US20220056723A1 - Parts assembly, panel, and tank - Google Patents

Parts assembly, panel, and tank Download PDF

Info

Publication number
US20220056723A1
US20220056723A1 US17/519,977 US202117519977A US2022056723A1 US 20220056723 A1 US20220056723 A1 US 20220056723A1 US 202117519977 A US202117519977 A US 202117519977A US 2022056723 A1 US2022056723 A1 US 2022056723A1
Authority
US
United States
Prior art keywords
flange
edge
wall
tank
spacing member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US17/519,977
Inventor
William BELANGER
Daniel CLICHE
Michel Gingras
Martin Richard
Stephane POMERLEAU
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Groupe Industries Fournier Inc
Original Assignee
Groupe Industries Fournier Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Groupe Industries Fournier Inc filed Critical Groupe Industries Fournier Inc
Priority to US17/519,977 priority Critical patent/US20220056723A1/en
Publication of US20220056723A1 publication Critical patent/US20220056723A1/en
Assigned to GROUPE INDUSTRIES FOURNIER INC. reassignment GROUPE INDUSTRIES FOURNIER INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: RICHARD, MARTIN, BELANGER, WILLIAM, CLICHE, Daniel, GINGRAS, MICHEL, POMERLEAU, STEPHANE
Abandoned legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H7/00Construction or assembling of bulk storage containers employing civil engineering techniques in situ or off the site
    • E04H7/02Containers for fluids or gases; Supports therefor
    • E04H7/04Containers for fluids or gases; Supports therefor mainly of metal
    • E04H7/06Containers for fluids or gases; Supports therefor mainly of metal with vertical axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D90/00Component parts, details or accessories for large containers
    • B65D90/02Wall construction
    • B65D90/08Interconnections of wall parts; Sealing means therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D88/00Large containers
    • B65D88/02Large containers rigid
    • B65D88/06Large containers rigid cylindrical
    • B65D88/08Large containers rigid cylindrical with a vertical axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D90/00Component parts, details or accessories for large containers
    • B65D90/02Wall construction
    • B65D90/023Modular panels
    • B65D90/024Modular panels with features of cylindrical curvature
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/38Connections for building structures in general
    • E04B1/388Separate connecting elements
    • E04B1/40
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/02Structures consisting primarily of load-supporting, block-shaped, or slab-shaped elements
    • E04B1/08Structures consisting primarily of load-supporting, block-shaped, or slab-shaped elements the elements consisting of metal

Definitions

  • the present technology relates to the field of assemblies for joining walls, and more specifically to parts assemblies, panels, and tanks.
  • Some such structures use flanges that abut each other to bolt together adjacent panels, those flanges being thick enough to support highly tightened bolts. Thick flanges increase material costs, and the joints will generally still require extensive welding.
  • a parts assembly including a first wall; a second wall, a first edge of the first wall facing a second edge of the second wall; a first flange connected to and extending outward from the first wall; a second flange connected to and extending outward from the second wall, the second flange being spaced from and disposed opposite the first flange; at least one fastener extending through and connecting the first flange and the second flange, the at least one fastener being pre-tensioned; and at least one rigid spacing member disposed between the first flange and the second flange, the at least one rigid spacing member being spaced from the at least one fastener, the at least one rigid spacing member being in contact with the first and second flanges, the at least one fastener being disposed between the at least one rigid spacing member and the first and second walls.
  • the first edge of the first wall abuts the second edge of the second wall.
  • the first flange is offset from the first edge; the second flange is offset from the second edge; and the first edge and the second edge are aligned with a space between the first flange and the second flange.
  • the first flange and the second flange are disposed equidistant from a corresponding one of the first edge and the second edge.
  • the at least one rigid spacing member is a rigid shim connected to one of the first flange and the second flange.
  • the rigid shim is welded to the first flange.
  • the at least one rigid spacing member is disposed between a first outward end of the first flange and a second outward end of the second flange, the first outward end and the second outward end being ends of the first and second flanges opposite the first wall and the second wall.
  • the at least one rigid spacing member is a single rigid spacing member extending along an entire height of the first flange and the second flange.
  • the first flange is welded to the first wall; and the second flange is welded to the second wall.
  • the parts assembly further includes at least one sealing member disposed between the first edge of the first wall and the second edge of the second wall, the first edge and the second edge abutting the at least one sealing member.
  • a parts assembly including a first wall; a second wall; a first flange connected to and extending outward from the first wall; a second flange connected to and extending outward from the second wall, the second flange being spaced from and disposed opposite the first flange; at least one rigid spacing member disposed between the first flange and the second flange, the at least one rigid spacing member being in contact with the first and second flanges, the first wall, the second wall, the first flange, the second flange, and the at least one rigid spacing member forming a closed perimeter defining a space; and at least one fastener extending through the first flange, the space, and the second flange and connecting the first flange to the second flange, the at least one fastener being pre-tensioned, the at least one fastener being spaced from the at least one rigid spacing member.
  • a parts assembly including a first wall; a second wall, a first edge of the first wall facing a second edge of the second wall; a first flange connected to and extending outward from the first wall; a second flange connected to and extending outward from the second wall, the second flange being spaced from and disposed opposite the first flange; at least one fastener extending through and connecting the first flange and the second flange, the at least one fastener being pre-tensioned; and at least one rigid spacing member disposed between the first flange and the second flange, the at least one rigid spacing member being spaced from the at least one fastener, the at least one rigid spacing member being in contact with the first and second flanges, the at least one rigid spacing member being disposed at at least one of: above the at least one fastener, and below the at least one fastener.
  • a tank including a first curved wall including a first edge extending vertically along the first curved wall; a second curved wall including a second edge extending vertically along the second curved wall, the first edge facing the second edge; a first flange connected to and extending vertically and radially outward from the first curved wall; a second flange connected to and extending vertically and radially outward from the second curved wall, the second flange being spaced from the first flange; at least one fastener extending horizontally through and connecting the first flange and the second flange, the at least one fastener being pre-tensioned; and at least one rigid spacing member disposed between the first flange and the second flange, the at least one rigid spacing member being spaced radially outward from the at least one fastener, the at least one rigid spacing member being in contact with the first and second flanges, the at least one fastener being disposed radially
  • the first edge abuts the second edge.
  • the first flange is offset from the first edge; the second flange is offset from the second edge; and the first edge and the second edge are aligned with a space between the first flange and the second flange.
  • the first flange and the second flange are disposed equidistant from a corresponding one of the first edge and the second edge.
  • the at least one rigid spacing member is a rigid shim connected to one of the first flange and the second flange.
  • the rigid shim is welded to the first flange.
  • the at least one rigid spacing member is disposed between a first outward end of the first flange and a second outward end of the second flange, the first outward end and the second outward end being ends of the first and second flanges radially outward of the first wall and the second wall.
  • the at least one rigid spacing member is a single rigid spacing member extending along an entire vertical height of the first flange and the second flange.
  • the first flange is welded to the first wall; and the second flange is welded to the second wall.
  • At least the first curved wall and the second curved wall form a first cylindrical wall assembly.
  • the first cylindrical wall assembly includes a first horizontal flange extending outward from a top edge of the first curved wall and a second horizontal flange extending outward from a top edge of the second curved wall, the first horizontal flange and the second horizontal flange defining a first circumferential flange of the first cylindrical wall assembly; and further including a second cylindrical wall assembly, the second cylindrical wall assembly including a second circumferential flange extending outward from a bottom edge of the second cylindrical wall, the second cylindrical wall assembly being disposed on top of the first cylindrical wall assembly, the first circumferential flange abutting and being fastened to the second circumferential flange.
  • the at least one fastener is a plurality of fasteners spaced vertically through the first flange and the second flange.
  • the tank further includes at least one sealing member disposed between the first edge and the second edge, the first edge and the second edge abutting the at least one sealing member.
  • a panel including a wall; a first flange having a first end connected to a first end portion of the wall, the first flange being offset from a first side edge of the first end portion, the first flange defining a first plurality of apertures for receiving fasteners therethrough; at least one rigid spacing member connected to a second end of the first flange, the second end of the first flange being opposite the first end of the first flange; a second flange having a first end connected to a second end portion of the wall, the second end portion being disposed opposite the first end portion, the second flange being offset from a second side edge of the second end portion, the second flange defining a second plurality of apertures for receiving the fasteners therethrough, the first plurality of apertures being defined between the first end portion of the wall and the at least one rigid spacing member; and at least one third flange connected to at least one of a top edge and a bottom edge of the
  • the at least one third flange includes: a top flange connected to the top edge of the wall; and a bottom flange connected to the bottom edge of the wall.
  • the at least one rigid spacing member is a single rigid spacing member extending along an entire vertical height of the first flange.
  • the first flange is welded to the first end portion of the wall; the second flange is welded to the second end portion of the wall; and the at least one rigid spacing member is welded to the first flange.
  • tank refers to any number of structures which includes, but is not limited to: a field-erected tank, a leaching tank, a cistern, a reservoir, a silo, a bin, a standpipe, a pumpbox, and a receptacle.
  • Embodiments of the present technology each have at least one of the above-mentioned object and/or aspects, but do not necessarily have all of them. It should be understood that some aspects of the present technology that have resulted from attempting to attain the above-mentioned object may not satisfy this object and/or may satisfy other objects not specifically recited herein.
  • FIG. 1 is a top, front side perspective view of a tank
  • FIG. 2 is a top, front side perspective of a panel of the tank of FIG. 1 , shown in isolation;
  • FIG. 3 is a partial, cross-sectional view of the panel of FIG. 2 , taken along line 3 - 3 of FIG. 2 ;
  • FIG. 4 is a close-up, partial view of the tank of FIG. 1 ;
  • FIG. 5 is a cross-sectional view of a flange assembly of the tank of FIG. 1 , taken along line 5 - 5 of FIG. 1 ;
  • FIG. 6 is a close-up partial view of another non-limiting embodiment of a flange assembly according to the present technology.
  • FIG. 7 is a cross-sectional view of the flange assembly of FIG. 6 , taken along line 7 - 7 of FIG. 6 ;
  • FIG. 8 is a cross-sectional view of another non-limiting embodiment of a flange assembly according to the present technology.
  • FIG. 9 is a close-up partial view of another non-limiting embodiment of a flange assembly according to the present technology.
  • FIG. 10 is a cross-sectional view of the flange assembly of FIG. 9 , taken along line 10 - 10 of FIG. 9 ;
  • FIG. 11 is a cross-sectional view of another non-limiting embodiment of a flange assembly according to the present technology.
  • FIG. 12 is a top, front side perspective view of another non-limiting embodiment of a tank according to the present technology.
  • FIG. 13 is a close-up partial view of another non-limiting embodiment of a flange assembly according to the present technology.
  • FIG. 14 is a cross-sectional view of the flange assembly of FIG. 13 , taken along line 14 - 14 of FIG. 13 ;
  • FIG. 15 is a cross-sectional view of another non-limiting embodiment of a flange assembly according to the present technology.
  • FIG. 16 is a cross-sectional view of yet another non-limiting embodiment of a flange assembly according to the present technology, with panels being spaced apart and fasteners having been removed;
  • FIG. 17 is a cross-sectional view of yet another non-limiting embodiment of a flange assembly according to the present technology, with panels being spaced apart and fasteners having been removed.
  • the present detailed description is intended to be only a description of illustrative examples of the present technology.
  • the following description relates to ways of manufacturing and designing a tank, a panel for a tank, and a parts assembly for joining two walls.
  • Other ways of manufacturing and designing the tank, the panel, and the assembly are contemplated and this technology would encompass these other known ways and designs.
  • a tank 100 according to an embodiment of the present technology is illustrated in FIG. 1 .
  • the illustrated tank 100 is a field-erected process tank, but it contemplated that the present technology could apply to different types of tanks 100 . It is further contemplated that the present technology is not generally restricted to tanks, but could be implemented in the construction of storage tanks, leaching tanks, reservoirs, silos, bins, standpipes, receptacles, pump boxes, and cisterns, whether composed of cylindrical or polygonal-shaped walls.
  • the tank 100 is built from three cylindrical wall assemblies 110 , each one being built from multiple panels 200 .
  • the bottommost cylindrical wall assembly 110 includes a door panel 130 , which allows access to an interior of the tank 100 during assembly or maintenance.
  • the door panel 130 is connected to the panels 200 of the bottommost cylindrical wall assembly 110 in the same manner as the panels 200 are connected together.
  • the panels 200 will be described in more detail below.
  • the wall assemblies 110 are vertically stacked and fastened together, as will be described below.
  • a roof 120 is also fastened to a topmost cylindrical wall assembly 110 .
  • a floor (not shown) is further fastened to a bottom-most cylindrical wall assembly 110 .
  • the tank 100 could be built from more or fewer cylindrical wall assemblies 110 . Some embodiments of the tank 100 may not include the roof 120 and/or the floor. In some embodiments without the roof 120 , the tank 100 could include a bridge connected to and extending over a top side of the tank 100 .
  • the upper two cylindrical wall assemblies 110 are built from three panels 200 fastened together, while the bottom most cylindrical wall assembly 110 is formed from four panels 200 . Depending on the specific embodiment, the cylindrical wall assemblies 110 could be formed from more or fewer panels 200 . Connecting the panels 200 together to form the wall assembly 110 will be described in more detail below. Some of the panels 200 have pipes 107 or other fixtures 109 extending therethrough.
  • Each cylindrical wall assembly 110 includes a top circumferential flange 112 and a bottom circumferential flange 114 . Both the top flange 112 and the bottom flange 114 define a plurality of through-holes.
  • one cylindrical wall portion 110 is stacked on top of another cylindrical wall portion 110 .
  • Fasteners are then inserted and fastened through the apertures of the bottom circumferential flange 114 of the wall assembly 110 on top and the apertures of the top circumferential flange 112 of the wall assembly 110 disposed below.
  • the bottom flange 114 of the bottommost cylindrical wall assembly 110 could be omitted in some embodiments.
  • the top flange 112 of the topmost cylindrical wall assembly 110 could be omitted in some embodiments.
  • one of the panels 200 is shown in isolation and will now be described in more detail. While one panel 200 of the tank 100 will be described, it should be noted that the remaining panels 200 are substantially similar to the panel 200 illustrated in FIG. 2 . The panels 200 are described with respect to their orientation when assembled together to form the tank 100 , but it is contemplated that the panels 200 could be reoriented in different embodiments.
  • the panel 200 includes a curved wall 202 .
  • the wall 202 is fairly flat or planar. It should be noted however that the wall 202 is quite large relative the end portions of the panel 200 illustrated in FIG. 3 and the curvature is simply not apparent in this figure. A central portion of the wall 202 has been omitted for simplicity.
  • the panel 200 could be more or less curved, depending on the embodiment.
  • the panel 200 is shaped to form a part of the circumference of the final tank 100 , and the curve and length of the wall 202 will depend on variables such as the desired circumference and radius of curvature of the tank 100 , as well as the number of panels 200 to be connected to form a given cylindrical wall assembly 110 .
  • the wall 202 could be planar or nearly planar, for example when implementing the panels 200 for construction of a slurry pumpbox.
  • the panels 200 are formed from carbon steel.
  • the materials used to form the panels 200 , or even the components (described below) of the panels could vary depending on the specific application.
  • the panels 200 , or the panel components could be made from materials including, but not limited to: industrial grade plastic, hardened steel, aluminum, and stainless steel.
  • Some of the panels 200 also include two reinforcing ribs 216 , but it is contemplated that the panels 200 could include more or fewer ribs 216 .
  • the panels 200 of the bottommost cylindrical wall assembly 110 for instance, do not include reinforcing ribs 216 .
  • the panel 200 includes a top horizontal flange 212 extending radially outward along and welded to a top edge of the wall 202 .
  • the panel 200 also includes a bottom horizontal flange 214 extending radially outward along and welded to a bottom edge of the wall 202 .
  • the three top horizontal flanges 212 form the top circumferential flange 112 and the three bottom horizontal flanges 214 form the bottom circumferential flange 114 .
  • Both the top horizontal flange 212 and the bottom horizontal flange 214 define a plurality of through-holes for receiving the fasteners for fastening one cylindrical wall assembly 110 to another, as described above.
  • the wall 202 has a right side end portion 204 , as viewed from an exterior side of the tank 100 , with a vertical edge 206 .
  • the panel 200 also has a left side end portion 208 with a vertical edge 210 .
  • Each edge 206 , 210 is beveled to form a v-shaped groove when two panels 200 abut, as will be described in more detail below.
  • edges 206 , 210 could be differently shaped, for example to form a u-shaped groove when two panels 200 abut. It is also contemplated that the edges 206 , 210 could be flat such that no groove is formed when two panels 200 abut.
  • the panel 200 includes a right flange 220 welded to an exterior side of the right side portion 204 by inner and outer welds 205 .
  • the flange 220 is offset from the edge 206 and extends along the vertical length of the wall 202 .
  • the flange 220 defines a plurality of apertures 222 for receiving fasteners therethrough, as will be described in more detail below.
  • the panel 200 further includes a left flange 230 welded to the left side portion 208 by inner and outer welds 209 .
  • the flange 230 is offset from the edge 210 and extends along the vertical length of the wall 202 .
  • the flange 230 defines a plurality of apertures 232 for receiving fasteners therethrough, as will be described in more detail below.
  • the flanges 212 , 214 , 220 , 230 all extend in a same direction away from the wall 202 , specifically in the radial direction outward, away from the wall 202 . While the flanges 212 , 214 , 220 , 230 are welded to the wall 202 , it is contemplated that the flanges 212 , 214 , 220 , 230 could be connected to the wall 202 in any one of many different manners depending on the application. Methods of connecting one or more of the flanges 212 , 214 , 220 , 230 to the wall 202 could include, but are not limited to: fastening, gluing, epoxying, and soldering.
  • the flanges 220 , 230 are offset from their respective edges 206 , 210 by an equal distance.
  • the flange 220 could be disposed nearer to or farther from the edge 206 than the flange 230 is disposed to the edge 210 .
  • one of the flanges 220 , 230 could be integrally formed with the wall 202 , as will be described below with regards to FIG. 15 .
  • the panel 200 includes a rigid spacing member 250 connected to an outward end of the right flange 220 .
  • the rigid spacing member 250 is spaced from the apertures 222 , and as such is spaced from fasteners received therethrough when the flange 220 is connected to another panel 200 (described below).
  • the rigid spacer 250 could be connected to the left flange 230 .
  • the rigid spacer 250 could be integral to one of the flanges 220 , 230 .
  • the rigid spacing member 250 could be provided separately from the panel 200 , such that the rigid spacing member 250 is disposed between adjacent panels 200 only upon assembly of the cylindrical wall assembly 110 or the tank 100 .
  • the rigid spacing member 250 is a carbon steel shim 250 welded to a right side of the right flange 220 by a weld 251 . It is contemplated that the rigid spacing member 250 could take various forms depending on specifics of a given embodiment, including but not limited to: stainless steel, aluminum, hardened plastic, and various other metals.
  • the rigid spacing member 250 extends vertically along an entire height of the flange 220 . In some embodiments, however, the rigid spacing member 250 could extend only along portions of the flange 220 .
  • the rigid spacing member 250 could be a series of rigid spacing members 250 disposed along the height of the flange 220 . It is also contemplated that some of the panels 200 may include one rigid spacing member 250 connected to each of the flanges 220 , 230 . In such an embodiment, neighboring panels 200 may omit the rigid spacing member 250 completely, assuming that the assembly 110 of such an embodiment contains an even number of panels 200 . In other such embodiments, all the panels 200 may include the two rigid spacing members 250 , where the walls 202 and the flanges 220 , 230 of each panel 200 are adapted such that the rigid spacing member 250 of one panel 200 abuts the corresponding rigid spacing member 250 of the neighboring panel 200 .
  • connection between two adjacent panels 200 will now be described with regard to FIGS. 4 and 5 , where the contact area between two adjacent panels 200 can be seen in more detail.
  • the panel 200 disposed to the left of the contact area will be referred to as the left panel 200 a and the panel 200 disposed to the right of the contact area will be referred to as the right panel 200 b.
  • reference numerals for elements of the panel 200 a will be provided with the suffix “a”
  • reference numeral for elements of the panel 200 b will be provided with the suffix “b”.
  • the edge 206 a and the edge 210 b come together and face each other.
  • the edges 206 a, 210 b are directly abutting.
  • the rigid spacing member 250 a contacts the flange 230 b, such that the rigid spacing member 250 a is disposed between and in contact with both flanges 220 a, 230 b.
  • the walls 202 a, 202 b, the flanges 220 a, 230 b, and the rigid spacing member 250 a form a closed perimeter defining a space 258 .
  • the flange 220 a is spaced from, and disposed opposite the flange 230 b.
  • the flanges 220 a, 230 b are each offset from their respective edges 206 a, 210 b.
  • the edges 206 a, 210 b are aligned and centered with the space between the 220 a, 230 b.
  • flanges 220 a, 230 b are equidistant from their respective edges 206 a, 210 b, it is contemplated that the flanges 220 a, 230 b could each be nearer to or farther from their respective edges 206 a, 210 b so long as the flanges 220 a, 230 b remain spaced from each other.
  • a plurality of fasteners 260 are inserted through the apertures 222 a in the flange 220 a and the apertures 232 b in the flange 230 b.
  • the fasteners 260 extend through the flange 220 a, the space 258 , and the flange 230 b, connecting the flange 220 a to the flange 230 b.
  • the fasteners 260 are bolts and nuts 260 extending horizontally through the apertures 222 a, 232 b to connect the flanges 220 a, 230 b.
  • the bolts 260 when installed in the flanges 220 a, 230 b, are disposed radially between the walls 202 a, 202 b and the rigid spacing member 250 a.
  • the bolts 260 when installed, are aligned with each other and are spaced vertically through the flanges 220 a, 230 b. It is contemplated that different kinds of fasteners could be used to connect the flanges 220 a, 230 b, including but not limited to: rivets and dowel pins.
  • the bolts 260 are pre-tensioned. Specifically, the bolts 260 are tightened to a pre-determined torque, which forces the flanges 220 a, 230 b, and thus the connected walls 202 a, 202 b, toward each other. It is contemplated that in some cases the edges 206 a, 210 b may not necessarily form a dust- or liquid-proof seal, for example where the tank 100 is destined to store larger rocks, etc.
  • Adjustable fastener properties could include, but are not limited to: number of fasteners 260 , material of the fasteners 260 and fastener size.
  • Properties to be determined for the wall 202 and the flanges 220 , 230 could include, but are not limited to: thickness, width of each flange 220 , 230 , material of the wall 202 , and material of each flange 220 , 230 . Properties are selected such that the resulting assembly 299 produces an adequate contact between the walls 202 and/or the spacing member 250 and the flange 220 to withstand usage for the specific application considered.
  • the fasteners 260 having been pre-tensioned, the resulting assembly will generally maintain contact without shifting or relative movement between panels 200 , whether the tank 100 is under pressure, has been filled, or is empty.
  • pre-tensioning the fasteners 260 disposed radially between two contact areas (the edges 206 , 210 and the flange 220 and the spacing member 250 )
  • the forces on the panels 200 are distributed toward the contact areas and thus over a larger area.
  • the tension forces may tend to be concentrated near the fasteners 260 and thus the forces holding the panels 200 together are distributed over a smaller area. This can lead to a greater likelihood of relative movement or shifting between panels 200 when the tank 100 sees an increase in pressure (i.e. when the tank 100 is being filled).
  • sealing the walls 202 by pre-tensioning the fasteners 260 may also produce a decrease in the field work necessary during assembly of the tank 100 .
  • the rigid spacing member 250 a is not connected to one of the flanges 220 a, 230 b, the rigid spacing member 250 a is inserted between the flanges 220 a, 230 b before the bolts 260 are pre-tensioned.
  • the rigid spacing member 250 a aids in keeping the edges 206 a, 210 b in contact.
  • the rigid spacing member 250 a contacts the flanges 220 a, 230 b on exterior portions of the flanges 220 a, 230 b, on a side of the bolts 260 opposite the edges 206 a, 210 b.
  • the exterior portions of the flanges 220 a, 230 b cannot move toward each other, thereby keeping inward and outward ends of the flanges 220 a, 230 b approximately equidistant. In this way, the edges 206 a, 210 b are similarly forced together and remain in contact.
  • a 3 mm groove weld is performed along the edges 206 a, 210 b, specifically on an interior side of the walls 202 a, 202 b where the edges 206 a, 210 b form a beveled v-shaped groove. It is contemplated that different types of welds may be performed on the interior side of the walls 202 a, 202 b, but need not be the time-consuming welding method of the prior art. In some embodiments, the pre-tensioning of the bolts 260 is sufficient to cause a plasticisation of the two edges 206 a, 210 b to further aid in preventing materials from passing between the edges 206 a, 210 b. It is also contemplated that different preparations could be applied to the edges 206 a, 210 b before, during, or after assembly, including for example, epoxies or sealants.
  • a sealant material could be applied between the edges 206 a, 210 b : either to one of the edges 206 a, 210 b or both of the edges 206 a, 210 b.
  • a bonding material such as a glue or epoxy, could be applied between the edges 206 a, 210 b : either to one of the edges 206 a, 210 b or both of the edges 206 a, 210 b.
  • a sealant or polymer could be applied to any of the interior side of the edges 206 a, 210 b, an interior side of the panels 200 or the tank 100 , or in the vicinity of the edges 206 a, 210 b.
  • the assembly made up of the walls 202 a, 202 b, the flanges 220 a, 230 b, the rigid spacing member 250 , and the fasteners 260 is also referred to herein as a parts assembly 299 . While the connection of the panels 200 a, 200 b is described herein relative to their use in constructing the tank 100 , it should be noted that the parts assembly 299 could apply to creating secure connections between different types of walls. For example, the parts assembly 299 , as well as the different embodiments of parts assemblies described herein below, could be utilized to secure the walls of many different apparatuses.
  • flange assembly 299 could be generally annular, wrapping around the circumference of the pipe rather than extending along its length.
  • FIGS. 6 and 7 another non-limiting embodiment of a parts assembly 399 of adjacent end portions of a left panel 300 a and a right panel 300 b, according to the present technology is illustrated. Elements of the assembly 399 and the panels 300 that are similar to those of the assembly 299 and the panels 200 retain the same reference numeral.
  • the parts assembly 399 includes a flange 320 a extending outward from the wall 202 a of the left panel 300 a and a flange 330 b extending outward from the wall 202 b of the right panel 300 b.
  • the flange 320 a defines a plurality of staggered apertures 322 a and 324 a.
  • the apertures 322 a and 324 a extend vertically along the flange 320 a, with all of the apertures 322 a being radially aligned with one another and all of the apertures 324 a being radially aligned with one another.
  • the apertures 322 a are horizontally closer to the wall 202 a than the apertures 324 a.
  • the flange 330 b defines a plurality of corresponding staggered apertures 332 b and 334 b, with all of the apertures 332 a being radially aligned with one another and all of the apertures 334 a being radially aligned with one another.
  • the apertures 332 a are horizontally closer to the wall 202 a than the apertures 334 a.
  • FIG. 8 another non-limiting embodiment of a parts assembly 499 of adjacent end portions of two panels 400 according to the present technology are illustrated. Elements of the assembly 499 and the panels 400 that are similar to those of the assembly 299 and the panels 200 retain the same reference numeral.
  • the parts assembly 499 includes a sealing member 480 for aiding in creating a seal between the edges 206 a, 210 b of the walls 202 a, 202 b. Rather than abutting directly, the edges 206 a and 210 b each abut and compress the sealing member 480 .
  • the bolts 260 are pre-tensioned as described above, and the sealing member 480 simply aids in further sealing the edges 206 a, 210 b.
  • the sealing member 480 is a rubber gasket 480 , but it is contemplated that the sealing member 480 could take various forms, including but not limited to: a plastic gasket, polyurethane member, epoxy, and any of various elastomer members. While illustrated as extending only slightly past the walls 202 a, 220 b, it is contemplated that the sealing member 480 could extend farther into the space between the flanges 220 a, 230 b. It is contemplated that the sealing member 480 may be received in a recess defined on an interior side of the wall 202 or the flanges 220 a, 230 b.
  • the parts assembly 499 also includes a rigid spacing member 450 a connected to the flange 220 a. It is contemplated that the rigid spacing member 450 a could be connected to the flange 230 b, or could simply be disposed between the flanges 220 a, 230 b. Similarly to the member 250 , the rigid spacing member 450 a is a metal shim 450 a welded to the flange 220 a.
  • the shim 450 is welded to a more central portion of the flange 220 a and is not welded to the exterior edge of the flange 220 a, although still disposed between the bolts 260 and the exterior edge of the flanges 220 a, 230 b.
  • FIGS. 9 and 10 another non-limiting embodiment of a parts assembly 599 of adjacent end portions of two panels 500 according to the present technology are illustrated. Elements of the assembly 599 and the panels 500 that are similar to those of the assembly 299 and the panels 200 retain the same reference numeral.
  • the parts assembly 599 includes a plurality of radially extending rigid spacing members 550 connected to the flange 220 a.
  • the rigid spacing members 550 are metal shim spacers 550 in the present embodiment, but this is just one non-limiting example as before.
  • the spacers 550 extend radially outward of the bolts 260 . It is contemplated that the spacers 550 could be longer or shorter than the illustrated embodiment, depending on the specific application.
  • the shims 550 are welded to the right flange 220 a, but it is contemplated that the shims 550 could be welded or otherwise connected to the flange 230 b in some embodiments.
  • the shims 550 could be connected to the flange 220 a, while the remaining shims 550 could be connected to the flange 230 b. It is also contemplated that the shims 550 could be inserted between the flanges 220 a, 230 b during assembly of the parts assembly 599 . In some embodiments, it is contemplated that the shims 550 could be included with the parts assembly 299 , where the shims 550 could be inserted between 2 or more bolts 260 , in addition to the rigid spacing member 250 .
  • FIG. 11 another non-limiting embodiment of a parts assembly 699 of adjacent end portions of two panels 600 according to the present technology are illustrated. Elements of the assembly 699 and the panels 600 that are similar to those of the assembly 299 and the panels 200 retain the same reference numeral.
  • the parts assembly 699 includes a rigid spacing member 650 a connected to the flange 220 a and a rigid spacing member 650 b connected to the flange 230 b.
  • the rigid spacing members 650 a, b are metal shim spacers 650 a, b in the present embodiment, but this is just one non-limiting example as before.
  • the rigid spacing member 650 a abuts the rigid spacing member 650 b when the panels 600 a, b are connected together as describe above for the panels 200 .
  • FIG. 12 Another non-limiting embodiment of a tank 700 according to the present technology is illustrated in FIG. 12 . Elements of the tank 700 and the panels 750 that are similar to those of the tank 100 and the panels 200 retain the same reference numeral
  • the tank 700 is made from six vertically extending panels 750 . In contrast to the panels 200 , the panels 750 extend vertically to the full height of the tank 700 . As such, the tank 700 is not composed of the multiple cylindrical wall assemblies 110 of the tank 100 , but is rather directly formed by the panels 750 . Depending on the specific embodiment, it is contemplated that the tank 700 could be made from more or fewer panels 750 .
  • FIGS. 13 and 14 another non-limiting embodiment of a parts assembly 899 of adjacent end portions of a left panel 800 a and a right panel 800 b, according to the present technology is illustrated. Elements of the assembly 899 and the panels 800 that are similar to those of the assembly 299 and the panels 200 retain the same reference numeral.
  • the parts assembly 899 includes a flange 820 a extending outward from the wall 202 a of the left panel 800 a and a flange 830 b extending outward from the wall 202 b of the right panel 800 b.
  • the flange 820 a defines a plurality of horizontally aligned apertures 822 a and 824 a.
  • the apertures 822 a and 824 a extend vertically along the flange 820 a, with all of the apertures 822 a being radially aligned with one another and all of the apertures 824 a being radially aligned with one another and each aperture 822 a having a corresponding aperture 824 a vertically aligned with it.
  • the apertures 822 a are horizontally closer to the wall 202 a than the apertures 824 a.
  • the flange 830 b defines a plurality of corresponding horizontally aligned apertures 832 b and 834 b, with all of the apertures 832 a being radially aligned with one another and all of the apertures 834 a being radially aligned with one another and each aperture 832 a having a corresponding aperture 834 a vertically aligned with it.
  • the apertures 832 a are horizontally closer to the wall 202 a than the apertures 834 a.
  • FIG. 15 another non-limiting embodiment of a parts assembly 999 of adjacent end portions of two panels 900 according to the present technology are illustrated. Elements of the assembly 999 and the panels 900 that are similar to those of the assembly 299 and the panels 200 retain the same reference numeral.
  • the right side end portion 204 a of a panel 900 a has a right flange 920 integrally formed with the wall 202 a.
  • the flange 920 a is aligned with the edge 206 a and extends along the vertical length of the wall 202 a.
  • the flange 920 defines the plurality of apertures 222 a for receiving fasteners therethrough, as was described in relation to the flange 220 above.
  • the panel 900 b further includes the left flange 230 b, as is shown in FIG. 15 and which was described in more detail above.
  • FIG. 16 yet another non-limiting embodiment of a parts assembly 1099 of adjacent end portions of two panels 1000 (a panel 1000 a and a panel 1000 b ) according to the present technology are illustrated. Elements of the assembly 1099 and the panels 1000 that are similar to those of the assembly 299 and the panels 200 retain the same reference numeral.
  • the side end portion 204 a of the panel 1000 a has a flange 1020 a connected to and abutting the edge 206 a of the wall 202 a.
  • the flange 1020 a is welded directly to the edge 206 a by an inner weld 1005 a.
  • the edge 210 b abuts the flange 1020 a when panels 1000 a and 1000 b are connected, rather than abutting the edge 206 a.
  • the side end portion 208 b of a panel 1000 b has a flange 1030 connected to the wall 202 b by inner and outer welds 1009 b, offset from the edge 210 b.
  • the flange 1030 has a rectangular cross section, such that both welds 1009 b are disposed toward an exterior of the panel 1000 b.
  • the rigid spacing member 250 is welded to the flange 1030 in the illustrated embodiment.
  • FIG. 17 A modified version of the panel assembly 1099 , identified as panel assembly 1099 ′, is illustrated in FIG. 17 .
  • a panel 1000 b ′ includes a flange 1030 b ′.
  • the flange 1030 b ′ is welded to the wall 202 b by the outer weld 1009 b, as before, as well as an inner weld 1009 b ′ which is disposed in an undercut in the flange 1030 b′.

Abstract

A parts assembly, a tank, and a panel discussed, including a first wall; a second wall, a first edge of the first wall facing a second edge of the second wall; a first flange connected to and extending outward from the first wall; a second flange connected to and extending outward from the second wall, the second flange being spaced from and disposed opposite the first flange; at least one fastener extending through and connecting the first flange and the second flange, the at least one fastener being pre-tensioned; and at least one rigid spacing member disposed between the first flange and the second flange, the rigid spacing member being spaced from the at least one fastener, the rigid spacing member being in contact with the first and second flanges, the at least one fastener being disposed between the rigid spacing member and the first and second walls.

Description

    CROSS-REFERENCE
  • The present application is a divisional application of U.S. patent application Ser. No. 16/957,945, entitled “Parts Assembly, Panel, and Tank”, filed Jun. 25, 2020, which is a National Phase Entry of International Patent Application No. PCT/CA2019/1050341, filed Mar. 20, 2019, which claims priority to U.S. Provisional Application No. 62/646,666, entitled “Parts Assembly, Panel, and Tank”, filed Mar. 22, 2018, the entirety of each of which is incorporated herein by reference.
  • FIELD OF TECHNOLOGY
  • The present technology relates to the field of assemblies for joining walls, and more specifically to parts assemblies, panels, and tanks.
  • BACKGROUND
  • Large storage structures, such as field-erected tanks, leaching tanks, or cisterns, are often constructed from many metal panels bolted and/or welded together, directly at the structure's desired location. Overall costs of such field-erected structures include not only material costs, but also the time necessary to assemble the structure.
  • In order to prevent leakage of materials, especially liquids, through the panels assembled together, the edges of the panels are welded together. Large welds passing through the thickness of the wall are necessary to hold and seal the panels together, using, for example, forge welding or butt welding. While generally effective for providing structural strength for the assembly and for sealing the joint between the walls, these types of welding are highly time consuming and specialized work. Each additional joint to weld is therefore a significant increase of costs for the overall structure. Further, time on-site spent welding panels together cannot generally be reduced by pre-welding panels together, as such structures generally must be assembled and welded on-site due to their large size.
  • Some such structures use flanges that abut each other to bolt together adjacent panels, those flanges being thick enough to support highly tightened bolts. Thick flanges increase material costs, and the joints will generally still require extensive welding.
  • There is therefore a desire for structures that can be assembled and sealed in a time and cost efficient manner.
  • SUMMARY
  • It is an object of the present technology to ameliorate at least some of the inconveniences present in the prior art.
  • According to a first broad aspect of the present technology, there is provided a parts assembly including a first wall; a second wall, a first edge of the first wall facing a second edge of the second wall; a first flange connected to and extending outward from the first wall; a second flange connected to and extending outward from the second wall, the second flange being spaced from and disposed opposite the first flange; at least one fastener extending through and connecting the first flange and the second flange, the at least one fastener being pre-tensioned; and at least one rigid spacing member disposed between the first flange and the second flange, the at least one rigid spacing member being spaced from the at least one fastener, the at least one rigid spacing member being in contact with the first and second flanges, the at least one fastener being disposed between the at least one rigid spacing member and the first and second walls.
  • In some embodiments of the present technology, the first edge of the first wall abuts the second edge of the second wall.
  • In some embodiments of the present technology, the first flange is offset from the first edge; the second flange is offset from the second edge; and the first edge and the second edge are aligned with a space between the first flange and the second flange.
  • In some embodiments of the present technology, the first flange and the second flange are disposed equidistant from a corresponding one of the first edge and the second edge.
  • In some embodiments of the present technology, the at least one rigid spacing member is a rigid shim connected to one of the first flange and the second flange.
  • In some embodiments of the present technology, the rigid shim is welded to the first flange.
  • In some embodiments of the present technology, the at least one rigid spacing member is disposed between a first outward end of the first flange and a second outward end of the second flange, the first outward end and the second outward end being ends of the first and second flanges opposite the first wall and the second wall.
  • In some embodiments of the present technology, the at least one rigid spacing member is a single rigid spacing member extending along an entire height of the first flange and the second flange.
  • In some embodiments of the present technology, the first flange is welded to the first wall; and the second flange is welded to the second wall.
  • In some embodiments of the present technology, the parts assembly further includes at least one sealing member disposed between the first edge of the first wall and the second edge of the second wall, the first edge and the second edge abutting the at least one sealing member.
  • According to another broad aspect of the present technology, there is provided a parts assembly including a first wall; a second wall; a first flange connected to and extending outward from the first wall; a second flange connected to and extending outward from the second wall, the second flange being spaced from and disposed opposite the first flange; at least one rigid spacing member disposed between the first flange and the second flange, the at least one rigid spacing member being in contact with the first and second flanges, the first wall, the second wall, the first flange, the second flange, and the at least one rigid spacing member forming a closed perimeter defining a space; and at least one fastener extending through the first flange, the space, and the second flange and connecting the first flange to the second flange, the at least one fastener being pre-tensioned, the at least one fastener being spaced from the at least one rigid spacing member.
  • According to another broad aspect of the present technology, there is provided a parts assembly including a first wall; a second wall, a first edge of the first wall facing a second edge of the second wall; a first flange connected to and extending outward from the first wall; a second flange connected to and extending outward from the second wall, the second flange being spaced from and disposed opposite the first flange; at least one fastener extending through and connecting the first flange and the second flange, the at least one fastener being pre-tensioned; and at least one rigid spacing member disposed between the first flange and the second flange, the at least one rigid spacing member being spaced from the at least one fastener, the at least one rigid spacing member being in contact with the first and second flanges, the at least one rigid spacing member being disposed at at least one of: above the at least one fastener, and below the at least one fastener.
  • According to yet another broad aspect of the present technology, there is provided a tank including a first curved wall including a first edge extending vertically along the first curved wall; a second curved wall including a second edge extending vertically along the second curved wall, the first edge facing the second edge; a first flange connected to and extending vertically and radially outward from the first curved wall; a second flange connected to and extending vertically and radially outward from the second curved wall, the second flange being spaced from the first flange; at least one fastener extending horizontally through and connecting the first flange and the second flange, the at least one fastener being pre-tensioned; and at least one rigid spacing member disposed between the first flange and the second flange, the at least one rigid spacing member being spaced radially outward from the at least one fastener, the at least one rigid spacing member being in contact with the first and second flanges, the at least one fastener being disposed radially between the at least one rigid spacing member and the first and second walls.
  • In some embodiments of the present technology, the first edge abuts the second edge.
  • In some embodiments of the present technology, the first flange is offset from the first edge; the second flange is offset from the second edge; and the first edge and the second edge are aligned with a space between the first flange and the second flange.
  • In some embodiments of the present technology, the first flange and the second flange are disposed equidistant from a corresponding one of the first edge and the second edge.
  • In some embodiments of the present technology, the at least one rigid spacing member is a rigid shim connected to one of the first flange and the second flange.
  • In some embodiments of the present technology, the rigid shim is welded to the first flange.
  • In some embodiments of the present technology, the at least one rigid spacing member is disposed between a first outward end of the first flange and a second outward end of the second flange, the first outward end and the second outward end being ends of the first and second flanges radially outward of the first wall and the second wall.
  • In some embodiments of the present technology, the at least one rigid spacing member is a single rigid spacing member extending along an entire vertical height of the first flange and the second flange.
  • In some embodiments of the present technology, the first flange is welded to the first wall; and the second flange is welded to the second wall.
  • In some embodiments of the present technology, at least the first curved wall and the second curved wall form a first cylindrical wall assembly.
  • In some embodiments of the present technology, the first cylindrical wall assembly includes a first horizontal flange extending outward from a top edge of the first curved wall and a second horizontal flange extending outward from a top edge of the second curved wall, the first horizontal flange and the second horizontal flange defining a first circumferential flange of the first cylindrical wall assembly; and further including a second cylindrical wall assembly, the second cylindrical wall assembly including a second circumferential flange extending outward from a bottom edge of the second cylindrical wall, the second cylindrical wall assembly being disposed on top of the first cylindrical wall assembly, the first circumferential flange abutting and being fastened to the second circumferential flange.
  • In some embodiments of the present technology, the at least one fastener is a plurality of fasteners spaced vertically through the first flange and the second flange.
  • In some embodiments of the present technology, the tank further includes at least one sealing member disposed between the first edge and the second edge, the first edge and the second edge abutting the at least one sealing member.
  • According to yet another broad aspect of the present technology, there is provided a panel including a wall; a first flange having a first end connected to a first end portion of the wall, the first flange being offset from a first side edge of the first end portion, the first flange defining a first plurality of apertures for receiving fasteners therethrough; at least one rigid spacing member connected to a second end of the first flange, the second end of the first flange being opposite the first end of the first flange; a second flange having a first end connected to a second end portion of the wall, the second end portion being disposed opposite the first end portion, the second flange being offset from a second side edge of the second end portion, the second flange defining a second plurality of apertures for receiving the fasteners therethrough, the first plurality of apertures being defined between the first end portion of the wall and the at least one rigid spacing member; and at least one third flange connected to at least one of a top edge and a bottom edge of the wall, the first flange, the second flange, and the third flange extending in a same direction away from the wall.
  • In some embodiments of the present technology, the at least one third flange includes: a top flange connected to the top edge of the wall; and a bottom flange connected to the bottom edge of the wall.
  • In some embodiments of the present technology, the at least one rigid spacing member is a single rigid spacing member extending along an entire vertical height of the first flange.
  • In some embodiments of the present technology, the first flange is welded to the first end portion of the wall; the second flange is welded to the second end portion of the wall; and the at least one rigid spacing member is welded to the first flange.
  • For purposes of this application, terms related to spatial orientation are defined with respect to the standard operational orientation of the tank. Specifically, vertical is meant to represent a direction generally orthogonal to the ground upon which the tank rests when oriented in its standard operational orientation.
  • For purposes of this application, the term “tank” refers to any number of structures which includes, but is not limited to: a field-erected tank, a leaching tank, a cistern, a reservoir, a silo, a bin, a standpipe, a pumpbox, and a receptacle.
  • Embodiments of the present technology each have at least one of the above-mentioned object and/or aspects, but do not necessarily have all of them. It should be understood that some aspects of the present technology that have resulted from attempting to attain the above-mentioned object may not satisfy this object and/or may satisfy other objects not specifically recited herein.
  • Additional and/or alternative features, aspects and advantages of embodiments of the present technology will become apparent from the following description, the accompanying drawings and the appended claims.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • For a better understanding of the present technology, as well as other aspects and further features thereof, reference is made to the following description which is to be used in conjunction with the accompanying drawings, where:
  • FIG. 1 is a top, front side perspective view of a tank;
  • FIG. 2 is a top, front side perspective of a panel of the tank of FIG. 1, shown in isolation;
  • FIG. 3 is a partial, cross-sectional view of the panel of FIG. 2, taken along line 3-3 of FIG. 2;
  • FIG. 4 is a close-up, partial view of the tank of FIG. 1;
  • FIG. 5 is a cross-sectional view of a flange assembly of the tank of FIG. 1, taken along line 5-5 of FIG. 1;
  • FIG. 6 is a close-up partial view of another non-limiting embodiment of a flange assembly according to the present technology;
  • FIG. 7 is a cross-sectional view of the flange assembly of FIG. 6, taken along line 7-7 of FIG. 6;
  • FIG. 8 is a cross-sectional view of another non-limiting embodiment of a flange assembly according to the present technology;
  • FIG. 9 is a close-up partial view of another non-limiting embodiment of a flange assembly according to the present technology;
  • FIG. 10 is a cross-sectional view of the flange assembly of FIG. 9, taken along line 10-10 of FIG. 9;
  • FIG. 11 is a cross-sectional view of another non-limiting embodiment of a flange assembly according to the present technology;
  • FIG. 12 is a top, front side perspective view of another non-limiting embodiment of a tank according to the present technology;
  • FIG. 13 is a close-up partial view of another non-limiting embodiment of a flange assembly according to the present technology;
  • FIG. 14 is a cross-sectional view of the flange assembly of FIG. 13, taken along line 14-14 of FIG. 13;
  • FIG. 15 is a cross-sectional view of another non-limiting embodiment of a flange assembly according to the present technology;
  • FIG. 16 is a cross-sectional view of yet another non-limiting embodiment of a flange assembly according to the present technology, with panels being spaced apart and fasteners having been removed; and
  • FIG. 17 is a cross-sectional view of yet another non-limiting embodiment of a flange assembly according to the present technology, with panels being spaced apart and fasteners having been removed.
  • It should be noted that the Figures may not be drawn to scale.
  • DETAILED DESCRIPTION
  • The present detailed description is intended to be only a description of illustrative examples of the present technology. The following description relates to ways of manufacturing and designing a tank, a panel for a tank, and a parts assembly for joining two walls. Other ways of manufacturing and designing the tank, the panel, and the assembly are contemplated and this technology would encompass these other known ways and designs.
  • A tank 100 according to an embodiment of the present technology is illustrated in FIG. 1. The illustrated tank 100 is a field-erected process tank, but it contemplated that the present technology could apply to different types of tanks 100. It is further contemplated that the present technology is not generally restricted to tanks, but could be implemented in the construction of storage tanks, leaching tanks, reservoirs, silos, bins, standpipes, receptacles, pump boxes, and cisterns, whether composed of cylindrical or polygonal-shaped walls.
  • The tank 100 is built from three cylindrical wall assemblies 110, each one being built from multiple panels 200. The bottommost cylindrical wall assembly 110 includes a door panel 130, which allows access to an interior of the tank 100 during assembly or maintenance. The door panel 130 is connected to the panels 200 of the bottommost cylindrical wall assembly 110 in the same manner as the panels 200 are connected together. The panels 200 will be described in more detail below.
  • The wall assemblies 110 are vertically stacked and fastened together, as will be described below. A roof 120 is also fastened to a topmost cylindrical wall assembly 110. A floor (not shown) is further fastened to a bottom-most cylindrical wall assembly 110. In some embodiments, the tank 100 could be built from more or fewer cylindrical wall assemblies 110. Some embodiments of the tank 100 may not include the roof 120 and/or the floor. In some embodiments without the roof 120, the tank 100 could include a bridge connected to and extending over a top side of the tank 100.
  • The upper two cylindrical wall assemblies 110 are built from three panels 200 fastened together, while the bottom most cylindrical wall assembly 110 is formed from four panels 200. Depending on the specific embodiment, the cylindrical wall assemblies 110 could be formed from more or fewer panels 200. Connecting the panels 200 together to form the wall assembly 110 will be described in more detail below. Some of the panels 200 have pipes 107 or other fixtures 109 extending therethrough.
  • Each cylindrical wall assembly 110 includes a top circumferential flange 112 and a bottom circumferential flange 114. Both the top flange 112 and the bottom flange 114 define a plurality of through-holes. During assembly of the tank 100, one cylindrical wall portion 110 is stacked on top of another cylindrical wall portion 110. Fasteners are then inserted and fastened through the apertures of the bottom circumferential flange 114 of the wall assembly 110 on top and the apertures of the top circumferential flange 112 of the wall assembly 110 disposed below. It is contemplated that the bottom flange 114 of the bottommost cylindrical wall assembly 110 could be omitted in some embodiments. Similarly, it is contemplated that the top flange 112 of the topmost cylindrical wall assembly 110 could be omitted in some embodiments.
  • With reference to FIGS. 2 and 3, one of the panels 200 is shown in isolation and will now be described in more detail. While one panel 200 of the tank 100 will be described, it should be noted that the remaining panels 200 are substantially similar to the panel 200 illustrated in FIG. 2. The panels 200 are described with respect to their orientation when assembled together to form the tank 100, but it is contemplated that the panels 200 could be reoriented in different embodiments.
  • The panel 200 includes a curved wall 202. In the cross-section of FIG. 3, it appears that the wall 202 is fairly flat or planar. It should be noted however that the wall 202 is quite large relative the end portions of the panel 200 illustrated in FIG. 3 and the curvature is simply not apparent in this figure. A central portion of the wall 202 has been omitted for simplicity.
  • It is contemplated that the panel 200 could be more or less curved, depending on the embodiment. The panel 200 is shaped to form a part of the circumference of the final tank 100, and the curve and length of the wall 202 will depend on variables such as the desired circumference and radius of curvature of the tank 100, as well as the number of panels 200 to be connected to form a given cylindrical wall assembly 110. In such applications, it is contemplated that the wall 202 could be planar or nearly planar, for example when implementing the panels 200 for construction of a slurry pumpbox.
  • In the illustrated embodiment of the field-erected leaching tank 100, the panels 200 are formed from carbon steel. The materials used to form the panels 200, or even the components (described below) of the panels could vary depending on the specific application. The panels 200, or the panel components, could be made from materials including, but not limited to: industrial grade plastic, hardened steel, aluminum, and stainless steel. Some of the panels 200 also include two reinforcing ribs 216, but it is contemplated that the panels 200 could include more or fewer ribs 216. The panels 200 of the bottommost cylindrical wall assembly 110, for instance, do not include reinforcing ribs 216.
  • The panel 200 includes a top horizontal flange 212 extending radially outward along and welded to a top edge of the wall 202. The panel 200 also includes a bottom horizontal flange 214 extending radially outward along and welded to a bottom edge of the wall 202. When the three (or four) panels 200 are connected to form one of the cylindrical wall assemblies 110, the three top horizontal flanges 212 form the top circumferential flange 112 and the three bottom horizontal flanges 214 form the bottom circumferential flange 114. Both the top horizontal flange 212 and the bottom horizontal flange 214 define a plurality of through-holes for receiving the fasteners for fastening one cylindrical wall assembly 110 to another, as described above.
  • The wall 202 has a right side end portion 204, as viewed from an exterior side of the tank 100, with a vertical edge 206. At an opposite end of the wall 202, the panel 200 also has a left side end portion 208 with a vertical edge 210. Each edge 206, 210 is beveled to form a v-shaped groove when two panels 200 abut, as will be described in more detail below.
  • It is contemplated that the edges 206, 210 could be differently shaped, for example to form a u-shaped groove when two panels 200 abut. It is also contemplated that the edges 206, 210 could be flat such that no groove is formed when two panels 200 abut.
  • The panel 200 includes a right flange 220 welded to an exterior side of the right side portion 204 by inner and outer welds 205. The flange 220 is offset from the edge 206 and extends along the vertical length of the wall 202. The flange 220 defines a plurality of apertures 222 for receiving fasteners therethrough, as will be described in more detail below.
  • The panel 200 further includes a left flange 230 welded to the left side portion 208 by inner and outer welds 209. The flange 230 is offset from the edge 210 and extends along the vertical length of the wall 202. The flange 230 defines a plurality of apertures 232 for receiving fasteners therethrough, as will be described in more detail below.
  • In the present embodiment, the flanges 212, 214, 220, 230 all extend in a same direction away from the wall 202, specifically in the radial direction outward, away from the wall 202. While the flanges 212, 214, 220, 230 are welded to the wall 202, it is contemplated that the flanges 212, 214, 220, 230 could be connected to the wall 202 in any one of many different manners depending on the application. Methods of connecting one or more of the flanges 212, 214, 220, 230 to the wall 202 could include, but are not limited to: fastening, gluing, epoxying, and soldering.
  • In the illustrated embodiment, the flanges 220, 230 are offset from their respective edges 206, 210 by an equal distance. In some embodiments, the flange 220 could be disposed nearer to or farther from the edge 206 than the flange 230 is disposed to the edge 210. In some embodiments, one of the flanges 220, 230 could be integrally formed with the wall 202, as will be described below with regards to FIG. 15.
  • The panel 200 includes a rigid spacing member 250 connected to an outward end of the right flange 220. The rigid spacing member 250 is spaced from the apertures 222, and as such is spaced from fasteners received therethrough when the flange 220 is connected to another panel 200 (described below). In some embodiments, it is contemplated that the rigid spacer 250 could be connected to the left flange 230. It is also contemplated that the rigid spacer 250 could be integral to one of the flanges 220, 230. As will be described further below, it is also contemplated that the rigid spacing member 250 could be provided separately from the panel 200, such that the rigid spacing member 250 is disposed between adjacent panels 200 only upon assembly of the cylindrical wall assembly 110 or the tank 100.
  • In the illustrated embodiment, the rigid spacing member 250 is a carbon steel shim 250 welded to a right side of the right flange 220 by a weld 251. It is contemplated that the rigid spacing member 250 could take various forms depending on specifics of a given embodiment, including but not limited to: stainless steel, aluminum, hardened plastic, and various other metals. The rigid spacing member 250 extends vertically along an entire height of the flange 220. In some embodiments, however, the rigid spacing member 250 could extend only along portions of the flange 220.
  • It is contemplated that the rigid spacing member 250 could be a series of rigid spacing members 250 disposed along the height of the flange 220. It is also contemplated that some of the panels 200 may include one rigid spacing member 250 connected to each of the flanges 220, 230. In such an embodiment, neighboring panels 200 may omit the rigid spacing member 250 completely, assuming that the assembly 110 of such an embodiment contains an even number of panels 200. In other such embodiments, all the panels 200 may include the two rigid spacing members 250, where the walls 202 and the flanges 220, 230 of each panel 200 are adapted such that the rigid spacing member 250 of one panel 200 abuts the corresponding rigid spacing member 250 of the neighboring panel 200.
  • Having described the various components of one panel 200, connection between two adjacent panels 200 will now be described with regard to FIGS. 4 and 5, where the contact area between two adjacent panels 200 can be seen in more detail. In order to distinguish between the two panels 200, the panel 200 disposed to the left of the contact area will be referred to as the left panel 200 a and the panel 200 disposed to the right of the contact area will be referred to as the right panel 200 b. Also, reference numerals for elements of the panel 200 a will be provided with the suffix “a” and reference numeral for elements of the panel 200 b will be provided with the suffix “b”.
  • When the panels 200 a, 200 b are assembled together, the edge 206 a and the edge 210 b come together and face each other. In the present embodiment, the edges 206 a, 210 b are directly abutting. With the edges 206 a, 210 b brought together, the rigid spacing member 250 a contacts the flange 230 b, such that the rigid spacing member 250 a is disposed between and in contact with both flanges 220 a, 230 b. As can be seen in at least FIG. 5, the walls 202 a, 202 b, the flanges 220 a, 230 b, and the rigid spacing member 250 a form a closed perimeter defining a space 258.
  • As can also be seen in FIG. 5, the flange 220 a is spaced from, and disposed opposite the flange 230 b. As is mentioned above, the flanges 220 a, 230 b are each offset from their respective edges 206 a, 210 b. The edges 206 a, 210 b are aligned and centered with the space between the 220 a, 230 b. While the flanges 220 a, 230 b are equidistant from their respective edges 206 a, 210 b, it is contemplated that the flanges 220 a, 230 b could each be nearer to or farther from their respective edges 206 a, 210 b so long as the flanges 220 a, 230 b remain spaced from each other.
  • To connect the panels 200 a, 200 b together, a plurality of fasteners 260 are inserted through the apertures 222 a in the flange 220 a and the apertures 232 b in the flange 230 b. The fasteners 260 extend through the flange 220 a, the space 258, and the flange 230 b, connecting the flange 220 a to the flange 230 b. In the present embodiment, the fasteners 260 are bolts and nuts 260 extending horizontally through the apertures 222 a, 232 b to connect the flanges 220 a, 230 b. The bolts 260, when installed in the flanges 220 a, 230 b, are disposed radially between the walls 202 a, 202 b and the rigid spacing member 250 a. The bolts 260, when installed, are aligned with each other and are spaced vertically through the flanges 220 a, 230 b. It is contemplated that different kinds of fasteners could be used to connect the flanges 220 a, 230 b, including but not limited to: rivets and dowel pins.
  • To aid in forming a dust- or liquid-proof seal between the panels 200, such that the material stored in the tank 100 generally cannot leak out between the edges 206 a, 210 b, the bolts 260 are pre-tensioned. Specifically, the bolts 260 are tightened to a pre-determined torque, which forces the flanges 220 a, 230 b, and thus the connected walls 202 a, 202 b, toward each other. It is contemplated that in some cases the edges 206 a, 210 b may not necessarily form a dust- or liquid-proof seal, for example where the tank 100 is destined to store larger rocks, etc.
  • In the present technology, the necessary pre-tensioning is based on determination of adequate fasteners properties as well as flange and walls properties. Adjustable fastener properties could include, but are not limited to: number of fasteners 260, material of the fasteners 260 and fastener size. Properties to be determined for the wall 202 and the flanges 220, 230 could include, but are not limited to: thickness, width of each flange 220, 230, material of the wall 202, and material of each flange 220, 230. Properties are selected such that the resulting assembly 299 produces an adequate contact between the walls 202 and/or the spacing member 250 and the flange 220 to withstand usage for the specific application considered.
  • With an adequate design determined, the fasteners 260 having been pre-tensioned, the resulting assembly will generally maintain contact without shifting or relative movement between panels 200, whether the tank 100 is under pressure, has been filled, or is empty. By pre-tensioning the fasteners 260, disposed radially between two contact areas (the edges 206, 210 and the flange 220 and the spacing member 250), the forces on the panels 200 are distributed toward the contact areas and thus over a larger area. In some prior systems, the tension forces may tend to be concentrated near the fasteners 260 and thus the forces holding the panels 200 together are distributed over a smaller area. This can lead to a greater likelihood of relative movement or shifting between panels 200 when the tank 100 sees an increase in pressure (i.e. when the tank 100 is being filled). In some embodiments, sealing the walls 202 by pre-tensioning the fasteners 260 may also produce a decrease in the field work necessary during assembly of the tank 100.
  • In embodiments where the rigid spacing member 250 a is not connected to one of the flanges 220 a, 230 b, the rigid spacing member 250 a is inserted between the flanges 220 a, 230 b before the bolts 260 are pre-tensioned.
  • While tightening the bolts 260 through such spaced flanges 220 a, 230 b would generally otherwise cause a flaring or separation of the edges 206 a, 210 b, the rigid spacing member 250 a aids in keeping the edges 206 a, 210 b in contact. The rigid spacing member 250 a contacts the flanges 220 a, 230 b on exterior portions of the flanges 220 a, 230 b, on a side of the bolts 260 opposite the edges 206 a, 210 b. As such, the exterior portions of the flanges 220 a, 230 b cannot move toward each other, thereby keeping inward and outward ends of the flanges 220 a, 230 b approximately equidistant. In this way, the edges 206 a, 210 b are similarly forced together and remain in contact.
  • To further secure the connection between the panels 200 a, 200 b, a 3 mm groove weld is performed along the edges 206 a, 210 b, specifically on an interior side of the walls 202 a, 202 b where the edges 206 a, 210 b form a beveled v-shaped groove. It is contemplated that different types of welds may be performed on the interior side of the walls 202 a, 202 b, but need not be the time-consuming welding method of the prior art. In some embodiments, the pre-tensioning of the bolts 260 is sufficient to cause a plasticisation of the two edges 206 a, 210 b to further aid in preventing materials from passing between the edges 206 a, 210 b. It is also contemplated that different preparations could be applied to the edges 206 a, 210 b before, during, or after assembly, including for example, epoxies or sealants.
  • In some embodiments, other sealing methods could be included, either in place or in addition to the weld described above. For example, a sealant material could be applied between the edges 206 a, 210 b: either to one of the edges 206 a, 210 b or both of the edges 206 a, 210 b. In some embodiments, a bonding material, such as a glue or epoxy, could be applied between the edges 206 a, 210 b: either to one of the edges 206 a, 210 b or both of the edges 206 a, 210 b. It is also contemplated that a sealant or polymer could be applied to any of the interior side of the edges 206 a, 210 b, an interior side of the panels 200 or the tank 100, or in the vicinity of the edges 206 a, 210 b.
  • The assembly made up of the walls 202 a, 202 b, the flanges 220 a, 230 b, the rigid spacing member 250, and the fasteners 260 is also referred to herein as a parts assembly 299. While the connection of the panels 200 a, 200 b is described herein relative to their use in constructing the tank 100, it should be noted that the parts assembly 299 could apply to creating secure connections between different types of walls. For example, the parts assembly 299, as well as the different embodiments of parts assemblies described herein below, could be utilized to secure the walls of many different apparatuses. These could include, but are not limited to, reservoirs, silos, bins, standpipes, receptacles, cisterns, pumpboxes, pipes and plumbing installations, and plateworks. In embodiments such as pipes and plumbing installations, the flange assembly 299 could be generally annular, wrapping around the circumference of the pipe rather than extending along its length.
  • With reference to FIGS. 6 and 7, another non-limiting embodiment of a parts assembly 399 of adjacent end portions of a left panel 300 a and a right panel 300 b, according to the present technology is illustrated. Elements of the assembly 399 and the panels 300 that are similar to those of the assembly 299 and the panels 200 retain the same reference numeral.
  • The parts assembly 399 includes a flange 320 a extending outward from the wall 202 a of the left panel 300 a and a flange 330 b extending outward from the wall 202 b of the right panel 300 b.
  • The flange 320 a defines a plurality of staggered apertures 322 a and 324 a. The apertures 322 a and 324 a extend vertically along the flange 320 a, with all of the apertures 322 a being radially aligned with one another and all of the apertures 324 a being radially aligned with one another. The apertures 322 a are horizontally closer to the wall 202 a than the apertures 324 a. Similarly, the flange 330 b defines a plurality of corresponding staggered apertures 332 b and 334 b, with all of the apertures 332 a being radially aligned with one another and all of the apertures 334 a being radially aligned with one another. The apertures 332 a are horizontally closer to the wall 202 a than the apertures 334 a.
  • With reference to FIG. 8, another non-limiting embodiment of a parts assembly 499 of adjacent end portions of two panels 400 according to the present technology are illustrated. Elements of the assembly 499 and the panels 400 that are similar to those of the assembly 299 and the panels 200 retain the same reference numeral.
  • The parts assembly 499 includes a sealing member 480 for aiding in creating a seal between the edges 206 a, 210 b of the walls 202 a, 202 b. Rather than abutting directly, the edges 206 a and 210 b each abut and compress the sealing member 480. The bolts 260 are pre-tensioned as described above, and the sealing member 480 simply aids in further sealing the edges 206 a, 210 b.
  • In the present embodiment, the sealing member 480 is a rubber gasket 480, but it is contemplated that the sealing member 480 could take various forms, including but not limited to: a plastic gasket, polyurethane member, epoxy, and any of various elastomer members. While illustrated as extending only slightly past the walls 202 a, 220 b, it is contemplated that the sealing member 480 could extend farther into the space between the flanges 220 a, 230 b. It is contemplated that the sealing member 480 may be received in a recess defined on an interior side of the wall 202 or the flanges 220 a, 230 b.
  • The parts assembly 499 also includes a rigid spacing member 450 a connected to the flange 220 a. It is contemplated that the rigid spacing member 450 a could be connected to the flange 230 b, or could simply be disposed between the flanges 220 a, 230 b. Similarly to the member 250, the rigid spacing member 450 a is a metal shim 450 a welded to the flange 220 a. In the illustrated embodiment, however, the shim 450 is welded to a more central portion of the flange 220 a and is not welded to the exterior edge of the flange 220 a, although still disposed between the bolts 260 and the exterior edge of the flanges 220 a, 230 b.
  • With reference to FIGS. 9 and 10, another non-limiting embodiment of a parts assembly 599 of adjacent end portions of two panels 500 according to the present technology are illustrated. Elements of the assembly 599 and the panels 500 that are similar to those of the assembly 299 and the panels 200 retain the same reference numeral.
  • The parts assembly 599 includes a plurality of radially extending rigid spacing members 550 connected to the flange 220 a. The rigid spacing members 550 are metal shim spacers 550 in the present embodiment, but this is just one non-limiting example as before. There is one spacer 550 disposed below (or above) each bolt 260. It is contemplated that fewer spacers 550 may be utilized, for example, one spacer 550 being disposed in alternating spaces vertically between the bolts 260. The spacers 550 extend radially outward of the bolts 260. It is contemplated that the spacers 550 could be longer or shorter than the illustrated embodiment, depending on the specific application.
  • The shims 550 are welded to the right flange 220 a, but it is contemplated that the shims 550 could be welded or otherwise connected to the flange 230 b in some embodiments.
  • It is also contemplated that some of the shims 550 could be connected to the flange 220 a, while the remaining shims 550 could be connected to the flange 230 b. It is also contemplated that the shims 550 could be inserted between the flanges 220 a, 230 b during assembly of the parts assembly 599. In some embodiments, it is contemplated that the shims 550 could be included with the parts assembly 299, where the shims 550 could be inserted between 2 or more bolts 260, in addition to the rigid spacing member 250.
  • With reference to FIG. 11, another non-limiting embodiment of a parts assembly 699 of adjacent end portions of two panels 600 according to the present technology are illustrated. Elements of the assembly 699 and the panels 600 that are similar to those of the assembly 299 and the panels 200 retain the same reference numeral.
  • The parts assembly 699 includes a rigid spacing member 650 a connected to the flange 220 a and a rigid spacing member 650 b connected to the flange 230 b. The rigid spacing members 650 a, b are metal shim spacers 650 a, b in the present embodiment, but this is just one non-limiting example as before. The rigid spacing member 650 a abuts the rigid spacing member 650 b when the panels 600 a, b are connected together as describe above for the panels 200.
  • Another non-limiting embodiment of a tank 700 according to the present technology is illustrated in FIG. 12. Elements of the tank 700 and the panels 750 that are similar to those of the tank 100 and the panels 200 retain the same reference numeral
  • The tank 700 is made from six vertically extending panels 750. In contrast to the panels 200, the panels 750 extend vertically to the full height of the tank 700. As such, the tank 700 is not composed of the multiple cylindrical wall assemblies 110 of the tank 100, but is rather directly formed by the panels 750. Depending on the specific embodiment, it is contemplated that the tank 700 could be made from more or fewer panels 750.
  • With reference to FIGS. 13 and 14, another non-limiting embodiment of a parts assembly 899 of adjacent end portions of a left panel 800 a and a right panel 800 b, according to the present technology is illustrated. Elements of the assembly 899 and the panels 800 that are similar to those of the assembly 299 and the panels 200 retain the same reference numeral.
  • The parts assembly 899 includes a flange 820 a extending outward from the wall 202 a of the left panel 800 a and a flange 830 b extending outward from the wall 202 b of the right panel 800 b.
  • The flange 820 a defines a plurality of horizontally aligned apertures 822 a and 824 a. The apertures 822 a and 824 a extend vertically along the flange 820 a, with all of the apertures 822 a being radially aligned with one another and all of the apertures 824 a being radially aligned with one another and each aperture 822 a having a corresponding aperture 824 a vertically aligned with it. The apertures 822 a are horizontally closer to the wall 202 a than the apertures 824 a. Similarly, the flange 830 b defines a plurality of corresponding horizontally aligned apertures 832 b and 834 b, with all of the apertures 832 a being radially aligned with one another and all of the apertures 834 a being radially aligned with one another and each aperture 832 a having a corresponding aperture 834 a vertically aligned with it. The apertures 832 a are horizontally closer to the wall 202 a than the apertures 834 a.
  • With reference to FIG. 15, another non-limiting embodiment of a parts assembly 999 of adjacent end portions of two panels 900 according to the present technology are illustrated. Elements of the assembly 999 and the panels 900 that are similar to those of the assembly 299 and the panels 200 retain the same reference numeral.
  • The right side end portion 204 a of a panel 900 a has a right flange 920 integrally formed with the wall 202 a. The flange 920 a is aligned with the edge 206 a and extends along the vertical length of the wall 202 a. The flange 920 defines the plurality of apertures 222 a for receiving fasteners therethrough, as was described in relation to the flange 220 above. The panel 900 b further includes the left flange 230 b, as is shown in FIG. 15 and which was described in more detail above.
  • With reference to FIG. 16, yet another non-limiting embodiment of a parts assembly 1099 of adjacent end portions of two panels 1000 (a panel 1000 a and a panel 1000 b) according to the present technology are illustrated. Elements of the assembly 1099 and the panels 1000 that are similar to those of the assembly 299 and the panels 200 retain the same reference numeral.
  • The side end portion 204 a of the panel 1000 a has a flange 1020 a connected to and abutting the edge 206 a of the wall 202 a. The flange 1020 a is welded directly to the edge 206 a by an inner weld 1005 a. As such, the edge 210 b abuts the flange 1020 a when panels 1000 a and 1000 b are connected, rather than abutting the edge 206 a. The side end portion 208 b of a panel 1000 b has a flange 1030 connected to the wall 202 b by inner and outer welds 1009 b, offset from the edge 210 b. The flange 1030 has a rectangular cross section, such that both welds 1009 b are disposed toward an exterior of the panel 1000 b. The rigid spacing member 250 is welded to the flange 1030 in the illustrated embodiment.
  • A modified version of the panel assembly 1099, identified as panel assembly 1099′, is illustrated in FIG. 17. In the assembly 1099′, a panel 1000 b ′ includes a flange 1030 b ′. The flange 1030 b ′ is welded to the wall 202 b by the outer weld 1009 b, as before, as well as an inner weld 1009 b ′ which is disposed in an undercut in the flange 1030 b′.
  • Modifications and improvements to the above-described embodiments of the present technology may become apparent to those skilled in the art. The foregoing description is intended to be exemplary rather than limiting. The scope of the present technology is therefore intended to be limited solely by the scope of the appended claims.

Claims (13)

What is claimed is:
1. A tank comprising:
a first curved wall including a first edge extending vertically along the first curved wall;
a second curved wall including a second edge extending vertically along the second curved wall, the first edge facing the second edge;
a first flange connected to and extending vertically and radially outward from the first curved wall;
a second flange connected to and extending vertically and radially outward from the second curved wall, the second flange being spaced from the first flange;
at least one fastener extending horizontally through and connecting the first flange and the second flange, the at least one fastener being pre-tensioned; and
at least one rigid spacing member disposed between the first flange and the second flange, the at least one rigid spacing member being spaced radially outward from the at least one fastener, the at least one rigid spacing member being in contact with the first and second flanges, the at least one fastener being disposed radially between the at least one rigid spacing member and the first and second walls.
2. The tank of claim 1, wherein the first edge abuts the second edge.
3. The tank of claim 1, wherein:
the first flange is offset from the first edge;
the second flange is offset from the second edge; and
the first edge and the second edge are aligned with a space between the first flange and the second flange.
4. The tank of claim 1, wherein the first flange and the second flange are disposed equidistant from a corresponding one of the first edge and the second edge.
5. The tank of claim 1, wherein the at least one rigid spacing member is a rigid shim connected to one of the first flange and the second flange.
6. The tank of claim 5, wherein the rigid shim is welded to the first flange.
7. The tank of claim 1, wherein the at least one rigid spacing member is disposed between a first outward end of the first flange and a second outward end of the second flange, the first outward end and the second outward end being ends of the first and second flanges radially outward of the first wall and the second wall.
8. The tank of claim 1, wherein the at least one rigid spacing member is a single rigid spacing member extending along an entire vertical height of the first flange and the second flange.
9. The tank of claim 1, wherein:
the first flange is welded to the first wall; and
the second flange is welded to the second wall.
10. The tank of claim 1, wherein at least the first curved wall and the second curved wall form a first cylindrical wall assembly.
11. The tank of claim 10, wherein:
the first cylindrical wall assembly includes a first horizontal flange extending outward from a top edge of the first curved wall and a second horizontal flange extending outward from a top edge of the second curved wall, the first horizontal flange and the second horizontal flange defining a first circumferential flange of the first cylindrical wall assembly; and
further comprising:
a second cylindrical wall assembly, the second cylindrical wall assembly including a second circumferential flange extending outward from a bottom edge of the second cylindrical wall,
the second cylindrical wall assembly being disposed on top of the first cylindrical wall assembly,
the first circumferential flange abutting and being fastened to the second circumferential flange.
12. The tank of claim 1, wherein the at least one fastener is a plurality of fasteners spaced vertically through the first flange and the second flange.
13. The tank of claim 1, further comprising at least one sealing member disposed between the first edge and the second edge, the first edge and the second edge abutting the at least one sealing member.
US17/519,977 2018-03-22 2021-11-05 Parts assembly, panel, and tank Abandoned US20220056723A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/519,977 US20220056723A1 (en) 2018-03-22 2021-11-05 Parts assembly, panel, and tank

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201862646666P 2018-03-22 2018-03-22
PCT/CA2019/050341 WO2019178688A1 (en) 2018-03-22 2019-03-20 Parts assembly, panel, and tank
US202016957945A 2020-06-25 2020-06-25
US17/519,977 US20220056723A1 (en) 2018-03-22 2021-11-05 Parts assembly, panel, and tank

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
PCT/CA2019/050341 Division WO2019178688A1 (en) 2018-03-22 2019-03-20 Parts assembly, panel, and tank
US16/957,945 Division US20200378144A1 (en) 2018-03-22 2019-03-20 Parts assembly, panel, and tank

Publications (1)

Publication Number Publication Date
US20220056723A1 true US20220056723A1 (en) 2022-02-24

Family

ID=67988273

Family Applications (2)

Application Number Title Priority Date Filing Date
US16/957,945 Abandoned US20200378144A1 (en) 2018-03-22 2019-03-20 Parts assembly, panel, and tank
US17/519,977 Abandoned US20220056723A1 (en) 2018-03-22 2021-11-05 Parts assembly, panel, and tank

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US16/957,945 Abandoned US20200378144A1 (en) 2018-03-22 2019-03-20 Parts assembly, panel, and tank

Country Status (10)

Country Link
US (2) US20200378144A1 (en)
EP (1) EP3768611A4 (en)
CN (1) CN112292335A (en)
AU (1) AU2019239796A1 (en)
BR (1) BR112020019159A2 (en)
CA (1) CA3086260C (en)
CL (1) CL2020002429A1 (en)
MX (1) MX2020009835A (en)
PE (1) PE20210353A1 (en)
WO (1) WO2019178688A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2020380942B2 (en) * 2019-11-08 2023-10-05 Ball Corporation Resealable can end with stay on tab
JP2023502896A (en) * 2019-11-21 2023-01-26 ポリ-ライン ピーティーイー エルティーディー Assembled panel tank
DE102020115374B4 (en) * 2020-06-10 2022-06-15 Xl Beteiligungen Gmbh & Co. Kg Bulk container and method of making a bulk container

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140319130A1 (en) * 2013-04-24 2014-10-30 JWF Industries Large Capacity Above Ground Impoundment Tank

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR8001658A (en) * 1980-03-20 1980-09-30 Nordon Ind Metalurgicas PROCESS OF OBTAINING TANKS
DE3038514C2 (en) 1980-10-11 1982-08-12 Rasmussen Gmbh, 6457 Maintal Clamp with hanger
US5851033A (en) 1997-04-30 1998-12-22 Electric Power Research Institute, Inc. Corrosion limiting device
AU4514097A (en) 1997-11-07 1999-05-27 Colin Steven Brien Modular storage tank
CN1213207C (en) * 1999-11-18 2005-08-03 金东均 Water tank
US20130098929A1 (en) * 2011-10-21 2013-04-25 Sean Michael Lovelace Portable Reservoir Frame
US8708177B2 (en) * 2012-03-29 2014-04-29 Richard W. Roberts In-situ foam core dielectrically-resistant systems and method of manufacture
CN204223528U (en) * 2014-10-24 2015-03-25 潍坊金河机械有限公司 Cement bin
CN106347889B (en) * 2016-11-10 2018-07-27 长沙爱达环保科技有限公司 A kind of assembled powder pot

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140319130A1 (en) * 2013-04-24 2014-10-30 JWF Industries Large Capacity Above Ground Impoundment Tank

Also Published As

Publication number Publication date
CA3086260C (en) 2021-03-16
WO2019178688A1 (en) 2019-09-26
AU2019239796A1 (en) 2022-05-05
EP3768611A4 (en) 2021-11-10
CL2020002429A1 (en) 2021-05-14
MX2020009835A (en) 2021-01-15
US20200378144A1 (en) 2020-12-03
EP3768611A1 (en) 2021-01-27
BR112020019159A2 (en) 2021-01-05
CN112292335A (en) 2021-01-29
CA3086260A1 (en) 2019-09-26
PE20210353A1 (en) 2021-02-26

Similar Documents

Publication Publication Date Title
US20220056723A1 (en) Parts assembly, panel, and tank
US6715243B1 (en) Method for production of a silo
US5911662A (en) Tank cover structure
US11230853B2 (en) Large capacity above ground impoundment tank
US10246211B2 (en) Container produced from a helically bent sheet metal strip
CA3041202C (en) System for connection continuity for compression ring in bolt together silo
US8640903B2 (en) Oil tank floating roof device
US20140224791A1 (en) Reinforced intermodal container
US10647473B2 (en) Modular tanks
CA2963495C (en) Dual plate motor support for horizontal pumping system
US9759327B2 (en) Large perimeter segmented seals
US10183803B2 (en) Floating roof for storage tanks
CA2818311C (en) Storage tank
JP2001039486A (en) Tank
US20150114958A1 (en) Modular Fluid Storage Tank
CZ294183B6 (en) Leak-resistant lining for tanks and method for equipping tanks with such a leak-resistant lining
KR100783798B1 (en) Storage tank
JP3037072B2 (en) Liquid storage tank
JP2000177790A (en) Tank
JPH04351390A (en) Hollow structure
AU2013206312A1 (en) A rapidly assembled and demountable tank
WO2020122987A1 (en) Above-ground storage tank
JP2001241070A (en) Underground water storage tank
CA2929339A1 (en) Floating roof for storage tanks
CN1867741A (en) A band device of joining pipe for preventing from leakage

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

AS Assignment

Owner name: GROUPE INDUSTRIES FOURNIER INC., CANADA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BELANGER, WILLIAM;CLICHE, DANIEL;GINGRAS, MICHEL;AND OTHERS;SIGNING DATES FROM 20200622 TO 20200625;REEL/FRAME:060097/0724

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION