US20220348890A1 - Engineered transaminase and methods of making and using - Google Patents

Engineered transaminase and methods of making and using Download PDF

Info

Publication number
US20220348890A1
US20220348890A1 US17/605,499 US202017605499A US2022348890A1 US 20220348890 A1 US20220348890 A1 US 20220348890A1 US 202017605499 A US202017605499 A US 202017605499A US 2022348890 A1 US2022348890 A1 US 2022348890A1
Authority
US
United States
Prior art keywords
coa
microbial organism
engineered
acid
pathway
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
US17/605,499
Other languages
English (en)
Inventor
Amit M. Shah
Harish Nagarajan
Joseph Roy Warner
Russell Scott Komor
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Genomatica Inc
Original Assignee
Genomatica Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Genomatica Inc filed Critical Genomatica Inc
Priority to US17/605,499 priority Critical patent/US20220348890A1/en
Assigned to GENOMATICA, INC. reassignment GENOMATICA, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: Komor, Russell Scott, NAGARAJAN, Harish, SHAH, AMIT M., WARNER, Joseph Roy
Publication of US20220348890A1 publication Critical patent/US20220348890A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0008Oxidoreductases (1.) acting on the aldehyde or oxo group of donors (1.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/001Amines; Imines
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/001Oxidoreductases (1.) acting on the CH-CH group of donors (1.3)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1096Transferases (2.) transferring nitrogenous groups (2.6)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/78Hydrolases (3) acting on carbon to nitrogen bonds other than peptide bonds (3.5)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/005Amino acids other than alpha- or beta amino acids, e.g. gamma amino acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P17/00Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms
    • C12P17/02Oxygen as only ring hetero atoms
    • C12P17/08Oxygen as only ring hetero atoms containing a hetero ring of at least seven ring members, e.g. zearalenone, macrolide aglycons
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P17/00Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms
    • C12P17/10Nitrogen as only ring hetero atom
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/18Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic polyhydric
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • C12P7/44Polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/62Carboxylic acid esters
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y102/00Oxidoreductases acting on the aldehyde or oxo group of donors (1.2)
    • C12Y102/01Oxidoreductases acting on the aldehyde or oxo group of donors (1.2) with NAD+ or NADP+ as acceptor (1.2.1)
    • C12Y102/01003Aldehyde dehydrogenase (NAD+) (1.2.1.3)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y103/00Oxidoreductases acting on the CH-CH group of donors (1.3)
    • C12Y103/01Oxidoreductases acting on the CH-CH group of donors (1.3) with NAD+ or NADP+ as acceptor (1.3.1)
    • C12Y103/01044Trans-2-enoyl-CoA reductase (NAD+) (1.3.1.44)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y206/00Transferases transferring nitrogenous groups (2.6)
    • C12Y206/01Transaminases (2.6.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y103/00Oxidoreductases acting on the CH-CH group of donors (1.3)
    • C12Y103/01Oxidoreductases acting on the CH-CH group of donors (1.3) with NAD+ or NADP+ as acceptor (1.3.1)
    • C12Y103/01038Trans-2-enoyl-CoA reductase (NADPH) (1.3.1.38)

Definitions

  • Nylons are polyamides that can be synthesized by the condensation polymerization of a diamine with a dicarboxylic acid or the condensation polymerization of lactams.
  • Nylon 6,6 is produced by reaction of hexamethylenediamine (HMD) and adipic acid, while nylon 6 is produced by a ring opening polymerization of caprolactam. Therefore, adipic acid, hexamethylenediamine, and caprolactam are important intermediates in nylon production.
  • Microorganisms have been engineered to produce some of the nylon intermediates.
  • engineered microorganisms can produce undesirable byproducts as a result of undesired enzymatic activity on pathway intermediates and final products.
  • Such byproducts and impurities therefore increase, cost, and complexity of biosynthesizing compounds and can decrease efficiency or yield of the desired products.
  • TA transaminase
  • 6ACA 6-aminocaproic acid
  • the TA enzymes are encoded by the amino acid SEQ ID NO: 1, 13 or 31.
  • Transaminases of SEQ ID NO:1, 13, or 31 are engineered to have better activity or specificity for adipate semialdehyde compared to the wild-type SEQ ID NO:1, 13 or 31.
  • non-naturally occurring microbial organisms having a 6-aminocaproic acid pathway, caprolactam pathway, hexamethylenediamine pathway, caprolactone pathway, 1,6-heaxanediol pathway, or a combination of one or more of these pathways.
  • the non-naturally occurring microbial organisms comprise at least one exogenous nucleic acid encoding a transaminase enzyme that reacts with adipate semialdehyde to form 6-aminocaproic acid (6ACA).
  • the transaminase enzyme has a turnover number, catalytic efficiency, or a combination thereof for adipate semialdehyde substrate as for succinate semialdehyde.
  • the non-naturally occurring microbial organisms may further comprise additional exogenous nucleic acids encoding enzymes necessary for producing 6-aminocaproic acid, 1,6-hexanediol, caprolactone, caprolactam, hexamethylenediamine in a sufficient amount to produce the respective product.
  • additional exogenous nucleic acids encoding enzymes necessary for producing 6-aminocaproic acid, 1,6-hexanediol, caprolactone, caprolactam, hexamethylenediamine in a sufficient amount to produce the respective product.
  • one or more of these exogenous nucleic acids may be heterologous to the microbial organisms.
  • the methods can include culturing a 6-aminocaproic acid, 1,6-hexanediol, caprolactone, caprolactam, and/or hexamethylenediamine producing non-naturally occurring microbial organisms, where the microbial organisms express at least one exogenous nucleic acid encoding a transaminase enzyme that reacts with adipate semialdehyde substrate to form 6-aminocaproic acid (6ACA).
  • the methods include culturing the non-naturally occurring microbial organisms under conditions and for a sufficient period of time to produce 6-aminocaproic acid, 1,6-hexanediol, caprolactone, caprolactam, hexamethylenediamine.
  • a TA comprising an amino acid sequence having at least 40% sequence identity to at least 25 or more contiguous amino acids of any of SEQ ID NO: 1, 3, 4, 5, 9, 12, 13, 26, 27, 30, 31, 38, 50, 52, 64, 74, 78, 79, 81, 91, 106, 108, and 116.
  • an engineered TA enzyme comprising one or more amino acid alterations of SEQ ID NO:1, SEQ ID NO: 13, or SEQ ID NO:31.
  • an engineered TA enzyme comprising one or more amino acid alterations at one or more amino acid residue positions or combinations of the amino acid alterations and residue postions of SEQ ID NO:1, SEQ ID NO:13 or SEQ ID NO:31.
  • the TA enzyme comprises alterations in at least two, three, four, five, six, seven, eight, or more amino acid positions of SEQ ID NO:1, 13, or 31.
  • the amino acid alteration is an amino acid substitution.
  • the amino acid substitution is a conservative substitution.
  • the amino acid substitution is a nonconservative substitution.
  • the engineered TA comprises a transaminase activity that is at least 20% higher than the activity of the transaminase of SEQ ID NO:1, 13, or 31 with no amino acid alterations.
  • the engineered TA has one or more amino acid alterations for one or more amino acids selected from positions corresponding to residues V114, S136, T148, P153, 1203, 1204, P206, V207, V111, T216, A237, T264, M265, and L386, G19, C22, D70, R94, D99, T109, E112, A113, F137, G144,1149, K150, Y154, S178, L186, Q208, L234, T242, A315, K318, R338, G336, L386, V390, A406, S416, A421, G17, M21, MO, A76, Y77, Q78, 179, G84, F107, T108, K119, G139, M142, A152, P153, E205, G209, G211, D238, M285, A290, G291, G292, L293, Y297, M353, S387, S388, and G392, and combinations thereof for the amino acid
  • the amino acid substitution is a conservative substitution. In some embodiments, the amino acid substitution is a nonconservative substitution. In some embodiments, the engineered TA comprises a transaminase activity that is at least 20% higher than the activity of the transaminase of SEQ ID NO:1 with no amino acid alterations.
  • amino acids selected from positions corresponding to residues in SEQ ID NO: 1 V114, S136, T148, P153,1203,1204, P206, V207, V111, T216, A237, T264, M265, L386, G19, C22, D70, R94, D99, T109, E112, A113, F137, G144, 1149, K150, Y154, S178, L186, Q208, L234, T242, A315, K318, R338, G336, L386, V390, A406, 5416, A421, G17, M21, A50, A76, Y77, Q78, 179, G84, F107, T108, K119, G139, M142, A152, P153, E205, G209, G211, D238, M285, A290, G291, G292, L293, Y297, M353, S387, S388, and G392 or combinations of the amino acid aleterations can be replaced.
  • a non-naturally occurring microbial organism comprising at least one exogenous enzyme, the at least one exogenous enzyme comprising a TA converting 6-aminocaproic acid from an adipate semialdehyde substrate, the TA selected from:
  • the non-naturally occurring microbial organism comprises genes encoding a 3-oxoadipyl-CoA thiolase, a 3-oxoadipyl-CoA dehydrogenase, and a 3-oxoadipyl-CoA dehydratase is able to produce at least 10% more 6ACA than a control cell that expresses the wild type TA from which the engineered TA is derived.
  • the non-naturally occurring microbial organism comprises enzymes necessary for a 6-aminocaproic acid pathway, a hexamethylene diamine pathway, caprolactone pathway, or a caprolactam pathway.
  • the non-naturally occurring microbial organism comprises exogenous nucleic acids encoding the enzymes necessary for a caproic acid pathway, a hexamethylene diamine pathway, caprolactone pathway, or a caprolactam pathway.
  • the exogenous nucleic acids are heterologous to the microbial organism.
  • adipyl CoA comprising culturing a non-naturally occurring microorganism of any one of the above aspects and embodiments for a sufficient time period and conditions for producing adipyl CoA.
  • provided are methods of producing 6-aminocaproic acid (6ACA) comprising culturing a non-naturally occurring microbial organism of any one the above aspect and embodiments for a sufficient time period and conditions for producing 6ACA.
  • the methods further include recovering 6ACA from the microbial organism, fermentation broth, or both.
  • methods of producing hexamethylene diamine comprising culturing a non-naturally occurring microbial organism of any one of the above aspects and embodiments for a sufficient time period and conditions for producing hexamethylene diamine.
  • the methods further include recovering hexamethylene diamine from the microbial organism, fermentation broth, or both.
  • the non-naturally occurring microbial organism comprises two, three, four, five, six, seven or more exogenous nucleic acid sequences each encoding a hexamethylene diamine pathway enzyme.
  • provided are methods of producing 6-aminocaproic acid, 1,6-hexanediol, caprolactone, caprolactam, hexamethylenediamine comprising culturing a non-naturally occurring microbial organism of any one of the above aspects and embodiments for a sufficient time period and conditions for producing 6-aminocaproic acid, 1,6-hexanediol, caprolactone, caprolactam, hexamethylenediamine.
  • the methods further include recovering caprolactam from the microbial organism, fermentation broth, or both.
  • the non-naturally occurring microbial organism comprises two, three, four, five, six or seven exogenous nucleic acid sequences each encoding 6-aminocaproic acid, 1,6-hexanediol, caprolactone, caprolactam, hexamethylenediamine pathway enzymes.
  • bioderived 6-aminocaproic acid hexamethylenediamine, or caprolactam synthesized using the above disclosed methods.
  • the TA enzyme of the non-naturally occurring microbial organism has catalytic efficiency for adipate semialdehyde substrate similar to succinate semialdehyde. In some embodiments, the TA enzyme of the non-naturally occurring microbial organism further reacts with 6-aminocaproyl-CoA to form 6-aminocaproate semialdehyde.
  • the non-naturally occurring microbial organism comprising at least one exogenous nucleic acid encoding an TA enzyme converts more adipate semialdehyde to a6-aminocaproic acid than a control microbial organism substantially identical to the non-naturally occurring microbial organism, with the exception that the control microbial organism does not comprise the exogenous nucleic acid encoding a TA enzyme.
  • the non-naturally occurring microbial organism comprising at least one exogenous nucleic acid encoding a TA enzyme converts more more adipate semialdehyde to 6-aminocaproic acid than its wild-type microbial organism substantially identical to the non-naturally occurring microbial organism, with the exception that the wild-type microbial organism does not comprise the exogenous nucleic acid encoding an engineered TER enzyme.
  • At least one exogenous nucleic acid encoding TA enzyme that reacts with adipate semialdehyde to form 6-aminocaproic acid is heterologous to the microbial organism.
  • the non-naturally occurring microbial organism comprises a 6-aminocaproic acid pathway.
  • the 6-aminocaproic acid pathway comprises: (i) transaminase, (ii) 6-aminocaproate dehydrogenase, or both (iii) transaminase and 6-aminocaproate dehydrogenase enzymes.
  • the non-naturally occurring microbial organism further comprises one or more additional exogenous nucleic acids encoding one or more of the 6-aminocaproic acid pathway enzymes.
  • the exogenous nucleic acids encoding one or more of the 6-aminocaproic acid pathway enzymes are heterologous to the microbial organism.
  • the non-naturally occurring microbial organism comprises a hexamethylenediamine pathway.
  • the hexamethylenediamine pathway comprises (i) 6-aminoacaproyl CoA transferase, (ii) 6-amino caproyl CoA synthase, (iii) 6-amino caproyl CoA reductase, (iv) hexamethylenediamine transaminase, (v) hexamethylenediamine dehydrogenase, (v) or a combination of one or more of the enzymes (i)-(v).
  • the microbial organism further comprises one or more additional exogenous nucleic acids encoding one or more of the hexamethylenediamine pathway enzymes.
  • the exogenous nucleic acids encoding one or more of the hexamethylenediamine pathway enzymes are heterologous to the microbial organism.
  • the non-naturally occurring microbial organism comprises a caprolactam pathway.
  • the caprolactam pathway comprises aminohydrolase enzyme.
  • the microbial organism further comprises one or more additional exogenous nucleic acids encoding aminohydrolase enzyme.
  • the exogenous nucleic acids encoding aminohydrolase enzyme is heterologous to the microbial organism.
  • the non-naturally occurring microbial organism comprises a 1, 6-hexanediol pathway.
  • the 1, 6-hexanediol pathway comprises the following enzymes: a 6-aminocaproyl-CoA transferase or synthetase catalyzing conversion of GACA to 6-aminocaproyl-CoA; a 6-aminocaproyl-CoA reductase catalyzing conversion of 6-aminocaproyl-CoA to 6-aminocaproate semialdehyde; a 6-aminocaproate semialdehyde reductase catalyzing conversion of 6-aminocaproate semialdehyde to 6-aminohexanol; a 6-aminocaproate reductase catalyzing conversion of 6ACA to 6-aminocaproate semialdehyde; an adipyl-CoA reductase adipyl-CoA to adipate semialde
  • the non-naturally occurring microbial organism comprises pathways from adipate or adipyl-CoA to caprolactone.
  • the pathways from adipate or adipyl-CoA to caprolactone comprise the following enzymes: adipyl-CoA reductase, adipate semialdehyde reductase, 6-hydroxyhexanoyl-CoA transferase or synthetase, 6-hydroxyhexanoyl-CoA cyclase or spontaneous cyclization, adipate reductase, adipyl-CoA transferase, synthetase or hydrolase, 6-hydroxyhexanoate cyclase, 6-hydroxyhexanoate kinase, 6-hydroxyhexanoyl phosphate cyclase or spontaneous cyclization, phosphotrans-6-hydroxyhexanoylase.
  • the TA of the non-naturally occurring microbial organism is derived from a prokaryotic species.
  • the TA enzyme is derived from Arthrobacter, Paenarthrobacter, Saccharomyces, Clostridium, Gulosibacter, Kocuria, Pseudomonas, and Alcaligenes.
  • the non-naturally occurring microbial organism comprises a species of Acinetobacter, Actinobacillus, Anaerobiospirillum, Aspergillus, Bacillus, Clostridium, Corynebacterium, Escherichia, Gluconobacter, Klebsiella, Kluyveromyces, Lactococcus, Lactobacillus, Mannheimia, Pichia, Pseudomonas, Rhizobium, Rhizopus, Saccharomyces, Schizosaccharomyces, Streptomyces, and Zymomonas.
  • the non-naturally occurring microbial organism is a strain of Escherichia. coli.
  • the culturing is performed in a fermentation broth comprising a sugar.
  • FIG. 1 shows exemplary pathways from succinyl-CoA and acetyl-CoA to 6-aminocaproate, hexamethylenediamine (HMDA), and caprolactam.
  • the enzymes are designated as follows: A) 3-oxoadipyl-CoA thiolase, B) 3-oxoadipyl-CoA reductase, C) 3-hydroxyadipyl-CoA dehydratase, D) 5-carboxy-2-pentenoyl-CoA reductase, E) 3-oxoadipyl-CoA/acyl-CoA transferase, F) 3-oxoadipyl-CoA synthase, G) 3-oxoadipyl-CoA hydrolase, H) 3-oxoadipate reductase, I) 3-hydroxyadipate dehydratase, J) 5-carboxy-2-pentenoate reductase, K) adipyl-CoA/acyl
  • FIG. 2 is a graphical representation of the amino acid positions mutated in SEQ ID NO: 1.
  • FIG. 3 is a graphical representation of the activity of the variants relative to the wild-type SEQ ID NO: 1 control (SEQ ID NO: 1).
  • FIG. 4 shows an exemplary pathway for synthesis of 6-amino caproic acid and adipate using lysine as a starting point.
  • FIG. 5 shows an exemplary caprolactam synthesis pathway using adipyl-CoA as a starting point.
  • FIG. 6 shows exemplary pathways to 6-aminocaproate from pyruvate and succinic semialdehyde.
  • Enzymes are A) HODH aldolase, B) OHED hydratase, C) OHED reductase, D) 2-OHD decarboxylase, E) adipate semialdehyde aminotransferase and/or adipate semialdehyde oxidoreductase (aminating), F) OHED decarboxylase, G) 6-OHE reductase, H) 2-OHD aminotransferase and/or 2-OHD oxidoreductase (aminating),I) 2-AHD decarboxylase, J) OHED aminotransferase and/or OHED oxidoreductase (aminating), K) 2-AHE reductase, L) HODH formate-lyase and/or HODH dehydrogenase, M
  • HODH 4-hydroxy-2-oxoheptane-1,7-dioate
  • OHED 2-oxohept-4-ene-1,7-dioate
  • 2-OHD 2-oxoheptane-1,7-dioate
  • 2-AHE 2-aminohept-4-ene-1,7-dioate
  • 2-AHD 2-aminoheptane-1,7-dioate
  • 6-OHE 6-oxohex-4-enoate.
  • FIG. 7 shows exemplary pathways to hexamethylenediamine from 6-aminocapropate.
  • Enzymes are A) 6-aminocaproate kinase, B) 6-AHOP oxidoreductase, C) 6-aminocaproic semialdehyde aminotransferase and/or 6-aminocaproic semialdehyde oxidoreductase (aminating), D) 6-aminocaproate N-acetyltransferase, E) 6-acetamidohexanoate kinase, F) 6-AAHOP oxidoreductase, G) 6-acetamidohexanal aminotransferase and/or 6-acetamidohexanal oxidoreductase (aminating), H) 6-acetamidohexanamine N-acetyltransferase and/or 6-acetamidohexanamine hydrolase (amide), I) 6-acetamidohe
  • FIG. 8 shows exemplary biosynthetic pathways leading to 1,6-hexanediol.
  • A) is a 6-aminocaproyl-CoA transferase or synthetase catalyzing conversion of GACA to 6-aminocaproyl-CoA;
  • B) is a 6-aminocaproyl-CoA reductase catalyzing conversion of 6-aminocaproyl-CoA to 6-aminocaproate semialdehyde;
  • C) is a 6-aminocaproate semialdehyde reductase catalyzing conversion of 6-aminocaproate semialdehyde to 6-aminohexanol;
  • D) is a 6-aminocaproate reductase catalyzing conversion of 6ACA to 6-aminocaproate semialdehyde;
  • E) is an adipyl-CoA reductase adipyl-CoA to adipate semialde
  • FIG. 9 shows exemplary pathways from adipate or adipyl-CoA to caprolactone.
  • Enzymes are A. adipyl-CoA reductase, B. adipate semialdehyde reductase, C. 6-hydroxyhexanoyl-CoA transferase or synthetase, D. 6-hydroxyhexanoyl-CoA cyclase or spontaneous cyclization, E. adipate reductase, F. adipyl-CoA transferase, synthetase or hydrolase, G. 6-hydroxyhexanoate cyclase, H. 6-hydroxyhexanoate kinase, I. 6-hydroxyhexanoyl phosphate cyclase or spontaneous cyclization, J. phosphotrans-6-hydroxyhexanoylase.
  • aminotransferases also known as transaminases (E. C. 2. 6. 1) that catalyze the transfer of an amino group, a pair of electrons, and a proton from a primary amine of an amino donor substrate to the carbonyl group of an amino acceptor molecule.
  • the desired reaction of the transaminase is to transfer the amino group of glutamate or alanine to adipate semialdehyde to form 6-aminocaproic acid (6ACA), which is shown below:
  • transaminases also have specificity for succinate semialdehyde or pyruvate as shown below:
  • Alanine may substitute for glutamate as the amine donor.
  • TA transaminase
  • the desired transaminases were identified by homology search as well as metagenomic discovery for the enzymes that can perform the desired reaction in the pathway to produce 6ACA.
  • the assay is conducted in reverse with 6ACA because adipate semialdehyde is not commercially available.
  • transaminase enzyme from Achromobacter xylosoxidans encoded by SEQ ID NO: 1 was identified.
  • SEQ ID NO: 1 was used.
  • Homologous enzymes were identified as set out in Table 4.
  • transaminase enzymes or sequences are identified by BLAST.
  • the transaminase share at least about 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99% or 100% sequence identity, to at least 25, 50, 75, 100, 150, 200, 250, 300 or more contiguous amino acids of the amino acid sequences of the transaminase of Table 4.
  • the transaminases identified in Table 4 share at least about 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99% or 100% sequence identity, to at least 25, 50, 75, 100, 150, 200, 250, 300 or more contiguous amino acids of the amino acid sequences of the transaminase of SEQ ID NO:1, 13 or 31.
  • the transaminase enzyme have at least about 50% amino acid sequence identity to at least 25, 50, 75, 100, 150, 200, 250, 300, or more contiguous amino acids of any of SEQ ID NOs: 1, 3, 4, 5, 9, 12, 13, 26, 27, 30, 31, 38, 50, 52, 64, 74, 78, 79, 81, 91, 106, 108, and 116.
  • amino acid sequence of the transaminase enzyme that reacts with adipate semialdehyde to form 6ACA are selected from the amino acid sequences of SEQ ID NOs: 1, 3, 4, 5, 9, 12, 13, 26, 27, 30, 31, 38, 50, 52, 64, 74, 78, 79, 81, 91, 106, 108, and 116.
  • the TA enzymes have catalytic efficiency, and/or turnover number for adipate semialdehyde as the substrate is similar to when succinate semialdehyde is the substrate.
  • the enzymes with catalytic efficiency, and/or turnover number for adipate semialdehyde as the substrate that is similar to when succinate semialdehyde share at least about 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99% or 100% sequence identity, to at least 25, 50, 75, 100, 150, 200, 250, 300 or more contiguous amino acids of the amino acid sequences of the transaminase of SEQ ID NO: 1, 3, 4, 5, 9, 12, 13, 26, 27, 30, 31, 38, 50, 52, 64, 74, 78, 79, 81, 91, 106, 108, and 116.
  • turnover number (also termed as k cat ) is defined as the maximum number of chemical conversions of substrate molecules per second that a single catalytic site will execute for a given enzyme concentration [E T ]. It can be calculated from the maximum reaction rate Vmax and catalyst site concentration [E T ] as follows:
  • catalytic efficiency is a measure of how efficiently an enzyme converts substrates into products.
  • a comparison of catalytic efficiencies can also be used as a measure of the preference of an enzyme for different substrates (i. e., substrate specificity). The higher the catalytic efficiency, the more the enzyme “prefers” that substrate. It can be calculated from the formula: k cat /K m , where k m is the turnover number and K M is the Michaelis constant, K M is the substrate concentration at which the reaction rate is half of Vmax.
  • the unit of catalytic efficiency can be expressed as s ⁇ 1 M -1 .
  • transaminase enzymes identified are derived from very genetically diverse organisms. Shown below are the pairwise sequence alignments of some exemplary transaminases are shown Table 1.
  • the transaminase enzymes have conserved domains. Based on the multiple sequence alignments and hidden Markov models (HMMs), the transaminase enzymes are grouped into Pfam PF00202, of the Pfam database from the European Bioinformatics Institute (pfam.xfam.org).
  • HMMs hidden Markov models
  • amino acid positions were identified for mutation in SEQ ID NO:1 by examination of the crystal structure of the protein, and the gene encoding SEQ ID NO:1 was subjected to saturation mutagenesis at selected amino acid positions. Catalytically-relevant residues were identified that can be subject to change to provide a variant amino acid with activity better than the wild-type (unmodified) SEQ ID NO: 1.
  • transaminase enzymes are engineered to have greater specificity for the adipate semialdehyde substrate than its corresponding wild-type.
  • engineered or “variant” when used in the context of a polypeptide or nucleic acid refers to a sequence having at least one variation or alteration at an amino acid position or nucleic acid position as compared to an unmodified, wild-type sequence.
  • the engineered transaminase has one or more alterations of an amino acid of SEQ ID NO; 1, SEQ ID NO: 13, or SEQ ID NO: 31. In some embodiments the engineered transaminase has alterations in amino acid sequences that have at least one, two, at least three, at least four, at least five, at least six, at least seven, or at least eight alterations of an amino acid with respect to SEQ ID NO:1 SEQ ID NO: 13, SEQ ID NO: 31.
  • the engineered TA has has one or more amino acid alterations selected from one or more positions corresponding to residues V114, S136, T148, P153, 1203, 1204, P206, V207, V111, T216, A237, T264, M265 and L386, G19, C22, D70, R94, D99, T109, E112, A113, F137, G144, 1149, K150, Y154, S178, L186, Q208, L234, T242, A315, K318, R338, G336, L386, V390, A406, S416, A421, or combinations of the amino acid alterations and amino acid residue postions of SEQ ID NO:1.
  • the one or more amino acid alteration of the engineered protein is a substitution of a conservative or non-conservative amino acid at one or more positions corresponding to residue V114, S136, T148, P153, 1203, 1204, P206, V207, V111, T216, A237, T264, M265 and L386, G19, C22, D70, R94, D99, T109, E112, A113, F137, G144, 1149, K150, Y154, S178, L186, Q208, L234, T242, A315, K318, R338, G336, L386, V390, A406, S416, and A421 or combinations of the amino acid alterations and amino acid residue postions of SEQ ID NO:1.
  • the engineered TA has has one or more amino acid alterations of the engineered protein is an alteration at a positions corresponding to residues shown in Table 5.
  • the engineered TA enzyme has at least catalytic efficiency for adipate semialdehyde substrate that is at least 1.5 ⁇ , at least 2 ⁇ , at least 5 ⁇ , at least 10 ⁇ , at least 25 ⁇ , or 1.5-25 ⁇ as compared to the corresponding wild-type of SEQ ID NOs: 1, 13, or 31.
  • the enzymatic conversion of adipate semialdehyde by the engineered transaminase enzyme under known standard conditions is at least 10, at least 20, at least 30, at least 40, at least 50, at least 60, at least 70, at least 80, or at least 90 percent more than the enzymatic activity of the enzyme for the corresponding wild-type of SEQ ID SEQ ID NOs: 1, 13, or 31.
  • Achromobacter xylosoxidans TA is represented by SEQ ID NO: 1 of the disclosure is selected as a template.
  • Variants, as described herein, can be created by introducing into the template one or more amino acid alterations (e. g. substitutions) to test for increased activity and specificity to adipate semialdehyde or analogs thereof.
  • SEQ ID NO: 1 is used as the reference sequence. Therefore, for example, mention of amino acid position 79 in reference to SEQ ID NO:1, but in the context of a different TA sequence (a target sequence or other template sequence) the corresponding amino acid position for variant creation may have the same or different position number, (e. g. 78, 79 or 80).
  • the original amino acid and its position on the SEQ ID NO: 1 reference template will precisely correlate with the original amino acid and position on the target TA.
  • the original amino acid and its position on the SEQ ID NO: 1 template will correlate with the original amino acid, but its position on the target will not be in the corresponding template position.
  • the corresponding amino acid on the target can be a predetermined distance from the position on the template, such as within 10, 9, 8, 7, 6, 5, 4, 3, 2, or 1 amino acid positions from the template position.
  • the original amino acid on the SEQ ID NO: 1 template will not precisely correlate with the original amino acid on the target.
  • sequence alignments can be generated with TA sequences not specifically disclosed herein, and such alignments can be used to understand and generate new TA variants in view of the current disclosure.
  • sequence alignments can allow one to understand common or similar amino acids in the vicinity of the target amino acid, and those amino acids may be viewed as “sequence motif” having a certain amount of identity or similarity to between the template and target sequences.
  • sequence motif can be used to describe portions of TA sequences where variant amino acids are located, and the type of variation(s) that can be present in the motif.
  • BLAST Basic Local Alignment Search Tool
  • BLAST is used to identify or understand the identity of a shorter stretch of amino acids (e. g. a sequence motif) between a template and a target protein.
  • BLAST finds similar sequences using a heuristic method that approximates the Smith-Waterman algorithm by locating short matches between the two sequences.
  • the (BLAST) algorithm can identify library sequences that resemble the query sequence above a certain threshold. Exemplary parameters for determining relatedness of two or more sequences using the BLAST algorithm, for example, can be as set forth below.
  • amino acid sequence alignments can be performed using BLASTP version 2. 0. 8 (Jan. 5, 1999) and the following parameters:Matrix: 0 BLOSUM62; gap open: 11; gap extension: 1; x_dropoff: 50; expect: 10.0; wordsize: 3; filter: on. Nucleic acid sequence alignments can be performed using BLASTN version 2. 0. 6 (Sep. 16, 1998) and the following parameters:Match: 1; mismatch: ⁇ 2; gap open: 5; gap extension: 2; x_dropoff: 50; expect: 10.0; wordsize: 11; filter: off. Those skilled in the art will know what modifications can be made to the above parameters to either increase or decrease the stringency of the comparison, for example, and determine the relatedness of two or more sequences.
  • Site-directed mutagenesis or sequence alteration can be used to make specific changes to a target TA DNA sequence to provide a variant DNA sequence encoding TA with the desired amino acid substitution.
  • an oligonucleotide having a sequence that provides a codon encoding the variant amino acid is used.
  • artificial gene synthesis of the entire coding region of the variant TA DNA sequence is performed as preferred TA targeted for substitution are generally less than 150 amino acids long.
  • Exemplary techniques using mutagenic oligonucleotides for generation of a variant TA sequence include the Kunkel method which may utilize a TA gene sequence placed into a phagemid.
  • the phagemid in E. coli TA ssDNA which is the template for mutagenesis using an oligonucleotide which is a primer extended on the template.
  • cassette mutagenesis may be used to create a variant sequence of interest.
  • a DNA fragment is synthesized inserted into a plasmid, cleaved with a restriction enzyme, and then subsequently ligated to a pair of complementary oligonucleotides containing the TA variant mutation.
  • the restriction fragments of the plasmid and oligonucleotide can be ligated to one another.
  • another technique used to generate the variant TA sequence is PCR site directed mutagenesis.
  • Mutagenic oligonucleotide primers are used to introduce the desired mutation and to provide a PCR fragment carrying the mutated sequence. Additional oligonucleotides may be used to extend the ends of the mutated fragment to provide restriction sites suitable for restriction enzyme digestion and insertion into the gene.
  • the QuikchangeTM kit uses complementary mutagenic primers to PCR amplify a gene region using a high-fidelity non-strand-displacing DNA polymerase such as pfu polymerase. The reaction generates a nicked, circular DNA which is relaxed. The template DNA is eliminated by enzymatic digestion with a restriction enzyme such as DpnI which is specific for methylated DNA.
  • a restriction enzyme such as DpnI which is specific for methylated DNA.
  • optimization method is directed evolution.
  • Directed evolution is a powerful apprTAh that involves the introduction of mutations targeted to a specific gene to improve and/or alter the properties of an enzyme. Improved and/or altered enzymes can be identified through the development and implementation of sensitive high-throughput screening assays that allow the automated screening of many enzyme variants (for example, >104). Iterative rounds of mutagenesis and screening typically are performed to afford an enzyme with optimized properties. Computational algorithms that can help to identify areas of the gene for mutagenesis also have been developed and can significantly reduce the number of enzyme variants that need to be generated and screened. Numerous directed evolution technologies have been developed (for reviews, see Hibbert et al., Biomol.
  • Enzyme characteristics that have been improved and/or altered by directed evolution technologies include, for example: selectivity/specificity, for conversion of non-natural substrates; temperature stability, for robust high temperature processing; pH stability, for bioprocessing under lower or higher pH conditions; substrate or product tolerance, so that high product titers can be achieved; binding (Km), including broadening substrate binding to include non-natural substrates; inhibition (Ki), to remove inhibition by products, substrates, or key intermediates; activity (kcat), to increases enzymatic reaction rates to achieve desired flux; expression levels, to increase protein yields and overall pathway flux; oxygen stability, for operation of air sensitive enzymes under aerobic conditions; and anaerobic activity, for operation of an aerobic enzyme in the absence of oxygen.
  • a number of exemplary methods have been developed for the mutagenesis and diversification of genes to target desired properties of specific enzymes. Such methods are well-known to those skilled in the art. Any of these can be used to alter and/or optimize the activity of a 6ACA, hexamethylenediamine or caprolactam pathway enzyme or protein. Such methods include, but are not limited to EpPCR, which introduces random point mutations by reducing the fidelity of DNA polymerase in PCR reactions (Pritchard et al., J Theor. Biol.
  • epRCA Error-prone Rolling Circle Amplification
  • DNA or Family Shuffling typically involves digestion of two or more variant genes with nucleases such as Dnase I or EndoV to generate a pool of random fragments that are reassembled by cycles of annealing and extension in the presence of DNA polymerase to create a library of chimeric genes
  • Nucleases such as Dnase I or EndoV
  • Staggered Extension StEP
  • RPR Random Priming Recombination
  • Additional methods include Heteroduplex Recombination, in which linearized plasmid DNA is used to form heteroduplexes that are repaired by mismatch repair (Volkov et al, Nucleic Acids Res. 27:e18 (1999); and Volkov et al., Methods Enzymol. 328:456-463 (2000)); Random Chimeragenesis on Transient Templates (RACHETT), which employs Dnase I fragmentation and size fractionation of single stranded DNA (ssDNA) (Coco et al., Nat. Biotechnol.
  • RACHETT Random Chimeragenesis on Transient Templates
  • THEO-ITCHY Thio-Incremental Truncation for the Creation of Hybrid Enzymes
  • phosphothioate dNTPs are used to generate truncations
  • SCRATCHY which combines two methods for recombining genes, ITCHY and DNA shuffling (Lutz et al., Proc. Natl. Acad Sci.
  • Random Drift Mutagenesis in which mutations made via epPCR are followed by screening/selection for those retaining usable activity (Bergquist et al., Biomol. Eng.
  • Sequence Saturation Mutagenesis (SeSaM), a random mutagenesis method that generates a pool of random length fragments using random incorporation of a phosphothioate nucleotide and cleavage, which is used as a template to extend in the presence of “universal” bases such as inosine, and replication of an inosine-containing complement gives random base incorporation and, consequently, mutagenesis (Wong et al., Biotechnol. J. 3:74-82 (2008); Wong et al., Nucleic Acids Res. 32:e26 (2004); and Wong et al., Anal. Biochem.
  • Further methods include Sequence Homology-Independent Protein Recombination (SHIPREC), in which a linker is used to facilitate fusion between two distantly related or unrelated genes, and a range of chimeras is generated between the two genes, resulting in libraries of single-crossover hybrids (Sieber et al., Nat. Biotechnol. 19:456-460 (2001)); Gene Site Saturation MutagenesisTM (GSSMTM), in which the starting materials include a supercoiled double stranded DNA (dsDNA) plasmid containing an insert and two primers which are degenerate at the desired site of mutations (Kretz et al., Methods Enzymol.
  • SHIPREC Sequence Homology-Independent Protein Recombination
  • CCM Combinatorial Cassette Mutagenesis
  • CCM Combinatorial Cassette Mutagenesis
  • CMCM Combinatorial Multiple Cassette Mutagenesis
  • LTM Look-Through Mutagenesis
  • Gene Reassembly which is a DNA shuffling method that can be applied to multiple genes at one time or to create a large library of chimeras (multiple mutations) of a single gene
  • TGRTM Tumit GeneReassemblyTM
  • PDA Silico Protein Design Automation
  • ISM Iterative Saturation Mutagenesis
  • any of the aforementioned methods for mutagenesis can be used alone or in any combination. Additionally, any one or combination of the directed evolution methods can be used in conjunction with adaptive evolution techniques, as described herein.
  • a cell having the desired enzymatic activity can be identified using any method known in the art.
  • enzyme activity assays can be used to identify cells having enzyme activity, see, for example, Enzyme Nomenclature, Academic Press, Inc., New York 2007.
  • Other assays that may be used to determine reaction between of TA on adipate semialdhyde include GC/MS analysis.
  • levels of NADH/NADPH may be monitored.
  • the NADH/NADPH may be monitored colorimetrically or spectroscopically using NADP/NADPH assay kits (e. g. ab65349 available from ABCAMTM).
  • the disclosed TA enzyme can be used in pathways for the production of the nylon intermediates.
  • a non-naturally occurring microorganism may be used in the production of adipate semialdehyde or other nylon intermediates that are produced using the adipate semialdehyde as an intermediate.
  • genetically modified cells are capable of producing the nylon intermediates such as 6-aminocaproic acid, caprolactam, and hexamethylenediamine.
  • the nylon intermediates are biosynthesized using the pathway described in FIG. 1 .
  • FIG. 1 pathway is provided in genetically modified cell described herein (e. g. , a non-naturally occurring microorganism) where the pathway includes at least one exogenous nucleic acid encoding a pathway enzyme expressed in a sufficient amount to produce 6-aminocaproic acid, caprolactam, and hexamethylenediamine.
  • the pathway is an HMD pathway as set forth in FIG. 1 .
  • the HMD pathway is provided in genetically modified cell described herein (e. g. , a non-naturally occurring microorganism) where the HMD pathway includes at least one exogenous nucleic acid encoding a HMD pathway enzyme expressed in a sufficient amount to produce HMD.
  • the enzymes are 1A is a 3-oxoadipyl-CoA thiolase; 1B is a 3-oxoadipyl-CoA reductransaminasee; 1C is a 3-hydroxyadipyl-CoA dehydratransaminasee; 1D is adipate semialdehydereductransaminasee; 1E is a 3-oxoadipyl-CoA/acyl-CoA transferase; 1F is a 3-oxoadipyl-CoA synthase; 1G is a 3-oxoadipyl-CoA hydrolase; 1H is a 3-oxoadipate reductransaminasee; 1I is a 3-hydroxyadipate dehydratransaminasee; 1J is a 5-carboxy-2-pentenoate reductransaminasee; 1K is an adipyl-CoA/acyl-CoA transferase; 1L is an adipyl-Co
  • the non-naturally occurring microorganism has one or more of the following pathways: ABCDNOPQRUVW; ABCDNOPQRT; or: ABCDNOPS.
  • Other exemplary pathways that include the TA enzyme to produce adipate semialdehyde include those described in U.S. Pat. No. 8,377,680 incorporated herein by reference in its entirety.
  • FIG. 1 also shows a pathway from 6-aminocaproate to 6-aminocaproyl-CoA by a transferase or synthase enzyme ( FIG. 1 , Step Q or R) followed by the spontaneous cyclization of 6-aminocaproyl-CoA to form caprolactam ( FIG. 1 , Step T).
  • 6-aminocaproate is activated to 6-aminocaproyl-CoA ( FIG. 1 , Step Q or R), followed by a reduction ( FIG. 1 , Step U) and amination ( FIG. 1 , Step V or W) to form HMDA.
  • 6-Aminocaproic acid can also be activated to 6-aminocaproyl-phosphate instead of 6-aminocaproyl-CoA.
  • 6-Aminocaproyl-phosphate can spontaneously cyclize to form caprolactam.
  • 6-aminocaproyl-phosphate can be reduced to 6-aminocaproate semialdehyde, which can be then converted to HMDA as depicted in FIG. 1 .
  • non-naturally occurring when used in reference to a microbial organism or microorganism is intended to mean that the microbial organism has at least one genetic alteration not normally found in a naturally occurring strain of the referenced species, including wild-type strains of the referenced species.
  • Genetic alterations include, for example, modifications introducing expressible nucleic acids encoding metabolic polypeptides, other nucleic acid additions, nucleic acid deletions and/or other functional disruption of the microbial genetic material. Such modifications include, for example, coding regions and functional fragments thereof, for heterologous, homologous or both heterologous and homologous polypeptides for the referenced species.
  • Additional modifications include, for example, non-coding regulatory regions in which the modifications alter expression of a gene or operon.
  • exemplary metabolic polypeptides include enzymes within a 6-aminocaproic acid, caprolactam, hexamethylenediamine or levulinic acid biosynthetic pathway.
  • a metabolic modification refers to a biochemical reaction that is altered from its naturally occurring state. Therefore, non-naturally occurring microorganisms can have genetic modifications to nucleic acids encoding metabolic polypeptides or, functional fragments thereof. Exemplary metabolic modifications are disclosed herein.
  • microbial As used herein, the terms “microbial,” “microbial organism” or “microorganism” has been used interchangeably and is intended to mean any organism that exists as a microscopic cell that is included within the domains of archaea, bacteria or eukarya. Therefore, the term is intended to encompass prokaryotic or eukaryotic cells or organisms having a microscopic size and includes bacteria, archaea and eubacteria of all species as well as eukaryotic microorganisms such as yeast and fungi. The term also includes cell cultures of any species that can be cultured for the production of a biochemical.
  • CoA or “coenzyme A” is intended to mean an organic cofactor or prosthetic group (nonprotein portion of an enzyme) whose presence is required for the activity of many enzymes (the apoenzyme) to form an active enzyme system.
  • Coenzyme A functions in certain condensing enzymes, acts in acetyl or other acyl group transfer and in fatty acid synthesis and oxidation, pyruvate oxidation and in other acetylation.
  • adipate having the chemical formula —OOC—(CH2)4-COO— (see FIG. 1 ) (IUPAC name hexanedioate), is the ionized form of adipic acid (IUPAC name hexanedioic acid), and it is understood that adipate and adipic acid can be used interchangeably throughout to refer to the compound in any of its neutral or ionized forms, including any salt forms thereof. It is understood by those skilled understand that the specific form will depend on the pH.
  • 6-aminocaproate having the chemical formula —OOC—(CH2)5-NH2 (see FIG. 1 , and abbreviated as 6-ACA), is the ionized form of 6-aminocaproic acid (IUPAC name 6-aminohexanoic acid), and it is understood that 6-aminocaproate and 6-aminocaproic acid can be used interchangeably throughout to refer to the compound in any of its neutral or ionized forms, including any salt forms thereof It is understood by those skilled understand that the specific form will depend on the pH.
  • caprolactam (IUPAC name azepan-2-one) is a lactam of 6-aminohexanoic acid (see FIG. 1 , and abbreviated as CPO).
  • hexamethylenediamine also referred to as 1,6-diaminohexane or 1,6-hexanediamine, has the chemical formula H2N(CH2)6NH2 (see FIG. 1 and abbreviated as HMD).
  • substantially anaerobic when used in reference to a culture or growth condition is intended to mean that the amount of oxygen is less than about 10% of saturation for dissolved oxygen in liquid media.
  • the term also is intended to include sealed chambers of liquid or solid medium maintained with an atmosphere of less than about 1% oxygen.
  • Osmoprotectant when used in reference to a culture or growth condition is intended to mean a compound that acts as an osmolyte and helps a microbial organism as described herein survive osmotic stress.
  • Osmoprotectants include, for example, betaines, amino acids, and the sugar trehalose.
  • Non-limiting examples of such are glycine betaine, praline betaine, dimethylthetin, dimethylslfonioproprionate, 3-dimethylsulfonio-2-methylproprionate, pipecolic acid, dimethylsulfonioacetate, choline, L-carnitine and ectoine.
  • the term “growth-coupled” when used in reference to the production of a biochemical is intended to mean that the biosynthesis of the referenced biochemical is produced during the growth phase of a microorganism.
  • the growth-coupled production can be obligatory, meaning that the biosynthesis of the referenced biochemical is an obligatory product produced during the growth phase of a microorganism.
  • Metabolic modification is intended to refer to a biochemical reaction that is altered from its naturally occurring state. Metabolic modifications can include, for example, elimination of a biochemical reaction activity by functional disruptions of one or more genes encoding an enzyme participating in the reaction.
  • the term “gene disruption,” or grammatical equivalents thereof, is intended to mean a genetic alteration that renders the encoded gene product inactive.
  • the genetic alteration can be, for example, deletion of the entire gene, deletion of a regulatory sequence required for transcription or translation, deletion of a portion of the gene which results in a truncated gene product, or by any of various mutation strategies that inactivate the encoded gene product.
  • One particularly useful method of gene disruption is complete gene deletion because it reduces or eliminates the occurrence of genetic reversions in the non-naturally occurring microorganisms.
  • Exogenous as it is used herein is intended to mean that the referenced molecule or the referenced activity is introduced into the host microbial organism.
  • the molecule can be introduced, for example, by introduction of an encoding nucleic acid into the host genetic material such as by integration into a host chromosome or as non-chromosomal genetic material such as a plasmid. Therefore, the term as it is used in reference to expression of an encoding nucleic acid refers to introduction of the encoding nucleic acid in an expressible form into the microbial organism. When used in reference to a biosynthetic activity, the term refers to an activity that is introduced into the host reference organism.
  • the source can be, for example, a homologous or heterologous encoding nucleic acid that expresses the referenced activity following introduction into the host microbial organism. Therefore, the term “endogenous” refers to a referenced molecule or activity that is present in the host. Similarly, the term when used in reference to expression of an encoding nucleic acid refers to expression of an encoding nucleic acid contained within the microbial organism.
  • heterologous refers to a molecule, material, or activity derived from a source other than the referenced species whereas “homologous” refers to a molecule, material, or activity derived from the host microbial organism. Accordingly, exogenous expression of an encoding nucleic acid can utilize either or both a heterologous or homologous encoding nucleic acid.
  • the term “about” means ⁇ 10% of the stated value.
  • the term “about” can mean rounded to the nearest significant digit.
  • about 5% means 4. 5% to 5. 5%.
  • about in reference to a specific number also includes that exact number. For example, about 5% also includes exact 5%.
  • bioderived in the context of 6-aminocaproic acid, 1,6-hexanediol, caprolactone, caprolactam, or hexamethylenediamine means that these compounds are synthesized in a microbial organism.
  • exogenous nucleic acids refer to the referenced encoding nucleic acid or biosynthetic activity, as discussed above. It is further understood, as disclosed herein, that such exogenous nucleic acids can be introduced into the host microbial organism on separate nucleic acid molecules, on polycistronic nucleic acid molecules, or a combination thereof, and still be considered as more than one exogenous nucleic acid.
  • a microbial organism can be engineered to express two or more exogenous nucleic acids encoding a desired pathway enzyme or protein.
  • two exogenous nucleic acids encoding a desired activity are introduced into a host microbial organism
  • the two exogenous nucleic acids can be introduced as a single nucleic acid, for example, on a single plasmid, on separate plasmids, can be integrated into the host chromosome at a single site or multiple sites, and still be considered as two exogenous nucleic acids.
  • exogenous nucleic acids can be introduced into a host organism in any desired combination, for example, on a single plasmid, on separate plasmids, which are not integrated into the host chromosome, and the plasmids remain as extra-chromosomal elements, and still be considered as two or more exogenous nucleic acids.
  • the number of referenced exogenous nucleic acids or biosynthetic activities refers to the number of encoding nucleic acids or the number of biosynthetic activities, not the number of separate nucleic acids introduced into the host organism.
  • the non-naturally occurring microbial organisms can contain stable genetic alterations, which refers to microorganisms that can be cultured for greater than five generations without loss of the alteration.
  • stable genetic alterations include modifications that persist greater than 10 generations, particularly stable modifications will persist more than about 25 generations, and more particularly, stable genetic modifications will be greater than 50 generations, including indefinitely.
  • a particularly useful stable genetic alteration is a gene deletion.
  • the use of a gene deletion to introduce a stable genetic alteration is particularly useful to reduce the likelihood of a reversion to a phenotype prior to the genetic alteration.
  • stable growth-coupled production of a biochemical can be achieved, for example, by deletion of a gene encoding an enzyme catalyzing one or more reactions within a set of metabolic modifications.
  • the stability of growth-coupled production of a biochemical can be further enhanced through multiple deletions, significantly reducing the likelihood of multiple compensatory reversions occurring for each disrupted activity.
  • E. coli metabolic modifications are described with reference to a suitable host organism such as E. coli and their corresponding metabolic reactions or a suitable source organism for desired genetic material such as genes for a desired metabolic pathway.
  • a suitable host organism such as E. coli and their corresponding metabolic reactions or a suitable source organism for desired genetic material such as genes for a desired metabolic pathway.
  • desired genetic material such as genes for a desired metabolic pathway.
  • the E. coli metabolic alterations exemplified herein can readily be applied to other species by incorporating the same or analogous encoding nucleic acid from species other than the referenced species.
  • Such genetic alterations include, for example, genetic alterations of species homologs, in general, and in particular, orthologs, paralogs or nonorthologous gene displacements.
  • ortholog is a gene or genes that are related by vertical descent and are responsible for substantially the same or identical functions in different organisms.
  • mouse epoxide hydrolase and human epoxide hydrolase can be considered orthologs for the biological function of hydrolysis of epoxides.
  • Genes are related by vertical descent when, for example, they share sequence similarity of sufficient amount to indicate they are homologous, or related by evolution from a common ancestor.
  • Genes can also be considered orthologs if they share three-dimensional structure but not necessarily sequence similarity, of a sufficient amount to indicate that they have evolved from a common ancestor to the extent that the primary sequence similarity is not identifiable.
  • Genes that are orthologous can encode proteins with sequence similarity of about 25% to 100% amino acid sequence identity.
  • Genes encoding proteins sharing an amino acid similarity less than 25% can also be considered to have arisen by vertical descent if their three-dimensional structure also shows similarities.
  • Members of the serine protease family of enzymes, including tissue plasminogen activator and elastransaminasee, are considered to have arisen by vertical descent from a common ancestor.
  • Orthologs include genes or their encoded gene products that through, for example, evolution, have diverged in structure or overall activity. For example, where one species encodes a gene product exhibiting two functions and where such functions have been separated into distinct genes in a second species, the three genes and their corresponding products are considered to be orthologs. For the production of a biochemical product, those skilled in the art will understand that the orthologous gene harboring the metabolic activity to be introduced or disrupted is to be chosen for construction of the non-naturally occurring microorganism.
  • An example of orthologs exhibiting separable activities is where distinct activities have been separated into distinct gene products between two or more species or within a single species.
  • a specific example is the separation of elastransaminasee proteolysis and plasminogen proteolysis, two types of serine protease activity, into distinct molecules as plasminogen activator and elastransaminasee.
  • a second example is the separation of mycoplasma 5′-3′ exonuclease and Drosophila DNA polymerase III activity.
  • the DNA polymerase from the first species can be considered an ortholog to either or both of the exonuclease or the polymerase from the second species and vice versa.
  • paralogs are homologs related by, for example, duplication followed by evolutionary divergence and have similar or common, but not identical functions.
  • Paralogs can originate or derive from, for example, the same species or from a different species.
  • microsomal epoxide hydrolase epoxide hydrolase I
  • soluble epoxide hydrolase epoxide hydrolase II
  • Paralogs are proteins from the same species with significant sequence similarity to each other suggesting that they are homologous, or related through co-evolution from a common ancestor.
  • Groups of paralogous protein families include HipA homologs, luciferase genes, peptidases, and others.
  • a nonorthologous gene displacement is a nonorthologous gene from one species that can substitute for a referenced gene function in a different species. Substitution includes, for example, being able to perform substantially the same or a similar function in the species of origin compared to the referenced function in the different species.
  • a nonorthologous gene displacement will be identifiable as structurally related to a known gene encoding the referenced function, less structurally related but functionally similar genes and their corresponding gene products nevertheless will still fall within the meaning of the term as it is used herein.
  • Functional similarity requires, for example, at least some structural similarity in the active site or binding region of a nonorthologous gene product compared to a gene encoding the function sought to be substituted. Therefore, a nonorthologous gene includes, for example, a paralog or an unrelated gene.
  • evolutionally related genes can also be disrupted or deleted in a host microbial organism, paralogs or orthologs, to reduce or eliminate activities to ensure that any functional redundancy in enzymatic activities targeted for disruption do not short circuit the designed metabolic modifications.
  • Orthologs, paralogs and nonorthologous gene displacements can be determined by methods well known to those skilled in the art. For example, inspection of nucleic acid or amino acid sequences for two polypeptides will reveal sequence identity and similarities between the compared sequences. Based on such similarities, one skilled in the art can determine if the similarity is sufficiently high to indicate the proteins are related through evolution from a common ancestor. Algorithms well known to those skilled in the art, such as Align, BLAST, Clustal W and others compare and determine a raw sequence similarity or identity, and also determine the presence or significance of gaps in the sequence which can be assigned a weight or score. Such algorithms also are known in the art and are similarly applicable for determining nucleotide sequence similarity or identity.
  • Parameters for sufficient similarity to determine relatedness are computed based on well-known methods for calculating statistical similarity, or the chance of finding a similar match in a random polypeptide, and the significance of the match determined.
  • a computer comparison of two or more sequences can, if desired, also be optimized visually by those skilled in the art.
  • Related gene products or proteins can be expected to have a high similarity, for example, 25% to 100% sequence identity. Proteins that are unrelated can have an identity which is essentially the same as would be expected to occur by chance, if a database of sufficient size is scanned (about 5%). Sequences between 5% and 24% may or may not represent sufficient homology to conclude that the compared sequences are related. Additional statistical analysis to determine the significance of such matches given the size of the data set can be carried out to determine the relevance of these sequences.
  • Exemplary paramemeters for determining relatedness of two or more sequences using the BLAST algorithm can be as set forth below. Briefly, amino acid sequence alignments can be performed using BLASTP version 2. 2. 29+(Jan. 14, 2014) and the following parameTransaminase: Matrix: 0 BLOSUM62; gap open: 11; gap extension: 1; x_dropoff: 50; expect: 10.0; wordsize: 3; filter: on. Nucleic acid sequence alignments can be performed using BLASTN version 2. 0. 6 (Sep.
  • any of the pathways disclosed herein, including those as described in the Figures can be used to generate a non-naturally occurring microbial organism that produces any pathway intermediate or product, as desired.
  • a microbial organism that produces an intermediate can be used in combination with another microbial organism expressing downstream pathway enzymes to produce a desired product.
  • a non-naturally occurring microbial organism that produces a 6-aminocaproic acid, caprolactam, hexamethylenediamine or levulinic acid pathway intermediate can be utilized to produce the intermediate as a desired product.
  • reference herein to a gene or encoding nucleic acid also constitutes a reference to the corresponding encoded enzyme and the reaction it catalyzes as well as the reactants and products of the reaction.
  • the non-naturally occurring microbial organisms can be produced by introducing expressible nucleic acids encoding one or more of the enzymes participating in one or more 6-aminocaproic acid, caprolactam, hexamethylenediamine or levulinic acid biosynthetic pathways.
  • nucleic acids for some or all of a particular 6-aminocaproic acid, caprolactam, hexamethylenediamine or levulinic acid biosynthetic pathway can be expressed. For example, if a chosen host is deficient in one or more enzymes for a desired biosynthetic pathway, then expressible nucleic acids for the deficient enzyme(s) are introduced into the host for subsequent exogenous expression.
  • a non-naturally occurring microbial organism can be produced by introducing exogenous enzyme activities to obtain a desired biosynthetic pathway or a desired biosynthetic pathway can be obtained by introducing one or more exogenous enzyme activities that, together with one or more endogenous enzymes, produce a desired product such as 6-aminocaproic acid, caprolactam, hexamethylenediamine or levulinic acid.
  • the non-naturally occurring microbial organisms will include at least one exogenously expressed 6-aminocaproic acid, caprolactam, hexamethylenediamine or levulinic acid pathway-encoding nucleic acid and up to all encoding nucleic acids for one or more adipate, 6-aminocaproic acid or caprolactam biosynthetic pathways.
  • 6-aminocaproic acid, caprolactam, hexamethylenediamine or levulinic acid biosynthesis can be established in a host deficient in a pathway enzyme through exogenous expression of the corresponding encoding nucleic acid.
  • exogenous expression of all enzymes in the pathway can be included, although it is understood that all enzymes of a pathway can be expressed even if the host contains at least one of the pathway enzymes.
  • nucleic acids to introduce in an expressible form will, at least, parallel the adipate, 6-aminocaproic acid, caprolactam, hexamethylenediamine or levulinic acid pathway deficiencies of the selected host microbial organism. Therefore, a non-naturally occurring microbial organism can have at least one, two, three, four, five, six, seven, eight, nine, ten, eleven or twelve, up to all nucleic acids encoding the above enzymes constituting a 6-aminocaproic acid, caprolactam, hexamethylenediamine or levulinic acid biosynthetic pathway.
  • the non-naturally occurring microbial organisms also can include other genetic modifications that facilitate or optimize 6-aminocaproic acid, caprolactam, hexamethylenediamine or levulinic acid biosynthesis or that confer other useful functions onto the host microbial organism.
  • One such other functionality can include, for example, augmentation of the synthesis of one or more of the 6-aminocaproic acid, caprolactam, hexamethylenediamine or levulinic acid pathway precursors such as succinyl-CoA and/or acetyl-CoA in the case of adipate synthesis, or adipyl-CoA or adipate in the case of 6-aminocaproic acid or caprolactam synthesis, including the adipate pathway enzymes disclosed herein, or pyruvate and succinic semialdehyde, glutamate, glutaryl-CoA, homolysine or 2-amino-7-oxosubarate in the case of 6-aminocaprioate synthesis, or 6-aminocaproate, glutamate, glutaryl-CoA, pyruvate and 4-aminobutanal, or 2-amino-7-oxosubarate in the case of hexamethylenediamine synthesis.
  • a non-naturally occurring microbial organism has at least one exogenous nucleic acid encoding a transaminase that reacts with adipate semialdhyde to form 6ACA and selected from transaminases comprising the amino acid sequences having at least about 50% amino acid sequence identity to at least25, 50, 75, 100, 150, 200, 250, 300, or more contiguous amino acids of any of any of SEQ ID NOs: 1, 3, 4, 5, 9, 12, 13, 26, 27, 30, 31, 38, 50, 52, 64, 74, 78, 79, 81, 91, 106, 108, and 116.
  • a host microbial organism is selected such that it produces the precursor of a 6-aminocaproic acid, caprolactam, or hexamethylenediamine pathway, either as a naturally produced molecule or as an engineered product that either provides de novo production of a desired precursor or increased production of a precursor naturally produced by the host microbial organism.
  • a host organism can be engineered to increase production of a precursor, as disclosed herein.
  • a microbial organism that has been engineered to produce a desired precursor can be used as a host organism and further engineered to express enzymes or proteins of a 6-aminocaproic acid, caprolactam, hexamethylenediamine or levulinic acid pathway.
  • a non-naturally occurring microbial organism is generated from a host that contains the enzymatic capability to synthesize 6-aminocaproic acid, caprolactam, hexamethylenediamine or levulinic acid.
  • it can be useful to increase the synthesis or accumulation of a 6-aminocaproic acid, caprolactam, hexamethylenediamine or levulinic acid pathway product to, for example, drive 6-aminocaproic acid, caprolactam, hexamethylenediamine or levulinic acid pathway reactions toward 6-aminocaproic acid, caprolactam, hexamethylenediamine or levulinic acid production.
  • Increased synthesis or accumulation can be accomplished by, for example, overexpression of nucleic acids encoding one or more of the above-described 6-aminocaproic acid, caprolactam, hexamethylenediamine or levulinic acid pathway enzymes.
  • Over expression of the 6-aminocaproic acid, caprolactam, hexamethylenediamine or levulinic acid pathway enzyme or enzymes can occur, for example, through exogenous expression of the endogenous gene or genes, or through exogenous expression of the heterologous gene or genes.
  • naturally occurring organisms can be readily generated to be non-naturally occurring microbial organisms, for example, producing 6-aminocaproic acid, caprolactam, hexamethylenediamine or levulinic acid, through overexpression of at least one, two, three, four, five, six, seven, eight, nine, ten, eleven, twelve, thirteen, fourteen, that is, up to all nucleic acids encoding 6-aminocaproic acid, caprolactam, hexamethylenediamine or levulinic acid biosynthetic pathway enzymes.
  • a non-naturally occurring organism can be generated by mutagenesis of an endogenous gene that results in an increase in activity of an enzyme in the 6-aminocaproic acid, caprolactam, hexamethylenediamine or levulinic acid biosynthetic pathway.
  • exogenous expression of the encoding nucleic acids is employed.
  • Exogenous expression confers the ability to custom tailor the expression and/or regulatory elements to the host and application to achieve a desired expression level that is controlled by the user.
  • endogenous expression also can be utilized in other embodiments such as by removing a negative regulatory effector or induction of the gene's promoter when linked to an inducible promoter or other regulatory element.
  • an endogenous gene having a naturally occurring inducible promoter can be up-regulated by providing the appropriate inducing agent, or the regulatory region of an endogenous gene can be engineered to incorporate an inducible regulatory element, thereby allowing the regulation of increased expression of an endogenous gene at a desired time.
  • an inducible promoter can be included as a regulatory element for an exogenous gene introduced into a non-naturally occurring microbial organism.
  • a non-naturally occurring microbial organism includes one or more gene disruptions, where the organism produces a 6-ACA, adipate and/or HMDA.
  • the disruptions occur in genes encoding an enzyme that couples production of adipate, 6-ACA and/or HMDA to growth of the organism when the gene disruption reduces the activity of the enzyme, such that the gene disruptions confer increased production of adipate, 6-ACA and/or HMDA onto the non-naturally occurring organism.
  • a non-naturally occurring microbial organism comprising one or more gene disruptions, the one or more gene disruptions occurring in genes encoding proteins or enzymes wherein the one or more gene disruptions confer increased production of adipate, 6-ACA and/or HMDA in the organism.
  • such an organism contains a pathway for production of adipate, 6-ACA and/or HMDA.
  • any of the one or more exogenous nucleic acids can be introduced into a microbial organism to produce a non-naturally occurring microbial organism.
  • the nucleic acids can be introduced so as to confer, for example, a 6-aminocaproic acid, caprolactam, hexamethylenediamine or levulinic acid biosynthetic pathway onto the microbial organism.
  • encoding nucleic acids can be introduced to produce an intermediate microbial organism having the biosynthetic capability to catalyze some of the required reactions to confer 6-aminocaproic acid, caprolactam, hexamethylenediamine or levulinic acid biosynthetic capability.
  • a non-naturally occurring microbial organism having a 6-aminocaproic acid, caprolactam, hexamethylenediamine or levulinic acid biosynthetic pathway can comprise at least two exogenous nucleic acids encoding desired enzymes.
  • At least two exogenous nucleic acids can encode the enzymes such as the combination of succinyl-CoA: acetyl-CoA acyl transferase and 3-hydroxyacyl-CoA dehydrogenase, or succinyl-CoA: acetyl-CoA acyl transferase and 3-hydroxyadipyl-CoA dehydratransaminasee, or 3-hydroxyadipyl-CoA and adipate semialdehyde transaminase, or 3-hydroxyacyl-CoA and adipyl-CoA synthetase, and the like.
  • At least two exogenous nucleic acids can encode the enzymes such as the combination of CoA-dependent trans-enoyl-CoA reductase and transaminase, or CoA-dependent trans-enoyl-CoA reductransaminasee and amidohydrolase, or transaminase and amidohydrolase.
  • At least two exogenous nucleic acids can encode the enzymes such as the combination of an 4-hydroxy-2-oxoheptane-1,7-dioate (HODH) TAolase and a 2-oxohept-4-ene-1,7-dioate (OHED) hydratransaminasee, or a 2-oxohept-4-ene-1,7-dioate (OHED) hydratransaminasee and a 2-aminoheptane-1,7-dioate (2-AHD) decarboxylase, a 3-hydroxyadipyl-CoA dehydratransaminasee and a adipyl-CoA dehydrogenase, a glutamyl-CoA transferase and a 6-aminopimeloyl-CoA hydrolase, or a glutaryl-CoA beta-ketothiolase and a 3-aminopimelate 2,3-ami
  • HODH 4-hydroxy-2-oxo
  • At least two exogenous nucleic acids can encode the enzymes such as the combination of 6-aminocaproate kinase and [(6-aminohexanoyl)oxy]phosphonate (6-AHOP) oxidoreductransaminasee, or a 6-acetamidohexanoate kinase and an [(6-acetamidohexanoyl)oxy]phosphonate (6-AAHOP) oxidoreductransaminasee, 6-aminocaproate N-acetyltransferase and 6-acetamidohexanoyl-CoA oxidoreductransaminasee, a 3-hydroxy-6-aminopimeloyl-CoA dehydratransaminasee and a 2-amino-7-oxoheptanoate aminotransferase, or a 3-oxopimeloyl-CoA ligase and a homoly
  • any combination of three or more enzymes of a biosynthetic pathway can be included in a non-naturally occurring microbial organism , for example, in the case of adipate production, the combination of enzymes succinyl-CoA: acetyl-CoA acyl transferase, 3-hydroxyacyl-CoA dehydrogenase, and 3-hydroxyadipyl-CoA dehydratransaminasee; or succinyl-CoA: acetyl-CoA acyl transferase, 3-hydroxyacyl-CoA dehydrogenase andadipate semialdehydereductransaminasee; or succinyl-CoA: acetyl-CoA acyl transferase, 3-hydroxyacyl-CoA dehydrogenase and adipyl-CoA synthetransaminasee; or 3-hydroxyacyl-CoA dehydrogenase, 3-hydroxyadipyl-CoA dehydratrans
  • the at least three exogenous nucleic acids can encode the enzymes such as the combination of an 4-hydroxy-2-oxoheptane-1,7-dioate (HODH) TAolase, a 2-oxohept-4-ene-1,7-dioate (OHED) hydratransaminasee and a 2-oxoheptane-1,7-dioate (2-OHD) decarboxylase, or a 2-oxohept-4-ene-1,7-dioate (OHED) hydratransaminasee, a 2-aminohept-4-ene-1,7-dioate (2-AHE) reductransaminasee and a 2-aminoheptane-1,7-dioate (2-AHD) decarboxylase, or a 3-hydroxyadipyl-CoA dehydratransaminasee, 2,3-dehydroadipyl-CoA reduc
  • At least three exogenous nucleic acids can encode the enzymes such as the combination of 6-aminocaproate kinase, [(6-aminohexanoyl)oxy]phosphonate (6-AHOP) oxidoreductransaminasee and 6-aminocaproic semialdehyde aminotransferase, or a 6-aminocaproate N-acetyltransferase, a 6-acetamidohexanoate kinase and an [(6-acetamidohexanoyl)oxy]phosphonate (6-AAHOP) oxidoreductransaminasee, or 6-aminocaproate N-acetyltransferase, a [(6-acetamidohexanoyl)oxy]phosphonate (6-AAHOP) acyltransferase and 6-acetamidohexanoyl-CoA oxidore
  • 6-AHOP [(6-aminohe
  • any combination of four or more enzymes of a biosynthetic pathway as disclosed herein can be included in a non-naturally occurring microbial organism, as desired, so long as the combination of enzymes of the desired biosynthetic pathway results in production of the corresponding desired product.
  • non-naturally occurring microbial organisms and methods also can be utilized in various combinations with each other and with other microbial organisms and methods well known in the art to achieve product biosynthesis by other routes.
  • one alternative to produce 6-aminocaproic acid, caprolactam, hexamethylenediamine or levulinic acid other than use of the 6-aminocaproic acid, caprolactam, hexamethylenediamine or levulinic acid producers is through addition of another microbial organism capable of converting an adipate, 6-aminocaproic acid or caprolactam pathway intermediate to 6-aminocaproic acid, caprolactam, hexamethylenediamine or levulinic acid.
  • One such procedure includes, for example, the fermentation of a microbial organism that produces a 6-aminocaproic acid, caprolactam, hexamethylenediamine or levulinic acid pathway intermediate.
  • the 6-aminocaproic acid, caprolactam, hexamethylenediamine or levulinic acid pathway intermediate can then be used as a substrate for a second microbial organism that converts the 6-aminocaproic acid, caprolactam, hexamethylenediamine or levulinic acid pathway intermediate to 6-aminocaproic acid, caprolactam, hexamethylenediamine or levulinic acid.
  • the 6-aminocaproic acid, caprolactam, hexamethylenediamine or levulinic acid pathway intermediate can be added directly to another culture of the second organism or the original culture of 6-aminocaproic acid, caprolactam, hexamethylenediamine or levulinic acid pathway intermediate producers can be depleted of these microbial organisms by, for example, cell separation, and then subsequent addition of the second organism to the fermentation broth can be utilized to produce the final product without intermediate purification steps.
  • the non-naturally occurring microbial organisms and methods can be assembled in a wide variety of sub pathways to achieve biosynthesis of, for example, 6-aminocaproic acid, caprolactam, hexamethylenediamine or levulinic acid.
  • biosynthetic pathways for a desired product can be segregated into different microbial organisms, and the different microbial organisms can be co-cultured to produce the final product.
  • the product of one microbial organism is the substrate for a second microbial organism until the final product is synthesized.
  • biosynthesis of 6-aminocaproic acid, caprolactam, hexamethylenediamine or levulinic acid can be accomplished by constructing a microbial organism that contains biosynthetic pathways for conversion of one pathway intermediate to another pathway intermediate or the product.
  • 6-aminocaproic acid, caprolactam, hexamethylenediamine or levulinic acid also can be biosynthetically produced from microbial organisms through co-culture or co-fermentation using two organisms in the same vessel, where the first microbial organism produces a 6-aminocaproic acid, caprolactam, hexamethylenediamine or levulinic acid intermediate and the second microbial organism converts the intermediate to 6-aminocaproic acid, caprolactam, hexamethylenediamine or levulinic acid.
  • a host organism can be selected based on desired characteristics for introduction of one or more gene disruptions to increase production of 6-aminocaproic acid, caprolactam, hexamethylenediamine or levulinic acid.
  • a genetic modification is to be introduced into a host organism to disrupt a gene, any homologs, orthologs or paralogs that catalyze similar, yet non-identical metabolic reactions can similarly be disrupted to ensure that a desired metabolic reaction is sufficiently disrupted.
  • the increased production couples biosynthesis of 6-aminocaproic acid, caprolactam, hexamethylenediamine or levulinic acid to growth of the organism, and can obligatorily couple production of 6-aminocaproic acid, caprolactam, hexamethylenediamine or levulinic acid to growth of the organism if desired and as disclosed herein.
  • Sources of encoding nucleic acids for a 6-aminocaproic acid, caprolactam, hexamethylenediamine or levulinic acid pathway enzyme can include, for example, any species where the encoded gene product is capable of catalyzing the referenced reaction. Such species include both prokaryotic and eukaryotic organisms including, but not limited to, bacteria, including archaea and eubacteria, and eukaryotes, including yeast, plant, insect, animal, and mammal, including human.
  • the source of the encoding nucleic acids for a 6-aminocaproic acid, caprolactam, hexamethylenediamine or levulinic acid pathway enzyme is shown in Table 4.
  • the source of the encoding nucleic acids for transaminase enzyme is shown in Table 4.
  • the source of the encoding nucleic acids for transaminase enzyme is from the genus Achromobacter, Acidaminococcus, Collinsella, Peptostreptococcaceae, Paenarthrobacter or Romboustsia.
  • the source of the encoding nucleic acids for a 6-aminocaproic acid, caprolactam, hexamethylenediamine or levulinic acid pathway enzyme are species such as, Escherichia coli, Escherichia coli str.
  • Pseudomonas aeruginosa Pseudomonas aeruginosa PAO1
  • Ralstonia eutropha Ralstonia eutropha H16
  • Clostridium acetobutylicum Euglena gracilis
  • Treponema denticola Clostridium kluyveri
  • Homo sapiens Rattus norvegicus
  • ADP1 Acinetobacter sp.
  • M62/1 Fusobacterium nucleatum, Bos taurus, Zoogloea ramigera, Rhodobacter sphaeroides, Clostridium beijerinckii, Metallosphaera sedula, Thermoanaerobacter species, Thermoanaerobacter brockii, Acinetobacter baylyi, Porphyromonas gingivalis, Leuconostoc mesenteroides, Sulfolobus tokodaii, Sulfolobus tokodaii 7, Sulfolobus solfataricus, Sulfolobus solfataricus, Sulfolobus solfataricus, Sulfolobus acidocaldarius, Salmonella typhimurium, Salmonella enterica, Thermotoga maritima, Halobacterium salinarum, Bacillus cereus, Clostridium difficile, Alkaliphilus metalliredigenes, Therm
  • IM2 Nicotiana tabacum, Menthe piperita, Pinus taeda, Hordeum vulgare, Zea mays, Rhodococcus opacus, Cupriavidus necator, Bradyrhizobium japonicum, Bradyrhizobium japonicum USDA110, Ascarius suum, butyrate-producing bacterium L2-50, Bacillus megaterium, Methanococcus maripaludis, Methanosarcina mazei, Methanosarcina mazei, Methanocarcina barkeri, Methanocaldococcus jannaschii, Caenorhabditis elegans, Leishmania major, Methylomicrobium alcaliphilum 20Z, Chromohalobacter salexigens, Archaeglubus fulgidus, Chlamydomonas reinhardtii, trichomonas vaginalis G3, Trypanosoma brucei, Mycoplana ramose, Micrococc
  • the metabolic alterations enabling biosynthesis of 6-aminocaproic acid, caprolactam, hexamethylenediamine or levulinic acid described herein with reference to a particular organism such as E. coli can be readily applied to other microorganisms, including prokaryotic and eukaryotic organisms alike. Given the teachings and guidance provided herein, those skilled in the art will know that a metabolic alteration exemplified in one organism can be applied equally to other organisms.
  • 6-aminocaproic acid, caprolactam, hexamethylenediamine or levulinic acid biosynthetic pathway exists in an unrelated species
  • 6-aminocaproic acid, caprolactam, hexamethylenediamine or levulinic acid biosynthesis can be conferred onto the host species by, for example, exogenous expression of a paralog or paralogs from the unrelated species that catalyzes a similar, yet non-identical metabolic reaction to replace the referenced reaction. Because certain differences among metabolic networks exist between different organisms, those skilled in the art will understand that the actual gene usage between different organisms may differ.
  • teachings and methods can be applied to all microbial organisms using the cognate metabolic alterations to those exemplified herein to construct a microbial organism in a species of interest that will synthesize 6-aminocaproic acid, caprolactam, hexamethylenediamine or levulinic acid.
  • Host microbial organisms can be selected from, and the non-naturally occurring microbial organisms generated in, for example, bacteria, yeast, fungus or any of a variety of other microorganisms applicable to fermentation processes.
  • Exemplary bacteria include species selected from Escherichia coli, Klebsiella oxytoca, Anaerobiospirillum succiniciproducens, Actinobacillus succinogenes, Mannheimia succiniciproducens, Rhizobium etli, Bacillus subtilis, Corynebacterium glutamicum, Gluconobacter oxydans, Zymomonas mobilis, Lactococcus lactis, Lactobacillus plantarum, Streptomyces coelicolor, Clostridium acetobutylicum, Pseudomonas fluorescens, and Pseudomonas putida.
  • Exemplary yeasts or fungi include species selected from Saccharomyces cerevisiae, Schizosaccharomyces pombe, Kluyveromyces lactis, Kluyveromyces marxianus, Aspergillus terreus, Aspergillus niger, Pichia pastoris, Rhizopus arrhizus, Rhizobus oryzae, and the like.
  • E. coli is a particularly useful host organism since it is a well characterized microbial organism suitable for genetic engineering.
  • Other particularly useful host organisms include yeast such as Saccharomyces cerevisiae. It is understood that any suitable microbial host organism can be used to introduce metabolic and/or genetic modifications to produce a desired product.
  • Methods for constructing and testing the expression levels of a non-naturally occurring 6-aminocaproic acid, caprolactam, hexamethylenediamine or levulinic acid -producing host can be performed, for example, by recombinant and detection methods well known in the art. Such methods can be found described in, for example, Sambrook et al., Molecular Cloning: A Laboratory Manual, Third Ed. , Cold Spring Harbor Laboratory, New York (2001); and Ausubel et al., Current Protocols in Molecular Biology, John Wiley and Sons, Baltimore, Md. (1999).
  • Exogenous nucleic acid sequences involved in a pathway for production of 6-aminocaproic acid, caprolactam, hexamethylenediamine or levulinic acid can be introduced stably or transiently into a host cell using techniques well known in the art including, but not limited to, conjugation, electroporation, chemical transformation, transduction, transfection, and ultrasound transformation.
  • some nucleic acid sequences in the genes or cDNAs of eukaryotic nucleic acids can encode targeting signals such as an N-terminal mitochondrial or other targeting signal, which can be removed before transformation into prokaryotic host cells, if desired. For example, removal of a mitochondrial leader sequence led to increased expression in E.
  • genes can be expressed in the cytosol without the addition of leader sequence, or can be targeted to mitochondrion or other organelles, or targeted for secretion, by the addition of a suitable targeting sequence such as a mitochondrial targeting or secretion signal suitable for the host cells.
  • a suitable targeting sequence such as a mitochondrial targeting or secretion signal suitable for the host cells.
  • An expression vector or vectors can be constructed to include one or more 6-aminocaproic acid, caprolactam, hexamethylenediamine or levulinic acid biosynthetic pathway encoding nucleic acids as exemplified herein operably linked to expression control sequences functional in the host organism.
  • Expression vectors applicable for use in the microbial host organisms include, for example, plasmids, phage vectors, viral vectors, episomes and artificial chromosomes, including vectors and selection sequences or markers operable for stable integration into a host chromosome. Additionally, the expression vectors can include one or more selectable marker genes and appropriate expression control sequences.
  • Selectable marker genes also can be included that, for example, provide resistance to antibiotics or toxins, complement auxotrophic deficiencies, or supply critical nutrients not in the culture media.
  • Expression control sequences can include constitutive and inducible promoTransaminase, transcription enhancers, transcription terminators, and the like which are well known in the art.
  • both nucleic acids can be inserted, for example, into a single expression vector or in separate expression vectors.
  • the encoding nucleic acids can be operationally linked to one common expression control sequence or linked to different expression control sequences, such as one inducible promoter and one constitutive promoter.
  • exogenous nucleic acid sequences involved in a metabolic or synthetic pathway can be confirmed using methods well known in the art. Such methods include, for example, nucleic acid analysis such as Northern blots or polymerase chain reaction (PCR) amplification of mRNA, or immunoblotting for expression of gene products, or other suitable analytical methods to test the expression of an introduced nucleic acid sequence or its corresponding gene product. It is understood by those skilled in the art that the exogenous nucleic acid is expressed in a sufficient amount to produce the desired product, and it is further understood that expression levels can be optimized to obtain sufficient expression using methods well known in the art and as disclosed herein.
  • a method for producing adipate can involve culturing a non-naturally occurring microbial organism having an adipate pathway, the pathway including at least one exogenous nucleic acid encoding an adipate pathway enzyme expressed in a sufficient amount to produce adipate, under conditions and for a sufficient period of time to produce adipate, the adipate pathway including succinyl-CoA: acetyl-CoA acyl transferase, 3-hydroxyacyl-CoA dehydrogenase, 3-hydroxyadipyl-CoA dehydratransaminasee, adipate semialdehydereductransaminasee, and adipyl-CoA synthetransaminasee or phosphotransadipylase/adipate kinase or
  • a method for producing adipate can involve culturing a non-naturally occurring microbial organism having an adipate pathway, the pathway including at least one exogenous nucleic acid encoding an adipate pathway enzyme expressed in a sufficient amount to produce adipate, under conditions and for a sufficient period of time to produce adipate, the adipate pathway including succinyl-CoA: acetyl-CoA acyl transferase, 3-oxoadipyl-CoA transferase, 3-oxoadipate reductransaminasee, 3-hydroxyadipate dehydratransaminasee, and 2-enoate reductransaminasee.
  • a method for producing 6-aminocaproic acid can involve culturing a non-naturally occurring microbial organism having a 6-aminocaproic acid pathway, the pathway including at least one exogenous nucleic acid encoding a 6-aminocaproic acid pathway enzyme expressed in a sufficient amount to produce 6-aminocaproic acid, under conditions and for a sufficient period of time to produce 6-aminocaproic acid, the 6-aminocaproic acid pathway including CoA-dependent trans-enoyl-CoA reductransaminasee and transaminase or 6-aminocaproate dehydrogenase.
  • a method for producing caprolactam can involve culturing a non-naturally occurring microbial organism having a caprolactam pathway, the pathway including at least one exogenous nucleic acid encoding a caprolactam pathway enzyme expressed in a sufficient amount to produce caprolactam, under conditions and for a sufficient period of time to produce caprolactam, the caprolactam pathway including CoA-dependent aldehyde dehydrogenase, transaminase or 6-aminocaproate dehydrogenase, and amidohydrolase.
  • Suitable purification and/or assays to test for the production of 6-aminocaproic acid, caprolactam, hexamethylenediamine or levulinic acid can be performed using well known methods. Suitable replicates such as triplicate cultures can be grown for each engineered strain to be tested. For example, product and byproduct formation in the engineered production host can be monitored. The final product and intermediates, and other organic compounds, can be analyzed by methods such as HPLC (High Performance Liquid Chromatography), GC-MS (Gas Chromatography-Mass Spectroscopy) and LC-MS (Liquid Chromatography-Mass Spectroscopy) or other suitable analytical methods using routine procedures well known in the art.
  • HPLC High Performance Liquid Chromatography
  • GC-MS Gas Chromatography-Mass Spectroscopy
  • LC-MS Liquid Chromatography-Mass Spectroscopy
  • the release of product in the fermentation broth can also be tested with the culture supernatant.
  • Byproducts and residual glucose can be quantified by HPLC using, for example, a refractive index detector for glucose and alcohols, and a UV detector for organic acids (Lin et al., Biotechnol. Bioeng. 90:775-779 (2005)), or other suitable assay and detection methods well known in the art.
  • the individual enzyme activities from the exogenous DNA sequences can also be assayed using methods well known in the art.
  • the 6-aminocaproic acid, caprolactam, hexamethylenediamine or levulinic acid can be separated from other components in the culture using a variety of methods well known in the art.
  • separation methods include, for example, extraction procedures as well as methods that include continuous liquid-liquid extraction, pervaporation, membrane filtration, membrane separation, reverse osmosis, electrodialysis, distillation, crystallization, centrifugation, extractive filtration, ion exchange chromatography, size exclusion chromatography, adsorption chromatography, and ultrafiltration. All of the above methods are well known in the art.
  • any of the non-naturally occurring microbial organisms described herein can be cultured to produce and/or secrete the biosynthetic products.
  • the 6-aminocaproic acid, caprolactam, hexamethylenediamine or levulinic acid producers can be cultured for the biosynthetic production of 6-aminocaproic acid, caprolactam, hexamethylenediamine or levulinic acid.
  • the recombinant strains are cultured in a medium with carbon source and other essential nutrients. It is sometimes desirable and can be highly desirable to maintain anaerobic conditions in the fermenter to reduce the cost of the overall process. Such conditions can be obtained, for example, by first sparging the medium with nitrogen and then sealing the flasks with a septum and crimp-cap. For strains where growth is not observed anaerobically, microaerobic or substantially anaerobic conditions can be applied by perforating the septum with a small hole for limited aeration. Exemplary anaerobic conditions have been described previously and are well-known in the art. Exemplary aerobic and anaerobic conditions are described, for example, in U.S. Pat. No. 7,947,483 issued May 24, 2011. Fermentations can be performed in a batch, fed-batch or continuous manner, as disclosed herein.
  • the pH of the medium can be maintained at a desired pH, in particular neutral pH, such as a pH of around 7 by addition of a base, such as NaOH or other bases, or acid, as needed to maintain the culture medium at a desirable pH.
  • the growth rate can be determined by measuring optical density using a spectrophotometer (600 nm), and the glucose uptake rate by monitoring carbon source depletion over time.
  • the growth medium can include, for example, any carbohydrate source which can supply a source of carbon to the non-naturally occurring microorganism.
  • Such sources include, for example, sugars such as glucose, xylose, arabinose, galactose, mannose, fructose, sucrose and starch.
  • Other sources of carbohydrate include, for example, renewable feedstocks and biomass.
  • Exemplary types of biomasses that can be used as feedstocks in the methods include cellulosic biomass, hemicellulosic biomass and lignin feedstocks or portions of feedstocks.
  • Such biomass feedstocks contain, for example, carbohydrate substrates useful as carbon sources such as glucose, xylose, arabinose, galactose, mannose, fructose and starch.
  • carbohydrate substrates useful as carbon sources such as glucose, xylose, arabinose, galactose, mannose, fructose and starch.
  • renewable feedstocks and biomass other than those exemplified above also can be used for culturing the microbial organisms for the production of 6-aminocaproic acid, caprolactam, hexamethylenediamine or levulinic acid.
  • the 6-aminocaproic acid, caprolactam, hexamethylenediamine, or levulinic acid microbial organisms also can be modified for growth on syngas as its source of carbon.
  • one or more proteins or enzymes are expressed in the 6-aminocaproic acid, caprolactam, hexamethylenediamine or levulinic acid producing organisms to provide a metabolic pathway for utilization of syngas or other gaseous carbon source.
  • Synthesis gas also known as syngas or producer gas
  • syngas is the major product of gasification of coal and of carbonaceous materials such as biomass materials, including agricultural crops and residues.
  • Syngas is a mixture primarily of H2 and CO and can be obtained from the gasification of any organic feedstock, including but not limited to coal, coal oil, natural gas, biomass, and waste organic matter. Gasification is generally carried out under a high fuel to oxygen ratio. Although largely H2 and CO, syngas can also include CO2 and other gases in smaller quantities.
  • synthesis gas provides a cost effective source of gaseous carbon such as CO and additionally, CO2.
  • the Wood-Ljungdahl pathway catalyzes the conversion of CO and H2 to acetyl-CoA and other products such as acetate.
  • Organisms capable of utilizing CO and syngas also generally have the capability of utilizing CO2 and CO2/H2 mixtures through the same basic set of enzymes and transformations encompassed by the Wood-Ljungdahl pathway.
  • H2-dependent conversion of CO2 to acetate by microorganisms was recognized long before it was revealed that CO also could be used by the same organisms and that the same pathways were involved.
  • Many acetogens have been shown to grow in the presence of CO2 and produce compounds such as acetate as long as hydrogen is present to supply the necessary reducing equivalents (see for example, Drake, Acetogenesis, pp. 3-60 Chapman and Hall, New York, (1994)). This can be summarized by the following equation:
  • non-naturally occurring microorganisms possessing the Wood-Ljungdahl pathway can utilize CO2 and H2 mixtures as well for the production of acetyl-CoA and other desired products.
  • the Wood-Ljungdahl pathway is well known in the art and consists of 12 reactions which can be separated into two branches: (1) methyl branch and (2) carbonyl branch.
  • the methyl branch converts syngas to methyl-tetrahydrofolate (methyl-THF) whereas the carbonyl branch converts methyl-THF to acetyl-CoA.
  • the reactions in the methyl branch are catalyzed in order by the following enzymes: ferredoxin oxidoreductransaminasee, formate dehydrogenase, formyltetrahydrofolate synthetransaminasee, methenyltetrahydrofolate cyclodehydratransaminasee, methylenetetrahydrofolate dehydrogenase and methylenetetrahydrofolate reductransaminasee.
  • the reactions in the carbonyl branch are catalyzed in order by the following enzymes or proteins: cobalamide corrinoid/iron-sulfur protein, methyltransferase, carbon monoxide dehydrogenase, acetyl-CoA synthase, acetyl-CoA synthase disulfide reductransaminasee and hydrogenase, and these enzymes can also be referred to as methyltetrahydrofolate:corrinoid protein methyltransferase (for example, AcsE), corrinoid iron-sulfur protein, nickel-protein assembly protein (for example, AcsF), ferredoxin, acetyl-CoA synthase, carbon monoxide dehydrogenase and nickel-protein assembly protein (for example, CooC).
  • cobalamide corrinoid/iron-sulfur protein methyltransferase
  • carbon monoxide dehydrogenase acetyl-CoA synth
  • the reductive (reverse) tricarboxylic acid cycle coupled with carbon monoxide dehydrogenase and/or hydrogenase activities can also be used for the conversion of CO, CO2 and/or H2 to acetyl-CoA and other products such as acetate.
  • Organisms capable of fixing carbon via the reductive TCA pathway can utilize one or more of the following enzymes: ATP citrate-lyase, citrate lyase, aconitransaminasee, isocitrate dehydrogenase, alpha-ketoglutarate: ferredoxin oxidoreductransaminasee, succinyl-CoA synthetransaminasee, succinyl-CoA transferase, fumarate reductransaminasee, fumarase, malate dehydrogenase, NAD(P)Ferredoxin oxidoreductransaminasee, carbon monoxide dehydrogenase, and hydrogenase.
  • ATP citrate-lyase citrate lyase
  • aconitransaminasee isocitrate dehydrogenase
  • alpha-ketoglutarate ferredoxin oxidoreductransaminasee
  • the reducing equivalents extracted from CO and/or H2 by carbon monoxide dehydrogenase and hydrogenase are utilized to fix CO2 via the reductive TCA cycle into acetyl-CoA or acetate.
  • Acetate can be converted to acetyl-CoA by enzymes such as acetyl-CoA transferase, acetate kinase/phosphotransacetylase, and acetyl-CoA synthetransaminasee.
  • Acetyl-CoA can be converted to the p-toluate, terepathalate, or (2-hydroxy-3-methyl-4-oxobutoxy) phosphonate precursors, glyceraldehyde-3-phosphate, phosphoenolpyruvate, and pyruvate, by pyruvate: ferredoxin oxidoreductransaminasee and the enzymes of gluconeogenesis.
  • a non-naturally occurring microbial organism can be produced that secretes the biosynthesized compounds when grown on a carbon source such as a carbohydrate.
  • Such compounds include, for example, 6-aminocaproic acid, caprolactam, hexamethylenediamine or levulinic acid and any of the intermediate metabolites in the 6-aminocaproic acid, caprolactam, hexamethylenediamine or levulinic acid pathway.
  • Some embodiments provide a non-naturally occurring microbial organism that produces and/or secretes 6-aminocaproic acid, caprolactam, hexamethylenediamine or levulinic acid when grown on a carbohydrate and produces and/or secretes any of the intermediate metabolites shown in the 6-aminocaproic acid, caprolactam, hexamethylenediamine or levulinic acid pathway when grown on a carbohydrate.
  • an adipate producing microbial organisms can initiate synthesis from an intermediate, for example, 3-oxoadipyl-CoA, 3-hydroxyadipyl-CoA, 5-carboxy-2-pentenoyl-CoA, or adipyl-CoA (see FIG. 1 ), as desired.
  • an adipate producing microbial organism can initiate synthesis from an intermediate, for example, 3-oxoadipyl-CoA, 3-oxoadipate, 3-hydroxyadipate, or hexa-2-enedioate.
  • the 6-aminocaproic acid producing microbial organism can initiate synthesis from an intermediate, for example, adipate semialdehyde.
  • the caprolactam producing microbial organism can initiate synthesis from an intermediate, for example, adipate semialdehyde or 6-aminocaproic acid (see FIG. 1 ), as desired.
  • the non-naturally occuring microrganisms can generate adipate, 6ACA, caprolactone, hexamethyelenediamine or caproclactam as shown in FIG. 4-9 .
  • the non-naturally occurring microbial organisms further include an exogenously expressed nucleic acid encoding an aldehyde dehydrognease (ALD) or a transenoyl reductase (TER) or both.
  • ALD aldehyde dehydrognease
  • TER transenoyl reductase
  • the ALD reacts with adipyl-CoA to produce adipate semialdehyde
  • TER reacts with 5-carboxy-2-pentenoyl-CoA (CPCoA) to form adipylCoA.
  • CPCoA 5-carboxy-2-pentenoyl-CoA
  • the ALD enzymes have greater catalytic efficiency and activity for the adipyl CoA substrate as compared to succinyl-CoA, or acetyl-CoA, or both substrates. In some embodiments, the ALD enzymes are as shown in Table 2.
  • CDB26907.1 ⁇ ⁇ CAG:241 Clostridium sp. KLE ERI68946.1 + ⁇ 135 Caldalkalibacillus WP_007505383.1 + ⁇ thermarum TA2.A1 136 Budvicia aquatica WP_029095874.1 ⁇ ⁇ 137 Caldalkalibacillus WP_007505383.1 + ⁇ thermarum TA2.A1 138 Rhodospirillum rubrum WP_011388669.1 ⁇ ⁇ ATCC 11170 139 Bacteroidetes bacterium OFX78235.1 ⁇ ⁇ GWE2_39_28 140 Desulfosporosinus sp.
  • the TER enzymes are as shown in Table 3.
  • the non-naturally occurring microbial organisms are constructed using methods well known in the art as exemplified herein to exogenously express at least one nucleic acid encoding a 6-aminocaproic acid, caprolactam, hexamethylenediamine or levulinic acid pathway enzyme in sufficient amounts to produce 6-aminocaproic acid, caprolactam, hexamethylenediamine or levulinic acid. It is understood that the microbial organisms are cultured under conditions sufficient to produce 6-aminocaproic acid, caprolactam, hexamethylenediamine or levulinic acid.
  • the non-naturally occurring microbial organisms can achieve biosynthesis of 6-aminocaproic acid, caprolactam, hexamethylenediamine or levulinic acid resulting in intracellular concentrations between about 0.1-200 mM or more.
  • the intracellular concentration of 6-aminocaproic acid, caprolactam, hexamethylenediamine or levulinic acid is between about 3-150 mM, particularly between about 5-125 mM and more particularly between about 8-100 mM, including about 10 mM, 20 mM, 50 mM, 80 mM, or more.
  • Intracellular concentrations between and above each of these exemplary ranges also can be achieved from the non-naturally occurring microbial organisms.
  • culture conditions include anaerobic or substantially anaerobic growth or maintenance conditions.
  • Exemplary anaerobic conditions have been described previously and are well known in the art.
  • Exemplary anaerobic conditions for fermentation processes are described herein and are described, for example, in U.S. Pat. No. 7,947,483, issued May 24, 2011. Any of these conditions can be employed with the non-naturally occurring microbial organisms as well as other anaerobic conditions well known in the art.
  • 6-aminocaproic acid, caprolactam, hexamethylenediamine or levulinic acid producers can synthesize 6-aminocaproic acid, caprolactam, hexamethylenediamine or levulinic acid at intracellular concentrations of 5-10 mM or more as well as all other concentrations exemplified herein. It is understood that, even though the above description refers to intracellular concentrations, 6-aminocaproic acid, caprolactam, hexamethylenediamine or levulinic acid producing microbial organisms can produce 6-aminocaproic acid, caprolactam, hexamethylenediamine or levulinic acid intracellularly and/or secrete the product into the culture medium.
  • the culture conditions can include, for example, liquid culture procedures as well as fermentation and other large scale culture procedures. As described herein, particularly useful yields of the biosynthetic products can be obtained under anaerobic or substantially anaerobic culture conditions.
  • one exemplary growth condition for achieving biosynthesis of 6-aminocaproic acid, caprolactam, hexamethylenediamine or levulinic acid includes anaerobic culture or fermentation conditions.
  • the non-naturally occurring microbial organisms can be sustained, cultured or fermented under anaerobic or substantially anaerobic conditions.
  • anaerobic conditions refer to an environment devoid of oxygen.
  • substantially anaerobic conditions include, for example, a culture, batch fermentation or continuous fermentation such that the dissolved oxygen concentration in the medium remains between 0 and 10% of saturation.
  • Substantially anaerobic conditions also include growing or resting cells in liquid medium or on solid agar inside a sealed chamber maintained with an atmosphere of less than 1% oxygen.
  • the percent of oxygen can be maintained by, for example, sparging the culture with an N2/CO2 mixture or other suitable non-oxygen gas or gases.
  • the culture conditions described herein can be scaled up and gown continuously for manufacturing of 6-aminocaproic acid, caprolactam, hexamethylenediamine or levulinic acid.
  • Exemplary growth procedures include, for example, fed-batch fermentation and batch separation; fed-batch fermentation and continuous separation, or continuous fermentation and continuous separation. All of these processes are well known in the art. Fermentation procedures are particularly useful for the biosynthetic production of commercial quantities of 6-aminocaproic acid, caprolactam, hexamethylenediamine or levulinic acid.
  • the continuous and/or near-continuous production of 6-aminocaproic acid, caprolactam, hexamethylenediamine or levulinic acid will include culturing a non-naturally occurring 6-aminocaproic acid, caprolactam, hexamethylenediamine or levulinic acid producing organism in sufficient nutrients and medium to sustain and/or nearly sustain growth in an exponential phase.
  • Continuous culture under such conditions can include, for example, 1 day, 2, 3, 4, 5, 6 or 7 days or more. Additionally, continuous culture can include 1 week, 2, 3, 4 or 5 or more weeks and up to several months. Alternatively, organisms can be cultured for hours, if suitable for a particular application.
  • the continuous and/or near-continuous culture conditions also can include all time intervals in between these exemplary periods. It is further understood that the time of culturing the microbial organism is for a sufficient period of time to produce a sufficient amount of product for a desired purpose.
  • Fermentation procedures are well known in the art. Briefly, fermentation for the biosynthetic production of 6-aminocaproic acid, caprolactam, hexamethylenediamine or levulinic acid can be utilized in, for example, fed-batch fermentation and batch separation; fed-batch fermentation and continuous separation, or continuous fermentation and continuous separation. Examples of batch and continuous fermentation procedures are well known in the art.
  • the 6-aminocaproic acid, caprolactam, hexamethylenediamine or levulinic acid producers for continuous production of substantial quantities of 6-aminocaproic acid, caprolactam, hexamethylenediamine or levulinic acid
  • the 6-aminocaproic acid, caprolactam, hexamethylenediamine or levulinic acid producers also can be, for example, simultaneously subjected to chemical synthesis procedures to convert the product to other compounds or the product can be separated from the fermentation culture and sequentially subjected to chemical conversion to convert the product to other compounds, if desired.
  • an intermediate in the adipate pathway utilizing 3-oxoadipate, hexa-2-enedioate can be converted to adipate, for example, by chemical hydrogenation over a platinum catalyst.
  • exemplary growth conditions for achieving biosynthesis of 6-aminocaproic acid, caprolactam, hexamethylenediamine or levulinic acid includes the addition of an osmoprotectant to the culturing conditions.
  • the non-naturally occurring microbial organisms can be sustained, cultured or fermented as described above in the presence of an osmoprotectant.
  • an osmoprotectant means a compound that acts as an osmolyte and helps a microbial organism as described herein survive osmotic stress.
  • Osmoprotectants include, but are not limited to, betaines, amino acids, and the sugar trehalose.
  • Non-limiting examples of such are glycine betaine, praline betaine, dimethylthetin, dimethylslfonioproprionate, 3-dimethylsulfonio-2-methylproprionate, pipecolic acid, dimethylsulfonioacetate, choline, L-carnitine and ectoine.
  • the osmoprotectant is glycine betaine. It is understood to one of ordinary skill in the art that the amount and type of osmoprotectant suitable for protecting a microbial organism described herein from osmotic stress will depend on the microbial organism used.
  • Escherichia coli in the presence of varying amounts of 6-aminocaproic acid is suitably grown in the presence of 2 mM glycine betaine.
  • the amount of osmoprotectant in the culturing conditions can be, for example, no more than about 0.1 mM, no more than about 0.5 mM, no more than about 1.0 mM, no more than about 1.5 mM, no more than about 2.0 mM, no more than about 2.5 mM, no more than about 3.0 mM, no more than about 5.0 mM, no more than about 7.0 mM, no more than about 10mM, no more than about 50 mM, no more than about 100 mM or no more than about 500 mM.
  • Successfully engineering a pathway involves identifying an appropriate set of enzymes with sufficient activity and specificity. This entails identifying an appropriate set of enzymes, cloning their corresponding genes into a production host, optimizing fermentation conditions, and assaying for product formation following fermentation.
  • a production host for the production of 6-aminocaproic acid or caprolactam one or more exogenous DNA sequence(s) can be expressed in a host microorganism.
  • the microorganism can have endogenous gene(s) functionally deleted.
  • minimizing or even eliminating the formation of the cyclic imine or caprolactam during the conversion of 6-aminocaproic acid to HMDA entails adding a functional group (for example, acetyl, succinyl) to the amine group of 6-aminocaproic acid to protect it from cyclization.
  • a functional group for example, acetyl, succinyl
  • This is analogous to ornithine formation from L-glutamate in Escherichia coli. Specifically, glutamate is first converted to N-acetyl-L-glutamate by N-acetylglutamate synthase.
  • N-Acetyl-L-glutamate is then activated to N-acetylglutamyl-phosphate, which is reduced and transaminated to form N-acetyl-L-ornithine.
  • the acetyl group is then removed from N-acetyl-L-omithine by N-acetyl-L-ornithine deacetylase forming L-ornithine.
  • Such a route is necessary because formation of glutamate-5-phosphate from glutamate followed by reduction to glutamate-5-semialdehyde leads to the formation of (S)-1-pyrroline-5-carboxylate, a cyclic imine formed spontaneously from glutamate-5-semialdehyde.
  • the steps can involve acetylating 6-aminocaproic acid to acetyl-6-aminocaproic acid, activating the carboxylic acid group with a CoA or phosphate group, reducing, aminating, and deacetylating.
  • transaminases were identified bioinformatically from metagenomic libraries and public databases using a basic local alignment search tool (BLAST) (Table 4). Genes encoding each of the transaminases were synthesized, expressed in, and evaluated for catalytic activity on 6-aminocaproic acid (6ACA) and y-aminobutyric acid (GABA) using an enzyme-coupled assay.
  • BLAST basic local alignment search tool
  • the genes encoding the TA enzyme candidates of Table 4 were cloned into a low copy number vector under a constitutive promoter and the constructs were transformed into E. coli using standard techniques. Transformants were cultured in LB medium in the presence of antibiotic overnight at 35° C., after which the cells were spun down at 15,000 ⁇ g at room temperature. To make lysates, the supernatants were removed and E. coli cells expressing the TA gene were resuspended in a chemical lysis solution containing lysozyme, nuclease, and 10 mM DTT. Lysates were used immediately.
  • the transaminase assay solution contained 0.1 M Tris-HCl, pH 8.0; 0.3 mM 6ACA, 0.3 mM GABA, or 20 mM Ala; 0.1 mM ⁇ -ketoglutarate; 1 mM NAD; and 50 U/mL glutamate dehydrogenase.
  • Table 4 shows that TA homologs 1, 3, 4, 5, 9, 12, 26, 27, 30, 31, 38, 50, 64, 74, 78, 79, 81, 91, 106, 108, and 116 have the highest activity levels on 6ACA.
  • FB24 138 Pseudomonas SEQ ID NO: 138 + + sp.
  • AAC 139 Pseudomonas SEQ ID NO: 139 + + putida KG-4 140 Alcaligenes A.
  • genes encoding selected transaminases were transformed into a strain of E. coli that also included introduced genes encoding 1) a 3-oxoadipyl-CoA thiolase (ml), 2) a 3-oxoadipyl-CoA dehydrogenase (Hbd), 3) a 3-oxoadipyl-CoA dehydratratase (“crotonase” or Crt), 4) a 5-carboxy-2-pentenoyl-CoA reductases (Ter); and 5) an aldehyde dehydrogenase (Ald).
  • Thl, Hbd, Crt, Ter, Ald genes are reported in in US 8,377,680 (e. g., Example 8, which is incorporated by reference in its entirety). These genes are introduced in an E. coli strain included all of the pathway enzymes necessary for producing 6-aminocaproate (6ACA), with the exception of the TA enzyme. The genes use
  • the vectors for expressing the TA genes were transformed into the Thl/Hbd/Crt/Ter/Ald E. coli strain and transformants were tested for 6ACA production.
  • the engineered E. coli cells were fed 2% glucose in minimal media, and after an 18 hour incubation at 35° C., the cells were harvested, and the supernatants were evaluated by analytical HPLC or standard LC/MS analytical method for 6ACA production.
  • Table 4 expression of genes encoding the Ta enzymes in E. coli that included Thl, Hbd, Crt, Ter, and Ald genes resulted in 6ACA production by these strains.
  • Variants were generated by mutating the gene encoding the TA enzyme (SEQ ID NO:1) at amino acid positions for V114, S136, T148, P153, 1203, 1204, P206, V207, V111, T216, A237, T264, M265 and L386 as well as the codons for G19, C22, D70, R94, D99, T109, E112, A113, F137, G144, 1149, K150, Y154, S178, L186, Q208, L234, T242, A315, K318, R338, G336, L386, V390, A406, S416, and A421. Mutations were made singly and in combination with mutations at other amino acid positions.
  • Table 5 and FIG. 3 provide the mutations found in the variant TA gene sequences of the active clones. Variants demonstrating higher than wild type activity, denoted “+” or “++”, included single mutations and combinatorial (multiple) mutations in the TA gene.
  • Table 5 shows that multiple variants demonstrated greater activity than the wild type TA (SEQ ID NO:1), with mutations at amino acid positions positions V114, S136, T148, P153, 1203, 1204, P206, V207, V111, T216, A237, T264, M265, L386, G19, C22, D70, R94, D99, T109, E112, A113, F137, G144, 1149, K150, Y154, S178, L186, Q208, L234, T242, A315, K318, R338, G336, L386, V390, A406, 5416, A421, G17, M21, A50, A76, Y77, Q78, 179, G84, F107, T108, K119, G139, M142, A152, P153, E205, G209, G211, D238, M285, A290, G291, G292, L293, Y297, M353, S387, S388, and G392 (positions identified with
US17/605,499 2019-04-24 2020-04-24 Engineered transaminase and methods of making and using Pending US20220348890A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/605,499 US20220348890A1 (en) 2019-04-24 2020-04-24 Engineered transaminase and methods of making and using

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201962837888P 2019-04-24 2019-04-24
US201962860123P 2019-06-11 2019-06-11
US201962860160P 2019-06-11 2019-06-11
US17/605,499 US20220348890A1 (en) 2019-04-24 2020-04-24 Engineered transaminase and methods of making and using
PCT/US2020/029797 WO2020219866A1 (en) 2019-04-24 2020-04-24 Engineered transaminase and methods of making and using

Publications (1)

Publication Number Publication Date
US20220348890A1 true US20220348890A1 (en) 2022-11-03

Family

ID=70740755

Family Applications (3)

Application Number Title Priority Date Filing Date
US17/605,120 Pending US20220333142A1 (en) 2019-04-24 2020-04-24 Engineered trans-enoyl coa reductase and methods of making and using
US17/605,196 Pending US20220235385A1 (en) 2019-04-24 2020-04-24 Engineered microorganisms and methods for improved aldehyde dehydrogenase activity
US17/605,499 Pending US20220348890A1 (en) 2019-04-24 2020-04-24 Engineered transaminase and methods of making and using

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US17/605,120 Pending US20220333142A1 (en) 2019-04-24 2020-04-24 Engineered trans-enoyl coa reductase and methods of making and using
US17/605,196 Pending US20220235385A1 (en) 2019-04-24 2020-04-24 Engineered microorganisms and methods for improved aldehyde dehydrogenase activity

Country Status (10)

Country Link
US (3) US20220333142A1 (ko)
EP (3) EP3959310A1 (ko)
JP (1) JP2022530475A (ko)
KR (2) KR20220023757A (ko)
CN (2) CN114341344A (ko)
AU (1) AU2020262938A1 (ko)
BR (1) BR112021021294A2 (ko)
CA (1) CA3137571A1 (ko)
SG (1) SG11202111575WA (ko)
WO (3) WO2020219859A1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230159611A (ko) 2021-03-30 2023-11-21 아사히 가세이 가부시키가이샤 재조합 미생물 및 c6 화합물의 제조 방법
WO2023076966A1 (en) * 2021-10-27 2023-05-04 Genomatica, Inc. Engineered enzymes and methods of making and using
CN114940950B (zh) * 2022-03-28 2023-07-07 北京科技大学 一种丁酸梭菌发酵废液资源化利用的方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7947483B2 (en) 2007-08-10 2011-05-24 Genomatica, Inc. Methods and organisms for the growth-coupled production of 1,4-butanediol
CN102317464B (zh) * 2008-12-12 2014-10-29 塞莱西翁有限公司 从α-酮酸生物合成双官能烷烃
ES2749423T3 (es) * 2009-05-07 2020-03-20 Genomatica Inc Microorganismos y métodos para la biosíntesis de adipato, hexametilendiamina y ácido 6-aminocaproico
WO2012089613A1 (en) * 2010-12-28 2012-07-05 Dsm Ip Assets B.V. Process to increase the production of a succinyl-coa derived compound
WO2013067432A1 (en) * 2011-11-02 2013-05-10 Genomatica, Inc. Microorganisms and methods for the production of caprolactone
AU2015369651B2 (en) * 2014-12-23 2020-03-12 Genomatica, Inc. Method of producing and processing diamines
EP3314002A4 (en) * 2015-06-23 2019-07-10 Genomatica, Inc. MICRO-ORGANISMS AND METHOD FOR PRODUCING BIOSYNTHETIZED TARGET PRODUCTS WITH A REDUCED SUBSTANCE OF BY-PRODUCTS

Also Published As

Publication number Publication date
AU2020262938A1 (en) 2021-11-11
EP3959310A1 (en) 2022-03-02
CN114341344A (zh) 2022-04-12
BR112021021294A2 (pt) 2022-03-29
CN114269908A (zh) 2022-04-01
KR20220023757A (ko) 2022-03-02
SG11202111575WA (en) 2021-11-29
KR20220023339A (ko) 2022-03-02
US20220235385A1 (en) 2022-07-28
CA3137571A1 (en) 2020-10-29
WO2020219863A1 (en) 2020-10-29
JP2022530475A (ja) 2022-06-29
EP3959327A1 (en) 2022-03-02
US20220333142A1 (en) 2022-10-20
WO2020219866A1 (en) 2020-10-29
WO2020219859A1 (en) 2020-10-29
EP3959309A1 (en) 2022-03-02

Similar Documents

Publication Publication Date Title
JP7370366B2 (ja) アジペート、ヘキサメチレンジアミン、及び6-アミノカプロン酸の生合成のための微生物及び方法
US10415063B2 (en) Semi-synthetic terephthalic acid via microorganisms that produce muconic acid
US10612029B2 (en) Microorganisms and methods for the production of aniline
US9023636B2 (en) Microorganisms and methods for the biosynthesis of propylene
US20220348890A1 (en) Engineered transaminase and methods of making and using
WO2020068900A1 (en) Aldehyde dehydrogenase variants and methods of using same
US20230348865A1 (en) Engineered enzymes and methods of making and using
WO2023076966A1 (en) Engineered enzymes and methods of making and using
EP4277976A1 (en) Methods and compositions for making amide compounds

Legal Events

Date Code Title Description
AS Assignment

Owner name: GENOMATICA, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SHAH, AMIT M.;NAGARAJAN, HARISH;WARNER, JOSEPH ROY;AND OTHERS;REEL/FRAME:057869/0826

Effective date: 20200422

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED