransient state 415 a may be used to calibrate the printing operation through a calibration value. - Referring now to
FIG. 5 , aprinting system 500 comprising aprint media 520, askew detection device 530 and acontroller 540 is represented. Theprint media 520 is within a media path having amedia path direction 520 a and contacts theskew detection device 530 while moving. Theskew detection device 530 comprises afirst contact roller 531, asecond contact roller 536, afirst sensor 532, and asecond sensor 537. Thefirst contact roller 531 and thesecond contact roller 536 are rotatable around afirst axis 531 a and asecond axis 536 a, respectively. Thefirst contact roller 531 and thesecond contact roller 536 are angled relative to themedia path direction 520 a. However, in other examples, one of the first contact roller and the second contact roller are angled relative to the media path direction forming an angle with each other. Thefirst sensor 532 measures afirst rotation parameter 532 a from thefirst contact roller 531 and thesecond sensor 537 measures asecond rotation parameter 537 a from thesecond contact roller 536. In an example, thefirst rotation parameter 532 a and thesecond rotation parameter 537 a comprise an angular displacement of the roller. - The
controller 540 is in communication with theskew detection device 530. Asignal 530 a is sent by theskew detection device 530 to thecontroller 540, thesignal 530 a being associated to thefirst rotation parameter 532 a and thesecond rotation parameter 537 a. Thecontroller 540 determines a skew 515 of theprint media 520 based on thesignal 530 a, for example, based on thefirst parameter 532 a and thesecond parameter 537 a. From the skew 515, thecontroller 540 may determine a degree of skew as askew angle 516. From theskew angle 516, acalibration value 517 may be determined. Thecalibration value 517 may be used to adjust a printing operation performed by theprinting system 500. In other examples, thecontroller 540 may directly determine thecalibration value 517 from the skew 515, without determining theskew angle 516. - In the
printing system 500 ofFIG. 5 is represented as a singleskew detection device 530, however, a plurality of skew detection devices may be possible. As explained previously in the description, having a plurality of skew detection devices within theprinting system 500 may allow a series of first parameters and second parameters to be measured. These series of first and second parameters may be comprised within thesignal 530 a. In other examples, thecontroller 540 may further apply other adjustments in the printing operation based on printing system characteristics. - Referring now to
FIG. 6 , aprinting system 600 performing a printing operation is shown. Aprint media 620 moves over aplaten 610 having amedia path direction 620 a. In the example ofFIG. 6 , theprint media 620 is moving parallel to theplaten 610. A plurality ofskew detection devices FIG. 1 . As depicted inFIG. 6 , portions of the contact rollers protrude from theplaten 610. - Each
skew detection device FIG. 6 ), the controller to determine a skew of theprint media 620 a. The controller may further determine a skew angle and/or a calibration value. The printing operation may be adjusted based on the calibration value determined by the controller. In an example, the printing operation comprises scanning or printing. - In the example represented in
FIG. 6 , the skew detection devices are positioned in a “V” configuration, however, other alternatives such as “∧” configuration are possible. In other examples, theskew detection devices media path direction 620 a. - Referring now to
FIG. 7 , amethod 700 to determine a skew in a print media during a printing operation is represented. Themethod 700 comprises capturing 710 a first and second parameters from a pair of angled first and second contact rollers, sending 720 a signal associated with the first and the second rotation parameters to a controller, and determining 730 a skew in the print media based on the signal. A first sensor and a second sensor capture from the first contact roller and the second contact roller the first and the second rotation parameters. In an example, the first and the second parameters comprise an angular displacement of the rollers. The first contact roller is rotatable around a first axis and the second contact roller is rotatable around a second axis, wherein the first and the second axis lie in a plane parallel to the print media. Contact between the print media and the first and second contact rollers may cause the rollers to rotate as the print media is moving over the rollers. - In other examples, the controller may calculate a skew angle and/or a calibration value based on the signal. By comparing the first rotation parameter with the second rotation parameter, the skew angle and/or a calibration value may be determined. The comparison may comprise applying a correction to each of the first rotation parameter and the second rotation parameters. The correction may be obtained by other measuring means from the first and second contact rollers. In an example, the correction is obtained from the
first reference encoder 227 a and thesecond reference encoder 227 b comprised in theskew detection device 200 ofFIG. 2 . - Referring now to
FIG. 8 , amethod 800 to determine a skew in a print media is represented. Themethod 800 comprises the method previously described with reference toFIG. 7 , such as capturing 810, sending 820 and determining 830. Themethod 800 further comprises the steps of calculating 840 a calibration value based on the signal and adjusting 850 the printing operation with the calibration value. The calibration value may correct the skew deficiencies in a printing operation, such as printing or scanning. In an example, the method further includes applying a correction to the calibration value, as explained above. - What has been described and illustrated herein are examples of the disclosure along with some variations. The terms, descriptions, and figures used herein are set forth by way of illustration only and are not meant as limitations. Many variations are possible within the scope of the disclosure, which is intended to be defined by the following claims (and their equivalents) in which all terms are meant in their broadest reasonable sense unless otherwise indicated.
Claims (15)
1. A skew detection device to determine a skew of a print media in a media path, the device comprising:
a first contact roller rotatable around a first axis;
a second contact roller rotatable around a second axis, the first contact roller and the second contact roller being positioned so that the first axis and the second axis are not parallel, wherein the first axis and the second axis lie in a plane parallel to the print media;
a first sensor to measure a first rotation parameter of the first contact roller, and;
a second sensor to measure a second rotation parameter of the second contact roller,
wherein a movement of the print media over the device rotates the first contact roller and second contact roller, and wherein the first sensor and the second sensor are in communication with a controller to determine the skew of the print media based on the first rotation parameter and the second rotation parameter.
2. A device as claimed in claim 1 , wherein a bisector of the angle between the first axis and the second axis is perpendicular to a media path direction.
3. A device as claimed in claim 1 , wherein the first rotation parameter and the second rotation parameter comprise an angular displacement.
4. A device as claimed in claim 3 , wherein the first axis and the second axis form an angle comprised in the range between 0.5 degrees and 5 degrees.
5. A device as claimed in claim 1 , wherein the controller determines a skew angle of the movement of the print media relative to a media path direction.
6. A device as claimed in claim 3 , wherein the controller calculates a calibration value based on the skew of the print media.
7. A printing system comprising a print media having a media path direction, the printing system comprising:
a skew detection device in the media path, the device to determine a skew in the print media, wherein the device comprises:
a first contact roller rotatable around a first axis;
a second contact roller rotatable around a second axis, wherein one of the second contact roller and the first contact roller are angled relative to the media path direction so that the first axis and the second axis lie in a plane parallel to the print media and are not parallel;
a first sensor to measure a first rotation parameter of the first contact roller, and;
a second sensor to measure a second rotation parameter of the second contact roller, and;
a controller in communication with the first sensor and the second sensor, the controller to determine the skew in the print media based on the first rotation parameter and the second rotation parameter.
8. A printing system as claimed in claim 7 , wherein the first contact roller and the second contact roller are symmetrically disposed relative to the media path direction.
9. A printing system as claimed in claim 7 , wherein the first rotation parameter and the second rotation parameter comprise an angular displacement.
10. A printing system as claimed in claim 7 , wherein the controller further determines a skew angle relative to the media path direction.
11. A printing system as claimed in claim 8 , wherein the angle is in the range comprised between 0.5 degrees and 5 degrees.
12. A printing system as claimed in claim 9 , wherein a calibration value is calculated by the controller based on the skew angle.
13. A method to determine a skew in a print media during a printing operation, the method comprising:
capturing, by a first sensor and a second sensor, a first and second rotation parameters from a pair of angled first and second contact rollers as the print media moves over the first contact roller and the second contact roller, the movement causing the first contact roller and the second contact roller to rotate,
wherein the first contact roller rotates around a first axis and the second contact roller rotates around a second axis, the first axis and the second axis lie in a plane parallel to the print media;
sending a signal associated with the first rotation parameter and the second rotation parameter to a controller, the controller being in communication with the first sensor and the second sensor, and;
determining the skew of the print media by the controller based on the signal.
14. A method as claimed in claim 13 , the method further comprising:
calculating a calibration value based on the signal, and;
adjusting the printing operation with the calibration value.
15. A method as claimed in claim 13 , wherein the controller calculates a skew angle by comparing the first rotation parameter with the second rotation parameter, wherein comparing comprises applying a correction to each of the first rotation parameter and the second rotation parameter.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/US2019/058015 WO2021080599A1 (en) | 2019-10-25 | 2019-10-25 | Skew detection |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2019/058015 A-371-Of-International WO2021080599A1 (en) | 2019-10-25 | 2019-10-25 | Skew detection |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US18/594,405 Continuation US20240210870A1 (en) | 2019-10-25 | 2024-03-04 | Skew detection |
Publications (2)
Publication Number | Publication Date |
---|---|
US20220365473A1 true US20220365473A1 (en) | 2022-11-17 |
US11947302B2 US11947302B2 (en) | 2024-04-02 |
Family
ID=75620607
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/754,612 Active 2040-04-22 US11947302B2 (en) | 2019-10-25 | 2019-10-25 | Skew detection |
US18/594,405 Pending US20240210870A1 (en) | 2019-10-25 | 2024-03-04 | Skew detection |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US18/594,405 Pending US20240210870A1 (en) | 2019-10-25 | 2024-03-04 | Skew detection |
Country Status (4)
Country | Link |
---|---|
US (2) | US11947302B2 (en) |
EP (1) | EP4007732A4 (en) |
CN (1) | CN114616200A (en) |
WO (1) | WO2021080599A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114616200A (en) * | 2019-10-25 | 2022-06-10 | 惠普发展公司,有限责任合伙企业 | Skew detection |
Family Cites Families (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4892426A (en) | 1988-06-30 | 1990-01-09 | Unisys Corporation | Paper movement monitor |
JP3258203B2 (en) * | 1994-07-26 | 2002-02-18 | 三菱電機株式会社 | Sheet transport device |
JPH08324834A (en) * | 1995-05-29 | 1996-12-10 | Toshiba Corp | Paper feeding device and optical character reading device |
US5887996A (en) * | 1998-01-08 | 1999-03-30 | Xerox Corporation | Apparatus and method for sheet registration using a single sensor |
US6125754A (en) * | 1998-10-30 | 2000-10-03 | Harris; J. C. | Web pressurizing channeled roller and method |
US6637634B1 (en) | 1998-12-21 | 2003-10-28 | Gerber Scientific Products, Inc. | Methods for calibration and automatic alignment in friction drive apparatus |
JP2000302289A (en) * | 1999-04-22 | 2000-10-31 | Omron Corp | Tilt detector, medium processor, magnetic card processor, and card processing system |
US6250220B1 (en) * | 1999-08-10 | 2001-06-26 | Quad/Graphics, Inc. | Anti-wrinkle system for a web offset press |
JP3959638B2 (en) * | 2003-03-14 | 2007-08-15 | ブラザー工業株式会社 | Paper transport device in image reading device |
JP4361821B2 (en) | 2004-03-15 | 2009-11-11 | 富士通株式会社 | Paper sheet skew correction device and banknote deposit and withdrawal device |
JP4444738B2 (en) * | 2004-06-18 | 2010-03-31 | 日立オムロンターミナルソリューションズ株式会社 | Paper thickness detector |
JP5260886B2 (en) | 2007-04-27 | 2013-08-14 | 株式会社Pfu | Sheet feeding device |
US7806404B2 (en) | 2007-11-09 | 2010-10-05 | Xerox Corporation | Skew adjustment of print sheets by loading force adjustment of idler wheel |
JP2010116214A (en) | 2008-10-16 | 2010-05-27 | Ricoh Co Ltd | Sheet conveying device, belt drive device, image reading device, and image forming device |
US8074982B2 (en) * | 2009-06-30 | 2011-12-13 | Xerox Corporation | Adjustable idler rollers for lateral registration |
US9144965B2 (en) * | 2010-04-29 | 2015-09-29 | Hewlett-Packard Industrial Printing Ltd. | Print arrangement |
JP2013193815A (en) * | 2012-03-16 | 2013-09-30 | Ricoh Co Ltd | Sheet conveying device and image forming apparatus |
US8870180B2 (en) | 2013-02-28 | 2014-10-28 | Hewlett-Packard Development Company, L.P. | Differential to reduce skew |
KR101802633B1 (en) * | 2016-02-12 | 2017-11-28 | 두산중공업 주식회사 | Apparatus for a belt conveyer having a controler of uneven loading and belt serpentine |
JP2017171402A (en) * | 2016-03-18 | 2017-09-28 | 理想科学工業株式会社 | Paper sheet feeder |
JP2018118826A (en) * | 2017-01-26 | 2018-08-02 | コニカミノルタ株式会社 | Sheet carrier device and image forming apparatus |
JP2020128280A (en) * | 2019-02-08 | 2020-08-27 | 京セラドキュメントソリューションズ株式会社 | Sheet conveyance device and image forming device comprising the same |
CN114616200A (en) * | 2019-10-25 | 2022-06-10 | 惠普发展公司,有限责任合伙企业 | Skew detection |
-
2019
- 2019-10-25 CN CN201980101657.8A patent/CN114616200A/en active Pending
- 2019-10-25 US US17/754,612 patent/US11947302B2/en active Active
- 2019-10-25 EP EP19949594.6A patent/EP4007732A4/en active Pending
- 2019-10-25 WO PCT/US2019/058015 patent/WO2021080599A1/en unknown
-
2024
- 2024-03-04 US US18/594,405 patent/US20240210870A1/en active Pending
Also Published As
Publication number | Publication date |
---|---|
CN114616200A (en) | 2022-06-10 |
US20240210870A1 (en) | 2024-06-27 |
WO2021080599A1 (en) | 2021-04-29 |
EP4007732A1 (en) | 2022-06-08 |
US11947302B2 (en) | 2024-04-02 |
EP4007732A4 (en) | 2023-04-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20240210870A1 (en) | Skew detection | |
US11027537B2 (en) | Measured sensor distance correction | |
KR102126625B1 (en) | Prediction error detection device and prediction error detection method | |
KR101912647B1 (en) | Method for thickness measurement on measurement objects and device for applying the method | |
US8391770B2 (en) | Measuring device of recording medium length, image forming apparatus, and computer readable medium | |
KR20190127283A (en) | Cutting device and method for electrode sheet | |
US8641165B2 (en) | Inkjet image recorder and method for correction of belt conveyance | |
US11231337B2 (en) | Method for detecting a tensile stress of a circumferential belt | |
US7914001B2 (en) | Systems and methods for determining skew contribution in lateral sheet registration | |
JP2010065370A5 (en) | ||
JP7279583B2 (en) | IMAGE READING DEVICE AND MEDIUM TILT CALCULATION METHOD IN IMAGE READING DEVICE | |
JP4264914B2 (en) | Coating device | |
US6862081B2 (en) | Sheet transporting apparatus | |
US20120260813A1 (en) | Method and device for measuring a running direction of a substrate web | |
JP5102437B2 (en) | Method and apparatus for measuring planar shape of steel sheet | |
US11046096B2 (en) | Adjustment sheet and method for adjusting landing position of droplet | |
US9180695B2 (en) | System and method for dynamic measurement of dimension change for a sheet | |
JP2001221630A (en) | Noncontact sensing method and device for property of band-shaped material | |
JPH04225107A (en) | Method and apparatus for measuring waving amount of band plate | |
EP1047010B1 (en) | Skew detecting apparatus, medium processing apparatus, magnetic card processing apparatus and card processing system | |
JP2002003038A (en) | Web intermittent feeding device | |
JP6245144B2 (en) | Shape detection device | |
JP2017133905A (en) | Method for measuring squareness of steel plate and squareness measurement device | |
TW202411080A (en) | A method for aligning a print pattern on a print medium and a printing device | |
JPH0616282A (en) | Thickness detecting device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FEPP | Fee payment procedure |
Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |