US20220207987A1 - Vehicle and method for controlling an emergency call therefor - Google Patents

Vehicle and method for controlling an emergency call therefor Download PDF

Info

Publication number
US20220207987A1
US20220207987A1 US17/643,660 US202117643660A US2022207987A1 US 20220207987 A1 US20220207987 A1 US 20220207987A1 US 202117643660 A US202117643660 A US 202117643660A US 2022207987 A1 US2022207987 A1 US 2022207987A1
Authority
US
United States
Prior art keywords
unit
emergency call
accident
airbag
deployed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US17/643,660
Other versions
US11636753B2 (en
Inventor
Sang Min Lee
Su Hyeon Chae
Sang Gu Kwon
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hyundai Motor Co
Kia Corp
Original Assignee
Hyundai Motor Co
Kia Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hyundai Motor Co, Kia Corp filed Critical Hyundai Motor Co
Assigned to KIA CORPORATION, HYUNDAI MOTOR COMPANY reassignment KIA CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CHAE, SU HYEON, KWON, SANG GU, LEE, SANG MIN
Publication of US20220207987A1 publication Critical patent/US20220207987A1/en
Application granted granted Critical
Publication of US11636753B2 publication Critical patent/US11636753B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B25/00Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems
    • G08B25/01Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems characterised by the transmission medium
    • G08B25/10Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems characterised by the transmission medium using wireless transmission systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/01Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • H04W4/44Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P] for communication between vehicles and infrastructures, e.g. vehicle-to-cloud [V2C] or vehicle-to-home [V2H]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K35/00Instruments specially adapted for vehicles; Arrangement of instruments in or on vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K35/00Instruments specially adapted for vehicles; Arrangement of instruments in or on vehicles
    • B60K35/20Output arrangements, i.e. from vehicle to user, associated with vehicle functions or specially adapted therefor
    • B60K35/28Output arrangements, i.e. from vehicle to user, associated with vehicle functions or specially adapted therefor characterised by the type of the output information, e.g. video entertainment or vehicle dynamics information; characterised by the purpose of the output information, e.g. for attracting the attention of the driver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K35/00Instruments specially adapted for vehicles; Arrangement of instruments in or on vehicles
    • B60K35/85Arrangements for transferring vehicle- or driver-related data
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q9/00Arrangement or adaptation of signal devices not provided for in one of main groups B60Q1/00 - B60Q7/00, e.g. haptic signalling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/01Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents
    • B60R21/013Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R25/00Fittings or systems for preventing or indicating unauthorised use or theft of vehicles
    • B60R25/10Fittings or systems for preventing or indicating unauthorised use or theft of vehicles actuating a signalling device
    • B60R25/102Fittings or systems for preventing or indicating unauthorised use or theft of vehicles actuating a signalling device a signal being sent to a remote location, e.g. a radio signal being transmitted to a police station, a security company or the owner
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B25/00Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems
    • G08B25/01Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems characterised by the transmission medium
    • G08B25/016Personal emergency signalling and security systems
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B29/00Checking or monitoring of signalling or alarm systems; Prevention or correction of operating errors, e.g. preventing unauthorised operation
    • G08B29/18Prevention or correction of operating errors
    • G08B29/185Signal analysis techniques for reducing or preventing false alarms or for enhancing the reliability of the system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/90Services for handling of emergency or hazardous situations, e.g. earthquake and tsunami warning systems [ETWS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/01Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents
    • B60R2021/01013Means for detecting collision, impending collision or roll-over
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/01Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents
    • B60R2021/0104Communication circuits for data transmission
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/01Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents
    • B60R2021/01204Actuation parameters of safety arrangents
    • B60R2021/01211Expansion of air bags
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2400/00Special features of vehicle units
    • B60Y2400/30Sensors

Definitions

  • the present invention relates to a vehicle and a method for controlling an emergency call therefor, and more particularly, to a vehicle capable of performing a more stable and reliable emergency call and a method for controlling an emergency call therefor.
  • An emergency call (eCall) function refers to a function that automatically attempts to connect a call to a preset emergency rescue center when an accident is detected in a vehicle, such as airbag deployed or vehicle rollover.
  • eCall a function that automatically attempts to connect a call to a preset emergency rescue center when an accident is detected in a vehicle, such as airbag deployed or vehicle rollover.
  • the eCall function is compulsory by law in countries such as Europe, Russia, and Turkey, and many countries in Asia and the Middle East are also considering enacting laws.
  • FIG. 1 is a block diagram showing an example of a system configuration in which a general emergency call function is implemented.
  • an emergency call system may be configured to include a vehicle 10 and an emergency rescue center 20 .
  • the vehicle 10 includes a sensor unit 11 having a plurality of sensors, an airbag control unit (ACU) 12 , a central gateway (CGU) 13 , and an eCall unit 14 .
  • the plurality of sensors of the sensor unit 11 is disposed in each part of the vehicle to detect the impact or acceleration applied to the vehicle, and the airbag control unit 12 determines whether or not an accident has occurred, whether or not an airbag is deployed and the like based on the signal obtained from the sensor unit 11 .
  • the eCall unit 14 receives the certain signal, the emergency call connection to the emergency rescue center 20 is attempted.
  • the certain signal that triggers the eCall function is incorrectly transmitted due to a malfunction of the CGW 13 , the ACU 12 , or other control unit even in a situation where no accident occurs, so there is a problem in that the emergency call transmission by the eCall unit 14 occurs.
  • the certain signal may not be transmitted to the eCall unit 14 even if the ACU 12 outputs the certain signal that triggers the eCall function.
  • Embodiments provide a vehicle capable of providing a more stable and reliable emergency call function and a method for controlling an emergency call therefor.
  • the method for controlling an emergency call for a vehicle may include the steps of monitoring a sensor signal in an accident determination unit of a control unit; determining whether or not an airbag is deployed based on the sensor signal in the accident determination unit; requesting an automatic emergency call from the accident determination unit to an emergency call unit of the control unit if the airbag is deployed as a result of the determination; and attempting to transmit a call to an emergency rescue center in response to the request from the emergency call unit.
  • the vehicle may include a sensor unit including a plurality of sensors and a control unit to obtain a sensor signal from the sensor unit, the control unit may include an accident determination unit that determines whether or not an airbag is deployed based on the sensor signal, and requests an automatic emergency call if the airbag is deployed as a result of the determination; and an emergency call unit that attempts to transmit a call to an emergency rescue center in response to the emergency call request.
  • a sensor unit including a plurality of sensors and a control unit to obtain a sensor signal from the sensor unit
  • the control unit may include an accident determination unit that determines whether or not an airbag is deployed based on the sensor signal, and requests an automatic emergency call if the airbag is deployed as a result of the determination; and an emergency call unit that attempts to transmit a call to an emergency rescue center in response to the emergency call request.
  • the vehicle related to at least one embodiment configured as described above can perform more reliable and stable emergency call function control.
  • the integrated control unit according to an embodiment is more resistant to errors because an airbag control function and an emergency call function are integrated.
  • FIG. 1 is a block diagram showing an example of a system configuration in which a general emergency call function is implemented.
  • FIG. 2 shows an example of a vehicle configuration according to an embodiment.
  • FIG. 3 is a flowchart illustrating an example of an emergency call control process according to an embodiment.
  • FIG. 2 shows an example of a vehicle configuration according to an embodiment.
  • the vehicle 100 may include a sensor unit 110 having a plurality of sensors, an integrated control unit 120 , and a cluster 130 .
  • the components shown in FIG. 2 are mainly illustrated with the elements related to the embodiments, and it is apparent that more or fewer components may be included in an actual vehicle implementation.
  • the plurality of sensors of the sensor unit 11 o may be disposed in each part of the vehicle to detect the impact or acceleration applied to the vehicle.
  • the integrated control unit 120 may include an accident determination unit 121 , an emergency call (eCall) unit 122 , and an error processing unit 123 .
  • the accident determination unit 121 may determine whether or not an accident has occurred and the type of accident based on the information obtained from the sensor unit 110 , and may determine whether or not automatic emergency call is transmitted or the integrated control unit is in error based on the determination result. For example, when the airbag is deployed or it is determined as a rollover accident or a side accident even in a situation where the airbag is not deployed based on the signal of the sensor unit 110 , the accident determination unit 121 may request the eCall unit 122 to send an automatic emergency call. In this case, the accident determination unit 121 may transmit the information on whether or not the airbag is deployed and the accident type together to the eCall unit 122 .
  • the information on the accident type can be output in the form of a Diagnostic Trouble Code (DTC).
  • DTC Diagnostic Trouble Code
  • the accident determination unit 121 may notify the error processing unit 123 of this.
  • the eCall unit 122 may include a Global Positioning System (GPS) module to determine a current location and a modem for communication connection with the emergency rescue center 20 .
  • GPS Global Positioning System
  • the eCall unit 122 may transmit the emergency call to the preset emergency rescue center 20 according to the notification of the accident determination unit 121 , and when the information on whether or not the airbag is deployed and the accident type is obtained from the accident determination unit 121 , the eCall unit 122 may transmit the corresponding information to the emergency rescue center 20 together with the location information obtained through the GPS module.
  • GPS Global Positioning System
  • the error processing unit 123 may receive a certain signal from the accident determination unit 121 when the airbag is not deployed and it is not determined as a rollover accident or a side accident even though the occurrence of an impact is detected based on the signal of the sensor unit 110 .
  • the error processing unit 123 may increase the count of the error counter by 1, and may receive GPS information (i.e., location and time) at the time from the eCall unit 122 and record it together. If the count reaches a preset number, a warning output request such as lighting of an airbag warning lamp may be transmitted to the cluster 130 .
  • a customer may be induced to conduct an inspection of the integrated control unit 120 including the airbag function, and a mechanic may check an error history by checking an error counter and GPS information through a diagnostic equipment.
  • the cluster 130 may turn on the airbag warning lamp or output visual information in a form different from the warning lamp (e.g., output of inspection guidance text, etc.) according to the request.
  • the cluster 130 is exemplary and is not limited to any type of output device as long as it can output information corresponding to the warning output request of the error processing unit 123 in a predetermined format.
  • the cluster 130 may be replaced with a display of an Audio/Video/Navigation (AVN) system, a Head Up Display (HUD) and the like.
  • APN Audio/Video/Navigation
  • HUD Head Up Display
  • the integrated control unit 120 described so far has the following advantages compared to the configuration in which the general airbag control unit (ACU) described with reference to FIG. 1 requests the automatic emergency call transmission to the eCall unit through the CGW.
  • ACU general airbag control unit
  • the eCall unit 122 that performs emergency call transmission directly receives a transmission request from the accident determination unit 121 inside the integrated control unit 120 without going through the CGW, there is no concern of mistransmission due to the mistransmission of the signal triggered by other control unit or CGW.
  • the eCall unit 122 may directly receive a transmission request from the accident determination unit 121 irrespective of whether the CGW and the like operates normally.
  • vehicle communication connection elements such as cables, connectors and the like can be reduced, thereby lowering a failure rate and reducing cost and vehicle weight.
  • FIG. 3 is a flowchart illustrating an example of an emergency call control process according to an embodiment.
  • the accident determination unit 121 of the integrated control unit 120 monitors the signal of the sensor unit 110 while the vehicle is driving, and when an impact is detected (Yes in S 310 ), whether or not the airbag is deployed (S 320 ) and the accident type (S 330 ) are determined.
  • the accident determination unit 121 may request automatic emergency call to the eCall unit 122 . Accordingly, the eCall unit 122 may attempt to transmit an emergency call to the emergency rescue center (S 340 ), and if the connection is successful, information on whether or not the airbag is deployed, the accident type, the current location and the like may be transmitted.
  • the accident determination unit 121 notifies the error processing unit 123 of this. Accordingly, the error processing unit 123 increases the count of the error counter (S 350 ), and when the count of the air counter exceeds a certain number (N) (Yes in S 360 ), the warning information may be output through the display device such as the cluster (S 370 ).
  • the embodiment described above can be implemented as computer-readable code on a medium in which a program is recorded.
  • the computer-readable medium includes all kinds of recording devices in which data readable by a computer system is stored. Examples of computer-readable media include Hard Disk Drive (HDD), Solid State Disk (SSD), Silicon Disk Drive (SDD), ROM, RAM, CD-ROM, magnetic tape, floppy disk, optical data storage device and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Public Health (AREA)
  • Computer Security & Cryptography (AREA)
  • Human Computer Interaction (AREA)
  • Alarm Systems (AREA)

Abstract

The present disclosure relates to a vehicle and a method for controlling an emergency call therefor, and more particularly, to a vehicle capable of performing a more stable and reliable emergency call and a method for controlling an emergency call therefor. The method for controlling an emergency call for a vehicle according to an embodiment includes monitoring a sensor signal in an accident determination unit of a control unit; determining whether or not an airbag is deployed based on the sensor signal in the accident determination unit; requesting an automatic emergency call from the accident determination unit to an emergency call unit of the control unit if the airbag is deployed as a result of the determination; and attempting to transmit a call to an emergency rescue center in response to the request from the emergency call unit.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application claims the benefit of Korean Patent Application No. 10-2020-0186424, filed on Dec. 29, 2020, which application is hereby incorporated herein by reference.
  • TECHNICAL FIELD
  • The present invention relates to a vehicle and a method for controlling an emergency call therefor, and more particularly, to a vehicle capable of performing a more stable and reliable emergency call and a method for controlling an emergency call therefor.
  • BACKGROUND
  • An emergency call (eCall) function refers to a function that automatically attempts to connect a call to a preset emergency rescue center when an accident is detected in a vehicle, such as airbag deployed or vehicle rollover. Currently, the eCall function is compulsory by law in countries such as Europe, Russia, and Turkey, and many countries in Asia and the Middle East are also considering enacting laws.
  • A system in which such an emergency call function is implemented will be described with reference to FIG. 1.
  • FIG. 1 is a block diagram showing an example of a system configuration in which a general emergency call function is implemented.
  • Referring to FIG. 1, an emergency call system may be configured to include a vehicle 10 and an emergency rescue center 20.
  • The vehicle 10 includes a sensor unit 11 having a plurality of sensors, an airbag control unit (ACU) 12, a central gateway (CGU) 13, and an eCall unit 14. The plurality of sensors of the sensor unit 11 is disposed in each part of the vehicle to detect the impact or acceleration applied to the vehicle, and the airbag control unit 12 determines whether or not an accident has occurred, whether or not an airbag is deployed and the like based on the signal obtained from the sensor unit 11. When the airbag control unit 12 determines that an accident has occurred, a certain signal (for example, CF_ACU_CshAct==1) is outputted, and the corresponding signal is transmitted to the eCall unit 14 through the CGW 13. When the eCall unit 14 receives the certain signal, the emergency call connection to the emergency rescue center 20 is attempted.
  • However, the certain signal that triggers the eCall function is incorrectly transmitted due to a malfunction of the CGW 13, the ACU 12, or other control unit even in a situation where no accident occurs, so there is a problem in that the emergency call transmission by the eCall unit 14 occurs.
  • In addition, when the CGW 13 does not operate due to the damage to the battery as a result of an actual accident, the certain signal may not be transmitted to the eCall unit 14 even if the ACU 12 outputs the certain signal that triggers the eCall function.
  • SUMMARY
  • Embodiments provide a vehicle capable of providing a more stable and reliable emergency call function and a method for controlling an emergency call therefor.
  • The technical problems to be solved in embodiments are not limited to the technical problems mentioned above, and other technical problems not mentioned will be clearly understood by those of ordinary skill in the art to which the embodiments belong from the description below.
  • In order to solve the above technical problem, the method for controlling an emergency call for a vehicle according to an embodiment may include the steps of monitoring a sensor signal in an accident determination unit of a control unit; determining whether or not an airbag is deployed based on the sensor signal in the accident determination unit; requesting an automatic emergency call from the accident determination unit to an emergency call unit of the control unit if the airbag is deployed as a result of the determination; and attempting to transmit a call to an emergency rescue center in response to the request from the emergency call unit.
  • In addition, the vehicle according to an embodiment may include a sensor unit including a plurality of sensors and a control unit to obtain a sensor signal from the sensor unit, the control unit may include an accident determination unit that determines whether or not an airbag is deployed based on the sensor signal, and requests an automatic emergency call if the airbag is deployed as a result of the determination; and an emergency call unit that attempts to transmit a call to an emergency rescue center in response to the emergency call request.
  • The vehicle related to at least one embodiment configured as described above can perform more reliable and stable emergency call function control.
  • In particular, the integrated control unit according to an embodiment is more resistant to errors because an airbag control function and an emergency call function are integrated.
  • The effects obtainable in embodiments are not limited to the above-mentioned effects, and other effects not mentioned may be clearly understood by those of ordinary skill in the art to which the embodiments belong from the following description.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a block diagram showing an example of a system configuration in which a general emergency call function is implemented.
  • FIG. 2 shows an example of a vehicle configuration according to an embodiment.
  • FIG. 3 is a flowchart illustrating an example of an emergency call control process according to an embodiment.
  • DETAILED DESCRIPTION OF ILLUSTRATIVE EMBODIMENTS
  • Hereinafter, with reference to the accompanying drawings, embodiments will be described in detail so that those of ordinary skill in the art can easily implement them. However, the embodiments may be embodied in various different forms and is not limited to the embodiments described herein. And in order to clearly explain the embodiments in the drawings, parts irrelevant to the description are omitted, and similar reference numerals are attached to similar parts throughout the specification.
  • Throughout the specification, when a part “includes” a certain component, it means that other components may be further included, rather than excluding other components, unless otherwise stated. In addition, parts indicated with the same reference numerals throughout the specification mean the same components.
  • FIG. 2 shows an example of a vehicle configuration according to an embodiment.
  • Referring to FIG. 2, the vehicle 100 according to an embodiment may include a sensor unit 110 having a plurality of sensors, an integrated control unit 120, and a cluster 130. The components shown in FIG. 2 are mainly illustrated with the elements related to the embodiments, and it is apparent that more or fewer components may be included in an actual vehicle implementation.
  • The plurality of sensors of the sensor unit 11 o may be disposed in each part of the vehicle to detect the impact or acceleration applied to the vehicle.
  • The integrated control unit 120 may include an accident determination unit 121, an emergency call (eCall) unit 122, and an error processing unit 123.
  • The accident determination unit 121 may determine whether or not an accident has occurred and the type of accident based on the information obtained from the sensor unit 110, and may determine whether or not automatic emergency call is transmitted or the integrated control unit is in error based on the determination result. For example, when the airbag is deployed or it is determined as a rollover accident or a side accident even in a situation where the airbag is not deployed based on the signal of the sensor unit 110, the accident determination unit 121 may request the eCall unit 122 to send an automatic emergency call. In this case, the accident determination unit 121 may transmit the information on whether or not the airbag is deployed and the accident type together to the eCall unit 122. The information on the accident type can be output in the form of a Diagnostic Trouble Code (DTC). For example, in case of a frontal collision, Code AAAA may be output, and in case of a rollover (overturn) accident, Code BBBB, etc. may be output, but this is exemplary and is not necessarily limited thereto.
  • In addition, when the airbag is not deployed even though the occurrence of an impact is detected and it is not determined as a rollover accident or a side accident based on the signal of the sensor unit 110, the accident determination unit 121 may notify the error processing unit 123 of this.
  • The eCall unit 122 may include a Global Positioning System (GPS) module to determine a current location and a modem for communication connection with the emergency rescue center 20. The eCall unit 122 may transmit the emergency call to the preset emergency rescue center 20 according to the notification of the accident determination unit 121, and when the information on whether or not the airbag is deployed and the accident type is obtained from the accident determination unit 121, the eCall unit 122 may transmit the corresponding information to the emergency rescue center 20 together with the location information obtained through the GPS module.
  • As described above, the error processing unit 123 may receive a certain signal from the accident determination unit 121 when the airbag is not deployed and it is not determined as a rollover accident or a side accident even though the occurrence of an impact is detected based on the signal of the sensor unit 110. In this case, the error processing unit 123 may increase the count of the error counter by 1, and may receive GPS information (i.e., location and time) at the time from the eCall unit 122 and record it together. If the count reaches a preset number, a warning output request such as lighting of an airbag warning lamp may be transmitted to the cluster 130. Through this, a customer may be induced to conduct an inspection of the integrated control unit 120 including the airbag function, and a mechanic may check an error history by checking an error counter and GPS information through a diagnostic equipment.
  • When the warning output request is received from the error processing unit 123, the cluster 130 may turn on the airbag warning lamp or output visual information in a form different from the warning lamp (e.g., output of inspection guidance text, etc.) according to the request. Here, the cluster 130 is exemplary and is not limited to any type of output device as long as it can output information corresponding to the warning output request of the error processing unit 123 in a predetermined format. For example, the cluster 130 may be replaced with a display of an Audio/Video/Navigation (AVN) system, a Head Up Display (HUD) and the like.
  • The integrated control unit 120 described so far has the following advantages compared to the configuration in which the general airbag control unit (ACU) described with reference to FIG. 1 requests the automatic emergency call transmission to the eCall unit through the CGW.
  • First, since the eCall unit 122 that performs emergency call transmission directly receives a transmission request from the accident determination unit 121 inside the integrated control unit 120 without going through the CGW, there is no concern of mistransmission due to the mistransmission of the signal triggered by other control unit or CGW. In addition, when an actual accident occurs, the eCall unit 122 may directly receive a transmission request from the accident determination unit 121 irrespective of whether the CGW and the like operates normally. In addition, as each of the airbag function and the emergency call function is implemented in the form of the integrated control unit rather than a separate control unit, vehicle communication connection elements such as cables, connectors and the like can be reduced, thereby lowering a failure rate and reducing cost and vehicle weight.
  • FIG. 3 is a flowchart illustrating an example of an emergency call control process according to an embodiment.
  • Referring to FIG. 3, the accident determination unit 121 of the integrated control unit 120 monitors the signal of the sensor unit 110 while the vehicle is driving, and when an impact is detected (Yes in S310), whether or not the airbag is deployed (S320) and the accident type (S330) are determined.
  • If the airbag is deployed (Yes in S320) or if the airbag is not deployed (No in S320) but it is determined as a certain accident type such as a rollover accident or a side accident (Yes in S330), the accident determination unit 121 may request automatic emergency call to the eCall unit 122. Accordingly, the eCall unit 122 may attempt to transmit an emergency call to the emergency rescue center (S340), and if the connection is successful, information on whether or not the airbag is deployed, the accident type, the current location and the like may be transmitted.
  • On the other hand, when the airbag is not deployed even though the impact is detected and it does not correspond to the certain accident type (No in S330), the accident determination unit 121 notifies the error processing unit 123 of this. Accordingly, the error processing unit 123 increases the count of the error counter (S350), and when the count of the air counter exceeds a certain number (N) (Yes in S360), the warning information may be output through the display device such as the cluster (S370).
  • The embodiment described above can be implemented as computer-readable code on a medium in which a program is recorded. The computer-readable medium includes all kinds of recording devices in which data readable by a computer system is stored. Examples of computer-readable media include Hard Disk Drive (HDD), Solid State Disk (SSD), Silicon Disk Drive (SDD), ROM, RAM, CD-ROM, magnetic tape, floppy disk, optical data storage device and the like.
  • Accordingly, the above detailed description should not be construed as restrictive in all respects but as exemplary. The scope of the present invention should be determined by a reasonable interpretation of the appended claims, and all modifications within the equivalent scope of the present invention are included in the scope of the present invention.

Claims (20)

What is claimed is:
1. A method for controlling an emergency call for a vehicle, the method comprising:
monitoring a sensor signal in an accident determination unit of a control unit;
determining whether or not an airbag is deployed based on the sensor signal in the accident determination unit;
requesting an automatic emergency call from the accident determination unit to an emergency call unit of the control unit if the airbag is deployed as a result of the determination; and
attempting to transmit a call to an emergency rescue center in response to the request from the emergency call unit.
2. The method according to claim 1, further comprising determining an accident type if the airbag is not deployed as the result of the determination.
3. The method according to claim 2, further comprising requesting the automatic emergency call from the accident determination unit to the emergency call unit if the determined accident type is a certain accident type.
4. The method according to claim 3, further comprising increasing a count of an error counter in an error processing unit of the control unit if the determined accident type is not the certain accident type.
5. The method according to claim 4, further comprising outputting warning information through an output device if the count exceeds a preset number.
6. The method according to claim 5, wherein the output device includes a cluster, and the warning information includes an airbag warning light.
7. The method according to claim 4, wherein the increasing the counter comprises storing time and location information in the error processing unit.
8. The method according to claim 7, wherein the time and location information is obtained from GPS information of the emergency call unit.
9. A non-transitory computer-readable recording medium recording a program for executing a method for controlling an emergency call for a vehicle, the method comprising:
monitoring a sensor signal in an accident determination unit of a control unit;
determining whether or not an airbag is deployed based on the sensor signal in the accident determination unit;
requesting an automatic emergency call from the accident determination unit to an emergency call unit of the control unit if the airbag is deployed as a result of the determination; and
attempting to transmit a call to an emergency rescue center in response to the request from the emergency call unit.
10. The non-transitory computer-readable recording medium according to claim 9, wherein the method further comprises determining an accident type if the airbag is not deployed as the result of the determination.
11. The non-transitory computer-readable recording medium according to claim 10, wherein the method further comprises requesting the automatic emergency call from the accident determination unit to the emergency call unit if the determined accident type is a certain accident type.
12. The non-transitory computer-readable recording medium according to claim 11, wherein the method further comprises increasing a count of an error counter in an error processing unit of the control unit if the determined accident type is not the certain accident type.
13. A vehicle comprising:
a sensor unit including a plurality of sensors; and
a control unit configured to obtain a sensor signal from the sensor unit,
wherein the control unit comprises:
an accident determination unit configured to determine whether or not an airbag is deployed based on the sensor signal, and request an automatic emergency call if the airbag is deployed as a result of the determination; and
an emergency call unit configured to attempt to transmit a call to an emergency rescue center in response to the emergency call request.
14. The vehicle according to claim 13, wherein the accident determination unit is configured to determine an accident type if the airbag is not deployed as the result of the determination.
15. The vehicle according to claim 14, wherein the accident determination unit is configured to request the automatic emergency call to the emergency call unit if the determined accident type is a certain accident type.
16. The vehicle according to claim 15, wherein the control unit further includes an error processing unit configured to increase a count of an error counter if the accident type determined by the accident determination unit is not the certain accident type.
17. The vehicle according to claim 16, further comprising an output device, wherein the error processing unit is configured to output warning information through the output device when the count exceeds a preset number.
18. The vehicle according to claim 17, wherein the output device includes a cluster, and the warning information includes an airbag warning light.
19. The vehicle according to claim 16, wherein the error processing unit is configured to store time and location information when the count is increased.
20. The vehicle according to claim 19, wherein the time and location information is obtained from GPS information of the emergency call unit.
US17/643,660 2020-12-29 2021-12-10 Vehicle and method for controlling an emergency call therefor Active US11636753B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0186424 2020-12-29
KR1020200186424A KR20220094810A (en) 2020-12-29 2020-12-29 Vehicle and method of controlling emergency call for the same

Publications (2)

Publication Number Publication Date
US20220207987A1 true US20220207987A1 (en) 2022-06-30
US11636753B2 US11636753B2 (en) 2023-04-25

Family

ID=82117551

Family Applications (1)

Application Number Title Priority Date Filing Date
US17/643,660 Active US11636753B2 (en) 2020-12-29 2021-12-10 Vehicle and method for controlling an emergency call therefor

Country Status (2)

Country Link
US (1) US11636753B2 (en)
KR (1) KR20220094810A (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100137006A1 (en) * 2008-12-02 2010-06-03 Broadcom Corporation Communications device with vehicle interface and methods for use therewith
US20130005292A1 (en) * 2010-02-11 2013-01-03 Staehlin Ulrich Method And Device For Triggering An Emergency Call In A Vehicle Equipped With An Airbag
US20140288781A1 (en) * 2013-03-19 2014-09-25 Denso Corporation Occupant protection apparatus for vehicle
US20150348337A1 (en) * 2014-05-30 2015-12-03 Hyundai Mobis Co., Ltd. Apparatus and method of requesting emergency call for vehicle accident by using travelling information about vehicle
US20170146661A1 (en) * 2015-11-20 2017-05-25 Hyundai Motor Company System and method of sharing vehicle location information, and computer readable medium recording the method of sharing vehicle location information
US20170171733A1 (en) * 2015-12-11 2017-06-15 Hyundai Motor Company Vehicle head unit, user terminal and method for notification of emergency state of vehicle
US20180176757A1 (en) * 2015-08-11 2018-06-21 Bayerische Motoren Werke Aktiengesellschaft Providing an Aid Means After a Vehicle Accident
US20180242132A1 (en) * 2016-03-30 2018-08-23 Mazda Motor Corporation On-vehicle emergency notification device
US20180270640A1 (en) * 2016-03-30 2018-09-20 Mazda Motor Corporation On-vehicle emergency notification device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100137006A1 (en) * 2008-12-02 2010-06-03 Broadcom Corporation Communications device with vehicle interface and methods for use therewith
US20130005292A1 (en) * 2010-02-11 2013-01-03 Staehlin Ulrich Method And Device For Triggering An Emergency Call In A Vehicle Equipped With An Airbag
US20140288781A1 (en) * 2013-03-19 2014-09-25 Denso Corporation Occupant protection apparatus for vehicle
US20150348337A1 (en) * 2014-05-30 2015-12-03 Hyundai Mobis Co., Ltd. Apparatus and method of requesting emergency call for vehicle accident by using travelling information about vehicle
US20180176757A1 (en) * 2015-08-11 2018-06-21 Bayerische Motoren Werke Aktiengesellschaft Providing an Aid Means After a Vehicle Accident
US20170146661A1 (en) * 2015-11-20 2017-05-25 Hyundai Motor Company System and method of sharing vehicle location information, and computer readable medium recording the method of sharing vehicle location information
US20170171733A1 (en) * 2015-12-11 2017-06-15 Hyundai Motor Company Vehicle head unit, user terminal and method for notification of emergency state of vehicle
US20180242132A1 (en) * 2016-03-30 2018-08-23 Mazda Motor Corporation On-vehicle emergency notification device
US20180270640A1 (en) * 2016-03-30 2018-09-20 Mazda Motor Corporation On-vehicle emergency notification device

Also Published As

Publication number Publication date
KR20220094810A (en) 2022-07-06
US11636753B2 (en) 2023-04-25

Similar Documents

Publication Publication Date Title
US11124199B2 (en) Automatic driving system, fault alarm method and device
US10055903B2 (en) Vehicle health check via noise and vibration level
US20200139990A1 (en) Electronic control device, vehicle control method, and vehicle control program product
JP4557819B2 (en) Vehicle periphery information providing device
KR101593571B1 (en) Black box apparatus for diagnosing error of electronic control unit for vehicle and control method thereof
JP2017078709A (en) Method and device for identifying at least one sensor malfunction of at least one first sensor of at least one first vehicle
KR102440002B1 (en) Method and apparatus for diagnosis of brake light
JP2017167916A (en) Information processing system
US10944775B2 (en) Authentication device for a vehicle
US20230267776A1 (en) Vehicle monitoring program, vehicle-mounted device, and vehicle monitoring method
US11636753B2 (en) Vehicle and method for controlling an emergency call therefor
JP4412243B2 (en) In-vehicle emergency call device
JP7447905B2 (en) Mobility control system, method, and program
JP4691160B2 (en) Electronic equipment
KR20220090637A (en) Digital tachograph with multi functions
US8332094B2 (en) Vehicular passenger detection system
CN106324420A (en) Display fault detection method
JP2008265618A (en) On-vehicle electronic control device
KR20050014907A (en) Blackbox for dectection using operation situation on vehicular and system of safety management for vehicular thereof
KR20130019940A (en) Diagnostic device for suspension
KR20130021086A (en) Apparatus and method for deciding accident of vehicles
US11184475B2 (en) Mobile apparatus, terminal apparatus, information processing system, information processing method, program for mobile apparatus, and program for terminal apparatus
KR20170044949A (en) Apparatus and method for trouble shooting and backup
KR20080083769A (en) Car media player having black box function
KR101398724B1 (en) Systme and black box for monitoring trouble of electronic apparatus in vehicle

Legal Events

Date Code Title Description
AS Assignment

Owner name: KIA CORPORATION, KOREA, REPUBLIC OF

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LEE, SANG MIN;KWON, SANG GU;CHAE, SU HYEON;REEL/FRAME:059140/0784

Effective date: 20211129

Owner name: HYUNDAI MOTOR COMPANY, KOREA, REPUBLIC OF

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LEE, SANG MIN;KWON, SANG GU;CHAE, SU HYEON;REEL/FRAME:059140/0784

Effective date: 20211129

FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCF Information on status: patent grant

Free format text: PATENTED CASE