US20220229798A1 - Systems and methods for floating paddle card enablement - Google Patents

Systems and methods for floating paddle card enablement Download PDF

Info

Publication number
US20220229798A1
US20220229798A1 US17/154,836 US202117154836A US2022229798A1 US 20220229798 A1 US20220229798 A1 US 20220229798A1 US 202117154836 A US202117154836 A US 202117154836A US 2022229798 A1 US2022229798 A1 US 2022229798A1
Authority
US
United States
Prior art keywords
paddle card
devices
motherboard
floating paddle
management
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US17/154,836
Other versions
US11409686B1 (en
Inventor
Timothy M. Lambert
Jeffrey L. Kennedy
Nihit S. Bhavsar
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dell Products LP
Original Assignee
Dell Products LP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dell Products LP filed Critical Dell Products LP
Assigned to DELL PRODUCTS L.P. reassignment DELL PRODUCTS L.P. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BHAVSAR, NIHIT S., KENNEDY, JEFFREY L., LAMBERT, TIMOTHY M.
Priority to US17/154,836 priority Critical patent/US11409686B1/en
Assigned to CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH reassignment CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH SECURITY AGREEMENT Assignors: DELL PRODUCTS L.P., EMC IP Holding Company LLC
Assigned to THE BANK OF NEW YORK MELLON TRUST COMPANY, N.A., AS NOTES COLLATERAL AGENT reassignment THE BANK OF NEW YORK MELLON TRUST COMPANY, N.A., AS NOTES COLLATERAL AGENT SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: DELL PRODUCTS L.P., EMC IP Holding Company LLC
Assigned to THE BANK OF NEW YORK MELLON TRUST COMPANY, N.A., AS NOTES COLLATERAL AGENT reassignment THE BANK OF NEW YORK MELLON TRUST COMPANY, N.A., AS NOTES COLLATERAL AGENT SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: DELL PRODUCTS L.P., EMC IP Holding Company LLC
Assigned to THE BANK OF NEW YORK MELLON TRUST COMPANY, N.A., AS NOTES COLLATERAL AGENT reassignment THE BANK OF NEW YORK MELLON TRUST COMPANY, N.A., AS NOTES COLLATERAL AGENT SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: DELL PRODUCTS L.P., EMC IP Holding Company LLC
Assigned to EMC IP Holding Company LLC, DELL PRODUCTS L.P. reassignment EMC IP Holding Company LLC RELEASE OF SECURITY INTEREST AT REEL 055408 FRAME 0697 Assignors: CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH
Assigned to DELL PRODUCTS L.P., EMC IP Holding Company LLC reassignment DELL PRODUCTS L.P. RELEASE OF SECURITY INTEREST IN PATENTS PREVIOUSLY RECORDED AT REEL/FRAME (055479/0342) Assignors: THE BANK OF NEW YORK MELLON TRUST COMPANY, N.A., AS NOTES COLLATERAL AGENT
Assigned to DELL PRODUCTS L.P., EMC IP Holding Company LLC reassignment DELL PRODUCTS L.P. RELEASE OF SECURITY INTEREST IN PATENTS PREVIOUSLY RECORDED AT REEL/FRAME (055479/0051) Assignors: THE BANK OF NEW YORK MELLON TRUST COMPANY, N.A., AS NOTES COLLATERAL AGENT
Assigned to EMC IP Holding Company LLC, DELL PRODUCTS L.P. reassignment EMC IP Holding Company LLC RELEASE OF SECURITY INTEREST IN PATENTS PREVIOUSLY RECORDED AT REEL/FRAME (056136/0752) Assignors: THE BANK OF NEW YORK MELLON TRUST COMPANY, N.A., AS NOTES COLLATERAL AGENT
Publication of US20220229798A1 publication Critical patent/US20220229798A1/en
Publication of US11409686B1 publication Critical patent/US11409686B1/en
Application granted granted Critical
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F13/00Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
    • G06F13/10Program control for peripheral devices
    • G06F13/102Program control for peripheral devices where the programme performs an interfacing function, e.g. device driver
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/04Generating or distributing clock signals or signals derived directly therefrom
    • G06F1/10Distribution of clock signals, e.g. skew
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/04Generating or distributing clock signals or signals derived directly therefrom
    • G06F1/12Synchronisation of different clock signals provided by a plurality of clock generators
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/18Packaging or power distribution
    • G06F1/189Power distribution
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/266Arrangements to supply power to external peripherals either directly from the computer or under computer control, e.g. supply of power through the communication port, computer controlled power-strips
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/07Responding to the occurrence of a fault, e.g. fault tolerance
    • G06F11/0703Error or fault processing not based on redundancy, i.e. by taking additional measures to deal with the error or fault not making use of redundancy in operation, in hardware, or in data representation
    • G06F11/0793Remedial or corrective actions
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/07Responding to the occurrence of a fault, e.g. fault tolerance
    • G06F11/14Error detection or correction of the data by redundancy in operation
    • G06F11/1402Saving, restoring, recovering or retrying
    • G06F11/1415Saving, restoring, recovering or retrying at system level
    • G06F11/1417Boot up procedures
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F13/00Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
    • G06F13/10Program control for peripheral devices
    • G06F13/12Program control for peripheral devices using hardware independent of the central processor, e.g. channel or peripheral processor
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F13/00Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
    • G06F13/38Information transfer, e.g. on bus
    • G06F13/40Bus structure
    • G06F13/4004Coupling between buses
    • G06F13/4027Coupling between buses using bus bridges
    • G06F13/405Coupling between buses using bus bridges where the bridge performs a synchronising function
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F13/00Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
    • G06F13/38Information transfer, e.g. on bus
    • G06F13/40Bus structure
    • G06F13/4063Device-to-bus coupling
    • G06F13/409Mechanical coupling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2201/00Indexing scheme relating to error detection, to error correction, and to monitoring
    • G06F2201/805Real-time

Definitions

  • the present disclosure relates in general to information handling systems, and more particularly to systems and methods for enabling a floating paddle card in an information handling system.
  • An information handling system generally processes, compiles, stores, and/or communicates information or data for business, personal, or other purposes thereby allowing users to take advantage of the value of the information.
  • information handling systems may also vary regarding what information is handled, how the information is handled, how much information is processed, stored, or communicated, and how quickly and efficiently the information may be processed, stored, or communicated.
  • the variations in information handling systems allow for information handling systems to be general or configured for a specific user or specific use such as financial transaction processing, airline reservations, enterprise data storage, or global communications.
  • information handling systems may include a variety of hardware and software components that may be configured to process, store, and communicate information and may include one or more computer systems, data storage systems, and networking systems.
  • rise cards or floating paddle cards are often used in information handling systems to extend a mechanical and electrical interface of a motherboard or other printed circuit board to multiple peripheral components (e.g., to a mezzanine network interface card).
  • OCP Open Compute Platform
  • the physical location of a card that is compliant with the Open Compute Platform (OCP) specification is restricted to a fixed mating connector on a motherboard or other printed circuit board.
  • OCP Open Compute Platform
  • a quantity of OCP cards (e.g., OCP network interface cards) supported in a platform may be limited to fixed connector placements with parallel input/output for management of the cards.
  • an information handling system may include a motherboard and a floating paddle card.
  • the motherboard may include a host system comprising a host system processor, a logic device configured to perform a functionality of the information handling system in accordance with code stored on non-transitory computer-readable media of the logic device, and a management controller communicatively coupled to the host system processor and the logic device and configured to perform out-of-band management of the information handling system.
  • the floating paddle card may be communicatively coupled to the motherboard and configured to serve as interface between one or more devices coupled to the floating paddle card and the logic device and the management controller, the floating paddle card comprising a microcontroller unit configured to, alone or in combination with other circuitry of the floating paddle card, divide management of the one or more devices between the motherboard and the floating paddle card.
  • a method may be for use in an information handling system comprising a motherboard having a host system comprising a host system processor, a logic device configured to perform a functionality of the information handling system in accordance with code stored on non-transitory computer-readable media of the logic device, and a management controller communicatively coupled to the host system processor and the logic device and configured to perform out-of-band management of the information handling system.
  • the method may include dividing, between the motherboard and a floating paddle card communicatively coupled to the motherboard and configured to serve as interface between one or more devices coupled to the floating paddle card and the logic device and the management controller, management of the one or more devices between the motherboard and the floating paddle card.
  • an article of manufacture may include a non-transitory computer-readable medium and computer-executable instructions carried on the computer-readable medium, the instructions readable by a processing device, the instructions, when read and executed, for causing the processing device to, in an information handling system comprising a motherboard having a host system comprising a host system processor, a logic device configured to perform a functionality of the information handling system in accordance with code stored on non-transitory computer-readable media of the logic device, and a management controller communicatively coupled to the host system processor and the logic device and configured to perform out-of-band management of the information handling system: divide, between the motherboard and a floating paddle card communicatively coupled to the motherboard and configured to serve as interface between one or more devices coupled to the floating paddle card and the logic device and the management controller, management of the one or more devices between the motherboard and the floating paddle card.
  • FIG. 1 illustrates a block diagram an example information handling system, in accordance with embodiments of the present disclosure.
  • FIGS. 2A and 2B (which are referred to collectively herein as “ FIG. 2 ”) illustrate a circuit diagram of selected components of an example mezzanine card and connectivity to selected components of a motherboard, in accordance with embodiments of the present disclosure.
  • FIGS. 1 and 2 wherein like numbers are used to indicate like and corresponding parts.
  • an information handling system may include any instrumentality or aggregate of instrumentalities operable to compute, classify, process, transmit, receive, retrieve, originate, switch, store, display, manifest, detect, record, reproduce, handle, or utilize any form of information, intelligence, or data for business, scientific, control, entertainment, or other purposes.
  • an information handling system may be a personal computer, a personal data assistant (PDA), a consumer electronic device, a network storage device, or any other suitable device and may vary in size, shape, performance, functionality, and price.
  • the information handling system may include memory, one or more processing resources such as a central processing unit (CPU) or hardware or software control logic.
  • Additional components of the information handling system may include one or more storage devices, one or more communications ports for communicating with external devices as well as various input and output (I/O) devices, such as a keyboard, a mouse, and a video display.
  • the information handling system may also include one or more buses operable to transmit communication between the various hardware components.
  • Computer-readable media may include any instrumentality or aggregation of instrumentalities that may retain data and/or instructions for a period of time.
  • Computer-readable media may include, without limitation, storage media such as a direct access storage device (e.g., a hard disk drive or floppy disk), a sequential access storage device (e.g., a tape disk drive), compact disk, CD-ROM, DVD, random access memory (RAM), read-only memory (ROM), electrically erasable programmable read-only memory (EEPROM), and/or flash memory; as well as communications media such as wires, optical fibers, microwaves, radio waves, and other electromagnetic and/or optical carriers; and/or any combination of the foregoing.
  • storage media such as a direct access storage device (e.g., a hard disk drive or floppy disk), a sequential access storage device (e.g., a tape disk drive), compact disk, CD-ROM, DVD, random access memory (RAM), read-only memory (ROM), electrically erasable programmable read-
  • information handling resources may broadly refer to any component system, device or apparatus of an information handling system, including without limitation processors, service processors, basic input/output systems (BIOSs), buses, memories, I/O devices and/or interfaces, storage resources, network interfaces, motherboards, power supplies, air movers (e.g., fans and blowers) and/or any other components and/or elements of an information handling system.
  • processors service processors, basic input/output systems (BIOSs), buses, memories, I/O devices and/or interfaces, storage resources, network interfaces, motherboards, power supplies, air movers (e.g., fans and blowers) and/or any other components and/or elements of an information handling system.
  • BIOSs basic input/output systems
  • FIG. 1 illustrates a block diagram of an example information handling system 102 , in accordance with embodiments of the present disclosure.
  • information handling system 102 may include a chassis 100 , a motherboard 101 , a floating paddle card 104 mechanically and communicatively coupled to motherboard 101 , a mezzanine card 106 mechanically and communicatively coupled to floating paddle card 104 (e.g., such that floating paddle card 104 is interfaced between mezzanine card 106 and motherboard 101 ), and one or more other information handling resources.
  • Chassis 100 may be an enclosure that serves as a container for various information handling resources, and may be constructed from steel, aluminum, plastic, and/or any other suitable material. Although the term “chassis” is used, chassis 100 may also be referred to as a sled, case, cabinet, tower, box, enclosure, and/or housing.
  • Motherboard 101 may include a circuit board mechanically coupled to chassis 100 (e.g., via screws, fasteners, and/or any other mechanical mechanism) and configured to provide structural support for one or more information handling resources of information handling system 102 and/or electrically couple one or more of such information handling resources to each other and/or to other electric or electronic components external to information handling system 102 .
  • motherboard 101 may include one or more processors, one or more memories, and one or more other information handling resources.
  • motherboard 101 may include a management controller 112 , a logic device 114 , and a clock integrated circuit (IC) 116 .
  • IC clock integrated circuit
  • Management controller 112 may be configured to provide management facilities for management of information handling system 102 . Such management may be made by management controller 112 even if information handling system 102 is powered off or powered to a standby state.
  • management controller 112 may include or may be an integral part of a baseboard management controller (BMC) or a remote access controller (e.g., a Dell Remote Access Controller or Integrated Dell Remote Access Controller). In these and other embodiments, management controller 112 may be referred to as a service processor or access controller.
  • BMC baseboard management controller
  • a remote access controller e.g., a Dell Remote Access Controller or Integrated Dell Remote Access Controller
  • Logic device 114 may comprise any suitable system, device, or apparatus that may perform a specialized function that extends the functionality of information handling system 102 .
  • logic device 114 may serve as an interface between management controller 112 and subsystems of information handling system 102 for communication of control information associated with such subsystems.
  • logic device 114 may comprise a complex programmable logic device (CPLD) or a field-programmable gate array (FPGA).
  • CPLD complex programmable logic device
  • FPGA field-programmable gate array
  • Clock IC 116 may comprise any system, device, or apparatus for generating a clock signal or other synchronization signal for synchronous digital circuits or components of information handling system 102 .
  • motherboard 101 may have mounted thereon one or more cable connectors 103 electrically-conductive features (e.g., pins) for receiving a corresponding cable 107 thus electrically coupling electrically conductive wires of cable 107 to corresponding electrically-conductive features of cable connectors 103 and electrically coupling an floating paddle card 104 to receptacle connectors 103 such that floating paddle card 104 is electrically and communicatively coupled to motherboard 101 .
  • electrically-conductive features e.g., pins
  • Floating paddle card 104 may comprise a printed circuit board configured to receive a multitude of signal lines (e.g., bused signal lines) or power lines via a one or more cables (e.g., cables 107 ) from motherboard 101 and distribute such signal lines via dedicated connectors (e.g., cable connectors 109 ) mounted on floating paddle card 104 .
  • floating paddle card 104 may be configured to, in concert with management controller 112 , divide management of a mezzanine card 106 coupled to floating paddle card 104 via a connector 110 and of devices 120 (e.g., PCIe cards) coupled to mezzanine card 106 between floating paddle card 104 and motherboard 101 .
  • devices 120 e.g., PCIe cards
  • Mezzanine card 106 may comprise a printed circuit board configured to receive a multitude of signal lines (e.g., bused signal lines) via a one or more connectors (e.g., edge connector 110 ) from floating paddle card 104 and distribute such signal lines via dedicated connectors (e.g., receptacle connectors) mounted on mezzanine card 106 for receiving devices 102 .
  • signal lines e.g., bused signal lines
  • a one or more connectors e.g., edge connector 110
  • dedicated connectors e.g., receptacle connectors
  • mezzanine card 106 may enable the addition of expansion cards (e.g., PCIe cards). As shown in FIG.
  • mezzanine card 106 may plug into floating paddle card 104 (e.g., via edge connector 110 ) and may provide additional slots, for example via receptacle connectors mounted to mezzanine card 106 , for one or more other devices (e.g., PCIe and/or other adapter cards). Accordingly, each receptacle connector of mezzanine card 106 may be configured to receive a corresponding edge connector of a device 120 (e.g., PCIe and/or other adapter card).
  • a device 120 e.g., PCIe and/or other adapter card
  • an application-specific integrated circuit (e.g., an Ethernet Media Access Control device) may be a PCIe endpoint on mezzanine card 106 .
  • devices 120 may be network interface transceivers.
  • information handling system 102 may include one or more other information handling resources.
  • FIG. 2 illustrates a circuit diagram of selected components of an example floating paddle card 104 and electrical connectivity of selected components of motherboard 101 , in accordance with embodiments of the present disclosure.
  • floating paddle card 104 may include power control.
  • floating paddle card 104 may include a boost converter 204 for boosting an auxiliary source voltage (e.g., power rail 3.3V_AUX shown in FIG. 2 , having a voltage of 3.3 V) to a boosted rail voltage (e.g., power rail 12V_EDGE shown in FIG. 2 , having a voltage of 12 V, via power line 12V_AUX shown in FIG. 2 ) when information handling system 102 is in a low-power state (e.g., power state S5 or “off”).
  • auxiliary source voltage e.g., power rail 3.3V_AUX shown in FIG. 2 , having a voltage of 3.3 V
  • a boosted rail voltage e.g., power rail 12V_EDGE shown in FIG. 2 , having a voltage of 12 V, via power line 12V_AUX shown in FIG. 2
  • a low-power state e.g., power state S5 or “off”.
  • the power rail 12V_EDGE may be gated with a main power source (e.g., power rail 12V_MAIN) via a transistor 206 , which provide power rail 12V_EDGE during runtime of a host system of information handling system 102 (e.g., power state S0).
  • a Schmitt trigger 208 may implement hysteresis of such voltages and shape slow edges of waveforms that may occur due to voltage divider resistance.
  • floating paddle card 104 may include a microcontroller unit (MCU) 202 or other processing device configured to perform various functionality of floating paddle card 104 , including providing staggered power on of devices coupled to receptacle connector 110 (e.g., based on source power out identifiers) in order to avoid a system-wide inrush of current, while tristate buffers 210 of floating paddle card 104 may remove a dependency of devices coupled to receptacle connector 110 and may instantly power down devices coupled to receptacle connector 110 when appropriate.
  • MCU microcontroller unit
  • floating paddle card 104 may include clock enablement functions (e.g., enablement of Peripheral Component Interconnect Enhanced or PCIe clock).
  • An input clock to devices coupled to receptacle connector 110 may be running freely from clock IC 116 regardless of such devices being in an identification, auxiliary, or main mode, which may violate sequencing of a given standard (e.g., OCP 3.0 specification).
  • floating paddle card 104 may include a clock buffer 212 controlled by MCU 202 , such that MCU 202 may provide control over clock signals such that the clock signal (e.g., signal SLx_PCIe_CLK) distributed to devices coupled to receptacle connector 110 is enabled only after the main power state in the power sequence.
  • the clock signal e.g., signal SLx_PCIe_CLK
  • floating paddle card 104 may include management of a fundamental reset (PERST) of devices coupled to receptacle connector 110 .
  • Floating paddle card 104 may include a logical AND gate 214 configured to, in concert with MCU 202 , perform management of a fundamental reset signal (e.g., signal OCP_RESET_N).
  • a fundamental reset signal PERST is required to pulse during runtime of a host system of information handling system 102 after OCP main power is enabled in order for communication links (e.g. PCIe links) to train properly.
  • logic device 114 may require a discrete fundamental reset control for each OCP slot.
  • MCU 202 and logical AND gate 214 may operate to allow for a fundamental reset signal (e.g., signal OCP_RESET_N) to be asserted by either of logic device 114 (e.g., via signal CPLD_PERST_N) or MCU 202 (e.g., via signal LCL_PERST_N).
  • a fundamental reset may be asserted to a device coupled to receptacle connector 110 when either a fundamental reset from motherboard 101 or a local reset from MCU 202 is asserted.
  • Yet another feature of floating paddle card 104 may include power source discovery. For example, such feature may include determining which power source connector correlates to which high speed input/output data source connector for a validated configuration check.
  • MCU 202 may drive low a one-wire pin (e.g., POUT 1-wire shown in FIG. 2 ) to signal a break to logic device 114 .
  • logic device 114 may transmit a power source connector identifier (e.g., on MHUI+ shown in FIG. 2 ) to MCU 202 .
  • MCU 202 may record the power source connector identifier and transmit the power source connector identifier to management controller 112 , thus completing a power source verification loop. It is possible that logic device 114 could miss a break communicated from MCU 202 (e.g., due to limited resources). Accordingly, a retry/timeout period may be utilized for the break signal.
  • floating paddle card 104 may include local power control.
  • OCP network interface cards which may be coupled to receptacle connector 110 , are high-powered devices that may dissipate significant heat. Accordingly, before enabling devices coupled to receptacle connector 110 , management controller 112 may need to check power and thermal limits associated with information handling system 102 to ensure operation of such devices can be supported. Accordingly, a power enablement control bit may be communicated from management controller 112 (e.g., on SPIX shown in FIG. 2 ) to logic device 114 .
  • MCU 202 may perform an initial handshake with logic device 114 , after which logic device 114 may communicate one or more control bytes (e.g., on 1_WIRE (MHUI+) shown in FIG. 2 ), wherein such control bytes may include the power enablement control bit and any other suitable information. Based on the power enablement control bit, MCU 202 may enable or disable power to devices coupled to connector 110 .
  • control bytes e.g., on 1_WIRE (MHUI+) shown in FIG. 2
  • control bytes may include the power enablement control bit and any other suitable information.
  • MCU 202 may enable or disable power to devices coupled to connector 110 .
  • An OCP startup fault may occur when a threshold amount of time passes between assertion of a main power enable (MAIN_PWR_EN) signal and an OCP power good (OCP_PG) signal.
  • An OCP startup fault may also occur when a threshold amount of time passes between assertion of an auxiliary power enable (AUX_PWR_EN) signal and an OCP power good (OCP_PG) signal.
  • MCU 202 may disable devices coupled to receptacle connector 110 and communicate status of such failure to logic device 114 via a low-latency one-wire protocol. MCU 202 may then await for the next control byte from management controller 112 and logic device 114 to again enable the devices coupled to receptacle connector 110 .
  • floating paddle card 104 may include runtime fault handling. Runtime failure may occur if an OCP power good (OCP_PG) signal is unexpectedly deasserted. Accordingly, the power good signal may be constantly monitored by MCU 202 , and when a runtime fault occurs, MCU 202 may disable devices coupled to receptacle connector 110 and communicate status of such failure to logic device 114 via a low-latency one-wire protocol.
  • OCP_PG OCP power good
  • floating paddle card 104 may support a modular device (e.g., OCP 3.0 standard network interface card) via a generic high speed connector/cable.
  • the systems and methods described above may also enable joint system and local (to MCU 202 ) control of fundamental reset signals.
  • the systems and methods described above may further enable system gross command and local (to MCU 202 ) slot power staggering.
  • the systems and methods described above may in addition enable localized clock control by MCU 202 .
  • the systems and methods described above may additionally provide a unique power control scheme comprised of an identification mode low power scheme (supporting OCP specification requirements of main power rail and auxiliary power rail), as well as a high power auxiliary mode or main mode switchover (e.g., with a hardware-controlled OCP power mode override).
  • a unique power control scheme comprised of an identification mode low power scheme (supporting OCP specification requirements of main power rail and auxiliary power rail), as well as a high power auxiliary mode or main mode switchover (e.g., with a hardware-controlled OCP power mode override).
  • references in the appended claims to an apparatus or system or a component of an apparatus or system being adapted to, arranged to, capable of, configured to, enabled to, operable to, or operative to perform a particular function encompasses that apparatus, system, or component, whether or not it or that particular function is activated, turned on, or unlocked, as long as that apparatus, system, or component is so adapted, arranged, capable, configured, enabled, operable, or operative. Accordingly, modifications, additions, or omissions may be made to the systems, apparatuses, and methods described herein without departing from the scope of the disclosure. For example, the components of the systems and apparatuses may be integrated or separated.
  • each refers to each member of a set or each member of a subset of a set.

Abstract

An information handling system may include a motherboard and a floating paddle card. The motherboard may include a host system comprising a host system processor, a logic device configured to perform a functionality of the information handling system in accordance with code stored on non-transitory computer-readable media of the logic device, and a management controller communicatively coupled to the host system processor and the logic device and configured to perform out-of-band management of the information handling system. The floating paddle card may be communicatively coupled to the motherboard and configured to serve as interface between one or more devices coupled to the floating paddle card and the logic device and the management controller, the floating paddle card comprising a microcontroller unit configured to, alone or in combination with other circuitry of the floating paddle card, divide management of the one or more devices between the motherboard and the floating paddle card.

Description

    TECHNICAL FIELD
  • The present disclosure relates in general to information handling systems, and more particularly to systems and methods for enabling a floating paddle card in an information handling system.
  • BACKGROUND
  • As the value and use of information continues to increase, individuals and businesses seek additional ways to process and store information. One option available to users is information handling systems. An information handling system generally processes, compiles, stores, and/or communicates information or data for business, personal, or other purposes thereby allowing users to take advantage of the value of the information. Because technology and information handling needs and requirements vary between different users or applications, information handling systems may also vary regarding what information is handled, how the information is handled, how much information is processed, stored, or communicated, and how quickly and efficiently the information may be processed, stored, or communicated. The variations in information handling systems allow for information handling systems to be general or configured for a specific user or specific use such as financial transaction processing, airline reservations, enterprise data storage, or global communications. In addition, information handling systems may include a variety of hardware and software components that may be configured to process, store, and communicate information and may include one or more computer systems, data storage systems, and networking systems.
  • Rise cards or floating paddle cards are often used in information handling systems to extend a mechanical and electrical interface of a motherboard or other printed circuit board to multiple peripheral components (e.g., to a mezzanine network interface card). In many known platforms, the physical location of a card that is compliant with the Open Compute Platform (OCP) specification is restricted to a fixed mating connector on a motherboard or other printed circuit board. As a result, using traditional approaches, a quantity of OCP cards (e.g., OCP network interface cards) supported in a platform may be limited to fixed connector placements with parallel input/output for management of the cards.
  • SUMMARY
  • In accordance with the teachings of the present disclosure, the disadvantages and problems associated with existing limitations to mezzanine cards may be reduced or eliminated.
  • In accordance with embodiments of the present disclosure, an information handling system may include a motherboard and a floating paddle card. The motherboard may include a host system comprising a host system processor, a logic device configured to perform a functionality of the information handling system in accordance with code stored on non-transitory computer-readable media of the logic device, and a management controller communicatively coupled to the host system processor and the logic device and configured to perform out-of-band management of the information handling system. The floating paddle card may be communicatively coupled to the motherboard and configured to serve as interface between one or more devices coupled to the floating paddle card and the logic device and the management controller, the floating paddle card comprising a microcontroller unit configured to, alone or in combination with other circuitry of the floating paddle card, divide management of the one or more devices between the motherboard and the floating paddle card.
  • In accordance with these and other embodiments of the present disclosure, a method may be for use in an information handling system comprising a motherboard having a host system comprising a host system processor, a logic device configured to perform a functionality of the information handling system in accordance with code stored on non-transitory computer-readable media of the logic device, and a management controller communicatively coupled to the host system processor and the logic device and configured to perform out-of-band management of the information handling system. The method may include dividing, between the motherboard and a floating paddle card communicatively coupled to the motherboard and configured to serve as interface between one or more devices coupled to the floating paddle card and the logic device and the management controller, management of the one or more devices between the motherboard and the floating paddle card.
  • In accordance with these and other embodiments of the present disclosure, an article of manufacture may include a non-transitory computer-readable medium and computer-executable instructions carried on the computer-readable medium, the instructions readable by a processing device, the instructions, when read and executed, for causing the processing device to, in an information handling system comprising a motherboard having a host system comprising a host system processor, a logic device configured to perform a functionality of the information handling system in accordance with code stored on non-transitory computer-readable media of the logic device, and a management controller communicatively coupled to the host system processor and the logic device and configured to perform out-of-band management of the information handling system: divide, between the motherboard and a floating paddle card communicatively coupled to the motherboard and configured to serve as interface between one or more devices coupled to the floating paddle card and the logic device and the management controller, management of the one or more devices between the motherboard and the floating paddle card.
  • Technical advantages of the present disclosure may be readily apparent to one skilled in the art from the figures, description and claims included herein. The objects and advantages of the embodiments will be realized and achieved at least by the elements, features, and combinations particularly pointed out in the claims.
  • It is to be understood that both the foregoing general description and the following detailed description are examples and explanatory and are not restrictive of the claims set forth in this disclosure.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • A more complete understanding of the present embodiments and advantages thereof may be acquired by referring to the following description taken in conjunction with the accompanying drawings, in which like reference numbers indicate like features, and wherein:
  • FIG. 1 illustrates a block diagram an example information handling system, in accordance with embodiments of the present disclosure; and
  • FIGS. 2A and 2B (which are referred to collectively herein as “FIG. 2”) illustrate a circuit diagram of selected components of an example mezzanine card and connectivity to selected components of a motherboard, in accordance with embodiments of the present disclosure.
  • DETAILED DESCRIPTION
  • Preferred embodiments and their advantages are best understood by reference to FIGS. 1 and 2, wherein like numbers are used to indicate like and corresponding parts.
  • For the purposes of this disclosure, an information handling system may include any instrumentality or aggregate of instrumentalities operable to compute, classify, process, transmit, receive, retrieve, originate, switch, store, display, manifest, detect, record, reproduce, handle, or utilize any form of information, intelligence, or data for business, scientific, control, entertainment, or other purposes. For example, an information handling system may be a personal computer, a personal data assistant (PDA), a consumer electronic device, a network storage device, or any other suitable device and may vary in size, shape, performance, functionality, and price. The information handling system may include memory, one or more processing resources such as a central processing unit (CPU) or hardware or software control logic. Additional components of the information handling system may include one or more storage devices, one or more communications ports for communicating with external devices as well as various input and output (I/O) devices, such as a keyboard, a mouse, and a video display. The information handling system may also include one or more buses operable to transmit communication between the various hardware components.
