US20220296376A1 - Ameliorating joint conditions including injuries and diseases - Google Patents

Ameliorating joint conditions including injuries and diseases Download PDF

Info

Publication number
US20220296376A1
US20220296376A1 US17/716,633 US202217716633A US2022296376A1 US 20220296376 A1 US20220296376 A1 US 20220296376A1 US 202217716633 A US202217716633 A US 202217716633A US 2022296376 A1 US2022296376 A1 US 2022296376A1
Authority
US
United States
Prior art keywords
joint
bone
section
cartilage
ward end
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
US17/716,633
Inventor
Derek Dee
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subchondral Solutions Inc
Original Assignee
Subchondral Solutions Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US12/328,493 external-priority patent/US20100145451A1/en
Application filed by Subchondral Solutions Inc filed Critical Subchondral Solutions Inc
Priority to US17/716,633 priority Critical patent/US20220296376A1/en
Publication of US20220296376A1 publication Critical patent/US20220296376A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30756Cartilage endoprostheses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/562Implants for placement in joint gaps without restricting joint motion, e.g. to reduce arthritic pain
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/28Bones
    • A61F2/2846Support means for bone substitute or for bone graft implants, e.g. membranes or plates for covering bone defects
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2/30771Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/38Joints for elbows or knees
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/38Joints for elbows or knees
    • A61F2/3859Femoral components
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/38Joints for elbows or knees
    • A61F2/389Tibial components
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/40Joints for shoulders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/28Bones
    • A61F2002/2817Bone stimulation by chemical reactions or by osteogenic or biological products for enhancing ossification, e.g. by bone morphogenetic or morphogenic proteins [BMP] or by transforming growth factors [TGF]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/28Bones
    • A61F2002/2825Femur
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/28Bones
    • A61F2002/2892Tibia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30108Shapes
    • A61F2002/3011Cross-sections or two-dimensional shapes
    • A61F2002/30112Rounded shapes, e.g. with rounded corners
    • A61F2002/30131Rounded shapes, e.g. with rounded corners horseshoe- or crescent- or C-shaped or U-shaped
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30108Shapes
    • A61F2002/3011Cross-sections or two-dimensional shapes
    • A61F2002/30159Concave polygonal shapes
    • A61F2002/30171Concave polygonal shapes rosette- or star-shaped
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30535Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30563Special structural features of bone or joint prostheses not otherwise provided for having elastic means or damping means, different from springs, e.g. including an elastomeric core or shock absorbers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30756Cartilage endoprostheses
    • A61F2002/30759Mosaicplasty, i.e. using a plurality of individual cartilage plugs for filling a substantial cartilage defect
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30756Cartilage endoprostheses
    • A61F2002/30766Scaffolds for cartilage ingrowth and regeneration
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2/30771Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves
    • A61F2002/30772Apertures or holes, e.g. of circular cross section
    • A61F2002/30784Plurality of holes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2/30771Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves
    • A61F2002/30841Sharp anchoring protrusions for impaction into the bone, e.g. sharp pins, spikes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2/30771Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves
    • A61F2002/30841Sharp anchoring protrusions for impaction into the bone, e.g. sharp pins, spikes
    • A61F2002/30845Sharp anchoring protrusions for impaction into the bone, e.g. sharp pins, spikes with cutting edges
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2/30771Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves
    • A61F2002/3085Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves with a threaded, e.g. self-tapping, bone-engaging surface, e.g. external surface
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2002/3093Special external or bone-contacting surface, e.g. coating for improving bone ingrowth for promoting ingrowth of bone tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2002/30932Special external or bone-contacting surface, e.g. coating for improving bone ingrowth for retarding or preventing ingrowth of bone tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/38Joints for elbows or knees
    • A61F2002/3895Joints for elbows or knees unicompartimental

Definitions

  • joint conditions and diseases there are a variety of conditions and diseases that impair the integrity and function of human joints.
  • joint conditions and diseases are arthroses, chondromalacia patella, isolated chondral defect, juvenile idiopathic arthritis, ligamentous deficiency arthroses, osteoarthritis (degenerative arthritis or degenerative joint disease), osteonecrosis, osteochondritis dissecans, patellar instability, post-ligamentous injury arthritis, post-meniscectomy arthritis, post-meniscectomy arthroses, post-traumatic arthritis, rheumatoid arthritis and septic arthritis.
  • the incidence of arthritides alone in the United States exceeds 20%, with higher rates among women as compared to men.
  • Treatment of joint conditions and diseases includes surgery and the administration of therapeutic agents. However, none of these treatments ameliorate all of the joint conditions and diseases.
  • a device for ameliorating joint conditions and diseases comprises a) a first section comprising a joint-ward end, an opposing mating end, and a lateral wall extending between the joint-ward end and the mating end, where the first section further comprises a peripheral column partially forming the lateral wall of the first section, a central column, and three or more than three struts, each strut extending between and connecting the peripheral column and the central column, and each strut thereby supporting the central column, where the joint-ward end further comprises a plurality of fenestrations, where each fenestration is formed by a confluence of the peripheral column, the central column and two adjacent struts of the three or more than three struts, and where the first section further comprises a central aperture within and formed by the central column, and configured to mate with a driver, b) a second section comprising a mating end, an opposing leading end, and a lateral wall
  • the device further comprises an axial length, and the axial length is between 5 mm and 30 mm. In another embodiment, the device further comprises an axial length, and the axial length is between 5 mm and 20 mm. In another embodiment, the device further comprises an axial length, and the axial length is between 8 mm and 16 mm. In one embodiment, the first section further comprises a diameter between 5 mm and 30 mm. In another embodiment, the first section further comprises a diameter between 5 mm and 20 mm. In another embodiment, the first section further comprises a diameter between 8 mm and 16 mm. In another embodiment, the first section further comprises an axial length between 1 mm and 2 mm.
  • each fenestration comprises a pear or teardrop shape.
  • one or more than one fenestration comprises a different size, different shape or both a different size and a different shape than one or more than one other fenestration.
  • the central aperture comprises a six-pointed star shape. In another embodiment, the central aperture is round and comprises threads. In one embodiment, the peripheral column comprises one or more than one notch.
  • the joint-ward end comprises a convex profile as seen on a cross-sectional, lateral perspective view. In another embodiment, the joint-ward end comprises a concave profile as seen on a cross-sectional, lateral perspective view. In another embodiment, the joint-ward end comprises a straight profile as seen on a cross-sectional, lateral perspective view. In one embodiment, the joint-ward end comprises a radius of curvature of between 20 mm and 50 mm. In another embodiment, the joint-ward end comprises a radius of curvature of between 15 mm and 45 mm. In another embodiment, the lateral wall of the first section comprises a generally convex profile as seen on a cross-sectional, lateral perspective view.
  • the second section further comprises an axial length between 5 mm and 30 mm. In another embodiment, the second section further comprises an axial length between 5 mm and 20 mm. In another embodiment, the second section further comprises an axial length between 6 mm and 15 mm.
  • the lateral wall of the second section is generally cylindrical. In another embodiment, the lateral wall of the second section is generally conical, tapering between the mating end and the leading end. In one embodiment, the lateral wall of the second section tapers between 0.2 degrees and 15 degrees. In another embodiment, the lateral wall of the second section tapers between 1 degrees and 5 degrees. In another embodiment, the lateral wall of the second section tapers between 1 degrees and 3 degrees.
  • the mating end of the first section and the mating end of the second section mate by a biocompatible adhesive.
  • the mating end of the first section and the mating end of the second section mate by a mating mechanism that is reversible.
  • the mating end of the first section and the mating end of the second section mate by a reversible twist locking mechanism.
  • the first section and the second section are made as a unified whole.
  • leading end comprises a scalloped edge. In another embodiment, the leading end comprises bevels. In another embodiment, the leading end comprises both a scalloped edge and bevels.
  • the lateral wall of the second section further comprises a plurality of fenestrations between the threads.
  • the device further comprises a plurality of fenestrations formed by a confluence of the mating end of the first section and the mating end of the second section.
  • the device further comprises an insert, where the insert comprises a base and three or more than three extensions connected to the base and arranged radially around the base, and where each of the three or more than three extensions is configured to fit within a corresponding fenestration of the joint-ward end of first section of the device.
  • the insert further comprises porous biological material impregnated with matrix-promoting substances or serves as a scaffold for progenitor cells, or comprises both porous biological material impregnated with matrix-promoting substances and serves as a scaffold for progenitor cells.
  • a method for ameliorating a joint condition or disease in a patient comprises a) identifying a patient with a joint condition or disease that is suitable for treatment by the method, where the joint comprises a bone with a surface comprising a defect caused by the joint condition or disease, b) accessing the joint, c) placing a guidepin within the center of the defect, d) creating a space in the defect of the bone, e) providing a first device according to the present invention, f) attaching the first device to a driver by mating the distal end of the driver with the central aperture of the first device, and g) screwing the first device into the space using the driver until the joint-ward end of the first device forms a shape that substantially recreates the shape of a normal articulation surface on the bone after implantation.
  • the joint is a diarthrodial joint.
  • the joint is selected from the group consisting of an acetabulofemoral joint, an acromioclavicular joint, a femoropatellar joint, a femorotibial joint, a glenohumeral joint, a humeroradial joint, a humeroulnar joint, an interphalangeal joint, a metacarpal joint, a radioulnar joint and a talocrural joint.
  • the patient is a human. In one embodiment, the patient is a non-human animal.
  • the joint condition and disease is selected from the group consisting of arthroses, chondromalacia patella, isolated chondral defect, juvenile idiopathic arthritis, ligamentous deficiency arthroses, osteoarthritis (degenerative arthritis or degenerative joint disease), osteonecrosis, osteochondritis dissecans, patellar instability, post-ligamentous injury arthritis, post-meniscectomy arthritis, post-meniscectomy arthroses, post-traumatic arthritis, rheumatoid arthritis and septic arthritis.
  • identifying the patient comprises diagnosing the patient with a joint condition and disease.
  • diagnosing the patient comprises performing one or more than one of action selected from the group consisting of performing a physical examination, performing a non-invasive imaging examination and performing arthroscopy.
  • identifying the patient comprises consulting patient records to determine if the patient has a joint condition or disease suitable for treatment by the method.
  • accessing the joint is accomplished by arthroscopy.
  • the joint is accomplished by an open surgical procedure.
  • the surface of the bone comprises one or more than one abnormality
  • the method further comprises using a burr, or a suction shaver, or both a burr and a suction shaver to remove some or all of the one or more than one abnormality thereby creating a smoother articulation surface.
  • the method further comprises creating one or more than one vascular channel in the bone deep to the space using a drill bit guide positioned over the guidepin and a drill bit passed within the drill bit guide.
  • the method further comprises injecting a biological material into the first device.
  • the method further comprises placing an insert in the first device.
  • the method further comprises placing one or more than one additional device in the defect.
  • a method of facilitating cartilage regrowth and preventing bone overgrowth to a damaged bone at a treatment site within a body joint to promote healing comprises providing a device having a first section comprising a joint-ward end having an inner surface and an outer surface and fenestrations between the inner and outer surfaces and a second section comprising an opposing leading end and a lateral wall extending between the joint-ward end and the leading end.
  • the leading end is penetrated into the bone to a depth to substantially position: 1) the joint-ward end in a cartilage zone; wherein the outer surface of the joint-ward end is configured to facilitate cartilage regrowth; and 2) the second section in the bone; wherein the inner surface of the joint-ward end is configured to prevent bone overgrowth into the cartilage zone within the body joint when the device is positioned at the treatment site.
  • the device is positioned and configured to provide active or passive dampening support to the bone at the treatment site so as to dissipate and dampen shock within the bone to promote healing.
  • the second section includes fenestrations, the fenestrations are configured to promote osseointegration of the second section at the treatment site.
  • the joint-ward end is substantially positioned at a transition area between a cartilage layer and a bone layer such that cartilage can grow through, around and over the fenestrations in the joint-ward end.
  • the cartilage is articular cartilage and healing includes mitigating bone hypertrophy.
  • the fenestrations promote intracellular nutrient transmission.
  • the transition area is located substantially in a cortical bone base plate or located substantially between cancellous bone and a cartilage zone.
  • the device inhibits bone growth into a cartilage zone when the device is positioned at the treatment site.
  • the device also prevents bone fracture when the device is positioned at the treatment site.
  • the body joint may be a knee and the treatment site may include a subchondral lesion. Mitigating bone hypertrophy may include preventing trabecular thickening of the cancellous bone, for example.
  • a thickness of cartilage regrowth at the treatment site is substantially uniform after healing and/or is substantially the same as a thickness of healthy cartilage adjacent the treatment site after healing.
  • the device is made of titanium and at least the outer surface of the joint-ward end is coated with hydroxyapatite.
  • the first section and second section may be reversibly attached or fused together.
  • FIG. 1 is a lateral perspective view of one embodiment of a device for ameliorating joint conditions and diseases according to the present invention
  • FIG. 2 is a top, lateral perspective view of another embodiment of a device for ameliorating joint conditions and diseases according to the present invention
  • FIG. 3 is an exploded, top, lateral perspective view of the embodiment of the device for ameliorating joint conditions and diseases shown in FIG. 1 ;
  • FIG. 4 is a top perspective view of the embodiment of the device for ameliorating joint conditions and diseases shown in FIG. 1 ;
  • FIG. 5 is a bottom perspective view of the embodiment of the device for ameliorating joint conditions and diseases shown in FIG. 1 ;
  • FIG. 6 is a top perspective view of the embodiment of the device for ameliorating joint conditions and diseases shown in FIG. 2 ;
  • FIG. 7 is a top perspective view of another embodiment of the device for ameliorating joint conditions and diseases according to the present invention.
  • FIG. 8 is a top perspective view of another embodiment of the device for ameliorating joint conditions and diseases according to the present invention.
  • FIG. 9 is a cross-sectional, lateral perspective view of the embodiment of the device for ameliorating joint conditions and diseases shown in FIG. 1 taken along line 9 - 9 ;
  • FIG. 10 is a cross-sectional, lateral perspective view of another embodiment of the device for ameliorating joint conditions and diseases according to the present invention.
  • FIG. 11 is a cross-sectional, lateral perspective view of the embodiment of the device for ameliorating joint conditions and diseases shown in FIG. 2 taken along line 11 - 11 ;
  • FIG. 12 is a top, lateral perspective view of one embodiment of an insert according to the present invention for use with a device for ameliorating joint conditions and diseases according to the present invention
  • FIG. 13 is a bottom, lateral perspective view of the embodiment of the insert shown in FIG. 12 ;
  • FIG. 14 is a top, lateral perspective view of one embodiment of the device for ameliorating joint conditions and diseases shown in FIG. 1 with the insert shown in FIG. 12 according to the present invention affixed to the device;
  • FIG. 15 is a cross-sectional view of the device for ameliorating joint conditions and diseases shown in FIG. 1 with the insert shown in FIG. 12 according to the present invention affixed to the device;
  • FIG. 16 through FIG. 35 are schematic depictions of some steps of a method for ameliorating joint conditions and diseases according to the present invention.
  • FIG. 36 is a cross-sectional view of anatomical regions at a treatment site.
  • FIG. 37A is a cross-sectional view of a lesion in a damaged bone.
  • FIG. 37B is a cross-sectional view of cartilage growth over hypertrophied bone.
  • FIG. 38A is an embodiment of the device according to the present invention.
  • FIG. 38B is an embodiment of the device according to the present invention showing cartilage growth during healing.
  • a device for ameliorating joint conditions and diseases there is provided a device for ameliorating joint conditions and diseases.
  • a method for ameliorating a joint condition or disease in a patient comprises providing a device according to the present invention.
  • FIG. 1 through FIG. 11 there are shown, respectively, a lateral perspective view of one embodiment of a device for ameliorating joint conditions and diseases according to the present invention ( FIG. 1 ); a top, lateral perspective view of another embodiment of a device for ameliorating joint conditions and diseases according to the present invention ( FIG. 2 ); an exploded, top, lateral perspective view of the embodiment of the device for ameliorating joint conditions and diseases shown in FIG. 1 ( FIG. 3 ); a top perspective view of the embodiment of the device for ameliorating joint conditions and diseases shown in FIG. 1 ( FIG. 4 ); a bottom perspective view of the embodiment of the device for ameliorating joint conditions and diseases shown in FIG.
  • FIG. 5 a top perspective view of the embodiment of the device for ameliorating joint conditions and diseases shown in FIG. 2 ( FIG. 6 ); a top perspective view of another embodiment of the device for ameliorating joint conditions and diseases according to the present invention ( FIG. 7 ); a top perspective view of another embodiment of the device for ameliorating joint conditions and diseases according to the present invention ( FIG. 8 ); a cross-sectional, lateral perspective view of the embodiment of the device for ameliorating joint conditions and diseases shown in FIG. 1 taken along line 9 - 9 ( FIG. 9 ); a cross-sectional, lateral perspective view of another embodiment of the device for ameliorating joint conditions and diseases according to the present invention ( FIG.
  • the device 10 comprises a first section 12 and a second section 14 , and comprises a generally cylindrical shape partially or completely closed at one end.
  • the device 10 further comprises an axial length (a-a).
  • the axial length (a-a) is between 5 mm and 30 mm.
  • the axial length (a-a) is between 5 mm and 20 mm.
  • the axial length (a-a) is between 8 mm and 16 mm.
  • the axial length (a-a) is 8 mm.
  • the axial length (a-a) is 12 mm.
  • the axial length (a-a) is 16 mm.
  • the first section 12 of the device 10 comprises a joint-ward end 16 , an opposing mating end 18 , and a lateral wall 20 extending between the joint-ward end 16 and the mating end 18 .
  • the first section 12 further comprises a diameter (d-d) and an axial length (b-b).
  • the diameter (d-d) is between 5 mm and 30 mm.
  • the diameter (d-d) is between 5 mm and 20 mm.
  • the diameter (d-d) is between 8 mm and 16 mm.
  • the diameter (d-d) is 8 mm.
  • the diameter (d-d) is 12 mm.
  • the diameter (d-d) is 16 mm.
  • the axial length (b-b) is between 0.5 mm and 2.5 mm. In another embodiment, the axial length (b-b) is between 1 mm and 2 mm. In a preferred embodiment, the axial length (b-b) is 1.25 mm.
  • the first section 12 further comprises a peripheral column 22 partially forming the lateral wall 20 , a central column 24 , and three or more than three struts 26 , each strut 26 extending between and connecting the peripheral column 22 and the central column 24 , and each strut 26 thereby supporting the central column 24 .
  • the joint-ward end 16 further comprises a plurality of fenestrations 28 , where each fenestration 28 is formed by a confluence of the peripheral column 22 , the central column 24 , and two adjacent struts 26 of the three or more than three struts 26 .
  • Each fenestration 28 can comprise any shape suitable for the intended purpose of the device 10 , as will be understood by those with skill in the art with respect to this disclosure.
  • each fenestration 28 comprises a pear or teardrop shape.
  • FIG. 2 , FIG. 3 , FIG. 4 , FIG. 5 , FIG. 6 and FIG. 7 each fenestration 28 comprises a pear or teardrop shape. In another embodiment, as shown in FIG.
  • each fenestration 28 comprises a kidney shape.
  • each fenestration 28 comprises an oval or a round shape.
  • all fenestrations 28 on the device 10 can comprise the same size and shape or one or more than one fenestration 28 can comprise a different size, different shape or both a different size and a different shape than one or more than one other fenestration 28 .
  • the joint-ward end 16 can be solid between the central column 24 and the peripheral column 22 .
  • the first section 12 further comprises a central aperture 30 within and formed by the central column 24 .
  • the central aperture 30 can extend axially completely through the joint-ward end 16 as shown particularly in FIG. 9 , FIG. 10 and FIG. 11 , or can be blind-ended extending only partially through within joint-ward end 16 .
  • the central aperture 30 is configured to mate with a driver as disclosed below.
  • the central aperture 30 comprises any shape suitable for the intended purpose of the device 10 , as will be understood by those with skill in the art with respect to this disclosure.
  • the central aperture 30 comprises a square shape.
  • the central aperture 30 comprises a round shape.
  • the central aperture 30 comprises a six-pointed star shape. In another embodiment, as shown in FIG. 7 , the central aperture 30 comprises a pentagonal shape. In another embodiment, as shown in FIG. 8 , the central aperture 30 comprises a hexagonal shape. In one embodiment, as shown in FIG. 2 and FIG. 11 , the central aperture 30 comprises threads 32 to assist in mating with a driver.
  • peripheral column 22 of the first section 12 comprises one or more than one notch 34 as seen in FIG. 2 , FIG. 6 and FIG. 11 .
  • the one or more than one notch can be used to mate with a driver in addition to the central aperture 30 or instead of the central aperture 30 , as will be understood by those with skill in the art with respect to this disclosure.
  • the joint-ward end 16 of the first section 12 of the device 10 performs a partial load-bearing function after implantation, and comprises a shape suitable to substantially match the shape of the articulation surface that the device 10 recreates on the bone after implantation, as will be understood by those with skill in the art with respect to this disclosure. Therefore, the joint-ward end 16 can have either a convex profile as seen on a cross-sectional, lateral perspective view, as shown in FIG. 9 and FIG. 11 , a concave profile as seen on a cross-sectional, lateral perspective view, as shown in FIG. 10 , or a straight profile as seen on a cross-sectional, lateral perspective view.
  • the joint-ward end has a convex profile having a radius of curvature of between 10 mm and 50 mm. In another embodiment, the joint-ward end has a convex profile as seen on a cross-sectional, lateral perspective view with a radius of curvature of between 15 mm and 45 mm. In another embodiment, the joint-ward end has a convex profile as seen on a cross-sectional, lateral perspective view with a radius of curvature of between 20 mm and 30 mm. In one embodiment, the joint-ward end has a concave profile as seen on cross-sectional, lateral perspective view with a radius of curvature of between 10 mm and 50 mm.
  • the joint-ward end has a concave profile as seen on cross-sectional, lateral perspective view with a radius of curvature of between 15 mm and 45 mm. In another embodiment, the joint-ward end has a concave profile as seen on cross-sectional, lateral perspective view with a radius of curvature of between 20 mm and 30 mm.
  • the joint-ward end 16 comprises a smooth surface facing the center of joint after implantation, as will be understood by those with skill in the art with respect to this disclosure. In a preferred embodiment, the joint-ward end 16 is polished to make the surface smooth.
  • the lateral wall 20 of the first section 12 can be any shape suitable for the intended purpose of the device 10 , as will be understood by those with skill in the art with respect to this disclosure.
  • the lateral wall 20 of the first section 12 comprises a generally convex profile as seen on a cross-sectional, lateral perspective view, as shown in FIG. 9 and FIG. 11 .
  • This convex profile advantageously provides a smooth transition to and encourages biologic bonding to surrounding cartilage and bone after implantation, as will be understood by those with skill in the art with respect to this disclosure.
  • the device 10 further comprises a second section 14 .
  • the second section 14 of the device 10 comprises a mating end 36 , an opposing leading end 38 , and a lateral wall 40 extending between the mating end 36 and the leading end 38 .
  • the second section 14 further comprises an axial length (c-c).
  • the axial length (c-c) is between 5 mm and 30 mm.
  • the axial length (c-c) is between 5 mm and 20 mm.
  • the axial length (c-c) is between 6 mm and 15 mm.
  • the axial length (c-c) is 6 mm.
  • the axial length (c-c) is 10 mm.
  • the axial length (c-c) is 15 mm.
  • the lateral wall 40 of the second section 14 is generally cylindrical as seen in FIG. 1 , FIG. 9 and FIG. 10 .
  • the lateral wall 40 of the second section 14 is generally conical, tapering between the mating end 36 and the leading end 38 as seen in FIG. 11 .
  • the lateral wall 40 of the second section 14 tapers between 0.2 degrees and 15 degrees.
  • the lateral wall 16 tapers between 1 degrees and 5 degrees.
  • the lateral wall 40 of the second section 14 tapers between 1 degrees and 3 degrees.
  • the mating end 36 of the second section 14 of the device 10 is configured to mate with the mating end 18 of the first section 12 of the device 10 .
  • the mating end 18 of the first section 12 and the mating end 36 of the second section 14 can comprise any mating mechanism suitable for the intended purpose of the device 10 can be used, as will be understood by those with skill in the art with respect to this disclosure.
  • the mating end 18 of the first section 12 and the mating end 36 of the second section 14 mate by a suitable biocompatible adhesive, as will be understood by those with skill in the art with respect to this disclosure.
  • the mating mechanism is reversible, allowing an interchange of an alternate first section 12 to a specific second section 14 so that the device 10 can be reconfigured as needed for contouring to a particular joint surface, thereby decreasing the number of second sections 14 that need to be stored on site, as will be understood by those with skill in the art with respect to this disclosure.
  • the mating end 18 of the first section 12 and the mating end 36 of the second section 14 mate by a reversible twist locking mechanism, as will be understood by those with skill in the art with respect to this disclosure.
  • the first section 12 and the second section 14 are made as a unified whole as shown in FIG. 11 and are not separable.
  • the leading end 38 of the second section 14 of the device 10 is configured to place the device 10 into a prepared space made according to a method according to the present invention.
  • the leading end 38 comprises a scalloped edge 42 .
  • the leading end 38 comprises bevels 44 .
  • the leading end 38 comprises both a scalloped edge 42 and bevels 44 as shown particularly in FIG. 1 , FIG. 3 , FIG. 5 and FIG. 6 .
  • the lateral wall 40 of the second section 14 of the device 10 extends between the mating end 36 and the leading end 38 .
  • the lateral wall 40 of the second section 14 comprises threads 46 for anchoring the device 10 within the bone.
  • the lateral wall 40 of the second section 14 further comprises a plurality of fenestrations 48 between the threads 46 .
  • the device 10 further comprises a plurality of fenestrations 50 formed by a confluence of the mating end 18 of the first section 12 and the mating end 36 of the second section 14 .
  • Each fenestration 48 , 50 can comprise any shape suitable for the intended purpose of the device 10 , as will be understood by those with skill in the art with respect to this disclosure.
  • each fenestration 48 , 50 is oval or round.
  • the lateral wall 40 of the second section 14 is textured to promote bony ingrowth after implantation, as will be understood by those with skill in the art with respect to this disclosure.
  • the first section 12 and the second section 14 can comprise any material suitable for the intended purpose of the device 10 , as will be understood by those with skill in the art with respect to this disclosure.
  • the first section 12 comprises a material selected from the group consisting of a biocompatible plastic, a biocomposite polymer, a metal and a metal alloy.
  • the first section 12 comprises a material selected from the group consisting of carbon fiber, cobalt chrome, nitinol, polycaprolactone (PCL), polyether-ether-ketone (PEEK), tantalum and titanium.
  • the second section 14 comprises a material selected from the group consisting of a biocompatible plastic, a biocomposite polymer, a metal and a metal alloy.
  • the second section 14 comprises a material selected from the group consisting of carbon fiber, cobalt chrome, nitinol, polycaprolactone (PCL), polyether-ether-ketone (PEEK), tantalum and titanium.
  • the first section 12 comprises a first material and the second section 14 comprises a second material, where the first material and the second material are the same material.
  • the first section 12 comprises a first material and the second section 14 comprises a second material, where the first material and the second material are the different materials.
  • the device 10 further comprises an insert 52 .
  • FIG. 12 , FIG. 13 , FIG. 14 and FIG. 15 there are shown, respectively, a top, lateral perspective view of one embodiment of an insert according to the present invention for use with a device for ameliorating joint conditions and diseases according to the present invention (FIG. 12 ); a bottom, lateral perspective view of the embodiment of the insert shown in FIG. 12 ( FIG. 13 ); a top, lateral perspective view of one embodiment of the device for ameliorating joint conditions and diseases shown in FIG. 1 with the insert shown in FIG. 12 according to the present invention affixed to the device ( FIG. 14 ); and a cross-sectional view of the device for ameliorating joint conditions and diseases shown in FIG.
  • the insert 52 comprises a base 54 and three or more than three extensions 56 connected to the base 54 and arranged radially around the base 54 .
  • Each of the three or more than three extensions 56 is configured to fit within a corresponding fenestration 28 of the joint-ward end 16 of the first section 12 of the device 10 , such that when the insert 52 is mated to the first section 12 of the device 10 , the insert 52 occupies each of the three or more than three fenestrations 28 as shown particularly in FIG. 5 .
  • the insert 52 comprises porous biological material impregnated with matrix-promoting substances or serves as a scaffold for progenitor cells, or comprises both porous biological material impregnated with matrix-promoting substances and serves as a scaffold for progenitor cells.
  • the device 10 can be made by any suitable method, as will be understood by those with skill in the art with respect to this disclosure.
  • the first section 12 and the second section 14 are machined from modular parts such as by direct metal laser sintering, as will be understood by those with skill in the art with respect to this disclosure.
  • FIG. 16 through FIG. 35 there are shown schematic depictions of some steps of a method for ameliorating joint conditions and diseases according to the present invention.
  • the Figures show the embodiment of the method being used on a femorotibial joint 100 to ameliorate an arthritic condition which has caused a defect 102 on an articulation surface 104 of a bone or joint, shown here as on the medial condyle 106 of the femur 108 .
  • the method comprises identifying a patient with a joint condition or disease that is suitable for treatment by the present method, where the joint comprises a bone with a surface comprising a defect caused by the joint condition or disease.
  • the joint can be any joint with a hyaline cartilage bearing surface, joint capsule, and synovial fluid.
  • the joint is a diarthrodial joint (also known as a synovial joint).
  • the joint is selected from the group consisting of an acetabulofemoral joint, an acromioclavicular joint, a femoropatellar joint, a femorotibial joint, a glenohumeral joint, a humeroradial joint, a humeroulnar joint, an interphalangeal joint, a metacarpal joint, a radioulnar joint and a talocrural joint.
  • the patient is a human. In one embodiment, the patient is a non-human animal.
  • the joint condition and disease is selected from the group consisting of arthroses, chondromalacia patella, isolated chondral defect, juvenile idiopathic arthritis, ligamentous deficiency arthroses, osteoarthritis (degenerative arthritis or degenerative joint disease), osteonecrosis, osteochondritis dissecans, patellar instability, post-ligamentous injury arthritis, post-meniscectomy arthritis, post-meniscectomy arthroses, post-traumatic arthritis, rheumatoid arthritis and septic arthritis.
  • identifying the patient comprises diagnosing the patient with a joint condition and disease.
  • diagnosing the patient comprises performing one or more than one of action selected from the group consisting of performing a physical examination, performing a non-invasive imaging examination (such as magnetic resonance imaging, computerized tomography and ultrasound) and performing arthroscopy.
  • identifying the patient comprises consulting patient records to determine if the patient has a joint condition or disease suitable for treatment by the present method.
  • the method further comprises accessing the joint 100 .
  • accessing the joint 100 is accomplished by arthroscopy.
  • accessing the joint 100 is accomplished by an open surgical procedure, such as for example a mini-open procedure.
  • the surface 104 of the bone comprises an abnormality 110 (such as for example area cartilage softening, thinning, damage, or absence), and the method further comprises using a burr, or a suction shaver, or both a burr and a suction shaver 112 to remove some or all of the abnormalities 110 thereby creating a smoother articulation surface 104 as shown in FIG. 19 .
  • an abnormality 110 such as for example area cartilage softening, thinning, damage, or absence
  • the method further comprises using a burr, or a suction shaver, or both a burr and a suction shaver 112 to remove some or all of the abnormalities 110 thereby creating a smoother articulation surface 104 as shown in FIG. 19 .
  • the method further comprises placing a guidepin 114 within the center of the defect 102 as shown in FIG. 20 .
  • the method further comprises creating a space 116 in the defect 102 of the bone for a device.
  • the space 116 is created using a bone reamer 118 placed over the guidepin 114 to core and plane the surface of the defect 102 as shown in FIG. 21 , FIG. 22 and FIG. 23 .
  • the bone reamer 118 is then removed leaving the guidepin 114 in place.
  • the method further comprises creating one or more than one vascular channel in the bone deep to the space 116 using a drill bit guide 120 positioned over the guidepin 114 and a drill bit 122 passed within the drill bit guide 120 as shown in FIG. 23 , FIG. 24 and FIG. 25 .
  • Confirmation of creation of the one or more than one vascular channel is made by the presence of blood 124 leaking into the space 116 from the one or more than one vascular channel.
  • the drill bit guide 120 and drill bit 122 are then removed leaving the guidepin 114 in place.
  • the method further comprises providing a first device 126 for ameliorating joint conditions and diseases suitable for ameliorating the joint condition or disease of the patient as can be seen in FIG. 26 .
  • the first device 126 is a device according to the present invention.
  • the first device 126 provided has a size suitable for incorporation into the space 116 made in the defect 102 , and the joint-ward end of the first device 126 comprises a shape suitable to substantially match the shape of the articulation surface 104 that the first device 126 recreates on the bone after implantation, as will be understood by those with skill in the art with respect to this disclosure.
  • the first device 126 is attached to a driver 128 , such as for example by mating the distal end of the driver 128 with the central aperture of the first device 126 .
  • the method further comprises injecting a biologic material, such as for example stem cells or platelet rich plasma, or both stem cells and platelet rich plasma 130 into the first device 126 using an injector 132 as shown in FIG. 28 .
  • the method further comprises placing an insert according to the present invention in the first device 126 instead of injecting a biocompatible bone cement in the first device 126 .
  • the insert is a biological material according to the present invention.
  • the method further comprises screwing the first device 126 into the space 116 using the driver 128 , as shown in FIG. 29 , FIG. 30 , FIG. 31 and FIG. 32 .
  • FIG. 33 is a partial, lateral cross-section of the medial condyle 106 at the site of the defect 102 showing placement of the first device 126 .
  • the joint-ward end of the first device 126 forms a shape that substantially recreates the shape of a normal articulation surface on the bone after implantation.
  • the method further comprises placing one or more than one additional device 134 , 136 in the defect 102 .
  • the one or more than one additional device is one additional device.
  • one or more than one additional device is two additional devices.
  • the one or more than one additional device 134 , 136 can be the same as the first device in terms of size and shape or can be different than the first device in terms of size and shape.
  • FIG. 36 shows a cross-sectional view of anatomical regions at a damaged bone 146 .
  • the regions include cancellous bone 137 , a cortical bone base plate 138 , and a cartilage zone 139 .
  • the cartilage zone 139 may include articular cartilage.
  • Torn cartilage 140 is shown near an injury site 141 .
  • the cortical bone base plate 138 tends to grow past a boundary/transition 143 of the cartilage zone 139 in a direction 142 toward the articulating body joint at the injury site 141 as shown in FIGS. 36 and 37A , for example. Under these conditions, it is not unusual to observe trabecular thickening of the cancellous bone as the body tries to compensate and protect against forces applied to the joint as it heals.
  • bone hypertrophy continues and one or more boney outcrops 144 often form which, in turn, leaves a cartilage layer 145 a that is relatively thin and generally less healthy than a thickness of pristine cartilage adjacent 147 a , 147 b the damaged bone 146 , as illustrated in FIG. 37B .
  • this often results in suboptimal healing for the patient—leaving the bone vulnerable to additional trauma and the body joint subject to repeated injuries.
  • An embodiment of the present invention includes a new, useful and non-obvious method of facilitating cartilage regrowth and preventing bone overgrowth to a damaged bone at a treatment site within a body joint to promote healing and avoid the scenario described above and shown in FIGS. 37A and 37B .
  • the device 10 has a first section 12 comprising a joint-ward end 16 having an inner surface 16 a and an outer surface 16 b and fenestrations 28 between the inner 16 a and outer 16 b surfaces.
  • a second section 14 comprises an opposing leading end 38 and a lateral wall 40 extending between the joint-ward end 16 and the leading end 38 .
  • the leading end 38 is penetrated into the bone to a depth to substantially position: 1) the joint-ward end 16 in a cartilage zone 139 ; wherein the outer surface of the joint-ward end 16 is configured to facilitate cartilage regrowth; and 2) the second section 14 in the bone 137 ; wherein the inner surface 16 a of the joint-ward end 16 is configured to prevent bone overgrowth into the cartilage zone 139 within the body joint when the device is positioned at the treatment site.
  • optimal healing is advanced by mitigating bone hypertrophy and facilitating cartilage regrowth.
  • Mitigating bone hypertrophy may include preventing trabecular thickening of the cancellous bone.
  • cartilage may be encouraged to regrow over the injured bone at a thickness 145 b at the treatment site that is substantially uniform after healing and may also be substantially the same as a thickness of healthy (i.e. pristine) cartilage adjacent 147 a , 147 b the treatment site after healing.
  • a patient progresses to a more optimal healed state.
  • the bone is better protected from additional trauma and is less likely to fracture when the device is positioned at the treatment site.
  • the body joint is also less likely to experience repeated subsequent injuries.
  • the device 10 is positioned and configured to provide active or passive dampening support to the bone at the treatment/injury site 141 so as to dissipate and dampen shock within the bone to promote healing. This may prevent excessive thickening of the cancellous bone.
  • the second section 14 includes fenestrations 48 and these fenestrations are configured to promote osseointegration of the second section at the treatment site. This provides stability. Furthermore, as discussed in U.S. Patent Application 62/260,030, entitled “Methods, Systems, and Devices for Repairing Anatomical Joint Conditions” filed on Nov.
  • the fenestrations may have different porosities targeted to promote specific tissue growth and differentiation.
  • the fenestrations may be different sizes conducive to facilitating cartilage regrowth on outer surface 16 b of the joint-ward end 16 and to prevent bone overgrowth into the cartilage zone 139 within the body joint on the inner surface 16 a of the joint-ward end 16 .
  • the joint-ward end 16 may be substantially positioned at a boundary/transition area 143 between a cartilage layer and a bone layer such that cartilage can grow through and around and even over the top of the fenestrations 28 in the joint-ward end 16 .
  • the transition area 143 may be located substantially in a cortical bone base plate or located substantially between cancellous bone and a cartilage zone, for example.
  • the plurality of fenestrations between the protrusions (e.g. treads, notches) 46 on the second section of the lateral wall are between about 300 microns and 1200 microns in size to promote bone growth while the plurality of fenestrations on the joint-ward end of the first section are between about 100 microns to 800 microns in size to promote cartilage growth.
  • the plurality of fenestrations on the joint-ward end 16 of the first section are between about 400 microns to 800 microns in size to promote cartilage growth. Circular pores, pie-shaped fenestrations and other shapes are considered.
  • FIG. 35 is a partial, lateral cross-section of a glenohumeral joint 138 at the site of a defect showing placement of a device for ameliorating joint conditions and diseases according to the present invention.

Abstract

A method for ameliorating joint conditions and diseases and preventing bone hypertrophy can include facilitating cartilage regrowth and preventing bone overgrowth to a damaged bone at a treatment site within a body joint to promote healing. The method can include providing a device having a first section comprising a joint-ward end having an inner surface and an outer surface and fenestrations between the inner and outer surfaces. A second section can include an opposing leading end and a lateral wall extending between the joint-ward end and the leading end. The leading end can be penetrated into the bone to a depth to substantially position:1) the joint-ward end in a cartilage zone or at a boundary/transition area; and 2) the second section in the bone. Bone overgrowth into the cartilage zone may be prevented within the body joint when the device is positioned at the treatment site.

Description

    CROSS-REFERENCES TO RELATED APPLICATIONS
  • This application is a continuation of U.S. patent application Ser. No. 16/840,132, entitled “Ameliorating Joint Conditions Including Injuries And Diseases,” filed on Apr. 3, 2020, which is a continuation of U.S. patent application Ser. No. 15/148,894, entitled “Method For Ameliorating Joint Conditions And Diseases And Preventing Bone Hypertrophy,” filed on May 6, 2016; now U.S. Pat. No. 10,610,364; which is a continuation-in-part of U.S. patent application Ser. No. 14/603,586, entitled “Method and Device for Ameliorating Joint Conditions and Diseases,” filed on Jan. 23, 2015, now U.S. Pat. No. 9,532,878; which is a divisional of U.S. patent application Ser. No. 13/421,792, entitled “Method and Device for Ameliorating Joint Conditions and Diseases,” filed on Mar. 15, 2012, now U.S. Pat. No. 8,968,404; which is a continuation-in-part of U.S. patent application Ser. No. 12/328,493, entitled “Joint Support and Subchondral Support System,” filed Dec. 4, 2008. U.S. patent application Ser. No. 15/148,894 also claims the benefit of and priority to U.S. Patent Application 62/260,030, entitled “Methods, Systems, and Devices for Repairing Anatomical Joint Conditions” filed on Nov. 25, 2015. The contents of each of the applications listed in this paragraph are incorporated herein by reference in their entireties.
  • BACKGROUND OF THE INVENTION
  • There are a variety of conditions and diseases that impair the integrity and function of human joints. Among these joint conditions and diseases are arthroses, chondromalacia patella, isolated chondral defect, juvenile idiopathic arthritis, ligamentous deficiency arthroses, osteoarthritis (degenerative arthritis or degenerative joint disease), osteonecrosis, osteochondritis dissecans, patellar instability, post-ligamentous injury arthritis, post-meniscectomy arthritis, post-meniscectomy arthroses, post-traumatic arthritis, rheumatoid arthritis and septic arthritis. The incidence of arthritides alone in the United States exceeds 20%, with higher rates among women as compared to men. Treatment of joint conditions and diseases includes surgery and the administration of therapeutic agents. However, none of these treatments ameliorate all of the joint conditions and diseases.
  • Therefore, there is a need for a new method for ameliorating joint conditions and diseases.
  • BRIEF SUMMARY OF THE INVENTION
  • According to one embodiment of the present invention, there is provided a device for ameliorating joint conditions and diseases. The device comprises a) a first section comprising a joint-ward end, an opposing mating end, and a lateral wall extending between the joint-ward end and the mating end, where the first section further comprises a peripheral column partially forming the lateral wall of the first section, a central column, and three or more than three struts, each strut extending between and connecting the peripheral column and the central column, and each strut thereby supporting the central column, where the joint-ward end further comprises a plurality of fenestrations, where each fenestration is formed by a confluence of the peripheral column, the central column and two adjacent struts of the three or more than three struts, and where the first section further comprises a central aperture within and formed by the central column, and configured to mate with a driver, b) a second section comprising a mating end, an opposing leading end, and a lateral wall extending between the mating end and the leading end, where the lateral wall of the second section comprises threads.
  • In one embodiment, the device further comprises an axial length, and the axial length is between 5 mm and 30 mm. In another embodiment, the device further comprises an axial length, and the axial length is between 5 mm and 20 mm. In another embodiment, the device further comprises an axial length, and the axial length is between 8 mm and 16 mm. In one embodiment, the first section further comprises a diameter between 5 mm and 30 mm. In another embodiment, the first section further comprises a diameter between 5 mm and 20 mm. In another embodiment, the first section further comprises a diameter between 8 mm and 16 mm. In another embodiment, the first section further comprises an axial length between 1 mm and 2 mm.
  • In one embodiment, each fenestration comprises a pear or teardrop shape. In another embodiment, one or more than one fenestration comprises a different size, different shape or both a different size and a different shape than one or more than one other fenestration.
  • In one embodiment, the central aperture comprises a six-pointed star shape. In another embodiment, the central aperture is round and comprises threads. In one embodiment, the peripheral column comprises one or more than one notch.
  • In one embodiment, the joint-ward end comprises a convex profile as seen on a cross-sectional, lateral perspective view. In another embodiment, the joint-ward end comprises a concave profile as seen on a cross-sectional, lateral perspective view. In another embodiment, the joint-ward end comprises a straight profile as seen on a cross-sectional, lateral perspective view. In one embodiment, the joint-ward end comprises a radius of curvature of between 20 mm and 50 mm. In another embodiment, the joint-ward end comprises a radius of curvature of between 15 mm and 45 mm. In another embodiment, the lateral wall of the first section comprises a generally convex profile as seen on a cross-sectional, lateral perspective view.
  • In one embodiment, the second section further comprises an axial length between 5 mm and 30 mm. In another embodiment, the second section further comprises an axial length between 5 mm and 20 mm. In another embodiment, the second section further comprises an axial length between 6 mm and 15 mm. In one embodiment, the lateral wall of the second section is generally cylindrical. In another embodiment, the lateral wall of the second section is generally conical, tapering between the mating end and the leading end. In one embodiment, the lateral wall of the second section tapers between 0.2 degrees and 15 degrees. In another embodiment, the lateral wall of the second section tapers between 1 degrees and 5 degrees. In another embodiment, the lateral wall of the second section tapers between 1 degrees and 3 degrees.
  • In one embodiment, the mating end of the first section and the mating end of the second section mate by a biocompatible adhesive. In another embodiment, the mating end of the first section and the mating end of the second section mate by a mating mechanism that is reversible. In another embodiment, the mating end of the first section and the mating end of the second section mate by a reversible twist locking mechanism. In another embodiment, the first section and the second section are made as a unified whole.
  • In one embodiment, the leading end comprises a scalloped edge. In another embodiment, the leading end comprises bevels. In another embodiment, the leading end comprises both a scalloped edge and bevels.
  • In one embodiment, the lateral wall of the second section further comprises a plurality of fenestrations between the threads. In another embodiment, the device further comprises a plurality of fenestrations formed by a confluence of the mating end of the first section and the mating end of the second section. In one embodiment, the device further comprises an insert, where the insert comprises a base and three or more than three extensions connected to the base and arranged radially around the base, and where each of the three or more than three extensions is configured to fit within a corresponding fenestration of the joint-ward end of first section of the device. In one embodiment, the insert further comprises porous biological material impregnated with matrix-promoting substances or serves as a scaffold for progenitor cells, or comprises both porous biological material impregnated with matrix-promoting substances and serves as a scaffold for progenitor cells.
  • According to another embodiment of the present invention, there is provided a method for ameliorating a joint condition or disease in a patient. The method comprises a) identifying a patient with a joint condition or disease that is suitable for treatment by the method, where the joint comprises a bone with a surface comprising a defect caused by the joint condition or disease, b) accessing the joint, c) placing a guidepin within the center of the defect, d) creating a space in the defect of the bone, e) providing a first device according to the present invention, f) attaching the first device to a driver by mating the distal end of the driver with the central aperture of the first device, and g) screwing the first device into the space using the driver until the joint-ward end of the first device forms a shape that substantially recreates the shape of a normal articulation surface on the bone after implantation.
  • In one embodiment, the joint is a diarthrodial joint. In another embodiment, the joint is selected from the group consisting of an acetabulofemoral joint, an acromioclavicular joint, a femoropatellar joint, a femorotibial joint, a glenohumeral joint, a humeroradial joint, a humeroulnar joint, an interphalangeal joint, a metacarpal joint, a radioulnar joint and a talocrural joint. In one embodiment, the patient is a human. In one embodiment, the patient is a non-human animal. In one embodiment, the joint condition and disease is selected from the group consisting of arthroses, chondromalacia patella, isolated chondral defect, juvenile idiopathic arthritis, ligamentous deficiency arthroses, osteoarthritis (degenerative arthritis or degenerative joint disease), osteonecrosis, osteochondritis dissecans, patellar instability, post-ligamentous injury arthritis, post-meniscectomy arthritis, post-meniscectomy arthroses, post-traumatic arthritis, rheumatoid arthritis and septic arthritis.
  • In one embodiment, identifying the patient comprises diagnosing the patient with a joint condition and disease. In another embodiment, diagnosing the patient comprises performing one or more than one of action selected from the group consisting of performing a physical examination, performing a non-invasive imaging examination and performing arthroscopy. In one embodiment, identifying the patient comprises consulting patient records to determine if the patient has a joint condition or disease suitable for treatment by the method. In one embodiment, accessing the joint is accomplished by arthroscopy. In one embodiment, the joint is accomplished by an open surgical procedure.
  • In one embodiment, the surface of the bone comprises one or more than one abnormality, and the method further comprises using a burr, or a suction shaver, or both a burr and a suction shaver to remove some or all of the one or more than one abnormality thereby creating a smoother articulation surface. In one embodiment, the method further comprises creating one or more than one vascular channel in the bone deep to the space using a drill bit guide positioned over the guidepin and a drill bit passed within the drill bit guide. In another embodiment, the method further comprises injecting a biological material into the first device. In one embodiment, the method further comprises placing an insert in the first device. In one embodiment, the method further comprises placing one or more than one additional device in the defect.
  • According to yet another embodiment, there is provided a method of facilitating cartilage regrowth and preventing bone overgrowth to a damaged bone at a treatment site within a body joint to promote healing. The method comprises providing a device having a first section comprising a joint-ward end having an inner surface and an outer surface and fenestrations between the inner and outer surfaces and a second section comprising an opposing leading end and a lateral wall extending between the joint-ward end and the leading end. The leading end is penetrated into the bone to a depth to substantially position: 1) the joint-ward end in a cartilage zone; wherein the outer surface of the joint-ward end is configured to facilitate cartilage regrowth; and 2) the second section in the bone; wherein the inner surface of the joint-ward end is configured to prevent bone overgrowth into the cartilage zone within the body joint when the device is positioned at the treatment site.
  • According to other embodiments, the device is positioned and configured to provide active or passive dampening support to the bone at the treatment site so as to dissipate and dampen shock within the bone to promote healing. The second section includes fenestrations, the fenestrations are configured to promote osseointegration of the second section at the treatment site. The joint-ward end is substantially positioned at a transition area between a cartilage layer and a bone layer such that cartilage can grow through, around and over the fenestrations in the joint-ward end. The cartilage is articular cartilage and healing includes mitigating bone hypertrophy. The fenestrations promote intracellular nutrient transmission. The transition area is located substantially in a cortical bone base plate or located substantially between cancellous bone and a cartilage zone. The device inhibits bone growth into a cartilage zone when the device is positioned at the treatment site. The device also prevents bone fracture when the device is positioned at the treatment site. The body joint may be a knee and the treatment site may include a subchondral lesion. Mitigating bone hypertrophy may include preventing trabecular thickening of the cancellous bone, for example. A thickness of cartilage regrowth at the treatment site is substantially uniform after healing and/or is substantially the same as a thickness of healthy cartilage adjacent the treatment site after healing. The device is made of titanium and at least the outer surface of the joint-ward end is coated with hydroxyapatite. The first section and second section may be reversibly attached or fused together.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • These and other features, aspects and advantages of the present invention will become better understood with regard to the following description, appended claims, and accompanying figures where:
  • FIG. 1 is a lateral perspective view of one embodiment of a device for ameliorating joint conditions and diseases according to the present invention;
  • FIG. 2 is a top, lateral perspective view of another embodiment of a device for ameliorating joint conditions and diseases according to the present invention;
  • FIG. 3 is an exploded, top, lateral perspective view of the embodiment of the device for ameliorating joint conditions and diseases shown in FIG. 1;
  • FIG. 4 is a top perspective view of the embodiment of the device for ameliorating joint conditions and diseases shown in FIG. 1;
  • FIG. 5 is a bottom perspective view of the embodiment of the device for ameliorating joint conditions and diseases shown in FIG. 1;
  • FIG. 6 is a top perspective view of the embodiment of the device for ameliorating joint conditions and diseases shown in FIG. 2;
  • FIG. 7 is a top perspective view of another embodiment of the device for ameliorating joint conditions and diseases according to the present invention;
  • FIG. 8 is a top perspective view of another embodiment of the device for ameliorating joint conditions and diseases according to the present invention;
  • FIG. 9 is a cross-sectional, lateral perspective view of the embodiment of the device for ameliorating joint conditions and diseases shown in FIG. 1 taken along line 9-9;
  • FIG. 10 is a cross-sectional, lateral perspective view of another embodiment of the device for ameliorating joint conditions and diseases according to the present invention;
  • FIG. 11 is a cross-sectional, lateral perspective view of the embodiment of the device for ameliorating joint conditions and diseases shown in FIG. 2 taken along line 11-11;
  • FIG. 12 is a top, lateral perspective view of one embodiment of an insert according to the present invention for use with a device for ameliorating joint conditions and diseases according to the present invention;
  • FIG. 13 is a bottom, lateral perspective view of the embodiment of the insert shown in FIG. 12;
  • FIG. 14 is a top, lateral perspective view of one embodiment of the device for ameliorating joint conditions and diseases shown in FIG. 1 with the insert shown in FIG. 12 according to the present invention affixed to the device;
  • FIG. 15 is a cross-sectional view of the device for ameliorating joint conditions and diseases shown in FIG. 1 with the insert shown in FIG. 12 according to the present invention affixed to the device; and
  • FIG. 16 through FIG. 35 are schematic depictions of some steps of a method for ameliorating joint conditions and diseases according to the present invention.
  • FIG. 36 is a cross-sectional view of anatomical regions at a treatment site.
  • FIG. 37A is a cross-sectional view of a lesion in a damaged bone.
  • FIG. 37B is a cross-sectional view of cartilage growth over hypertrophied bone.
  • FIG. 38A is an embodiment of the device according to the present invention.
  • FIG. 38B is an embodiment of the device according to the present invention showing cartilage growth during healing.
  • DETAILED DESCRIPTION OF THE INVENTION
  • According to one embodiment of the present invention, there is provided a device for ameliorating joint conditions and diseases. According to another embodiment of the present invention, there is provided a method for ameliorating a joint condition or disease in a patient. In one embodiment, the method comprises providing a device according to the present invention. The device and methods will now be disclosed in detail.
  • As used in this disclosure, except where the context requires otherwise, the term “comprise” and variations of the term, such as “comprising,” “comprises” and “comprised” are not intended to exclude other additives, components, integers or steps.
  • As used in this disclosure, except where the context requires otherwise, the method steps disclosed and shown are not intended to be limiting nor are they intended to indicate that each step is essential to the method or that each step must occur in the order disclosed but instead are exemplary steps only.
  • All dimensions specified in this disclosure are by way of example only and are not intended to be limiting, except where the context requires otherwise. Further, the proportions shown in these Figures are not necessarily to scale. As will be understood by those with skill in the art with reference to this disclosure, the actual dimensions and proportions of any device or part of a device disclosed in this disclosure will be determined by its intended use.
  • According to one embodiment of the present invention, there is provided a device for ameliorating joint conditions and diseases. Referring now to FIG. 1 through FIG. 11, there are shown, respectively, a lateral perspective view of one embodiment of a device for ameliorating joint conditions and diseases according to the present invention (FIG. 1); a top, lateral perspective view of another embodiment of a device for ameliorating joint conditions and diseases according to the present invention (FIG. 2); an exploded, top, lateral perspective view of the embodiment of the device for ameliorating joint conditions and diseases shown in FIG. 1 (FIG. 3); a top perspective view of the embodiment of the device for ameliorating joint conditions and diseases shown in FIG. 1 (FIG. 4); a bottom perspective view of the embodiment of the device for ameliorating joint conditions and diseases shown in FIG. 1 (FIG. 5); a top perspective view of the embodiment of the device for ameliorating joint conditions and diseases shown in FIG. 2 (FIG. 6); a top perspective view of another embodiment of the device for ameliorating joint conditions and diseases according to the present invention (FIG. 7); a top perspective view of another embodiment of the device for ameliorating joint conditions and diseases according to the present invention (FIG. 8); a cross-sectional, lateral perspective view of the embodiment of the device for ameliorating joint conditions and diseases shown in FIG. 1 taken along line 9-9 (FIG. 9); a cross-sectional, lateral perspective view of another embodiment of the device for ameliorating joint conditions and diseases according to the present invention (FIG. 10); and a cross-sectional, lateral perspective view of the embodiment of the device for ameliorating joint conditions and diseases shown in FIG. 2 taken along line 11-11 (FIG. 11). As can be seen, the device 10 comprises a first section 12 and a second section 14, and comprises a generally cylindrical shape partially or completely closed at one end. The device 10 further comprises an axial length (a-a). In one embodiment, the axial length (a-a) is between 5 mm and 30 mm. In another embodiment, the axial length (a-a) is between 5 mm and 20 mm. In another embodiment, the axial length (a-a) is between 8 mm and 16 mm. In a preferred embodiment, the axial length (a-a) is 8 mm. In another preferred embodiment, the axial length (a-a) is 12 mm. In another preferred embodiment, the axial length (a-a) is 16 mm.
  • The first section 12 of the device 10 comprises a joint-ward end 16, an opposing mating end 18, and a lateral wall 20 extending between the joint-ward end 16 and the mating end 18. The first section 12 further comprises a diameter (d-d) and an axial length (b-b). In one embodiment, the diameter (d-d) is between 5 mm and 30 mm. In another embodiment, the diameter (d-d) is between 5 mm and 20 mm. In another embodiment, the diameter (d-d) is between 8 mm and 16 mm. In a preferred embodiment, the diameter (d-d) is 8 mm. In another preferred embodiment, the diameter (d-d) is 12 mm. In another preferred embodiment, the diameter (d-d) is 16 mm. In one embodiment, the axial length (b-b) is between 0.5 mm and 2.5 mm. In another embodiment, the axial length (b-b) is between 1 mm and 2 mm. In a preferred embodiment, the axial length (b-b) is 1.25 mm.
  • In one embodiment, the first section 12 further comprises a peripheral column 22 partially forming the lateral wall 20, a central column 24, and three or more than three struts 26, each strut 26 extending between and connecting the peripheral column 22 and the central column 24, and each strut 26 thereby supporting the central column 24.
  • In one embodiment, the joint-ward end 16 further comprises a plurality of fenestrations 28, where each fenestration 28 is formed by a confluence of the peripheral column 22, the central column 24, and two adjacent struts 26 of the three or more than three struts 26. Each fenestration 28 can comprise any shape suitable for the intended purpose of the device 10, as will be understood by those with skill in the art with respect to this disclosure. In one embodiment, as shown particularly in FIG. 2, FIG. 3, FIG. 4, FIG. 5, FIG. 6 and FIG. 7, each fenestration 28 comprises a pear or teardrop shape. In another embodiment, as shown in FIG. 8, each fenestration 28 comprises a kidney shape. In another embodiment, each fenestration 28 comprises an oval or a round shape. As will be understood by those with skill in the art with respect to this disclosure, all fenestrations 28 on the device 10 can comprise the same size and shape or one or more than one fenestration 28 can comprise a different size, different shape or both a different size and a different shape than one or more than one other fenestration 28. In another embodiment, the joint-ward end 16 can be solid between the central column 24 and the peripheral column 22.
  • The first section 12 further comprises a central aperture 30 within and formed by the central column 24. The central aperture 30 can extend axially completely through the joint-ward end 16 as shown particularly in FIG. 9, FIG. 10 and FIG. 11, or can be blind-ended extending only partially through within joint-ward end 16. The central aperture 30 is configured to mate with a driver as disclosed below. The central aperture 30 comprises any shape suitable for the intended purpose of the device 10, as will be understood by those with skill in the art with respect to this disclosure. In one embodiment, the central aperture 30 comprises a square shape. In one embodiment, as shown in FIG. 2 and FIG. 6, the central aperture 30 comprises a round shape. In another embodiment, as shown in FIG. 3, FIG. 4 and FIG. 5, the central aperture 30 comprises a six-pointed star shape. In another embodiment, as shown in FIG. 7, the central aperture 30 comprises a pentagonal shape. In another embodiment, as shown in FIG. 8, the central aperture 30 comprises a hexagonal shape. In one embodiment, as shown in FIG. 2 and FIG. 11, the central aperture 30 comprises threads 32 to assist in mating with a driver.
  • In one embodiment, peripheral column 22 of the first section 12 comprises one or more than one notch 34 as seen in FIG. 2, FIG. 6 and FIG. 11. The one or more than one notch can be used to mate with a driver in addition to the central aperture 30 or instead of the central aperture 30, as will be understood by those with skill in the art with respect to this disclosure.
  • The joint-ward end 16 of the first section 12 of the device 10 performs a partial load-bearing function after implantation, and comprises a shape suitable to substantially match the shape of the articulation surface that the device 10 recreates on the bone after implantation, as will be understood by those with skill in the art with respect to this disclosure. Therefore, the joint-ward end 16 can have either a convex profile as seen on a cross-sectional, lateral perspective view, as shown in FIG. 9 and FIG. 11, a concave profile as seen on a cross-sectional, lateral perspective view, as shown in FIG. 10, or a straight profile as seen on a cross-sectional, lateral perspective view. In one embodiment, the joint-ward end has a convex profile having a radius of curvature of between 10 mm and 50 mm. In another embodiment, the joint-ward end has a convex profile as seen on a cross-sectional, lateral perspective view with a radius of curvature of between 15 mm and 45 mm. In another embodiment, the joint-ward end has a convex profile as seen on a cross-sectional, lateral perspective view with a radius of curvature of between 20 mm and 30 mm. In one embodiment, the joint-ward end has a concave profile as seen on cross-sectional, lateral perspective view with a radius of curvature of between 10 mm and 50 mm. In another embodiment, the joint-ward end has a concave profile as seen on cross-sectional, lateral perspective view with a radius of curvature of between 15 mm and 45 mm. In another embodiment, the joint-ward end has a concave profile as seen on cross-sectional, lateral perspective view with a radius of curvature of between 20 mm and 30 mm. In a preferred embodiment, the joint-ward end 16 comprises a smooth surface facing the center of joint after implantation, as will be understood by those with skill in the art with respect to this disclosure. In a preferred embodiment, the joint-ward end 16 is polished to make the surface smooth.
  • The lateral wall 20 of the first section 12 can be any shape suitable for the intended purpose of the device 10, as will be understood by those with skill in the art with respect to this disclosure. In a preferred embodiment, the lateral wall 20 of the first section 12 comprises a generally convex profile as seen on a cross-sectional, lateral perspective view, as shown in FIG. 9 and FIG. 11. This convex profile advantageously provides a smooth transition to and encourages biologic bonding to surrounding cartilage and bone after implantation, as will be understood by those with skill in the art with respect to this disclosure.
  • The device 10 further comprises a second section 14. The second section 14 of the device 10 comprises a mating end 36, an opposing leading end 38, and a lateral wall 40 extending between the mating end 36 and the leading end 38. The second section 14 further comprises an axial length (c-c). In one embodiment, the axial length (c-c) is between 5 mm and 30 mm. In another embodiment, the axial length (c-c) is between 5 mm and 20 mm. In another embodiment, the axial length (c-c) is between 6 mm and 15 mm. In a preferred embodiment, the axial length (c-c) is 6 mm. In another preferred embodiment, the axial length (c-c) is 10 mm. In another preferred embodiment, the axial length (c-c) is 15 mm. In one embodiment, the lateral wall 40 of the second section 14 is generally cylindrical as seen in FIG. 1, FIG. 9 and FIG. 10. In another embodiment, the lateral wall 40 of the second section 14 is generally conical, tapering between the mating end 36 and the leading end 38 as seen in FIG. 11. In one embodiment, the lateral wall 40 of the second section 14 tapers between 0.2 degrees and 15 degrees. In another embodiment, the lateral wall 16 tapers between 1 degrees and 5 degrees. In another embodiment, the lateral wall 40 of the second section 14 tapers between 1 degrees and 3 degrees.
  • The mating end 36 of the second section 14 of the device 10 is configured to mate with the mating end 18 of the first section 12 of the device 10. The mating end 18 of the first section 12 and the mating end 36 of the second section 14 can comprise any mating mechanism suitable for the intended purpose of the device 10 can be used, as will be understood by those with skill in the art with respect to this disclosure. In one embodiment, the mating end 18 of the first section 12 and the mating end 36 of the second section 14 mate by a suitable biocompatible adhesive, as will be understood by those with skill in the art with respect to this disclosure. In a preferred embodiment, the mating mechanism is reversible, allowing an interchange of an alternate first section 12 to a specific second section 14 so that the device 10 can be reconfigured as needed for contouring to a particular joint surface, thereby decreasing the number of second sections 14 that need to be stored on site, as will be understood by those with skill in the art with respect to this disclosure. In one embodiment, the mating end 18 of the first section 12 and the mating end 36 of the second section 14 mate by a reversible twist locking mechanism, as will be understood by those with skill in the art with respect to this disclosure. In another embodiment, the first section 12 and the second section 14 are made as a unified whole as shown in FIG. 11 and are not separable.
  • The leading end 38 of the second section 14 of the device 10 is configured to place the device 10 into a prepared space made according to a method according to the present invention. In one embodiment, the leading end 38 comprises a scalloped edge 42. In another embodiment, the leading end 38 comprises bevels 44. In a preferred embodiment, the leading end 38 comprises both a scalloped edge 42 and bevels 44 as shown particularly in FIG. 1, FIG. 3, FIG. 5 and FIG. 6.
  • The lateral wall 40 of the second section 14 of the device 10 extends between the mating end 36 and the leading end 38. The lateral wall 40 of the second section 14 comprises threads 46 for anchoring the device 10 within the bone. In one embodiment, the lateral wall 40 of the second section 14 further comprises a plurality of fenestrations 48 between the threads 46. In a preferred embodiment, the device 10 further comprises a plurality of fenestrations 50 formed by a confluence of the mating end 18 of the first section 12 and the mating end 36 of the second section 14. Each fenestration 48, 50 can comprise any shape suitable for the intended purpose of the device 10, as will be understood by those with skill in the art with respect to this disclosure. In a preferred embodiment, each fenestration 48, 50 is oval or round. In one embodiment, the lateral wall 40 of the second section 14 is textured to promote bony ingrowth after implantation, as will be understood by those with skill in the art with respect to this disclosure.
  • The first section 12 and the second section 14 can comprise any material suitable for the intended purpose of the device 10, as will be understood by those with skill in the art with respect to this disclosure. In one embodiment, the first section 12 comprises a material selected from the group consisting of a biocompatible plastic, a biocomposite polymer, a metal and a metal alloy. In one embodiment, the first section 12 comprises a material selected from the group consisting of carbon fiber, cobalt chrome, nitinol, polycaprolactone (PCL), polyether-ether-ketone (PEEK), tantalum and titanium. In one embodiment, the second section 14 comprises a material selected from the group consisting of a biocompatible plastic, a biocomposite polymer, a metal and a metal alloy. In one embodiment, the second section 14 comprises a material selected from the group consisting of carbon fiber, cobalt chrome, nitinol, polycaprolactone (PCL), polyether-ether-ketone (PEEK), tantalum and titanium. In one embodiment, the first section 12 comprises a first material and the second section 14 comprises a second material, where the first material and the second material are the same material. In another embodiment, the first section 12 comprises a first material and the second section 14 comprises a second material, where the first material and the second material are the different materials.
  • In one embodiment, the device 10 further comprises an insert 52. Referring now to FIG. 12, FIG. 13, FIG. 14 and FIG. 15, there are shown, respectively, a top, lateral perspective view of one embodiment of an insert according to the present invention for use with a device for ameliorating joint conditions and diseases according to the present invention (FIG. 12); a bottom, lateral perspective view of the embodiment of the insert shown in FIG. 12 (FIG. 13); a top, lateral perspective view of one embodiment of the device for ameliorating joint conditions and diseases shown in FIG. 1 with the insert shown in FIG. 12 according to the present invention affixed to the device (FIG. 14); and a cross-sectional view of the device for ameliorating joint conditions and diseases shown in FIG. 1 with the insert shown in FIG. 12 (FIG. 15). As can be seen, the insert 52 comprises a base 54 and three or more than three extensions 56 connected to the base 54 and arranged radially around the base 54. Each of the three or more than three extensions 56 is configured to fit within a corresponding fenestration 28 of the joint-ward end 16 of the first section 12 of the device 10, such that when the insert 52 is mated to the first section 12 of the device 10, the insert 52 occupies each of the three or more than three fenestrations 28 as shown particularly in FIG. 5. The insert 52 comprises porous biological material impregnated with matrix-promoting substances or serves as a scaffold for progenitor cells, or comprises both porous biological material impregnated with matrix-promoting substances and serves as a scaffold for progenitor cells.
  • The device 10 can be made by any suitable method, as will be understood by those with skill in the art with respect to this disclosure. In one embodiment, the first section 12 and the second section 14 are machined from modular parts such as by direct metal laser sintering, as will be understood by those with skill in the art with respect to this disclosure.
  • According to another embodiment of the present invention, there is provided a method for ameliorating a joint condition or disease in a patient. Referring now to FIG. 16 through FIG. 35, there are shown schematic depictions of some steps of a method for ameliorating joint conditions and diseases according to the present invention. The Figures show the embodiment of the method being used on a femorotibial joint 100 to ameliorate an arthritic condition which has caused a defect 102 on an articulation surface 104 of a bone or joint, shown here as on the medial condyle 106 of the femur 108.
  • The method comprises identifying a patient with a joint condition or disease that is suitable for treatment by the present method, where the joint comprises a bone with a surface comprising a defect caused by the joint condition or disease. As will be understood by those with skill in the art with respect to this disclosure, the joint can be any joint with a hyaline cartilage bearing surface, joint capsule, and synovial fluid. In one embodiment, the joint is a diarthrodial joint (also known as a synovial joint). In one embodiment, the joint is selected from the group consisting of an acetabulofemoral joint, an acromioclavicular joint, a femoropatellar joint, a femorotibial joint, a glenohumeral joint, a humeroradial joint, a humeroulnar joint, an interphalangeal joint, a metacarpal joint, a radioulnar joint and a talocrural joint. In one embodiment, the patient is a human. In one embodiment, the patient is a non-human animal. In a preferred embodiment, the joint condition and disease is selected from the group consisting of arthroses, chondromalacia patella, isolated chondral defect, juvenile idiopathic arthritis, ligamentous deficiency arthroses, osteoarthritis (degenerative arthritis or degenerative joint disease), osteonecrosis, osteochondritis dissecans, patellar instability, post-ligamentous injury arthritis, post-meniscectomy arthritis, post-meniscectomy arthroses, post-traumatic arthritis, rheumatoid arthritis and septic arthritis. In one embodiment, identifying the patient comprises diagnosing the patient with a joint condition and disease. In one embodiment, diagnosing the patient comprises performing one or more than one of action selected from the group consisting of performing a physical examination, performing a non-invasive imaging examination (such as magnetic resonance imaging, computerized tomography and ultrasound) and performing arthroscopy. In another embodiment, identifying the patient comprises consulting patient records to determine if the patient has a joint condition or disease suitable for treatment by the present method.
  • Next, the method further comprises accessing the joint 100. In one embodiment, accessing the joint 100 is accomplished by arthroscopy. In another embodiment, accessing the joint 100 is accomplished by an open surgical procedure, such as for example a mini-open procedure.
  • In one embodiment, as shown in FIG. 17 and FIG. 18, the surface 104 of the bone comprises an abnormality 110 (such as for example area cartilage softening, thinning, damage, or absence), and the method further comprises using a burr, or a suction shaver, or both a burr and a suction shaver 112 to remove some or all of the abnormalities 110 thereby creating a smoother articulation surface 104 as shown in FIG. 19.
  • Then, the method further comprises placing a guidepin 114 within the center of the defect 102 as shown in FIG. 20.
  • Next, the method further comprises creating a space 116 in the defect 102 of the bone for a device. In one embodiment, the space 116 is created using a bone reamer 118 placed over the guidepin 114 to core and plane the surface of the defect 102 as shown in FIG. 21, FIG. 22 and FIG. 23. The bone reamer 118 is then removed leaving the guidepin 114 in place.
  • In one embodiment, the method further comprises creating one or more than one vascular channel in the bone deep to the space 116 using a drill bit guide 120 positioned over the guidepin 114 and a drill bit 122 passed within the drill bit guide 120 as shown in FIG. 23, FIG. 24 and FIG. 25. Confirmation of creation of the one or more than one vascular channel is made by the presence of blood 124 leaking into the space 116 from the one or more than one vascular channel. The drill bit guide 120 and drill bit 122 are then removed leaving the guidepin 114 in place.
  • Next, the method further comprises providing a first device 126 for ameliorating joint conditions and diseases suitable for ameliorating the joint condition or disease of the patient as can be seen in FIG. 26. In one embodiment, the first device 126 is a device according to the present invention. The first device 126 provided has a size suitable for incorporation into the space 116 made in the defect 102, and the joint-ward end of the first device 126 comprises a shape suitable to substantially match the shape of the articulation surface 104 that the first device 126 recreates on the bone after implantation, as will be understood by those with skill in the art with respect to this disclosure. Referring now to FIG. 27, the first device 126 is attached to a driver 128, such as for example by mating the distal end of the driver 128 with the central aperture of the first device 126.
  • In one embodiment, the method further comprises injecting a biologic material, such as for example stem cells or platelet rich plasma, or both stem cells and platelet rich plasma 130 into the first device 126 using an injector 132 as shown in FIG. 28. In one embodiment, the method further comprises placing an insert according to the present invention in the first device 126 instead of injecting a biocompatible bone cement in the first device 126. In one embodiment, the insert is a biological material according to the present invention.
  • Then, the method further comprises screwing the first device 126 into the space 116 using the driver 128, as shown in FIG. 29, FIG. 30, FIG. 31 and FIG. 32. FIG. 33 is a partial, lateral cross-section of the medial condyle 106 at the site of the defect 102 showing placement of the first device 126. As can be seen, the joint-ward end of the first device 126 forms a shape that substantially recreates the shape of a normal articulation surface on the bone after implantation.
  • In one embodiment, as can be seen in FIG. 26 and FIG. 34, the method further comprises placing one or more than one additional device 134, 136 in the defect 102. In one embodiment, the one or more than one additional device is one additional device. In another embodiment, one or more than one additional device is two additional devices. As will be understood by those with skill in the art with respect to this disclosure, the one or more than one additional device 134, 136 can be the same as the first device in terms of size and shape or can be different than the first device in terms of size and shape.
  • FIG. 36 shows a cross-sectional view of anatomical regions at a damaged bone 146. The regions include cancellous bone 137, a cortical bone base plate 138, and a cartilage zone 139. The cartilage zone 139 may include articular cartilage. Torn cartilage 140 is shown near an injury site 141.
  • Under natural healing conditions without medical intervention, the cortical bone base plate 138 tends to grow past a boundary/transition 143 of the cartilage zone 139 in a direction 142 toward the articulating body joint at the injury site 141 as shown in FIGS. 36 and 37A, for example. Under these conditions, it is not unusual to observe trabecular thickening of the cancellous bone as the body tries to compensate and protect against forces applied to the joint as it heals. As healing progresses without intervention, bone hypertrophy continues and one or more boney outcrops 144 often form which, in turn, leaves a cartilage layer 145 a that is relatively thin and generally less healthy than a thickness of pristine cartilage adjacent 147 a, 147 b the damaged bone 146, as illustrated in FIG. 37B. Unfortunately, this often results in suboptimal healing for the patient—leaving the bone vulnerable to additional trauma and the body joint subject to repeated injuries.
  • An embodiment of the present invention includes a new, useful and non-obvious method of facilitating cartilage regrowth and preventing bone overgrowth to a damaged bone at a treatment site within a body joint to promote healing and avoid the scenario described above and shown in FIGS. 37A and 37B.
  • With reference to FIGS. 3 and 38A, an embodiment of the device according to the present invention is disclosed. The device 10 has a first section 12 comprising a joint-ward end 16 having an inner surface 16 a and an outer surface 16 b and fenestrations 28 between the inner 16 a and outer 16 b surfaces. A second section 14 comprises an opposing leading end 38 and a lateral wall 40 extending between the joint-ward end 16 and the leading end 38. The leading end 38 is penetrated into the bone to a depth to substantially position: 1) the joint-ward end 16 in a cartilage zone 139; wherein the outer surface of the joint-ward end 16 is configured to facilitate cartilage regrowth; and 2) the second section 14 in the bone 137; wherein the inner surface 16 a of the joint-ward end 16 is configured to prevent bone overgrowth into the cartilage zone 139 within the body joint when the device is positioned at the treatment site. Thus, as shown in FIG. 38B, optimal healing is advanced by mitigating bone hypertrophy and facilitating cartilage regrowth. Mitigating bone hypertrophy may include preventing trabecular thickening of the cancellous bone. Per FIG. 38B, cartilage may be encouraged to regrow over the injured bone at a thickness 145 b at the treatment site that is substantially uniform after healing and may also be substantially the same as a thickness of healthy (i.e. pristine) cartilage adjacent 147 a, 147 b the treatment site after healing. In this manner, a patient progresses to a more optimal healed state. The bone is better protected from additional trauma and is less likely to fracture when the device is positioned at the treatment site. The body joint is also less likely to experience repeated subsequent injuries.
  • Advantageously, the device 10 is positioned and configured to provide active or passive dampening support to the bone at the treatment/injury site 141 so as to dissipate and dampen shock within the bone to promote healing. This may prevent excessive thickening of the cancellous bone. The second section 14 includes fenestrations 48 and these fenestrations are configured to promote osseointegration of the second section at the treatment site. This provides stability. Furthermore, as discussed in U.S. Patent Application 62/260,030, entitled “Methods, Systems, and Devices for Repairing Anatomical Joint Conditions” filed on Nov. 25, 2015, which is pending, the contents of which are incorporated herein by reference, the fenestrations may have different porosities targeted to promote specific tissue growth and differentiation. For example, the fenestrations may be different sizes conducive to facilitating cartilage regrowth on outer surface 16 b of the joint-ward end 16 and to prevent bone overgrowth into the cartilage zone 139 within the body joint on the inner surface 16 a of the joint-ward end 16. The joint-ward end 16 may be substantially positioned at a boundary/transition area 143 between a cartilage layer and a bone layer such that cartilage can grow through and around and even over the top of the fenestrations 28 in the joint-ward end 16. The transition area 143 may be located substantially in a cortical bone base plate or located substantially between cancellous bone and a cartilage zone, for example.
  • The plurality of fenestrations between the protrusions (e.g. treads, notches) 46 on the second section of the lateral wall are between about 300 microns and 1200 microns in size to promote bone growth while the plurality of fenestrations on the joint-ward end of the first section are between about 100 microns to 800 microns in size to promote cartilage growth. Preferably, the plurality of fenestrations on the joint-ward end 16 of the first section are between about 400 microns to 800 microns in size to promote cartilage growth. Circular pores, pie-shaped fenestrations and other shapes are considered.
  • Though the method of the present invention has been disclosed with respect to a defect 102 in a femorotibial joint 100, corresponding methods can be used with other joints. FIG. 35 is a partial, lateral cross-section of a glenohumeral joint 138 at the site of a defect showing placement of a device for ameliorating joint conditions and diseases according to the present invention.
  • Although the present invention has been discussed in considerable detail with reference to certain preferred embodiments, other embodiments are possible. Therefore, the scope of the appended claims should not be limited to the description of preferred embodiments contained in this disclosure.

Claims (24)

1. A method of promoting healing in or adjacent to a portion of a bone layer at a treatment site within a body joint, the method comprising:
providing an implantable device having a body formed of material, the implantable device comprising:
an axis defining an axial direction of the device;
a first section comprising:
a joint-ward end having an inner surface and an outer surface spaced apart from one another along the axial direction of the device, the joint-ward end further having first fenestrations extending fully through the joint-ward end in a manner that includes extending between and through the inner surface of the joint-ward end and the convex or concave profile of the outer surface of the joint-ward end; and
a second section arranged along the axial direction from the first section and comprising:
an opposing leading end; and
a lateral wall extending between the joint-ward end and the leading end, wherein the lateral wall is configured to engage the bone layer at the treatment site;
penetrating the leading end into the bone layer to a depth;
positioning the second section in the bone layer; and
positioning the joint-ward end in a position to facilitate transmission through the first fenestrations into a cartilage zone by positioning the joint-ward end at a transition area substantially between a cartilage layer in the cartilage zone and the bone layer at the treatment site such that the joint-ward end is beneath the cartilage zone or otherwise not extending entirely through the cartilage zone.
2. The method of claim 1, wherein the lateral wall comprises threads configured to engage the bone layer at the treatment site.
3. The method of claim 1, wherein the lateral wall further comprises second fenestrations configured to promote osseointegration of the second section at the treatment site.
4. The method of claim 1, wherein the first fenestrations promote intracellular nutrient transmission; or
wherein the joint-ward end is substantially positioned such that cartilage can grow through, around, and over the first fenestrations in the joint-ward end.
5. The method of claim 1, wherein the cartilage is articular cartilage; or
wherein the bone layer is a cortical bone base plate.
6. The method of claim 1, wherein healing includes mitigating bone hypertrophy when the joint-ward end is positioned at the transition area so as to protect against forces applied to the body joint.
7. The method of claim 6, wherein mitigating bone hypertrophy includes preventing trabecular thickening of cancellous bone.
8. The method of claim 1, wherein the transition area is located substantially in a cortical bone base plate; or
wherein the transition area is located substantially between cancellous bone and the cartilage zone.
9. The method of claim 1, wherein the device inhibits bone growth into the cartilage zone when the joint-ward end is positioned at the transition area; or
wherein the device prevents bone fracture when the joint-ward end is positioned at the transition area thus protecting against forces applied to the body joint.
10. The method of claim 1, wherein at least one of:
the body joint is a knee, shoulder, elbow, wrist, hip, spine ankle, or finger; or
the treatment site includes a subchondral lesion.
11. The method of claim 1, wherein the joint is selected from the group consisting of an acetabulofemoral joint, an acromioclavicular joint, a femoropatellar joint, a femorotibial joint, a glenohumeral joint, a humeroradial joint, a humeroulnar joint, an interphalangeal joint, a metacarpal joint, a radioulnar joint and a talocrural joint.
12. The method of claim 1, wherein a thickness of cartilage regrowth at the treatment site is substantially uniform after healing; or
wherein a thickness of cartilage regrowth at the treatment site is substantially the same as a thickness of healthy native cartilage adjacent the treatment site after healing.
13. The method of claim 1, wherein the device is made at least in part from titanium or alloys thereof.
14. The method of claim 1, wherein the device is made at least in part from non resorbable material.
15. The method of claim 1, wherein the device is made at least in part from polyether-ether-ketone (PEEK).
16. The method of claim 1, wherein the device is made at least in part from a partially absorbable material or a fully absorbable material.
17. The method of claim 1, wherein the device is made at least in part from and/or includes at least one of:
biocompatible plastic;
a biocomposite polymer;
a metal;
a metal alloy;
carbon fiber;
cobalt chrome;
nitinol;
polycaprolactone (PCL);
polyether-ether-ketone (PEEK);
tantalum;
titanium
foam metals;
ceramics;
ceramic composites;
elastomer composites;
elastomer-carbon fiber composites;
chambered or fluid-filled materials;
metal matrices;
injectable gels;
injectable composites with fluid and solid matrices;
bone or bone-composite or allografts;
crystal or hydroxyapatite materials;
bioabsorbable composites;
TCP;
PLLA;
silicone.
biomaterial;
biocompatible material;
a biocomposite material;
a biomimetic material;
a bioactive material;
a nanomaterial;
a partially absorbable material;
a fully absorbable material;
a tissue forming material;
a biphasic material; or
a replaceable material.
18. The method of claim 1, wherein at least the outer surface of the joint-ward end is coated with hydroxyapatite.
19. The method of claim 1, wherein the first section and the second section are reversibly attached.
20. The method of claim 1, wherein the first section and the second section are fused together.
21. The method of claim 1, wherein the lateral wall further comprises second fenestrations on the second section, wherein the second fenestrations are between 300 microns and 1200 microns in size.
22. The method of claim 1, wherein the first fenestrations on the joint-ward end of the first section are between 100 microns to 800 microns in size to promote cartilage regrowth.
23. The method of claim 1, wherein the joint-ward end is positioned at a boundary of the transition area, said boundary being located substantially between a cancellous bone and the cartilage zone.
24. The method of claim 1, wherein the joint-ward end forms a shape that substantially recreates the shape of a normal articulation surface on the bone after implantation when the joint-ward end is positioned at the treatment site.
US17/716,633 2008-12-04 2022-04-08 Ameliorating joint conditions including injuries and diseases Pending US20220296376A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/716,633 US20220296376A1 (en) 2008-12-04 2022-04-08 Ameliorating joint conditions including injuries and diseases

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US12/328,493 US20100145451A1 (en) 2008-12-04 2008-12-04 Joint support and subchondral support system
US13/421,792 US8968404B2 (en) 2008-12-04 2012-03-15 Method and device for ameliorating joint conditions and diseases
US14/603,586 US9532878B2 (en) 2008-12-04 2015-01-23 Method and device for ameliorating joint conditions and diseases
US201562260030P 2015-11-25 2015-11-25
US15/148,894 US10610364B2 (en) 2008-12-04 2016-05-06 Method for ameliorating joint conditions and diseases and preventing bone hypertrophy
US16/840,132 US11298235B2 (en) 2008-12-04 2020-04-03 Ameliorating joint conditions including injuries and diseases
US17/716,633 US20220296376A1 (en) 2008-12-04 2022-04-08 Ameliorating joint conditions including injuries and diseases

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US16/840,132 Continuation US11298235B2 (en) 2008-12-04 2020-04-03 Ameliorating joint conditions including injuries and diseases

Publications (1)

Publication Number Publication Date
US20220296376A1 true US20220296376A1 (en) 2022-09-22

Family

ID=56798158

Family Applications (3)

Application Number Title Priority Date Filing Date
US15/148,894 Active US10610364B2 (en) 2008-12-04 2016-05-06 Method for ameliorating joint conditions and diseases and preventing bone hypertrophy
US16/840,132 Active 2029-02-09 US11298235B2 (en) 2008-12-04 2020-04-03 Ameliorating joint conditions including injuries and diseases
US17/716,633 Pending US20220296376A1 (en) 2008-12-04 2022-04-08 Ameliorating joint conditions including injuries and diseases

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US15/148,894 Active US10610364B2 (en) 2008-12-04 2016-05-06 Method for ameliorating joint conditions and diseases and preventing bone hypertrophy
US16/840,132 Active 2029-02-09 US11298235B2 (en) 2008-12-04 2020-04-03 Ameliorating joint conditions including injuries and diseases

Country Status (1)

Country Link
US (3) US10610364B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11666447B1 (en) * 2015-03-05 2023-06-06 Taq Ortho, LLC Bone implant augment and offset device

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10610364B2 (en) 2008-12-04 2020-04-07 Subchondral Solutions, Inc. Method for ameliorating joint conditions and diseases and preventing bone hypertrophy
USD739935S1 (en) * 2011-10-26 2015-09-29 Spinal Elements, Inc. Interbody bone implant
US9839450B2 (en) 2013-09-27 2017-12-12 Spinal Elements, Inc. Device and method for reinforcement of a facet
EP3838195A1 (en) 2015-11-25 2021-06-23 Subchondral Solutions, Inc. Methods, systems and devices for repairing anatomical joint conditions
US10639159B2 (en) * 2017-08-09 2020-05-05 Union Hospital, Tongji Medical College, Huazhong University Of Science And Technology Reticular fixation system for articular cartilage
US20190167433A1 (en) * 2017-12-04 2019-06-06 Duke University Orthopedic implant for sustained drug release

Family Cites Families (145)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2308027A (en) 1940-01-20 1943-01-12 Gen Electric Conveyer system
US4055862A (en) 1976-01-23 1977-11-01 Zimmer Usa, Inc. Human body implant of graphitic carbon fiber reinforced ultra-high molecular weight polyethylene
WO1981002667A1 (en) 1980-03-27 1981-10-01 Nat Res Dev Antimicrobial surgical implants
US4344193A (en) 1980-11-28 1982-08-17 Kenny Charles H Meniscus prosthesis
US4502161A (en) 1981-09-21 1985-03-05 Wall W H Prosthetic meniscus for the repair of joints
US4654314A (en) 1983-07-09 1987-03-31 Sumitomo Cement Co., Ltd. Porous ceramic material and processes for preparing same
SE450460B (en) 1984-11-28 1987-06-29 Albrektsson Bjoern DEVICE IN ARTIFICIAL MENISH FOR A KNEE JOINT PROTECTION
DE3676741D1 (en) 1985-05-20 1991-02-14 Sumitomo Chemical Co METHOD FOR PRODUCING ENDOSSAL IMPLANTS.
US4839215A (en) * 1986-06-09 1989-06-13 Ceramed Corporation Biocompatible particles and cloth-like article made therefrom
US4880429A (en) 1987-07-20 1989-11-14 Stone Kevin R Prosthetic meniscus
US5681353A (en) 1987-07-20 1997-10-28 Regen Biologics, Inc. Meniscal augmentation device
US5007934A (en) 1987-07-20 1991-04-16 Regen Corporation Prosthetic meniscus
US5306311A (en) * 1987-07-20 1994-04-26 Regen Corporation Prosthetic articular cartilage
US7534254B1 (en) 1988-06-13 2009-05-19 Warsaw Orthopedic, Inc. Threaded frusto-conical interbody spinal fusion implants
US5609635A (en) 1988-06-28 1997-03-11 Michelson; Gary K. Lordotic interbody spinal fusion implants
CA1333209C (en) 1988-06-28 1994-11-29 Gary Karlin Michelson Artificial spinal fusion implants
US4961740B1 (en) * 1988-10-17 1997-01-14 Surgical Dynamics Inc V-thread fusion cage and method of fusing a bone joint
US4919667A (en) 1988-12-02 1990-04-24 Stryker Corporation Implant
GB8921008D0 (en) 1989-09-15 1989-11-01 Walker Peter S Skeletal implants
US5171322A (en) 1990-02-13 1992-12-15 Kenny Charles H Stabilized meniscus prosthesis
US5344459A (en) 1991-12-03 1994-09-06 Swartz Stephen J Arthroscopically implantable prosthesis
CA2117379C (en) * 1992-02-14 1999-11-16 Kypriacos A. Athanasiou Multi-phase bioerodible implant/carrier and method of manufacturing and using same
US5490962A (en) 1993-10-18 1996-02-13 Massachusetts Institute Of Technology Preparation of medical devices by solid free-form fabrication methods
US6176874B1 (en) 1993-10-18 2001-01-23 Masschusetts Institute Of Technology Vascularized tissue regeneration matrices formed by solid free form fabrication techniques
US5632745A (en) 1995-02-07 1997-05-27 R&D Biologicals, Inc. Surgical implantation of cartilage repair unit
AU696997B2 (en) 1994-09-15 1998-09-24 Howmedica Osteonics Corp. Conically-shaped anterior fusion cage and method of implantation
CA2212544C (en) 1995-02-07 1999-10-12 Matrix Biotechnologies, Inc. Surgical implantation of cartilage repair unit
US5904716A (en) 1995-04-26 1999-05-18 Gendler; El Method for reconstituting cartilage tissue using demineralized bone and product thereof
US6046379A (en) 1995-06-07 2000-04-04 Stone; Kevin R. Meniscal xenografts
US5865849A (en) 1995-06-07 1999-02-02 Crosscart, Inc. Meniscal heterografts
US6540786B2 (en) 1995-08-23 2003-04-01 Jean Chibrac Joint prosthesis members and method for making same
US5984970A (en) 1996-03-13 1999-11-16 Bramlet; Dale G. Arthroplasty joint assembly
US5788625A (en) 1996-04-05 1998-08-04 Depuy Orthopaedics, Inc. Method of making reconstructive SIS structure for cartilaginous elements in situ
DE29616778U1 (en) 1996-09-26 1998-01-29 Howmedica Gmbh Vertebral body placeholder
US5968098A (en) 1996-10-22 1999-10-19 Surgical Dynamics, Inc. Apparatus for fusing adjacent bone structures
US6037519A (en) 1997-10-20 2000-03-14 Sdgi Holdings, Inc. Ceramic fusion implants and compositions
US8882847B2 (en) 2001-05-25 2014-11-11 Conformis, Inc. Patient selectable knee joint arthroplasty devices
US7041641B2 (en) 1997-03-20 2006-05-09 Stryker Corporation Osteogenic devices and methods of use thereof for repair of endochondral bone and osteochondral defects
US6585770B1 (en) 1997-06-02 2003-07-01 Sdgi Holdings, Inc. Devices for supporting bony structures
US6149651A (en) 1997-06-02 2000-11-21 Sdgi Holdings, Inc. Device for supporting weak bony structures
CA2349562A1 (en) 1998-03-06 1999-09-10 Crosscart, Inc. Soft tissue xenografts
US6530956B1 (en) 1998-09-10 2003-03-11 Kevin A. Mansmann Resorbable scaffolds to promote cartilage regeneration
US6727224B1 (en) 1999-02-01 2004-04-27 Genetics Institute, Llc. Methods and compositions for healing and repair of articular cartilage
US6206927B1 (en) 1999-04-02 2001-03-27 Barry M. Fell Surgically implantable knee prothesis
US20050209703A1 (en) 1999-04-02 2005-09-22 Fell Barry M Surgically implantable prosthetic system
RU2161929C1 (en) 1999-04-21 2001-01-20 Новокузнецкий государственный институт усовершенствования врачей Method for stabilizing subchondrous cortical plate of femoral condyles in the cases of degenerative osteoporosis
US7297161B2 (en) 1999-05-10 2007-11-20 Fell Barry M Surgically implantable knee prosthesis
US20050033424A1 (en) 1999-05-10 2005-02-10 Fell Barry M. Surgically implantable knee prosthesis
US7491235B2 (en) 1999-05-10 2009-02-17 Fell Barry M Surgically implantable knee prosthesis
US6923831B2 (en) 1999-05-10 2005-08-02 Barry M. Fell Surgically implantable knee prosthesis having attachment apertures
US6855165B2 (en) 1999-05-10 2005-02-15 Barry M. Fell Surgically implantable knee prosthesis having enlarged femoral surface
US7338524B2 (en) 1999-05-10 2008-03-04 Fell Barry M Surgically implantable knee prosthesis
US6911044B2 (en) 1999-05-10 2005-06-28 Barry M. Fell Surgically implantable knee prosthesis having medially shifted tibial surface
US6251143B1 (en) 1999-06-04 2001-06-26 Depuy Orthopaedics, Inc. Cartilage repair unit
RU2146503C1 (en) 1999-06-16 2000-03-20 Новокузнецкий государственный институт усовершенствования врачей Method for restoring articulation cartilage
WO2002009626A1 (en) 1999-07-26 2002-02-07 Advanced Prosthetic Technologies, Inc. Improved spinal surgical prosthesis
DE60041670D1 (en) 1999-12-03 2009-04-09 Univ Leeds Restoration of damaged tissue
USD439340S1 (en) 2000-01-03 2001-03-20 Gary K. Michelson End cap for a spinal implant
US6342075B1 (en) 2000-02-18 2002-01-29 Macarthur A. Creig Prosthesis and methods for total knee arthroplasty
US6371958B1 (en) 2000-03-02 2002-04-16 Ethicon, Inc. Scaffold fixation device for use in articular cartilage repair
US6626945B2 (en) * 2000-03-14 2003-09-30 Chondrosite, Llc Cartilage repair plug
US6629997B2 (en) 2000-03-27 2003-10-07 Kevin A. Mansmann Meniscus-type implant with hydrogel surface reinforced by three-dimensional mesh
US9314339B2 (en) 2000-03-27 2016-04-19 Formae, Inc. Implants for replacing cartilage, with negatively-charged hydrogel surfaces and flexible matrix reinforcement
US20040230315A1 (en) 2000-05-01 2004-11-18 Ek Steven W. Articular surface implant
EP2314257B9 (en) 2000-05-01 2013-02-27 ArthroSurface, Inc. System for joint resurface repair
DE60122885T2 (en) 2000-06-14 2007-05-16 Teppo Järvinen FIXING ANCHOR
US6808537B2 (en) 2000-07-07 2004-10-26 Gary Karlin Michelson Expandable implant with interlocking walls
FR2811543B1 (en) 2000-07-12 2003-07-04 Spine Next Sa INTERSOMATIC IMPLANT
US6579293B1 (en) 2000-08-02 2003-06-17 Rama E. Chandran Intramedullary rod with interlocking oblique screw for tibio-calcaneal arthrodesis
AU2002225862B2 (en) 2000-10-24 2005-05-12 Warsaw Orthopedic, Inc. Spinal fusion methods and devices
US20020169507A1 (en) 2000-12-14 2002-11-14 David Malone Interbody spine fusion cage
US6645251B2 (en) 2001-01-22 2003-11-11 Smith & Nephew, Inc. Surfaces and processes for wear reducing in orthopaedic implants
US9050192B2 (en) 2001-02-05 2015-06-09 Formae, Inc. Cartilage repair implant with soft bearing surface and flexible anchoring device
US6575986B2 (en) * 2001-02-26 2003-06-10 Ethicon, Inc. Scaffold fixation device for use in articular cartilage repair
US6743232B2 (en) * 2001-02-26 2004-06-01 David W. Overaker Tissue scaffold anchor for cartilage repair
US7229441B2 (en) 2001-02-28 2007-06-12 Warsaw Orthopedic, Inc. Flexible systems for spinal stabilization and fixation
US6699252B2 (en) 2001-04-17 2004-03-02 Regeneration Technologies, Inc. Methods and instruments for improved meniscus transplantation
US20030007957A1 (en) 2001-07-03 2003-01-09 Calvin Britton Novel wound healing composition not containing bovine-derived activating reagents
US20030033021A1 (en) 2001-07-16 2003-02-13 Plouhar Pamela Lynn Cartilage repair and regeneration scaffold and method
AU2002330168B2 (en) 2001-10-01 2006-11-09 Covidien Lp Apparatus and method for the repair of articular cartilage defects
GR1004345B (en) 2001-12-11 2003-09-11 Δημητριος Ιωαννου Σιφναιος Endoprosthesis of the knee and/or other joints with possibilities of viscoelastic absorption of forces, improved self-lubrication mechanisms and filtration of wear debris
US6932606B2 (en) 2002-06-04 2005-08-23 Zimmer Dental Inc. Abutment screw with gold spring-washer
WO2003105737A1 (en) 2002-06-14 2003-12-24 Crosscart, Inc. Galactosidase-treated prosthetic devices
US20040006393A1 (en) 2002-07-03 2004-01-08 Brian Burkinshaw Implantable prosthetic knee for lateral compartment
DE10242331B4 (en) 2002-09-12 2005-10-20 Biedermann Motech Gmbh Placeholder for vertebral bodies or intervertebral discs
US6761739B2 (en) 2002-11-25 2004-07-13 Musculoskeletal Transplant Foundation Cortical and cancellous allograft spacer
US6994730B2 (en) 2003-01-31 2006-02-07 Howmedica Osteonics Corp. Meniscal and tibial implants
US7169405B2 (en) 2003-08-06 2007-01-30 Warsaw Orthopedic, Inc. Methods and devices for the treatment of intervertebral discs
US7217294B2 (en) 2003-08-20 2007-05-15 Histogenics Corp. Acellular matrix implants for treatment of articular cartilage, bone or osteochondral defects and injuries and method for use thereof
US8389588B2 (en) * 2003-12-04 2013-03-05 Kensey Nash Corporation Bi-phasic compressed porous reinforcement materials suitable for implant
US7666230B2 (en) 2003-12-08 2010-02-23 Depuy Products, Inc. Implant device for cartilage regeneration in load bearing articulation regions
US20050171604A1 (en) 2004-01-20 2005-08-04 Alexander Michalow Unicondylar knee implant
US7845945B2 (en) 2004-01-28 2010-12-07 Stanton R. Canter Anchoring element for use in bone
US8657881B2 (en) 2004-04-20 2014-02-25 Depuy Mitek, Llc Meniscal repair scaffold
US20050278025A1 (en) 2004-06-10 2005-12-15 Salumedica Llc Meniscus prosthesis
US20060052786A1 (en) 2004-08-17 2006-03-09 Zimmer Spine, Inc. Polyaxial device for spine stabilization during osteosynthesis
US7837740B2 (en) * 2007-01-24 2010-11-23 Musculoskeletal Transplant Foundation Two piece cancellous construct for cartilage repair
US8796015B2 (en) * 2004-11-09 2014-08-05 Proxy Biomedical Limited Tissue scaffold
AU2005306450B9 (en) 2004-11-18 2012-02-02 Cayenne Medical, Inc. Devices, systems and methods for material fixation
US7828853B2 (en) 2004-11-22 2010-11-09 Arthrosurface, Inc. Articular surface implant and delivery system
US20060173542A1 (en) 2004-12-28 2006-08-03 Takiron Co., Ltd. Biomaterial for artificial cartilage
EP1835859A2 (en) 2004-12-31 2007-09-26 Ji-Hoon Her Pedicle screw and device for injecting bone cement into bone
US7641694B1 (en) 2005-01-06 2010-01-05 IMDS, Inc. Line lock graft retention system and method
US8828080B2 (en) 2005-02-22 2014-09-09 Barry M. Fell Method and system for knee joint repair
US20060224244A1 (en) 2005-03-31 2006-10-05 Zimmer Technology, Inc. Hydrogel implant
US7291169B2 (en) 2005-04-15 2007-11-06 Zimmer Technology, Inc. Cartilage implant
US20060247790A1 (en) 2005-04-30 2006-11-02 Mckay William F Shaped osteochondral grafts and methods of using same
GB0514358D0 (en) 2005-07-13 2005-08-17 Smith & Nephew Implants for tissue repair
US7959681B2 (en) 2005-08-22 2011-06-14 Vilex In Tennessee, Inc. Cannulated hemi-implant and methods of use thereof
EP1916964A4 (en) 2005-08-26 2015-11-04 Zimmer Inc Implants and methods for repair, replacement and treatment of joint disease
DE102005061932A1 (en) 2005-12-23 2007-07-05 Biedermann Motech Gmbh Placeholder for implantation to the human vertebrae has three tubular bodies having different lengths and diameters that are inserted and connected to each other by pins so that they project over the edges of the next larger tubular body
US20070244565A1 (en) 2006-04-17 2007-10-18 Stchur Robert P Prosthetic humeral device and method
US20080005179A1 (en) * 2006-05-22 2008-01-03 Sonicswap, Inc. Systems and methods for sharing digital media content
US20080051796A1 (en) 2006-08-01 2008-02-28 Warsaw Orthopedic, Inc. Graft retention tack
WO2008021474A2 (en) 2006-08-16 2008-02-21 Incumed, Incorporated Composite interference screw for attaching a graft ligament to a bone, and other apparatus for making attachments to bone
US20080077248A1 (en) 2006-09-22 2008-03-27 Alphatec Spine, Inc. Vertebral body replacement
US20080125863A1 (en) * 2006-11-28 2008-05-29 Mckay William F Implant designs and methods of improving cartilage repair
US8758407B2 (en) 2006-12-21 2014-06-24 Warsaw Orthopedic, Inc. Methods for positioning a load-bearing orthopedic implant device in vivo
US7758643B2 (en) * 2007-02-26 2010-07-20 Biomet Sports Medicine, Llc Stable cartilage defect repair plug
US8162947B2 (en) 2007-04-04 2012-04-24 Arthrex, Inc. Dome shaped implant and inserter
US20080262616A1 (en) 2007-04-18 2008-10-23 Warsaw Orthopedic, Inc. Osteochondral graft and method of use for repairing an articular cartilage defect site
US20080269745A1 (en) 2007-04-24 2008-10-30 Osteolign, Inc. Thermo-chemically activated intramedullary bone stent
US8591592B2 (en) 2007-05-01 2013-11-26 Arthrex, Inc. Method of implanting partial humeral head prosthesis
US9125743B2 (en) 2007-07-16 2015-09-08 Lifenet Health Devitalization and recellularization of cartilage
CN102014800B (en) * 2008-02-28 2014-04-30 比奥波利公司 Partial joint resurfacing implant, instrumentation, and method
CA2717725A1 (en) * 2008-03-05 2009-09-11 Musculoskeletal Transplant Foundation Cancellous constructs, cartilage particles and combinations of cancellous constructs and cartilage particles
US20090276053A1 (en) 2008-04-22 2009-11-05 Timothy Brown Coated Implants
DK2308027T3 (en) 2008-07-24 2013-06-24 Univ Gent SCORING SYSTEM FOR MONITORING OF NATURAL OR PHARMACEUTICAL MODIFIED DISEASE PROGRESS IN EROSIVE OSTEOARTHRITIS IN THE FINGERS INTERPHALANGEALLED
US9037513B2 (en) 2008-09-30 2015-05-19 Apple Inc. System and method for providing electronic event tickets
US10610364B2 (en) 2008-12-04 2020-04-07 Subchondral Solutions, Inc. Method for ameliorating joint conditions and diseases and preventing bone hypertrophy
US20100145451A1 (en) 2008-12-04 2010-06-10 Derek Dee Joint support and subchondral support system
US10045860B2 (en) 2008-12-19 2018-08-14 Amicus Design Group, Llc Interbody vertebral prosthetic device with self-deploying screws
US20100168856A1 (en) 2008-12-31 2010-07-01 Howmedica Osteonics Corp. Multiple piece tissue void filler
US8556972B2 (en) * 2009-04-02 2013-10-15 Sevika Holding AG Monolithic orthopedic implant with an articular finished surface
TR200904029A2 (en) 2009-05-25 2009-10-21 Murat Aydin Hali̇l A biomaterial.
WO2011063250A1 (en) 2009-11-20 2011-05-26 Knee Creations, Llc Implantable devices for subchondral treatment of joint pain
ES2439870T3 (en) 2009-12-03 2014-01-27 Biedermann Technologies Gmbh & Co. Kg Bone screw
EP2612611A1 (en) 2009-12-03 2013-07-10 Biedermann Technologies GmbH & Co. KG Bone screw
WO2012170805A2 (en) 2011-06-09 2012-12-13 Knee Creations, Llc Instruments and devices for subchondral joint repair
US9119646B2 (en) 2011-08-07 2015-09-01 Zimmer Knee Creations, Inc. Subchondral treatment to prevent the progression of osteoarthritis of the joint
WO2013137889A1 (en) 2012-03-15 2013-09-19 Derek Dee Method and device for ameliorating joint conditions and diseases
KR102112886B1 (en) 2012-08-13 2020-05-19 캄로그 바이오테크놀로지스 게엠베하 Secondary part, set, dental implant, gingiva shaper, impression part, dental implant system, and method for producing an implant
US9168062B2 (en) 2013-06-21 2015-10-27 Warsaw Orthopedic, Inc. Spinal implant system and method
DE102014115457A1 (en) 2014-10-23 2016-04-28 Universität Bremen fixation implant
EP3838195A1 (en) * 2015-11-25 2021-06-23 Subchondral Solutions, Inc. Methods, systems and devices for repairing anatomical joint conditions

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11666447B1 (en) * 2015-03-05 2023-06-06 Taq Ortho, LLC Bone implant augment and offset device

Also Published As

Publication number Publication date
US10610364B2 (en) 2020-04-07
US20200330234A1 (en) 2020-10-22
US11298235B2 (en) 2022-04-12
US20160250026A1 (en) 2016-09-01

Similar Documents

Publication Publication Date Title
US20220296376A1 (en) Ameliorating joint conditions including injuries and diseases
US11744707B2 (en) Methods for repairing anatomical joint conditions
US9532878B2 (en) Method and device for ameliorating joint conditions and diseases
US10213309B2 (en) Tissue integration design for seamless implant fixation
ES2357319T3 (en) PROSTHESIS OF ARTICULATION ANCHORED BY SCREW.
US6364909B1 (en) Method of restructuring bone
JP2004130113A (en) Cemented prosthetic kit
JP7010818B2 (en) Joint implants and methods
AU2012373272B2 (en) Method and device for ameliorating joint conditions and diseases
US11883297B2 (en) Hip joint method
RU2137442C1 (en) Porous prosthesis of hip joint

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION