US20220336950A1 - Wide band directional antenna - Google Patents

Wide band directional antenna Download PDF

Info

Publication number
US20220336950A1
US20220336950A1 US17/706,195 US202217706195A US2022336950A1 US 20220336950 A1 US20220336950 A1 US 20220336950A1 US 202217706195 A US202217706195 A US 202217706195A US 2022336950 A1 US2022336950 A1 US 2022336950A1
Authority
US
United States
Prior art keywords
dipole
circuit
antenna according
way
antenna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US17/706,195
Other versions
US11757187B2 (en
Inventor
Lorenzo MEZZADRELLI
Mercurio D'ALEO
Vittorio LOI
Luigi CORRÀ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SIRIO ANTENNE Srl
Original Assignee
SIRIO ANTENNE Srl
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SIRIO ANTENNE Srl filed Critical SIRIO ANTENNE Srl
Assigned to SIRIO ANTENNE S.R.L. reassignment SIRIO ANTENNE S.R.L. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CORRA', Luigi, D'Aleo, Mercurio, Loi, Vittorio, Mezzadrelli, Lorenzo
Publication of US20220336950A1 publication Critical patent/US20220336950A1/en
Application granted granted Critical
Publication of US11757187B2 publication Critical patent/US11757187B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/40Imbricated or interleaved structures; Combined or electromagnetically coupled arrangements, e.g. comprising two or more non-connected fed radiating elements
    • H01Q5/48Combinations of two or more dipole type antennas
    • H01Q5/49Combinations of two or more dipole type antennas with parasitic elements used for purposes other than for dual-band or multi-band, e.g. imbricated Yagi antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/30Combinations of separate antenna units operating in different wavebands and connected to a common feeder system
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/10Resonant antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/314Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors
    • H01Q5/321Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors within a radiating element or between connected radiating elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
    • H01Q9/28Conical, cylindrical, cage, strip, gauze, or like elements having an extended radiating surface; Elements comprising two conical surfaces having collinear axes and adjacent apices and fed by two-conductor transmission lines
    • H01Q9/285Planar dipole

Definitions

  • This invention relates to a wide band directional antenna, particularly suitable for transmitting and receiving radio frequency signals by using a plurality of bands used in the sector of mobile communication standards, especially in the sector of 4G and 5G standards.
  • the most widespread directional antennas are the so-called Yagi antennas (named after their inventor), composed of a radiating component, made up of one or more dipoles, and one or more parasitic components (that is to say, not directly excited), the reflector and/or the director, whose purpose is to improve the intensity and orientation of the signal transmitted or received in the direction of the dipole.
  • the wide band antennas currently available on the market have several practical problems: first, the dimensions are often considerable; second, they are affected by strong mutual inductance currents between the dipoles, at the various frequencies, with consequent narrowing of the frequency bands obtainable and less usability of the antenna itself, with regard to the communication services which must be covered by a predetermined band.
  • Other antennas, with more compact dimensions, are not capable of covering all of the frequency bands, particularly among the lower ones used by the 4G and 5G communication standards.
  • the aim of this invention is therefore to eliminate the above-mentioned disadvantages and limitations.
  • the invention characterized as set out in the claims, achieves the aim thanks to a particular configuration of the radiating component, which consists of a plurality of dipoles.
  • the main advantage obtained by means of this invention basically consists of the fact that it is particularly compact, above all compared with directional antennas for 4G and 5G telephony currently on the market, despite maintaining good impedance adjustment for multiple frequency bands, especially at the lower frequencies, below 1000 MHz.
  • the invention allows very high levels of gain to be achieved, of between approximately 6 dBi for the lower frequency bands and up to approximately 13 dBi for the higher frequency bands, around several thousand MHz.
  • FIG. 1 illustrates the invention according to a perspective assembly view, with some parts cut away to better illustrate others;
  • FIG. 2 illustrates the invention according to the view in FIG. 1 exploded
  • FIG. 3 illustrates a detail of the invention
  • FIG. 3 a illustrates a detail of FIG. 3 ;
  • FIG. 3 b illustrates a detail of FIG. 3 ;
  • FIG. 4 illustrates a second detail of the invention
  • FIG. 5 illustrates a third detail of the invention.
  • the invention relates to a wide band directional antenna, particularly suitable for transmitting and receiving radio frequency signals operating in the mobile communication standards sector, particularly 4G and 5G.
  • the invention allows use to be made of many frequency bands included in a vast range which goes from frequencies below 1000 MHz, for example the band included between 698 and 960 MHz, up to frequencies higher than 3000 MHz and beyond, for example the band included between 3300 and 3800 MHz.
  • frequencies below 1000 MHz for example the band included between 698 and 960 MHz, up to frequencies higher than 3000 MHz and beyond, for example the band included between 3300 and 3800 MHz.
  • the antenna 10 shown in an assembly configuration without the containment structure, comprises at least three elements 1 , 2 , 3 which are at least partially aligned, electrically isolated from each other, of which a lower element 1 comprises at least one reflector circuit 11 , a middle element 2 comprises at least one dipole circuit 21 connected to a transmission line 4 , and an upper element 3 comprises at least one director circuit 31 .
  • the three elements 1 , 2 , 3 visible in the exploded view of FIG.
  • FIGS. 2 are preferably made in the form of supporting plates 12 , 22 , 32 made of insulating material, for example Vetronite, on which the conductive material has been deposited, for example copper, which forms the above-mentioned circuits 11 , 21 , 31 , intended to perform different electromagnetic functions.
  • insulating material for example Vetronite
  • the conductive material for example copper
  • the reflector circuit 11 reflects the electromagnetic field which strikes it; the dipole circuit 21 , connected to the transmission line 4 transmits and receives the signal of interest from and to a telecommunications unit, not shown here; the director circuit 31 promotes the propagation of the electromagnetic field arriving from the dipole circuit 21 and from the reflector circuit 11 in a predetermined direction.
  • the dipole circuit 21 comprises at least one first pair of conductive elements 211 , 212 , suitable for forming a minor dipole 21 m connected to the transmission line 4 , shown in FIG. 3 a , suitable for supplying functionality at the higher frequency bands, and at least one second pair of electrically isolated conductive elements 213 , 214 , excited with capacitive effect by the minor dipole 21 m , a phenomenon made possible by the small thickness of the supporting plate 22 and by the partial superposing, on the two faces 22 a , 22 b of the plate 22 , of the conductive elements 211 , 213 ; 212 , 214 .
  • the set formed by the minor dipole 21 m and by the second pair of conductive elements 213 , 214 thereby forms a major dipole 21 M, shown in FIG. 3 b , suitable for supplying functionality at the central and lower frequency bands, for example those between 1710 and 2690 MHz and between 698 and 960 MHz.
  • the antenna 10 comprises two identical and specular dipole circuits 21 , 21 ′, which are connected to the transmission line 4 , here composed of a coaxial cable 41 and two double-wire lines 42 , which allow the signal to be split or formed equally between the two dipoles 21 , 21 ′.
  • the set of dipoles 21 , 21 ′ fed in this way forms an “antenna array”, allowing an increase in the overall gain and improving the directional feature of the antenna.
  • At least one electrically isolated conductive element 214 to comprise a bent extension 214 a parallel to the body of the major dipole 21 M, in such a way as to favor impedance adjustment at the lower frequencies, and having a length such that it reaches the electrically isolated second conductive element 213 in such a way as to form a capacitive coupling.
  • the lower element 1 shown in FIG. 4 , comprises two reflector circuits 11 , 11 ′, placed on two separate plates 12 , 12 ′, substantially specular and electrically isolated from each other in order to reduce the coupling between the dipoles 21 , 21 ′ above, particularly at the lower frequency bands.
  • Each of them comprises a cut 11 a which is transversal relative to the dipoles 21 m , 21 M, and at least partially aligned with the transmission line 4 , in such a way as to extend the path of the currents and to maintain electrical continuity, making it suitable for supplying functionality at the lower frequency bands.
  • the reflector circuit 11 comprises at least one non-conductive island 11 b , with a substantially polygonal shape, in such a way as to improve the behavior of the reflector circuit 11 at the higher frequency bands.
  • the reflector circuits 11 , 11 ′ each comprise two islands 11 b which are positioned symmetrically relative to the transversal cut 11 a , having a quadrangular shape and preferably trapezoidal, wherein the two parallel sides 111 b are sized in order to allow the functionality of the reflector circuit 11 for two different frequency bands, whose quarter wavelength substantially corresponds to the lengths of the parallel sides 111 b.
  • the upper element 3 also preferably comprises two substantially symmetrical director circuits 31 , 31 ′, in such a way that each faces a dipole 21 , 21 ′.
  • the director circuits 31 , 31 ′ have a trapezoidal shape, in such a way as to improve the behavior of the director circuit 31 at the higher frequency bands and to bring the dipole circuit 21 back to resonance.
  • a dipole circuit 21 is resonant when voltage and current are in phase at the point of connection to a transmission line 4 , since in this condition the antenna impedance is purely real and transmission occurs easily; feeding with capacitive effect of the major dipole 21 M introduces a phase inversion which takes the resonance frequency outside the frequencies of interest, rendering the dipole circuit 21 no longer resonant.
  • a director circuit 31 shaped in this way and placed at a suitable distance from the dipole circuit 21 adds a further capacitive contribution which allows the dipole circuit 21 to become resonant again at central frequency bands, for example between 1710 and 2700 MHz.
  • the upper element 3 also comprises a horizontal “H”-shaped third director circuit 31 ′′, in order to improve impedance adjustment at the lower frequency bands, for example between 698 and 960 MHz.
  • a plurality of spacers 5 suitable for separating the middle element 2 from the lower element 1 and from the upper element 3 allows the efficiency of the antenna 10 to be optimized, sizing it depending on the frequency bands to be used.

Abstract

A wide band directional antenna includes three elements which are partially aligned, electrically isolated from each other, of which a lower element includes at least one reflector circuit, a middle element comprises at least one dipole circuit connected to a transmission line, and an upper element includes a director circuit, wherein the dipole circuit includes at least one first pair of conductive elements, suitable for forming a minor dipole connected to the transmission line, and at least one second pair of electrically isolated conductive elements, excited with capacitive effect by the minor dipole, in such a way as to form a major dipole.

Description

  • This application claims priority to Italian Patent Application 102021000008060 filed Mar. 31, 2021, the entirety of which is incorporated by reference herein.
  • BACKGROUND OF THE INVENTION
  • This invention relates to a wide band directional antenna, particularly suitable for transmitting and receiving radio frequency signals by using a plurality of bands used in the sector of mobile communication standards, especially in the sector of 4G and 5G standards.
  • The most widespread directional antennas are the so-called Yagi antennas (named after their inventor), composed of a radiating component, made up of one or more dipoles, and one or more parasitic components (that is to say, not directly excited), the reflector and/or the director, whose purpose is to improve the intensity and orientation of the signal transmitted or received in the direction of the dipole.
  • Nowadays, the demand for increasingly high performance with reference to the various telecommunications sectors means that there is a need to increase the frequency bands used and, in some cases, to expand the frequency bands already previously used.
  • As a result of that need, wide band products have been brought to market, that is to say, products capable of simultaneously covering multiple frequency bands, which are capable of fulfilling the functionalities associated with multiple separate frequency bands. Those antennas have a structure with dipoles, making it possible to cover multiple commercial frequency bands, in such a way as to use them for different communication services with regard to the specific use requirements.
  • In parallel, even in the sector of antennas there is a tendency to favor construction solutions which have compact dimensions, which are preferable both from the use of materials viewpoint, and the convenience and ease of installation viewpoint.
  • The wide band antennas currently available on the market have several practical problems: first, the dimensions are often considerable; second, they are affected by strong mutual inductance currents between the dipoles, at the various frequencies, with consequent narrowing of the frequency bands obtainable and less usability of the antenna itself, with regard to the communication services which must be covered by a predetermined band. Other antennas, with more compact dimensions, are not capable of covering all of the frequency bands, particularly among the lower ones used by the 4G and 5G communication standards.
  • SUMMARY OF THE INVENTION
  • The aim of this invention is therefore to eliminate the above-mentioned disadvantages and limitations.
  • The invention, characterized as set out in the claims, achieves the aim thanks to a particular configuration of the radiating component, which consists of a plurality of dipoles.
  • The main advantage obtained by means of this invention basically consists of the fact that it is particularly compact, above all compared with directional antennas for 4G and 5G telephony currently on the market, despite maintaining good impedance adjustment for multiple frequency bands, especially at the lower frequencies, below 1000 MHz.
  • Moreover, the invention allows very high levels of gain to be achieved, of between approximately 6 dBi for the lower frequency bands and up to approximately 13 dBi for the higher frequency bands, around several thousand MHz.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Further advantages and features of the invention will be more apparent in the detailed description which follows, with reference to the accompanying drawings, which show an example, non-limiting embodiment, in which:
  • FIG. 1 illustrates the invention according to a perspective assembly view, with some parts cut away to better illustrate others;
  • FIG. 2 illustrates the invention according to the view in FIG. 1 exploded;
  • FIG. 3 illustrates a detail of the invention;
  • FIG. 3a illustrates a detail of FIG. 3;
  • FIG. 3b illustrates a detail of FIG. 3;
  • FIG. 4 illustrates a second detail of the invention;
  • FIG. 5 illustrates a third detail of the invention.
  • DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • As seen in the figures, the invention relates to a wide band directional antenna, particularly suitable for transmitting and receiving radio frequency signals operating in the mobile communication standards sector, particularly 4G and 5G. In this specific use, the invention allows use to be made of many frequency bands included in a vast range which goes from frequencies below 1000 MHz, for example the band included between 698 and 960 MHz, up to frequencies higher than 3000 MHz and beyond, for example the band included between 3300 and 3800 MHz. However, that does not compromise use of the invention even for other frequency bands used for this and other purposes, such as, for example, WiFi transmissions, next generation cellular networks or other single-band or multi-band communication standards used in civilian, military, industrial, medical or other sectors. The antenna 10, shown in an assembly configuration without the containment structure, comprises at least three elements 1, 2, 3 which are at least partially aligned, electrically isolated from each other, of which a lower element 1 comprises at least one reflector circuit 11, a middle element 2 comprises at least one dipole circuit 21 connected to a transmission line 4, and an upper element 3 comprises at least one director circuit 31. The three elements 1, 2, 3, visible in the exploded view of FIG. 2, are preferably made in the form of supporting plates 12, 22, 32 made of insulating material, for example Vetronite, on which the conductive material has been deposited, for example copper, which forms the above-mentioned circuits 11, 21, 31, intended to perform different electromagnetic functions.
  • The reflector circuit 11 reflects the electromagnetic field which strikes it; the dipole circuit 21, connected to the transmission line 4 transmits and receives the signal of interest from and to a telecommunications unit, not shown here; the director circuit 31 promotes the propagation of the electromagnetic field arriving from the dipole circuit 21 and from the reflector circuit 11 in a predetermined direction.
  • In a preferred embodiment of the antenna 10, the dipole circuit 21, shown in FIG. 3, comprises at least one first pair of conductive elements 211, 212, suitable for forming a minor dipole 21 m connected to the transmission line 4, shown in FIG. 3a , suitable for supplying functionality at the higher frequency bands, and at least one second pair of electrically isolated conductive elements 213, 214, excited with capacitive effect by the minor dipole 21 m, a phenomenon made possible by the small thickness of the supporting plate 22 and by the partial superposing, on the two faces 22 a, 22 b of the plate 22, of the conductive elements 211, 213; 212, 214. The set formed by the minor dipole 21 m and by the second pair of conductive elements 213, 214 thereby forms a major dipole 21M, shown in FIG. 3b , suitable for supplying functionality at the central and lower frequency bands, for example those between 1710 and 2690 MHz and between 698 and 960 MHz.
  • In the embodiment shown in the figures, the antenna 10 comprises two identical and specular dipole circuits 21, 21′, which are connected to the transmission line 4, here composed of a coaxial cable 41 and two double-wire lines 42, which allow the signal to be split or formed equally between the two dipoles 21, 21′. The set of dipoles 21, 21′ fed in this way forms an “antenna array”, allowing an increase in the overall gain and improving the directional feature of the antenna.
  • Moreover, it is advantageous for at least one electrically isolated conductive element 214 to comprise a bent extension 214 a parallel to the body of the major dipole 21M, in such a way as to favor impedance adjustment at the lower frequencies, and having a length such that it reaches the electrically isolated second conductive element 213 in such a way as to form a capacitive coupling.
  • The lower element 1, shown in FIG. 4, comprises two reflector circuits 11, 11′, placed on two separate plates 12, 12′, substantially specular and electrically isolated from each other in order to reduce the coupling between the dipoles 21, 21′ above, particularly at the lower frequency bands. Each of them comprises a cut 11 a which is transversal relative to the dipoles 21 m, 21M, and at least partially aligned with the transmission line 4, in such a way as to extend the path of the currents and to maintain electrical continuity, making it suitable for supplying functionality at the lower frequency bands.
  • The reflector circuit 11 comprises at least one non-conductive island 11 b, with a substantially polygonal shape, in such a way as to improve the behavior of the reflector circuit 11 at the higher frequency bands. In the example shown in the figures, the reflector circuits 11, 11′ each comprise two islands 11 b which are positioned symmetrically relative to the transversal cut 11 a, having a quadrangular shape and preferably trapezoidal, wherein the two parallel sides 111 b are sized in order to allow the functionality of the reflector circuit 11 for two different frequency bands, whose quarter wavelength substantially corresponds to the lengths of the parallel sides 111 b.
  • The upper element 3, shown in FIG. 5, also preferably comprises two substantially symmetrical director circuits 31, 31′, in such a way that each faces a dipole 21, 21′. The director circuits 31, 31′ have a trapezoidal shape, in such a way as to improve the behavior of the director circuit 31 at the higher frequency bands and to bring the dipole circuit 21 back to resonance. In fact, a dipole circuit 21 is resonant when voltage and current are in phase at the point of connection to a transmission line 4, since in this condition the antenna impedance is purely real and transmission occurs easily; feeding with capacitive effect of the major dipole 21M introduces a phase inversion which takes the resonance frequency outside the frequencies of interest, rendering the dipole circuit 21 no longer resonant. A director circuit 31 shaped in this way and placed at a suitable distance from the dipole circuit 21 adds a further capacitive contribution which allows the dipole circuit 21 to become resonant again at central frequency bands, for example between 1710 and 2700 MHz.
  • The upper element 3 also comprises a horizontal “H”-shaped third director circuit 31″, in order to improve impedance adjustment at the lower frequency bands, for example between 698 and 960 MHz.
  • A plurality of spacers 5, suitable for separating the middle element 2 from the lower element 1 and from the upper element 3 allows the efficiency of the antenna 10 to be optimized, sizing it depending on the frequency bands to be used.

Claims (15)

What is claimed is:
1. A wide band directional antenna, comprising at least three elements which are at least partially aligned, electrically isolated from each other, of which a lower element comprising at least one reflector circuit, a middle element comprising at least one dipole circuit connected to a transmission line, and an upper element comprising at least one director circuit, wherein the dipole circuit comprises at least one first pair of conductive elements, suitable for forming a minor dipole connected to the transmission line, and at least one second pair of electrically isolated conductive elements, excited with capacitive effect by the minor dipole, in such a way as to form a major dipole.
2. The antenna according to claim 1, wherein it comprises two identical dipole circuits connected to the transmission line, in such a way as to form an antenna array.
3. The antenna according to claim 1, wherein at least one electrically isolated conductive element comprises a bent extension parallel to the body of the major dipole, in such a way as to favor impedance adjustment at the lower frequencies.
4. The antenna according to claim 3, wherein the bent extension reaches the electrically isolated second conductive element in such a way as to form a capacitive coupling.
5. The antenna according to claim 1, wherein the transmission line comprises a coaxial cable and at least one double-wire line, in such a way as to connect the antenna to a telecommunications unit.
6. The antenna according to claim 1, wherein the lower element comprises two reflector circuits which are substantially specular and electrically isolated from each other.
7. The antenna according to claim 1, wherein the reflector circuit comprises a cut which is transversal relative to the dipoles, and at least partially aligned with the transmission line, in such a way as to extend the path of the currents and to maintain electrical continuity.
8. The antenna according to claim 1, wherein the reflector circuit comprises at least one non-conductive island, with a substantially polygonal shape, in such a way as to improve the behavior of the reflector circuit at the higher frequency bands.
9. The antenna according to claim 8, wherein the islands have a quadrangular shape.
10. The antenna according to claim 8, wherein the islands comprise two parallel sides which are sized in order to allow the functionality of the reflector circuit for two different frequency bands, whose quarter wavelength substantially corresponds to the lengths of the parallel sides.
11. The antenna according to claim 8, wherein it comprises two islands which are positioned symmetrically relative to the transversal cut.
12. The antenna according to claim 1, wherein the upper element comprises two director circuits which are substantially symmetrical, in such a way that each faces a dipole.
13. The antenna according to claim 12, wherein the director circuit has a trapezoidal shape, in such a way as to improve the behavior of the director circuit at the higher frequency bands and to bring the dipole circuit back to resonance.
14. The antenna according to claim 1, wherein the upper element comprises a horizontal “H”-shaped third director circuit, in order to improve impedance adjustment at the lower frequency bands.
15. The antenna according to claim 1, wherein it comprises a plurality of spacers, suitable for separating the middle element from the lower element and from the upper element, in such a way as to optimize the efficiency of the antenna.
US17/706,195 2021-03-31 2022-03-28 Wide band directional antenna Active US11757187B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
IT202100008060 2021-03-31
IT102021000008060 2021-03-31

Publications (2)

Publication Number Publication Date
US20220336950A1 true US20220336950A1 (en) 2022-10-20
US11757187B2 US11757187B2 (en) 2023-09-12

Family

ID=78212410

Family Applications (1)

Application Number Title Priority Date Filing Date
US17/706,195 Active US11757187B2 (en) 2021-03-31 2022-03-28 Wide band directional antenna

Country Status (2)

Country Link
US (1) US11757187B2 (en)
EP (1) EP4068515A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3710337A (en) * 1970-03-24 1973-01-09 Jfd Electronics Corp Miniature tv antenna
US6087989A (en) * 1997-03-31 2000-07-11 Samsung Electronics Co., Ltd. Cavity-backed microstrip dipole antenna array
US20110241960A1 (en) * 2010-04-06 2011-10-06 National Taiwan University Stacked antenna
CN108232467A (en) * 2017-12-20 2018-06-29 深圳市航天华拓科技有限公司 Micro-strip Quasi-Yagi antenna
CN111799569A (en) * 2020-07-17 2020-10-20 Oppo广东移动通信有限公司 Antenna module and electronic equipment
WO2021192560A1 (en) * 2020-03-26 2021-09-30 株式会社ヨコオ Planar antenna and high-frequency module comprising same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4604628A (en) 1983-03-11 1986-08-05 Telex Communications, Inc. Parasitic array with driven sleeve element
CN1881685B (en) 2006-03-22 2010-05-12 北京航空航天大学 Cross feed broadband printed Yagi antenna
KR101997698B1 (en) 2018-06-08 2019-07-09 국방과학연구소 Dual-band quasi-yagi antenna

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3710337A (en) * 1970-03-24 1973-01-09 Jfd Electronics Corp Miniature tv antenna
US6087989A (en) * 1997-03-31 2000-07-11 Samsung Electronics Co., Ltd. Cavity-backed microstrip dipole antenna array
US20110241960A1 (en) * 2010-04-06 2011-10-06 National Taiwan University Stacked antenna
CN108232467A (en) * 2017-12-20 2018-06-29 深圳市航天华拓科技有限公司 Micro-strip Quasi-Yagi antenna
WO2021192560A1 (en) * 2020-03-26 2021-09-30 株式会社ヨコオ Planar antenna and high-frequency module comprising same
CN111799569A (en) * 2020-07-17 2020-10-20 Oppo广东移动通信有限公司 Antenna module and electronic equipment

Also Published As

Publication number Publication date
US11757187B2 (en) 2023-09-12
EP4068515A1 (en) 2022-10-05

Similar Documents

Publication Publication Date Title
EP3841637B1 (en) Antennas including multi-resonance cross-dipole radiating elements and related radiating elements
CN110858679B (en) Multiband base station antenna with broadband decoupling radiating element and related radiating element
US6975278B2 (en) Multiband branch radiator antenna element
US6204826B1 (en) Flat dual frequency band antennas for wireless communicators
US6759990B2 (en) Compact antenna with circular polarization
US9287633B2 (en) Dual frequency coupling feed antenna and adjustable wave beam module using the antenna
CN113795979B (en) Radiating element for a base station antenna
CN1688067B (en) Bipolarized loaded antenna radiating unit
CN107078380B (en) Wireless electronic device
JPH10150319A (en) Dipole antenna with reflecting plate
JPH03253106A (en) On-vehicle antenna
US9660347B2 (en) Printed coupled-fed multi-band antenna and electronic system
KR100467904B1 (en) Skeleton slot radiator and multiband patch antenna using it
US20140118211A1 (en) Omnidirectional 3d antenna
EP2120293A1 (en) Improved broadband multi-dipole antenna with frequency-independent radiation characteristics
US7839344B2 (en) Wideband multifunction antenna operating in the HF range, particularly for naval installations
WO2019223318A1 (en) Indoor base station and pifa antenna thereof
CN113036400A (en) Radiating element, antenna assembly and base station antenna
WO2013063335A1 (en) Omnidirectional 3d antenna
JP4112136B2 (en) Multi-frequency antenna
JP7233913B2 (en) Antenna device and wireless terminal
US11757187B2 (en) Wide band directional antenna
JPH09232851A (en) Collinear array antenna
EP4222812A1 (en) Base station antennas having compact dual-polarized box dipole radiating elements therein that support high band cloaking
CN112072281A (en) Antenna radiation unit and broadband base station antenna

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO SMALL (ORIGINAL EVENT CODE: SMAL); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

AS Assignment

Owner name: SIRIO ANTENNE S.R.L., ITALY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MEZZADRELLI, LORENZO;D'ALEO, MERCURIO;LOI, VITTORIO;AND OTHERS;REEL/FRAME:059596/0884

Effective date: 20220324

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED

STCF Information on status: patent grant

Free format text: PATENTED CASE