US20220352059A1 - Semiconductor package and manufacturing method thereof - Google Patents

Semiconductor package and manufacturing method thereof Download PDF

Info

Publication number
US20220352059A1
US20220352059A1 US17/730,862 US202217730862A US2022352059A1 US 20220352059 A1 US20220352059 A1 US 20220352059A1 US 202217730862 A US202217730862 A US 202217730862A US 2022352059 A1 US2022352059 A1 US 2022352059A1
Authority
US
United States
Prior art keywords
layer
insulating layer
semiconductor package
connection terminal
external
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
US17/730,862
Inventor
Jong Heon Kim
Young Mo Lee
Nam Chul Kim
Yong Tae Kwon
Chi Jung Song
Yong Soo Kim
Yong Ho Kwon
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nepes Co Ltd
Original Assignee
Nepes Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nepes Co Ltd filed Critical Nepes Co Ltd
Publication of US20220352059A1 publication Critical patent/US20220352059A1/en
Assigned to NEPES CO., LTD reassignment NEPES CO., LTD ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KIM, NAM CHUL, SONG, CHI JUNG, KIM, YONG SOO, LEE, YOUNG MO, KIM, JONG HEON, KWON, YONG HO, KWON, YONG TAE
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/538Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates
    • H01L23/5386Geometry or layout of the interconnection structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/561Batch processing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4846Leads on or in insulating or insulated substrates, e.g. metallisation
    • H01L21/4853Connection or disconnection of other leads to or from a metallisation, e.g. pins, wires, bumps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4846Leads on or in insulating or insulated substrates, e.g. metallisation
    • H01L21/486Via connections through the substrate with or without pins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/563Encapsulation of active face of flip-chip device, e.g. underfilling or underencapsulation of flip-chip, encapsulation preform on chip or mounting substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/60Attaching or detaching leads or other conductive members, to be used for carrying current to or from the device in operation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3157Partial encapsulation or coating
    • H01L23/3185Partial encapsulation or coating the coating covering also the sidewalls of the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49811Additional leads joined to the metallisation on the insulating substrate, e.g. pins, bumps, wires, flat leads
    • H01L23/49816Spherical bumps on the substrate for external connection, e.g. ball grid arrays [BGA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49838Geometry or layout
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/562Protection against mechanical damage
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/07Structure, shape, material or disposition of the bonding areas after the connecting process
    • H01L24/08Structure, shape, material or disposition of the bonding areas after the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L24/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L24/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/94Batch processes at wafer-level, i.e. with connecting carried out on a wafer comprising a plurality of undiced individual devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/96Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being encapsulated in a common layer, e.g. neo-wafer or pseudo-wafer, said common layer being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4846Leads on or in insulating or insulated substrates, e.g. metallisation
    • H01L21/4857Multilayer substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/568Temporary substrate used as encapsulation process aid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68345Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used as a support during the manufacture of self supporting substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/0401Bonding areas specifically adapted for bump connectors, e.g. under bump metallisation [UBM]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0556Disposition
    • H01L2224/05568Disposition the whole external layer protruding from the surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0556Disposition
    • H01L2224/05571Disposition the external layer being disposed in a recess of the surface
    • H01L2224/05572Disposition the external layer being disposed in a recess of the surface the external layer extending out of an opening
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/07Structure, shape, material or disposition of the bonding areas after the connecting process
    • H01L2224/08Structure, shape, material or disposition of the bonding areas after the connecting process of an individual bonding area
    • H01L2224/081Disposition
    • H01L2224/0812Disposition the bonding area connecting directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding
    • H01L2224/08151Disposition the bonding area connecting directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding the bonding area connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/08221Disposition the bonding area connecting directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding the bonding area connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/08225Disposition the bonding area connecting directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding the bonding area connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/08235Disposition the bonding area connecting directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding the bonding area connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the bonding area connecting to a via metallisation of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13005Structure
    • H01L2224/13006Bump connector larger than the underlying bonding area, e.g. than the under bump metallisation [UBM]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/16235Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the bump connector connecting to a via metallisation of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/94Batch processes at wafer-level, i.e. with connecting carried out on a wafer comprising a plurality of undiced individual devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L2224/95001Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips involving a temporary auxiliary member not forming part of the bonding apparatus, e.g. removable or sacrificial coating, film or substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/3121Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed a substrate forming part of the encapsulation
    • H01L23/3128Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed a substrate forming part of the encapsulation the substrate having spherical bumps for external connection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49822Multilayer substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49866Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers characterised by the materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • H01L2924/182Disposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress
    • H01L2924/3511Warping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress
    • H01L2924/3512Cracking

Definitions

  • the present invention relates to a semiconductor package and manufacturing method thereof.
  • semiconductor chips manufactured by performing various semiconductor processes on a wafer are subjected to a semiconductor package process to manufacture a semiconductor package.
  • a wafer level package technology has been proposed that performs a semiconductor package process at the wafer level and individualizes the wafer level semiconductor package that has undergone the semiconductor package process into individual units.
  • FIG. 1 is a view illustrating a difference in thermal expansion between a semiconductor package and a board.
  • the semiconductor package 10 after the semiconductor package 10 is manufactured, it may be mounted on an external device using its own external connection terminal 11 .
  • the external device may be a board 20 or the like, such as a printed circuit board or the like.
  • a difference in thermal expansion (CTE 1 ⁇ CTE 2 , where CTE is an abbreviation of Coefficient Of Expansion and refers to a coefficient of thermal expansion) occurring between the semiconductor package 10 and the board 20 may affect the external connection terminal 11 of the semiconductor package 10 .
  • CTE is an abbreviation of Coefficient Of Expansion and refers to a coefficient of thermal expansion
  • the conventional semiconductor package 10 has a problem in that its external connection terminal 11 may eventually crack as fatigue is increased.
  • I/O input/output
  • Fan-out wafer level package or fan-out panel level package (FOPLP) is a technology that directly mounts the chip 10 on a wafer rather than a PCB. According to FOWLP and FOPLP, the manufacturing cost of the semiconductor package can be lowered as much as the PCB is not used, and it is possible to miniaturize the semiconductor package, improve the heat dissipation function, reduce power consumption, improve the frequency band, and the like.
  • FOWLP or FOPLP reconstructs individual dies in wafer form on a carrier and molds them, and then implement them as a package through a fan-out-type redistribution (RDL) process and bumping process, etc.
  • RDL redistribution
  • the present invention is directed to providing a semiconductor package having a structure capable of reducing a difference in thermal expansion with a board to reduce the occurrence of cracks in an external connection terminal thereof, and a method for manufacturing the same.
  • the present invention is directed to providing a method for manufacturing a semiconductor package capable of manufacturing a semiconductor package more quickly and conveniently.
  • a semiconductor package comprising: a semiconductor chip having a plurality of chip terminals formed on one surface thereof; a redistribution layer electrically connected to the chip terminal and for electrically connecting the chip terminal to an external device; an insulating layer formed to cover the redistribution layer; an external pad provided on the insulating layer and formed to be electrically connected to the redistribution layer; and an external connection terminal formed on the external pad and contacting an external device; wherein the external connection terminal is formed to be in contact with one surface and a side surface of the external pad exposed to the outside of the insulating layer.
  • a wetting layer having excellent wettability may be formed on one surface and a side surface of the external pad in contact with the external connection terminal.
  • the wetting layer may be made of at least one or more of Au, Pd, Ni, Cu, Sn, Ti, Cr, W, and Al.
  • the external connection terminal may be formed to be in surface contact with an upper surface of the insulating layer on the outer periphery of a side surface of the external pad.
  • the present invention may further include a conductive post extending in a vertical direction, to electrically connect the chip terminal and the redistribution layer.
  • the present invention may further include a protective layer formed to cover the one surface of the semiconductor chip, wherein the conductive post penetrates the protective layer covering the one surface of the semiconductor chip to electrically connect the chip terminal and the redistribution layer.
  • a method for manufacturing a semiconductor package comprising: forming a protective film on one surface of a wafer before a plurality of semiconductor chips are cut, and exposing chip pads of the semiconductor chips; forming conductive posts on the exposed chip pads; and sawing the wafer on which the conductive posts are formed into individual semiconductor chips.
  • the present invention may further include disposing a plurality of the individual semiconductor chips on which the conductive posts are formed, on a carrier; molding a protective layer on the carrier on which the semiconductor chip is disposed; exposing the conductive post of the semiconductor chip molded to the protective layer; forming a redistribution layer, an external pad, and an external connection terminal on one surface of the protective layer on which the conductive post is exposed; and sawing the protective layer on which the redistribution layer, the external pad, and the external connection terminal are formed, in units of each individual semiconductor chip.
  • the disposing a plurality of semiconductor chips on the carrier may be a step of disposing a plurality of semiconductor chips on the carrier such that the conductive post faces upward, and the exposing the conductive post of the semiconductor chip molded to the protective layer may be a step of grinding one surface of the molded protective layer so that the conductive post is exposed to the outside.
  • the disposing a plurality of semiconductor chips on the carrier may be a step of disposing the conductive post in contact with the carrier, and the exposing the conductive post of the semiconductor chip molded to the protective layer may be a step of removing the carrier to expose the conductive post after the protective layer is molded.
  • the disposing a plurality of semiconductor chips on which the conductive posts are formed, on a carrier may be a step of disposing a plurality of small panels on which a plurality of semiconductor chips are disposed, on the carrier, the small panel having a size smaller than that of the carrier.
  • the disposing a plurality of semiconductor chips on which the conductive posts are formed, on a carrier may be a step of disposing a plurality of molding bodies on which a plurality of semiconductor chips are molded on the carrier.
  • the disposing a plurality of the individual semiconductor chips on which the conductive posts are formed, on a carrier may be a step of disposing a plurality of molding bodies formed on a small panel on which a plurality of semiconductor chips are disposed, on the carrier, the small panel having a size smaller than that of the carrier.
  • the carrier and the small panel may have a circular or quadrangular shape.
  • a wetting layer may be formed on one surface of the external pad in contact with the external connection terminal by an electroless plating method.
  • the external connection terminal may be disposed on one surface of the external pad on which the wetting layer is formed, and may be formed to be in contact with one surface and a peripheral side surface of the external pad and a side surface of the external pad.
  • the semiconductor package and the manufacturing method thereof of the present invention has a structure capable of reducing a difference in thermal expansion with an external device such as a board, thereby capable of reducing the occurrence of cracks in the external connection terminal.
  • the structure formed by the insulating pattern and the external pad has a structure having a thickness suitable for stress dispersion, thereby improving the stress dispersion effect.
  • a larger-sized semiconductor package can be manufactured in a shorter time, so that productivity can be improved.
  • adhesion to the redistribution layer is improved, so that durability may be improved.
  • FIG. 1 is a view illustrating a difference in thermal expansion between a semiconductor package and a board.
  • FIG. 2 is a cross-sectional view of a first semiconductor package 100 a according to an exemplary embodiment of the present invention.
  • FIG. 3 is a cross-sectional view of a second semiconductor package 100 b according to an exemplary embodiment of the present invention.
  • FIG. 4 is a cross-sectional view of a third semiconductor package 100 c according to an exemplary embodiment of the present invention.
  • FIG. 5 is a cross-sectional view of a fourth semiconductor package 100 d according to an exemplary embodiment of the present invention.
  • FIGS. 6 to 17 are cross-sectional views illustrating structures of various types of wiring patterns, external pads, and external connection terminals combined with exemplary embodiments of the present invention.
  • FIGS. 18 to 19 are cross-sectional views illustrating various types of semiconductor packages that may be modified according to an exemplary embodiment of the present invention.
  • FIG. 20 is cross-sectional views illustrating a state in which a semiconductor chip is produced from a wafer.
  • FIG. 21 is cross-sectional views sequentially illustrating a method of manufacturing a semiconductor package in a face-up method.
  • FIG. 22 is cross-sectional views sequentially illustrating a method of manufacturing a semiconductor package in a face-down method.
  • the terms such as “or” and “at least one” may represent one of the words listed together or a combination of two or more.
  • “A or B” and “at least one of A and B” may include only one of A or B, or may also include both A and B.
  • first and second may be used to describe various elements, but, the above elements should not be limited by the terms above.
  • the above terms should not be construed as limiting the order of each component, and may be used for the purpose of distinguishing one element from another.
  • a “first element” may be named as a “second element” and similarly, a “second element” may also be named as a “first element.”
  • the z-axis direction which is a direction in which each component of a semiconductor package 100 according to various embodiments of the present invention is stacked, is referred to as a “first direction”, and an x-axis direction or a y-axis direction, which is a direction in a plane perpendicular to the z-axis, is referred to as a “second direction”.
  • the length in the first direction is referred to as “thickness”, “depth” or “height” of the component
  • each length in the second direction (x-axis direction and y-axis direction) is referred to as “breadth” and “width” of the component.
  • the semiconductor package 100 may be a wafer level package (WLP), a fan-out wafer level package (FOWLP), or a panel level package (PLP), but is not limited thereto.
  • WLP wafer level package
  • FOWLP fan-out wafer level package
  • PLP panel level package
  • the semiconductor package 100 may include a semiconductor chip 110 , a protective layer 120 , an insulating pattern 130 , a wiring pattern 140 , an external pad 150 , and an external connection terminal 160 .
  • the semiconductor package 10 may be mounted on an external device using its own external connection terminal 160 .
  • the external device may be a board 20 or the like, such as a printed circuit board or the like.
  • the semiconductor chip 110 may include a plurality of individual devices of various types.
  • a plurality of individual devices may include photoelectronic devices such as microelectronic devices, CMOS transistors (complementary metal-oxide semiconductor transistor), MOSFET (metal-oxide semiconductor field effect transistor), system LSI (large scale integration), and CIS (CMOS imaging sensor), MEMS (micro-electro-mechanical system), elastic wave filter devices, active devices, passive devices, etc., but are not limited thereto.
  • the semiconductor chip 110 may be a memory semiconductor chip.
  • the memory semiconductor chip may be a volatile memory semiconductor chip such as DRAM (Dynamic Random Access Memory) or SRAM (Static Random Access Memory), or a nonvolatile memory semiconductor chip such as PRAM (Phase-change Random Access Memory), MRAM (Magneto-resistive Random Access Memory), FeRAM (Ferroelectric Random Access Memory) or RRAM (Resistive Random Access Memory), but is not limited thereto.
  • the semiconductor chip 110 may be a logic chip.
  • the logic chip may be a CPU (Central Processor Unit), MPU (Micro Processor Unit), GPU (Graphic Processor Unit) or AP (Application Processor), but is not limited thereto.
  • the semiconductor package 100 is illustrated as including one semiconductor chip 110 , but the semiconductor package 100 may include a plurality of semiconductor chips 110 .
  • the plurality of semiconductor chips 110 included in the semiconductor package 100 may be the same type of semiconductor chips or different types of semiconductor chips.
  • the semiconductor package 100 may be a system in package (SIP) in which different types of semiconductor chips are electrically connected to each other to operate as a single system.
  • SIP system in package
  • the width and breadth of the semiconductor chip 110 may be about 2 mm to about 10 mm. More specifically, the width and breadth of the semiconductor chip 110 may be about 4 mm to about 7 mm. However, the width and breadth of the semiconductor chip 110 are not limited thereto, and may have more various values.
  • the thickness of the semiconductor chip 110 may be about 100 ⁇ m to about 400 ⁇ m. More specifically, the thickness of the semiconductor chip 110 may be about 150 ⁇ m to about 350 ⁇ m. However, the thickness of the semiconductor chip 110 is not limited thereto, and may have more various values.
  • the semiconductor chip 110 may include a first surface and a second surface opposite to the first surface.
  • a chip terminal (or referred to as a “chip pad”) 111 may be formed on the first surface of the semiconductor chip 110 .
  • the chip terminal 111 may be electrically connected to a plurality of individual devices of various types formed on the semiconductor chip 101 .
  • the chip terminal 111 may have a thickness between about 0.5 ⁇ m and about 1.5 ⁇ m. However, the thickness of the chip terminal 111 is not limited thereto, and may have more various values.
  • the chip terminal 111 may input/output input/output signals of the semiconductor chip 110 . That is, the chip terminal 111 may be electrically connected to the integrated circuit of the semiconductor chip 110 to extend the function of the semiconductor chip 110 to the outside.
  • the chip terminal 111 may be made of a metal having a low specific resistance such as aluminum or copper, but is not limited thereto. In FIG. 2 and the like, it is illustrated that there are two chip terminals 111 , but the number of chip terminals 111 is not limited thereto, and may be a larger number.
  • the protective layer 120 is a layer including a non-conductive material, and may be provided on the second surface of the semiconductor chip 110 , may be provided to surround the side surface and the second surface of the semiconductor chip 110 , or may be provided to surround the side surface, the first surface, and the second surface of the semiconductor chip 110 .
  • the protective layer 120 may be a layer to be formed to block the semiconductor chip 110 from a harmful environment.
  • the protective layer 120 may include various oxides or polymer materials, but is not limited thereto.
  • the protective layer 120 may have a thickness of about 15 ⁇ m to about 30 ⁇ m on the second surface of the semiconductor chip 110 . However, the thickness of the protective layer 120 is not limited thereto, and may have more various values.
  • the protective layer 120 may be formed of a plurality of layers 120 a and 120 b.
  • the insulating pattern 130 have a structure including a non-conductive material, and may be provided on the first surface or the protective layer 120 of the semiconductor chip 110 , and may surround the periphery of the wiring pattern 140 to prevent an unnecessary electrical short circuit.
  • the insulating layer 130 may be provided on the protective layer 120 as shown in FIGS. 4 and 5 , and in this case, the protective layer 120 may be provided between the semiconductor chip 110 and the insulating layer 130 .
  • the insulating layer 130 may be provided on the first surface and the protective layer 120 of the semiconductor chip 110 .
  • the insulating pattern 130 may have a structure in which a plurality of insulating layers are stacked. That is, in the semiconductor package 100 according to various embodiments of the present invention, the insulating pattern 130 may include a first insulating layer 131 and a second insulating layer 132 which are sequentially stacked. In addition, in the semiconductor package according to various embodiments of the present invention, the insulating pattern 130 may include a plurality of sequentially stacked insulating layers.
  • At least any one layer of each insulating layer may contribute to improvement of the effective coefficient of thermal expansion of a first structure by its constituent material or its thickness.
  • the first structure refers to a structure formed by the semiconductor chip 110 , the protective layer 120 , and the insulating pattern 130 , but further include the wiring pattern 140 or may exclude the protective layer 120 .
  • the effective coefficient of thermal expansion of the first structure may be further increased than when the corresponding insulating layer has a thickness smaller than the first thickness.
  • the effective coefficient of thermal expansion of the first structure may be further increased than when the corresponding insulating layer does not include the specific material.
  • Each insulating layer may protect the wiring pattern 140 by preventing external physical/chemical damage to the wiring pattern 140 , and may function as a buffer against external impact.
  • each insulating layer may be made of an insulating polymer, an epoxy, a silicon oxide film, a silicon nitride film or a combination thereof.
  • each insulating layer may be made of a metal, a non-photosensitive material and/or a photosensitive material, respectively.
  • the insulating polymer may include a general-purpose polymer such as PMMA (Polymethylmethacrylate), PS (Polystyrene), and PBO (Polybenzoxazole), an acrylic based polymer, an imide based polymer, an aryl ether based polymer, an amide based polymer, a fluorine based polymer, a p-xylene based polymer, a vinyl alcohol based polymer, a polymer derivative having a phenolic group, or a combination thereof, and the like.
  • PMMA Polymethylmethacrylate
  • PS Polystyrene
  • PBO Polybenzoxazole
  • Each insulating layer may be made of a different material.
  • one insulating layer may be made of a non-photosensitive material, for example, non-photosensitive polyimide, and the other insulating layer may be made of a photosensitive material, for example, photosensitive polyimide.
  • at least two of each insulating layer may be made of the same material.
  • at least two insulating layers may be made of non-photosensitive polyimide, or may be made of photosensitive polyimide.
  • At least any one layer of each insulating layer may be made of a non-photosensitive material.
  • a conductive via can be more easily formed in the corresponding insulating layer, particularly in the corresponding thick insulating layer, without a patterning process (increasing manufacturing cost) for the photosensitive material layer through the exposure and development process for the photosensitive material layer. For example, after forming a post through plating, by forming an insulating layer and performing grinding, a conductive via may be formed in the corresponding insulating layer.
  • the insulating layer may be formed thickly, so that it is possible to implement a buffer function and to improve the effective coefficient of thermal expansion of the first structure, which will be described later, and the like, and as well as to reduce manufacturing cost.
  • a layer formed to be relatively thin (e.g., less than about 20 ⁇ m in thickness) of each insulating layer may be made of a photosensitive material or a non-photosensitive material.
  • each insulating layer is not limited to the described above, and may be made of more various materials.
  • the coefficient of thermal expansion (CTE) of each insulating layer may be different from each other, or at least two may be the same.
  • the coefficient of thermal expansion of any one insulating layer may be greater than, less than, or equal to the coefficient of thermal expansion of the other one insulating layer.
  • At least any one layer of each insulating layer may include a plurality of fillers.
  • the filler is a particle having a smaller diameter than the thickness of the insulating layer, and increases the coefficient of thermal expansion of the insulating layer, so that the effective coefficient of thermal expansion of the first structure may be improved.
  • the filler may be preferably a material having a coefficient of thermal expansion higher than that of the main insulating material constituting the insulating layer.
  • the filler may have a diameter of about 1/4 or less of the thickness of the insulating layer, and the diameter may be about 5 ⁇ m or less, but is not limited thereto.
  • the filler may have a plurality of concave structures in which the surface of the insulating layer is too rough, thereby reducing properties such as surface adhesion of the insulating layer.
  • the filler may include silica (SiO2) and the like, but is not limited thereto.
  • each insulating layer particularly a layer formed relatively thick includes the non-photosensitive material and the filler together, the effective coefficient of thermal expansion of the first structure can be improved more effectively.
  • Surface roughness of each insulating layer in contact with each other may be different from each other.
  • the surface roughness of the upper surface of the other insulating layer in contact with the lower surface of any one insulating layer may be different from the surface roughness of the lower surface of any one insulating layer.
  • each insulating layer may be different from each other.
  • the surface roughness of the upper surface of one insulating layer may be greater or smaller than the surface roughness of the upper surface or lower surface of the other insulating layer.
  • the roughness of the upper surface or the lower surface of each insulating layer is not limited to the above-described ones, and may have more various roughness.
  • each insulating layer will be described in more detail according to various embodiments to be described later.
  • the wiring pattern 140 has a structure including a conductive material, and may transmit an electric signal of the chip terminal 111 or an external device (e.g., a board), etc. in the first direction and the second direction. That is, the wiring pattern 140 may be electrically connected to the chip terminal 111 of the semiconductor chip 110 and may provide an electrical connection path for electrically connecting the chip terminal 111 to an external device. In this case, the wiring pattern 140 may be provided in the insulating pattern 130 and may include various structures depending on the thickness of each insulating layer.
  • the wiring pattern 140 may include a wiring layer 141 capable of transmitting an electric signal in the second direction by extending in the second direction (i.e., horizontal direction) in the insulating pattern 130 toward the outside of the semiconductor chip 110 ; and a first conductive via 142 , a second conductive via 143 , and a third conductive via 144 capable of transmitting an electric signal in the first direction by extending in the first direction (i.e., vertical direction) in the insulating pattern 130 .
  • the wiring layer 141 may also include a portion for transmitting an electric signal in the first direction.
  • each of the conductive vias 142 , 143 , and 144 may electrically connect the wiring layer 141 and the chip terminal 111 , electrically connect one wiring layer 141 and the other wiring layer 141 , or electrically connect the wiring layer 141 and the external pad 150 .
  • the wiring pattern 140 may be made of W, Cu, Zr, Ti, Ta, Al, Ru, Pd, Pt, Co, Ni, or a combination thereof. At least two of the wiring layer 141 , the first conductive via 142 , and the second conductive via 143 may be made of the same material or a combination of the same material. Alternatively, at least two of the wiring layer 141 , the first conductive via 142 , the second conductive via 143 , the third conductive via 144 , and a first conductive stud 145 may be made of the same material or a combination of the same material.
  • a conductive via (for example, the first conductive via 142 ) formed on an uppermost layer of an insulating pattern 130 , that is, on an uppermost layer of the insulating pattern 130 , when the second insulating layer 132 , the third insulating layer 133 or the fourth insulating layer 134 is a layer formed relatively thick (for example, about 20 ⁇ m or more or about 30 ⁇ m or more in thickness), may be formed to protrude from the uppermost layer of the insulating pattern 130 .
  • a first conductive stud 145 may be further included. As shown in FIG. 5 , the first conductive stud 145 may be formed when the wiring pattern 140 and the chip terminal 111 are spaced apart from each other, such as when the protective layer 120 covers the first surface of the semiconductor chip 110 . That is, in this case, the first conductive stud 145 may be formed on a portion of the protective layer 120 on the first surface of the semiconductor chip 110 to electrically connect the chip terminal 111 of the semiconductor chip 110 and the remaining wiring layer 141 or the conductive vias 142 and 143 . Of course, even if the protective layer 120 does not completely cover the first surface of the semiconductor chip 110 , when the wiring pattern 140 and the chip terminal 111 are spaced apart from each other, the first conductive stud 145 may be formed.
  • the external pad 150 is provided on the insulating pattern 130 and may function as a pad on which the external connection terminal 160 is disposed. That is, the external connection terminal 160 may be disposed on the external pad 150 .
  • the external pad 150 may be connected to the wiring pattern 140 through an opening of an uppermost layer of the insulating pattern 130 , and may be electrically connected to the chip terminal 111 of the semiconductor chip 110 through the wiring pattern 140 . That is, the external pad 150 may be electrically connected to the wiring pattern 140 and the external connection terminal 160 , respectively, so that the connection reliability of the external connection terminal 160 can be improved.
  • the external pad 150 may provide a wetting layer (a cover layer or a preliminary metal layer, etc.) with excellent wettability so that the external connection terminal 160 is well adhered, and may prevent penetration of the external connection terminal 160 , and various types of configurations are possible.
  • a wetting layer a cover layer or a preliminary metal layer, etc.
  • the external pad 150 may be an under bump metal layer (UBM), and may include a metal material having excellent conductivity, such as Cu, Al, Cr, W, Ni, Ti, Au, Ag, or a combination thereof, but is not limited thereto.
  • UBM under bump metal layer
  • the wetting layer may be Au, Pd, Ni, Cu, Sn, or an alloy thereof. Alternatively, it may be Ti, Cr, W, or Al.
  • the external pad 150 may have a pillar shape 150 a with a flat upper portion erected on the uppermost layer of the insulating pattern 130 , and may have concave structures 150 b, 150 c , and 150 d in which the central portion of the upper surface thereof is recessed (that is, concave).
  • the uppermost layer of the insulating pattern 130 is a layer formed relatively thick (for example, about 20 ⁇ m or more or about 30 ⁇ m or more in thickness)
  • the first conductive via 142 formed to protrude from the uppermost layer of the insulating pattern 130 may replace the external pad 150 to perform the function of the external pad 150 described above or to be described later.
  • the external connection terminal 160 is a terminal that transmits electric signals from the semiconductor package 100 to an external device, and may be provided on the external pad 150 . That is, the external connection terminal 160 may be electrically connected to external pad 150 . Accordingly, the external connection terminal 160 may be electrically connected to the chip terminal 111 of the semiconductor chip 110 through the wiring pattern 140 , and may be configured to electrically connect the semiconductor package 100 and an external device (for example, board, etc.). That is, the external connection terminal 160 may be a connection terminal for mounting the semiconductor package 100 on a board such as a printed circuit board, which is an external device. However, the external pad 150 may be omitted, and in this case, the external connection terminal 160 may be directly disposed on the wiring pattern 140 exposed through the opening of the uppermost layer of the insulating pattern 130 .
  • the external connection terminal 160 may include a solder bump, and may include Sn, Au, Ag, Ni, In, Bi, Sb, Cu, Zn, Pb, or a combination thereof, but is not limited thereto.
  • the solder bump may have a ball shape, but is not limited thereto, and may have various shapes such as a cylinder, a polygonal pillar, and a polyhedron.
  • the external connection terminal 160 may have a shape that completely covers a portion protruding (hereinafter, referred to as “protrusion portion”, the height or thickness of the protrusion portion is referred to as “protrusion height” or “protrusion thickness”, and the width of the protrusion portion is referred to as “protrusion width”) above the upper surface of the uppermost layer of the insulating pattern 130 among the external pad 150 or the first conductive via 142 , that is, may be a surface contact type.
  • the external connection terminal 160 may cover the upper surface and the sidewall of the protrusion portion.
  • the sidewall of the protrusion portion may refer to a side surface portion of the protrusion portion protruding above the upper surface of the uppermost layer of the insulating pattern 130 .
  • a surface contact type external connection terminal 160 may be formed by proceeding with the reflow process in a state in which a metal material layer having excellent wettability (such as a cover layer or a preliminary metal layer) is formed on the external pad 150 or the first conductive via 142 to enhance the flowability of the external connection terminal 160 .
  • the surface contact type external connection terminal 160 may be formed to cover a portion of the upper surface of the uppermost layer of the insulating pattern 130 near the protrusion portion, and may form surface contact with the upper surface of the uppermost layer of the insulating pattern 130 .
  • the external connection terminal 160 includes a junction interface in contact with the upper surface of the uppermost layer of the insulating pattern 130 , and the junction interface of the external connection terminal 160 may have a ring shape continuously extending along the edge of the protrusion portion.
  • junction interface of the external connection terminal 160 may be formed to have a width (hereinafter, referred to as “junction width”) 168 of at least 5 ⁇ m or more in the second direction parallel to the upper surface of the uppermost layer of the insulating pattern 130 .
  • junction width 168 may be about 1 ⁇ m to about 20 ⁇ m, but is not limited thereto.
  • the external connection terminal 160 may have a width of about 200 ⁇ m.
  • the horizontal width 165 of the external connection terminal 160 may be greater than the height 166 of the external connection terminal 160 .
  • the horizontal width 165 of the external connection terminal 160 may mean the maximum value of the width of the external connection terminal 160 in the second direction parallel to the first surface of the semiconductor chip 110 , or may mean the distance between two points where the external surface of the external connection terminal 160 meets an arbitrary straight line with respect to the arbitrary straight line crossing the center 160 M of the external connection terminal 160 in the second direction.
  • the height 166 of the external connection terminal 160 may be the height of the external connection terminal 160 in the first direction with respect to the upper surface of the uppermost layer of the insulating pattern 130 .
  • the horizontal width 165 of the external connection terminal 160 may be about 1.2 to 1.4 times the height 166 of the external connection terminal 160 .
  • the horizontal width 165 of the external connection terminal 160 may be about 210 ⁇ m to about 250 ⁇ m, but is not limited thereto.
  • the height 166 of the external connection terminal 160 may be about 165 ⁇ m to about 200 ⁇ m, but is not limited thereto.
  • the protrusion height 162 of the protrusion portion may be about 0.09 to about 0.5 times the height 166 of the external connection terminal 160 . If the protrusion height 162 is greater than 0.5 times the height 166 of the external connection terminal 160 , the sidewall of the protrusion portion may not be covered by the external connection terminal 160 , or the thickness of the external connection terminal 160 on the sidewall of the protrusion portion may be formed to be too thin.
  • the protrusion height 162 is smaller than 0.09 times the height 166 of the external connection terminal 160 , since the external connection terminal 160 has a size larger than necessary compared to the size of the protrusion portion, the height 166 of the external connection terminal 160 may become excessively high, thereby deteriorating the junction reliability between the semiconductor package 100 and the board, and may cause a short between neighboring external connection terminals 160 .
  • the protrusion width 167 may be about 0.6 to about 0.9 times the horizontal width 165 of the external connection terminal 160 . If the protrusion width 167 is greater than 0.9 times the horizontal width 165 of the external connection terminal 160 , the sidewall of the protrusion portion may not be covered by the external connection terminal 160 , or the thickness of the external connection terminal 160 on the sidewall of the protrusion portion may be formed to be too thin.
  • the protrusion width 167 is smaller than 0.6 times the horizontal width 165 of the external connection terminal 160 , since the external connection terminal 160 has a size larger than necessary compared to the size of the protrusion portion, the height 166 of the external connection terminal 160 may become excessively high, thereby deteriorating the junction reliability between the semiconductor package 100 and the board, and may cause a short between neighboring external connection terminals 160 .
  • the length 164 in the second direction of the external connection terminal 160 may be at least about 1 ⁇ m or more.
  • the length 164 in the second direction of the external connection terminal 160 may be about 5 ⁇ m to about 30 ⁇ m, or about 5 ⁇ m to about 20 ⁇ m, but is not limited thereto.
  • the center 160 M of the external connection terminal 160 may be lower than the center of the external connection terminal of a general package. As such, as the center 160 M of the external connection terminal 160 is lowered, the external connection terminal 160 may be formed thicker on the sidewall of the external pad 150 .
  • the height 161 of the center 160 M of the external connection terminal 160 may be about 0.4 times or less, or about 0.35 times or less, or 0.3 times or less of the height 166 of the external connection terminal 160 .
  • the height 161 of the center 160 M of the external connection terminal 160 is greater than 0.4 times the height 166 of the external connection terminal 160 , the sidewall of the protrusion portion may not be covered by the external connection terminal 160 , or the thickness of the external connection terminal 160 on the sidewall of the protrusion portion may be formed to be too thin.
  • the height 161 of the center 160 M of the external connection terminal 160 may be about 0.1 times or more, or about 0.15 times or more, or about 0.2 times or more of the height 166 of the external connection terminal 160 . If the height 161 of the center 160 M of the external connection terminal 160 is less than 0.1 times the height 166 of the external connection terminal 160 , the height of the external connection terminal 160 may be too low.
  • the height 161 of the center 160 M of the external connection terminal 160 may be adjusted according to the protrusion height 162 , the protrusion width 167 , and/or the horizontal width 165 of the external connection terminal 160 .
  • the center 160 M of the external connection terminal 160 may be spaced apart from the external pad 150 in the first direction and may be adjacent to the protrusion portion. As the center 160 M of the external connection terminal 160 is adjacent to the protrusion portion, the thickness of the external connection terminal 160 covering the sidewall of the protrusion portion may be increased.
  • the shortest distance 163 in the first direction between the center 160 M of the external connection terminal 160 and the protrusion portion may be about 0.5 to about 6 times the protrusion height 162 .
  • the shortest distance 163 in the first direction of the center 160 M of the external connection terminal 160 may be about 10 ⁇ m to about 60 ⁇ m, but is not limited thereto. That is, the shortest distance 163 in the first direction of the center 160 M of the external connection terminal 160 may be equal to the protrusion height 162 or smaller than the protrusion height 162 .
  • the intermetallic compound formed at the interface between the external pad and the external connection terminal was exposed to the outside, or the external connection terminal covering the intermetallic compound on the sidewall of the external pad was formed with a very thin thickness.
  • the intermetallic compound has a property of being brittle to external impact, cracks frequently occur near the edge of the upper surface of the external pad due to external impact, thus deteriorating the junction reliability between the semiconductor package and the board.
  • the external connection terminal 160 may completely cover the protrusion portion, it is possible to prevent damage to the protrusion portion due to the external pad 150 being exposed to the outside.
  • an external shock may be alleviated by the external connection terminal 160 thickly formed on the sidewall of the protrusion portion, the occurrence of cracks in the vicinity of the protrusion portion may be suppressed, and ultimately, junction reliability between the semiconductor package 100 and an external device such as a board may be improved.
  • the surface roughness thereof may be increased according to the uneven concave structure of the filler. Accordingly, the adhesive force between the uppermost layer of the insulating layer 130 and the external pad 150 may be further increased, so that the above-described crack occurrence may be further suppressed. In this case, the filler of the uppermost layer of the insulating layer 130 may directly contact the external pad 150 .
  • the semiconductor package 100 may be a semiconductor package having a fan-in structure or a semiconductor package having a fan-out structure.
  • the wiring pattern 140 may further extend to the outside of the semiconductor chip 110 , and at least one external pad 150 and at least one external connection terminal 160 may be disposed to be spaced apart from the semiconductor chip 110 to the outside.
  • an electric signal generated from the semiconductor chip 110 may be transmitted to an external device connected to the external connection terminal 160 through the chip terminal 111 , the wiring pattern 140 , the external pad 150 , and the external connection terminal 160 (however, when the first conductive via 142 replaces the external pad 150 , the external pad 150 is excluded) in sequence.
  • an electric signal generated from the external device may be transmitted to the semiconductor chip 110 through the external connection terminal 160 , the external pad 150 , the wiring pad 140 , and the chip terminal 111 (however, when the first conductive via 142 replaces the external pad 150 , the external pad 150 is excluded) in sequence.
  • the insulating pattern 130 may prevent unnecessary electrical short circuits to the chip terminal 111 , the wiring pattern 140 , the external pad 150 and the external connection terminal 160 (however, when the first conductive via 142 replaces the external pad 150 , the external pad 150 is excluded), and may prevent physical/chemical damage to these components.
  • a first semiconductor package 100 a may include a semiconductor chip 110 , a protective layer 120 , an insulating pattern 130 , a wiring pattern 140 , an external pad 150 , and an external connection terminal 160 .
  • the semiconductor chip 110 , the protective layer 120 , the insulating pattern 130 , the wiring pattern 140 , the external pad 150 , and the external connection terminal 160 is the same as described above, hereinafter, only features of the first semiconductor package 100 a that are not described above will be described.
  • the insulating pattern 130 may include a first insulating layer 131 a and a second insulating layer 132 a stacked on the first insulating layer 131 a.
  • the second insulating layer 132 a may have a greater thickness than the first insulating layer 131 a .
  • the first insulating layer 131 a may have a thickness of about 10 ⁇ m to about 20 ⁇ m
  • the second insulating layer 132 a may have a thickness of about 20 ⁇ m to about 60 ⁇ m, or about 30 ⁇ m to about 60 ⁇ m.
  • the first insulating layer 131 a and the second insulating layer 132 a of the semiconductor package 100 a may be formed relatively thicker than that, and in particular, the second insulating layer 132 a may be formed much thicker than the conventional one. Accordingly, the first insulating layer 131 a and the second insulating layer 132 a, particularly, the second insulating layer 132 a may function as a buffer against external impact, thereby further improving the reliability of the semiconductor package 100 a.
  • the effective coefficient of thermal expansion of the first structure may naturally increase and approach the effective coefficient of thermal expansion of an external device such as a board on which the semiconductor package 100 a is mounted.
  • the effective coefficient of thermal expansion of the first structure of the semiconductor package 100 a may be about 9 ppm/° C. to about 17 ppm/° C., but is not limited thereto.
  • a board such as a PCB has an effective coefficient of thermal expansion of about 15 to 20 ppm/° C.
  • a conventional semiconductor package has an effective coefficient of thermal expansion of less than about 8 ppm/° C. Accordingly, as shown in FIG. 1 , due to a sharp difference in thermal expansion (CTE 1 ⁇ CTE 2 ) occurring between the conventional semiconductor package and the board, a crack could easily occur in an external connection terminal of a conventional semiconductor package.
  • the effective coefficient of thermal expansion of the first structure of the semiconductor package 100 a has a relatively higher value than the conventional one due to an increase in the thickness of the second insulating layer 132 a by more than a certain level, it will have a value similar to the value of the effective coefficient of thermal expansion of an external device such as a board. Accordingly, since the first structure of the semiconductor package 100 a may thermally expand in a range more similar to that of a board on which the semiconductor package 100 a is mounted, upon a sharp difference in thermal expansion, it may reduce cracks that may occur in the external connection terminal 160 of the semiconductor package 100 a.
  • the thickness of the second insulating layer 132 a may be an optimal range for similar matching of the buffer function and the effective coefficient of thermal expansion of the first structure to the board. If the second insulating layer 132 a is less than 30 ⁇ m, particularly less than 20 ⁇ m, similar matching of the buffer function and the effective coefficient of thermal expansion may not be possible, and if it is larger than 60 ⁇ m, a warpage phenomenon may be induced as stress applied to the semiconductor package 100 a is rather increased. However, without limited thereto, the second insulating layer 132 a may have various thickness values.
  • the first structure of the semiconductor package 100 a has a value similar to the value of the effective coefficient of thermal expansion of an external device such as a board
  • the first insulating layer 131 a and the second insulating layer 132 a in particular, the second insulating layer 132 a formed to be relatively thicker in thickness thereof may preferably have an effective coefficient of thermal expansion of 7 ppm/° C. to 40 ppm/° C.
  • the effective coefficient of thermal expansion of the first structure of the semiconductor package 100 a according to an embodiment of the present invention may be too low, and thus may be out of a similar range with respect to the value of the effective coefficient of thermal expansion of an external device such as a board.
  • the effective coefficient of thermal expansion is larger than 40 ppm/° C., the effective coefficient of thermal expansion of the first structure of the semiconductor package 100 a according to an embodiment of the present invention may be too large, and thus may be out of a similar range with respect to the value of the effective coefficient of thermal expansion of an external device such as a board.
  • the thickness T 3 of the semiconductor chip 110 is reduced, this increases the effective coefficient of thermal expansion of the first structure of the semiconductor package 100 a, and thus the effect that the value approaches the value of the effective coefficient of thermal expansion of an external device such as a board on which the semiconductor package 100 a is mounted can be doubled. That is, if the thickness T 3 of the semiconductor chip 110 is reduced, the insulating pattern 130 has an effect that is relatively thicker, so that the effective coefficient of thermal expansion of the first structure of the semiconductor package 100 a can be more easily increased.
  • the thickness T 3 of the semiconductor chip 110 of the semiconductor package 100 a according to an embodiment of the present invention may be reduced than the conventional one by having about 1.5 to about 10 times, or about 1.5 to about 4 times compared to that of the insulating pattern 130 .
  • the thickness T 3 of the semiconductor chip 110 of the semiconductor package 100 a according to an embodiment of the present invention may be reduced than the conventional one by having about 100 ⁇ m to about 300 ⁇ m, or 100 ⁇ m to about 250 ⁇ m, or 100 ⁇ m to about 200 ⁇ m.
  • the thickness T 3 of the semiconductor chip 110 compared to the insulating pattern 130 is less than 1.5 times or greater than 10 times, a warpage phenomenon may be induced. In particular, if the thickness T 3 of the semiconductor chip 110 compared to the insulating pattern 130 is 1.5 times to 4 times, warpage may be further reduced. In addition, if the thickness of the semiconductor chip 110 is less than 100 ⁇ m, its mechanical strength is too weak, the semiconductor chip 110 may be easily destroyed during the semiconductor package process, so handling may be difficult, and if it is larger than 250 ⁇ m, the effect of increasing the effective coefficient of thermal expansion may be insignificant. However, the thickness of the semiconductor chip 110 is not limited thereto, and may have more various values.
  • the wiring pattern 140 may include a wiring layer 141 and a first conductive via 142 , but the first conductive via 142 may be omitted if necessary.
  • the wiring layer 141 may be a trace extending in the second direction on the first insulating layer 131 a , and may be electrically connected to the chip terminal 111 of the semiconductor chip 110 .
  • the wiring layer 141 may be a single layer or a plurality of layers, and may have a structure in which a plurality of layers spaced apart from each other are connected.
  • the thickness of the wiring layer 141 may be about 5 ⁇ m to about 20 ⁇ m.
  • the wiring layer 140 may include a tapered shape or a stepped shape, etc.
  • the diameter (length in the second direction) of the region having a small cross-sectional area may be about 5 ⁇ m, and the diameter of the region having a large cross-sectional area may be about 15 ⁇ m.
  • the wiring layer 141 may have various thickness values according to various shapes.
  • the first conductive via 142 may be provided on the wiring layer 141 , and may extend in the first direction from the second insulating layer 132 a and may be electrically connected to the wiring layer 141 . That is, the first conductive via 142 may extend in the first direction from the second insulating layer 132 a formed thicker than the first insulating layer 131 a to the opening on the upper surface of the second insulating layer 132 a, and may electrically connect the wiring layer 141 and the external pad 150 .
  • the diameter (length in the second direction) of the first conductive via 142 may be about 5 ⁇ m to about 20 ⁇ m.
  • the first conductive via 142 may include a tapered shape or a stepped shape, etc.
  • the diameter of the region having a small cross-sectional area may be about 5 ⁇ m, and the diameter of the region having a large cross-sectional area may be about 15 ⁇ m.
  • the first conductive via 142 may have various thicknesses and diameters according to various shapes.
  • the first conductive via 142 may protrude from the upper surface of the second insulating layer 132 a.
  • the height that the first conductive via 142 protrudes from the upper surface of the second insulating layer 132 a may be about 0.1 ⁇ m or more, or about 1 ⁇ m or more, or 5 ⁇ m, or may be about 20 ⁇ m or less, or about 15 ⁇ m or less, or about 10 ⁇ m or less, but is not limited thereto.
  • the external pad 150 may contact the upper surface and sidewall of the first conductive via 142 .
  • the sidewall of the first conductive via 142 may refer to a side surface portion of the first conductive via 142 protruding above the upper surface of the second insulating layer 132 a.
  • the contact area between the external pad 150 and the first conductive via 142 may increase, and accordingly, a contact resistance between the external pad 150 and the first conductive via 142 may be reduced.
  • the first conductive via 142 may penetrate the wiring layer 141 and contact the upper surface of the first insulating layer 131 a.
  • the wiring layer 141 may have an opening in the upper portion thereof, and a lower portion of the first conductive via 142 may be formed to fill the opening of the wiring layer 141 , and a central portion thereof may have a shape protruding downward.
  • the height that the central portion of the lower portion of the first conductive via 142 protrudes downward may correspond to the thickness of the wiring layer 141 .
  • the external pad 150 may be directly electrically connected to the wiring layer 141 .
  • the external pad 150 is shown to have a pillar structure 150 a having a flat upper portion, but is not limited thereto, and various modifications are possible.
  • the protrusion height 162 of the external pad 150 may be about 20 ⁇ m or more to about 50 ⁇ m or less, or about 30 ⁇ m or more to about 40 ⁇ m or less, but is not limited thereto.
  • the protrusion height 162 of the external pad 150 of the semiconductor package 100 a may be formed to be relatively higher than that. Accordingly, the contact resistance of the external pad 150 may be further reduced due to an increase in the contact area with the external connection terminal 160 .
  • the thickness T 1 of the external pad 150 may be about 50 ⁇ m
  • the thickness T 2 of the insulating pattern 130 may be about 40 ⁇ m
  • the thickness T 3 of the semiconductor chip 110 may be about 100 ⁇ m. That is, the thickness T 1 of the external pad with respect to the thickness T 2 of the insulating pattern 130 may be about 1 to 1.2 times, and the thickness ratio between a lower structure and an intermediate connection structure may be about 1:0.25 to about 1:0.6.
  • the thickness of a structure formed by the insulating pattern 130 and the external pad 150 corresponds to a thickness that disperses stress (hereinafter referred to as “stress dispersion thickness”) applied to the external connection terminal 160 provided between a board, which is an external device on which the semiconductor package 100 a is mounted, and the second insulating layer 132 a.
  • T 1 and T 2 may have various thickness values.
  • the stress dispersion thickness D 1 of the second structure of the semiconductor package 100 a may be formed to be relatively thicker than that. Accordingly, the stress applied to the external connection terminal 160 provided between the board on which the semiconductor package 100 a is mounted and the second insulating layer 132 a can be greatly reduced.
  • the thickness T 3 of the semiconductor chip 110 is formed to be about 1.4 times to about 2.5 times the thickness T 2 of the insulating pattern 130 , the effect of increasing the effective coefficient of thermal expansion and the effect of dispersing stress can be simultaneously realized.
  • a second semiconductor package 100 b may include a semiconductor chip 110 , a protective layer 120 , an insulating pattern 130 , a wiring pattern 140 , an external pad 150 , and an external connection terminal 160 .
  • the semiconductor chip 110 the protective layer 120 , the insulating pattern 130 , the wiring pattern 140 , the external pad 150 , and the external connection terminal 160 is the same as described above, hereinafter, only features of the second semiconductor package 100 b that are not described above will be described.
  • the insulating pattern 130 of the second semiconductor package 100 b according to the present embodiment may include a first insulating layer 131 a and a second insulating layer 132 a stacked on the first insulating layer 131 a.
  • the first insulating layer 131 a of the insulating pattern 120 was formed over the upper surface of the protective layer 120 and the upper surface of the semiconductor chip 110 , but the first insulating layer 131 a of the second semiconductor package 100 b according to the present embodiment is formed on the upper surface of the semiconductor chip 110 , and may not be formed on the upper surface of the protective layer 120 .
  • the protective layer 120 may directly contact the wiring layer 141 and the second insulating layer 132 a.
  • a third semiconductor package 100 c may include a semiconductor chip 110 , a protective layer 120 , an insulating pattern 130 , a wiring pattern 140 , an external pad 150 , and an external connection terminal 160 .
  • the semiconductor chip 110 , the protective layer 120 , the insulating pattern 130 , the wiring pattern 140 , the external pad 150 , and the external connection terminal 160 is the same as in the above-described embodiments, hereinafter, only features of the third semiconductor package 100 c that are not described above will be described.
  • the protective layer 120 of the third semiconductor package 100 c may be formed such that the protective layer 120 covers the first surface of the semiconductor chip 110 . That is, the protective layer 120 may be formed to surround the first surface on which the chip terminal 111 of the semiconductor chip 110 is formed, the second surface opposite to the first surface, and the side surface of the semiconductor chip 110 .
  • the wiring pattern 140 of the third semiconductor package 100 c may include a wiring layer 141 and a first conductive via 142 .
  • it may include a first conductive stud 145 for connecting the wiring layer 141 of the wiring pattern 140 and the chip terminal 111 .
  • the first conductive stud 145 may be formed if the protective layer 120 covers the first surface of the semiconductor chip 110 . That is, in this case, the first conductive stud 145 may be formed to penetrate the protective layer 120 portion on the first surface of the semiconductor chip 110 and contact the chip terminal 111 to electrically connect the chip terminal 111 of the semiconductor chip 110 and the remaining wiring layer 141 or the conductive via 142 .
  • the protective layer 120 does not cover the first surface of the semiconductor chip 110 , when a distance between the wiring pattern 140 and the semiconductor chip 110 is far apart, the first conductive stud 145 may be formed.
  • a fourth semiconductor package 100 d may include a semiconductor chip 110 , a protective layer 120 , an insulating pattern 130 , a wiring pattern 140 , an external pad 150 , and an external connection terminal 160 .
  • the semiconductor chip 110 , the protective layer 120 , the insulating pattern 130 , the wiring pattern 140 , the external pad 150 , and the external connection terminal 160 is the same as in the above-described embodiments, hereinafter, only features of the fourth semiconductor package 100 d that are not described above will be described.
  • the protective layer 120 of the fourth semiconductor package 100 d is a layer including a non-conductive material, and may be provided on the second surface of the semiconductor chip 110 , may be provided to surround the side surface and the second surface of the semiconductor chip 110 , or may be provided to surround the side surface, the first surface, and the second surface of the semiconductor chip 110 .
  • the protective layer 120 may be a layer to be formed to block the semiconductor chip 110 from a harmful environment.
  • the protective layer 120 may include various oxides or polymer materials, but is not limited thereto.
  • the protective layer 120 may have a thickness of about 15 ⁇ m to about 30 ⁇ m on the second surface of the semiconductor chip 110 . However, the thickness of the protective layer 120 is not limited thereto, and may have more various values.
  • the protective layer 120 may be formed of a plurality of layers 120 a and 120 b.
  • the first protective layer 120 a may be formed to cover the entire first surface and the side surface of the semiconductor chip 110
  • the second protective layer 120 b may be formed to cover and protect only the second surface of the semiconductor chip 110 .
  • first protective layer 120 a may be formed to cover the first surface and a portion of the side surface of the semiconductor chip 110
  • the second protective layer 120 b may be formed to cover the second surface and the rest of the side surface of the semiconductor chip 110 that is not covered by the first protective layer 120 a.
  • the first protective layer 120 a may be formed to cover the first surface of the semiconductor chip 110
  • the second protective layer 120 b may be formed to cover the second surface and the entire side surface of the semiconductor chip 110 .
  • the protective layer 120 may include a third protective layer (not shown) in addition to the first protective layer 120 a and the second protective layer 120 b.
  • the first protective layer 120 a and the second protective layer 120 b may be made of the same material or different materials.
  • the first protective layer 120 a may be EMC
  • the second protective layer 120 b may be a BSP film.
  • the wiring pattern 140 of the fourth semiconductor package 100 d may include a wiring layer 141 and a first conductive via 142 .
  • it may include a first conductive stud 145 for connecting the wiring layer 141 of the wiring pattern 140 and the chip terminal 111 .
  • the first conductive stud 145 may be formed if the protective layer 120 covers the first surface of the semiconductor chip 110 . That is, in this case, the first conductive stud 145 may be formed to penetrate the first protective layer 120 a portion on the first surface of the semiconductor chip 110 and contact the chip terminal 111 to electrically connect the chip terminal 111 of the semiconductor chip 110 and the remaining wiring layer 141 or the conductive via 142 .
  • the protective layer 120 does not cover the first surface of the semiconductor chip 110 , when a distance between the wiring pattern 140 and the semiconductor chip 110 is far apart, the first conductive stud 145 may be formed.
  • the external pad 150 and the wiring pattern 140 may have various structures.
  • various structures of the external pad 150 and the wiring pattern 140 connected to the external pad 150 will be described.
  • the first conductive via 142 may protrude further upward than the second insulating layer 132 , which is the uppermost layer of the insulating pattern 130 , and may substantially replace the role of the external pad 150 . In this case, the external pad 150 may not be provided.
  • the external connection terminal 160 may have a shape that completely covers a portion protruding above the upper surface of the uppermost layer of the insulating pattern 130 among the external pad 150 or the first conductive via 142 , that is, may be a surface contact type.
  • the external connection terminal 160 may cover the upper surface and the sidewall of the protrusion portion.
  • the sidewall of the protrusion portion may refer to a side surface portion of the protrusion portion protruding above the upper surface of the uppermost layer of the insulating pattern 130 .
  • a surface contact type external connection terminal 160 may be formed by proceeding with the reflow process in a state in which a metal material layer having excellent wettability (such as a cover layer or a preliminary metal layer) is formed on the external pad 150 or the first conductive via 142 to enhance the flowability of the external connection terminal 160 .
  • a metal material layer having excellent wettability such as a cover layer or a preliminary metal layer
  • the semiconductor package includes a semiconductor chip 110 , a protective layer 120 , an insulating pattern 130 , a wiring pattern 140 , an external pad 150 , and an external connection terminal 160
  • the insulating pattern 130 may include a first insulating layer 131 a, a second insulating layer 132 a stacked on the first insulating layer 131 a, and a third insulating layer 133 a stacked on the second insulating layer 132 a.
  • the second insulating layer 132 a may have a greater thickness than the first insulating layer 131 a and the third insulating layer 133 a.
  • the wiring pattern 140 may include a wiring layer 141 and a first conductive via 142 , and the first conductive via 142 may be formed under the opening of the third insulating layer 133 a.
  • the external pad 150 is shown to have a concave structure 150 b, but is not limited thereto, and it may have a pillar structure 150 a having a flat upper portion, a first stepped structure having a lower portion protruding toward the third insulating layer 133 a, or a second stepped structure in which the first conductive via 142 corresponds to a height 162 protruding from the third insulating layer 133 a.
  • the external pad 150 may be formed on the opening of the third insulating layer 133 a, it may be formed up to the inside of the opening of the third insulating layer 133 a to protrude above the opening of the third insulating layer 133 a, and it may contact the upper surface of the third insulating layer 133 a.
  • the insulating pattern 130 of the semiconductor package may include a first insulating layer 131 b and a second insulating layer 132 b stacked on the first insulating layer 131 b.
  • the first insulating layer 131 b and the second insulating layer 132 b have the same or different thicknesses, but have a thickness greater than or equal to a predetermined thickness.
  • the first insulating layer 131 b and the second insulating layer 132 b may be about 20 ⁇ m to about 60 ⁇ m, or about 30 ⁇ m to about 60 ⁇ m.
  • at least one of the first insulating layer 131 b and the second insulating layer 132 b may be about 30 ⁇ m or more, and the total thickness thereof may be about 50 ⁇ m to about 110 ⁇ m.
  • the first insulating layer 131 b and the second insulating layer 132 b of the semiconductor package 100 d may be formed relatively thicker than that. Accordingly, the first insulating layer 131 b and the second insulating layer 132 b, particularly, the second insulating layer 132 b may function as a buffer against external impact, thereby further improving the reliability of the semiconductor package 100 .
  • the structure of the wiring layer 141 and the first conductive via 142 of the wiring pattern 140 , the external pad 150 and the external connection terminal 160 is substantially the same as the example described with reference to FIG. 6 as an example, so a detailed description will be omitted.
  • the first conductive via 142 of the semiconductor package may be formed to protrude from the second insulating layer 132 b in the first direction to be electrically connected to the wiring layer 141 . That is, the first conductive via 142 is formed to protrude from the opening of the upper surface of the second insulating layer 132 b , and may electrically connect the wiring layer 141 and the external connection terminal 160 .
  • the diameter (length in the second direction) of the first conductive via 142 may be about 5 ⁇ m to about 20 ⁇ m.
  • the first conductive via 142 may include a tapered shape or a stepped shape, etc.
  • the diameter of the region having a small cross-sectional area may be about 5 ⁇ m, and the diameter of the region having a large cross-sectional area may be about 15 ⁇ m.
  • the first conductive via 142 may have various thicknesses and diameters according to various shapes.
  • the first conductive via 142 is shown to have a pillar structure having a flat upper portion, but is not limited thereto, and may have a concave structure or the like in which the upper portion is concave.
  • the protrusion height 162 of the first conductive via 142 may be about 20 ⁇ m or more to about 50 ⁇ m or less, or about 30 ⁇ m or more to about 40 ⁇ m or less, but is not limited thereto.
  • the protrusion height 162 of the first conductive via 142 replacing the external pad 150 of the semiconductor package 100 may be formed to be relatively higher than that. Accordingly, the contact resistance of the first conductive via 142 may be further reduced due to an increase in the contact area with the external connection terminal 160 .
  • the thickness D 1 of a second structure formed by the insulating pattern 130 and the first conductive via 142 corresponds to a thickness that disperses stress applied to the external connection terminal 160 provided between a board on which the semiconductor package 100 is mounted and the second insulating layer 132 a.
  • the stress dispersion thickness D 1 of the second structure in the semiconductor package 100 may be about 60 ⁇ m or more or about 70 ⁇ m or more, and may be about 100 ⁇ m or less or about 110 ⁇ m or less.
  • D 1 may have various thickness values.
  • the stress dispersion thickness D 1 of the second structure of the semiconductor package according to an embodiment of the present invention may be formed to be relatively thicker than that. Accordingly, the stress applied to the external connection terminal 160 provided between the board on which the semiconductor package is mounted and the second insulating layer 132 a can be greatly reduced.
  • descriptions of configurations and effects of the insulating pattern 130 , the effective coefficient of thermal expansion of the first structure, the wiring layer 141 , the second conductive via 143 , the thickness T 3 of the semiconductor chip 110 , and the ratio of T 2 and T 3 , etc. may be the same as the description of the structure of the first semiconductor package 100 a and the description of the structure of FIG. 7 .
  • the insulating pattern 130 of the semiconductor package may include a first insulating layer 131 b, a second insulating layer 132 b stacked on the first insulating layer 131 b, and a third insulating layer 133 b stacked on the second insulating layer 132 b.
  • the first insulating layer 131 b and the second insulating layer 132 b may have a greater thickness than the third insulating layer 133 b.
  • the thickness of the third insulating layer 133 b may be about 10 ⁇ m to about 20 ⁇ m.
  • the thickness or the like of the first insulating layer 131 b and the second insulating layer 132 b may be the same as described with reference to FIG. 9 .
  • At least one of the first insulating layer 131 b and the second insulating layer 132 b may be made of a non-photosensitive material, or the insulating layers 131 , 132 , and 133 may include 5 to 30 wt % of a metal, 1 to 20 wt % of a photosensitive material, and the remaining amount of a non-photosensitive material.
  • at least one of the first conductive via 142 and the first conductive stud 145 may be formed in the first insulating layer 131 b or the second insulating layer 132 b, without a patterning process (increasing manufacturing cost) for the photosensitive material layer through the exposure and development process for the photosensitive material layer.
  • the first insulating layer 131 b or the second insulating layer 132 b is possible, and thus it is possible to implement a buffer function and to improve the effective coefficient of thermal expansion, which is described above, and the like, and as well as to reduce manufacturing cost.
  • the wiring pattern 140 may include a wiring layer 141 and a first conductive via 142 , and their configuration may be the same as described above in the structure of the fourth semiconductor package 100 d.
  • the first conductive via 142 may be formed under the opening of the third insulating layer 133 b, or may protrude above the opening of the third insulating layer 133 b, or may be formed within the opening of the third insulating layer 133 b without protruding above the opening of the third insulating layer 133 b.
  • first conductive studs 145 may be formed to penetrate the first insulating layer 131 b.
  • the external pad 150 is shown to have a concave structure 150 b, but is not limited thereto, and it may have a pillar structure 150 a having a flat upper portion, a first stepped structure having a lower portion protruding toward the third insulating layer 133 b, or a second stepped structure in which the first conductive via 142 corresponds to a height 162 protruding from the third insulating layer 133 b.
  • Descriptions of these structures and effects may be the same as those described above, except for a point that symbols are changed in the description of the structure of the first semiconductor package 100 a.
  • the external pad 150 may be formed on the opening of the third insulating layer 133 b, it may be formed up to the inside of the opening of the third insulating layer 133 b to protrude above the opening of the third insulating layer 133 b, and it may contact the upper surface of the third insulating layer 133 b.
  • the semiconductor package may include a semiconductor chip 110 , a protective layer 120 , an insulating pattern 130 , a wiring pattern 140 , an external pad 150 , and an external connection terminal 160 .
  • the insulating pattern 130 may include a first insulating layer 131 c and a second insulating layer 132 c stacked on the first insulating layer 131 c.
  • the first insulating layer 131 c may have a greater thickness than the second insulating layer 132 c.
  • the first insulating layer 131 c may be about 20 ⁇ m to about 60 ⁇ m, or about 30 ⁇ m to about 60 ⁇ m
  • the thickness of the second insulating layer 132 c may be about 10 ⁇ m to about 20 ⁇ m.
  • the first insulating layer 131 c and the second insulating layer 132 c of the semiconductor package according to an embodiment of the present invention may be formed relatively thicker than that, and in particular, the first insulating layer 131 c may be formed much thicker than the conventional one. Accordingly, the first insulating layer 131 c and the second insulating layer 132 c, particularly, the first insulating layer 131 c may function as a buffer against external impact, thereby further improving the reliability of the semiconductor package.
  • the effective coefficient of thermal expansion of the first structure in the semiconductor package may naturally increase and approach the effective coefficient of thermal expansion of an external device such as a board on which the semiconductor package is mounted.
  • the effective coefficient of thermal expansion of the first structure of the semiconductor package may be about 9 ppm/° C. to about 17 ppm/° C., but is not limited thereto.
  • the thickness of the first insulating layer 131 c may be an optimal range for similar matching of the buffer function and the effective coefficient of thermal expansion of the first structure to the board. If the first insulating layer 131 c is less than 30 ⁇ m, particularly less than 20 ⁇ m, similar matching of the buffer function and the effective coefficient of thermal expansion may not be possible, and if it is larger than 60 ⁇ m, a warpage phenomenon may be induced as stress applied to the semiconductor package is rather increased. However, without limited thereto, the first insulating layer 131 c may have various thickness values.
  • the first structure of the semiconductor package according to an embodiment of the present invention has a value similar to the value of the effective coefficient of thermal expansion of an external device such as a board, the first insulating layer 131 c and the second insulating layer 132 c, in particular, the first insulating layer 131 c formed to be relatively thicker in thickness thereof may preferably have an effective coefficient of thermal expansion of 7 ppm/° C. to 40 ppm/° C.
  • the effective coefficient of thermal expansion of the first structure of the semiconductor package according to an embodiment of the present invention may be too low, and thus may be out of a similar range with respect to the value of the effective coefficient of thermal expansion of an external device such as a board.
  • the effective coefficient of thermal expansion is larger than 40 ppm/° C., the effective coefficient of thermal expansion of the first structure of the semiconductor package according to an embodiment of the present invention may be too large, and thus may be out of a similar range with respect to the value of the effective coefficient of thermal expansion of an external device such as a board.
  • the wiring pattern 140 may include a wiring layer 141 .
  • the external pad 150 may be disposed to directly contact the wiring layer 141 . That is, the external pad 150 may directly contact the wiring layer 141 without a separate conductive via 142 .
  • the external pad 150 is illustrated as having a concave structure 150 b, but is not limited thereto, and it may have a pillar structure 150 a having a flat upper portion, or a first stepped structure having a lower portion protruding toward the second insulating layer 132 d.
  • the thickness 162 of the external pad 150 may be about 20 ⁇ m or more to about 50 ⁇ m or less, or about 30 ⁇ m or more to about 40 ⁇ m or less. However, it is not limited thereto, and may be formed thicker than this if necessary.
  • the semiconductor package may include a semiconductor chip 110 , a protective layer 120 , an insulating pattern 130 , a wiring pattern 140 , an external pad 150 , and an external connection terminal 160 .
  • the semiconductor chip 110 the protective layer 120 , the insulating pattern 130 , the wiring pattern 140 , the external pad 150 , and the external connection terminal 160 is the same as described above with reference to FIG. 12 , hereinafter, only features different from the semiconductor package of FIG. 12 will be described.
  • the insulating pattern 130 may include a first insulating layer 131 c, a second insulating layer 132 c stacked on the first insulating layer 131 c, and a third insulating layer 133 c stacked on the second insulating layer 132 c.
  • the first insulating layer 131 c may have a greater thickness than the second insulating layer 132 c and the third insulating layer 133 c.
  • the thickness of the third insulating layer 133 c may be about 10 ⁇ m to about 20 ⁇ m.
  • the thickness or the like of the first insulating layer 131 c and the second insulating layer 132 c is the same as described with reference to FIG. 12 .
  • the wiring pattern 140 may include a wiring layer 141 , and the external pad 150 may be disposed to directly contact the wiring layer 141 .
  • the external pad 150 is illustrated as having a concave structure 150 b, but is not limited thereto, and it may have a pillar structure 150 a having a flat upper portion, or a first stepped structure having a lower portion protruding toward the third insulating layer 133 c .
  • the external pad 150 may be formed on the opening of the third insulating layer 133 c , it may be formed up to the inside of the opening of the third insulating layer 133 c to protrude above the opening of the third insulating layer 133 c, and it may contact the upper surface of the third insulating layer 133 c.
  • the semiconductor package may include a semiconductor chip 110 , a protective layer 120 , an insulating pattern 130 , a wiring pattern 140 , an external pad 150 , and an external connection terminal 160 .
  • the insulating pattern 130 may include a first insulating layer 131 d, a second insulating layer 132 d stacked on the first insulating layer 131 d, and a third insulating layer 133 d stacked on the second insulating layer 132 d.
  • the first insulating layer 131 d and the third insulating layer 133 d may have a greater thickness than the second insulating layer 132 d.
  • the first insulating layer 131 d and the third insulating layer 133 d may be about 20 ⁇ m to about 60 ⁇ m, or about 30 ⁇ m to about 60 ⁇ m, and the thickness of the second insulating layer 132 d may be about 10 ⁇ m to about 20 ⁇ m.
  • the first insulating layer 131 d, the second insulating layer 132 d, and the third insulating layer 133 d of the semiconductor package according to an embodiment of the present invention may be formed relatively thicker than that, and in particular, the first insulating layer 131 d and the third insulating layer 133 d may be formed much thicker than the conventional one.
  • the first insulating layer 131 d, the second insulating layer 132 d, and the third insulating layer 133 d may function as a buffer against external impact, thereby further improving the reliability of the semiconductor package.
  • the wiring pattern 140 may include a wiring layer 141 and a first conductive via 142 .
  • the first conductive via 142 may be provided on the wiring layer 141 , and may extend in the first direction from the third insulating layer 133 d and may be electrically connected to the wiring layer 141 . That is, the first conductive via 142 may extend in the first direction from the third insulating layer 133 d formed thicker than the second insulating layer 132 d to the opening on the upper surface of the third insulating layer 133 d, and may electrically connect the wiring layer 141 and the external pad 150 .
  • the diameter (length in the second direction) of the first conductive via 142 may be about 5 ⁇ m to about 20 ⁇ m.
  • the first conductive via 142 may include a tapered shape or a stepped shape, etc.
  • the diameter of the region having a small cross-sectional area may be about 5 ⁇ m, and the diameter of the region having a large cross-sectional area may be about 15 ⁇ m.
  • the first conductive via 142 may have various thicknesses and diameters according to various shapes.
  • the first conductive via 142 may protrude from the upper surface of the third insulating layer 133 d.
  • the height that the first conductive via 142 protrudes from the upper surface of the third insulating layer 133 d may be about 0.1 ⁇ m or more, or about 1 ⁇ m or more, or 5 ⁇ m, or may be about 20 ⁇ m or less, or about 15 ⁇ m or less, or about 10 ⁇ m or less, but is not limited thereto.
  • the external pad 150 may contact the upper surface and sidewall of the first conductive via 142 .
  • the external pad 150 may be directly electrically connected to the wiring layer 141 .
  • the external pad 150 is shown to have a structure 150 a having a flat upper portion, but is not limited thereto, and it may have a first stepped structure having a lower portion protruding toward the second insulating layer 132 a, a concave structure 150 b, 150 c , and 150 d in which an upper portion is concave, or a second stepped structure in which the first conductive via 142 corresponds to a height protruding from the second insulating layer 132 a.
  • the semiconductor package may include a semiconductor chip 110 , a protective layer 120 , an insulating pattern 130 , a wiring pattern 140 , an external pad 150 , and an external connection terminal 160 .
  • the insulating pattern 130 may include a first insulating layer 131 d, a second insulating layer 132 d stacked on the first insulating layer 131 d, a third insulating layer 133 d stacked on the second insulating layer 132 d, and a fourth insulating layer 134 d stacked on the third insulating layer 133 d.
  • the first insulating layer 131 d and the third insulating layer 133 d may have a greater thickness than the second insulating layer 132 d and the fourth insulating layer 134 d.
  • the thickness of the fourth insulating layer 133 d may be about 10 ⁇ m to about 20 ⁇ m.
  • the thickness of the first insulating layer 131 d, the second insulating layer 132 d, and the third insulating layer 133 d may be the same as described with reference to FIG. 14 .
  • the wiring pattern 140 may include a wiring layer 141 and a first conductive via 142 .
  • the first conductive via 142 may be formed under the opening of the fourth insulating layer 134 d, or may protrude above the opening of the fourth insulating layer 134 d , or may be formed within the opening of the fourth insulating layer 134 d without protruding above the opening of the fourth insulating layer 134 d.
  • the external pad 150 is shown to have a concave structure 150 b, but is not limited thereto, and it may have a pillar structure 150 a having a flat upper portion, a first stepped structure having a lower portion protruding toward the fourth insulating layer 134 d, or a second stepped structure in which the first conductive via 142 corresponds to a height 162 protruding from the fourth insulating layer 134 d.
  • the external pad 150 may be formed on the opening of the fourth insulating layer 134 d, it may be formed up to the inside of the opening of the fourth insulating layer 134 d to protrude above the opening of the fourth insulating layer 134 d, and it may contact the upper surface of the fourth insulating layer 134 d.
  • FIGS. 16 and 17 are cross-sectional views showing enlarged periphery of external pads 150 c and 150 d having various concave structures.
  • the external pad 150 may have a structure in which a plurality of layers are stacked.
  • the external pad 150 may include a lower metal layer 151 and an upper metal layer 152 on the lower metal layer 151 .
  • the lower metal layer 151 may be formed on the wiring pattern 140 exposed through the opening of the uppermost layer of the insulating pattern 130 , and may extend along the surface of the uppermost layer of the insulating pattern 130 .
  • the lower metal layer 151 may be a seed layer or an adhesive layer for forming the upper metal layer 152 , and may include Ti, Cu, Cr, W, Ni, Al, Pd, Au, or a combination thereof, but is not limited thereto.
  • the lower metal layer 151 may be a single metal layer, but is not limited thereto, and may have a multilayer structure including a plurality of metal layers.
  • the lower metal layer 151 may include a first sub metal layer and a second sub metal layer sequentially stacked on the uppermost layer of the insulating pattern 130 and the wiring pattern 140 .
  • the first sub metal layer may include a metal material having excellent adhesion properties to the uppermost layer of the insulating pattern 130 .
  • the first sub metal layer may include Ti, but is not limited thereto.
  • the second sub metal layer may function as a seed layer for forming the upper metal layer.
  • the second sub metal layer may include Cu, but is not limited thereto.
  • the upper metal layer 152 may be provided on the lower metal layer 151 .
  • the upper metal layer 152 may be formed by a plating method using the lower metal layer 151 as a seed.
  • the upper metal layer 152 may have a pillar shape erected on the uppermost layer of the insulating pattern 130 , and may have a concave structure in which the central portion of the upper surface is depressed. If the upper metal layer 152 has a concave structure, the lower metal layer 151 may have a correspondingly stepped structure.
  • the upper metal layer 152 may include Cu or a Cu alloy, but is not limited thereto.
  • the external pad 150 may have a first stepped structure having a lower portion protruding toward the uppermost layer of the insulating pattern 130 , a concave structure 150 c and 150 d in which an upper portion is concave, or a second stepped structure in which the first conductive via 142 corresponds to a height protruding from the second insulating layer 132 a.
  • the external pad 150 may have a structure in which two or more structures among the pillar structure, the first stepped structure, the concave structure, and the second stepped structure are combined.
  • the external pad 150 may include a lower metal layer 151 and an upper metal layer 152 on the lower metal layer 151 .
  • each of the concave structures 150 c and 150 d of the external pad 150 may be divided according to a height at which the lower surface of the external pad 150 is located. That is, a first concave structure 150 b shown in FIG. 11 is a structure provided when the position of the lower surface of the external pad 150 coincides with the position of the upper surface of the uppermost layer of the insulating pattern 130 . In addition, as shown in FIG. 16 and FIG.
  • a second concave structure 150 c and a third concave structure 150 d are structures provided when the position of the lower surface of the external pad 150 is lower than the position of the upper surface of the uppermost layer of the insulating pattern 130 , that is, when the lower surface of the external pad 150 is located in the uppermost layer of the insulating pattern 130 .
  • the second concave structure 150 c may be provided on the first conductive via 142
  • the third concave structure 150 d may be provided on the wiring layer 141 while the first conductive via 142 is omitted.
  • the semiconductor package may include a semiconductor chip 110 , a protective layer 120 , an insulating pattern 130 , a wiring pattern 140 , an external pad 150 , and an external connection terminal 160 .
  • the semiconductor chip 110 the protective layer 120 , the insulating pattern 130 , the wiring pattern 140 , the external pad 150 , and the external connection terminal 160 is the same as described above, hereinafter, only features of the 11 th semiconductor package that are not described above, that is, features different from the 10 th semiconductor package 100 j will be described.
  • a protective film 131 k may be formed on the first surface of the semiconductor chip 100 . A portion of the protective film 131 k in which the chip pad 111 is formed may be opened. Of course, the protective film 131 k may be omitted if necessary.
  • the protective layer 120 may be formed to cover the first surface of the semiconductor chip 110 , and the insulating pattern 130 may be formed on one surface of the protective layer 120 covering the first surface of the semiconductor chip 110 .
  • the protective layer 120 may be formed to surround the first surface and the side surface of the semiconductor chip 110 .
  • the protective layer 120 may cover the second surface of the semiconductor chip 110 , or may not cover the second surface of the semiconductor chip 110 , if necessary.
  • the insulating pattern 130 may include a second insulating layer 132 k formed at an upper side of the protective layer, and a third insulating layer 133 k provided at an upper side of the second insulating layer.
  • the first insulating layer 131 k may be opened to expose the chip pad 111 , and the protective layer 120 and the second insulating layer 132 k may also be opened for electrical connection between the chip pad and a redistribution layer 141 .
  • a second conductive stud 148 may be formed between the redistribution layer 141 and the chip pad 111 .
  • the second conductive stud 148 may extend in a height direction of the semiconductor package and may be formed of a conductive material such as copper to electrically connect the redistribution layer 141 and the chip pad 111 .
  • the thickness of the protective layer 120 or the insulating pattern 130 surrounding the semiconductor chip 110 may be formed thicker, whereby the protective effect of the semiconductor chip 110 may be further increased.
  • the redistribution layer 141 may be positioned between the second insulating layer 132 k and the third insulating layer 133 k. And, a portion of the third insulating layer 133 k may be opened to position the external pad 150 , and an external connection terminal 160 may be provided at an upper side of the external pad 150 .
  • the wiring pattern 140 may include a wiring layer 141 and a first conductive via 144 .
  • a second conductive stud 148 may be formed between the protective film 131 k and the conductive via 144 .
  • a conductive via 144 may be further formed between the wiring layer 141 and the second conductive stud 148 by extending in the vertical direction by the thickness of the second insulating layer 132 k.
  • the conductive via 144 may be formed to penetrate the second insulating layer 132 k, and the second conductive stud 148 may be formed to pass through the protective layer 120 and the protective film 131 k formed on the first surface of the semiconductor chip 110 to be electrically connected to the chip pad 111 .
  • the second insulating layer 132 k may be deleted if necessary. As shown in FIG. 19 , if the second insulating layer 132 k is deleted, the redistribution layer 141 may directly contact the second conductive stud 148 , and in this case, the conductive via 144 may be deleted.
  • the external connection terminal 160 provided on the external pad 150 may be formed by collapsing so as to be in contact with one surface and a side surface of the external pad 150 facing toward the upper side of the semiconductor package.
  • the external connection terminal 160 provided on the external pad 150 may be formed to contact one surface and a side surface of the external pad 150 .
  • a wetting layer 155 (a cover layer or a preliminary metal layer, etc.) having excellent wettability may be formed so that the external connection terminal 160 is well adhered.
  • the wetting layer 155 may be formed of gold (Au) or an alloy component including gold by an electroless gold plating method.
  • the wetting layer 155 may be Au, Pd, Ni, Cu, Sn, or an alloy thereof.
  • it may be made of Ti, Cr, W, or Al.
  • a portion of the external pad 150 protruding upward than the insulating pattern 140 may be formed to have a thickness of 30 ⁇ m or more.
  • the external pad 150 may be formed so that one surface thereof is flat or has a concave structure.
  • a lower portion of the external pad 150 may be formed to have a protruding structure protruding toward the redistribution layer 141 .
  • FIG. 20 are views showing from formation of a second conductive stud 148 on a wafer in a state before being cut into semiconductor chips 110 to cutting them into individual semiconductor chips 110 .
  • a wafer 5 before a plurality of semiconductor chips 110 are cut is prepared.
  • One or more chip pads 111 are formed on the wafer at a portion corresponding to each semiconductor chip 110 .
  • a protective film 138 may be patterned on one surface of the wafer 5 .
  • a seed layer may be formed, and then, after forming a mask pattern, the portion corresponding to the chip pad 111 may be opened again.
  • a second conductive stud 148 may be formed of a material such as copper, and the mask pattern and the seed layer may be removed.
  • the other surface of the wafer 5 may be ground as shown in FIG. 20( d ) , and as shown in FIG. 20( e ) , individual semiconductor chips 110 may be manufactured by sawing the wafer on which the second conductive stud 148 is formed into individual semiconductor chips 110 .
  • the protective film 138 may be omitted if necessary.
  • FIG. 21 are diagrams showing the manufacturing of a fan-out type wafer level package (WLP) using the individual semiconductor chips manufactured by the above-described method.
  • WLP fan-out type wafer level package
  • a plurality of the semiconductor chips 110 having conductive posts formed thereon may be disposed on a carrier 200 .
  • the second conductive stud 148 of the semiconductor chip 110 may be disposed to face upward.
  • a protective layer 120 may be molded on the carrier 200 on which the semiconductor chip 110 is disposed so that the semiconductor chip 110 and the second conductive stud 148 are buried in the protective layer 120 .
  • the protective layer 120 is molded, as shown in FIG. 21( c ) , one surface of the molded protective layer 120 may be ground to expose the second conductive stud 148 to the outside.
  • a redistribution layer 141 , an external pad 150 , and an external connection terminal 160 may be disposed and formed on one surface of the protective layer 120 in which the second conductive stud 148 is exposed.
  • a wetting layer 155 may be formed on the external pad 150 by an electroless plating method to improve wettability.
  • the external pad 150 may include a structure in which a plurality of layers, such as a lower metal layer 151 and an upper metal layer 152 are stacked.
  • the lower metal layer 151 may be a seed layer or an adhesive layer for forming the upper metal layer 152 , and may be formed of Ti, Cu, Cr, W, Ni, Al, Pd, Au, Sn, or a combination thereof.
  • the lower metal layer 151 may have a single metal layer or a multilayer structure including a plurality of metal layers.
  • the lower metal layer 151 may include a first sub metal layer and a second sub metal layer sequentially stacked on the uppermost layer of the insulating pattern 130 and the wiring pattern 140 .
  • the first sub metal layer may include a metal material having excellent adhesion properties to the uppermost layer of the insulating pattern 130 .
  • the first sub metal layer may include Ti, Cu, Cr, W, Ni, Al, Pd, Au, and Sn, but is not limited thereto.
  • the second sub metal layer may function as a seed layer for forming the upper metal layer.
  • the second sub metal layer may include Cu, but is not limited thereto.
  • the upper metal layer 152 may be provided on the lower metal layer 151 .
  • the upper metal layer 152 may be formed by a plating method using the lower metal layer 151 as a seed.
  • the upper metal layer 152 may have a pillar shape erected on the uppermost layer of the insulating pattern 130 , and may have a concave structure in which the central portion of the upper surface is depressed. If the upper metal layer 152 has a concave structure, the lower metal layer 151 may have a correspondingly stepped structure.
  • a wetting layer 155 may be formed on the upper metal layer 152 by electroless plating a metal having excellent wettability to exhibit excellent adhesion to the external connection terminal 160 .
  • the upper metal layer 152 may include Cu, Au, Sn, or a combination alloy thereof, but is not limited thereto.
  • the external pad 150 may have various shapes, such as a planar shape or a concave shape, as shown in FIGS. 6 to 19 described above.
  • the external connection terminal 160 may have a shape that completely covers a portion protruding above the upper surface of the external pad 150 , that is, a surface contact type.
  • the external connection terminal 160 may cover the upper surface and the sidewall of the protrusion portion of the external pad 150 .
  • the sidewall of the protrusion portion may refer to a side surface portion of the protrusion portion protruding above the upper surface of the uppermost layer of the insulating pattern 130 .
  • a surface contact type external connection terminal 160 may be formed by proceeding with the reflow process in a state in which a metal material layer having excellent wettability (a wetting layer 155 ) is formed on the external pad 150 to enhance the flowability of the external connection terminal 160 .
  • a step of sawing the protective layer 120 on which the redistribution layer 141 , the external pad 150 , and the external connection terminal 160 are formed, in units of each individual semiconductor chip 110 may be performed to manufacture an individual semiconductor package 100 k.
  • the carrier 200 may be removed before or after the protective layer 120 is sawed.
  • the above-described manufacturing method is described based on the FOWLP method, it may also be applied to a panel level package (PLP) method.
  • PLP panel level package
  • a circular carrier is used as the carrier 200
  • a quadrangular-shaped carrier may be applied instead of the circular carrier.
  • a plurality of semiconductor chips 110 having conductive posts formed thereon may be disposed on a quadrangular carrier 200 in (a) of FIG. 21 , and as shown in (b) and (c) of FIG. 21 , after the protective layer 120 is molded on the carrier 200 , the protective layer may be ground to expose the second conductive stud to the outside.
  • the carrier 200 may be attached with a protective film, and on the upper side thereof, as shown in FIG. 21( d ) , a redistribution layer 141 , an external pad 150 , and an external connection terminal 160 may be disposed and formed on one surface of the protective layer 120 in which the second conductive stud 148 is exposed.
  • a wetting layer may be formed on the external pad 150 by an electroless gold plating method to improve wettability.
  • an individual semiconductor package may be manufactured by removing the carrier 200 and sawing the semiconductor package.
  • the carrier 200 may be formed of various materials such as Glass Fiber Substrate (GFS), PCB, Glass, EMC, Ceramic, Basalt, Epoxy, PI, and metal.
  • GFS Glass Fiber Substrate
  • PCB PCB
  • Glass EMC
  • Ceramic Ceramic
  • Basalt Epoxy
  • Epoxy PI
  • metal metal
  • the carrier 200 may have a square shape of various sizes, such as width x length 300 ⁇ 300 mm or 600 ⁇ 600 mm. Alternatively, it is not necessarily square, and may be a rectangle having different widths and lengths as needed.
  • a plurality of carriers 200 may be sequentially arranged to form a carrier having a larger size.
  • primary molding may be performed, and after placing a plurality of molding bodies on a large carrier, secondary molding may be performed, and after grinding and redistributing are performed, sawing into each individual chip unit may be possible.
  • FIG. 22 are diagrams showing the manufacturing of a fan-out type wafer level package (WLP) in a face down method using the individual semiconductor chips manufactured by the above-described method.
  • WLP fan-out type wafer level package
  • a plurality of the semiconductor chips 110 having the second conductive stud 148 formed thereon may be disposed on a carrier 200 .
  • the second conductive stud 148 of the semiconductor chip 110 may be disposed to face the carrier 200 at the lower side.
  • a protective layer 120 may be molded on the carrier on which the semiconductor chip 110 is disposed so that the semiconductor chip 110 and the second conductive stud 148 are buried in the protective layer 120 .
  • the end of the second conductive stud 148 since the end of the second conductive stud 148 is in contact with the carrier 200 , the end of the second conductive stud 148 may form the same plane as the protective layer 120 without being buried in the protective layer 120 . Accordingly, as shown in FIG. 22( c ) , when the carrier 200 is removed, the end of the second conductive stud 148 may be exposed while forming the same plane as the protective layer 120 .
  • a redistribution layer 141 , an external pad 150 , and an external connection terminal 160 may be disposed and formed on one surface of the protective layer 120 in which the second conductive stud 148 is exposed.
  • a wetting layer may be formed on the external pad 150 by an electroless gold plating method to improve wettability.
  • a step of sawing the protective layer 120 on which the redistribution layer 141 , the external pad 150 , and the external connection terminal 160 are formed, in units of each individual semiconductor chip may be performed to manufacture an individual semiconductor package 100 k.
  • semiconductor package 110 semiconductor chip 111: chip terminal 120: protective layer 130: insulating pattern 131: first insulating layer 132: second insulating layer 133: third insulating layer 140: wiring pattern 141: wiring layer 142: first conductive via 143: second conductive via 150: external pad 160: external connection terminal

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Geometry (AREA)
  • Ceramic Engineering (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)

Abstract

A semiconductor package and manufacturing method is disclosed. The semiconductor package includes a semiconductor chip having a plurality of chip terminals formed on one surface thereof, a redistribution layer electrically connected to the chip terminal and extending outwardly from a side surface of the chip to electrically connect the chip terminal to an external device, an external pad provided on the insulating layer, formed to be in contact with the redistribution layer exposed from the insulating layer to be electrically connected to the redistribution layer, and exposed to an upper side of the insulating layer; an external connection terminal formed on the external pad and contacting an external device, a protective layer formed to surround at least one surface and a side surface of the chip, and an insulating layer formed to cover the redistribution layer.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This application claims priority to and the benefit of Korean Application No. 10-2021-0054503, filed Apr. 27, 2021.
  • FIELD OF THE DISCLOSURE
  • The present invention relates to a semiconductor package and manufacturing method thereof.
  • BACKGROUND
  • In general, semiconductor chips manufactured by performing various semiconductor processes on a wafer are subjected to a semiconductor package process to manufacture a semiconductor package. Recently, in order to reduce the production cost of a semiconductor package, a wafer level package technology has been proposed that performs a semiconductor package process at the wafer level and individualizes the wafer level semiconductor package that has undergone the semiconductor package process into individual units.
  • FIG. 1 is a view illustrating a difference in thermal expansion between a semiconductor package and a board.
  • Meanwhile, referring to FIG. 1, after the semiconductor package 10 is manufactured, it may be mounted on an external device using its own external connection terminal 11. For example, the external device may be a board 20 or the like, such as a printed circuit board or the like. In this case, a difference in thermal expansion (CTE1≠CTE2, where CTE is an abbreviation of Coefficient Of Expansion and refers to a coefficient of thermal expansion) occurring between the semiconductor package 10 and the board 20 may affect the external connection terminal 11 of the semiconductor package 10. In particular, when repeated deformation occurs between the semiconductor package 10 and the board 20 due to the difference in thermal expansion, the conventional semiconductor package 10 has a problem in that its external connection terminal 11 may eventually crack as fatigue is increased.
  • Since the total cost of semiconductors is rising and the limit to lowering the cost of the front-end process has been reached, there is a growing need to lower costs in packaging, which is a post-end process.
  • In addition, the number of input/output (I/O) terminals required for semiconductors is increasing due to the high performance of various mobile devices.
  • In such a situation, a wafer level package technology that performs a semiconductor package process at the wafer level and separates the wafer level semiconductor package that has undergone the semiconductor package process into individual units is attracting attention. Fan-out wafer level package (FOWLP) or fan-out panel level package (FOPLP) is a technology that directly mounts the chip 10 on a wafer rather than a PCB. According to FOWLP and FOPLP, the manufacturing cost of the semiconductor package can be lowered as much as the PCB is not used, and it is possible to miniaturize the semiconductor package, improve the heat dissipation function, reduce power consumption, improve the frequency band, and the like.
  • FOWLP or FOPLP reconstructs individual dies in wafer form on a carrier and molds them, and then implement them as a package through a fan-out-type redistribution (RDL) process and bumping process, etc.
  • Meanwhile, in recent years, a process of increasing the size of a semiconductor package to include a larger number of dies is progressing, and a method for manufacturing a semiconductor package capable of achieving such an increase in size more easily and quickly is required.
  • SUMMARY
  • In order to solve the problems of the related art as described above, the present invention is directed to providing a semiconductor package having a structure capable of reducing a difference in thermal expansion with a board to reduce the occurrence of cracks in an external connection terminal thereof, and a method for manufacturing the same.
  • In addition, the present invention is directed to providing a method for manufacturing a semiconductor package capable of manufacturing a semiconductor package more quickly and conveniently.
  • The technical problems of the present invention are not limited to the technical problems mentioned above, and other technical problems not mentioned will be clearly understood by those of ordinary skill in the art from the following description.
  • According to one aspect of the present invention, disclosed is a semiconductor package, comprising: a semiconductor chip having a plurality of chip terminals formed on one surface thereof; a redistribution layer electrically connected to the chip terminal and for electrically connecting the chip terminal to an external device; an insulating layer formed to cover the redistribution layer; an external pad provided on the insulating layer and formed to be electrically connected to the redistribution layer; and an external connection terminal formed on the external pad and contacting an external device; wherein the external connection terminal is formed to be in contact with one surface and a side surface of the external pad exposed to the outside of the insulating layer.
  • A wetting layer having excellent wettability may be formed on one surface and a side surface of the external pad in contact with the external connection terminal.
  • The wetting layer may be made of at least one or more of Au, Pd, Ni, Cu, Sn, Ti, Cr, W, and Al.
  • The external connection terminal may be formed to be in surface contact with an upper surface of the insulating layer on the outer periphery of a side surface of the external pad.
  • The present invention may further include a conductive post extending in a vertical direction, to electrically connect the chip terminal and the redistribution layer.
  • The present invention may further include a protective layer formed to cover the one surface of the semiconductor chip, wherein the conductive post penetrates the protective layer covering the one surface of the semiconductor chip to electrically connect the chip terminal and the redistribution layer.
  • According to another aspect of the present invention, disclosed is a method for manufacturing a semiconductor package, comprising: forming a protective film on one surface of a wafer before a plurality of semiconductor chips are cut, and exposing chip pads of the semiconductor chips; forming conductive posts on the exposed chip pads; and sawing the wafer on which the conductive posts are formed into individual semiconductor chips.
  • The present invention may further include disposing a plurality of the individual semiconductor chips on which the conductive posts are formed, on a carrier; molding a protective layer on the carrier on which the semiconductor chip is disposed; exposing the conductive post of the semiconductor chip molded to the protective layer; forming a redistribution layer, an external pad, and an external connection terminal on one surface of the protective layer on which the conductive post is exposed; and sawing the protective layer on which the redistribution layer, the external pad, and the external connection terminal are formed, in units of each individual semiconductor chip.
  • The disposing a plurality of semiconductor chips on the carrier may be a step of disposing a plurality of semiconductor chips on the carrier such that the conductive post faces upward, and the exposing the conductive post of the semiconductor chip molded to the protective layer may be a step of grinding one surface of the molded protective layer so that the conductive post is exposed to the outside.
  • The disposing a plurality of semiconductor chips on the carrier may be a step of disposing the conductive post in contact with the carrier, and the exposing the conductive post of the semiconductor chip molded to the protective layer may be a step of removing the carrier to expose the conductive post after the protective layer is molded.
  • The disposing a plurality of semiconductor chips on which the conductive posts are formed, on a carrier may be a step of disposing a plurality of small panels on which a plurality of semiconductor chips are disposed, on the carrier, the small panel having a size smaller than that of the carrier.
  • The disposing a plurality of semiconductor chips on which the conductive posts are formed, on a carrier may be a step of disposing a plurality of molding bodies on which a plurality of semiconductor chips are molded on the carrier.
  • The disposing a plurality of the individual semiconductor chips on which the conductive posts are formed, on a carrier may be a step of disposing a plurality of molding bodies formed on a small panel on which a plurality of semiconductor chips are disposed, on the carrier, the small panel having a size smaller than that of the carrier.
  • The carrier and the small panel may have a circular or quadrangular shape.
  • A wetting layer may be formed on one surface of the external pad in contact with the external connection terminal by an electroless plating method.
  • The external connection terminal may be disposed on one surface of the external pad on which the wetting layer is formed, and may be formed to be in contact with one surface and a peripheral side surface of the external pad and a side surface of the external pad.
  • According to the semiconductor package and the manufacturing method thereof of the present invention, it has a structure capable of reducing a difference in thermal expansion with an external device such as a board, thereby capable of reducing the occurrence of cracks in the external connection terminal.
  • In addition, according to the present invention, the structure formed by the insulating pattern and the external pad has a structure having a thickness suitable for stress dispersion, thereby improving the stress dispersion effect.
  • In addition, according to the present invention, a larger-sized semiconductor package can be manufactured in a shorter time, so that productivity can be improved. In addition, according to the present invention, adhesion to the redistribution layer is improved, so that durability may be improved.
  • The effects of the present invention are not limited to the effects mentioned above, and other effects not mentioned will be clearly understood by those of ordinary skill in the art from the description of the claims.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The summary set forth above as well as the detailed description of the preferred embodiments of the present application set forth below may be better understood when read in conjunction with the accompanying drawings. Preferred embodiments are shown in the drawings for the purpose of illustrating the present invention. It should be understood, however, that the present application is not limited to the precise arrangement and means illustrated.
  • FIG. 1 is a view illustrating a difference in thermal expansion between a semiconductor package and a board.
  • FIG. 2 is a cross-sectional view of a first semiconductor package 100 a according to an exemplary embodiment of the present invention.
  • FIG. 3 is a cross-sectional view of a second semiconductor package 100 b according to an exemplary embodiment of the present invention.
  • FIG. 4 is a cross-sectional view of a third semiconductor package 100 c according to an exemplary embodiment of the present invention.
  • FIG. 5 is a cross-sectional view of a fourth semiconductor package 100 d according to an exemplary embodiment of the present invention.
  • FIGS. 6 to 17 are cross-sectional views illustrating structures of various types of wiring patterns, external pads, and external connection terminals combined with exemplary embodiments of the present invention.
  • FIGS. 18 to 19 are cross-sectional views illustrating various types of semiconductor packages that may be modified according to an exemplary embodiment of the present invention.
  • FIG. 20 is cross-sectional views illustrating a state in which a semiconductor chip is produced from a wafer.
  • FIG. 21 is cross-sectional views sequentially illustrating a method of manufacturing a semiconductor package in a face-up method.
  • FIG. 22 is cross-sectional views sequentially illustrating a method of manufacturing a semiconductor package in a face-down method.
  • DETAILED DESCRIPTION OF THE EMBODIMENTS
  • The present invention and method of accomplishing the same may become more apparent through the following detailed description in relation to the accompanying drawings, and accordingly, those of ordinary skill in the art will be able to easily implement the technical idea of the present invention. In addition, in describing the present invention, when it is determined that a detailed description of a related known technology may unnecessarily obscure the subject matter of the present invention, the detailed description will be omitted.
  • The terms used in this specification are for the purpose of describing embodiments only and are not intended to be limiting the present invention. In this specification, the singular form also includes the plural form in some cases, unless specifically specified in the phrase. In this specification, terms such as “include”, “comprise”, “provide” or “have” do not exclude the presence or addition of one or more other elements other than elements mentioned.
  • In this specification, the terms such as “or” and “at least one” may represent one of the words listed together or a combination of two or more. For example, “A or B” and “at least one of A and B” may include only one of A or B, or may also include both A and B.
  • In this specification, descriptions according to “for example”, etc. may not exactly match the information presented, such as the recited properties, variables, or values, and effects such as modifications, including tolerances, measurement errors, limits of measurement accuracy, and other commonly known factors should not limit the modes for carrying out the invention according to the various exemplary embodiments of the present invention.
  • In this specification, when an element is described as being “connected” or “linked” to another element, it will be understood that it may be directly connected or linked to the other element, but intervening elements may also be present. On the other hand, when an element is referred to as being “directly connected” or “directly linked” to another element, it will be understood that there are no intervening elements present.
  • In this specification, when an element is described as being “on” or “adjacent to” another element, it will be understood that it may be directly “on” or “connected to” the other element, but intervening elements may also be present. On the other hand, when an element is described as being “directly on” or “directly adjacent to” another element, it will be understood that there are no intervening elements present. Other expressions describing the relationship between the elements, for example, ‘between’ and ‘directly between’, and the like can be construed similarly.
  • In this specification, terms such as “first” and “second” may be used to describe various elements, but, the above elements should not be limited by the terms above. In addition, the above terms should not be construed as limiting the order of each component, and may be used for the purpose of distinguishing one element from another. For example, a “first element” may be named as a “second element” and similarly, a “second element” may also be named as a “first element.”
  • Unless otherwise defined, all terms used in this specification may be used with meanings commonly understood by those of ordinary skill in the art. In addition, terms defined in a commonly used dictionary are not interpreted ideally or excessively unless explicitly and specifically defined.
  • Hereinafter, preferred embodiments according to the present invention will be described in detail with reference to the accompanying drawings.
  • However, the z-axis direction, which is a direction in which each component of a semiconductor package 100 according to various embodiments of the present invention is stacked, is referred to as a “first direction”, and an x-axis direction or a y-axis direction, which is a direction in a plane perpendicular to the z-axis, is referred to as a “second direction”. In addition, for each component of a semiconductor package 100 according to various embodiments of the present invention, the length in the first direction (z-axis direction) is referred to as “thickness”, “depth” or “height” of the component, and each length in the second direction (x-axis direction and y-axis direction) is referred to as “breadth” and “width” of the component.
  • The semiconductor package 100 according to various embodiments of the present invention may be a wafer level package (WLP), a fan-out wafer level package (FOWLP), or a panel level package (PLP), but is not limited thereto.
  • Referring to FIGS. 2 to 19, the semiconductor package 100 according to various embodiments of the present invention may include a semiconductor chip 110, a protective layer 120, an insulating pattern 130, a wiring pattern 140, an external pad 150, and an external connection terminal 160. The semiconductor package 10 may be mounted on an external device using its own external connection terminal 160. For example, the external device may be a board 20 or the like, such as a printed circuit board or the like.
  • The semiconductor chip 110 may include a plurality of individual devices of various types. For example, a plurality of individual devices may include photoelectronic devices such as microelectronic devices, CMOS transistors (complementary metal-oxide semiconductor transistor), MOSFET (metal-oxide semiconductor field effect transistor), system LSI (large scale integration), and CIS (CMOS imaging sensor), MEMS (micro-electro-mechanical system), elastic wave filter devices, active devices, passive devices, etc., but are not limited thereto.
  • The semiconductor chip 110 may be a memory semiconductor chip. For example, the memory semiconductor chip may be a volatile memory semiconductor chip such as DRAM (Dynamic Random Access Memory) or SRAM (Static Random Access Memory), or a nonvolatile memory semiconductor chip such as PRAM (Phase-change Random Access Memory), MRAM (Magneto-resistive Random Access Memory), FeRAM (Ferroelectric Random Access Memory) or RRAM (Resistive Random Access Memory), but is not limited thereto.
  • The semiconductor chip 110 may be a logic chip. For example, the logic chip may be a CPU (Central Processor Unit), MPU (Micro Processor Unit), GPU (Graphic Processor Unit) or AP (Application Processor), but is not limited thereto.
  • In FIGS. 2 to 5 and the like, the semiconductor package 100 is illustrated as including one semiconductor chip 110, but the semiconductor package 100 may include a plurality of semiconductor chips 110. The plurality of semiconductor chips 110 included in the semiconductor package 100 may be the same type of semiconductor chips or different types of semiconductor chips. In addition, the semiconductor package 100 may be a system in package (SIP) in which different types of semiconductor chips are electrically connected to each other to operate as a single system.
  • The width and breadth of the semiconductor chip 110 may be about 2 mm to about 10 mm. More specifically, the width and breadth of the semiconductor chip 110 may be about 4 mm to about 7 mm. However, the width and breadth of the semiconductor chip 110 are not limited thereto, and may have more various values. In addition, the thickness of the semiconductor chip 110 may be about 100 μm to about 400 μm. More specifically, the thickness of the semiconductor chip 110 may be about 150 μm to about 350 μm. However, the thickness of the semiconductor chip 110 is not limited thereto, and may have more various values.
  • The semiconductor chip 110 may include a first surface and a second surface opposite to the first surface. A chip terminal (or referred to as a “chip pad”) 111 may be formed on the first surface of the semiconductor chip 110. The chip terminal 111 may be electrically connected to a plurality of individual devices of various types formed on the semiconductor chip 101. The chip terminal 111 may have a thickness between about 0.5 μm and about 1.5 μm. However, the thickness of the chip terminal 111 is not limited thereto, and may have more various values.
  • The chip terminal 111 may input/output input/output signals of the semiconductor chip 110. That is, the chip terminal 111 may be electrically connected to the integrated circuit of the semiconductor chip 110 to extend the function of the semiconductor chip 110 to the outside. For example, the chip terminal 111 may be made of a metal having a low specific resistance such as aluminum or copper, but is not limited thereto. In FIG. 2 and the like, it is illustrated that there are two chip terminals 111, but the number of chip terminals 111 is not limited thereto, and may be a larger number.
  • The protective layer 120 is a layer including a non-conductive material, and may be provided on the second surface of the semiconductor chip 110, may be provided to surround the side surface and the second surface of the semiconductor chip 110, or may be provided to surround the side surface, the first surface, and the second surface of the semiconductor chip 110. The protective layer 120 may be a layer to be formed to block the semiconductor chip 110 from a harmful environment. For example, the protective layer 120 may include various oxides or polymer materials, but is not limited thereto. The protective layer 120 may have a thickness of about 15 μm to about 30 μm on the second surface of the semiconductor chip 110. However, the thickness of the protective layer 120 is not limited thereto, and may have more various values. In addition, the protective layer 120 may be formed of a plurality of layers 120 a and 120 b.
  • The insulating pattern 130 have a structure including a non-conductive material, and may be provided on the first surface or the protective layer 120 of the semiconductor chip 110, and may surround the periphery of the wiring pattern 140 to prevent an unnecessary electrical short circuit. In particular, in FIGS. 2 to 3, although it is illustrated that the insulating layer 130 is formed directly on the semiconductor chip 110, but it is not limited thereto. That is, the insulating layer 130 may be provided on the protective layer 120 as shown in FIGS. 4 and 5, and in this case, the protective layer 120 may be provided between the semiconductor chip 110 and the insulating layer 130. In addition, the insulating layer 130 may be provided on the first surface and the protective layer 120 of the semiconductor chip 110.
  • The insulating pattern 130 may have a structure in which a plurality of insulating layers are stacked. That is, in the semiconductor package 100 according to various embodiments of the present invention, the insulating pattern 130 may include a first insulating layer 131 and a second insulating layer 132 which are sequentially stacked. In addition, in the semiconductor package according to various embodiments of the present invention, the insulating pattern 130 may include a plurality of sequentially stacked insulating layers.
  • At least any one layer of each insulating layer, particularly a layer formed relatively thick (for example, about 20 μm or more or about 30 μm or more) may contribute to improvement of the effective coefficient of thermal expansion of a first structure by its constituent material or its thickness. In this case, the first structure refers to a structure formed by the semiconductor chip 110, the protective layer 120, and the insulating pattern 130, but further include the wiring pattern 140 or may exclude the protective layer 120.
  • That is, by having a first thickness in a range where at least one of the respective insulating layers is thicker than the other layers, the effective coefficient of thermal expansion of the first structure may be further increased than when the corresponding insulating layer has a thickness smaller than the first thickness. In addition, by including a specific material of the insulating layer, the effective coefficient of thermal expansion of the first structure may be further increased than when the corresponding insulating layer does not include the specific material. However, a detailed description of the increase in the effective coefficient of thermal expansion of the first structure according to the constituent material or thickness of the corresponding insulating layer will be described later.
  • Each insulating layer may protect the wiring pattern 140 by preventing external physical/chemical damage to the wiring pattern 140, and may function as a buffer against external impact. For example, each insulating layer may be made of an insulating polymer, an epoxy, a silicon oxide film, a silicon nitride film or a combination thereof. Alternatively, each insulating layer may be made of a metal, a non-photosensitive material and/or a photosensitive material, respectively. For example, the insulating polymer may include a general-purpose polymer such as PMMA (Polymethylmethacrylate), PS (Polystyrene), and PBO (Polybenzoxazole), an acrylic based polymer, an imide based polymer, an aryl ether based polymer, an amide based polymer, a fluorine based polymer, a p-xylene based polymer, a vinyl alcohol based polymer, a polymer derivative having a phenolic group, or a combination thereof, and the like.
  • Each insulating layer may be made of a different material. For example, one insulating layer may be made of a non-photosensitive material, for example, non-photosensitive polyimide, and the other insulating layer may be made of a photosensitive material, for example, photosensitive polyimide. Alternatively, at least two of each insulating layer may be made of the same material. For example, at least two insulating layers may be made of non-photosensitive polyimide, or may be made of photosensitive polyimide.
  • At least any one layer of each insulating layer, particularly a layer formed relatively thick compared to other layers, may be made of a non-photosensitive material. In this case, a conductive via can be more easily formed in the corresponding insulating layer, particularly in the corresponding thick insulating layer, without a patterning process (increasing manufacturing cost) for the photosensitive material layer through the exposure and development process for the photosensitive material layer. For example, after forming a post through plating, by forming an insulating layer and performing grinding, a conductive via may be formed in the corresponding insulating layer. Accordingly, the insulating layer may be formed thickly, so that it is possible to implement a buffer function and to improve the effective coefficient of thermal expansion of the first structure, which will be described later, and the like, and as well as to reduce manufacturing cost. A layer formed to be relatively thin (e.g., less than about 20 μm in thickness) of each insulating layer may be made of a photosensitive material or a non-photosensitive material.
  • However, the material of each insulating layer is not limited to the described above, and may be made of more various materials.
  • The coefficient of thermal expansion (CTE) of each insulating layer may be different from each other, or at least two may be the same. For example, the coefficient of thermal expansion of any one insulating layer may be greater than, less than, or equal to the coefficient of thermal expansion of the other one insulating layer.
  • At least any one layer of each insulating layer, particularly a layer formed relatively thick compared to other layers, may include a plurality of fillers. In this case, the filler is a particle having a smaller diameter than the thickness of the insulating layer, and increases the coefficient of thermal expansion of the insulating layer, so that the effective coefficient of thermal expansion of the first structure may be improved. That is, the filler may be preferably a material having a coefficient of thermal expansion higher than that of the main insulating material constituting the insulating layer. For example, the filler may have a diameter of about 1/4 or less of the thickness of the insulating layer, and the diameter may be about 5 μm or less, but is not limited thereto. However, when it has a larger diameter than the above limitation, the filler may have a plurality of concave structures in which the surface of the insulating layer is too rough, thereby reducing properties such as surface adhesion of the insulating layer. For example, the filler may include silica (SiO2) and the like, but is not limited thereto.
  • In addition, when at least any one layer of each insulating layer, particularly a layer formed relatively thick includes the non-photosensitive material and the filler together, the effective coefficient of thermal expansion of the first structure can be improved more effectively.
  • Surface roughness of each insulating layer in contact with each other may be different from each other. For example, the surface roughness of the upper surface of the other insulating layer in contact with the lower surface of any one insulating layer may be different from the surface roughness of the lower surface of any one insulating layer.
  • Furthermore, the surface roughness of each insulating layer may be different from each other. For example, the surface roughness of the upper surface of one insulating layer may be greater or smaller than the surface roughness of the upper surface or lower surface of the other insulating layer.
  • However, the roughness of the upper surface or the lower surface of each insulating layer is not limited to the above-described ones, and may have more various roughness.
  • Specific shapes, effects, etc. of each insulating layer will be described in more detail according to various embodiments to be described later.
  • The wiring pattern 140 has a structure including a conductive material, and may transmit an electric signal of the chip terminal 111 or an external device (e.g., a board), etc. in the first direction and the second direction. That is, the wiring pattern 140 may be electrically connected to the chip terminal 111 of the semiconductor chip 110 and may provide an electrical connection path for electrically connecting the chip terminal 111 to an external device. In this case, the wiring pattern 140 may be provided in the insulating pattern 130 and may include various structures depending on the thickness of each insulating layer. That is, the wiring pattern 140 may include a wiring layer 141 capable of transmitting an electric signal in the second direction by extending in the second direction (i.e., horizontal direction) in the insulating pattern 130 toward the outside of the semiconductor chip 110; and a first conductive via 142, a second conductive via 143, and a third conductive via 144 capable of transmitting an electric signal in the first direction by extending in the first direction (i.e., vertical direction) in the insulating pattern 130. Of course, the wiring layer 141 may also include a portion for transmitting an electric signal in the first direction. In addition, each of the conductive vias 142, 143, and 144 may electrically connect the wiring layer 141 and the chip terminal 111, electrically connect one wiring layer 141 and the other wiring layer 141, or electrically connect the wiring layer 141 and the external pad 150.
  • For example, the wiring pattern 140 may be made of W, Cu, Zr, Ti, Ta, Al, Ru, Pd, Pt, Co, Ni, or a combination thereof. At least two of the wiring layer 141, the first conductive via 142, and the second conductive via 143 may be made of the same material or a combination of the same material. Alternatively, at least two of the wiring layer 141, the first conductive via 142, the second conductive via 143, the third conductive via 144, and a first conductive stud 145 may be made of the same material or a combination of the same material.
  • In particular, a conductive via (for example, the first conductive via 142) formed on an uppermost layer of an insulating pattern 130, that is, on an uppermost layer of the insulating pattern 130, when the second insulating layer 132, the third insulating layer 133 or the fourth insulating layer 134 is a layer formed relatively thick (for example, about 20 μm or more or about 30 μm or more in thickness), may be formed to protrude from the uppermost layer of the insulating pattern 130.
  • In addition, a first conductive stud 145 may be further included. As shown in FIG. 5, the first conductive stud 145 may be formed when the wiring pattern 140 and the chip terminal 111 are spaced apart from each other, such as when the protective layer 120 covers the first surface of the semiconductor chip 110. That is, in this case, the first conductive stud 145 may be formed on a portion of the protective layer 120 on the first surface of the semiconductor chip 110 to electrically connect the chip terminal 111 of the semiconductor chip 110 and the remaining wiring layer 141 or the conductive vias 142 and 143. Of course, even if the protective layer 120 does not completely cover the first surface of the semiconductor chip 110, when the wiring pattern 140 and the chip terminal 111 are spaced apart from each other, the first conductive stud 145 may be formed.
  • Specific shapes, effects, etc. of the wiring layer 141 and the conductive vias 142 and 143 will be described in more detail according to various embodiments to be described later.
  • The external pad 150 is provided on the insulating pattern 130 and may function as a pad on which the external connection terminal 160 is disposed. That is, the external connection terminal 160 may be disposed on the external pad 150. The external pad 150 may be connected to the wiring pattern 140 through an opening of an uppermost layer of the insulating pattern 130, and may be electrically connected to the chip terminal 111 of the semiconductor chip 110 through the wiring pattern 140. That is, the external pad 150 may be electrically connected to the wiring pattern 140 and the external connection terminal 160, respectively, so that the connection reliability of the external connection terminal 160 can be improved. To this end, the external pad 150 may provide a wetting layer (a cover layer or a preliminary metal layer, etc.) with excellent wettability so that the external connection terminal 160 is well adhered, and may prevent penetration of the external connection terminal 160, and various types of configurations are possible.
  • For example, the external pad 150 may be an under bump metal layer (UBM), and may include a metal material having excellent conductivity, such as Cu, Al, Cr, W, Ni, Ti, Au, Ag, or a combination thereof, but is not limited thereto.
  • In addition, the wetting layer may be Au, Pd, Ni, Cu, Sn, or an alloy thereof. Alternatively, it may be Ti, Cr, W, or Al.
  • The external pad 150 may have a pillar shape 150 a with a flat upper portion erected on the uppermost layer of the insulating pattern 130, and may have concave structures 150 b, 150 c, and 150 d in which the central portion of the upper surface thereof is recessed (that is, concave). However, when the uppermost layer of the insulating pattern 130 is a layer formed relatively thick (for example, about 20 μm or more or about 30 μm or more in thickness), without a separate external pad 150, the first conductive via 142 formed to protrude from the uppermost layer of the insulating pattern 130 may replace the external pad 150 to perform the function of the external pad 150 described above or to be described later.
  • The external connection terminal 160 is a terminal that transmits electric signals from the semiconductor package 100 to an external device, and may be provided on the external pad 150. That is, the external connection terminal 160 may be electrically connected to external pad 150. Accordingly, the external connection terminal 160 may be electrically connected to the chip terminal 111 of the semiconductor chip 110 through the wiring pattern 140, and may be configured to electrically connect the semiconductor package 100 and an external device (for example, board, etc.). That is, the external connection terminal 160 may be a connection terminal for mounting the semiconductor package 100 on a board such as a printed circuit board, which is an external device. However, the external pad 150 may be omitted, and in this case, the external connection terminal 160 may be directly disposed on the wiring pattern 140 exposed through the opening of the uppermost layer of the insulating pattern 130.
  • For example, the external connection terminal 160 may include a solder bump, and may include Sn, Au, Ag, Ni, In, Bi, Sb, Cu, Zn, Pb, or a combination thereof, but is not limited thereto. In addition, the solder bump may have a ball shape, but is not limited thereto, and may have various shapes such as a cylinder, a polygonal pillar, and a polyhedron.
  • The external connection terminal 160 may have a shape that completely covers a portion protruding (hereinafter, referred to as “protrusion portion”, the height or thickness of the protrusion portion is referred to as “protrusion height” or “protrusion thickness”, and the width of the protrusion portion is referred to as “protrusion width”) above the upper surface of the uppermost layer of the insulating pattern 130 among the external pad 150 or the first conductive via 142, that is, may be a surface contact type. In this case, the external connection terminal 160 may cover the upper surface and the sidewall of the protrusion portion. In this case, the sidewall of the protrusion portion may refer to a side surface portion of the protrusion portion protruding above the upper surface of the uppermost layer of the insulating pattern 130. For example, during a reflow process for forming the external connection terminal 160, a surface contact type external connection terminal 160 may be formed by proceeding with the reflow process in a state in which a metal material layer having excellent wettability (such as a cover layer or a preliminary metal layer) is formed on the external pad 150 or the first conductive via 142 to enhance the flowability of the external connection terminal 160.
  • In addition, the surface contact type external connection terminal 160 may be formed to cover a portion of the upper surface of the uppermost layer of the insulating pattern 130 near the protrusion portion, and may form surface contact with the upper surface of the uppermost layer of the insulating pattern 130. For example, the external connection terminal 160 includes a junction interface in contact with the upper surface of the uppermost layer of the insulating pattern 130, and the junction interface of the external connection terminal 160 may have a ring shape continuously extending along the edge of the protrusion portion. The junction interface of the external connection terminal 160 may be formed to have a width (hereinafter, referred to as “junction width”) 168 of at least 5 μm or more in the second direction parallel to the upper surface of the uppermost layer of the insulating pattern 130. For example, the junction width 168 may be about 1 μm to about 20 μm, but is not limited thereto. In addition, on an arbitrary plane including the junction interface between the external connection terminal 160 and the upper surface of the uppermost layer of the insulating pattern 130, when the external pad 150 or the first conductive via 142 protruding above the upper surface of the uppermost layer of the insulating pattern 130 has a width 167 of about 180 μm, the external connection terminal 160 may have a width of about 200 μm.
  • Referring to FIGS. 2 to 19, the horizontal width 165 of the external connection terminal 160 may be greater than the height 166 of the external connection terminal 160. In this case, the horizontal width 165 of the external connection terminal 160 may mean the maximum value of the width of the external connection terminal 160 in the second direction parallel to the first surface of the semiconductor chip 110, or may mean the distance between two points where the external surface of the external connection terminal 160 meets an arbitrary straight line with respect to the arbitrary straight line crossing the center 160M of the external connection terminal 160 in the second direction. In addition, the height 166 of the external connection terminal 160 may be the height of the external connection terminal 160 in the first direction with respect to the upper surface of the uppermost layer of the insulating pattern 130. The horizontal width 165 of the external connection terminal 160 may be about 1.2 to 1.4 times the height 166 of the external connection terminal 160. For example, the horizontal width 165 of the external connection terminal 160 may be about 210 μm to about 250 μm, but is not limited thereto. In addition, for example, the height 166 of the external connection terminal 160 may be about 165 μm to about 200 μm, but is not limited thereto.
  • The protrusion height 162 of the protrusion portion may be about 0.09 to about 0.5 times the height 166 of the external connection terminal 160. If the protrusion height 162 is greater than 0.5 times the height 166 of the external connection terminal 160, the sidewall of the protrusion portion may not be covered by the external connection terminal 160, or the thickness of the external connection terminal 160 on the sidewall of the protrusion portion may be formed to be too thin. In addition, if the protrusion height 162 is smaller than 0.09 times the height 166 of the external connection terminal 160, since the external connection terminal 160 has a size larger than necessary compared to the size of the protrusion portion, the height 166 of the external connection terminal 160 may become excessively high, thereby deteriorating the junction reliability between the semiconductor package 100 and the board, and may cause a short between neighboring external connection terminals 160.
  • The protrusion width 167 may be about 0.6 to about 0.9 times the horizontal width 165 of the external connection terminal 160. If the protrusion width 167 is greater than 0.9 times the horizontal width 165 of the external connection terminal 160, the sidewall of the protrusion portion may not be covered by the external connection terminal 160, or the thickness of the external connection terminal 160 on the sidewall of the protrusion portion may be formed to be too thin. In addition, if the protrusion width 167 is smaller than 0.6 times the horizontal width 165 of the external connection terminal 160, since the external connection terminal 160 has a size larger than necessary compared to the size of the protrusion portion, the height 166 of the external connection terminal 160 may become excessively high, thereby deteriorating the junction reliability between the semiconductor package 100 and the board, and may cause a short between neighboring external connection terminals 160.
  • On the sidewall of the protrusion portion, the length 164 in the second direction of the external connection terminal 160 may be at least about 1 μm or more. For example, between the top end of the sidewall of the protrusion portion and the outer surface of the external connection terminal 160, the length 164 in the second direction of the external connection terminal 160 may be about 5 μm to about 30 μm, or about 5 μm to about 20 μm, but is not limited thereto.
  • With respect to one cross-section of the external connection terminal 60 parallel to the first surface of the semiconductor chip 110 and having the largest width in the second direction, if the center of one cross-section of the external connection terminal 160 is defined as the center 160M of the external connection terminal 160, the center 160M of the external connection terminal 160 may be lower than the center of the external connection terminal of a general package. As such, as the center 160M of the external connection terminal 160 is lowered, the external connection terminal 160 may be formed thicker on the sidewall of the external pad 150. For example, between the center 160M of the external connection terminal 160 and the upper surface of the uppermost layer of the insulating pattern 130, if the distance in the first direction is defined as the height 161 of the center 160M of the external connection terminal 160, the height 161 of the center 160M of the external connection terminal 160 may be about 0.4 times or less, or about 0.35 times or less, or 0.3 times or less of the height 166 of the external connection terminal 160. If the height 161 of the center 160M of the external connection terminal 160 is greater than 0.4 times the height 166 of the external connection terminal 160, the sidewall of the protrusion portion may not be covered by the external connection terminal 160, or the thickness of the external connection terminal 160 on the sidewall of the protrusion portion may be formed to be too thin. In addition, the height 161 of the center 160M of the external connection terminal 160 may be about 0.1 times or more, or about 0.15 times or more, or about 0.2 times or more of the height 166 of the external connection terminal 160. If the height 161 of the center 160M of the external connection terminal 160 is less than 0.1 times the height 166 of the external connection terminal 160, the height of the external connection terminal 160 may be too low.
  • The height 161 of the center 160M of the external connection terminal 160 may be adjusted according to the protrusion height 162, the protrusion width 167, and/or the horizontal width 165 of the external connection terminal 160.
  • The center 160M of the external connection terminal 160 may be spaced apart from the external pad 150 in the first direction and may be adjacent to the protrusion portion. As the center 160M of the external connection terminal 160 is adjacent to the protrusion portion, the thickness of the external connection terminal 160 covering the sidewall of the protrusion portion may be increased. For example, the shortest distance 163 in the first direction between the center 160M of the external connection terminal 160 and the protrusion portion may be about 0.5 to about 6 times the protrusion height 162. For example, the shortest distance 163 in the first direction of the center 160M of the external connection terminal 160 may be about 10 μm to about 60 μm, but is not limited thereto. That is, the shortest distance 163 in the first direction of the center 160M of the external connection terminal 160 may be equal to the protrusion height 162 or smaller than the protrusion height 162.
  • In a general semiconductor package, the intermetallic compound formed at the interface between the external pad and the external connection terminal was exposed to the outside, or the external connection terminal covering the intermetallic compound on the sidewall of the external pad was formed with a very thin thickness. There is a problem in that since the intermetallic compound has a property of being brittle to external impact, cracks frequently occur near the edge of the upper surface of the external pad due to external impact, thus deteriorating the junction reliability between the semiconductor package and the board.
  • However, according to various embodiments of the present invention, since the external connection terminal 160 may completely cover the protrusion portion, it is possible to prevent damage to the protrusion portion due to the external pad 150 being exposed to the outside. In addition, since an external shock may be alleviated by the external connection terminal 160 thickly formed on the sidewall of the protrusion portion, the occurrence of cracks in the vicinity of the protrusion portion may be suppressed, and ultimately, junction reliability between the semiconductor package 100 and an external device such as a board may be improved.
  • In particular, if the uppermost layer of the insulating layer 130 includes a filler, the surface roughness thereof may be increased according to the uneven concave structure of the filler. Accordingly, the adhesive force between the uppermost layer of the insulating layer 130 and the external pad 150 may be further increased, so that the above-described crack occurrence may be further suppressed. In this case, the filler of the uppermost layer of the insulating layer 130 may directly contact the external pad 150.
  • The semiconductor package 100 according to various embodiments of the present invention may be a semiconductor package having a fan-in structure or a semiconductor package having a fan-out structure. When the semiconductor package 100 according to various embodiments of the present invention is a semiconductor package having a fan-out structure, the wiring pattern 140 may further extend to the outside of the semiconductor chip 110, and at least one external pad 150 and at least one external connection terminal 160 may be disposed to be spaced apart from the semiconductor chip 110 to the outside.
  • In the semiconductor package 100 according to various embodiments of the present invention, an electric signal generated from the semiconductor chip 110 may be transmitted to an external device connected to the external connection terminal 160 through the chip terminal 111, the wiring pattern 140, the external pad 150, and the external connection terminal 160 (however, when the first conductive via 142 replaces the external pad 150, the external pad 150 is excluded) in sequence. In addition, an electric signal generated from the external device may be transmitted to the semiconductor chip 110 through the external connection terminal 160, the external pad 150, the wiring pad 140, and the chip terminal 111 (however, when the first conductive via 142 replaces the external pad 150, the external pad 150 is excluded) in sequence. During this electric signal transmission process, the insulating pattern 130 may prevent unnecessary electrical short circuits to the chip terminal 111, the wiring pattern 140, the external pad 150 and the external connection terminal 160 (however, when the first conductive via 142 replaces the external pad 150, the external pad 150 is excluded), and may prevent physical/chemical damage to these components.
  • <Structure of First Semiconductor Package 100 a>
  • Referring to FIG. 2 and FIG. 6, a first semiconductor package 100 a according to an embodiment of the present invention may include a semiconductor chip 110, a protective layer 120, an insulating pattern 130, a wiring pattern 140, an external pad 150, and an external connection terminal 160. However, since the description of the semiconductor chip 110, the protective layer 120, the insulating pattern 130, the wiring pattern 140, the external pad 150, and the external connection terminal 160 is the same as described above, hereinafter, only features of the first semiconductor package 100 a that are not described above will be described.
  • First, the insulating pattern 130 may include a first insulating layer 131 a and a second insulating layer 132 a stacked on the first insulating layer 131 a. In this case, the second insulating layer 132 a may have a greater thickness than the first insulating layer 131 a. Specifically, the first insulating layer 131 a may have a thickness of about 10 μm to about 20 μm, and the second insulating layer 132 a may have a thickness of about 20 μm to about 60 μm, or about 30 μm to about 60 μm.
  • In general, compared to the insulating layer having a thickness of about 5 μm in a conventional semiconductor package, the first insulating layer 131 a and the second insulating layer 132 a of the semiconductor package 100 a according to an embodiment of the present invention may be formed relatively thicker than that, and in particular, the second insulating layer 132 a may be formed much thicker than the conventional one. Accordingly, the first insulating layer 131 a and the second insulating layer 132 a, particularly, the second insulating layer 132 a may function as a buffer against external impact, thereby further improving the reliability of the semiconductor package 100 a.
  • In addition, as at least one insulating layer in the insulating pattern 130, that is, the second insulating layer 132 a is formed thicker than the conventional insulating layer by about 15 μm to about 55 μm or about 25 μm to about 55 μm, the effective coefficient of thermal expansion of the first structure may naturally increase and approach the effective coefficient of thermal expansion of an external device such as a board on which the semiconductor package 100 a is mounted. For example, the effective coefficient of thermal expansion of the first structure of the semiconductor package 100 a may be about 9 ppm/° C. to about 17 ppm/° C., but is not limited thereto.
  • In general, a board such as a PCB has an effective coefficient of thermal expansion of about 15 to 20 ppm/° C., whereas a conventional semiconductor package has an effective coefficient of thermal expansion of less than about 8 ppm/° C. Accordingly, as shown in FIG. 1, due to a sharp difference in thermal expansion (CTE1≠CTE2) occurring between the conventional semiconductor package and the board, a crack could easily occur in an external connection terminal of a conventional semiconductor package. On the other hand, as the effective coefficient of thermal expansion of the first structure of the semiconductor package 100 a according to an embodiment of the present invention has a relatively higher value than the conventional one due to an increase in the thickness of the second insulating layer 132 a by more than a certain level, it will have a value similar to the value of the effective coefficient of thermal expansion of an external device such as a board. Accordingly, since the first structure of the semiconductor package 100 a may thermally expand in a range more similar to that of a board on which the semiconductor package 100 a is mounted, upon a sharp difference in thermal expansion, it may reduce cracks that may occur in the external connection terminal 160 of the semiconductor package 100 a.
  • That is, about 20 μm to about 60 μm, or about 30 μm to about 60 μm, the thickness of the second insulating layer 132 a, may be an optimal range for similar matching of the buffer function and the effective coefficient of thermal expansion of the first structure to the board. If the second insulating layer 132 a is less than 30 μm, particularly less than 20 μm, similar matching of the buffer function and the effective coefficient of thermal expansion may not be possible, and if it is larger than 60 μm, a warpage phenomenon may be induced as stress applied to the semiconductor package 100 a is rather increased. However, without limited thereto, the second insulating layer 132 a may have various thickness values.
  • In addition, so that the first structure of the semiconductor package 100 a according to an embodiment of the present invention has a value similar to the value of the effective coefficient of thermal expansion of an external device such as a board, the first insulating layer 131 a and the second insulating layer 132 a, in particular, the second insulating layer 132 a formed to be relatively thicker in thickness thereof may preferably have an effective coefficient of thermal expansion of 7 ppm/° C. to 40 ppm/° C. That is, if the effective coefficient of thermal expansion is less than 7 ppm/° C., the effective coefficient of thermal expansion of the first structure of the semiconductor package 100 a according to an embodiment of the present invention may be too low, and thus may be out of a similar range with respect to the value of the effective coefficient of thermal expansion of an external device such as a board. In addition, if the effective coefficient of thermal expansion is larger than 40 ppm/° C., the effective coefficient of thermal expansion of the first structure of the semiconductor package 100 a according to an embodiment of the present invention may be too large, and thus may be out of a similar range with respect to the value of the effective coefficient of thermal expansion of an external device such as a board.
  • In particular, if the thickness T3 of the semiconductor chip 110 is reduced, this increases the effective coefficient of thermal expansion of the first structure of the semiconductor package 100 a, and thus the effect that the value approaches the value of the effective coefficient of thermal expansion of an external device such as a board on which the semiconductor package 100 a is mounted can be doubled. That is, if the thickness T3 of the semiconductor chip 110 is reduced, the insulating pattern 130 has an effect that is relatively thicker, so that the effective coefficient of thermal expansion of the first structure of the semiconductor package 100 a can be more easily increased.
  • To this end, in comparison with a typical conventional semiconductor chip having a thickness greater than 5 times that of the insulating pattern, the thickness T3 of the semiconductor chip 110 of the semiconductor package 100 a according to an embodiment of the present invention may be reduced than the conventional one by having about 1.5 to about 10 times, or about 1.5 to about 4 times compared to that of the insulating pattern 130. In addition, in comparison with a typical conventional semiconductor chip having a thickness of 350 μm or more, the thickness T3 of the semiconductor chip 110 of the semiconductor package 100 a according to an embodiment of the present invention may be reduced than the conventional one by having about 100 μm to about 300 μm, or 100 μm to about 250 μm, or 100 μm to about 200 μm. If the thickness T3 of the semiconductor chip 110 compared to the insulating pattern 130 is less than 1.5 times or greater than 10 times, a warpage phenomenon may be induced. In particular, if the thickness T3 of the semiconductor chip 110 compared to the insulating pattern 130 is 1.5 times to 4 times, warpage may be further reduced. In addition, if the thickness of the semiconductor chip 110 is less than 100 μm, its mechanical strength is too weak, the semiconductor chip 110 may be easily destroyed during the semiconductor package process, so handling may be difficult, and if it is larger than 250 μm, the effect of increasing the effective coefficient of thermal expansion may be insignificant. However, the thickness of the semiconductor chip 110 is not limited thereto, and may have more various values.
  • In addition, the wiring pattern 140 may include a wiring layer 141 and a first conductive via 142, but the first conductive via 142 may be omitted if necessary. In this case, the wiring layer 141 may be a trace extending in the second direction on the first insulating layer 131 a, and may be electrically connected to the chip terminal 111 of the semiconductor chip 110. The wiring layer 141 may be a single layer or a plurality of layers, and may have a structure in which a plurality of layers spaced apart from each other are connected. For example, the thickness of the wiring layer 141 may be about 5 μm to about 20 μm. The wiring layer 140 may include a tapered shape or a stepped shape, etc. (a portion that transmits an electric signal in the first direction), and in this case, the diameter (length in the second direction) of the region having a small cross-sectional area may be about 5 μm, and the diameter of the region having a large cross-sectional area may be about 15 μm. However, without limited thereto, the wiring layer 141 may have various thickness values according to various shapes.
  • The first conductive via 142 may be provided on the wiring layer 141, and may extend in the first direction from the second insulating layer 132 a and may be electrically connected to the wiring layer 141. That is, the first conductive via 142 may extend in the first direction from the second insulating layer 132 a formed thicker than the first insulating layer 131 a to the opening on the upper surface of the second insulating layer 132 a, and may electrically connect the wiring layer 141 and the external pad 150. For example, the diameter (length in the second direction) of the first conductive via 142 may be about 5 μm to about 20 μm. The first conductive via 142 may include a tapered shape or a stepped shape, etc. and in this case, the diameter of the region having a small cross-sectional area may be about 5 μm, and the diameter of the region having a large cross-sectional area may be about 15 μm. However, without limited thereto, the first conductive via 142 may have various thicknesses and diameters according to various shapes.
  • The first conductive via 142 may protrude from the upper surface of the second insulating layer 132 a. For example, the height that the first conductive via 142 protrudes from the upper surface of the second insulating layer 132 a may be about 0.1 μm or more, or about 1 μm or more, or 5 μm, or may be about 20 μm or less, or about 15 μm or less, or about 10 μm or less, but is not limited thereto.
  • If the first conductive via 142 protrudes from the second insulating layer 132 a, the external pad 150 may contact the upper surface and sidewall of the first conductive via 142. The sidewall of the first conductive via 142 may refer to a side surface portion of the first conductive via 142 protruding above the upper surface of the second insulating layer 132 a. As such, if the external pad 150 also contacts the sidewall of the first conductive via 142, the contact area between the external pad 150 and the first conductive via 142 may increase, and accordingly, a contact resistance between the external pad 150 and the first conductive via 142 may be reduced.
  • Meanwhile, the first conductive via 142 may penetrate the wiring layer 141 and contact the upper surface of the first insulating layer 131 a. In this case, the wiring layer 141 may have an opening in the upper portion thereof, and a lower portion of the first conductive via 142 may be formed to fill the opening of the wiring layer 141, and a central portion thereof may have a shape protruding downward. The height that the central portion of the lower portion of the first conductive via 142 protrudes downward may correspond to the thickness of the wiring layer 141.
  • However, if the first conductive via 142 is omitted, the external pad 150 may be directly electrically connected to the wiring layer 141.
  • In FIG. 2 and FIG. 6, the external pad 150 is shown to have a pillar structure 150 a having a flat upper portion, but is not limited thereto, and various modifications are possible.
  • Meanwhile, the protrusion height 162 of the external pad 150 may be about 20 μm or more to about 50 μm or less, or about 30 μm or more to about 40 μm or less, but is not limited thereto.
  • In general, in a conventional semiconductor package, compared to the protrusion height of the external pad protruding from the upper surface of the uppermost layer of the insulating pad being 10 μm, the protrusion height 162 of the external pad 150 of the semiconductor package 100 a according to an embodiment of the present invention may be formed to be relatively higher than that. Accordingly, the contact resistance of the external pad 150 may be further reduced due to an increase in the contact area with the external connection terminal 160.
  • In addition, the thickness T1 of the external pad 150 may be about 50 μm, the thickness T2 of the insulating pattern 130 may be about 40 μm, and the thickness T3 of the semiconductor chip 110 may be about 100 μm. That is, the thickness T1 of the external pad with respect to the thickness T2 of the insulating pattern 130 may be about 1 to 1.2 times, and the thickness ratio between a lower structure and an intermediate connection structure may be about 1:0.25 to about 1:0.6. The thickness of a structure formed by the insulating pattern 130 and the external pad 150 (or a structure formed by the insulating pattern 130 and the protrusion portion of the external pad 150) (hereinafter referred to as “second structure”) corresponds to a thickness that disperses stress (hereinafter referred to as “stress dispersion thickness”) applied to the external connection terminal 160 provided between a board, which is an external device on which the semiconductor package 100 a is mounted, and the second insulating layer 132 a. That is, if the sum of T1 and T2 is less than 80 μm or the thickness ratio between the lower structure and the intermediate connection structure is less than 1:0.25, the effect of dispersing stress may be insignificant, and if the sum of T1 and T2 is greater than 100 μm or the thickness ratio between the lower structure and the intermediate connection structure is greater than 1:0.6, rather, as stress applied to the semiconductor package 100 a increases, a warpage phenomenon may be induced. However, without limited thereto, T1, T2, T3, etc. may have various thickness values.
  • In general, in a conventional semiconductor package, compared to the stress dispersion thickness of the second structure being less than 50 μm, the stress dispersion thickness D1 of the second structure of the semiconductor package 100 a according to an embodiment of the present invention may be formed to be relatively thicker than that. Accordingly, the stress applied to the external connection terminal 160 provided between the board on which the semiconductor package 100 a is mounted and the second insulating layer 132 a can be greatly reduced.
  • In particular, if the thickness T3 of the semiconductor chip 110 is formed to be about 1.4 times to about 2.5 times the thickness T2 of the insulating pattern 130, the effect of increasing the effective coefficient of thermal expansion and the effect of dispersing stress can be simultaneously realized.
  • <Structure of Second Semiconductor Package 100 b>
  • Referring to FIG. 3, a second semiconductor package 100 b according to an embodiment of the present invention may include a semiconductor chip 110, a protective layer 120, an insulating pattern 130, a wiring pattern 140, an external pad 150, and an external connection terminal 160. However, since the description of the semiconductor chip 110, the protective layer 120, the insulating pattern 130, the wiring pattern 140, the external pad 150, and the external connection terminal 160 is the same as described above, hereinafter, only features of the second semiconductor package 100 b that are not described above will be described.
  • The insulating pattern 130 of the second semiconductor package 100 b according to the present embodiment may include a first insulating layer 131 a and a second insulating layer 132 a stacked on the first insulating layer 131 a. In the first semiconductor package 100 a according to the above-described embodiment, the first insulating layer 131 a of the insulating pattern 120 was formed over the upper surface of the protective layer 120 and the upper surface of the semiconductor chip 110, but the first insulating layer 131 a of the second semiconductor package 100 b according to the present embodiment is formed on the upper surface of the semiconductor chip 110, and may not be formed on the upper surface of the protective layer 120.
  • Accordingly, the protective layer 120 may directly contact the wiring layer 141 and the second insulating layer 132 a.
  • <Structure of Third Semiconductor Package 100 c>
  • Referring to FIG. 4, a third semiconductor package 100 c according to an embodiment of the present invention may include a semiconductor chip 110, a protective layer 120, an insulating pattern 130, a wiring pattern 140, an external pad 150, and an external connection terminal 160. However, since the description of the semiconductor chip 110, the protective layer 120, the insulating pattern 130, the wiring pattern 140, the external pad 150, and the external connection terminal 160 is the same as in the above-described embodiments, hereinafter, only features of the third semiconductor package 100 c that are not described above will be described.
  • As shown in FIG. 4, the protective layer 120 of the third semiconductor package 100 c according to the present embodiment may be formed such that the protective layer 120 covers the first surface of the semiconductor chip 110. That is, the protective layer 120 may be formed to surround the first surface on which the chip terminal 111 of the semiconductor chip 110 is formed, the second surface opposite to the first surface, and the side surface of the semiconductor chip 110.
  • In addition, the wiring pattern 140 of the third semiconductor package 100 c according to the present embodiment may include a wiring layer 141 and a first conductive via 142.
  • In addition, it may include a first conductive stud 145 for connecting the wiring layer 141 of the wiring pattern 140 and the chip terminal 111.
  • As shown in FIG. 4, the first conductive stud 145 may be formed if the protective layer 120 covers the first surface of the semiconductor chip 110. That is, in this case, the first conductive stud 145 may be formed to penetrate the protective layer 120 portion on the first surface of the semiconductor chip 110 and contact the chip terminal 111 to electrically connect the chip terminal 111 of the semiconductor chip 110 and the remaining wiring layer 141 or the conductive via 142.
  • Of course, it is not limited thereto, and even if the protective layer 120 does not cover the first surface of the semiconductor chip 110, when a distance between the wiring pattern 140 and the semiconductor chip 110 is far apart, the first conductive stud 145 may be formed.
  • <Structure of Fourth Semiconductor Package 100 d>
  • Referring to FIG. 5, a fourth semiconductor package 100 d according to an embodiment of the present invention may include a semiconductor chip 110, a protective layer 120, an insulating pattern 130, a wiring pattern 140, an external pad 150, and an external connection terminal 160. However, since the description of the semiconductor chip 110, the protective layer 120, the insulating pattern 130, the wiring pattern 140, the external pad 150, and the external connection terminal 160 is the same as in the above-described embodiments, hereinafter, only features of the fourth semiconductor package 100 d that are not described above will be described.
  • As shown in FIG. 5, the protective layer 120 of the fourth semiconductor package 100 d according to the present embodiment is a layer including a non-conductive material, and may be provided on the second surface of the semiconductor chip 110, may be provided to surround the side surface and the second surface of the semiconductor chip 110, or may be provided to surround the side surface, the first surface, and the second surface of the semiconductor chip 110. The protective layer 120 may be a layer to be formed to block the semiconductor chip 110 from a harmful environment. For example, the protective layer 120 may include various oxides or polymer materials, but is not limited thereto. The protective layer 120 may have a thickness of about 15 μm to about 30 μm on the second surface of the semiconductor chip 110. However, the thickness of the protective layer 120 is not limited thereto, and may have more various values. In addition, as shown in FIG. 5, the protective layer 120 may be formed of a plurality of layers 120 a and 120 b.
  • In this case, of the protective layer 120, the first protective layer 120 a may be formed to cover the entire first surface and the side surface of the semiconductor chip 110, and the second protective layer 120 b may be formed to cover and protect only the second surface of the semiconductor chip 110.
  • Of course, the first protective layer 120 a may be formed to cover the first surface and a portion of the side surface of the semiconductor chip 110, and the second protective layer 120 b may be formed to cover the second surface and the rest of the side surface of the semiconductor chip 110 that is not covered by the first protective layer 120 a.
  • Alternatively, the first protective layer 120 a may be formed to cover the first surface of the semiconductor chip 110, and the second protective layer 120 b may be formed to cover the second surface and the entire side surface of the semiconductor chip 110.
  • Of course, in addition to this, the protective layer 120 may include a third protective layer (not shown) in addition to the first protective layer 120 a and the second protective layer 120 b.
  • The first protective layer 120 a and the second protective layer 120 b may be made of the same material or different materials. For example, the first protective layer 120 a may be EMC, and the second protective layer 120 b may be a BSP film.
  • In addition, the wiring pattern 140 of the fourth semiconductor package 100 d according to the present embodiment may include a wiring layer 141 and a first conductive via 142.
  • In addition, it may include a first conductive stud 145 for connecting the wiring layer 141 of the wiring pattern 140 and the chip terminal 111.
  • As shown in FIG. 5, the first conductive stud 145 may be formed if the protective layer 120 covers the first surface of the semiconductor chip 110. That is, in this case, the first conductive stud 145 may be formed to penetrate the first protective layer 120 a portion on the first surface of the semiconductor chip 110 and contact the chip terminal 111 to electrically connect the chip terminal 111 of the semiconductor chip 110 and the remaining wiring layer 141 or the conductive via 142.
  • Of course, it is not limited thereto, and even if the protective layer 120 does not cover the first surface of the semiconductor chip 110, when a distance between the wiring pattern 140 and the semiconductor chip 110 is far apart, the first conductive stud 145 may be formed.
  • Meanwhile, the external pad 150 and the wiring pattern 140 may have various structures. Hereinafter, various structures of the external pad 150 and the wiring pattern 140 connected to the external pad 150 will be described.
  • Referring to FIG. 7, the first conductive via 142 may protrude further upward than the second insulating layer 132, which is the uppermost layer of the insulating pattern 130, and may substantially replace the role of the external pad 150. In this case, the external pad 150 may not be provided.
  • The external connection terminal 160 may have a shape that completely covers a portion protruding above the upper surface of the uppermost layer of the insulating pattern 130 among the external pad 150 or the first conductive via 142, that is, may be a surface contact type. In this case, the external connection terminal 160 may cover the upper surface and the sidewall of the protrusion portion. In this case, the sidewall of the protrusion portion may refer to a side surface portion of the protrusion portion protruding above the upper surface of the uppermost layer of the insulating pattern 130.
  • For example, during a reflow process for forming the external connection terminal 160, a surface contact type external connection terminal 160 may be formed by proceeding with the reflow process in a state in which a metal material layer having excellent wettability (such as a cover layer or a preliminary metal layer) is formed on the external pad 150 or the first conductive via 142 to enhance the flowability of the external connection terminal 160.
  • Since the detailed description of the external connection terminal 160 is the same as that described above, a detailed description thereof will be omitted.
  • Meanwhile, as shown in FIG. 8, the semiconductor package includes a semiconductor chip 110, a protective layer 120, an insulating pattern 130, a wiring pattern 140, an external pad 150, and an external connection terminal 160, and the insulating pattern 130 may include a first insulating layer 131 a, a second insulating layer 132 a stacked on the first insulating layer 131 a, and a third insulating layer 133 a stacked on the second insulating layer 132 a.
  • In this case, the second insulating layer 132 a may have a greater thickness than the first insulating layer 131 a and the third insulating layer 133 a.
  • In addition, the wiring pattern 140 may include a wiring layer 141 and a first conductive via 142, and the first conductive via 142 may be formed under the opening of the third insulating layer 133 a.
  • In addition, the external pad 150 is shown to have a concave structure 150 b, but is not limited thereto, and it may have a pillar structure 150 a having a flat upper portion, a first stepped structure having a lower portion protruding toward the third insulating layer 133 a, or a second stepped structure in which the first conductive via 142 corresponds to a height 162 protruding from the third insulating layer 133 a.
  • In addition, the external pad 150 may be formed on the opening of the third insulating layer 133 a, it may be formed up to the inside of the opening of the third insulating layer 133 a to protrude above the opening of the third insulating layer 133 a, and it may contact the upper surface of the third insulating layer 133 a.
  • Meanwhile, as shown in FIG. 9, the insulating pattern 130 of the semiconductor package may include a first insulating layer 131 b and a second insulating layer 132 b stacked on the first insulating layer 131 b. In this case, the first insulating layer 131 b and the second insulating layer 132 b have the same or different thicknesses, but have a thickness greater than or equal to a predetermined thickness. Specifically, the first insulating layer 131 b and the second insulating layer 132 b may be about 20 μm to about 60 μm, or about 30 μm to about 60 μm. In particular, at least one of the first insulating layer 131 b and the second insulating layer 132 b may be about 30 μm or more, and the total thickness thereof may be about 50 μm to about 110 μm.
  • In general, compared to the insulating layer having a thickness of about 5 μm in a conventional semiconductor package, the first insulating layer 131 b and the second insulating layer 132 b of the semiconductor package 100 d according to an embodiment of the present invention may be formed relatively thicker than that. Accordingly, the first insulating layer 131 b and the second insulating layer 132 b, particularly, the second insulating layer 132 b may function as a buffer against external impact, thereby further improving the reliability of the semiconductor package 100.
  • In addition, since other portions of the insulating pattern 130 are the same as in the above-described embodiment, detailed descriptions thereof will be omitted.
  • In this case, the structure of the wiring layer 141 and the first conductive via 142 of the wiring pattern 140, the external pad 150 and the external connection terminal 160 is substantially the same as the example described with reference to FIG. 6 as an example, so a detailed description will be omitted.
  • Meanwhile, as shown in FIG. 10, the first conductive via 142 of the semiconductor package may be formed to protrude from the second insulating layer 132 b in the first direction to be electrically connected to the wiring layer 141. That is, the first conductive via 142 is formed to protrude from the opening of the upper surface of the second insulating layer 132 b, and may electrically connect the wiring layer 141 and the external connection terminal 160. For example, the diameter (length in the second direction) of the first conductive via 142 may be about 5 μm to about 20 μm. The first conductive via 142 may include a tapered shape or a stepped shape, etc. and in this case, the diameter of the region having a small cross-sectional area may be about 5 μm, and the diameter of the region having a large cross-sectional area may be about 15 μm. However, without limited thereto, the first conductive via 142 may have various thicknesses and diameters according to various shapes.
  • In FIG. 10, the first conductive via 142 is shown to have a pillar structure having a flat upper portion, but is not limited thereto, and may have a concave structure or the like in which the upper portion is concave.
  • Meanwhile, the protrusion height 162 of the first conductive via 142 may be about 20 μm or more to about 50 μm or less, or about 30 μm or more to about 40 μm or less, but is not limited thereto.
  • In general, in a conventional semiconductor package, compared to the protrusion height of the external pad protruding from the upper surface of the uppermost layer of the insulating pad being 10 μm, the protrusion height 162 of the first conductive via 142 replacing the external pad 150 of the semiconductor package 100 according to an embodiment of the present invention may be formed to be relatively higher than that. Accordingly, the contact resistance of the first conductive via 142 may be further reduced due to an increase in the contact area with the external connection terminal 160.
  • The thickness D1 of a second structure formed by the insulating pattern 130 and the first conductive via 142 (or a second structure formed by the insulating pattern 130 and the protrusion portion of the first conductive via 142) corresponds to a thickness that disperses stress applied to the external connection terminal 160 provided between a board on which the semiconductor package 100 is mounted and the second insulating layer 132 a. The stress dispersion thickness D1 of the second structure in the semiconductor package 100 may be about 60 μm or more or about 70 μm or more, and may be about 100 μm or less or about 110 μm or less. If D1 is less than 60 μm, the effect of dispersing stress may be insignificant, and if D1 is greater than 110 μm, rather, as stress applied to the semiconductor package increases, a warpage phenomenon may be induced. However, without limited thereto, D1 may have various thickness values.
  • In general, in a conventional semiconductor package, compared to the stress dispersion thickness of the second structure being less than 50 μm, the stress dispersion thickness D1 of the second structure of the semiconductor package according to an embodiment of the present invention may be formed to be relatively thicker than that. Accordingly, the stress applied to the external connection terminal 160 provided between the board on which the semiconductor package is mounted and the second insulating layer 132 a can be greatly reduced.
  • Meanwhile, descriptions of configurations and effects of the insulating pattern 130, the effective coefficient of thermal expansion of the first structure, the wiring layer 141, the second conductive via 143, the thickness T3 of the semiconductor chip 110, and the ratio of T2 and T3, etc. may be the same as the description of the structure of the first semiconductor package 100 a and the description of the structure of FIG. 7.
  • In addition, as shown in FIG. 11, the insulating pattern 130 of the semiconductor package may include a first insulating layer 131 b, a second insulating layer 132 b stacked on the first insulating layer 131 b, and a third insulating layer 133 b stacked on the second insulating layer 132 b. In this case, the first insulating layer 131 b and the second insulating layer 132 b may have a greater thickness than the third insulating layer 133 b. Specifically, the thickness of the third insulating layer 133 b may be about 10 μm to about 20 μm. In addition, the thickness or the like of the first insulating layer 131 b and the second insulating layer 132 b may be the same as described with reference to FIG. 9.
  • Meanwhile, at least one of the first insulating layer 131 b and the second insulating layer 132 b may be made of a non-photosensitive material, or the insulating layers 131, 132, and 133 may include 5 to 30 wt % of a metal, 1 to 20 wt % of a photosensitive material, and the remaining amount of a non-photosensitive material. In this case, at least one of the first conductive via 142 and the first conductive stud 145 may be formed in the first insulating layer 131 b or the second insulating layer 132 b, without a patterning process (increasing manufacturing cost) for the photosensitive material layer through the exposure and development process for the photosensitive material layer. Accordingly, thicker formation (about 20 μm to about 60 μm, or about 30 μm to about 60 μm, etc.) of the first insulating layer 131 b or the second insulating layer 132 b is possible, and thus it is possible to implement a buffer function and to improve the effective coefficient of thermal expansion, which is described above, and the like, and as well as to reduce manufacturing cost.
  • In addition, since other portions of the insulating pattern 130 are the same as in the above-described embodiment, detailed descriptions thereof will be omitted.
  • In addition, the wiring pattern 140 may include a wiring layer 141 and a first conductive via 142, and their configuration may be the same as described above in the structure of the fourth semiconductor package 100 d. However, the first conductive via 142 may be formed under the opening of the third insulating layer 133 b, or may protrude above the opening of the third insulating layer 133 b, or may be formed within the opening of the third insulating layer 133 b without protruding above the opening of the third insulating layer 133 b.
  • In addition, the first conductive studs 145 may be formed to penetrate the first insulating layer 131 b.
  • In addition, the external pad 150 is shown to have a concave structure 150 b, but is not limited thereto, and it may have a pillar structure 150 a having a flat upper portion, a first stepped structure having a lower portion protruding toward the third insulating layer 133 b, or a second stepped structure in which the first conductive via 142 corresponds to a height 162 protruding from the third insulating layer 133 b. Descriptions of these structures and effects may be the same as those described above, except for a point that symbols are changed in the description of the structure of the first semiconductor package 100 a. However, the external pad 150 may be formed on the opening of the third insulating layer 133 b, it may be formed up to the inside of the opening of the third insulating layer 133 b to protrude above the opening of the third insulating layer 133 b, and it may contact the upper surface of the third insulating layer 133 b.
  • Meanwhile, descriptions of configurations and effects of the protrusion height T1 of the external pad 150, the thickness T2 of the insulating pattern 130, the thickness T3 of the semiconductor chip 110, and the ratio of T2 and T3, etc. may be the same as the description of the structure of the first semiconductor package 100 a and the description of the structure of FIG. 8.
  • Meanwhile, as shown in FIG. 12, the semiconductor package may include a semiconductor chip 110, a protective layer 120, an insulating pattern 130, a wiring pattern 140, an external pad 150, and an external connection terminal 160.
  • First, the insulating pattern 130 may include a first insulating layer 131 c and a second insulating layer 132 c stacked on the first insulating layer 131 c. In this case, the first insulating layer 131 c may have a greater thickness than the second insulating layer 132 c. Specifically, the first insulating layer 131 c may be about 20 μm to about 60 μm, or about 30 μm to about 60 μm, and the thickness of the second insulating layer 132 c may be about 10 μm to about 20 μm.
  • In general, compared to the insulating layer having a thickness of about 5 μm in a conventional semiconductor package, the first insulating layer 131 c and the second insulating layer 132 c of the semiconductor package according to an embodiment of the present invention may be formed relatively thicker than that, and in particular, the first insulating layer 131 c may be formed much thicker than the conventional one. Accordingly, the first insulating layer 131 c and the second insulating layer 132 c, particularly, the first insulating layer 131 c may function as a buffer against external impact, thereby further improving the reliability of the semiconductor package.
  • In addition, as at least one insulating layer in the insulating pattern 130, that is, the first insulating layer 131 c is formed thicker than the conventional insulating layer by about 15 μm to about 55 μm or about 25 μm to about 55 μm, the effective coefficient of thermal expansion of the first structure in the semiconductor package may naturally increase and approach the effective coefficient of thermal expansion of an external device such as a board on which the semiconductor package is mounted. For example, the effective coefficient of thermal expansion of the first structure of the semiconductor package may be about 9 ppm/° C. to about 17 ppm/° C., but is not limited thereto.
  • That is, about 20 μm to about 60 μm, or about 30 μm to about 60 μm, the thickness of the first insulating layer 131 c, may be an optimal range for similar matching of the buffer function and the effective coefficient of thermal expansion of the first structure to the board. If the first insulating layer 131 c is less than 30 μm, particularly less than 20 μm, similar matching of the buffer function and the effective coefficient of thermal expansion may not be possible, and if it is larger than 60 μm, a warpage phenomenon may be induced as stress applied to the semiconductor package is rather increased. However, without limited thereto, the first insulating layer 131 c may have various thickness values.
  • In addition, so that the first structure of the semiconductor package according to an embodiment of the present invention has a value similar to the value of the effective coefficient of thermal expansion of an external device such as a board, the first insulating layer 131 c and the second insulating layer 132 c, in particular, the first insulating layer 131 c formed to be relatively thicker in thickness thereof may preferably have an effective coefficient of thermal expansion of 7 ppm/° C. to 40 ppm/° C. That is, if the effective coefficient of thermal expansion is less than 7 ppm/° C., the effective coefficient of thermal expansion of the first structure of the semiconductor package according to an embodiment of the present invention may be too low, and thus may be out of a similar range with respect to the value of the effective coefficient of thermal expansion of an external device such as a board. In addition, if the effective coefficient of thermal expansion is larger than 40 ppm/° C., the effective coefficient of thermal expansion of the first structure of the semiconductor package according to an embodiment of the present invention may be too large, and thus may be out of a similar range with respect to the value of the effective coefficient of thermal expansion of an external device such as a board.
  • In addition, the wiring pattern 140 may include a wiring layer 141. In addition, the external pad 150 may be disposed to directly contact the wiring layer 141. That is, the external pad 150 may directly contact the wiring layer 141 without a separate conductive via 142.
  • In FIG. 12, the external pad 150 is illustrated as having a concave structure 150 b, but is not limited thereto, and it may have a pillar structure 150 a having a flat upper portion, or a first stepped structure having a lower portion protruding toward the second insulating layer 132 d.
  • The thickness 162 of the external pad 150 may be about 20 μm or more to about 50 μm or less, or about 30 μm or more to about 40 μm or less. However, it is not limited thereto, and may be formed thicker than this if necessary.
  • Meanwhile, as shown in FIG. 13, the semiconductor package may include a semiconductor chip 110, a protective layer 120, an insulating pattern 130, a wiring pattern 140, an external pad 150, and an external connection terminal 160. However, since the description of the semiconductor chip 110, the protective layer 120, the insulating pattern 130, the wiring pattern 140, the external pad 150, and the external connection terminal 160 is the same as described above with reference to FIG. 12, hereinafter, only features different from the semiconductor package of FIG. 12 will be described.
  • First, the insulating pattern 130 may include a first insulating layer 131 c, a second insulating layer 132 c stacked on the first insulating layer 131 c, and a third insulating layer 133 c stacked on the second insulating layer 132 c. In this case, the first insulating layer 131 c may have a greater thickness than the second insulating layer 132 c and the third insulating layer 133 c. Specifically, the thickness of the third insulating layer 133 c may be about 10 μm to about 20 μm. In addition, the thickness or the like of the first insulating layer 131 c and the second insulating layer 132 c is the same as described with reference to FIG. 12.
  • In addition, the wiring pattern 140 may include a wiring layer 141, and the external pad 150 may be disposed to directly contact the wiring layer 141.
  • In FIG. 13, the external pad 150 is illustrated as having a concave structure 150 b, but is not limited thereto, and it may have a pillar structure 150 a having a flat upper portion, or a first stepped structure having a lower portion protruding toward the third insulating layer 133 c. However, the external pad 150 may be formed on the opening of the third insulating layer 133 c, it may be formed up to the inside of the opening of the third insulating layer 133 c to protrude above the opening of the third insulating layer 133 c, and it may contact the upper surface of the third insulating layer 133 c.
  • Meanwhile, as shown in FIG. 14, the semiconductor package may include a semiconductor chip 110, a protective layer 120, an insulating pattern 130, a wiring pattern 140, an external pad 150, and an external connection terminal 160.
  • First, the insulating pattern 130 may include a first insulating layer 131 d, a second insulating layer 132 d stacked on the first insulating layer 131 d, and a third insulating layer 133 d stacked on the second insulating layer 132 d. In this case, the first insulating layer 131 d and the third insulating layer 133 d may have a greater thickness than the second insulating layer 132 d. Specifically, the first insulating layer 131 d and the third insulating layer 133 d may be about 20 μm to about 60 μm, or about 30 μm to about 60 μm, and the thickness of the second insulating layer 132 d may be about 10 μm to about 20 μm.
  • In general, compared to the insulating layer having a thickness of about 5 μm in a conventional semiconductor package, the first insulating layer 131 d, the second insulating layer 132 d, and the third insulating layer 133 d of the semiconductor package according to an embodiment of the present invention may be formed relatively thicker than that, and in particular, the first insulating layer 131 d and the third insulating layer 133 d may be formed much thicker than the conventional one. Accordingly, the first insulating layer 131 d, the second insulating layer 132 d, and the third insulating layer 133 d, particularly, the first insulating layer 131 d and the third insulating layer 133 d may function as a buffer against external impact, thereby further improving the reliability of the semiconductor package.
  • In addition, the wiring pattern 140 may include a wiring layer 141 and a first conductive via 142.
  • The first conductive via 142 may be provided on the wiring layer 141, and may extend in the first direction from the third insulating layer 133 d and may be electrically connected to the wiring layer 141. That is, the first conductive via 142 may extend in the first direction from the third insulating layer 133 d formed thicker than the second insulating layer 132 d to the opening on the upper surface of the third insulating layer 133 d, and may electrically connect the wiring layer 141 and the external pad 150. For example, the diameter (length in the second direction) of the first conductive via 142 may be about 5 μm to about 20 μm. The first conductive via 142 may include a tapered shape or a stepped shape, etc. and in this case, the diameter of the region having a small cross-sectional area may be about 5 μm, and the diameter of the region having a large cross-sectional area may be about 15 μm. However, without limited thereto, the first conductive via 142 may have various thicknesses and diameters according to various shapes.
  • The first conductive via 142 may protrude from the upper surface of the third insulating layer 133 d. For example, the height that the first conductive via 142 protrudes from the upper surface of the third insulating layer 133 d may be about 0.1 μm or more, or about 1 μm or more, or 5 μm, or may be about 20 μm or less, or about 15 μm or less, or about 10 μm or less, but is not limited thereto.
  • If the first conductive via 142 protrudes from the third insulating layer 133 d, the external pad 150 may contact the upper surface and sidewall of the first conductive via 142.
  • However, if the first conductive via 142 is omitted, the external pad 150 may be directly electrically connected to the wiring layer 141.
  • In FIG. 14, the external pad 150 is shown to have a structure 150 a having a flat upper portion, but is not limited thereto, and it may have a first stepped structure having a lower portion protruding toward the second insulating layer 132 a, a concave structure 150 b, 150 c, and 150 d in which an upper portion is concave, or a second stepped structure in which the first conductive via 142 corresponds to a height protruding from the second insulating layer 132 a.
  • Meanwhile, as shown in FIG. 15, the semiconductor package may include a semiconductor chip 110, a protective layer 120, an insulating pattern 130, a wiring pattern 140, an external pad 150, and an external connection terminal 160.
  • First, the insulating pattern 130 may include a first insulating layer 131 d, a second insulating layer 132 d stacked on the first insulating layer 131 d, a third insulating layer 133 d stacked on the second insulating layer 132 d, and a fourth insulating layer 134 d stacked on the third insulating layer 133 d. In this case, the first insulating layer 131 d and the third insulating layer 133 d may have a greater thickness than the second insulating layer 132 d and the fourth insulating layer 134 d. Specifically, the thickness of the fourth insulating layer 133 d may be about 10 μm to about 20 μm. In addition, the thickness of the first insulating layer 131 d, the second insulating layer 132 d, and the third insulating layer 133 d may be the same as described with reference to FIG. 14.
  • In addition, the wiring pattern 140 may include a wiring layer 141 and a first conductive via 142. However, the first conductive via 142 may be formed under the opening of the fourth insulating layer 134 d, or may protrude above the opening of the fourth insulating layer 134 d, or may be formed within the opening of the fourth insulating layer 134 d without protruding above the opening of the fourth insulating layer 134 d.
  • In FIG. 15, the external pad 150 is shown to have a concave structure 150 b, but is not limited thereto, and it may have a pillar structure 150 a having a flat upper portion, a first stepped structure having a lower portion protruding toward the fourth insulating layer 134 d, or a second stepped structure in which the first conductive via 142 corresponds to a height 162 protruding from the fourth insulating layer 134 d. However, the external pad 150 may be formed on the opening of the fourth insulating layer 134 d, it may be formed up to the inside of the opening of the fourth insulating layer 134 d to protrude above the opening of the fourth insulating layer 134 d, and it may contact the upper surface of the fourth insulating layer 134 d.
  • Meanwhile, FIGS. 16 and 17 are cross-sectional views showing enlarged periphery of external pads 150 c and 150 d having various concave structures.
  • In addition, as shown in FIG. 16 and FIG. 17, the external pad 150 may have a structure in which a plurality of layers are stacked. For example, the external pad 150 may include a lower metal layer 151 and an upper metal layer 152 on the lower metal layer 151.
  • The lower metal layer 151 may be formed on the wiring pattern 140 exposed through the opening of the uppermost layer of the insulating pattern 130, and may extend along the surface of the uppermost layer of the insulating pattern 130. For example, the lower metal layer 151 may be a seed layer or an adhesive layer for forming the upper metal layer 152, and may include Ti, Cu, Cr, W, Ni, Al, Pd, Au, or a combination thereof, but is not limited thereto.
  • The lower metal layer 151 may be a single metal layer, but is not limited thereto, and may have a multilayer structure including a plurality of metal layers. For example, the lower metal layer 151 may include a first sub metal layer and a second sub metal layer sequentially stacked on the uppermost layer of the insulating pattern 130 and the wiring pattern 140. The first sub metal layer may include a metal material having excellent adhesion properties to the uppermost layer of the insulating pattern 130. For example, the first sub metal layer may include Ti, but is not limited thereto. The second sub metal layer may function as a seed layer for forming the upper metal layer. For example, the second sub metal layer may include Cu, but is not limited thereto.
  • The upper metal layer 152 may be provided on the lower metal layer 151. For example, the upper metal layer 152 may be formed by a plating method using the lower metal layer 151 as a seed. The upper metal layer 152 may have a pillar shape erected on the uppermost layer of the insulating pattern 130, and may have a concave structure in which the central portion of the upper surface is depressed. If the upper metal layer 152 has a concave structure, the lower metal layer 151 may have a correspondingly stepped structure. For example, the upper metal layer 152 may include Cu or a Cu alloy, but is not limited thereto.
  • In addition, as shown in FIG. 16 and FIG. 17, the external pad 150 may have a first stepped structure having a lower portion protruding toward the uppermost layer of the insulating pattern 130, a concave structure 150 c and 150 d in which an upper portion is concave, or a second stepped structure in which the first conductive via 142 corresponds to a height protruding from the second insulating layer 132 a. In this case, the external pad 150 may have a structure in which two or more structures among the pillar structure, the first stepped structure, the concave structure, and the second stepped structure are combined. In addition, the external pad 150 may include a lower metal layer 151 and an upper metal layer 152 on the lower metal layer 151.
  • Meanwhile, each of the concave structures 150 c and 150 d of the external pad 150 may be divided according to a height at which the lower surface of the external pad 150 is located. That is, a first concave structure 150 b shown in FIG. 11 is a structure provided when the position of the lower surface of the external pad 150 coincides with the position of the upper surface of the uppermost layer of the insulating pattern 130. In addition, as shown in FIG. 16 and FIG. 17, a second concave structure 150 c and a third concave structure 150 d are structures provided when the position of the lower surface of the external pad 150 is lower than the position of the upper surface of the uppermost layer of the insulating pattern 130, that is, when the lower surface of the external pad 150 is located in the uppermost layer of the insulating pattern 130. However, the second concave structure 150 c may be provided on the first conductive via 142, whereas the third concave structure 150 d may be provided on the wiring layer 141 while the first conductive via 142 is omitted.
  • Meanwhile, as shown in FIG. 18, the semiconductor package may include a semiconductor chip 110, a protective layer 120, an insulating pattern 130, a wiring pattern 140, an external pad 150, and an external connection terminal 160. However, since the description of the semiconductor chip 110, the protective layer 120, the insulating pattern 130, the wiring pattern 140, the external pad 150, and the external connection terminal 160 is the same as described above, hereinafter, only features of the 11th semiconductor package that are not described above, that is, features different from the 10th semiconductor package 100 j will be described.
  • A protective film 131 k may be formed on the first surface of the semiconductor chip 100. A portion of the protective film 131 k in which the chip pad 111 is formed may be opened. Of course, the protective film 131 k may be omitted if necessary.
  • The protective layer 120 may be formed to cover the first surface of the semiconductor chip 110, and the insulating pattern 130 may be formed on one surface of the protective layer 120 covering the first surface of the semiconductor chip 110.
  • In this case, the protective layer 120 may be formed to surround the first surface and the side surface of the semiconductor chip 110. The protective layer 120 may cover the second surface of the semiconductor chip 110, or may not cover the second surface of the semiconductor chip 110, if necessary.
  • The insulating pattern 130 may include a second insulating layer 132 k formed at an upper side of the protective layer, and a third insulating layer 133 k provided at an upper side of the second insulating layer.
  • The first insulating layer 131 k may be opened to expose the chip pad 111, and the protective layer 120 and the second insulating layer 132 k may also be opened for electrical connection between the chip pad and a redistribution layer 141.
  • In order to electrically connect the redistribution layer 141 and the chip pad 111, a second conductive stud 148 may be formed between the redistribution layer 141 and the chip pad 111.
  • The second conductive stud 148 may extend in a height direction of the semiconductor package and may be formed of a conductive material such as copper to electrically connect the redistribution layer 141 and the chip pad 111.
  • In addition, since the second conductive stud 148 is formed in the height direction, the thickness of the protective layer 120 or the insulating pattern 130 surrounding the semiconductor chip 110 may be formed thicker, whereby the protective effect of the semiconductor chip 110 may be further increased.
  • In addition, the redistribution layer 141 may be positioned between the second insulating layer 132 k and the third insulating layer 133 k. And, a portion of the third insulating layer 133 k may be opened to position the external pad 150, and an external connection terminal 160 may be provided at an upper side of the external pad 150.
  • The wiring pattern 140 may include a wiring layer 141 and a first conductive via 144.
  • Also, a second conductive stud 148 may be formed between the protective film 131 k and the conductive via 144.
  • If the second insulating layer 132 k is formed under the wiring pattern 140, a conductive via 144 may be further formed between the wiring layer 141 and the second conductive stud 148 by extending in the vertical direction by the thickness of the second insulating layer 132 k.
  • That is, the conductive via 144 may be formed to penetrate the second insulating layer 132 k, and the second conductive stud 148 may be formed to pass through the protective layer 120 and the protective film 131 k formed on the first surface of the semiconductor chip 110 to be electrically connected to the chip pad 111.
  • Of course, as shown in FIG. 19, the second insulating layer 132 k may be deleted if necessary. As shown in FIG. 19, if the second insulating layer 132 k is deleted, the redistribution layer 141 may directly contact the second conductive stud 148, and in this case, the conductive via 144 may be deleted.
  • Meanwhile, at least a portion of one surface and a side surface of the external pad 150 is exposed to the upper side of the insulating pattern 130, and the external connection terminal 160 provided on the external pad 150 may be formed by collapsing so as to be in contact with one surface and a side surface of the external pad 150 facing toward the upper side of the semiconductor package.
  • That is, the external connection terminal 160 provided on the external pad 150 may be formed to contact one surface and a side surface of the external pad 150.
  • In this case, on the surface of the external pad 150 in contact with the external connection terminal 160, a wetting layer 155 (a cover layer or a preliminary metal layer, etc.) having excellent wettability may be formed so that the external connection terminal 160 is well adhered.
  • In this case, the wetting layer 155 may be formed of gold (Au) or an alloy component including gold by an electroless gold plating method. Alternatively, the wetting layer 155 may be Au, Pd, Ni, Cu, Sn, or an alloy thereof. Alternatively, it may be made of Ti, Cr, W, or Al.
  • In this case, a portion of the external pad 150 protruding upward than the insulating pattern 140 may be formed to have a thickness of 30 μm or more.
  • The external pad 150 may be formed so that one surface thereof is flat or has a concave structure. In addition, a lower portion of the external pad 150 may be formed to have a protruding structure protruding toward the redistribution layer 141.
  • Meanwhile, descriptions of configurations and effects of the protrusion height Ti of the external pad 150, the thickness T2 of the insulating pattern 130, the thickness T3 of the semiconductor chip 110, and the ratio of T2 and T3, etc. may be the same as those described above, except for a point that symbols are changed in the structure of the first semiconductor package 100 a.
  • Hereinafter, a method for manufacturing the above-described semiconductor package will be described.
  • (a) to (e) in FIG. 20 are views showing from formation of a second conductive stud 148 on a wafer in a state before being cut into semiconductor chips 110 to cutting them into individual semiconductor chips 110.
  • First, as shown in FIG. 20(a), a wafer 5 before a plurality of semiconductor chips 110 are cut is prepared. One or more chip pads 111 are formed on the wafer at a portion corresponding to each semiconductor chip 110. As shown in FIG. 20(b), a protective film 138 may be patterned on one surface of the wafer 5. In addition, after opening a portion of the protective film corresponding to the chip pad 111, a seed layer may be formed, and then, after forming a mask pattern, the portion corresponding to the chip pad 111 may be opened again.
  • In addition, as shown in FIG. 20(c), a second conductive stud 148 may be formed of a material such as copper, and the mask pattern and the seed layer may be removed.
  • After forming the second conductive studs 148, the other surface of the wafer 5 may be ground as shown in FIG. 20(d), and as shown in FIG. 20(e), individual semiconductor chips 110 may be manufactured by sawing the wafer on which the second conductive stud 148 is formed into individual semiconductor chips 110.
  • In this case, the protective film 138 may be omitted if necessary.
  • (a) to (e) in FIG. 21 are diagrams showing the manufacturing of a fan-out type wafer level package (WLP) using the individual semiconductor chips manufactured by the above-described method.
  • First, as shown in FIG. 21(a), a plurality of the semiconductor chips 110 having conductive posts formed thereon may be disposed on a carrier 200. In this case, the second conductive stud 148 of the semiconductor chip 110 may be disposed to face upward.
  • And, as shown in FIG. 21(b), a protective layer 120 may be molded on the carrier 200 on which the semiconductor chip 110 is disposed so that the semiconductor chip 110 and the second conductive stud 148 are buried in the protective layer 120. After the protective layer 120 is molded, as shown in FIG. 21(c), one surface of the molded protective layer 120 may be ground to expose the second conductive stud 148 to the outside.
  • After the second conductive stud 148 is exposed, as shown in FIG. 21(d), a redistribution layer 141, an external pad 150, and an external connection terminal 160 may be disposed and formed on one surface of the protective layer 120 in which the second conductive stud 148 is exposed. In this case, a wetting layer 155 may be formed on the external pad 150 by an electroless plating method to improve wettability.
  • That is, as shown in FIGS. 16 to 19, the external pad 150 may include a structure in which a plurality of layers, such as a lower metal layer 151 and an upper metal layer 152 are stacked. In this case, the lower metal layer 151 may be a seed layer or an adhesive layer for forming the upper metal layer 152, and may be formed of Ti, Cu, Cr, W, Ni, Al, Pd, Au, Sn, or a combination thereof.
  • In addition, the lower metal layer 151 may have a single metal layer or a multilayer structure including a plurality of metal layers. For example, the lower metal layer 151 may include a first sub metal layer and a second sub metal layer sequentially stacked on the uppermost layer of the insulating pattern 130 and the wiring pattern 140. The first sub metal layer may include a metal material having excellent adhesion properties to the uppermost layer of the insulating pattern 130. For example, the first sub metal layer may include Ti, Cu, Cr, W, Ni, Al, Pd, Au, and Sn, but is not limited thereto. The second sub metal layer may function as a seed layer for forming the upper metal layer. For example, the second sub metal layer may include Cu, but is not limited thereto.
  • The upper metal layer 152 may be provided on the lower metal layer 151. For example, the upper metal layer 152 may be formed by a plating method using the lower metal layer 151 as a seed. The upper metal layer 152 may have a pillar shape erected on the uppermost layer of the insulating pattern 130, and may have a concave structure in which the central portion of the upper surface is depressed. If the upper metal layer 152 has a concave structure, the lower metal layer 151 may have a correspondingly stepped structure.
  • A wetting layer 155 (refer to FIGS. 18 and 19) may be formed on the upper metal layer 152 by electroless plating a metal having excellent wettability to exhibit excellent adhesion to the external connection terminal 160. For example, the upper metal layer 152 may include Cu, Au, Sn, or a combination alloy thereof, but is not limited thereto.
  • And, the external pad 150 may have various shapes, such as a planar shape or a concave shape, as shown in FIGS. 6 to 19 described above.
  • Meanwhile, the external connection terminal 160 may have a shape that completely covers a portion protruding above the upper surface of the external pad 150, that is, a surface contact type. In this case, the external connection terminal 160 may cover the upper surface and the sidewall of the protrusion portion of the external pad 150. In this case, the sidewall of the protrusion portion may refer to a side surface portion of the protrusion portion protruding above the upper surface of the uppermost layer of the insulating pattern 130.
  • For example, during a reflow process for forming the external connection terminal 160, a surface contact type external connection terminal 160 may be formed by proceeding with the reflow process in a state in which a metal material layer having excellent wettability (a wetting layer 155) is formed on the external pad 150 to enhance the flowability of the external connection terminal 160.
  • For a detailed description of the external connection terminal 160, reference will be made to the above description.
  • After the redistribution layer 141, the external pad 150, and the external connection terminal 160 are disposed, as shown in FIG. 21(e), a step of sawing the protective layer 120 on which the redistribution layer 141, the external pad 150, and the external connection terminal 160 are formed, in units of each individual semiconductor chip 110 may be performed to manufacture an individual semiconductor package 100 k. In this case, the carrier 200 may be removed before or after the protective layer 120 is sawed.
  • Meanwhile, although the above-described manufacturing method is described based on the FOWLP method, it may also be applied to a panel level package (PLP) method. In the FOWLP method, a circular carrier is used as the carrier 200, but in the panel level package method, a quadrangular-shaped carrier may be applied instead of the circular carrier.
  • That is, a plurality of semiconductor chips 110 having conductive posts formed thereon may be disposed on a quadrangular carrier 200 in (a) of FIG. 21, and as shown in (b) and (c) of FIG. 21, after the protective layer 120 is molded on the carrier 200, the protective layer may be ground to expose the second conductive stud to the outside.
  • After that, the carrier 200 may be attached with a protective film, and on the upper side thereof, as shown in FIG. 21(d), a redistribution layer 141, an external pad 150, and an external connection terminal 160 may be disposed and formed on one surface of the protective layer 120 in which the second conductive stud 148 is exposed. In this case, a wetting layer may be formed on the external pad 150 by an electroless gold plating method to improve wettability.
  • Thereafter, an individual semiconductor package may be manufactured by removing the carrier 200 and sawing the semiconductor package.
  • In this case, the carrier 200 may be formed of various materials such as Glass Fiber Substrate (GFS), PCB, Glass, EMC, Ceramic, Basalt, Epoxy, PI, and metal.
  • In addition, the carrier 200 may have a square shape of various sizes, such as width x length 300×300 mm or 600×600 mm. Alternatively, it is not necessarily square, and may be a rectangle having different widths and lengths as needed.
  • Alternatively, if necessary, a plurality of carriers 200 may be sequentially arranged to form a carrier having a larger size.
  • In addition, after mounting one or more semiconductor chips 110 on a small carrier, primary molding may be performed, and after placing a plurality of molding bodies on a large carrier, secondary molding may be performed, and after grinding and redistributing are performed, sawing into each individual chip unit may be possible.
  • (a) to (e) in FIG. 22 are diagrams showing the manufacturing of a fan-out type wafer level package (WLP) in a face down method using the individual semiconductor chips manufactured by the above-described method.
  • First, as shown in FIG. 22(a), a plurality of the semiconductor chips 110 having the second conductive stud 148 formed thereon may be disposed on a carrier 200. In this case, the second conductive stud 148 of the semiconductor chip 110 may be disposed to face the carrier 200 at the lower side.
  • And, as shown in FIG. 22(b), a protective layer 120 may be molded on the carrier on which the semiconductor chip 110 is disposed so that the semiconductor chip 110 and the second conductive stud 148 are buried in the protective layer 120. In this case, since the end of the second conductive stud 148 is in contact with the carrier 200, the end of the second conductive stud 148 may form the same plane as the protective layer 120 without being buried in the protective layer 120. Accordingly, as shown in FIG. 22(c), when the carrier 200 is removed, the end of the second conductive stud 148 may be exposed while forming the same plane as the protective layer 120.
  • And, after the carrier 200 is removed, as shown in FIG. 22(d), a redistribution layer 141, an external pad 150, and an external connection terminal 160 may be disposed and formed on one surface of the protective layer 120 in which the second conductive stud 148 is exposed. In this case, a wetting layer may be formed on the external pad 150 by an electroless gold plating method to improve wettability.
  • After the redistribution layer 141, the external pad 150, and the external connection terminal 160 are disposed, as shown in FIG. 22(e), a step of sawing the protective layer 120 on which the redistribution layer 141, the external pad 150, and the external connection terminal 160 are formed, in units of each individual semiconductor chip may be performed to manufacture an individual semiconductor package 100 k.
  • As described above, preferred embodiments according to the present invention have been examined, and it is obvious to those skilled in the art that the present invention can be embodied in other specific forms without departing from the spirit or scope of the invention in addition to the above-described embodiments. Therefore, the above-described embodiments are to be construed as illustrative rather than restrictive, and accordingly, the present invention is not limited to the above description and may be modified within the scope of the appended claims and their equivalents.
  • <Description of Symbols>
    100: semiconductor package 110: semiconductor chip
    111: chip terminal 120: protective layer
    130: insulating pattern 131: first insulating layer
    132: second insulating layer 133: third insulating layer
    140: wiring pattern 141: wiring layer
    142: first conductive via 143: second conductive via
    150: external pad 160: external connection terminal

Claims (16)

1. A semiconductor package, comprising:
a semiconductor chip having a plurality of chip terminals formed on one surface thereof;
a redistribution layer electrically connected to the chip terminal and for electrically connecting the chip terminal to an external device;
an insulating layer formed to cover the redistribution layer;
an external pad provided on the insulating layer and formed to be electrically connected to the redistribution layer; and
an external connection terminal formed on the external pad and contacting an external device;
wherein the external connection terminal is formed to be in contact with one surface and a side surface of the external pad exposed to the outside of the insulating layer.
2. The semiconductor package of claim 1, wherein a wetting layer having excellent wettability is formed on one surface and a side surface of the external pad in contact with the external connection terminal.
3. The semiconductor package of claim 2, wherein the wetting layer is made of at least one or more of Au, Pd, Ni, Cu, Sn, Ti, Cr, W, and Al.
4. The semiconductor package of claim 1, wherein the external connection terminal is formed to be in surface contact with an upper surface of the insulating layer on the outer periphery of a side surface of the external pad.
5. The semiconductor package of claim 1,
further comprising a conductive post extending in a vertical direction, to electrically connect the chip terminal and the redistribution layer.
6. The semiconductor package of claim 5,
further comprising a protective layer formed to cover the one surface of the semiconductor chip,
wherein the conductive post penetrates the protective layer covering the one surface of the semiconductor chip to electrically connect the chip terminal and the redistribution layer.
7. A method for manufacturing a semiconductor package, comprising:
forming a protective film on one surface of a wafer before a plurality of semiconductor chips are cut, and exposing chip pads of the semiconductor chips;
forming conductive posts on the exposed chip pads; and
sawing the wafer on which the conductive posts are formed into individual semiconductor chips.
8. The method for manufacturing a semiconductor package of claim 7, further comprising:
disposing a plurality of the individual semiconductor chips on which the conductive posts are formed, on a carrier;
molding a protective layer on the carrier on which the semiconductor chip is disposed;
exposing the conductive post of the semiconductor chip molded to the protective layer;
forming a redistribution layer, an external pad, and an external connection terminal on one surface of the protective layer on which the conductive post is exposed; and
sawing the protective layer on which the redistribution layer, the external pad, and the external connection terminal are formed, in units of each individual semiconductor chip.
9. The method for manufacturing a semiconductor package of claim 8,
wherein the disposing a plurality of semiconductor chips on the carrier is a step of disposing a plurality of semiconductor chips on the carrier such that the conductive post faces upward, and
the exposing the conductive post of the semiconductor chip molded to the protective layer is a step of grinding one surface of the molded protective layer so that the conductive post is exposed to the outside.
10. The method for manufacturing a semiconductor package of claim 8,
wherein the disposing a plurality of semiconductor chips on the carrier is a step of disposing the conductive post in contact with the carrier, and
the exposing the conductive post of the semiconductor chip molded to the protective layer is a step of removing the carrier to expose the conductive post after the protective layer is molded.
11. The method for manufacturing a semiconductor package of claim 8,
wherein the disposing a plurality of semiconductor chips on which the conductive posts are formed, on a carrier is a step of disposing a plurality of small panels on which a plurality of semiconductor chips are disposed, on the carrier, the small panel having a size smaller than that of the carrier.
12. The method for manufacturing a semiconductor package of claim 8,
wherein the disposing a plurality of semiconductor chips on which the conductive posts are formed, on a carrier is a step of disposing a plurality of molding bodies on which a plurality of semiconductor chips are molded on the carrier.
13. The method for manufacturing a semiconductor package of claim 8, wherein the disposing a plurality of the individual semiconductor chips on which the conductive posts are formed, on a carrier is a step of disposing a plurality of molding bodies formed on a small panel on which a plurality of semiconductor chips are disposed, on the carrier, the small panel having a size smaller than that of the carrier.
14. The method for manufacturing a semiconductor package of claim 8, wherein the carrier and the small panel have a circular or quadrangular shape.
15. The method for manufacturing a semiconductor package of claim 8, wherein a wetting layer is formed on one surface of the external pad in contact with the external connection terminal by an electroless plating method.
16. The method for manufacturing a semiconductor package of claim 15, wherein the external connection terminal is disposed on one surface of the external pad on which the wetting layer is formed, and is formed to be in contact with one surface and a peripheral side surface of the external pad and a side surface of the external pad.
US17/730,862 2021-04-27 2022-04-27 Semiconductor package and manufacturing method thereof Pending US20220352059A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020210054503A KR102570496B1 (en) 2021-04-27 2021-04-27 Manufacturing method for semiconductor package
KR10-2021-0054503 2021-04-27

Publications (1)

Publication Number Publication Date
US20220352059A1 true US20220352059A1 (en) 2022-11-03

Family

ID=83807803

Family Applications (1)

Application Number Title Priority Date Filing Date
US17/730,862 Pending US20220352059A1 (en) 2021-04-27 2022-04-27 Semiconductor package and manufacturing method thereof

Country Status (3)

Country Link
US (1) US20220352059A1 (en)
KR (1) KR102570496B1 (en)
TW (1) TWI816377B (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9947553B2 (en) * 2015-01-16 2018-04-17 Rohm Co., Ltd. Manufacturing method of semiconductor device and semiconductor device
JP6662602B2 (en) * 2015-01-16 2020-03-11 ローム株式会社 Semiconductor device manufacturing method and semiconductor device
JP6511695B2 (en) * 2015-01-20 2019-05-15 ローム株式会社 Semiconductor device and method of manufacturing the same
US10818635B2 (en) * 2018-04-23 2020-10-27 Deca Technologies Inc. Fully molded semiconductor package for power devices and method of making the same
KR102240409B1 (en) * 2018-12-24 2021-04-15 주식회사 네패스 Semiconductor package and method of manufacturing the same
KR102153413B1 (en) * 2018-12-24 2020-09-08 주식회사 네패스 Semiconductor package

Also Published As

Publication number Publication date
KR102570496B1 (en) 2023-08-24
TWI816377B (en) 2023-09-21
KR20220147401A (en) 2022-11-03
TW202249218A (en) 2022-12-16

Similar Documents

Publication Publication Date Title
TWI721939B (en) Semiconductor device and method of forming encapsulated wafer level chip scale package (ewlcsp)
TWI710085B (en) Semiconductor structure and manufacturing method thereof
US20180211936A1 (en) Thin fan-out multi-chip stacked package structure and manufacturing method thereof
TWI727122B (en) Semiconductor structure and manufacturing method thereof
KR100871709B1 (en) Chip stack package and method of fabricating the same
US20080136004A1 (en) Multi-chip package structure and method of forming the same
US10211161B2 (en) Semiconductor package structure having a protection layer
KR101605600B1 (en) Manufacturing method of semiconductor device and semiconductor device thereof
US20240194591A1 (en) Package structure and method of forming the same
JP2008244437A (en) Image sensor package having die receiving opening and method thereof
KR20150091932A (en) Manufacturing method of semiconductor device and semiconductor device thereof
US10074615B1 (en) Package structure and method of fabricating the same
TW201735197A (en) Semiconductor structure and manufacturing method thereof
KR20220050121A (en) Warpage control of packages using embedded core frame
TWI738923B (en) Semiconductor structure and manufacturing method thereof
TWI628752B (en) Semiconductor structure and manufacturing method thereof
US20110204487A1 (en) Semiconductor device and electronic apparatus
US20220352059A1 (en) Semiconductor package and manufacturing method thereof
KR102549383B1 (en) Semiconductor package and manufacturing method thereof
TW202306093A (en) Semiconductor package
US20210193602A1 (en) Semiconductor package and manufacturing method thereof
KR102202634B1 (en) Semiconductor package and semiconductor module including the same
JP2011014821A (en) Semiconductor device and fabrication method thereof
KR101812980B1 (en) Wafer level fan out package and method for manufacturing the same
KR102218736B1 (en) Bump structure, method of manufacturing the same and semiconductor package inclunding the same

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

AS Assignment

Owner name: NEPES CO., LTD, KOREA, REPUBLIC OF

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KIM, JONG HEON;LEE, YOUNG MO;KIM, NAM CHUL;AND OTHERS;SIGNING DATES FROM 20220711 TO 20220718;REEL/FRAME:062224/0653