US20220202075A1 - Smoking substitute apparatus - Google Patents

Smoking substitute apparatus Download PDF

Info

Publication number
US20220202075A1
US20220202075A1 US17/696,467 US202217696467A US2022202075A1 US 20220202075 A1 US20220202075 A1 US 20220202075A1 US 202217696467 A US202217696467 A US 202217696467A US 2022202075 A1 US2022202075 A1 US 2022202075A1
Authority
US
United States
Prior art keywords
main body
smoking substitute
housing
air
air inlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
US17/696,467
Other languages
English (en)
Inventor
Benjamin Illidge
Benjamin ASTBURY
Nikhil Aggarwal
Andrew DUCKWORTH
Peter Lomas
Dean Cowan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IMPERIAL TOBACCO Ltd
Original Assignee
Nerudia Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from EP19198635.5A external-priority patent/EP3794988A1/fr
Priority claimed from EP19198649.6A external-priority patent/EP3794989A1/fr
Priority claimed from EP19198630.6A external-priority patent/EP3795008A1/fr
Application filed by Nerudia Ltd filed Critical Nerudia Ltd
Publication of US20220202075A1 publication Critical patent/US20220202075A1/en
Assigned to IMPERIAL TOBACCO LIMITED reassignment IMPERIAL TOBACCO LIMITED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: NERUDIA LTD
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/48Fluid transfer means, e.g. pumps
    • A24F40/485Valves; Apertures
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/10Devices using liquid inhalable precursors
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/44Wicks
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/46Shape or structure of electric heating means
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring

Definitions

  • the present disclosure relates to a smoking substitute apparatus and, in particular, a smoking substitute apparatus that is able to deliver nicotine to a user in an effective manner.
  • the smoking of tobacco is generally considered to expose a smoker to potentially harmful substances. It is thought that a significant amount of the potentially harmful substances are generated through the burning and/or combustion of the tobacco and the constituents of the burnt tobacco in the tobacco smoke itself.
  • Such smoking substitute systems can form part of nicotine replacement therapies aimed at people who wish to stop smoking and overcome a dependence on nicotine.
  • Known smoking substitute systems include electronic systems that permit a user to simulate the act of smoking by producing an aerosol (also referred to as a “vapor”) that is drawn into the lungs through the mouth (inhaled) and then exhaled.
  • the inhaled aerosol typically bears nicotine and/or a flavorant without, or with fewer of, the health risks associated with conventional smoking.
  • smoking substitute systems are intended to provide a substitute for the rituals of smoking, whilst providing the user with a similar, or improved, experience and satisfaction to those experienced with conventional smoking and with combustible tobacco products.
  • smoking substitute systems have grown rapidly in the past few years. Although originally marketed as an aid to assist habitual smokers wishing to quit tobacco smoking, consumers are increasingly viewing smoking substitute systems as desirable lifestyle accessories. There are a number of different categories of smoking substitute systems, each utilizing a different smoking substitute approach. Some smoking substitute systems are designed to resemble a conventional cigarette and are cylindrical in form with a mouthpiece at one end. Other smoking substitute devices do not generally resemble a cigarette (for example, the smoking substitute device may have a generally box-like form, in whole or in part).
  • a vaporizable liquid, or an aerosol former sometimes typically referred to herein as “e-liquid”
  • a heating device sometimes referred to herein as an electronic cigarette or “e-cigarette” device
  • the e-liquid typically includes a base liquid, nicotine and may include a flavorant.
  • the resulting vapor therefore also typically contains nicotine and/or a flavorant.
  • the base liquid may include propylene glycol and/or vegetable glycerin.
  • a typical e-cigarette device includes a mouthpiece, a power source (typically a battery), a tank for containing e-liquid and a heating device.
  • a power source typically a battery
  • a tank for containing e-liquid In use, electrical energy is supplied from the power source to the heating device, which heats the e-liquid to produce an aerosol (or “vapor”) which is inhaled by a user through the mouthpiece.
  • aerosol or “vapor”
  • E-cigarettes can be configured in a variety of ways.
  • “closed system” vaping smoking substitute systems typically have a sealed tank and heating element. The tank is pre-filled with e-liquid and is not intended to be refilled by an end user.
  • One subset of closed system vaping smoking substitute systems include a main body which includes the power source, wherein the main body is configured to be physically and electrically couplable to a consumable including the tank and the heating element. In this way, when the tank of a consumable has been emptied of e-liquid, that consumable is removed from the main body and disposed of. The main body can then be reused by connecting it to a new, replacement, consumable.
  • Another subset of closed system vaping smoking substitute systems are completely disposable, and intended for one-use only.
  • vaping smoking substitute systems typically have a tank that is configured to be refilled by a user. In this way the entire device can be used multiple times.
  • An example vaping smoking substitute system is the mybluTM e-cigarette.
  • the mybluTM e-cigarette is a closed system which includes a main body and a consumable.
  • the main body and consumable are physically and electrically coupled together by pushing the consumable into the main body.
  • the main body includes a rechargeable battery.
  • the consumable includes a mouthpiece and a sealed tank which contains e-liquid.
  • the consumable further includes a heater, which for this device is a heating filament coiled around a portion of a wick. The wick is partially immersed in the e-liquid, and conveys e-liquid from the tank to the heating filament.
  • the system is controlled by a microprocessor on board the main body.
  • the system includes a sensor for detecting when a user is inhaling through the mouthpiece, the microprocessor then activating the device in response.
  • the system When the system is activated, electrical energy is supplied from the power source to the heating device, which heats e-liquid from the tank to produce a vapor which is inhaled by a user through the mouthpiece.
  • the aerosol droplets have a size distribution that is not suitable for delivering nicotine to the lungs. Aerosol droplets of a large particle size tend to be deposited in the mouth and/or upper respiratory tract. Aerosol particles of a small (e.g., sub-micron) particle size can be inhaled into the lungs but may be exhaled without delivering nicotine to the lungs. As a result, the user would require drawing a longer puff, more puffs, or vaporizing e-liquid with a higher nicotine concentration in order to achieve the desired experience.
  • the present disclosure relates to a smoking substitute system comprising a main body and a smoking substitute apparatus with a plenum chamber provided within the main body.
  • a smoking substitute system comprising: a main body; and a smoking substitute apparatus; the smoking substitute apparatus comprising: a housing; an air inlet provided at a first end of the housing and an air outlet; an air flow channel between the air inlet and the air outlet through the housing; and an aerosol generator configured to generate an aerosol from an aerosol precursor, wherein the aerosol generator is located in the air flow channel at a position downstream of the air inlet along the air flow channel; the main body comprising: a main body housing which is configured to physically couple to the housing of the smoking substitute apparatus; a main body air inlet to the housing; a plenum chamber within the main body housing, the plenum chamber configured to receive airflow from the main body air inlet; wherein the plenum chamber is provided within the main body housing at a position which is directly upstream of the air inlet of the smoking substitute apparatus when the main body housing is coupled to the smoking substitute apparatus.
  • the plenum chamber can reduce velocity of the air flow as the incoming air flow is now distributed over a larger cross-sectional area.
  • An enlarged cross-sectional area of the air inlet can help to provide a more even air flow to the aerosol generator, such as a heater.
  • the air flow may be less turbulent at the aerosol generator. The above factors can help to increase particle size of particles formed by the aerosol generator.
  • Providing the plenum chamber within the main body can reduce the physical size of the smoking substitute apparatus, which may be a consumable item. This can reduce the quantity of materials needed to form the consumable item.
  • the plenum chamber is provided as a void within the main body of the housing.
  • the main body has a first cross-sectional area and the plenum chamber has a second cross-sectional area, and wherein a ratio of the second cross-sectional area to the first cross-sectional area, expressed as a percentage, taken at the same position along a longitudinal axis of the main body, is at least 70%, optionally at least 80%, optionally at least 90%.
  • the plenum chamber has an axial length of at least 5 mm.
  • the main body has a longitudinal axis and the plenum chamber extends in an axial direction, and wherein the main body air inlet is located in a sidewall of the housing adjacent to an upstream end of the plenum chamber.
  • the main body has a longitudinal axis, and wherein the main body air inlet is offset from the plenum chamber in an axial direction with an airflow path between the main body air inlet and the plenum chamber passing through the main body housing.
  • the first end of the housing of the smoking substitute apparatus has a first cross-sectional area and the air inlet of the smoking substitute apparatus has a second cross-sectional area, and wherein a ratio of the second cross-sectional area to the first cross-sectional area, expressed as a percentage, taken at the same position along a longitudinal axis of the smoking substitute apparatus, is at least 70%, optionally at least 80%, optionally at least 90%.
  • the smoking substitute system comprises one or more electrical contacts provided on the housing of the smoking substitute apparatus and electrically connected with the aerosol generator; one or more electrical contacts provided on the main body which are configured to engage with corresponding electrical contacts on the smoking substitute apparatus, wherein the one or more electrical contacts provided on the housing of the smoking substitute apparatus are located beyond a perimeter of the air inlet of the smoking substitute apparatus.
  • the one or more electrical contacts of the smoking substitute apparatus are located on an outer surface of the sidewall of the housing of the smoking substitute apparatus.
  • A provides a main body for a smoking substitute system comprising the main body and a smoking substitute apparatus, the main body comprising: a housing which is configured to physically couple to the smoking substitute apparatus; an air inlet to the housing; a plenum chamber within the housing, the plenum chamber configured to receive airflow from the air inlet; wherein the plenum chamber is provided within the housing at a position which is directly upstream of an air inlet of the smoking substitute apparatus when the main body housing is coupled to the smoking substitute apparatus.
  • the plenum chamber can reduce velocity of the air flow as the incoming air flow is now distributed over a larger cross-sectional area.
  • An enlarged cross-sectional area of the air inlet can help to provide a more even air flow to the aerosol generator, such as a heater.
  • the air flow may be less turbulent at the aerosol generator. The above factors can help to increase particle size of particles formed by the aerosol generator.
  • Providing the plenum chamber within the main body can reduce the physical size of the smoking substitute apparatus, which may be a consumable item. This can reduce the quantity of materials needed to form the consumable item.
  • the main body has a longitudinal axis and the plenum chamber extends in an axial direction, and wherein the main body air inlet is located in a sidewall of the housing adjacent to an upstream end of the plenum chamber.
  • the main body has a longitudinal axis, and wherein the main body air inlet is offset from the plenum chamber in an axial direction with an airflow path between the main body air inlet and the plenum chamber passing through the main body housing.
  • the main body comprises one or more electrical contacts which are configured to engage with corresponding electrical contacts of the smoking substitute apparatus, wherein the one or more electrical contacts of the main body are located on a sidewall of the housing of the main body.
  • the smoking substitute apparatus may be in the form of a consumable.
  • the consumable may be configured for engagement with a main body.
  • the combination of the consumable and the main body may form a smoking substitute system such as a closed smoking substitute system.
  • the consumable may comprise components of the system that are disposable, and the main body may comprise non-disposable or non-consumable components (e.g., power supply, controller, sensor, etc.) that facilitate the generation and/or delivery of aerosol by the consumable.
  • the aerosol precursor e.g., e-liquid
  • the smoking substitute apparatus may be a non-consumable apparatus (e.g., that is in the form of an open smoking substitute system).
  • an aerosol former e.g., e-liquid
  • the aerosol precursor may be replenished by re-filling, e.g., a reservoir of the smoking substitute apparatus, with the aerosol precursor (rather than replacing a consumable component of the apparatus).
  • the smoking substitute apparatus may alternatively form part of a main body for engagement with the smoking substitute apparatus. This may be the case in particular when the smoking substitute apparatus is in the form of a consumable.
  • the main body and the consumable may be configured to be physically coupled together.
  • the consumable may be at least partially received in a recess of the main body, such that there is an interference fit between the main body and the consumable.
  • the main body and the consumable may be physically coupled together by screwing one onto the other, or through a bayonet fitting, or the like.
  • the smoking substitute apparatus may comprise one or more engagement portions for engaging with a main body.
  • one end of the smoking substitute apparatus may be coupled with the main body, whilst an opposing end of the smoking substitute apparatus may define a mouthpiece of the smoking substitute system.
  • the smoking substitute apparatus may comprise a reservoir configured to store an aerosol precursor, such as an e-liquid.
  • the e-liquid may, for example, comprise a base liquid.
  • the e-liquid may further comprise nicotine.
  • the base liquid may include propylene glycol and/or vegetable glycerin.
  • the e-liquid may be substantially flavorless. That is, the e-liquid may not contain any deliberately added additional flavorant and may consist solely of a base liquid of propylene glycol and/or vegetable glycerin and nicotine.
  • the reservoir may be in the form of a tank. At least a portion of the tank may be light-transmissive.
  • the tank may comprise a window to allow a user to visually assess the quantity of e-liquid in the tank.
  • a housing of the smoking substitute apparatus may comprise a corresponding aperture (or slot) or window that may be aligned with a light-transmissive portion (e.g., window) of the tank.
  • the reservoir may be referred to as a “clearomizer” if it includes a window, or a “cartomizer” if it does not.
  • the smoking substitute apparatus may comprise a passage for fluid flow therethrough.
  • the passage may extend through (at least a portion of) the smoking substitute apparatus, between openings that may define an inlet and an outlet of the passage.
  • the outlet may be at a mouthpiece of the smoking substitute apparatus.
  • a user may draw fluid (e.g., air) into and through the passage by inhaling at the outlet (i.e., using the mouthpiece).
  • the passage may be at least partially defined by the tank.
  • the tank may substantially (or fully) define the passage, for at least a part of the length of the passage. In this respect, the tank may surround the passage, e.g., in an annular arrangement around the passage.
  • the smoking substitute apparatus may comprise an aerosol generator.
  • the aerosol generator may comprise a wick.
  • the aerosol generator may further comprise a heater.
  • the wick may comprise a porous material, capable of wicking the aerosol precursor. A portion of the wick may be exposed to air flow in the passage.
  • the wick may also comprise one or more portions in contact with liquid stored in the reservoir. For example, opposing ends of the wick may protrude into the reservoir and an intermediate portion (between the ends) may extend across the passage so as to be exposed to air flow in the passage. Thus, liquid may be drawn (e.g., by capillary action) along the wick, from the reservoir to the portion of the wick exposed to air flow.
  • the heater may comprise a heating element, which may be in the form of a filament wound about the wick (e.g., the filament may extend helically about the wick in a coil configuration).
  • the heating element may be wound about the intermediate portion of the wick that is exposed to air flow in the passage.
  • the heating element may be electrically connected (or connectable) to a power source.
  • the power source may apply a voltage across the heating element so as to heat the heating element by resistive heating. This may cause liquid stored in the wick (i.e., drawn from the tank) to be heated so as to form a vapor and become entrained in air flowing through the passage. This vapor may subsequently cool to form an aerosol in the passage, typically downstream from the heating element.
  • the smoking substitute apparatus may comprise a vaporization chamber.
  • the vaporization chamber may form part of the passage in which the heater is located.
  • the vaporization chamber may be arranged to be in fluid communication with the inlet and outlet of the passage.
  • the vaporization chamber may be an enlarged portion of the passage.
  • the air as drawn in by the user may entrain the generated vapor in a flow away from heater.
  • the entrained vapor may form an aerosol in the vaporization chamber, or it may form the aerosol further downstream along the passage.
  • the vaporization chamber may be at least partially defined by the tank.
  • the tank may substantially (or fully) define the vaporization chamber. In this respect, the tank may surround the vaporization chamber, e.g., in an annular arrangement around the vaporization chamber.
  • the user may puff on a mouthpiece of the smoking substitute apparatus, i.e., draw on the smoking substitute apparatus by inhaling, to draw in an air stream therethrough.
  • a portion, or all, of the air stream (also referred to as a “main air flow”) may pass through the vaporization chamber so as to entrain the vapor generated at the heater. That is, such a main air flow may be heated by the heater (although typically only to a limited extent) as it passes through the vaporization chamber.
  • a portion of the air stream also referred to as a “dilution air flow” or “bypass air flow) may bypass the vaporization chamber and be directed to mix with the generated aerosol downstream from the vaporization chamber.
  • the dilution air flow may be an air stream at an ambient temperature and may not be directly heated at all by the heater.
  • the dilution air flow may combine with the main air flow for diluting the aerosol contained therein.
  • the dilution air flow may merge with the main air flow along the passage downstream from the vaporization chamber.
  • the dilution air flow may be directly inhaled by the user without passing though the passage of the smoking substitute apparatus.
  • the aerosol droplets as measured at the outlet of the passage, e.g., at the mouthpiece, may have a mean droplet size, d 50 , of less than 1 ⁇ m.
  • the d 50 particle size of the aerosol particles is preferably at least 1 ⁇ m.
  • the d 50 particle size is not more than 10 ⁇ m, preferably not more than 9 ⁇ m, not more than 8 ⁇ m, not more than 7 ⁇ m, not more than 6 ⁇ m, not more than 5 ⁇ m, not more than 4 ⁇ m or not more than 3 ⁇ m. It is considered that providing aerosol particle sizes in such ranges permits improved interaction between the aerosol particles and the user's lungs.
  • the particle droplet size, d 50 of an aerosol may be measured by a laser diffraction technique.
  • the stream of aerosol output from the outlet of the passage may be drawn through a Malvern Spraytec laser diffraction system, where the intensity and pattern of scattered laser light are analyzed to calculate the size and size distribution of aerosol droplets.
  • the particle size distribution may be expressed in terms of d 10 , d 50 and d 90 , for example.
  • the d 10 particle size is the particle size below which 10% by volume of the sample lies.
  • the d 50 particle size is the particle size below which 50% by volume of the sample lies.
  • the d 90 particle size is the particle size below which 90% by volume of the sample lies.
  • the particle size measurements are volume-based particle size measurements, rather than number-based or mass-based particle size measurements.
  • the smoking substitute apparatus (or main body engaged with the smoking substitute apparatus) may comprise a power source.
  • the power source may be electrically connected (or connectable) to a heater of the smoking substitute apparatus (e.g., when the smoking substitute apparatus is engaged with the main body).
  • the power source may be a battery (e.g., a rechargeable battery).
  • a connector in the form of, e.g., a USB port may be provided for recharging this battery.
  • the smoking substitute apparatus When the smoking substitute apparatus is in the form of a consumable, the smoking substitute apparatus may comprise an electrical interface for interfacing with a corresponding electrical interface of the main body.
  • One or both of the electrical interfaces may include one or more electrical contacts.
  • the electrical interface of the main body when the main body is engaged with the consumable, the electrical interface of the main body may be configured to transfer electrical power from the power source to a heater of the consumable via the electrical interface of the consumable.
  • the electrical interface of the smoking substitute apparatus may also be used to identify the smoking substitute apparatus (in the form of a consumable) from a list of known types.
  • the consumable may have a certain concentration of nicotine and the electrical interface may be used to identify this.
  • the electrical interface may additionally or alternatively be used to identify when a consumable is connected to the main body.
  • the main body may comprise an identification means, which may, for example, be in the form of an RFID reader, a barcode or QR code reader.
  • This identification means may be able to identify a characteristic (e.g., a type) of a consumable engaged with the main body.
  • the consumable may include any one or more of an RFID chip, a barcode or QR code, or memory within which is an identifier and which can be interrogated via the identification means.
  • the smoking substitute apparatus or main body may comprise a controller, which may include a microprocessor.
  • the controller may be configured to control the supply of power from the power source to the heater of the smoking substitute apparatus (e.g., via the electrical contacts).
  • a memory may be provided and may be operatively connected to the controller.
  • the memory may include non-volatile memory.
  • the memory may include instructions which, when implemented, cause the controller to perform certain tasks or steps of a method.
  • the main body or smoking substitute apparatus may comprise a wireless interface, which may be configured to communicate wirelessly with another device, for example a mobile device, e.g., via Bluetooth®.
  • the wireless interface could include a Bluetooth® antenna.
  • Other wireless communication interfaces, e.g., WIFI®, are also possible.
  • the wireless interface may also be configured to communicate wirelessly with a remote server.
  • a puff sensor may be provided that is configured to detect a puff (i.e., inhalation from a user).
  • the puff sensor may be operatively connected to the controller so as to be able to provide a signal to the controller that is indicative of a puff state (i.e., puffing or not puffing).
  • the puff sensor may, for example, be in the form of a pressure sensor or an acoustic sensor. That is, the controller may control power supply to the heater of the consumable in response to a puff detection by the sensor. The control may be in the form of activation of the heater in response to a detected puff. That is, the smoking substitute apparatus may be configured to be activated when a puff is detected by the puff sensor.
  • the puff sensor When the smoking substitute apparatus is in the form of a consumable, the puff sensor may be provided in the consumable or alternatively may be provided in the main body.
  • flavorant is used to describe a compound or combination of compounds that provide flavor and/or aroma.
  • the flavorant may be configured to interact with a sensory receptor of a user (such as an olfactory or taste receptor).
  • the flavorant may include one or more volatile substances.
  • the flavorant may be provided in solid or liquid form.
  • the flavorant may be natural or synthetic.
  • the flavorant may include menthol, licorice, chocolate, fruit flavor (including, e.g., citrus, cherry etc.), vanilla, spice (e.g., ginger, cinnamon) and tobacco flavor.
  • the flavorant may be evenly dispersed or may be provided in isolated locations and/or varying concentrations.
  • the present inventors consider that a flow rate of 1.3 L min ⁇ 1 is towards the lower end of a typical user expectation of flow rate through a conventional cigarette and therefore through a user-acceptable smoking substitute apparatus.
  • the present inventors further consider that a flow rate of 2.0 L min ⁇ 1 is towards the higher end of a typical user expectation of flow rate through a conventional cigarette and therefore through a user-acceptable smoking substitute apparatus.
  • Embodiments of the present disclosure therefore provide an aerosol with advantageous particle size characteristics across a range of flow rates of air through the apparatus.
  • the aerosol may have a Dv50 of at least 1.1 ⁇ m, at least 1.2 ⁇ m, at least 1.3 ⁇ m, at least 1.4 ⁇ m, at least 1.5 ⁇ m, at least 1.6 ⁇ m, at least 1.7 ⁇ m, at least 1.8 ⁇ m, at least 1.9 ⁇ m or at least 2.0 ⁇ m.
  • the aerosol may have a Dv50 of not more than 4.9 ⁇ m, not more than 4.8 ⁇ m, not more than 4.7 ⁇ m, not more than 4.6 ⁇ m, not more than 4.5 ⁇ m, not more than 4.4 ⁇ m, not more than 4.3 ⁇ m, not more than 4.2 ⁇ m, not more than 4.1 ⁇ m, not more than 4.0 ⁇ m, not more than 3.9 ⁇ m, not more than 3.8 ⁇ m, not more than 3.7 ⁇ m, not more than 3.6 ⁇ m, not more than 3.5 ⁇ m, not more than 3.4 ⁇ m, not more than 3.3 ⁇ m, not more than 3.2 ⁇ m, not more than 3.1 ⁇ m or not more than 3.0 ⁇ m.
  • a particularly preferred range for Dv50 of the aerosol is in the range 2-3 ⁇ m.
  • the air inlet, flow passage, outlet and the vaporization chamber may be configured so that, when the air flow rate inhaled by the user through the apparatus is 1.3 L min ⁇ 1 , the average magnitude of velocity of air in the vaporization chamber is in the range 0-1.3 ms ⁇ 1 .
  • the average magnitude velocity of air may be calculated based on knowledge of the geometry of the vaporization chamber and the flow rate.
  • the average magnitude of velocity of air in the vaporization chamber may be at least 0.001 ms ⁇ 1 , or at least 0.005 ms ⁇ 1 , or at least 0.01 ms ⁇ 1 , or at least 0.05 ms ⁇ 1 .
  • the average magnitude of velocity of air in the vaporization chamber may be at most 1.2 ms ⁇ , at most 1.1 ms ⁇ 1 , at most 1.0 ms ⁇ 1 , at most 0.9 ms ⁇ 1 , at most 0.8 ms ⁇ 1 , at most 0.7 ms ⁇ 1 or at most 0.6 ms ⁇ 1 .
  • the air inlet, flow passage, outlet and the vaporization chamber may be configured so that, when the air flow rate inhaled by the user through the apparatus is 2.0 L min ⁇ 1 , the average magnitude of velocity of air in the vaporization chamber is in the range 0-1.3 ms ⁇ 1 .
  • the average magnitude velocity of air may be calculated based on knowledge of the geometry of the vaporization chamber and the flow rate.
  • the average magnitude of velocity of air in the vaporization chamber may be at least 0.001 ms ⁇ 1 , or at least 0.005 ms ⁇ 1 , or at least 0.01 ms ⁇ 1 , or at least 0.05 ms ⁇ 1 .
  • the average magnitude of velocity of air in the vaporization chamber may be at most 1.2 ms ⁇ 1 , at most 1.1 ms ⁇ 1 , at most 1.0 ms ⁇ 1 , at most 0.9 ms ⁇ 1 , at most 0.8 ms ⁇ 1 , at most 0.7 ms ⁇ 1 or at most 0.6 ms ⁇ 1 .
  • the resultant aerosol particle size is advantageously controlled to be in a desirable range. It is further considered that the configuration of the apparatus can be selected so that the average magnitude of velocity of air in the vaporization chamber can be brought within the ranges specified, at the exemplary flow rate of 1.3 L min ⁇ 1 and/or the exemplary flow rate of 2.0 L min ⁇ 1 .
  • the aerosol generator may comprise a vaporizer element loaded with aerosol precursor, the vaporizer element being heatable by a heater and presenting a vaporizer element surface to air in the vaporization chamber.
  • a vaporizer element region may be defined as a volume extending outwardly from the vaporizer element surface to a distance of 1 mm from the vaporizer element surface.
  • the air inlet, flow passage, outlet and the vaporization chamber may be configured so that, when the air flow rate inhaled by the user through the apparatus is 1.3 L min ⁇ 1 , the average magnitude of velocity of air in the vaporizer element region is in the range 0-1.2 ms ⁇ 1 .
  • the average magnitude of velocity of air in the vaporizer element region may be calculated using computational fluid dynamics.
  • the average magnitude of velocity of air in the vaporizer element region may be at least 0.001 ms ⁇ 1 , or at least 0.005 ms ⁇ 1 , or at least 0.01 ms ⁇ 1 , or at least 0.05 ms ⁇ 1 .
  • the average magnitude of velocity of air in the vaporizer element region may be at most 1.1 ms ⁇ 1 , at most 1.0 ms ⁇ 1 , at most 0.9 ms ⁇ 1 , at most 0.8 ms ⁇ 1 , at most 0.7 ms ⁇ 1 or at most 0.6 ms ⁇ 1 .
  • the air inlet, flow passage, outlet and the vaporization chamber may be configured so that, when the air flow rate inhaled by the user through the apparatus is 2.0 L min ⁇ 1 , the average magnitude of velocity of air in the vaporizer element region is in the range 0-1.2 ms ⁇ 1 .
  • the average magnitude of velocity of air in the vaporizer element region may be calculated using computational fluid dynamics.
  • the average magnitude of velocity of air in the vaporizer element region may be at least 0.001 ms ⁇ 1 , or at least 0.005 ms ⁇ 1 , or at least 0.01 ms ⁇ 1 , or at least 0.05 ms ⁇ 1 .
  • the average magnitude of velocity of air in the vaporizer element region may be at most 1.1 ms ⁇ 1 , at most 1.0 ms ⁇ 1 , at most 0.9 ms ⁇ 1 , at most 0.8 ms ⁇ 1 , at most 0.7 ms ⁇ 1 or at most 0.6 ms ⁇ 1 .
  • the resultant aerosol particle size is advantageously controlled to be in a desirable range. It is further considered that the velocity of air in the vaporizer element region is more relevant to the resultant particle size characteristics than consideration of the velocity in the vaporization chamber as a whole. This is in view of the significant effect of the velocity of air in the vaporizer element region on the cooling of the vapor emitted from the vaporizer element surface.
  • the air inlet, flow passage, outlet and the vaporization chamber may be configured so that, when the air flow rate inhaled by the user through the apparatus is 1.3 L min ⁇ 1 , the maximum magnitude of velocity of air in the vaporizer element region is in the range 0-2.0 ms ⁇ 1 .
  • the maximum magnitude of velocity of air in the vaporizer element region may be at least 0.001 ms ⁇ 1 , or at least 0.005 ms ⁇ 1 , or at least 0.01 ms ⁇ 1 , or at least 0.05 ms ⁇ 1 .
  • the maximum magnitude of velocity of air in the vaporizer element region may be at most 1.9 ms ⁇ 1 , at most 1.8 ms ⁇ 1 , at most 1.7 ms ⁇ 1 , at most 1.6 ms ⁇ 1 , at most 1.5 ms ⁇ 1 , at most 1.4 ms ⁇ 1 , at most 1.3 ms ⁇ 1 or at most 1.2 ms ⁇ 1 .
  • the air inlet, flow passage, outlet and the vaporization chamber may be configured so that, when the air flow rate inhaled by the user through the apparatus is 2.0 L min ⁇ 1 , the maximum magnitude of velocity of air in the vaporizer element region is in the range 0-2.0 ms ⁇ 1 .
  • the maximum magnitude of velocity of air in the vaporizer element region may be at least 0.001 ms ⁇ 1 , or at least 0.005 ms ⁇ 1 , or at least 0.01 ms ⁇ 1 , or at least 0.05 ms ⁇ 1 .
  • the maximum magnitude of velocity of air in the vaporizer element region may be at most 1.9 ms ⁇ 1 , at most 1.8 ms ⁇ 1 , at most 1.7 ms ⁇ 1 , at most 1.6 ms ⁇ 1 , at most 1.5 ms ⁇ 1 , at most 1.4 ms ⁇ 1 , at most 1.3 ms ⁇ 1 or at most 1.2 ms ⁇ 1 .
  • the air inlet, flow passage, outlet and the vaporization chamber may be configured so that, when the air flow rate inhaled by the user through the apparatus is 1.3 L min ⁇ 1 , the turbulence intensity in the vaporizer element region is not more than 1%.
  • the turbulence intensity in the vaporizer element region may be not more than 0.95%, not more than 0.9%, not more than 0.85%, not more than 0.8%, not more than 0.75%, not more than 0.7%, not more than 0.65% or not more than 0.6%.
  • the particle size characteristics of the generated aerosol may be determined by the cooling rate experienced by the vapor after emission from the vaporizer element (e.g., wick).
  • the vaporizer element e.g., wick
  • imposing a relatively slow cooling rate on the vapor has the effect of generating aerosols with a relatively large particle size.
  • the parameters discussed above are considered to be mechanisms for implementing a particular cooling dynamic to the vapor.
  • the air inlet, flow passage, outlet and the vaporization chamber may be configured so that a desired cooling rate is imposed on the vapor.
  • the particular cooling rate to be used depends of course on the nature of the aerosol precursor and other conditions. However, for a particular aerosol precursor it is possible to define a set of testing conditions in order to define the cooling rate, and by extension this imposes limitations on the configuration of the apparatus to permit such cooling rates as are shown to result in advantageous aerosols.
  • the air inlet, flow passage, outlet and the vaporization chamber may be configured so that the cooling rate of the vapor is such that the time taken to cool to 50° C. is not less than 16 ms, when tested according to the following protocol.
  • the aerosol precursor is an e-liquid consisting of 1.6% freebase nicotine and the remainder a 65:35 propylene glycol and vegetable glycerin mixture, the e-liquid having a boiling point of 209° C.
  • Air is drawn into the air inlet at a temperature of 25° C.
  • the vaporizer is operated to release a vapor of total particulate mass 5 mg over a 3 second duration from the vaporizer element surface in an air flow rate between the air inlet and outlet of 1.3 L min ⁇ 1 .
  • the air inlet, flow passage, outlet and the vaporization chamber may be configured so that the cooling rate of the vapor is such that the time taken to cool to 50° C. is not less than 16 ms, when tested according to the following protocol.
  • the aerosol precursor is an e-liquid consisting of 1.6% freebase nicotine and the remainder a 65:35 propylene glycol and vegetable glycerin mixture, the e-liquid having a boiling point of 209° C.
  • Air is drawn into the air inlet at a temperature of 25° C.
  • the vaporizer is operated to release a vapor of total particulate mass 5 mg over a 3 second duration from the vaporizer element surface in an air flow rate between the air inlet and outlet of 2.0 L min ⁇ 1 .
  • Cooling of the vapor such that the time taken to cool to 50° C. is not less than 16 ms corresponds to an equivalent linear cooling rate of not more than 10° C./ms.
  • the equivalent linear cooling rate of the vapor to 50° C. may be not more than 9° C./ms, not more than 8° C./ms, not more than 7° C./ms, not more than 6° C./ms or not more than 5° C./ms.
  • Cooling of the vapor such that the time taken to cool to 50° C. is not less than 32 ms corresponds to an equivalent linear cooling rate of not more than 5° C./ms.
  • the testing protocol set out above considers the cooling of the vapor (and subsequent aerosol) to a temperature of 50° C. This is a temperature which can be considered to be suitable for an aerosol to exit the apparatus for inhalation by a user without causing significant discomfort. It is also possible to consider cooling of the vapor (and subsequent aerosol) to a temperature of 75° C. Although this temperature is possibly too high for comfortable inhalation, it is considered that the particle size characteristics of the aerosol are substantially settled by the time the aerosol cools to this temperature (and they may be settled at still higher temperature).
  • the air inlet, flow passage, outlet and the vaporization chamber may be configured so that the cooling rate of the vapor is such that the time taken to cool to 75° C. is not less than 4.5 ms, when tested according to the following protocol.
  • the aerosol precursor is an e-liquid consisting of 1.6% freebase nicotine and the remainder a 65:35 propylene glycol and vegetable glycerin mixture, the e-liquid having a boiling point of 209° C.
  • Air is drawn into the air inlet at a temperature of 25° C.
  • the vaporizer is operated to release a vapor of total particulate mass 5 mg over a 3 second duration from the vaporizer element surface in an air flow rate between the air inlet and outlet of 1.3 L min ⁇ 1 .
  • the air inlet, flow passage, outlet and the vaporization chamber may be configured so that the cooling rate of the vapor is such that the time taken to cool to 75° C. is not less than 4.5 ms, when tested according to the following protocol.
  • the aerosol precursor is an e-liquid consisting of 1.6% freebase nicotine and the remainder a 65:35 propylene glycol and vegetable glycerin mixture, the e-liquid having a boiling point of 209° C.
  • Air is drawn into the air inlet at a temperature of 25° C.
  • the vaporizer is operated to release a vapor of total particulate mass 5 mg over a 3 second duration from the vaporizer element surface in an air flow rate between the air inlet and outlet of 2.0 L min ⁇ 1 .
  • the equivalent linear cooling rate of the vapor to 75° C. may be not more than 29° C./ms, not more than 28° C./ms, not more than 27° C./ms, not more than 26° C./ms, not more than 25° C./ms, not more than 24° C./ms, not more than 23° C./ms, not more than 22° C./ms, not more than 21° C./ms, not more than 20° C./ms, not more than 19° C./ms, not more than 18° C./ms, not more than 17° C./ms, not more than 16° C./ms, not more than 15° C./ms, not more than 14° C./ms, not more than 13° C./ms, not more than 12° C./ms, not more than 11° C./ms or not more than 10° C./ms.
  • Cooling of the vapor such that the time taken to cool to 75° C. is not less than 13 ms corresponds to an equivalent linear cooling rate of not more than 10° C./ms.
  • the aerosol droplets have a size distribution that is not suitable for delivering nicotine to the lungs. Aerosol droplets of a large particle size tend to be deposited in the mouth and/or upper respiratory tract. Aerosol particles of a small (e.g., sub-micron) particle size can be inhaled into the lungs but may be exhaled without delivering nicotine to the lungs. As a result, the user would require drawing a longer puff, more puffs, or vaporizing e-liquid with a higher nicotine concentration in order to achieve the desired experience.
  • the present disclosure relates to a smoking substitute apparatus with electrical connection between at least one electrical contact and a heater, the electrical connection being advantageously routed in order to take account of the construction of the air flow channel upstream of the aerosol generator.
  • a smoking substitute apparatus comprising: a housing having a longitudinal axis, the housing having a first end and a second end; an air inlet at the first end of the housing; an air outlet at the second end of the housing; an aerosol generation chamber comprising an aerosol generator for generating an aerosol from an aerosol precursor; an air flow channel extending between the air inlet and the air outlet and passing through the aerosol generation chamber; a plenum chamber positioned in the air flow channel upstream of the aerosol generation chamber, the plenum chamber being configured to condition, in use, the air flow before reaching the aerosol generator in the aerosol generation chamber; at least one electrical contact at the first end of the housing; at least one electrical conductor electrically connecting the at least one electrical contact to the aerosol generator; wherein at least a portion of the at least one electrical conductor is positioned along a sidewall of the plenum chamber.
  • An advantage of positioning the electrical conductors along the sidewall is reducing, or minimizing, disturbance to the air flow through the air flow channel.
  • the air flow may be less turbulent in the aerosol generation chamber. This can help to increase particle size of particles formed in the aerosol generation chamber.
  • Another advantage of positioning the electrical conductors along the sidewall is reducing, or minimizing, stress on the electrical conductors. The electrical conductors are supported and should be less likely to suffer damage from air flow through the air flow channel.
  • the at least one electrical conductor is positioned along the sidewall of the air flow channel along its length.
  • the at least one electrical conductor follows a non-linear path between the at least one electrical contact and the aerosol generator. While this increases the length of the electrical conductor, it can allow a routing which can reduce damage to the electrical conductor.
  • the plenum chamber has a length along the longitudinal axis of at least 5 mm.
  • the smoking substitute apparatus comprises a flow modifying device extending across the air flow channel at a position between the air inlet and the aerosol generator and wherein the at least one electrical conductor passes through the flow modifying device.
  • the at least one electrical conductor is bonded to an inner surface of the sidewall of the plenum chamber.
  • first electrical contact and a second electrical contact there is a first electrical contact and a second electrical contact, a first electrical conductor electrically connecting the first electrical contact to the aerosol generator and a second electrical conductor electrically connecting the second electrical contact to the aerosol generator, and wherein the first electrical conductor and the second electrical conductor are positioned on opposing parts of the sidewall, or on opposing sidewalls, of the air flow channel. This can improve electrical isolation of the electrical conductors.
  • a smoking substitute apparatus comprising: a housing having a longitudinal axis, the housing having a first end and a second end; an air inlet at the first end of the housing; an air outlet at the second end of the housing; an aerosol generation chamber comprising an aerosol generator for generating an aerosol from an aerosol precursor; an air flow channel extending between the air inlet and the air outlet and passing through the aerosol generation chamber; a plenum chamber positioned in the air flow channel upstream of the aerosol generation chamber, the plenum chamber being configured to condition, in use, the air flow before reaching the aerosol generator in the aerosol generation chamber; at least one electrical contact at the first end of the housing; at least one electrical conductor electrically connecting the at least one electrical contact to the aerosol generator; wherein at least a portion of the at least one electrical conductor extends directly through a void in the air flow channel, out of contact with a sidewall of the plenum chamber.
  • An advantage of routing the electrical conductors in this way is a more physically direct, i.e., shortest, path. This reduces, or minimizes, energy losses due to electrical resistance of the conductors. This can improve battery life and allow a longer operational period between charges.
  • a major portion of the at least one electrical conductor follows a path which is parallel to the longitudinal axis.
  • the plenum chamber has a length along the longitudinal axis of at least 5 mm.
  • the smoking substitute apparatus comprises a flow modifying device extending across the air flow channel at a position between the air inlet and the aerosol generator, wherein the at least one electrical conductor passes through the flow modifying device, the flow modifying device providing support to the at least one electrical conductor.
  • a flow modifying device extending across the air flow channel at a position between the air inlet and the aerosol generator, wherein the at least one electrical conductor passes through the flow modifying device, the flow modifying device providing support to the at least one electrical conductor.
  • Another aspect of Development B provides a smoking substitute system comprising: a main body having one or more electrical contacts connected to, or connectable to, a power source in the main body; and a smoking substitute apparatus according to the first aspect of Development B or according to the second aspect of Development B.
  • the aerosol droplets have a size distribution that is not suitable for delivering nicotine to the lungs. Aerosol droplets of a large particle size tend to be deposited in the mouth and/or upper respiratory tract. Aerosol particles of a small (e.g., sub-micron) particle size can be inhaled into the lungs but may be exhaled without delivering nicotine to the lungs. As a result, the user would require drawing a longer puff, more puffs, or vaporizing e-liquid with a higher nicotine concentration in order to achieve the desired experience.
  • the present disclosure relates to a smoking substitute apparatus including a configurable plenum chamber to promote a laminar property to air flow presented to an aerosol generator.
  • a smoking substitute apparatus comprising:
  • this such a smoking substitute apparatus permits the modification of air flow through the apparatus in a manner which controls the speed and shape of air flow entering the aerosol generator.
  • this can facilitate the control of aerosolized particles of the aerosol precursor.
  • the flow modifying device may be configured to promote a laminar property to the air flow to the aerosol generator.
  • the plenum chamber may be contained within a flow conditioning module, separable from the air outlet.
  • the flow conditioning module may be separable from the aerosol generator.
  • the flow conditioning module may be separable from a chimney which fluidly connects the aerosol generator to the air outlet. An end user can therefore interchange the flow conditioning module with other flow conditioning modules to achieve a desired air flow characteristic.
  • the plenum chamber may be configurable to include a plurality of flow modifying devices. The granularity with which the air flow can be modified is thereby increased, and so the control over particle size is enhanced.
  • the plenum chamber may be configurable to include one or more spacers within the plenum chamber, the one or more spacers may be configured to assist in defining the position of the flow modifying device(s) in the plenum chamber. This increases the flexibility with which the flow modifying device(s) can be installed within the plenum chamber.
  • the plenum chamber may be configurable to include a plurality of flow modifying devices which are interchangeable within the plenum chamber, each flow modifying device affecting the characteristic of the air flow differently.
  • the plenum chamber is configurable to include a plurality of flow modifying devices, and a plurality of spacers, the spacers and the plurality of flow modifying devices may be interchangeable within the plenum chamber.
  • the flow modifying devices may be meshes.
  • the plenum chamber may include one or more of the flow modifying devices discussed previously.
  • the plenum chamber may include one or more of the spacers discussed previously.
  • the disclosure includes the combination of the developments, aspects and preferred features described except where such a combination is clearly impermissible or expressly avoided.
  • FIG. 1 illustrates a set of rectangular tubes for use in experiments to assess the effect of flow and cooling conditions at the wick on aerosol properties.
  • Each tube has the same depth and length but different width.
  • FIG. 2 shows a schematic perspective longitudinal cross sectional view of an example rectangular tube with a wick and heater coil installed.
  • FIG. 3 shows a schematic transverse cross sectional view an example rectangular tube with a wick and heater coil installed.
  • the internal width of the tube is 12 mm.
  • FIGS. 4A-4D show air flow streamlines in the four devices used in a turbulence study.
  • FIG. 5 shows the experimental set up to investigate the influence of inflow air temperature on aerosol particle size, in order to investigate the effect of vapor cooling rate on aerosol generation.
  • FIG. 6 shows a schematic longitudinal cross sectional view of a first smoking substitute apparatus (pod 1 ) used to assess influence of inflow air temperature on aerosol particle size.
  • FIG. 7 shows a schematic longitudinal cross sectional view of a second smoking substitute apparatus (pod 2 ) used to assess influence of inflow air temperature on aerosol particle size.
  • FIG. 8A shows a schematic longitudinal cross sectional view of a third smoking substitute apparatus (pod 3 ) used to assess influence of inflow air temperature on aerosol particle size.
  • FIG. 8B shows a schematic longitudinal cross sectional view of the same third smoking substitute apparatus (pod 3 ) in a direction orthogonal to the view taken in FIG. 8A .
  • FIG. 9 shows a plot of aerosol particle size (Dv50) experimental results against calculated air velocity.
  • FIG. 10 shows a plot of aerosol particle size (Dv50) experimental results against the flow rate through the apparatus for a calculated air velocity of 1 m/s.
  • FIG. 11 shows a plot of aerosol particle size (Dv50) experimental results against the average magnitude of the velocity in the vaporizer surface region, as obtained from CFD modelling.
  • FIG. 12 shows a plot of aerosol particle size (Dv50) experimental results against the maximum magnitude of the velocity in the vaporizer surface region, as obtained from CFD modelling.
  • FIG. 13 shows a plot of aerosol particle size (Dv50) experimental results against the turbulence intensity.
  • FIG. 14 shows a plot of aerosol particle size (Dv50) experimental results dependent on the temperature of the air and the heating state of the apparatus.
  • FIG. 15 shows a plot of aerosol particle size (Dv50) experimental results against vapor cooling rate to 50° C.
  • FIG. 16 shows a plot of aerosol particle size (Dv50) experimental results against vapor cooling rate to 75° C.
  • FIG. 17 is a schematic front view of a smoking substitute system, according to a reference arrangement, in an engaged position
  • FIG. 18 is a schematic front view of the smoking substitute system of the reference arrangement in a disengaged position
  • FIG. 19 is a schematic longitudinal cross sectional view of a smoking substitute apparatus of the reference arrangement.
  • FIG. 20 is an enlarged schematic cross sectional view of part of the air passage and vaporization chamber of the reference arrangement
  • FIG. 21 is a schematic view cross sectional view of a smoking substitute system, according to a first embodiment of Development A.
  • FIG. 22 is a schematic view cross sectional view of a smoking substitute system, according to a second embodiment of Development A.
  • FIG. 23 is a cross sectional view of a smoking substitute apparatus of an embodiment of Development B;
  • FIG. 24 is a cross sectional view of a smoking substitute apparatus another embodiment of Development B.
  • FIG. 25 is a cross sectional view of a smoking substitute apparatus according to the first embodiment of Development C.
  • FIGS. 26A-26D are cross sectional views of a flow conditioning module in various configurations.
  • FIGS. 17 and 18 illustrate a smoking substitute system in the form of an e-cigarette system 110 .
  • the system 110 comprises a main body 120 of the system 110 , and a smoking substitute apparatus in the form of an e-cigarette consumable (or “pod”) 150 .
  • the consumable 150 (sometimes referred to herein as a smoking substitute apparatus) is removable from the main body 120 , so as to be a replaceable component of the system 110 .
  • the e-cigarette system 110 is a closed system in the sense that it is not intended that the consumable should be refillable with e-liquid by a user.
  • the consumable 150 is configured to engage the main body 120 .
  • FIG. 17 shows the main body 120 and the consumable 150 in an engaged state
  • FIG. 18 shows the main body 120 and the consumable 150 in a disengaged state.
  • a portion of the consumable 150 is received in a cavity of corresponding shape in the main body 120 and is retained in the engaged position by way of a snap-engagement mechanism.
  • the main body 120 and consumable 150 may be engaged by screwing one into (or onto) the other, or through a bayonet fitting, or by way of an interference fit.
  • the system 110 is configured to vaporize an aerosol precursor, which in the illustrated embodiment is in the form of a nicotine-based e-liquid 160 .
  • the e-liquid 160 comprises nicotine and a base liquid including propylene glycol and/or vegetable glycerin.
  • the e-liquid 160 is flavored by a flavorant.
  • the e-liquid 160 may be flavorless and thus may not include any added flavorant.
  • FIG. 19 shows a schematic longitudinal cross sectional view of the smoking substitute apparatus forming part of the smoking substitute system shown in FIGS. 17 and 18 .
  • the e-liquid 160 is stored within a reservoir in the form of a tank 152 that forms part of the consumable 150 .
  • the consumable 150 is a “single-use” consumable 150 . That is, upon exhausting the e-liquid 160 in the tank 152 , the intention is that the user disposes of the entire consumable 150 .
  • the term “single-use” does not necessarily mean the consumable is designed to be disposed of after a single smoking session.
  • the tank may include a vent (not shown) to allow ingress of air to replace e-liquid that has been used from the tank.
  • the consumable 150 preferably includes a window 158 (see FIGS. 17 and 18 ), so that the amount of e-liquid in the tank 152 can be visually assessed.
  • the main body 120 includes a slot 157 so that the window 158 of the consumable 150 can be seen whilst the rest of the tank 152 is obscured from view when the consumable 150 is received in the cavity of the main body 120 .
  • the consumable 150 may be referred to as a “clearomizer” when it includes a window 158 , or a “cartomizer” when it does not.
  • the e-liquid i.e., aerosol precursor
  • the tank may be refillable with e-liquid or the e-liquid may be stored in a non-consumable component of the system.
  • the e-liquid may be stored in a tank located in the main body or stored in another component that is itself not single-use (e.g., a refillable cartomizer).
  • the external wall of tank 152 is provided by a casing of the consumable 150 .
  • the tank 152 annularly surrounds, and thus defines a portion of, a passage 170 that extends between a vaporizer inlet 172 and an outlet 174 at opposing ends of the consumable 150 .
  • the passage 170 comprises an upstream end at the end of the consumable 150 that engages with the main body 120 , and a downstream end at an opposing end of the consumable 150 that comprises a mouthpiece 154 of the system 110 .
  • a plurality of device air inlets 176 are formed at the boundary between the casing of the consumable and the casing of the main body.
  • the device air inlets 176 are in fluid communication with the vaporizer inlet 172 through an inlet flow channel 178 formed in the cavity of the main body which is of corresponding shape to receive a part of the consumable 150 . Air from outside of the system 110 can therefore be drawn into the passage 170 through the device air inlets 176 and the inlet flow channels 178 .
  • the passage 170 may be partially defined by a tube (e.g., a metal tube) extending through the consumable 150 .
  • the passage 170 is shown with a substantially circular cross-sectional profile with a constant diameter along its length.
  • the passage may have other cross-sectional profiles, such as oval shaped or polygonal shaped profiles.
  • the cross sectional profile and the diameter (or hydraulic diameter) of the passage may vary along its longitudinal axis.
  • the smoking substitute system 110 is configured to vaporize the e-liquid 160 for inhalation by a user.
  • the consumable 150 comprises a heater having a porous wick 162 and a resistive heating element in the form of a heating filament 164 that is helically wound (in the form of a coil) around a portion of the porous wick 162 .
  • the porous wick 162 extends across the passage 170 (i.e., transverse to a longitudinal axis of the passage 170 and thus also transverse to the air flow along the passage 170 during use) and opposing ends of the wick 162 extend into the tank 152 (so as to be immersed in the e-liquid 160 ). In this way, e-liquid 160 contained in the tank 152 is conveyed from the opposing ends of the porous wick 162 to a central portion of the porous wick 162 so as to be exposed to the airflow in the passage 170 .
  • the helical filament 164 is wound about the exposed central portion of the porous wick 162 and is electrically connected to an electrical interface in the form of electrical contacts 156 mounted at the end of the consumable that is proximate the main body 120 (when the consumable and the main body are engaged).
  • electrical contacts 156 make contact with corresponding electrical contacts (not shown) of the main body 120 .
  • the main body electrical contacts are electrically connectable to a power source (not shown) of the main body 120 , such that (in the engaged position) the filament 164 is electrically connectable to the power source. In this way, power can be supplied by the main body 120 to the filament 164 in order to heat the filament 164 .
  • the filament 164 and the exposed central portion of the porous wick 162 are positioned across the passage 170 . More specifically, the part of passage that contains the filament 164 and the exposed portion of the porous wick 162 forms a vaporization chamber.
  • the vaporization chamber has the same cross-sectional diameter as the passage 170 .
  • the vaporization chamber may have a different cross sectional profile as the passage 170 .
  • the vaporization chamber may have a larger cross sectional diameter than at least some of the downstream part of the passage 170 so as to enable a longer residence time for the air inside the vaporization chamber.
  • FIG. 20 illustrates in more detail the vaporization chamber and therefore the region of the consumable 150 around the wick 162 and filament 164 .
  • the helical filament 164 is wound around a central portion of the porous wick 162 .
  • the porous wick extends across passage 170 .
  • E-liquid 160 contained within the tank 152 is conveyed as illustrated schematically by arrows 401 , i.e., from the tank and towards the central portion of the porous wick 162 .
  • porous wick 162 When the user inhales, air is drawn from through the inlets 176 shown in FIG. 19 , along inlet flow channel 178 to vaporization chamber inlet 172 and into the vaporization chamber containing porous wick 162 .
  • the porous wick 162 extends substantially transverse to the airflow direction.
  • the airflow passes around the porous wick, at least a portion of the airflow substantially following the surface of the porous wick 162 .
  • the airflow may follow a curved path around an outer periphery of the porous wick 162 .
  • the filament 164 is heated so as to vaporize the e-liquid which has been wicked into the porous wick.
  • the airflow passing around the porous wick 162 picks up this vaporized e-liquid, and the vapor-containing airflow is drawn in direction 403 further down passage 170 .
  • the power source of the main body 120 may be in the form of a battery (e.g., a rechargeable battery such as a lithium-ion battery).
  • the main body 120 may comprise a connector in the form of, e.g., a USB port for recharging this battery.
  • the main body 120 may also comprise a controller that controls the supply of power from the power source to the main body electrical contacts (and thus to the filament 164 ). That is, the controller may be configured to control a voltage applied across the main body electrical contacts, and thus the voltage applied across the filament 164 . In this way, the filament 164 may only be heated under certain conditions (e.g., during a puff and/or only when the system is in an active state).
  • the main body 120 may include a puff sensor (not shown) that is configured to detect a puff (i.e., inhalation).
  • the puff sensor may be operatively connected to the controller so as to be able to provide a signal, to the controller, which is indicative of a puff state (i.e., puffing or not puffing).
  • the puff sensor may, for example, be in the form of a pressure sensor or an acoustic sensor.
  • the main body 120 and consumable 150 may comprise a further interface which may, for example, be in the form of an RFID reader, a barcode or QR code reader.
  • This interface may be able to identify a characteristic (e.g., a type) of a consumable 150 engaged with the main body 120 .
  • the consumable 150 may include any one or more of an RFID chip, a barcode or QR code, or memory within which is an identifier and which can be interrogated via the interface.
  • FIG. 21 shows a first embodiment of a smoking substitute system in the form of an e-cigarette system a 510 .
  • the system comprises a main body a 520 of the system a 510 , and a smoking substitute apparatus in the form of an e-cigarette consumable (or “pod”) a 550 .
  • the main body a 520 of the system a 510 is similar to the main body 120 of the system 110 described above and shown in FIGS. 17 and 18 .
  • the smoking substitute apparatus a 550 is similar to the smoking substitute apparatus 150 described above and shown in FIGS. 17-20 .
  • the consumable a 550 (sometimes referred to herein as a smoking substitute apparatus) is removable from the main body a 520 , so as to be a replaceable component of the system a 510 .
  • the consumable a 550 is configured to engage the main body a 520 .
  • FIG. 21 shows the main body a 520 and the consumable a 550 in an engaged state. When engaged, a portion of the consumable a 550 is received in a cavity of corresponding shape in the main body a 520 and is retained in the engaged position by way of a snap-engagement mechanism.
  • the main body a 520 and consumable a 550 may be engaged by screwing one into (or onto) the other, or through a bayonet fitting, or by way of an interference fit.
  • the consumable a 550 has an air inlet a 572 .
  • the main body a 520 has an air inlet a 522 .
  • the air inlet a 522 is at a distal end a 532 of the main body a 520 , furthest from the end a 531 of the main body which engages with the consumable a 550 .
  • the main body comprises a plenum chamber a 524 .
  • the plenum chamber a 524 is located immediately upstream of the air inlet a 572 , when the consumable a 550 is coupled to, or engaged with, the main body a 520 .
  • the plenum chamber a 524 is a region which allows incoming air to settle before entering the air inlet a 572 of the consumable a 550 .
  • the plenum chamber a 524 may comprise a void which extends across all, or a part of, the main body a 520 .
  • FIG. 21 shows an airflow path a 527 . Air enters the air inlet a 522 of the main body a 520 and then flows around, or over, components of the main body such as a battery and a controller.
  • Air then reaches the plenum chamber a 524 . Air settles in the plenum chamber a 524 before entering the air inlet a 572 of the consumable a 550 .
  • the air inlet a 572 leads to the vaporization chamber of the consumable a 550 .
  • Components of the consumable a 550 may be similar to the ones described above for consumable a 550 . They include a wick a 562 , a heater a 564 , a tank a 552 containing e-liquid a 560 and an airflow passage a 570 .
  • the consumable a 550 has an outlet a 574 at the downstream end a 554 .
  • the air inlet a 572 of the consumable a 550 may have an enlarged cross-section compared to the reference arrangement.
  • a cross-sectional area of the inlet a 572 may be at least 70%, optionally at least 80%, optionally at least 90% of an overall cross-sectional area of the consumable a 550 .
  • the air flow channel leading to the wick a 572 may be inwardly tapered between the air inlet a 572 and the wick a 572 .
  • FIG. 21 shows electrical connection between the main body a 520 and the consumable a 550 .
  • Electrical contacts a 556 are provided on a sidewall of a housing of the consumable a 550 .
  • Electrical contacts a 526 are provided on a sidewall of a housing of the main body a 520 .
  • the electrical contacts a 556 make physical and contact with corresponding electrical contacts a 526 of the main body a 120 . This provides a path for electrical current between a battery in the main body a 520 and the heater a 564 in the consumable a 550 . Location of the electrical contacts on the sidewall can allow a larger unobstructed air inlet a 572 .
  • the electrical contacts 556 may be located on an end face of the consumable a 550 .
  • the term “end face” means a surface of the consumable which faces the main body.
  • the end face may comprise an annular shaped region of housing surrounding the inlet a 172 .
  • the end face may be orthogonal to the longitudinal axis of the consumable.
  • the electrical contacts a 556 may be provided on an end face in a location beyond a perimeter of the air inlet a 572 . Stated another way, when the consumable a 550 is viewed in plan (i.e., end on) the electrical contacts a 556 do not overlap the air inlet a 172 .
  • FIG. 22 shows a second embodiment of a smoking substitute system in the form of an e-cigarette system a 610 .
  • the system comprises a main body a 620 and a smoking substitute apparatus in the form of an e-cigarette consumable (or “pod”) a 550 .
  • the consumable a 550 may be the same as shown in FIG. 21 .
  • the main body a 620 couples to the consumable a 550 as described above.
  • the main body a 620 comprises a plenum chamber a 524 as described above.
  • the main body a 620 has an air inlet a 622 located adjacent the plenum chamber a 524 .
  • the air inlet a 622 is shown in a sidewall of a housing of the main body a 620 .
  • FIG. 22 shows an airflow path a 627 . Air enters the air inlet a 622 of the main body a 620 and flows into an upstream end of the plenum chamber a 524 . Air settles in the plenum chamber a 524 before entering the air inlet a 572 of the consumable a 550 .
  • the air inlet to the main body may be located at a different location on the main body, such as a location which is axially offset, along the longitudinal axis of the main body, between the plenum chamber a 524 and the distal end a 532 of the main body a 520 .
  • FIG. 23 shows a consumable b 550 according to an embodiment.
  • the consumable b 550 has many features which are the same as, or similar to, the reference arrangement shown in FIGS. 17 to 20 .
  • the consumable b 550 comprises a housing with a longitudinal axis b 101 .
  • the housing has a first end b 551 and a second end b 552 .
  • An air inlet b 172 to the housing is formed in end face b 500 at the first end b 551 of the housing.
  • An air outlet, or mouthpiece, b 174 is formed at the second end b 552 of the housing.
  • the internal components of the consumable b 550 are similar to the ones previously described.
  • the consumable has a vaporization chamber with a heater b 164 and a wick b 162 .
  • the heater b 164 generates an aerosol.
  • An air flow channel extends between the air inlet b 172 and the air outlet b 174 and passes through the vaporization chamber.
  • FIG. 23 shows a complete air flow path.
  • consumable 150 , b 550 can engage with a main body 120 .
  • Air inlets b 176 allow air to enter an air flow channel between the consumable 150 , b 550 and the main body 120 . Air follows an axial path along the outside of the housing, before passing radially across the end face b 500 at the first end b 551 of the housing and entering the air inlet b 172 to the interior volume of the housing.
  • At least one electrical contact b 156 is provided at the first end b 551 of the housing.
  • the electrical contracts are provided at a central position, close to the longitudinal axis b 101 .
  • the electrical contacts b 156 make contact with corresponding electrical contacts (not shown) of the main body 120 .
  • An electrical conductor b 501 electrically connects an electrical contact b 156 with the heater b 164 .
  • each electrical conductor b 501 is along a sidewall of the air flow channel.
  • the conductor b 501 is first routed radially along an edge of the air flow channel to an axial wall of the air flow channel. Then, the conductor is routed axially along the interior wall of the air flow channel.
  • the air flow channel steps radially inwards near to the wick b 162 .
  • the conductor b 501 follows the wall of the air flow channel to the heater b 164 . It can be seen that the electrical conductor follows a non-linear path between the electrical contact b 156 and the heater b 164 . The second of the conductors follows a similar path on the opposite side of the air flow channel. It will be understood that providing the first and second electrical conductors b 501 on opposite sides of the air flow channel provides maximum separation of the conductors. In another embodiment, not shown, the first and second electrical conductors b 501 may follow paths which are not on opposite sides of the air flow channel. For example, the first and second electrical conductors b 501 may be positioned on the same side of the air flow channel.
  • An advantage of positioning the electrical conductors along the sidewall is reducing, or minimizing, disturbance to the air flow through the air flow channel.
  • Another advantage of positioning the electrical conductors along the sidewall is reducing, or minimizing, stress on the electrical conductors. The electrical conductors are supported and should be less likely to suffer damage from air flow through the air flow channel.
  • the interior volume of the housing between the inlet b 172 and the outlet b 174 may be called a vaporization chamber.
  • part of the interior volume of the housing downstream of the inlet b 172 may be called a plenum chamber.
  • a plenum chamber is a chamber which allows some conditioning, or settling, of the air flow before it reaches the wick b 162 and the heater b 164 .
  • the wick b 162 and the heater b 164 are offset from the air inlet b 172 by an interior volume which may be considered a plenum chamber.
  • the electrical conductors b 501 are routed along an interior sidewall of the plenum chamber.
  • the electrical conductors b 501 may be bonded to an inner surface of the sidewall of the plenum chamber.
  • FIG. 23 shows a flow modifying device b 510 positioned across the air flow channel, part way between the air inlet b 172 and the wick b 162 and the heater b 164 .
  • the flow modifying device b 510 may take the form of a mesh, grid or some other kind of apertured element positioned across the air flow channel through the apparatus.
  • a function of the flow modifying device b 510 is to straighten air flow leading to the wick b 162 and the heater b 164 . This can reduce turbulence in a vaporization chamber.
  • the flow modifying device b 510 comprises a structure with an upstream side and a downstream side.
  • the device b 510 has a plurality of apertures extending through it.
  • Each of the apertures extends from the upstream side to the downstream side.
  • Each of the apertures is parallel to the longitudinal axis b 101 of the air flow channel.
  • the flow modifying device b 510 is a planar structure, but other shaped devices are possible, such as a curved or domed profile.
  • the electrical conductors b 501 pass through the flow modifying device b 510 .
  • a pair of electrical contacts b 156 are shown positioned near to the longitudinal axis b 101 of the consumable.
  • the electrical contacts b 156 may have a different position on the end face.
  • a pair of electrical contacts b 156 may be provided which are spaced apart by a greater distance.
  • FIG. 24 shows a consumable b 650 according to another embodiment.
  • the consumable b 650 has many features which are the same as, or similar to, the reference arrangement shown in FIGS. 17 to 20 , and to the embodiment of FIG. 23 .
  • the consumable b 650 comprises a housing with a longitudinal axis b 101 .
  • the housing has a first end b 551 and a second end b 552 .
  • An air inlet b 172 to the housing is formed at the first end b 551 of the housing.
  • An air outlet, or mouthpiece, b 174 is formed at the second end b 552 of the housing.
  • the internal components of the consumable b 550 are similar to the ones previously described for the reference arrangement.
  • the consumable has a vaporization chamber with a heater b 164 and a wick b 162 .
  • the heater b 164 generates an aerosol.
  • An air flow channel extends between the air inlet b 172 and the air outlet b 174 and passes through the vaporization chamber.
  • At least one electrical contact 156 is provided at the first end b 551 of the housing.
  • the electrical contracts are provided at a central position, close to the longitudinal axis b 101 .
  • the electrical contacts b 156 make contact with corresponding electrical contacts (not shown) of the main body 120 .
  • An electrical conductor b 601 electrically connects an electrical contact b 156 with the heater b 164 .
  • each electrical conductor b 601 is a substantially direct path through the air flow channel itself.
  • the conductor b 601 is routed axially along the air flow channel.
  • a major portion of the path between the electrical contact b 156 and the heater b 164 is linear, and parallel to the longitudinal axis b 101 .
  • the conductor b 601 is routed radially (or diagonally) outwardly to an end of the heater b 164 .
  • the second of the conductors follows a similar path on an opposite side of the longitudinal axis b 101 of the air flow channel.
  • An advantage of routing the electrical conductors in this way is a more physically direct, i.e., shortest, path. This reduces, or minimizes, energy losses due to electrical resistance of the conductors. This can improve battery life and allow a longer operational period between charges.
  • the first and second electrical conductors may follow paths which are not on opposite sides of the longitudinal axis of the air flow channel.
  • FIG. 24 shows a flow modifying device b 510 positioned across the air flow channel, part way between the air inlet b 172 and the wick b 162 and the heater b 164 .
  • the flow modifying device b 510 is the same as described above for FIG. 23 .
  • the electrical conductors b 601 pass through the flow modifying device b 510 .
  • the flow modifying device b 510 may provide some structural support for the electrical conductors b 601 .
  • a pair of electrical contacts b 156 are shown positioned near to the longitudinal axis b 101 of the consumable.
  • the electrical contacts b 156 may have a different position on the end face.
  • a pair of electrical contacts b 156 may be provided which are spaced apart by a greater distance.
  • FIG. 25 shows a smoking substitute apparatus c 500 according to an embodiment of the present disclosure.
  • the smoking substitute apparatus includes an air inlet c 501 , located at a bottom end of the apparatus, and an air outlet c 502 located at an opposing upper end of the apparatus.
  • the inlet and outlet define an air flow passage therebetween.
  • An aerosol generator c 503 is located between the air inlet and the air outlet and is configured to generate an aerosol from an aerosol precursor.
  • a flow conditioning module c 504 including a plenum chamber.
  • the plenum chamber is configurable to include one or more flow modifying devices c 505 a and c 505 b , and one or more spacers c 506 a -c 506 c .
  • the flow modifying devices include or are meshes which extend across the plenum chamber and so promote a laminar property to the air flow to the aerosol generator c 503 .
  • the plenum chamber includes a first flow modifying device c 505 a located proximal to the air inlet c 501 , and a second flow modifying device c 505 b located between the first flow modifying device and the aerosol generator c 503 .
  • first spacer c 506 a Between the first and second flow modifying devices c 505 a and c 505 b is a first spacer c 506 a .
  • This first spacer has a height, as measured along a longitudinal axis extending from the air inlet c 501 to the air outlet c 502 which is approximately equal to the height of the first and second flow modifying devices.
  • second and third spacers c 506 b and c 506 c are taller than the first spacer and/or the first and second flow modifying devices.
  • the spacers both: (i) help define the position of the flow modifying devices; and (ii) secure the flow modifying devices in place within the plenum chamber.
  • the flow conditioning module c 504 is, in some embodiments, separable from a portion of the apparatus containing the air outlet.
  • the flow conditioning module is separable from a chimney c 510 which fluidly connects the aerosol generator c 503 to the air outlet c 502 .
  • the flow conditioning module may be separable from the aerosol generator c 503 .
  • a flow conditioning module c 504 is shown, separated from the remaining smoking substitute apparatus, in FIGS. 26A-26D .
  • Each flow conditioning module is in a different configuration with respect to the number and/or placement of the flow modifying devices and spacers. Common to all modules however, are coil and wick holder c 507 and shroud c 508 .
  • the shroud c 508 cooperatively engages with a corresponding fixture in the smoking substitute apparatus to define an aerosol generator chamber in which the aerosol generator resides.
  • the coil and wick holder c 507 provides: (i) electrical connection from a coil in the aerosol generator to electrodes c 511 on the bottom of the module c 504 ; and (ii) provides a holder for a wick which is to in fluid communication with aerosol precursor.
  • a single flow modifying device c 601 is located proximal to the air inlet c 501 .
  • first c 602 a is first c 602 a , second c 602 b , and third c 602 c spacers. These spacers secure the flow modifying device c 601 , and assist in defining the location of the flow modifying device c 601 within the plenum chamber.
  • FIG. 26B shows the reverse configuration to that shown in FIG. 26A , in that the flow modifying device c 604 is now the distal most element from the air inlet c 501 .
  • FIG. 26C shows a further variant, in which the third spacer and the flow modifying device have been swapped, and so now the flow modifying device c 606 is located between the third spacer c 605 c and the second spacer c 605 b . This allows the distance between the flow modifying device and the coil and wick holder to be varied.
  • FIG. 26D A further variant is shown in FIG. 26D .
  • This variant differs from those shown in FIGS. 26A-26C in that the spacers are shorter than shown previously.
  • four flow modifying devices c 607 a -c 607 d are within the plenum chamber.
  • a first flow modifying device c 607 a is located proximal to the air inlet c 501
  • a fourth flow modifying device c 607 d is located proximal to the coil and wick holder.
  • Interposed between the four flow modifying devices c 607 a -c 607 d are three spacers c 608 a -c 508 c .
  • spacers are shorter than those shown previously, and have a height approximately equal to the height of each of the flow modifying devices. As will be appreciated, this allows any one of the spacers to be interchanged with any one of the flow modifying devices or vice versa. Each configuration may have a different effect on the size of aerosolized particles.
  • Aerosol droplet size is a considered to be an important characteristic for smoking substitution devices. Droplets in the range of 2-5 ⁇ m are preferred in order to achieve improved nicotine delivery efficiency and to minimize the hazard of second-hand smoking. However, at the time of writing (September 2019), commercial EVP devices typically deliver aerosols with droplet size averaged around 0.5 ⁇ m, and to the knowledge of the inventors not a single commercially available device can deliver an aerosol with an average particle size exceeding 1 ⁇ m.
  • the present inventors speculate, without themselves wishing to be bound by theory, that there has to date been a lack of understanding in the mechanisms of e-liquid evaporation, nucleation and droplet growth in the context of aerosol generation in smoking substitute devices. The present inventors have therefore studied these issues in order to provide insight into mechanisms for the generation of aerosols with larger particles. The present inventors have carried out experimental and modelling work alongside theoretical investigations, leading to significant achievements as now reported.
  • This disclosure considers the roles of air velocity, air turbulence and vapor cooling rate in affecting aerosol particle size.
  • a Malvern PANalytical Spraytec laser diffraction system was employed for the particle size measurement.
  • the same coil and wick 1.5 ohms Ni—Cr coil, 1.8 mm Y07 cotton wick
  • the same input power (10 W) were used in all experiments.
  • Y07 represents the grade of cotton wick, meaning that the cotton has a linear density of 0.7 grams per meter.
  • Particle sizes were measured in accordance with ISO 13320:2009(E), which is an international standard on laser diffraction methods for particle size analysis. This is particularly well suited to aerosols, because there is an assumption in this standard that the particles are spherical (which is a good assumption for liquid-based aerosols). The standard is stated to be suitable for particle sizes in the range 0.1 micron to 3 mm.
  • FIG. 1 illustrates the set of rectangular tubes. Each tube has the same depth and length but different width. Each tube has an integral end plate in order to provide a seal against air flow outside the tube. Each tube also has holes formed in opposing side walls in order to accommodate a wick.
  • FIG. 2 shows a schematic perspective longitudinal cross sectional view of an example rectangular tube 1170 with a wick 1162 and heater coil 1164 installed.
  • the location of the wick is about half way along the length of the tube. This is intended to allow the flow of air along the tube to settle before reaching the wick.
  • FIG. 3 shows a schematic transverse cross sectional view an example rectangular tube 1170 with a wick 1162 and heater coil 1164 installed.
  • the internal width of the tube is 12 mm.
  • the rectangular tubes were manufactured to have same internal depth of 6 mm in order to accommodate the standardized coil and wick, however the tube internal width varied from 4.5 mm to 50 mm.
  • the “tube size” is referred to as the internal width of rectangular tubes.
  • the rectangular tubes with different dimensions were used to generate aerosols that were tested for particle size in a Malvern PANalytical Spraytec laser diffraction system.
  • An external digital power supply was dialed to 2.6 A constant current to supply 10 W power to the heater coil in all experiments.
  • the wick was saturated manually by applying one drop of e-liquid on each side of the wick.
  • Table 1 shows a list of experiments of a first example.
  • the values in “calculated air velocity” column were obtained by simply dividing the flow rate by the intersection area at the center plane of wick.
  • Reynolds numbers (Re) were calculated through the following equation:
  • is the density of air (1.225 kg/m 3 ); v is the calculated air velocity in table 1; ⁇ is the viscosity of air (1.48 ⁇ 10 ⁇ 1 m 2 /s); L is the characteristic length calculated by:
  • P is the perimeter of the flow path's intersection
  • A is the area of the flow path's intersection
  • Turbulence intensity was introduced as a quantitative parameter to assess the level of turbulence. The definition and simulation of turbulence intensity is discussed below.
  • FIGS. 4A-4D show air flow streamlines in the four devices used in this turbulence study of the second example.
  • FIG. 4A is a standard 12 mm rectangular tube with wick and coil installed as explained previously, with no jetting panel.
  • FIG. 4B has a jetting panel located 10 mm below (upstream from) the wick.
  • FIG. 4C has the same jetting panel 5 mm below the wick.
  • FIG. 4D has the same jetting panel 2.5 mm below the wick.
  • the jetting panel has an arrangement of apertures shaped and directed in order to promote jetting from the downstream face of the panel and therefore to promote turbulent flow.
  • the jetting panel can introduce turbulence downstream, and the panel causes higher level of turbulence near the wick when it is positioned closer to the wick.
  • FIGS. 4A-4D the four geometries gave turbulence intensities of 0.55%, 0.77%, 1.06% and 1.34%, respectively, with FIG. 4A being the least turbulent, and FIG. 4D being the most turbulent.
  • FIGS. 4A-4D there are shown three modelling images.
  • the image on the left shows the original image (color in the original), the central image shows a greyscale version of the image and the right hand image shows a black and white version of the image.
  • each version of the image highlights slightly different features of the flow. Together, they give a reasonable picture of the flow conditions at the wick.
  • This experiment of a third example aimed to investigate the influence of inflow air temperature on aerosol particle size, in order to investigate the effect of vapor cooling rate on aerosol generation.
  • the experimental set up of the third example is shown in FIG. 5 .
  • the testing used a Carbolite Gero EHA 12300B tube furnace 3210 with a quartz tube 3220 to heat up the air. Hot air in the tube furnace was then led into a transparent housing 3158 that contains the EVP device 3150 to be tested.
  • a thermocouple meter 3410 was used to assess the temperature of the air pulled into the EVP device. Once the EVP device was activated, the aerosol was pulled into the Spraytec laser diffraction system 3310 via a silicone connector 3320 for particle size measurement.
  • pod 1 is the commercially available “myblu optimised” pod ( FIG. 6 ); pod 2 is a pod featuring an extended inflow path upstream of the wick ( FIG. 7 ); and pod 3 is pod with the wick located in a stagnant vaporization chamber and the inlet air bypassing the vaporization chamber but entraining the vapor from an outlet of the vaporization chamber ( FIGS. 8A and 8B ).
  • Pod 1 shown in longitudinal cross sectional view (in the width plane) in FIG. 6 , has a main housing that defines a tank 160 x holding an e-liquid aerosol precursor. Mouthpiece 154 x is formed at the upper part of the pod. Electrical contacts 156 x are formed at the lower end of the pod. Wick 162 x is held in a vaporization chamber. The air flow direction is shown using arrows.
  • Pod 2 shown in longitudinal cross sectional view (in the width plane) in FIG. 7 , has a main housing that defines a tank 160 y holding an e-liquid aerosol precursor. Mouthpiece 154 y is formed at the upper part of the pod. Electrical contacts 156 y are formed at the lower end of the pod. Wick 162 y is held in a vaporization chamber. The air flow direction is shown using arrows. Pod 2 has an extended inflow path (plenum chamber 157 y ) with a flow conditioning element 159 y, configured to promote reduced turbulence at the wick 162 y.
  • FIG. 8A shows a schematic longitudinal cross sectional view of pod 3 .
  • FIG. 8B shows a schematic longitudinal cross sectional view of the same pod 3 in a direction orthogonal to the view taken in FIG. 8A .
  • Pod 3 has a main housing that defines a tank 160 z holding an e-liquid aerosol precursor. Mouthpiece 154 z is formed at the upper part of the pod. Electrical contacts 156 z are formed at the lower end of the pod. Wick 162 z is held in a vaporization chamber. The air flow direction is shown using arrows.
  • Pod 3 uses a stagnant vaporizer chamber, with the air inlets bypassing the wick and picking up the vapor/aerosol downstream of the wick.
  • modelling work was performed using COMSOL Multiphysics 5.4, engaged physics include: 1) laminar single-phase flow; 2) turbulent single-phase flow; 3) laminar two-phase flow; 4) heat transfer in fluids; and (5) particle tracing.
  • engaged physics include: 1) laminar single-phase flow; 2) turbulent single-phase flow; 3) laminar two-phase flow; 4) heat transfer in fluids; and (5) particle tracing.
  • Data analysis and data visualization were mostly completed in MATLAB R2019a.
  • Air velocity in the vicinity of the wick is believed to play an important role in affecting particle size.
  • the air velocity was calculated by dividing the flow rate by the intersection area, which is referred to as “calculated velocity” in a fourth example. This involves a very crude simplification that assumes velocity distribution to be homogeneous across the intersection area.
  • the CFD model uses a laminar single-phase flow setup.
  • the outlet was configured to a corresponding flowrate
  • the inlet was configured to be pressure-controlled
  • the wall conditions were set as “no slip”.
  • a 1 mm wide ring-shaped domain (wick vicinity) was created around the wick surface, and domain probes were implemented to assess the average and maximum magnitudes of velocity in this ring-shaped wick vicinity domain.
  • the CFD model of the fourth example outputs the average velocity and maximum velocity in the vicinity of the wick for each set of experiments carried out in the first example. The outcomes are reported in Table 2.
  • Turbulence intensity (I) is a quantitative value that represents the level of turbulence in a fluid flow system. It is defined as the ratio between the root-mean-square of velocity fluctuations, u′, and the Reynolds-averaged mean flow velocity, U:
  • u x , u y and u z are the x-, y- and z-components of the velocity vector, u x , u y , and u z represent the average velocities along three directions.
  • turbulence intensity values represent higher levels of turbulence.
  • turbulence intensity below 1% represents a low-turbulence case
  • turbulence intensity between 1% and 5% represents a medium-turbulence case
  • turbulence intensity above 5% represents a high-turbulence case.
  • turbulence intensity was obtained from CFD simulation using turbulent single-phase setup in COMSOL Multiphysics.
  • the outlet was set to 1.3 lpm
  • the inlet was set to be pressure-controlled, and all wall conditions were set to be “no slip”.
  • Turbulence intensity of the fifth example was assessed within the volume up to 1 mm away from the wick surface (defined as the wick vicinity domain).
  • the turbulence intensities are 0.55%, 0.77%, 1.06% and 1.34%, respectively, as also shown in FIGS. 4A-4D .
  • the cooling rate modelling of the sixth example involves three coupling models in COMSOL Multiphysics: 1) laminar two-phase flow; 2) heat transfer in fluids, and 3) particle tracing.
  • the model is setup in three steps:
  • Laminar mixture flow physics was selected for the sixth example.
  • the outlet was configured in the same way as in the fourth example.
  • this model of the sixth example includes two fluid phases released from two separate inlets: the first one is the vapor released from wick surface, at an initial velocity of 2.84 cm/s (calculated based on 5 mg total particulate mass over 3 seconds puff duration) with initial velocity direction normal to the wick surface; the second inlet is air influx from the base of tube, the rate of which is pressure-controlled.
  • the inflow and outflow settings in heat transfer physics was configured in the same way as in the two-phase flow model.
  • the air inflow was set to 25° C.
  • the vapor inflow was set to 209° C. (boiling temperature of the e-liquid formulation).
  • the heat transfer physics is configured to be two-way coupled with the laminar mixture flow physics.
  • the above model reaches steady state after approximately 0.2 second with a step size of 0.001 second.
  • the particle tracing physics has one-way coupling with the previous model, which means the fluid flow exerts dragging force on the particles, whereas the particles do not exert counterforce on the fluid flow. Therefore, the particles function as moving probes to output vapor temperature at each timestep.
  • the model of the sixth example outputs average vapor temperature at each time steps.
  • a MATLAB script was then created to find the time step when the vapor cools to a target temperature (50° C. or 75° C.), based on which the vapor cooling rates were obtained (Table 3).
  • Particle size measurement results for the rectangular tube testing example above are shown in Table 4.
  • Table 4 For every tube size and flow rate combination, five repetition runs were carried out in the Spraytec laser diffraction system. The Dv50 values from five repetition runs were averaged, and the standard deviations were calculated to indicate errors, as shown in Table 4.
  • the particle size (Dv50) experimental results of a seventh example are plotted against calculated air velocity in FIG. 9 .
  • the graph shows a strong correlation between particle size and air velocity.
  • FIG. 10 shows the results of three experiments of the seventh example, with highly different setup arrangements: 1) 5 mm tube measured at 1.4 lpm flow rate with Reynolds number of 155; 2) 8 mm tube measured at 2.8 lpm flow rate with Reynolds number of 279; and 3) 20 mm tube measured at 8.6 lpm flow rate with Reynolds number of 566. It is relevant that these setup arrangements have one similarity: the air velocities are all calculated to be 1 m/s.
  • FIG. 10 shows that, although these three sets of experiments have different tube sizes, flow rates and Reynolds numbers, they all delivered similar particle sizes, as the air velocity was kept constant. These three data points were also plotted out in FIG. 9 (1 m/s data with star marks) and they tie in nicely into particle size-air velocity trendline.
  • the “calculated velocity” was obtained by dividing the flow rate by the intersection area, which is a crude simplification that assumes a uniform velocity field.
  • CFD modelling has been performed to assess the average and maximum velocities in the vicinity of the wick.
  • the “vicinity” was defined as a volume from the wick surface up to 1 mm away from the wick surface.
  • the particle size measurement data of the eighth example were plotted against the average velocity ( FIG. 11 ) and maximum velocity ( FIG. 12 ) in the vicinity of the wick, as obtained from CFD modelling.
  • the data in these two graphs indicates that in order to obtain an aerosol with Dv50 larger than 1 ⁇ m, the average velocity should be less than or equal to 1.2 m/s in the vicinity of the wick and the maximum velocity should be less than or equal to 2.0 m/s in the vicinity of the wick.
  • the average velocity should be less than or equal to 0.6 m/s in the vicinity of the wick and the maximum velocity should be less than or equal to 1.2 m/s in the vicinity of the wick.
  • typical commercial EVP devices deliver aerosols with Dv50 around 0.5 ⁇ m, and there is no commercially available device that can deliver aerosol with Dv50 exceeding 1 ⁇ m. It is considered that typical commercial EVP devices have average velocity of 1.5-2.0 m/s in the vicinity of the wick.
  • turbulence intensity The role of turbulence has been investigated in terms of turbulence intensity in a ninth example, which is a quantitative characteristic that indicates the level of turbulence.
  • a ninth example four tubes of different turbulence intensities were used to general aerosols which were measured in the Spraytec laser diffraction system.
  • the particle size (Dv50) experimental results of the ninth example are plotted against turbulence intensity in FIG. 13 .
  • the graph suggests a correlation between particle size and turbulence intensity, that lower turbulence intensity is beneficial for obtaining larger particle size. It is noted that when turbulence intensity is above 1% (medium-turbulence case), there are relatively large measurement fluctuations. In FIG. 13 , the tube with a jetting panel 10 mm below the wick has the largest error bar, because air jets become unpredictable near the wick after traveling through a long distance.
  • the results of the ninth example clearly indicate that laminar air flow is favorable for the generation of aerosols with larger particles, and that the generation of large particle sizes is jeopardized by introducing turbulence.
  • the 12 mm standard rectangular tube (without jetting panel) delivers above 3 ⁇ m particle size (Dv50).
  • the particle size values reduced by at least a half when jetting panels were added to introduce turbulence.
  • FIG. 14 shows the high temperature testing results of a tenth example. Larger particle sizes were observed from all 3 pods when the temperature of inlet air increased from room temperature (23° C.) to 50° C. When the pods were heated as well, two of the three pods saw even larger particle size measurement results, while pod 2 was unable to be measured due to significant amount of leakage.
  • laminar flow allows slow and gradual mixing between cold air and hot vapor, which means the vapor can cool down in slower rate when the airflow is laminar, resulting in larger particle size.
  • the vapor cooling rates for each tube size and flow rate combination were obtained via multiphysics simulation.
  • the particle size measurement results were plotted against vapor cooling rate to 50° C. and 75° C., respectively.
  • the apparatus in order to obtain an aerosol with Dv50 larger than 1 ⁇ m, the apparatus should be operable to require more than 16 ms for the vapor to cool to 50° C., or an equivalent (simplified to an assumed linear) cooling rate being slower than 10° C./ms.
  • the apparatus in order to obtain an aerosol with Dv50 larger than 1 ⁇ m, the apparatus should be operable to require more than 4.5 ms for the vapor to cool to 75° C., or an equivalent (simplified to an assumed linear) cooling rate slower than 30° C./ms.
  • the apparatus should be operable to require more than 32 ms for the vapor to cool to 50° C., or an equivalent (simplified to an assumed linear) cooling rate being slower than 5° C./ms.
  • the apparatus in order to obtain an aerosol with Dv50 of 2 ⁇ m or larger, should be operable to require more than 13 ms for the vapor to cool to 75° C., or an equivalent (simplified to an assumed linear) cooling rate slower than 10° C./ms.
  • particle size (Dv50) of aerosols generated in a set of rectangular tubes was studied in order to decouple different factors (flow rate, air velocity, Reynolds number, tube size) affecting aerosol particle size. It is considered that air velocity is an important factor affecting particle size—slower air velocity leads to larger particle size. When air velocity was kept constant, the other factors (flow rate, Reynolds number, tube size) has low influence on particle size.
  • Modelling methods were used in some of the above examples to simulate the average air velocity, the maximum air velocity, and the turbulence intensity in the vicinity of the wick.
  • a COMSOL model with three coupled physics has also been developed to obtain the vapor cooling rate.
  • a smoking substitute apparatus comprising:
  • a housing having a longitudinal axis, the housing having a first end and a second end;
  • a smoking substitute apparatus according to clause B1 wherein the at least one electrical conductor is positioned along the sidewall of the air flow channel along its length.
  • a smoking substitute apparatus according to clause B1 or B2 wherein the at least one electrical conductor follows a non-linear path between the at least one electrical contact and the aerosol generator.
  • a smoking substitute apparatus according to any one of the preceding clauses B1. to B3 wherein the plenum chamber has a length along the longitudinal axis of at least 5 mm.
  • a smoking substitute apparatus according to any one of the preceding clauses B1. to B4 comprising a flow modifying device extending across the air flow channel at a position between the air inlet and the aerosol generator, wherein the at least one electrical conductor passes through the flow modifying device.
  • a smoking substitute apparatus according to any one of the preceding clauses B1. to B5 wherein the at least one electrical conductor is bonded to an inner surface of the sidewall of the plenum chamber.
  • a smoking substitute apparatus according to any one of the preceding clauses B1. to B6 wherein there is a first electrical contact and a second electrical contact, a first electrical conductor electrically connecting the first electrical contact to the aerosol generator and a second electrical conductor electrically connecting the second electrical contact to the aerosol generator, and wherein the first electrical conductor and the second electrical conductor are positioned on opposing parts of the sidewall, or on opposing sidewalls, of the air flow channel.
  • a smoking substitute apparatus comprising:
  • a housing having a longitudinal axis, the housing having a first end and a second end;
  • a smoking substitute apparatus according to clause B8 wherein a major portion of the at least one electrical conductor follows a path which is parallel to the longitudinal axis.
  • a smoking substitute apparatus according to clause B8 or B9 wherein the plenum chamber has a length along the longitudinal axis of at least 5 mm.
  • a smoking substitute apparatus comprising a flow modifying device extending across the air flow channel at a position between the air inlet and the aerosol generator, wherein the at least one electrical conductor passes through the flow modifying device, the flow modifying device providing support to the at least one electrical conductor.
  • a smoking substitute system comprising:
  • main body having one or more electrical contacts connected to, or connectable to, a power source in the main body;
  • a smoking substitute apparatus comprising:
  • the plenum chamber is configurable to include one or more spacers within the plenum chamber, the one or more spacers being configured to assist in defining the position of the flow modifying device(s) in the plenum chamber.
  • a flow conditioning module attachable to an aerosol generator of a smoking substitute apparatus, the flow conditioning module comprising a plenum chamber, the plenum chamber defining an air flow passage therethrough, and being configurable to include at least one flow modifying device extending across the air flow passage and wherein the flow modifying device is configured to promote a laminar property to the air flow to the aerosol generator.
  • a kit comprising:
  • kit of clause C12 further comprising one or more spacers, configured to assist in defining the position of the flow modifying devices in the plenum chamber.
  • a method of manufacturing a smoking substitute apparatus including:
  • a smoking substitute apparatus suitable for use with the flow conditioning module of clause C11, wherein the smoking substitute apparatus includes:

Landscapes

  • Catching Or Destruction (AREA)
US17/696,467 2019-09-20 2022-03-16 Smoking substitute apparatus Pending US20220202075A1 (en)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
EP19198635.5A EP3794988A1 (fr) 2019-09-20 2019-09-20 Appareil de substitution du tabac
EP19198649.6A EP3794989A1 (fr) 2019-09-20 2019-09-20 Appareil de substitution du tabac
EP19198635.5 2019-09-20
EP19198630.6A EP3795008A1 (fr) 2019-09-20 2019-09-20 Appareil de substitution du tabac
EP19198649.6 2019-09-20
EP19198630.6 2019-09-20
PCT/EP2020/076269 WO2021053215A1 (fr) 2019-09-20 2020-09-21 Appareil de substitution pour fumeur

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2020/076269 Continuation WO2021053215A1 (fr) 2019-09-20 2020-09-21 Appareil de substitution pour fumeur

Publications (1)

Publication Number Publication Date
US20220202075A1 true US20220202075A1 (en) 2022-06-30

Family

ID=72840467

Family Applications (1)

Application Number Title Priority Date Filing Date
US17/696,467 Pending US20220202075A1 (en) 2019-09-20 2022-03-16 Smoking substitute apparatus

Country Status (3)

Country Link
US (1) US20220202075A1 (fr)
EP (1) EP3930503A1 (fr)
WO (1) WO2021053215A1 (fr)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2513639A (en) * 2013-05-02 2014-11-05 Nicoventures Holdings Ltd Electronic cigarette
US9839238B2 (en) * 2014-02-28 2017-12-12 Rai Strategic Holdings, Inc. Control body for an electronic smoking article
GB201707805D0 (en) * 2017-05-16 2017-06-28 Nicoventures Holdings Ltd Atomiser for vapour provision device

Also Published As

Publication number Publication date
EP3930503A1 (fr) 2022-01-05
WO2021053215A1 (fr) 2021-03-25

Similar Documents

Publication Publication Date Title
US20220202092A1 (en) Smoking substitute apparatus
US20220202098A1 (en) Smoking substitute apparatus
US20220192259A1 (en) Smoking substitute apparatus
US20220202083A1 (en) Smoking substitute apparatus
US20220202074A1 (en) Smoking substitute apparatus
US20220378105A1 (en) Smoking substitute apparatus
US20220202075A1 (en) Smoking substitute apparatus
EP3794969A1 (fr) Appareil de substitution du tabac
EP3795013A1 (fr) Appareil de substitution du tabac
US20220192268A1 (en) Smoking substitute apparatus
US20220202076A1 (en) Smoking substitute apparatus
US20220192260A1 (en) Smoking substitute apparatus
US20220183379A1 (en) Smoking substitute apparatus with electrical contacts
US20220256918A1 (en) Smoking substitute apparatus
US20220256919A1 (en) Smoking substitute apparatus
US20220256926A1 (en) Smoking substitute apparatus
EP3795008A1 (fr) Appareil de substitution du tabac
EP3794989A1 (fr) Appareil de substitution du tabac
EP3795004A1 (fr) Appareil de substitution du tabac
EP3794971A1 (fr) Appareil de substitution du tabac
EP3794972A1 (fr) Appareil de substitution du tabac
EP3794982A1 (fr) Appareil de substitution du tabac
EP3795002A1 (fr) Appareil de substitution du tabac
EP3794988A1 (fr) Appareil de substitution du tabac
EP3795012A1 (fr) Appareil de substitution du tabac

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

AS Assignment

Owner name: IMPERIAL TOBACCO LIMITED, ENGLAND

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:NERUDIA LTD;REEL/FRAME:064671/0788

Effective date: 20221123