  • For the purposes of this disclosure, computer-readable media may include any instrumentality or aggregation of instrumentalities that may retain data and/or instructions for a period of time. Computer-readable media may include, without limitation, storage media such as a direct access storage device (e.g., a hard disk drive or floppy disk), a sequential access storage device (e.g., a tape disk drive), compact disk, CD-ROM, DVD, random access memory (RAM), read-only memory (ROM), electrically erasable programmable read-only memory (EEPROM), and/or flash memory; as well as communications media such as wires, optical fibers, microwaves, radio waves, and other electromagnetic and/or optical carriers; and/or any combination of the foregoing.
  • For the purposes of this disclosure, information handling resources may broadly refer to any component system, device or apparatus of an information handling system, including without limitation processors, service processors, basic input/output systems (BIOSs), buses, memories, I/O devices and/or interfaces, storage resources, network interfaces, motherboards, power supplies, air movers (e.g., fans and blowers) and/or any other components and/or elements of an information handling system.
  • FIG. 1 illustrates a block diagram of an example information handling system 102, in accordance with embodiments of the present disclosure. As depicted, information handling system 102 may include a chassis 100, a motherboard 101, a floating paddle card 104 mechanically and communicatively coupled to motherboard 101, a mezzanine card 106 mechanically and communicatively coupled to floating paddle card 104 (e.g., such that floating paddle card 104 is interfaced between mezzanine card 106 and motherboard 101), and one or more other information handling resources.
  • Chassis 100 may be an enclosure that serves as a container for various information handling resources, and may be constructed from steel, aluminum, plastic, and/or any other suitable material. Although the term “chassis” is used, chassis 100 may also be referred to as a sled, case, cabinet, tower, box, enclosure, and/or housing.
  • Motherboard 101 may include a circuit board mechanically coupled to chassis 100 (e.g., via screws, fasteners, and/or any other mechanical mechanism) and configured to provide structural support for one or more information handling resources of information handling system 102 and/or electrically couple one or more of such information handling resources to each other and/or to other electric or electronic components external to information handling system 102. For example, motherboard 101 may include one or more processors, one or more memories, and one or more other information handling resources. As specific examples, motherboard 101 may include a management controller 112, a logic device 114, and a clock integrated circuit (IC) 116.
  • Management controller 112 may be configured to provide management facilities for management of information handling system 102. Such management may be made by management controller 112 even if information handling system 102 is powered off or powered to a standby state. In certain embodiments, management controller 112 may include or may be an integral part of a baseboard management controller (BMC) or a remote access controller (e.g., a Dell Remote Access Controller or Integrated Dell Remote Access Controller). In these and other embodiments, management controller 112 may be referred to as a service processor or access controller.
  • Logic device 114 may comprise any suitable system, device, or apparatus that may perform a specialized function that extends the functionality of information handling system 102. For example, logic device 114 may serve as an interface between management controller 112 and subsystems of information handling system 102 for communication of control information associated with such subsystems. In some embodiments, logic device 114 may comprise a complex programmable logic device (CPLD) or a field-programmable gate array (FPGA).
  • Clock IC 116 may comprise any system, device, or apparatus for generating a clock signal or other synchronization signal for synchronous digital circuits or components of information handling system 102.
  • Further, motherboard 101 may have mounted thereon one or more cable connectors 103 electrically-conductive features (e.g., pins) for receiving a corresponding cable 107 thus electrically coupling electrically conductive wires of cable 107 to corresponding electrically-conductive features of cable connectors 103 and electrically coupling an floating paddle card 104 to receptacle connectors 103 such that floating paddle card 104 is electrically and communicatively coupled to motherboard 101.
  • Floating paddle card 104 may comprise a printed circuit board configured to receive a multitude of signal lines (e.g., bused signal lines) or power lines via a one or more cables (e.g., cables 107) from motherboard 101 and distribute such signal lines via dedicated connectors (e.g., cable connectors 109) mounted on floating paddle card 104. As described in greater detail below, floating paddle card 104 may be configured to, in concert with management controller 112, divide management of a mezzanine card 106 coupled to floating paddle card 104 via a connector 110 and of devices 120 (e.g., PCIe cards) coupled to mezzanine card 106 between floating paddle card 104 and motherboard 101.
  • Mezzanine card 106 may comprise a printed circuit board configured to receive a multitude of signal lines (e.g., bused signal lines) via a one or more connectors (e.g., edge connector 110) from floating paddle card 104 and distribute such signal lines via dedicated connectors (e.g., receptacle connectors) mounted on mezzanine card 106 for receiving devices 102. Thus, mezzanine card 106 may enable the addition of expansion cards (e.g., PCIe cards). As shown in FIG. 1, mezzanine card 106 may plug into floating paddle card 104 (e.g., via edge connector 110) and may provide additional slots, for example via receptacle connectors mounted to mezzanine card 106, for one or more other devices (e.g., PCIe and/or other adapter cards). Accordingly, each receptacle connector of mezzanine card 106 may be configured to receive a corresponding edge connector of a device 120 (e.g., PCIe and/or other adapter card).
  • In the context of OCP mezzanine card, an application-specific integrated circuit (ASIC) (e.g., an Ethernet Media Access Control device) may be a PCIe endpoint on mezzanine card 106. In such context, devices 120 may be network interface transceivers.
  • In addition to motherboard 101, floating paddle card 104, and mezzanine card 106, information handling system 102 may include one or more other information handling resources.
  • FIG. 2 illustrates a circuit diagram of selected components of an example floating paddle card 104 and electrical connectivity of selected components of motherboard 101, in accordance with embodiments of the present disclosure.
  • One feature of floating paddle card 104 may include power control. For example, floating paddle card 104 may include a boost converter 204 for boosting an auxiliary source voltage (e.g., power rail 3.3V_AUX shown in FIG. 2, having a voltage of 3.3 V) to a boosted rail voltage (e.g., power rail 12V_EDGE shown in FIG. 2, having a voltage of 12 V, via power line 12V_AUX shown in FIG. 2) when information handling system 102 is in a low-power state (e.g., power state S5 or “off”). The power rail 12V_EDGE may be gated with a main power source (e.g., power rail 12V_MAIN) via a transistor 206, which provide power rail 12V_EDGE during runtime of a host system of information handling system 102 (e.g., power state S0). A Schmitt trigger 208 may implement hysteresis of such voltages and shape slow edges of waveforms that may occur due to voltage divider resistance. Further, floating paddle card 104 may include a microcontroller unit (MCU) 202 or other processing device configured to perform various functionality of floating paddle card 104, including providing staggered power on of devices coupled to receptacle connector 110 (e.g., based on source power out identifiers) in order to avoid a system-wide inrush of current, while tristate buffers 210 of floating paddle card 104 may remove a dependency of devices coupled to receptacle connector 110 and may instantly power down devices coupled to receptacle connector 110 when appropriate.
  • Another feature of floating paddle card 104 may include clock enablement functions (e.g., enablement of Peripheral Component Interconnect Enhanced or PCIe clock). An input clock to devices coupled to receptacle connector 110 may be running freely from clock IC 116 regardless of such devices being in an identification, auxiliary, or main mode, which may violate sequencing of a given standard (e.g., OCP 3.0 specification). To enable floating paddle card 104 to comply with such standards, floating paddle card 104 may include a clock buffer 212 controlled by MCU 202, such that MCU 202 may provide control over clock signals such that the clock signal (e.g., signal SLx_PCIe_CLK) distributed to devices coupled to receptacle connector 110 is enabled only after the main power state in the power sequence.
  • Yet another feature of floating paddle card 104 may include management of a fundamental reset (PERST) of devices coupled to receptacle connector 110. Floating paddle card 104 may include a logical AND gate 214 configured to, in concert with MCU 202, perform management of a fundamental reset signal (e.g., signal OCP_RESET_N). According to the OCP 3.0 specification, a fundamental reset signal PERST is required to pulse during runtime of a host system of information handling system 102 after OCP main power is enabled in order for communication links (e.g. PCIe links) to train properly. Accordingly, logic device 114 may require a discrete fundamental reset control for each OCP slot. Because management controller 112 and logic device 114 do not follow a local power state of an endpoint coupled to receptacle connector 110 or provide individually controlled fundamental resets to all endpoints, MCU 202 and logical AND gate 214 may operate to allow for a fundamental reset signal (e.g., signal OCP_RESET_N) to be asserted by either of logic device 114 (e.g., via signal CPLD_PERST_N) or MCU 202 (e.g., via signal LCL_PERST_N). Thus, a fundamental reset may be asserted to a device coupled to receptacle connector 110 when either a fundamental reset from motherboard 101 or a local reset from MCU 202 is asserted.
  • Yet another feature of floating paddle card 104 may include power source discovery. For example, such feature may include determining which power source connector correlates to which high speed input/output data source connector for a validated configuration check. To discover which power source is connected, MCU 202 may drive low a one-wire pin (e.g., POUT 1-wire shown in FIG. 2) to signal a break to logic device 114. Upon detecting the break, logic device 114 may transmit a power source connector identifier (e.g., on MHUI+ shown in FIG. 2) to MCU 202. In response, MCU 202 may record the power source connector identifier and transmit the power source connector identifier to management controller 112, thus completing a power source verification loop. It is possible that logic device 114 could miss a break communicated from MCU 202 (e.g., due to limited resources). Accordingly, a retry/timeout period may be utilized for the break signal.
  • Yet another feature of floating paddle card 104 may include local power control. OCP network interface cards, which may be coupled to receptacle connector 110, are high-powered devices that may dissipate significant heat. Accordingly, before enabling devices coupled to receptacle connector 110, management controller 112 may need to check power and thermal limits associated with information handling system 102 to ensure operation of such devices can be supported. Accordingly, a power enablement control bit may be communicated from management controller 112 (e.g., on SPIX shown in FIG. 2) to logic device 114. Upon a host system of information handling system 102 entering runtime (e.g., power state S0), MCU 202 may perform an initial handshake with logic device 114, after which logic device 114 may communicate one or more control bytes (e.g., on 1_WIRE (MHUI+) shown in FIG. 2), wherein such control bytes may include the power enablement control bit and any other suitable information. Based on the power enablement control bit, MCU 202 may enable or disable power to devices coupled to connector 110.
  • Yet another feature of floating paddle card 104 may include startup fault handling. An OCP startup fault may occur when a threshold amount of time passes between assertion of a main power enable (MAIN_PWR_EN) signal and an OCP power good (OCP_PG) signal. An OCP startup fault may also occur when a threshold amount of time passes between assertion of an auxiliary power enable (AUX_PWR_EN) signal and an OCP power good (OCP_PG) signal. In operation, when such a startup failure occurs, MCU 202 may disable devices coupled to receptacle connector 110 and communicate status of such failure to logic device 114 via a low-latency one-wire protocol. MCU 202 may then await for the next control byte from management controller 112 and logic device 114 to again enable the devices coupled to receptacle connector 110.
  • Yet another feature of floating paddle card 104 may include runtime fault handling. Runtime failure may occur if an OCP power good (OCP_PG) signal is unexpectedly deasserted. Accordingly, the power good signal may be constantly monitored by MCU 202, and when a runtime fault occurs, MCU 202 may disable devices coupled to receptacle connector 110 and communicate status of such failure to logic device 114 via a low-latency one-wire protocol.
  • Accordingly, using the systems and methods described above, floating paddle card 104 may support a modular device (e.g., OCP 3.0 standard network interface card) via a generic high speed connector/cable. The systems and methods described above may also enable joint system and local (to MCU 202) control of fundamental reset signals. The systems and methods described above may further enable system gross command and local (to MCU 202) slot power staggering. The systems and methods described above may in addition enable localized clock control by MCU 202. The systems and methods described above may additionally provide a unique power control scheme comprised of an identification mode low power scheme (supporting OCP specification requirements of main power rail and auxiliary power rail), as well as a high power auxiliary mode or main mode switchover (e.g., with a hardware-controlled OCP power mode override).
  • As used herein, when two or more elements are referred to as “coupled” to one another, such term indicates that such two or more elements are in electronic communication or mechanical communication, as applicable, whether connected indirectly or directly, with or without intervening elements.
  • This disclosure encompasses all changes, substitutions, variations, alterations, and modifications to the example embodiments herein that a person having ordinary skill in the art would comprehend. Similarly, where appropriate, the appended claims encompass all changes, substitutions, variations, alterations, and modifications to the example embodiments herein that a person having ordinary skill in the art would comprehend. Moreover, reference in the appended claims to an apparatus or system or a component of an apparatus or system being adapted to, arranged to, capable of, configured to, enabled to, operable to, or operative to perform a particular function encompasses that apparatus, system, or component, whether or not it or that particular function is activated, turned on, or unlocked, as long as that apparatus, system, or component is so adapted, arranged, capable, configured, enabled, operable, or operative. Accordingly, modifications, additions, or omissions may be made to the systems, apparatuses, and methods described herein without departing from the scope of the disclosure. For example, the components of the systems and apparatuses may be integrated or separated. Moreover, the operations of the systems and apparatuses disclosed herein may be performed by more, fewer, or other components and the methods described may include more, fewer, or other steps. Additionally, steps may be performed in any suitable order. As used in this document, “each” refers to each member of a set or each member of a subset of a set.
  • Although exemplary embodiments are illustrated in the figures and described below, the principles of the present disclosure may be implemented using any number of techniques, whether currently known or not. The present disclosure should in no way be limited to the exemplary implementations and techniques illustrated in the drawings and described above.
  • Unless otherwise specifically noted, articles depicted in the drawings are not necessarily drawn to scale.
  • All examples and conditional language recited herein are intended for pedagogical objects to aid the reader in understanding the disclosure and the concepts contributed by the inventor to furthering the art, and are construed as being without limitation to such specifically recited examples and conditions. Although embodiments of the present disclosure have been described in detail, it should be understood that various changes, substitutions, and alterations could be made hereto without departing from the spirit and scope of the disclosure.
  • Although specific advantages have been enumerated above, various embodiments may include some, none, or all of the enumerated advantages. Additionally, other technical advantages may become readily apparent to one of ordinary skill in the art after review of the foregoing figures and description.
  • To aid the Patent Office and any readers of any patent issued on this application in interpreting the claims appended hereto, applicants wish to note that they do not intend any of the appended claims or claim elements to invoke 35 U.S.C. § 112(f) unless the words “means for” or “step for” are explicitly used in the particular claim.

Claims (21)

What is claimed is:
1. An information handling system comprising:
a motherboard comprising:
a host system comprising a host system processor;
a logic device configured to perform a functionality of the information handling system in accordance with code stored on non-transitory computer-readable media of the logic device; and
a management controller communicatively coupled to the host system processor and the logic device and configured to perform out-of-band management of the information handling system; and
a floating paddle card communicatively coupled to the motherboard and configured to serve as interface between one or more devices coupled to the floating paddle card and the logic device and the management controller, the floating paddle card comprising a microcontroller unit configured to, alone or in combination with other circuitry of the floating paddle card, divide management of the one or more devices between the motherboard and the floating paddle card.
2. The information handling system of claim 1, wherein division of management of the one or more devices between the motherboard and the floating paddle card comprises jointly controlling fundamental reset of the one or more devices by the motherboard and the floating paddle card.
3. The information handling system of claim 1, wherein division of management of the one or more devices between the motherboard and the floating paddle card comprises jointly controlling a clock synchronization signal delivered to the one or more devices by the motherboard and the floating paddle card.
4. The information handling system of claim 1, wherein division of management of the one or more devices between the motherboard and the floating paddle card comprises the floating paddle card staggering the powering on of the one or more devices.
5. The information handling system of claim 1, wherein division of management of the one or more devices between the motherboard and the floating paddle card comprises the floating paddle card controlling power rails for the one or more devices over a plurality of operational modes of the one or more devices.
6. The information handling system of claim 1, wherein the division of management of the one or more devices between the motherboard and the floating paddle card comprises the floating paddle card performing power source discovery.
7. The information handling system of claim 1, wherein the division of management of the one or more devices between the motherboard and the floating paddle card comprises the floating paddle card selectively enabling the one or more devices based on a thermal configuration of the information handling system.
8. The information handling system of claim 1, wherein the division of management of the one or more devices between the motherboard and the floating paddle card comprises the floating paddle card performing startup fault handling of the one or more devices.
9. The information handling system of claim 1, wherein the division of management of the one or more devices between the motherboard and the floating paddle card comprises the floating paddle card performing runtime fault handling of the one or more devices.
10. The information handling system of claim 1, further comprising a mezzanine card interfaced between the one or more devices and the floating paddle card.
11. A method comprising, in an information handling system comprising a motherboard having a host system comprising a host system processor, a logic device configured to perform a functionality of the information handling system in accordance with code stored on non-transitory computer-readable media of the logic device, and a management controller communicatively coupled to the host system processor and the logic device and configured to perform out-of-band management of the information handling system:
dividing, between the motherboard and a floating paddle card communicatively coupled to the motherboard and configured to serve as interface between one or more devices coupled to the floating paddle card and the logic device and the management controller, management of the one or more devices between the motherboard and the floating paddle card.
12. The method of claim 11, wherein division of management of the one or more devices between the motherboard and the floating paddle card comprises jointly controlling fundamental reset of the one or more devices by the motherboard and the floating paddle card.
13. The method of claim 11, wherein division of management of the one or more devices between the motherboard and the floating paddle card comprises jointly controlling a clock synchronization signal delivered to the one or more devices by the motherboard and the floating paddle card.
14. The method of claim 11, wherein division of management of the one or more devices between the motherboard and the floating paddle card comprises the floating paddle card staggering the powering on of the one or more devices.
15. The method of claim 11, wherein division of management of the one or more devices between the motherboard and the floating paddle card comprises the floating paddle card controlling power rails for the one or more devices over a plurality of operational modes of the one or more devices.
16. The method of claim 11, wherein the division of management of the one or more devices between the motherboard and the floating paddle card comprises the floating paddle card performing power source discovery.
17. The method of claim 11, wherein the division of management of the one or more devices between the motherboard and the floating paddle card comprises the floating paddle card selectively enabling the one or more devices based on a thermal configuration of the information handling system.
18. The method of claim 11, wherein the division of management of the one or more devices between the motherboard and the floating paddle card comprises the floating paddle card performing startup fault handling of the one or more devices.
19. The method of claim 11, wherein the division of management of the one or more devices between the motherboard and the floating paddle card comprises the floating paddle card performing runtime fault handling of the one or more devices.
20. The method of claim 11, wherein a mezzanine card is interfaced between the one or more devices and the floating paddle card.
21. An article of manufacture comprising:
a non-transitory computer-readable medium; and
computer-executable instructions carried on the computer-readable medium, the instructions readable by a processing device, the instructions, when read and executed, for causing the processing device to, in an information handling system comprising a motherboard having a host system comprising a host system processor, a logic device configured to perform a functionality of the information handling system in accordance with code stored on non-transitory computer-readable media of the logic device, and a management controller communicatively coupled to the host system processor and the logic device and configured to perform out-of-band management of the information handling system:
divide, between the motherboard and a floating paddle card communicatively coupled to the motherboard and configured to serve as interface between one or more devices coupled to the floating paddle card and the logic device and the management controller, management of the one or more devices between the motherboard and the floating paddle card.
US17/154,836 2021-01-21 2021-01-21 Systems and methods for floating paddle card enablement Active 2041-02-26 US11409686B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/154,836 US11409686B1 (en) 2021-01-21 2021-01-21 Systems and methods for floating paddle card enablement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US17/154,836 US11409686B1 (en) 2021-01-21 2021-01-21 Systems and methods for floating paddle card enablement

Publications (2)

Publication Number Publication Date
US20220229798A1 true US20220229798A1 (en) 2022-07-21
US11409686B1 US11409686B1 (en) 2022-08-09

Family

ID=82405155

Family Applications (1)

Application Number Title Priority Date Filing Date
US17/154,836 Active 2041-02-26 US11409686B1 (en) 2021-01-21 2021-01-21 Systems and methods for floating paddle card enablement

Country Status (1)

Country Link
US (1) US11409686B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4332728A1 (en) * 2022-08-31 2024-03-06 Bull Sas Computing blade with offset network cards

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090177500A1 (en) * 2008-01-04 2009-07-09 Michael Swahn System and method for numerical risk of loss assessment of an insured property
US20110087913A1 (en) * 2009-10-09 2011-04-14 Robles Raymond C Techniques for managing lower power states for data links
US20130135813A1 (en) * 2011-11-30 2013-05-30 Salvador D. Jimenez, III Rotating Mezzanine Card Bracket
US20140258740A1 (en) * 2013-03-11 2014-09-11 Nir Rosenzweig Internal communication interconnect scalability
US20190056773A1 (en) * 2017-08-15 2019-02-21 Dell Products L.P. Peripheral device expansion card system
US20190121764A1 (en) * 2017-10-23 2019-04-25 Intel Corporation Method, apparatus, system to enhance the device policy manager (dpm) to manage an extended usb-c ecosystem

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090177500A1 (en) * 2008-01-04 2009-07-09 Michael Swahn System and method for numerical risk of loss assessment of an insured property
US20110087913A1 (en) * 2009-10-09 2011-04-14 Robles Raymond C Techniques for managing lower power states for data links
US20130135813A1 (en) * 2011-11-30 2013-05-30 Salvador D. Jimenez, III Rotating Mezzanine Card Bracket
US20140258740A1 (en) * 2013-03-11 2014-09-11 Nir Rosenzweig Internal communication interconnect scalability
US20190056773A1 (en) * 2017-08-15 2019-02-21 Dell Products L.P. Peripheral device expansion card system
US20190121764A1 (en) * 2017-10-23 2019-04-25 Intel Corporation Method, apparatus, system to enhance the device policy manager (dpm) to manage an extended usb-c ecosystem

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4332728A1 (en) * 2022-08-31 2024-03-06 Bull Sas Computing blade with offset network cards

Also Published As

Publication number Publication date
US11409686B1 (en) 2022-08-09

Similar Documents

Publication Publication Date Title
US10409753B2 (en) Adapters, systems and methods for adapting PCIe expansion cards to PCIe component bays
US10031571B2 (en) Systems and methods for power loss protection of storage resources
CN101470584A (en) Hard disk expansion apparatus
US20170147050A1 (en) Systems and methods for a multi-rail voltage regulator with configurable phase allocation
CN105095142A (en) System and method for controlling expander card
US11409686B1 (en) Systems and methods for floating paddle card enablement
CN114647280B (en) Self-describing cable
US20170220089A1 (en) Systems and methods for management controller enhanced power supply unit current sharing
CN111881074B (en) Electronic system, host device and control method
US20220020398A1 (en) Identification of storage resources in multiple domains
US7085939B2 (en) Method and apparatus for supplying power to a bus-controlled component of a computer
US7155624B2 (en) Powered newcard connector
US10430367B1 (en) Systems and methods for optimal placement of information handling resource
US10360167B1 (en) Systems and methods for using a bus exchange switch to control processor affinity
CN115905072A (en) Computer system, control method based on PCIe device and related device
US10558257B2 (en) Systems and methods for exiting low-power states
CN113923457B (en) System and method for video transcoding card peak staggering power-on
US20200019412A1 (en) Systems and methods for optimal configuration of information handling resources
CN111858453A (en) GPU board
US20240111348A1 (en) Systems and methods for granular and scalable subsystem power controls, fault handling, and field-replaceable unit isolation in a modular architecture
US11509751B2 (en) Self-describing system using single-source/multi-destination cable
CN214896394U (en) CPU board card and server
CN115543054A (en) Power supply backboard, computing device and computing equipment
US11809261B2 (en) Systems and methods for itemizing device inventory for system power management
US10733134B2 (en) Systems and methods for enabling universal circuit board socket

Legal Events

Date Code Title Description
AS Assignment

Owner name: DELL PRODUCTS L.P., TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LAMBERT, TIMOTHY M.;KENNEDY, JEFFREY L.;BHAVSAR, NIHIT S.;REEL/FRAME:054989/0787

Effective date: 20210119

FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

AS Assignment

Owner name: CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH, NORTH CAROLINA

Free format text: SECURITY AGREEMENT;ASSIGNORS:EMC IP HOLDING COMPANY LLC;DELL PRODUCTS L.P.;REEL/FRAME:055408/0697

Effective date: 20210225

AS Assignment

Owner name: THE BANK OF NEW YORK MELLON TRUST COMPANY, N.A., AS NOTES COLLATERAL AGENT, TEXAS

Free format text: SECURITY INTEREST;ASSIGNORS:EMC IP HOLDING COMPANY LLC;DELL PRODUCTS L.P.;REEL/FRAME:055479/0342

Effective date: 20210225

Owner name: THE BANK OF NEW YORK MELLON TRUST COMPANY, N.A., AS NOTES COLLATERAL AGENT, TEXAS

Free format text: SECURITY INTEREST;ASSIGNORS:EMC IP HOLDING COMPANY LLC;DELL PRODUCTS L.P.;REEL/FRAME:055479/0051

Effective date: 20210225

Owner name: THE BANK OF NEW YORK MELLON TRUST COMPANY, N.A., AS NOTES COLLATERAL AGENT, TEXAS

Free format text: SECURITY INTEREST;ASSIGNORS:EMC IP HOLDING COMPANY LLC;DELL PRODUCTS L.P.;REEL/FRAME:056136/0752

Effective date: 20210225

AS Assignment

Owner name: EMC IP HOLDING COMPANY LLC, TEXAS

Free format text: RELEASE OF SECURITY INTEREST AT REEL 055408 FRAME 0697;ASSIGNOR:CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH;REEL/FRAME:058001/0553

Effective date: 20211101

Owner name: DELL PRODUCTS L.P., TEXAS

Free format text: RELEASE OF SECURITY INTEREST AT REEL 055408 FRAME 0697;ASSIGNOR:CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH;REEL/FRAME:058001/0553

Effective date: 20211101

AS Assignment

Owner name: DELL PRODUCTS L.P., TEXAS

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS PREVIOUSLY RECORDED AT REEL/FRAME (056136/0752);ASSIGNOR:THE BANK OF NEW YORK MELLON TRUST COMPANY, N.A., AS NOTES COLLATERAL AGENT;REEL/FRAME:062021/0771

Effective date: 20220329

Owner name: EMC IP HOLDING COMPANY LLC, TEXAS

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS PREVIOUSLY RECORDED AT REEL/FRAME (056136/0752);ASSIGNOR:THE BANK OF NEW YORK MELLON TRUST COMPANY, N.A., AS NOTES COLLATERAL AGENT;REEL/FRAME:062021/0771

Effective date: 20220329

Owner name: DELL PRODUCTS L.P., TEXAS

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS PREVIOUSLY RECORDED AT REEL/FRAME (055479/0051);ASSIGNOR:THE BANK OF NEW YORK MELLON TRUST COMPANY, N.A., AS NOTES COLLATERAL AGENT;REEL/FRAME:062021/0663

Effective date: 20220329

Owner name: EMC IP HOLDING COMPANY LLC, TEXAS

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS PREVIOUSLY RECORDED AT REEL/FRAME (055479/0051);ASSIGNOR:THE BANK OF NEW YORK MELLON TRUST COMPANY, N.A., AS NOTES COLLATERAL AGENT;REEL/FRAME:062021/0663

Effective date: 20220329

Owner name: DELL PRODUCTS L.P., TEXAS

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS PREVIOUSLY RECORDED AT REEL/FRAME (055479/0342);ASSIGNOR:THE BANK OF NEW YORK MELLON TRUST COMPANY, N.A., AS NOTES COLLATERAL AGENT;REEL/FRAME:062021/0460

Effective date: 20220329

Owner name: EMC IP HOLDING COMPANY LLC, TEXAS

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS PREVIOUSLY RECORDED AT REEL/FRAME (055479/0342);ASSIGNOR:THE BANK OF NEW YORK MELLON TRUST COMPANY, N.A., AS NOTES COLLATERAL AGENT;REEL/FRAME:062021/0460

Effective date: 20220329

STCF Information on status: patent grant

Free format text: PATENTED CASE