US20220364794A1 - Heat pipe structure - Google Patents

Heat pipe structure Download PDF

Info

Publication number
US20220364794A1
US20220364794A1 US17/317,901 US202117317901A US2022364794A1 US 20220364794 A1 US20220364794 A1 US 20220364794A1 US 202117317901 A US202117317901 A US 202117317901A US 2022364794 A1 US2022364794 A1 US 2022364794A1
Authority
US
United States
Prior art keywords
tubular body
heat pipe
space
pipe structure
working fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
US17/317,901
Inventor
Han-Min Liu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asia Vital Components Shenzhen Co Ltd
Original Assignee
Asia Vital Components Shenzhen Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asia Vital Components Shenzhen Co Ltd filed Critical Asia Vital Components Shenzhen Co Ltd
Priority to US17/317,901 priority Critical patent/US20220364794A1/en
Publication of US20220364794A1 publication Critical patent/US20220364794A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/04Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0233Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes the conduits having a particular shape, e.g. non-circular cross-section, annular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2265/00Safety or protection arrangements; Arrangements for preventing malfunction
    • F28F2265/14Safety or protection arrangements; Arrangements for preventing malfunction for preventing damage by freezing, e.g. for accommodating volume expansion

Abstract

A heat pipe structure includes a tubular body. The tubular body has a first end and a second end and an airtight chamber. At least one capillary structure layer is disposed on a wall face of the tubular body. A working fluid is filled in the airtight chamber. Any of the first and second ends of the tubular body is such arranged as to be normal to a horizontal face. The first and second ends are respectively positioned at upper and lower ends of the tubular body. One end of the tubular body in contact with the horizontal face has a bulged space as an ice molecule releasing space after the working fluid is frozen.

Description

    BACKGROUND OF THE INVENTION 1. Field of the Invention
  • The present invention relates generally to a heat pipe structure, and more particularly to a heat pipe structure having an ice molecule force releasing space for a frozen working fluid.
  • 2. Description of the Related Art
  • A conventional heat pipe has a hollow case (tube) body. A capillary wick is disposed in the case (tube) body. A working fluid (such as water, coolant, methanol, acetone and liquid ammonia) is filled in the case (tube) body. In the current market, the hollow case (tube) body is generally made of copper, aluminum or the like material. The working fluid in the hollow case (tube) body will change between different phases to release latent heat so as to transfer heat.
  • The heat pipes currently applied to electronic products for dissipating heat are all made of copper tube with pure water therein. The copper has better heat conductivity and the working fluid has better latent heat so that such heat pipe meets the use requirements of most of normal environments. However, the application of the heat pipe is still limited by the application conditions, for example, outdoor heat dissipation application (such as 5G, 6G base station, outdoor photovoltaic power supply IGBT heat dissipation and vehicle heat dissipation). Also, the freezing problem of the working liquid in a zero-degree environment and the affection of the ice molecule force to the structural strength will limit the application of the heat pipe.
  • When the heat pipe is horizontally arranged and the working fluid is frozen, the ice molecules will expand to pressurize and expand the tube wall of the heat pipe. This will lead to deformation of the heat pipe. On the other hand, in the case that the heat pipe is vertically arranged, the working liquid will accumulate on the bottom of the lower end of the heat pipe due to gravity. When the environmental temperature is lower than zero degree, the working liquid in the heat pipe will freeze and the ice molecules will expand to expand the wall face of the heat pipe. In some more serious situations, the heat pipe will be expanded and broken to lose the vacuum state and leas to leakage of the working fluid.
  • It is therefore tried by the applicant to provide a heat pipe structure having an ice molecule force releasing space for a frozen working fluid so as to solve the above problem of the conventional heat pipe that the working liquid in the heat pipe will freeze at low temperature to destroy the vapor-liquid circulation in the heat pipe.
  • SUMMARY OF THE INVENTION
  • It is therefore a primary object of the present invention to provide a heat pipe structure having an ice molecule force releasing space for a frozen working fluid. In the case that the heat pipe is vertically arranged, the working liquid will accumulate on the bottom of the lower end of the heat pipe due to gravity. The working liquid filled in the heat pipe will freeze at zero degree. At this time, the releasing force of the ice molecules of the frozen working liquid on the lowermost portion of the heat pipe will expand the bottommost portion of the tube body. In this situation, the ice molecule force releasing space of the heat pipe provides a space for the frozen working fluid so as to prevent the heat pipe from breaking.
  • To achieve the above and other objects, the heat pipe structure of the present invention includes a tubular body. The tubular body has a first end and a second end and an airtight chamber. At least one capillary structure layer is disposed on a wall face of the tubular body. A working fluid is filled in the airtight chamber. Any of the first and second ends of the tubular body is such arranged as to be normal to a horizontal face. The first and second ends are respectively positioned at upper and lower ends of the tubular body. One end of the tubular body in contact with the horizontal face has a bulged space as an ice molecule releasing space after the working fluid is frozen.
  • In the case that the heat pipe is vertically arranged, the working fluid will accumulate at the lower end of the heat pipe due to gravity. The environmental temperature of the actual working site ranges from 40˜100 degrees. When the environmental temperature is lower than zero degree, the working liquid filled in the heat pipe will freeze. The water and ice have different physical densities so that the molecule releasing force of the ice at the lower end (or the heat pipe) in the vertical direction will expand the tube wall of the bottommost portion of the heat pipe. The heat pipe structure of the present invention is formed with the bulged space as an ice molecule releasing space after the working fluid is frozen so as to prevent the tube body of the heat pipe from breaking.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The structure and the technical means adopted by the present invention to achieve the above and other objects can be best understood by referring to the following detailed description of the preferred embodiments and the accompanying drawings, wherein:
  • FIG. 1 is a perspective view of a preferred embodiment of the heat pipe structure of the present invention; and
  • FIG. 2 is a sectional view of the preferred embodiment of the heat pipe structure of the present invention.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • Please refer to FIGS. 1 and 2. FIG. 1 is a perspective view of a preferred embodiment of the heat pipe structure of the present invention. FIG. 2 is a sectional view of the preferred embodiment of the heat pipe structure of the present invention. The heat pipe structure of the present invention includes a tubular body 1.
  • The tubular body 1 has a first end 11 and a second end 12 and an airtight chamber 13. At least one capillary structure layer 2 is disposed on a wall face of the tubular body 1. A working fluid 3 is filled in the airtight chamber 13. The working fluid 3 is selected from a group consisting of water, coolant, methanol and acetone. The capillary structure layer 2 is selected from a group consisting of sintered powders, channels, woven meshes and any combination thereof. The tubular body 1 is selected from a group consisting of circular tube, flat tube and square tube. The tubular body 1 is made of a material selected from a group consisting of aluminum, copper, stainless steel and titanium. Any of the first and second ends 11, 12 of the tubular body 1 is such arranged as to be normal to a horizontal face. That is, the tubular body 1 is vertically disposed. The first and second ends 11, 12 are respectively positioned at upper and lower ends of the tubular body 1. One end of the tubular body 1 in contact with the horizontal face has a bulged space 14 as an ice molecule releasing space after the working fluid 3 is frozen.
  • The bulged space 14 of the tubular body 1 has a capacity larger than that of any other portion of the tubular body 1. The bulged space 14 is formed in such a manner that the tubular wall of the tubular body 1 upright upward protrudes to form an expanded space. Alternatively, the bulged space 14 is formed in such a manner that the tubular wall of the tubular body 1 horizontally leftward or rightward protrudes to form an expanded space.
  • The problem solved by the present invention is that when the heat pipe is vertically used, the working fluid will accumulate at the lower end. At this time, in the case that the environmental temperature is lower than zero degree, the working fluid in the heat pipe at the lower end will be frozen so that the portion of the heat pipe in which the working fluid is frozen will be expanded or even exploded and broken. Therefore, in the present invention, when the heat pipe is vertically used, the bulged space 14 is formed at the lower end of the heat pipe as an ice molecule releasing space after the working fluid is frozen. Alternatively, both of two ends of the heat pipe can be formed with the bulged spaces 14. Still alternatively, the bulged space 14 can be formed on any portion of the heat pipe in accordance with the use state of the heat pipe.
  • The present invention has been described with the above embodiments thereof and it is understood that many changes and modifications in such as the form or layout pattern or practicing step of the above embodiments can be carried out without departing from the scope and the spirit of the invention that is intended to be limited only by the appended claims.

Claims (7)

1. A heat pipe structure comprising a tubular body having a first end, a second end, and an airtight chamber, at least one capillary structure layer disposed on a wall face of the tubular body, and a working fluid filled in the airtight chamber, the first end and second end being respectively positioned at an axial upper end and an axial lower end of the tubular body, where the tubular body is erected to stand vertically such that an elevation of the first end at the axial upper end is higher than an elevation of the second end at the axial lower end and wherein the second end of the tubular body has a bulged space configured as an ice molecule releasing space after the working fluid is frozen.
2. The heat pipe structure as claimed in claim 1, wherein the bulged space of the tubular body is positioned at the lower end of the tubular body, the bulged space having a capacity larger than that of any other portion of the tubular body.
3. (canceled)
4. The heat pipe structure as claimed in claim 1, wherein the bulged space is formed in such a manner that a tubular wall of the tubular body protrudes radially leftward or radially rightward to form the bulged space.
5. The heat pipe structure as claimed in claim 1, wherein the tubular body is made of a material selected from a group consisting of aluminum, copper, stainless steel and titanium.
6. The heat pipe structure as claimed in claim 1, wherein the working fluid is selected from a group consisting of water, coolant, methanol and acetone.
7. The heat pipe structure as claimed in claim 1, wherein the bulged space is formed in such a manner that the tubular wall of the tubular body radially protrudes to form an expanded space.
US17/317,901 2021-05-12 2021-05-12 Heat pipe structure Pending US20220364794A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/317,901 US20220364794A1 (en) 2021-05-12 2021-05-12 Heat pipe structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US17/317,901 US20220364794A1 (en) 2021-05-12 2021-05-12 Heat pipe structure

Publications (1)

Publication Number Publication Date
US20220364794A1 true US20220364794A1 (en) 2022-11-17

Family

ID=83999404

Family Applications (1)

Application Number Title Priority Date Filing Date
US17/317,901 Pending US20220364794A1 (en) 2021-05-12 2021-05-12 Heat pipe structure

Country Status (1)

Country Link
US (1) US20220364794A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2997858A (en) * 1953-04-09 1961-08-29 Perez William Thermal cooling element
US20140055954A1 (en) * 2012-08-23 2014-02-27 Asia Vital Components Co., Ltd. Heat pipe structure, and thermal module and electronic device using same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2997858A (en) * 1953-04-09 1961-08-29 Perez William Thermal cooling element
US20140055954A1 (en) * 2012-08-23 2014-02-27 Asia Vital Components Co., Ltd. Heat pipe structure, and thermal module and electronic device using same

Similar Documents

Publication Publication Date Title
Zeng et al. Experimental investigation on thermal performance of aluminum vapor chamber using micro-grooved wick with reentrant cavity array
US7213637B2 (en) Heat pipe operating fluid, heat pipe, and method for manufacturing the heat pipe
Mochizuki et al. A review of heat pipe application including new opportunities
US20120180994A1 (en) Heat pipe structure
US20100230084A1 (en) Tube-fin type heat exchange unit with high pressure resistance
Khairnasov et al. Heat pipes application in electronics thermal control systems
CN102202488A (en) Heat-pipe heat radiation apparatus
WO2012013605A2 (en) Cooling device and led lighting device comprising the same
US7303001B2 (en) Heat pipe having operating fluid including carbon nanocapsules
US20220364794A1 (en) Heat pipe structure
US9062920B2 (en) Heat pipe with sealed vesicle
JP3175221U (en) Heat pipe structure
CN202799543U (en) Array cold-end plane heat pipe
Khalili et al. Investigating thermal performance of a partly sintered wick heat pipe filled with different working fluids
CN112584671A (en) Vapor chamber for cooling electronic components
US20180010860A1 (en) Multi-pipe three-dimensional plusating heat pipe
TWM616502U (en) Heat pipe structure
CN210862316U (en) Heat transfer system
US20150122460A1 (en) Heat pipe structure
JP3167655U (en) Heat pipe structure
Fasula Oscillating heat pipes (OHP)
Maydanik Loop heat pipes-theory, experimental developments and application
Zhou et al. Experimental study on phase change heat transfer enhancement of a novel loop heat pipe by using surface micro-structures
RU53072U1 (en) DEVICE FOR COOLING AND THERMOSTATING SEMICONDUCTOR DEVICES
CN110701932A (en) High-energy-efficiency-ratio environmental-grade heat exchanger for closed space

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED