US20220104577A1 - Multi-Surface Traction Sling - Google Patents
Multi-Surface Traction Sling Download PDFInfo
- Publication number
- US20220104577A1 US20220104577A1 US17/099,095 US202017099095A US2022104577A1 US 20220104577 A1 US20220104577 A1 US 20220104577A1 US 202017099095 A US202017099095 A US 202017099095A US 2022104577 A1 US2022104577 A1 US 2022104577A1
- Authority
- US
- United States
- Prior art keywords
- traction
- foot
- wing
- heel
- sling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A43—FOOTWEAR
- A43B—CHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
- A43B5/00—Footwear for sporting purposes
- A43B5/18—Attachable overshoes for sporting purposes
- A43B5/185—Attachable overshoes for sporting purposes with a sole covering spikes or cleats
-
- A—HUMAN NECESSITIES
- A43—FOOTWEAR
- A43C—FASTENINGS OR ATTACHMENTS OF FOOTWEAR; LACES IN GENERAL
- A43C15/00—Non-skid devices or attachments
- A43C15/06—Ice-gripping devices or attachments, e.g. ice-spurs, ice-cleats, ice-creepers, crampons; Climbing devices or attachments, e.g. mountain climbing irons
Definitions
- the present invention relates in general to traction devices for footwear that attach to footwear and enable a user to walk safely on ice and other slick surfaces.
- Inventors have long sought to develop a comfortable traction device which can be easily attached to footwear when needed to enable a person to safely walk on slick surfaces.
- the need for an improved traction device is that today most all over the shoe/boot traction devices for use in snow and on ice contain a set of spikes, screws or other metal tooth components intended to grip the slippery surface. Beyond the impracticality of wearing such devices indoors, there are many occupations where having the presence of a metal spike can prove to be more dangerous than the slip or fall itself. For example, workers in the electrical utilities or oil and gas industries cannot risk creating fire causing sparks with their footwear.
- a traction sling that is easily attached to footwear that is spikeless, that is, having no metal spikes, screws or springs, and that can be easily worn over a shoe or boot, but can also be worn indoors or in sensitive environments, and that can be easily removed.
- a method to attach a non-slip spikeless sole that has limited stretch onto a stretchable rubber sling is also a need for attach a non-slip spikeless sole that has limited stretch onto a stretchable rubber sling.
- a traction device is disclosed that is flexible and is designed to be stretched over footwear.
- the disclosed invention can easily be worn over a shoe or boot, and can also be worn indoors or in sensitive environments without fear of damage or sparking. This is because the traction sling disclosed herein is spikeless, that is, it has no metal or other hard traction protrusions mounted or secured to the ground engaging surface of the sling. The disclosed sling can also be easily removed.
- a non-slip shoe or boot has little stretch from front to back or side to side.
- Such a boot or shoe presents a fairly rigid structure when compared to the disclosed sling traction device that is configured to stretch over existing footwear. Therefore the non-slip sole of a typical boot or shoe is locked into position by virtue of the surrounding rigid structure and presents no issues of mounting non-slip traction sole pads on a stretchable sling.
- the spikeless traction sling disclosed herein has a highly stretchable sling coupled to semi-rigid rubber sole sections.
- the traction sole sections possess a high kinetic coefficient of friction against ice, snow and other slippery surfaces.
- flex or stretch of the overall device is critical.
- the sling must be able to stretch over all manner, shape and size of footwear to be most useful. Because the non-slip traction pads have limited stretch; the mounting of the sole tractions pads on the sling required a unique solution.
- the sling must be flexible, including having the ability to stretch round the footwear's sole to best accommodate the shape and size of the footwear.
- a tennis shoe even though it has a flexible upper portion, has a generally non-stretchable sole from edge to edge which is available for tread placement.
- the traction sling of the disclosed invention must itself stretch around its sole edges such that it securely attaches to the target footwear. It is difficult to attached a fairly ridged traction pad to a sling without a ridged sole. Therefore a unique method of mounting the described sole sections to the sling is disclosed.
- FIG. 1 depicts the spikeless traction sling applied to an item of footwear.
- FIG. 2 depicts the unassembled invention depicting the bottom of the sling with the traction pads removed.
- FIG. 3 is a top plan view of the invention in its assembled state showing the attachment of the cord to the front ring and the routing of the cord through the three rear wings and the routing of the ring through the three front wings.
- FIG. 4 depicts the unassembled sling showing the preferred stitching pattern used to attach the semi-ridged traction pads to the elastic sling body.
- FIG. 5 depicts the unassembled sling showing the resulting preferred stitching used to attach the semi-ridged traction pads to the elastic sling body.
- FIG. 6 depicts the unassembled sling showing an alternate stitching pattern used to attach the semi-ridged traction pads to the elastic sling body.
- FIG. 7 depicts the unassembled sling showing the resultant alternate stitching pattern used to attach the semi-ridged traction pads to the elastic sling body and the exemplary, all rubber tread pattern.
- FIG. 8 depicts the unassembled sling showing the resulting preferred stitching used to attach the semi-ridged traction pads to the elastic sling body and also showing an exemplary all rubber tread pattern on the attached traction pads.
- FIG. 9 depicts the view from FIG. 8 in an assembled state.
- FIG. 10 is a front elevation view of the sling in its assembled state.
- FIG. 11 is a side elevation view of the invention in its assembled state showing another view of the routing of the ring and the cord, as well as the termination of the cord within the heel wing void.
- FIG. 12 is a rear elevation view of the invention showing the stitching used to secure the ends of the cord at its routing termination point within the heel wing void.
- traction sling 10 is comprised of six wings: toe wing 12 , right front wing 14 , right rear wing 16 , heel wing 18 , left rear wing 20 and left front wing 22 .
- Each wing preferably further comprises a plurality of horizontal flex slots 34 and a plurality of vertical flex slots 36 .
- Toe wing further comprises window 13 .
- Each wing further defines a void used to accommodate support structures when sling 10 is assembled for use.
- voids include: left front wing void 40 , toe wing void 42 , right wing void 44 , right rear void 46 , heel wing void 48 and left rear wing void 50 .
- ring 38 is passed through and secured within left front wing void 40 , toe wing void 42 and right front wing void 44 as depicted in FIGS. 1,3,10 and 11 .
- Cord 30 is attached to ring 38 and then passed through right rear wing void 46 , heel wing void 48 and left rear wing void 50 .
- the ends of cord 30 overlap each other and terminate within heel wing void 48 .
- the ends of cord 30 are secured within heal wing void 48 by stitches 49 .
- Cord 30 is preferably elastic.
- Cord slide 52 engages two portions of cord loop 30 as depicted in FIG. 3 , and is preferably lockable.
- the base of sling 10 comprises fore foot portion 58 , middle foot portion 60 and hind foot portion 62 .
- fore foot portion 58 is defined by ridge 35 which outlines the area for placing and securing fore foot traction pad 68 .
- Hind foot portion 62 is defined by ridge 27 which outlines the area for placing and securing hind foot traction pad 70 .
- Middle foot portion 60 further preferably comprises flex window 28 .
- the footwear engaging side of sling 10 may comprise a plurality of traction nodes 54 .
- the Shore Hardness of the traction pads 68 and 70 is preferably 90+ ⁇ 3.
- the coefficient of friction of the traction pads 68 and 70 is preferably 0.7 under dry conditions and 0.35 under wet conditions.
- the Shore Hardness of sling 10 when preferably made of TPE (Thermoplastic Elastomer) is preferably 43+/ ⁇ 3.
- the tensile strength of the traction sole is preferably greater than 140.
- the traction pads 68 and 70 because of their physical properties, preferably have limited elasticity. Sling 10 , because it must be stretched over a wide variety of sized and shaped footwear, must be more elastic to fit securely. It is thus preferred that the material of sling 10 be 3 to 4 times more elastic than the material of the traction pads 68 and 70 . Exemplary testing of both the preferred traction pad material (sole) and the sling material resulted in the following results:
- the problem of mounting a semi-rigid traction pad on a far more elastic sling was solved using the sewing methods disclosed in FIGS. 4 and 6 , and in the construction of fore foot and hind foot portions 58 and 62 .
- the preferred method of attaching the fore foot traction sole 68 onto fore foot portion 58 is depicted in FIG. 4 .
- the stitching preferably begins at point 72 and continues clockwise around the outer perimeter of the fore foot traction pad 68 in direction 73 until point 72 is again reached.
- Stitching 76 is then laid horizontally across fore foot traction pad 68 until just short of the first perimeter stitching at which point the stitching proceeds as shown by arrow 78 in FIG. 4 .
- stitching 80 again proceeds horizontally until point 81 , a position on or near the original stitching line, at which point the stitching is complete. It is preferred that the horizontal stitching 76 and 80 divide fore foot traction pad 68 into roughly in three equal parts. This stitching pattern, along with the support of ridge 35 , secures the fore foot traction pad 68 to fore foot portion 58 even though attached to very flexible sling material. Another advantage of this method of stitching is that the stitching is continuous, which is more efficient and reduces manufacturing costs. Adhesive may be applied to the mating side of the fore foot traction pad 68 prior to stitching.
- FIG. 6 An alternate method of stitching fore foot traction pad 68 on to fore foot portion 58 is depicted in FIG. 6 .
- the result of the method of stitching is similar to the method shown in FIG. 4 , with the exception that stitching is not continuous, and requires a stopping and restarting of the stitching process, which is less efficient than the method shown in FIG. 4 .
- the stitching preferably begins at point 89 and continues around the outer perimeter of fore foot traction pad 68 , as in the preferred method, until point 89 is again nearly reached. At point 89 a stitch line is made horizontally in direction 92 until point 94 is reached on the far perimeter. The stitching is there terminated and restarted at point 93 . The stitching then proceeds horizontally across forefoot traction pad 68 in direction 98 until point 95 is reached and the stitching is there preferably concluded.
- the preferred method for securing hind foot traction pad 70 to hind foot portion 66 is best seen in FIGS. 4 and 6 .
- the stitching preferably begins at point 74 and continues around the outer perimeter of hind foot traction pad 70 , in direction 84 , until the circuit is complete. Once back at point 74 , the stitching proceeds horizontally across hind foot traction pad 70 in direction 82 until the stitching reaches point 75 , at which point the stitching is preferably concluded.
- This stitching pattern along with the support of ridge 27 , secures the hind foot traction pad 70 even though attached to very flexible sling material.
- Another advantage of this method of stitching is that the stitching is continuous, which is more efficient and reduces manufacturing costs.
- traction sling 10 is applied to exemplary footwear 32 by a user placing one hand on either side of cord 30 .
- This is preferably accomplished with cord slide 52 as close to ring 38 as possible to allow as much room between the opposing sides of cord 30 as possible.
- Cord 30 is then pulled on by the user such that footwear is urged into traction sling 10 until footwear 32 is fully inserted.
- cord slide 52 can be moved toward the heel of the foot wear, if needed, to further secure the cord against the footwear and thus footwear to traction sling 10 .
- the vertical flex joints 36 assist in increasing the flexibility of sling 10 to accommodate footwear of differing vertical dimensions.
- Horizontal flex joints 34 increase the flexibility of sling 10 to accommodate footwear with differing sole dimensions and configurations.
- Base flex window 28 is important to assist in increasing the flexibility of sling 10 to accommodate footwear of differing lengths.
- Toe wing window 13 assists in increasing the flexibility of sling 10 to accommodate toes of various footwear with different toe dimensions and configurations.
Landscapes
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Physical Education & Sports Medicine (AREA)
- Footwear And Its Accessory, Manufacturing Method And Apparatuses (AREA)
Abstract
Description
- This application is a continuation-in-part of U.S. Design application Ser. No. 29/753591 filed Oct. 1, 2020; and such application is hereby fully incorporated by reference herein.
- The present invention relates in general to traction devices for footwear that attach to footwear and enable a user to walk safely on ice and other slick surfaces.
- Inventors have long sought to develop a comfortable traction device which can be easily attached to footwear when needed to enable a person to safely walk on slick surfaces. The need for an improved traction device is that today most all over the shoe/boot traction devices for use in snow and on ice contain a set of spikes, screws or other metal tooth components intended to grip the slippery surface. Beyond the impracticality of wearing such devices indoors, there are many occupations where having the presence of a metal spike can prove to be more dangerous than the slip or fall itself. For example, workers in the electrical utilities or oil and gas industries cannot risk creating fire causing sparks with their footwear. In the case of airline workers, they cannot wear spikes that might scratch the inner surface of an aircraft where it could lead to corrosion, or out on the tarmac where sparks in the area of a refueling aircraft might lead to catastrophe. In many other instances walking with metal spikes, screws or springs on the bottom of footwear from an icy or snow laden surface back onto a clean hard indoor surface can prove dangerous and/or damaging. The metal gripping means can prove slippery on hard indoor surfaces, and can mare and damage those surfaces as well.
- Thus there is a need for a traction sling that is easily attached to footwear that is spikeless, that is, having no metal spikes, screws or springs, and that can be easily worn over a shoe or boot, but can also be worn indoors or in sensitive environments, and that can be easily removed. There is also a need for a method to attach a non-slip spikeless sole that has limited stretch onto a stretchable rubber sling.
- In accordance with the present invention a traction device is disclosed that is flexible and is designed to be stretched over footwear. The disclosed invention can easily be worn over a shoe or boot, and can also be worn indoors or in sensitive environments without fear of damage or sparking. This is because the traction sling disclosed herein is spikeless, that is, it has no metal or other hard traction protrusions mounted or secured to the ground engaging surface of the sling. The disclosed sling can also be easily removed.
- A non-slip shoe or boot has little stretch from front to back or side to side. Such a boot or shoe presents a fairly rigid structure when compared to the disclosed sling traction device that is configured to stretch over existing footwear. Therefore the non-slip sole of a typical boot or shoe is locked into position by virtue of the surrounding rigid structure and presents no issues of mounting non-slip traction sole pads on a stretchable sling.
- The spikeless traction sling disclosed herein has a highly stretchable sling coupled to semi-rigid rubber sole sections. The traction sole sections possess a high kinetic coefficient of friction against ice, snow and other slippery surfaces. In an over-the-shoe sling, flex or stretch of the overall device is critical. The sling must be able to stretch over all manner, shape and size of footwear to be most useful. Because the non-slip traction pads have limited stretch; the mounting of the sole tractions pads on the sling required a unique solution. Unlike most footwear, including tennis shoes, there is not a solid foundation onto which to mount a traction pad. The sling must be flexible, including having the ability to stretch round the footwear's sole to best accommodate the shape and size of the footwear. A tennis shoe, even though it has a flexible upper portion, has a generally non-stretchable sole from edge to edge which is available for tread placement. The traction sling of the disclosed invention, however, must itself stretch around its sole edges such that it securely attaches to the target footwear. It is difficult to attached a fairly ridged traction pad to a sling without a ridged sole. Therefore a unique method of mounting the described sole sections to the sling is disclosed.
-
FIG. 1 depicts the spikeless traction sling applied to an item of footwear. -
FIG. 2 depicts the unassembled invention depicting the bottom of the sling with the traction pads removed. -
FIG. 3 is a top plan view of the invention in its assembled state showing the attachment of the cord to the front ring and the routing of the cord through the three rear wings and the routing of the ring through the three front wings. -
FIG. 4 depicts the unassembled sling showing the preferred stitching pattern used to attach the semi-ridged traction pads to the elastic sling body. -
FIG. 5 depicts the unassembled sling showing the resulting preferred stitching used to attach the semi-ridged traction pads to the elastic sling body. -
FIG. 6 depicts the unassembled sling showing an alternate stitching pattern used to attach the semi-ridged traction pads to the elastic sling body. -
FIG. 7 depicts the unassembled sling showing the resultant alternate stitching pattern used to attach the semi-ridged traction pads to the elastic sling body and the exemplary, all rubber tread pattern. -
FIG. 8 depicts the unassembled sling showing the resulting preferred stitching used to attach the semi-ridged traction pads to the elastic sling body and also showing an exemplary all rubber tread pattern on the attached traction pads. -
FIG. 9 depicts the view fromFIG. 8 in an assembled state. -
FIG. 10 is a front elevation view of the sling in its assembled state. -
FIG. 11 is a side elevation view of the invention in its assembled state showing another view of the routing of the ring and the cord, as well as the termination of the cord within the heel wing void. -
FIG. 12 is a rear elevation view of the invention showing the stitching used to secure the ends of the cord at its routing termination point within the heel wing void. - The invention comprises three main components: a sling, a sole traction pad and a heel traction pad. Referring to the figures,
traction sling 10 is comprised of six wings:toe wing 12,right front wing 14, rightrear wing 16,heel wing 18, leftrear wing 20 andleft front wing 22. Each wing preferably further comprises a plurality ofhorizontal flex slots 34 and a plurality ofvertical flex slots 36. Toe wing further compriseswindow 13. Each wing further defines a void used to accommodate support structures whensling 10 is assembled for use. These voids include: leftfront wing void 40,toe wing void 42,right wing void 44, rightrear void 46,heel wing void 48 and leftrear wing void 50. When assembled for use,ring 38 is passed through and secured within leftfront wing void 40,toe wing void 42 and rightfront wing void 44 as depicted inFIGS. 1,3,10 and 11 .Cord 30 is attached toring 38 and then passed through rightrear wing void 46,heel wing void 48 and leftrear wing void 50. As best seen inFIG. 11 , the ends ofcord 30 overlap each other and terminate withinheel wing void 48. The ends ofcord 30 are secured withinheal wing void 48 bystitches 49. Cord 30 is preferably elastic.Cord slide 52 engages two portions ofcord loop 30 as depicted inFIG. 3 , and is preferably lockable. - The base of
sling 10 comprisesfore foot portion 58,middle foot portion 60 andhind foot portion 62. On the ground engaging side ofsling 10, forefoot portion 58 is defined byridge 35 which outlines the area for placing and securing forefoot traction pad 68.Hind foot portion 62 is defined byridge 27 which outlines the area for placing and securing hindfoot traction pad 70.Middle foot portion 60 further preferably comprisesflex window 28. As best can be seen inFIG. 3 , the footwear engaging side ofsling 10 may comprise a plurality oftraction nodes 54. - The Shore Hardness of the
traction pads traction pads sling 10 when preferably made of TPE (Thermoplastic Elastomer) is preferably 43+/−3. The tensile strength of the traction sole is preferably greater than 140. Thetraction pads Sling 10, because it must be stretched over a wide variety of sized and shaped footwear, must be more elastic to fit securely. It is thus preferred that the material ofsling 10 be 3 to 4 times more elastic than the material of thetraction pads -
Parameters and/or Test Method Test Method Title Deviations from Method ASTM Standard Test Methods Die: Micro-tensile Die D412-16 for Vulcanized Rubber Test Speed: 2.0″/min. and Thermoplastic Grip Separation: 0.65″ Elastomers—Tension -
Average Test Results Stress at 400% Elongation Peak Stress Elongation at Break Specimens (psi) (psi) (%) Sole 1704 949 636 Sling 421 259 743 - The problem of mounting a semi-rigid traction pad on a far more elastic sling was solved using the sewing methods disclosed in
FIGS. 4 and 6 , and in the construction of fore foot andhind foot portions fore foot portion 58 is depicted inFIG. 4 . The stitching preferably begins at point 72 and continues clockwise around the outer perimeter of the forefoot traction pad 68 indirection 73 until point 72 is again reached.Stitching 76 is then laid horizontally across forefoot traction pad 68 until just short of the first perimeter stitching at which point the stitching proceeds as shown byarrow 78 inFIG. 4 . Once the stitching reachespoint 79 stitching 80 again proceeds horizontally untilpoint 81, a position on or near the original stitching line, at which point the stitching is complete. It is preferred that thehorizontal stitching foot traction pad 68 into roughly in three equal parts. This stitching pattern, along with the support ofridge 35, secures the forefoot traction pad 68 tofore foot portion 58 even though attached to very flexible sling material. Another advantage of this method of stitching is that the stitching is continuous, which is more efficient and reduces manufacturing costs. Adhesive may be applied to the mating side of the forefoot traction pad 68 prior to stitching. - An alternate method of stitching fore
foot traction pad 68 on tofore foot portion 58 is depicted inFIG. 6 . The result of the method of stitching is similar to the method shown inFIG. 4 , with the exception that stitching is not continuous, and requires a stopping and restarting of the stitching process, which is less efficient than the method shown inFIG. 4 . As shown inFIG. 6 , in the alternative method the stitching preferably begins atpoint 89 and continues around the outer perimeter of forefoot traction pad 68, as in the preferred method, untilpoint 89 is again nearly reached. At point 89 a stitch line is made horizontally indirection 92 untilpoint 94 is reached on the far perimeter. The stitching is there terminated and restarted atpoint 93. The stitching then proceeds horizontally acrossforefoot traction pad 68 indirection 98 untilpoint 95 is reached and the stitching is there preferably concluded. - The preferred method for securing hind
foot traction pad 70 to hind foot portion 66 is best seen inFIGS. 4 and 6 . The stitching preferably begins atpoint 74 and continues around the outer perimeter of hindfoot traction pad 70, indirection 84, until the circuit is complete. Once back atpoint 74, the stitching proceeds horizontally across hindfoot traction pad 70 indirection 82 until the stitching reachespoint 75, at which point the stitching is preferably concluded. This stitching pattern, along with the support ofridge 27, secures the hindfoot traction pad 70 even though attached to very flexible sling material. Another advantage of this method of stitching is that the stitching is continuous, which is more efficient and reduces manufacturing costs. - As best seen in
FIGS. 1 and 3 ,traction sling 10 is applied toexemplary footwear 32 by a user placing one hand on either side ofcord 30. This is preferably accomplished withcord slide 52 as close toring 38 as possible to allow as much room between the opposing sides ofcord 30 as possible.Cord 30 is then pulled on by the user such that footwear is urged intotraction sling 10 untilfootwear 32 is fully inserted. Thereaftercord slide 52 can be moved toward the heel of the foot wear, if needed, to further secure the cord against the footwear and thus footwear totraction sling 10. The vertical flex joints 36 assist in increasing the flexibility ofsling 10 to accommodate footwear of differing vertical dimensions. Horizontal flex joints 34 increase the flexibility ofsling 10 to accommodate footwear with differing sole dimensions and configurations.Base flex window 28 is important to assist in increasing the flexibility ofsling 10 to accommodate footwear of differing lengths.Toe wing window 13 assists in increasing the flexibility ofsling 10 to accommodate toes of various footwear with different toe dimensions and configurations. - While the invention has been described in connection with what is presently considered to be the most practical and preferred embodiments, it will be apparent to those of ordinary skill in the art that the invention is not to be limited to the disclosed embodiments. It will be readily apparent to those of ordinary skill in the art that many modifications and equivalent arrangements can be made thereof without departing from the spirit and scope of the present disclosure, such scope to be accorded the broadest interpretation of the appended claims so as to encompass all equivalent structures and products. Moreover, features or aspects of various example embodiments may be mixed and matched (even if such combination is not explicitly described herein) without departing from the scope of the invention.
- For purposes of interpreting the claims for the present invention, it is expressly intended that the provisions of Section 112, sixth paragraph of 35 U.S.C. are not to be invoked unless the specific terms “means for” or “step for” are recited in a claim.
Claims (6)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/099,095 US20220104577A1 (en) | 2020-10-01 | 2020-11-16 | Multi-Surface Traction Sling |
EP21165141.9A EP4000442A1 (en) | 2020-11-16 | 2021-03-26 | Multi-surface traction sling |
CA3114008A CA3114008A1 (en) | 2020-11-16 | 2021-04-01 | Multi-surface traction sling |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US29/753,591 USD971572S1 (en) | 2020-10-01 | 2020-10-01 | Multi-surface traction sling |
US17/099,095 US20220104577A1 (en) | 2020-10-01 | 2020-11-16 | Multi-Surface Traction Sling |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US29/753,591 Continuation-In-Part USD971572S1 (en) | 2020-10-01 | 2020-10-01 | Multi-surface traction sling |
Publications (1)
Publication Number | Publication Date |
---|---|
US20220104577A1 true US20220104577A1 (en) | 2022-04-07 |
Family
ID=80930749
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/099,095 Abandoned US20220104577A1 (en) | 2020-10-01 | 2020-11-16 | Multi-Surface Traction Sling |
Country Status (1)
Country | Link |
---|---|
US (1) | US20220104577A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20210394039A1 (en) * | 2018-10-31 | 2021-12-23 | Compagnie Generale Des Etablissements Michelin | Snowshoe with Sole Comprising Crampon Areas |
USD971572S1 (en) * | 2020-10-01 | 2022-12-06 | Tenacious Holdings, Inc. | Multi-surface traction sling |
Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1407992A (en) * | 1920-10-22 | 1922-02-28 | Doody William Sidney Howard | Sandal or slipper |
US2193943A (en) * | 1939-03-16 | 1940-03-19 | Cecelia W Shea | Sandal |
US2685141A (en) * | 1951-09-20 | 1954-08-03 | Pearl N Davenport | Antiskid attachment for shoes |
US3019533A (en) * | 1960-03-09 | 1962-02-06 | Sherman S Smith | Creeper |
US5228216A (en) * | 1992-03-10 | 1993-07-20 | Wolverine World Wide, Inc. | Single point triangular adjustment system for sandals |
US5659978A (en) * | 1994-08-26 | 1997-08-26 | Michael Bell | Footwear having a sole with a toe strapping assembly |
US5794360A (en) * | 1997-03-07 | 1998-08-18 | Michael Bell | Non-slip sandal for use on other footwear and having strapping means for enabling tightness adjustment and rapid disconnection |
US5836090A (en) * | 1996-11-12 | 1998-11-17 | Korkers, Inc. | Non-slip sandal with wholly replaceable parts |
US20030226281A1 (en) * | 2002-06-10 | 2003-12-11 | Carlton L. Wayne | Detachable noise reduction and traction enhancing element for footwear |
US20070056187A1 (en) * | 2005-09-14 | 2007-03-15 | Burgess Richard C | Traction device |
US7222440B2 (en) * | 2004-03-04 | 2007-05-29 | Ben Dombowsky | Resilient strap-on sole cover |
US20160255907A1 (en) * | 2015-03-03 | 2016-09-08 | Russell Robison | Noise-attenuating attachment for footwear |
US10238169B2 (en) * | 2014-11-24 | 2019-03-26 | Nike, Inc. | Article of footwear with rod support system |
US10687584B2 (en) * | 2017-06-19 | 2020-06-23 | John R. Austin | Overshoe |
US11129434B2 (en) * | 2016-05-11 | 2021-09-28 | Daniel Opalacz | Y-strap sport sandal |
-
2020
- 2020-11-16 US US17/099,095 patent/US20220104577A1/en not_active Abandoned
Patent Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1407992A (en) * | 1920-10-22 | 1922-02-28 | Doody William Sidney Howard | Sandal or slipper |
US2193943A (en) * | 1939-03-16 | 1940-03-19 | Cecelia W Shea | Sandal |
US2685141A (en) * | 1951-09-20 | 1954-08-03 | Pearl N Davenport | Antiskid attachment for shoes |
US3019533A (en) * | 1960-03-09 | 1962-02-06 | Sherman S Smith | Creeper |
US5228216A (en) * | 1992-03-10 | 1993-07-20 | Wolverine World Wide, Inc. | Single point triangular adjustment system for sandals |
US5659978A (en) * | 1994-08-26 | 1997-08-26 | Michael Bell | Footwear having a sole with a toe strapping assembly |
US5836090A (en) * | 1996-11-12 | 1998-11-17 | Korkers, Inc. | Non-slip sandal with wholly replaceable parts |
US5794360A (en) * | 1997-03-07 | 1998-08-18 | Michael Bell | Non-slip sandal for use on other footwear and having strapping means for enabling tightness adjustment and rapid disconnection |
US20030226281A1 (en) * | 2002-06-10 | 2003-12-11 | Carlton L. Wayne | Detachable noise reduction and traction enhancing element for footwear |
US7222440B2 (en) * | 2004-03-04 | 2007-05-29 | Ben Dombowsky | Resilient strap-on sole cover |
US20070056187A1 (en) * | 2005-09-14 | 2007-03-15 | Burgess Richard C | Traction device |
US7703218B2 (en) * | 2005-09-14 | 2010-04-27 | Burgess Richard C | Traction device |
US10238169B2 (en) * | 2014-11-24 | 2019-03-26 | Nike, Inc. | Article of footwear with rod support system |
US20160255907A1 (en) * | 2015-03-03 | 2016-09-08 | Russell Robison | Noise-attenuating attachment for footwear |
US11129434B2 (en) * | 2016-05-11 | 2021-09-28 | Daniel Opalacz | Y-strap sport sandal |
US10687584B2 (en) * | 2017-06-19 | 2020-06-23 | John R. Austin | Overshoe |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20210394039A1 (en) * | 2018-10-31 | 2021-12-23 | Compagnie Generale Des Etablissements Michelin | Snowshoe with Sole Comprising Crampon Areas |
USD971572S1 (en) * | 2020-10-01 | 2022-12-06 | Tenacious Holdings, Inc. | Multi-surface traction sling |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20220104577A1 (en) | Multi-Surface Traction Sling | |
US4872273A (en) | Spike shoe slip | |
US9220313B2 (en) | Spare cleat | |
US4045888A (en) | Athletic shoe | |
US8657773B2 (en) | Ankle brace | |
US2801478A (en) | Auxiliary soles | |
US20210401125A1 (en) | Midsole traction device | |
US8256140B2 (en) | Personal traction device | |
US20230210221A1 (en) | Crampon with embedded cleats | |
US20140157630A1 (en) | Footwear Device | |
JPS62502246A (en) | Walking aids or anti-slip means for footwear | |
US20180055149A1 (en) | Crampons provided with spikes | |
EP4000442A1 (en) | Multi-surface traction sling | |
CN100411561C (en) | An antiskid safety crampon applicable to numerous shoe types | |
US2296660A (en) | Ice creeper | |
US20120266491A1 (en) | Slip resistant ski boot protection apparatus | |
US20080000104A1 (en) | Traction element for shoes | |
US20190387834A1 (en) | Shoe with a rotating cleat | |
JP7421733B2 (en) | Insole and shoes equipped with it | |
RU174657U1 (en) | DEVICE FOR PROTECTING SHOES FROM SLIDING | |
US20140196320A1 (en) | Anti-Slip Overshoe with Flexible Cleats and Method of Gripping Natural Surfaces | |
KR100263584B1 (en) | Crampons | |
CN217791675U (en) | Anti-static safety shoe convenient to put on and take off | |
US2372828A (en) | Antislip device | |
US20060096130A1 (en) | Slip resistant ski boot protection apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: TENACIOUS HOLDINGS, INC., MINNESOTA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:NELSON, ALSIE;ARIS, DOMINIQUE;SIGNING DATES FROM 20200902 TO 20200922;REEL/FRAME:054378/0887 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: ADVISORY ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |