US20220029196A1 - Solid Electrolyte of Lithium Secondary Battery and Sulfide Compound for Said Solid Electrolyte - Google Patents

Solid Electrolyte of Lithium Secondary Battery and Sulfide Compound for Said Solid Electrolyte Download PDF

Info

Publication number
US20220029196A1
US20220029196A1 US17/495,319 US202117495319A US2022029196A1 US 20220029196 A1 US20220029196 A1 US 20220029196A1 US 202117495319 A US202117495319 A US 202117495319A US 2022029196 A1 US2022029196 A1 US 2022029196A1
Authority
US
United States
Prior art keywords
solid electrolyte
secondary battery
lithium secondary
compound
sulfide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US17/495,319
Inventor
Tsukasa Takahashi
Takashi Chikumoto
Takahiro Ito
Hideo Uesugi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=64951048&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20220029196(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to US17/495,319 priority Critical patent/US20220029196A1/en
Assigned to MITSUI MINING & SMELTING CO., LTD. reassignment MITSUI MINING & SMELTING CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ITO, TAKAHIRO, CHIKUMOTO, Takashi, TAKAHASHI, TSUKASA, UESUGI, HIDEO
Publication of US20220029196A1 publication Critical patent/US20220029196A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/22Alkali metal sulfides or polysulfides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/14Sulfur, selenium, or tellurium compounds of phosphorus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/10Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/30Three-dimensional structures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/76Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by a space-group or by other symmetry indications
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/008Halides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a solid electrolyte of a lithium secondary battery and a sulfide compound capable of being preferably used for the solid electrolyte.
  • a lithium secondary battery is a secondary battery having a structure in which lithium is dissolved as an ion from a positive electrode and occluded by a negative electrode through migration in charging, whereas the lithium ion is returned from the negative electrode to the positive electrode in discharging.
  • a lithium secondary battery is widely used as a power source of home electric appliances, e.g., a video camera, portable electronic equipments, e.g., a notebook computer and a mobile phone, electric power tools, and the like due to such characteristics thereof as a large energy density and a long service life, and in recent years, is being applied to large capacity batteries mounted on an electric vehicle (EV), a hybrid electric vehicle (HEV), and the like.
  • EV electric vehicle
  • HEV hybrid electric vehicle
  • the lithium secondary battery of this type is constituted by a positive electrode, a negative electrode, and an ion conductor layer held between the electrodes, and the ion conductor layer used is generally a separator formed of a porous film, such as polyethylene or polypropylene, impregnated with a non-aqueous electrolytic solution.
  • the electrolyte since an organic electrolytic solution containing a combustible organic solvent as a solvent is used as the electrolyte, the structure and material thereof are necessarily improved for preventing volatilization and leakage thereof, and furthermore a safety device for suppressing temperature raise in short circuit is necessarily mounted, and the structure and material thereof are necessarily improved for preventing short circuit.
  • an all solid lithium secondary battery which is totally solidified by using a solid electrolyte, can be simplified in the safety device due to the non-use of a combustible organic solvent, and not only the production cost and the productivity thereof can be improved, but also such characteristics can be provided that a high voltage can be obtained by serially stacking in the cell. Furthermore, in the solid electrolyte of this type, none except for Li ion migrates, it is expected that the side reaction caused by the movement of the anion does not occur, and that the safety and the durability are improved.
  • the solid electrolyte used in the battery of this type is demanded to have higher ion conductivity as much as possible and also demanded to be stable chemically and electrochemically, and examples of the known candidate materials therefor include a lithium halide, a lithium nitride, a lithium oxoate, and derivatives thereof.
  • Patent literature 2 describes a lithium ion conductive material that is represented by the chemical formula: Li + (12 ⁇ n ⁇ x) B n+ X 2 ⁇ (6 ⁇ x) Y ⁇ x (wherein B n+ represents at least one selected from P, As, Ge, Ga, Sb, Si, Sn, Al, In, Ti, V, Nb, and Ta; X 2 ⁇ represents at least one selected from S, Se, and Te; Y ⁇ represents at least one selected from F, Cl, Br, I, CN, OCN, SCN, and N 3 ; and 0 ⁇ x ⁇ 2) and has an argyrodite type crystal structure.
  • Patent literature 3 describes, as a solid compound that has a high mobility of lithium ion and is capable of being prepared as a single layer, a lithium argyrodite that is represented by the general formula (I): Li + (12 ⁇ n ⁇ x) B n+ X 2 ⁇ (6 ⁇ x) Y ⁇ x , wherein B n+ is selected from the group consisting of P, As, Ge, Ga, Sb, Si, Sn, Al, In, Ti, V, Nb, and Ta; X 2 ⁇ is selected from the group consisting of S, Se, and Te; Y ⁇ is selected from the group consisting of Cl, Br, I, F, CN, OCN, SCN, and N 3 ; and 0 ⁇ x ⁇ 2.
  • B n+ is selected from the group consisting of P, As, Ge, Ga, Sb, Si, Sn, Al, In, Ti, V, Nb, and Ta
  • X 2 ⁇ is selected from the group consisting of S, Se, and Te
  • Y ⁇
  • Patent literature 4 describes, as a novel sulfide solid electrolyte that is capable of significantly enhancing the conductivity as compared to the ordinary solid electrolyte, a sulfide solid electrolyte that has a structural skeleton of Li 7 PS 6 , and has a compositional formula having P partially replaced by Si: Li 7+x P 1 ⁇ y Si y S 6 (wherein x is from ⁇ 0.6 to 0.6, and y is from 0.1 to 0.6).
  • Patent literature 5 relates to a compound that has a cubic crystal structure in the F-43m space group, and represented by the compositional formula: Li 7 ⁇ x PS 6 ⁇ x Ha x (wherein Ha represents Cl or Br), and describes, as a sulfide solid electrolyte for a lithium secondary battery that is capable of increasing the lithium ion conductivity and decreasing the electron conductivity, so as to enhance the charge and discharge efficiency and the cycle characteristics, a sulfide solid electrolyte for a lithium secondary battery that has x in the compositional formula of from 0.2 to 1.8, and a luminance L* in the L*a*b* color space of 60.0 or more.
  • Patent literature 6 relates to a sulfide solid electrolyte compound for a lithium secondary battery that has a cubic argyrodite type crystal structure, and describes, as sulfide solid electrolyte compound for a lithium secondary battery that is capable of suppressing the generation amount of hydrogen sulfide even when touching the air, and is capable of retaining the high conductivity even when allowing to stand in the dry air, a sulfide solid electrolyte compound for a lithium secondary battery that is represented by the compositional formula: Li 7 ⁇ x+y PS 6 ⁇ x Cl x+y (wherein x and y satisfy 0.05 ⁇ y ⁇ 0.9 and ⁇ 3.0x+1.8 ⁇ y ⁇ 3.0x+5.7).
  • Non patent literature 1 reports the characteristic evaluation in the case where Li 6 PS 5 C 1 ⁇ x Br x (0 ⁇ x ⁇ 1) is produced by dissolving Li 6 PS 5 Br to Li 6 PS 5 Cl through synthesis by a mechanochemical process and a heat treatment.
  • Non patent literature 2 produces a solid solution of Li 6 PS 5 C 1 ⁇ x Br x (0 ⁇ x ⁇ 1) containing two kinds of halogens through a mechanochemical process and a subsequent heat treatment, and reports the relationship between the composition and the ion conductivity thereof.
  • a sulfide compound having a cubic argyrodite type crystal structure generally has characteristics including high crystallinity and excellent ion conductivity, but has high hardness, and thus has a problem of difficulty in collapse with the pressing pressure in the production of an electrode.
  • the present invention relates to a sulfide compound having a cubic argyrodite type crystal structure, and is to propose a novel sulfide compound that has a low elastic modulus while retaining the high ion conductivity.
  • the sulfide compound proposed in the present invention has a crystal phase of a cubic argyrodite type crystal structure, and in the sulfide compound represented by the compositional formula: Li 7 ⁇ x PS 6 ⁇ x Cl y Br z , the total molar ratio of Cl and Br is made larger than 1.0, and the ratio of the molar ratio of Br to the molar ratio of Cl is regulated to the particular range, whereby the elastic modulus can be decreased while retaining the high ion conductivity, resulting in decrease of the battery resistance.
  • the solid electrolyte is collapsed to avoid the voids among the active material particles by applying a pressing pressure thereto, the contact points and the contact area to the active material particles can be increased, and thereby the battery resistance can be decreased. Accordingly, the sulfide compound proposed in the present invention can be used particularly favorably as a solid electrolyte of a lithium secondary battery.
  • FIG. 1A is a micrograph of a scanning electron microscope (SEM) (magnification: 5,000) obtained through observation of the sulfide compound obtained in Example 4 (sample) with an SEM, and
  • SEM scanning electron microscope
  • FIG. 1B is a micrograph of an SEM (magnification: 5,000) obtained through observation of the cross section of the sulfide compound obtained in Example 4 (sample) having been pelletized under a pressure of 200 MPa with an SEM.
  • SEM magnification: 5,000
  • FIG. 2A is a micrograph of a scanning electron microscope (SEM) (magnification: 5,000) obtained through observation of the sulfide compound obtained in Comparative Example 1 (sample) with an SEM
  • FIG. 2B is a micrograph of an SEM (magnification: 5,000) obtained through observation of the cross section of the sulfide compound obtained in Comparative Example 1 (sample) having been pelletized under a pressure of 200 MPa with an SEM.
  • SEM scanning electron microscope
  • the present sulfide compound is a compound that has a crystal phase of a cubic argyrodite type crystal structure and is represented by the compositional formula (1): Li 7 ⁇ x PS 6 ⁇ x Cl y Br z .
  • the presence of the crystal phase of a cubic argyrodite type crystal structure can be confirmed, for example, by the analysis by the X-ray diffractometry (XRD, Cu radiation source) as described below.
  • x is 1.8 or less, the formation of a heterogeneous phase can be controlled, and the decreasing of ion conductivity can be suppressed.
  • x in the compositional formula (1) is preferably more than 1.0 and 1.8 or less, and among others, it is more preferably 1.1 or more or 1.7 or less, even more preferably 1.2 or more or 1.6 or less.
  • the ratio (z/y) of the molar ratio of Br to the molar ratio of Cl is preferably from 0.1 to 10.
  • the ratio (z/y) of the molar ratio of Br to the molar ratio of Cl that is 0.1 or more is preferred since the solid electrolyte has a low elastic modulus, and on the other hand, the ratio (z/y) of the molar ratio of Br to the molar ratio of Cl that is 10 or less is preferred since a high ion conductivity is obtained.
  • the ratio (z/y) of the molar ratio of Br to the molar ratio of Cl is preferably from 0.1 to 10, and among others, it is more preferably 0.2 or more or 5 or less, and even more preferably 0.3 or more or 3 or less.
  • y representing the molar ratio of Cl preferably satisfies 0.3 ⁇ y ⁇ 1.5.
  • the molar ratio y of Cl that is 0.3 or more is preferred since the ion conductivity can be further enhanced as compared to less than 0.3, and on the other hand, y of 1.5 or less is preferred since the low elastic modulus can be retained.
  • y in the compositional formula (1) is preferably from 0.3 to 1.5, and among others, it is more preferably 0.4 or more or 1.2 or less, even more preferably 0.6 or more or 1.0 or less.
  • z representing the molar ratio of Br preferably satisfies 0.3 ⁇ y ⁇ 1.5.
  • the molar ratio z of Br that is 0.3 or more is preferred since the elastic modulus can be further decreased, and on the other hand, z of 1.5 or less is preferred since the ion conductivity can be retained.
  • a Br compound has a lower melting point than a Cl compound, and therefore the addition of a Br compound may enhance the reactivity, facilitating the synthesis of the sulfide compound.
  • z in the compositional formula (1) is preferably from 0.3 to 1.5, and among others, it is more preferably 0.4 or more or 1.2 or less, even more preferably 0.6 or more or 1.0 or less.
  • present solid electrolyte contains the present sulfide compound, and therefore the present solid electrolyte may contain additional materials and components.
  • the present solid electrolyte may be formed of either: a single phase constituted by a crystal phase of a cubic argyrodite type crystal structure; a mixed phase containing a crystal phase of a cubic argyrodite type crystal structure and a crystal phase represented by LiCl; a mixed phase containing a crystal phase of a cubic argyrodite type crystal structure and a crystal phase represented by LiBr; and a mixed phase containing a crystal phase of a cubic argyrodite type crystal structure, a crystal phase represented by LiCl, and a crystal phase represented by LiBr.
  • the mixed phase containing a crystal phase of a cubic argyrodite type crystal structure and a crystal phase represented by LiCl and/or LiBr may encompass not only a mixed phase of a crystal phase of a cubic argyrodite type crystal structure and a crystal phase represented by LiCl and/or LiBr, but also cases containing a crystal phase other than these phases.
  • additional materials include the other solid electrolyte materials, Li 2 S, Li 3 PS 4 , and Li 4 P 2 S 6 , but are not limited thereto.
  • the present solid electrolyte is preferably formed of the present sulfide compound as a major material, and the present solid electrolyte is preferably occupied by the present sulfide compound in a proportion of 50% by mass or more, particularly 80% by mass or more, and further particularly 90% by mass or more (including 100% by mass), and is particularly preferably constituted only by the present sulfide compound.
  • the present solid electrolyte may contain, in addition to the aforementioned materials, unavoidable impurities to a degree that does not adversely affect the effects of the present invention, for example, approximately less than 5% by mass, and particularly approximately less than 3% by mass.
  • the present solid electrolyte is preferably particles in the form of powder, and for the particle diameter thereof, the average particle diameter (D50), i.e., the average particle diameter (D50) obtained by the laser diffractive scattering particle size distribution measurement method, of the present solid electrolyte is preferably from 0.1 ⁇ m to 10 ⁇ m.
  • D50 that is 0.1 ⁇ m or more is preferred since the increase of resistance due to the increase of the surface of the solid electrolyte particles and the difficulty in mixing with the active material can be avoided.
  • D50 that is 10 ⁇ m or less is preferred since the present solid electrolyte can readily intervene into gaps among the active material, so as to increase the contact points and the contact area.
  • the average particle diameter (D50) of the present solid electrolyte is preferably from 0.1 ⁇ m to 10 ⁇ m, and among others, it is more preferably 0.3 ⁇ m or more or 7 ⁇ m or less, even more preferably 0.5 ⁇ m or more or 5 ⁇ m or less.
  • the average particle diameter (D50) of the present solid electrolyte is preferably from 1 to 100% of the average particle diameter (D50) of the positive electrode active material or the average particle diameter (D50) of the negative electrode active material.
  • the average particle diameter (D50) of the present solid electrolyte that is 1% or more of the average particle diameter (D50) of the positive electrode active material or the average particle diameter (D50) of the negative electrode active material is preferred since the present solid electrolyte can tightly fill the voids among the active material. On the other hand, 100% or less is preferred from the standpoint of the increase of the energy density of the battery since the proportion of the active material in the electrode is increased.
  • the average particle diameter (D50) of the present solid electrolyte is preferably from 1 to 100% of the average particle diameter (D50) of the positive electrode active material or the average particle diameter (D50) of the negative electrode active material, and among others, it is more preferably 3% or more or 50% or less, even more preferably 5% or more or 30% or less.
  • the Young's modulus of the present solid electrolyte is preferably from 1 GPa to 30 GPa.
  • the Young's modulus of the present solid electrolyte that is 1 GPa or more is preferred since the present solid electrolyte is hardly aggregated and can be readily produced. On the other hand, the Young's modulus of the present solid electrolyte that is 30 GPa or less is preferred since the present solid electrolyte may be collapsed at the interface to the active material and thereby the contact area can be increased.
  • the Young's modulus of the present solid electrolyte is preferably from 1 GPa to 30 GPa, and among others, it is more preferably 5 GPa or more or 28 GPa or less, even more preferably 10 GPa or more or 25 GPa or less.
  • the present solid electrolyte is preferably subjected to a heat treatment at from 450 to 600° C. (material temperature), and particularly from 450 to 500° C. while flowing hydrogen sulfide (H 2 S) gas.
  • a heat treatment at from 450 to 600° C. (material temperature), and particularly from 450 to 500° C. while flowing hydrogen sulfide (H 2 S) gas.
  • a sulfide solid electrolyte is inherently excellent in ion conductivity, and can form a favorable contact state to an active material at ordinary temperature to decrease the interface resistance, as compared to an oxide.
  • the present solid electrolyte can achieve the decrease of the elastic modulus while retaining the ion conductivity.
  • the present sulfide compound or the present solid electrolyte may be obtained, for example, in such a manner that lithium sulfide (Li 2 S) powder, diphosphorus pentasulfide (P 2 S 5 ) powder, lithium chloride (LiCl) powder, and lithium bromide (LiBr) powder are mixed and calcined.
  • lithium sulfide (Li 2 S) powder, diphosphorus pentasulfide (P 2 S 5 ) powder, lithium chloride (LiCl) powder, and lithium bromide (LiBr) powder are mixed and calcined.
  • the raw materials are preferably pulverized and mixed, for example, with a ball mill, a bead mill, a homogenizer, or the like.
  • pulverization and mixing at this time, considerably strong mechanical pulverization and mixing with the mechanical alloying method or the like may cause the decrease in crystallinity or the amorphization of the raw material powder or the homogenization of the raw material mixed powder whereby the bond between cation and sulfur is broken to cause sulfur deficiency in calcining and exhibition of electron conductivity. Accordingly, pulverization and mixing are preferably performed to such an extent that the crystallinity of the raw material powder can be retained.
  • present sulfide compound or the present solid electrolyte may be obtained in such a manner that the resulting powder is dried as necessary, then calcined in an inert atmosphere or under a stream of hydrogen sulfide gas (H 2 S), cracked and pulverized as necessary, and then classified.
  • H 2 S hydrogen sulfide gas
  • the present sulfide compound undergoes crystallization at approximately 200° C., and therefore can be synthesized by calcining at a relatively low temperature. Accordingly, the present sulfide compound, which is a sulfide having the target chemical composition and substantially no sulfur deficiency, can be produced by calcining at 350° C. or more in an inert atmosphere or under a stream of hydrogen sulfide gas (H 2 S).
  • H 2 S hydrogen sulfide gas
  • the sulfur partial pressure in the vicinity of the calcined sample can be increased with sulfur gas formed through decomposition of hydrogen sulfide in calcining, and thus sulfur deficiency hardly occurs at a high calcining temperature, thereby decreasing the electron conductivity.
  • the calcining temperature is preferably from 350 to 650° C., and among others, it is more preferably 450° C. or more or 600° C. or less, even more preferably 500° C. or less.
  • the sulfur partial pressure in the vicinity of the calcined sample cannot be increased in calcining, which is different from the case with hydrogen sulfide gas, and therefore sulfur deficiency tends to occur at a high calcining temperature, resulting in increase of the electron conductivity.
  • the calcining temperature is preferably from 350 to 500° C., and among others, it is more preferably 350° C. or more or 450° C. or less, even more preferably 400° C. or more or 450° C. or less.
  • the calcining is generally preferably performed at 450° C. or more under a stream of hydrogen sulfide gas, but the raw material powder having a small particle diameter and thus having high reactivity may be calcined in an inert atmosphere since the reaction thereof can be accelerated at a low temperature.
  • the aforementioned raw materials are considerably unstable in the air and may undergo decomposition through reaction with water to generate hydrogen sulfide gas, or oxidation, and therefore the raw materials are preferably placed in the furnace in a glove box substituted by an inert gas atmosphere or the like, and then calcined.
  • the all solid lithium secondary battery that is produced by using the present sulfide compound as the solid electrolyte can have favorable battery characteristics including the charge and discharge efficiency and the cycle characteristics.
  • a compound containing lithium (Li), a compound containing phosphorus (P), a compound containing sulfur (S), a chlorine-containing compound, and a bromine-containing compound are mixed, dried as necessary, then calcined under a stream of hydrogen sulfide gas (H 2 S) at from 450 to 600° C. (material temperature), and particularly from 450 to 500° C. (material temperature), cracked and pulverized as necessary, and then classified.
  • H 2 S hydrogen sulfide gas
  • Examples of the compound containing lithium (Li) include a lithium compound, such as lithium sulfide (Li 2 S), lithium oxide (Li 2 O), and lithium carbonate (Li 2 CO 3 ), and metallic lithium as an elemental substance.
  • a lithium compound such as lithium sulfide (Li 2 S), lithium oxide (Li 2 O), and lithium carbonate (Li 2 CO 3 ), and metallic lithium as an elemental substance.
  • Examples of the compound containing phosphorus (P) include a phosphorus sulfide, such as diphosphorus trisulfide (P 2 S 3 ), and diphosphorus pentasulfide (P 2 S 5 ), a phosphorus compound, such as sodium phosphate (Na 3 PO 4 ), and phosphorus as an elemental substance.
  • a phosphorus sulfide such as diphosphorus trisulfide (P 2 S 3 ), and diphosphorus pentasulfide (P 2 S 5 )
  • a phosphorus compound such as sodium phosphate (Na 3 PO 4 )
  • phosphorus as an elemental substance examples include sodium phosphate (Na 3 PO 4 ), and phosphorus as an elemental substance.
  • Examples of the compound containing sulfur (S) include lithium sulfide and phosphorus sulfide described above.
  • Examples of the chlorine-containing compound include LiCl, PCl 3 , PCl 5 , POCl 3 , P 2 Cl 4 , SCl 2 , S 2 Cl 2 , NaCl, and BCl 3 .
  • bromine-containing compound examples include LiBr, PBr 3 , POBr 3 , S 2 Br 2 , NaBr, and BBr 3 .
  • lithium sulfide phosphorus sulfide
  • lithium chloride lithium bromide
  • preferred examples of the mixing method of the raw materials include pulverization and mixing with a ball mill, a bead mill, or a homogenizer, but not a mixing method imparting a strong mechanical stress, such as a planetary ball mill.
  • the aforementioned raw materials are unstable in the air and may undergo decomposition through reaction with water, generation of hydrogen sulfide gas, or oxidation, and therefore the raw materials are preferably placed in the furnace in a glove box substituted by an inert gas atmosphere or the like, and then calcined.
  • the present solid electrolyte can be used as a solid electrolyte layer of an all solid lithium secondary battery, a solid electrolyte to be mixed with a positive electrode or negative electrode mixture, and the like.
  • an all solid lithium secondary battery can be constituted by forming a positive electrode, a negative electrode, and a layer containing the solid electrolyte between the positive electrode and the negative electrode.
  • the present solid electrolyte is excellent in water resistance and oxidation resistance and undergoes less characteristic deterioration even handling in dry air, and thus the assembling work of the all solid lithium secondary battery can be performed, for example, in a dry room.
  • the layer containing the solid electrolyte herein can be produced by methods, for example, a method of dropping a slurry containing the solid electrolyte, a binder, and a solvent on a substrate and cutting with a doctor blade or the like by rubbing, a method of bringing the slurry in contact with the substrate and cutting with an air knife, a method of forming a coated film by a screen printing method or the like, and then the solvent is removed through heating and drying.
  • the layer can also be produced in such a manner that powder of the solid electrolyte is formed into a green compact by pressing or the like, and then appropriately process the green compact.
  • the positive electrode material used may be a positive electrode material that has been used as a positive electrode active material of a lithium secondary battery.
  • Examples of the positive electrode active material may include a spinel type lithium transition metal oxide, a lithium transition metal oxide having a layer structure, an olivine, or a mixture of two or more kinds thereof.
  • the negative electrode material used may be a negative electrode material that has been used as a negative electrode active material of a lithium secondary battery.
  • the present solid electrolyte is electrochemically stable
  • a carbonaceous material such as artificial graphite, natural graphite, and non-graphitizable carbon (hard carbon), which performs charge and discharge at a baser potential (approximately 0.1 V vs. Li + /Li) comparable to metallic lithium
  • a baser potential approximately 0.1 V vs. Li + /Li
  • the energy density of the all solid lithium secondary battery can be largely enhanced by using the carbonaceous material as the negative electrode active material along with the present solid electrolyte as the electrolyte of the lithium secondary battery. Consequently, a lithium secondary battery having the present solid electrolyte, and a negative electrode active material containing carbon, such as artificial graphite, natural graphite, and non-graphitizable carbon (hard carbon), can be constituted.
  • a silicon active material which is expected as a high capacity negative electrode material, can be used as the negative electrode active material of the lithium secondary battery.
  • a silicon active material undergoes large expansion and contraction in repeated charge and discharge, and therefore is considered to be significantly difficult to retain the contact to the solid electrolyte.
  • the present solid electrolyte used as the electrolyte of the all solid lithium ion battery can be deformed following the expansion and contraction of the silicon active material since the present solid electrolyte has such characteristics as a low Young's modulus, i.e., a low elastic modulus, whereby an effect of enhancing the cycle characteristics can be expected. Consequently, a lithium secondary battery having the present solid electrolyte and a silicon negative electrode active material can be constituted.
  • the negative electrode can be produced, for example, in such a manner that the present solid electrolyte, the negative electrode active material, and as necessary additional materials, such as a conductive auxiliary agent and a binder, are mixed and molded into a prescribed shape, such as a plate shape, by compression press.
  • the positive electrode can be produced, for example, in such a manner that the present solid electrolyte, the positive electrode active material, and as necessary additional materials, such as a conductive auxiliary agent and a binder, are mixed and molded into a prescribed shape, such as a plate shape, by compression press.
  • the “solid electrolyte” means an entire substance retaining a solid state, in which an ion, such as Lit, can migrate.
  • the “lithium secondary battery” is a term that widely encompasses secondary batteries that perform charge and discharge through migration of lithium ion between a positive electrode and a negative electrode.
  • the expression “from X to Y” encompasses the meaning of “X or more and Y or less”, and also encompasses the meaning of “preferably greater than X” or “preferably less than Y” unless otherwise indicated.
  • X or more (wherein X shows an arbitrary numeral) or “Y or less” (wherein Y shows an arbitrary numeral) encompasses the meaning of “preferably greater than X” or “preferably less than Y”.
  • Lithium sulfide (Li 2 S) powder, diphosphorus pentasulfide (P 2 S 5 ) powder, lithium chloride (LiCl) powder, and lithium bromide (LiBr) powder each were weighted to make a total amount of 75 g with the raw material composition (% by mol) shown in Table 1, and pulverized and mixed with a ball mill for 6 hours to prepare mixed powder.
  • the mixed powder was filled into a carbon vessel, which was heated at a temperature raise rate of 200° C./h and calcined at 500° C. for 4 hours, under a stream of hydrogen sulfide gas (H 2 S, purity: 100%) at 1.0 L/min in a tubular electric furnace. Thereafter, the sample was cracked with a mortar and granulated with a sieve having an aperture of 53 ⁇ m to provide a sample (i.e., a sulfide compound as a solid electrolyte) in the form of powder.
  • H 2 S
  • a sample (i.e., a sulfide compound) in the form of powder was obtained in the same manner as above except that the stream gas was changed to argon, and the calcining temperature was changed to 450° C.
  • the raw material composition is shown in Table 1.
  • the samples i.e., the solid electrolyte
  • XRD X-ray diffractometry
  • the samples obtained in Examples 1 to 5 each were confirmed to have a single phase constituted by a crystal phase of a cubic argyrodite type crystal structure and to have high crystallinity.
  • a laser diffraction particle size analyzer (“Microtorac SDC”, produced by Nikkiso Co., Ltd.) at a flow rate of 40%
  • the non-aqueous solvent was filtered through a filter having a pore size of 60 ⁇ m, and the average value obtained by making two measurements under the conditions of a solvent refractive index of 1.50, penetration for the particle penetrability conditions, a particle refractive index of 1.59, a non-spherical shape, a measurement range of 0.133 to 704.0 ⁇ m, and a measurement time of 30 seconds, was defined as D50.
  • the sulfide compounds (sample) obtained in Examples and Comparative Examples each were pelletized by applying a pressure of 200 MPa assuming the press compression in forming an electrode, and the cross section thereof was observed with a scanning electron microscope (SEM). Based on the resulting SEM micrograph (magnification: 5,000), the ratings “ ⁇ : good” and “x: poor” were judged by the following standard. The sample not evaluated was shown with “-”.
  • the samples i.e., the sulfide compounds in the form of powder obtained in Examples and Comparative Examples each were measured for the force curve with an atomic force microscope (AFM) (“Dimension Icon, produced by Bruker Corporation), and the elastic modulus (Young's modulus) was obtained from the resulting force curve.
  • AFM atomic force microscope
  • the sample was scattered on and fixed to a silicon wafer having an epoxy resin thinly coated thereon, so as to prepare a measurement sample.
  • the force curve was measured in the Ramp mode (force curve measurement mode) for 10 particles per one sample.
  • the measurement parameters were adjusted to calculate the prescribed value with the known standard sample (glass, elastic modulus: 72 GPa), and then the sample was measured.
  • the measurement environment was an Ar atmosphere (oxygen concentration: ⁇ 0.1 ppm, water concentration: ⁇ 0.1 ppm), 25° C., and a diamond probe (DNISP-HS), produced by Bruker Corporation as the measurement probe.
  • Ar atmosphere oxygen concentration: ⁇ 0.1 ppm, water concentration: ⁇ 0.1 ppm
  • DNISP-HS diamond probe
  • the damping Young's modulus was obtained by force curve fit with DMT model, and the Young's modulus of the sample was obtained with a Poisson ratio of 0.3 derived from the relational expression of the damping Young's modulus and the Young's modulus of the sample.
  • F represents the force applied with the cantilever
  • Fadh represents the absorption force
  • E* represents the damping Young's modulus
  • R represents the curvature radius of the cantilever
  • d ⁇ d 0 represents the distance between the cantilever and the sample.
  • E* represents the damping Young's modulus
  • E s represents the Young's modulus of the sample
  • ⁇ s represents the Poisson ratio of the sample.
  • the measurement of the Young's modulus by the aforementioned method employed in the examples of the present invention calculates the value on the surface of the particles, and therefore the elastic modulus inherent to the particles can be measured.
  • the samples (i.e., the sulfide compounds) obtained in Examples and Comparative Examples each were subjected to uniaxial press molding at a pressure of 200 MPa and further subjected to cold isotropic press (CIP) at a pressure of 200 MPa, so as to prepare a pellet having a diameter of 10 mm and a thickness of from 2 to 5 mm, in a glove box having been substituted by sufficiently dried Ar gas (dew point: ⁇ 60° C. or less), and a carbon paste as electrodes was coated on the upper and lower surface of the pellet and subjected to a heat treatment at 180° C. for 30 minutes, so as to produce a sample for measuring the ion conductivity.
  • the ion conductivity was measured by the alternating current impedance method at room temperature (25° C.)
  • LiNi 0.5 Co 0.2 Mn 0.3 O 2 (NCM) powder (D50: 6.7 ⁇ m), which was a ternary layered compound, was used as the positive electrode active material
  • graphite (Gr) powder (D50: 20 ⁇ m) was used as the negative electrode active material
  • the samples i.e., the sulfide compounds obtained in Examples and Comparative Examples were used as the solid electrolyte powder.
  • the positive electrode mixture powder was prepared by mixing the positive electrode active material powder, the solid electrolyte powder, and the conductive auxiliary agent (acetylene black) at a weight ratio of 60/37/3 with a mortar, and subjected to uniaxial press molding at 20 MPa to provide a positive electrode mixture pellet.
  • the conductive auxiliary agent acetylene black
  • the negative electrode mixture powder was prepared by mixing the graphite powder and the solid electrolyte powder at a weight ratio of 64/36 with a mortar.
  • the lower opening of a polypropylene cylinder having openings on the upper and lower end thereof was closed with a positive electrode (formed of stainless steel (SUS)), and the positive electrode mixture pellet was placed on the positive electrode.
  • the powder solid electrolyte was placed thereon, and subjected to uniaxial pressing at 180 MPa to form the positive electrode mixture and the solid electrolyte layer.
  • the negative electrode mixture powder was placed thereon, and after closing with a negative electrode (formed of stainless steel (SUS)), was subjected to uniaxial pressing at 550 MPa, so as to produce a dies battery having a three-layer structure including the positive electrode mixture having a thickness of approximately 100 ⁇ m, the solid electrolyte layer having a thickness of approximately 300 ⁇ m, and the negative electrode mixture having a thickness of approximately 20 ⁇ m.
  • a negative electrode formed of stainless steel (SUS)
  • the dies battery thus produced above was subjected to the measurement of the electric resistance and the charge and discharge test.
  • the battery was placed in an environmental tester configured to have an environmental temperature of 25° for charge and discharge of the battery, prepared for charge and discharge, and allowed to stand to conform the battery temperature to the environmental temperature.
  • the alternating current resistance at 1 kHz was measured before charging, and the resulting value was designated as the alternating current resistance before charging.
  • the battery was subjected to charge and discharge at 1 mA as C.
  • the battery was then subjected to constant current and constant potential charge at 0.1 C to 4.5 V, and the initial charge capacity was obtained.
  • the alternating current resistance at 1 kHz was measured as similar to before charging, and the resulting value was designated as the alternating current resistance before discharging.
  • the battery was then subjected to constant current discharge at 0.1 C to 2.5 V, and the initial discharge capacity was obtained.
  • the initial charge and discharge efficiency was obtained from the discharge capacity with respect to the charge capacity.
  • the battery was then subjected to constant current and constant potential charge at 0.2 C to 4.5 V and then constant current discharge at 5 C to 2.5 V, and the discharge capacity at 5 C was obtained.
  • the ratio of the discharge capacity at 5 C with respect to the discharge capacity at 0.1 C as 100% was calculated and designated as the rate characteristics (i.e., the 5 C capacity retention rate (%)).
  • Example 3 had a low battery resistance, i.e., was excellent, irrespective of the low ion conductivity thereof.
  • the elastic modulus i.e., the Young's modulus
  • the Young's modulus is preferably further decreased by calcining at from 450 to 600° C. (material temperature) under a stream of hydrogen sulfide (H 2 S) gas in the production method thereof.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Conductive Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

As a novel sulfide compound having a low elastic modulus while retaining high ion conductivity, a sulfide compound for a solid electrolyte of a lithium secondary battery that includes a crystal phase of a cubic argyrodite type crystal structure, and is represented by the compositional formula: Li7−xPS6−xClyBrz, wherein x in the compositional formula satisfies x=y+z and 1.0<x≤1.8, and a ratio, z/y, of the molar ratio of Br to the molar ratio of Cl is from 0.1 to 10.0.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation of U.S. patent application Ser. No. 16/628,651 filed on Jan. 3, 2020, which is the United States national phase of International Application No. PCT/JP2018/025005 filed Jul. 2, 2018, and claims priority to Japanese Patent Application No. 2017-133772 filed Jul. 7, 2017, the disclosures of which are hereby incorporated by reference in their entirety.
  • BACKGROUND OF THE INVENTION Field of the Invention
  • The present invention relates to a solid electrolyte of a lithium secondary battery and a sulfide compound capable of being preferably used for the solid electrolyte.
  • Description of Related Art
  • A lithium secondary battery is a secondary battery having a structure in which lithium is dissolved as an ion from a positive electrode and occluded by a negative electrode through migration in charging, whereas the lithium ion is returned from the negative electrode to the positive electrode in discharging. A lithium secondary battery is widely used as a power source of home electric appliances, e.g., a video camera, portable electronic equipments, e.g., a notebook computer and a mobile phone, electric power tools, and the like due to such characteristics thereof as a large energy density and a long service life, and in recent years, is being applied to large capacity batteries mounted on an electric vehicle (EV), a hybrid electric vehicle (HEV), and the like.
  • The lithium secondary battery of this type is constituted by a positive electrode, a negative electrode, and an ion conductor layer held between the electrodes, and the ion conductor layer used is generally a separator formed of a porous film, such as polyethylene or polypropylene, impregnated with a non-aqueous electrolytic solution. However, since an organic electrolytic solution containing a combustible organic solvent as a solvent is used as the electrolyte, the structure and material thereof are necessarily improved for preventing volatilization and leakage thereof, and furthermore a safety device for suppressing temperature raise in short circuit is necessarily mounted, and the structure and material thereof are necessarily improved for preventing short circuit.
  • On the other hand, an all solid lithium secondary battery, which is totally solidified by using a solid electrolyte, can be simplified in the safety device due to the non-use of a combustible organic solvent, and not only the production cost and the productivity thereof can be improved, but also such characteristics can be provided that a high voltage can be obtained by serially stacking in the cell. Furthermore, in the solid electrolyte of this type, none except for Li ion migrates, it is expected that the side reaction caused by the movement of the anion does not occur, and that the safety and the durability are improved.
  • The solid electrolyte used in the battery of this type is demanded to have higher ion conductivity as much as possible and also demanded to be stable chemically and electrochemically, and examples of the known candidate materials therefor include a lithium halide, a lithium nitride, a lithium oxoate, and derivatives thereof.
  • Patent literature 1 describes, as sulfide ceramics having high lithium ion conductivity and high decomposition voltage, lithium ion conductive sulfide ceramics that contains Li2S and P2S5 as major components, and has a composition of Li2S=82.5 to 92.5 and P2S5 7.5 to 17.5 in terms of percentage by mol, and preferably a composition of Li2S/P2S5=7 in terms of percentage by mol (compositional formula: Li7PS6).
  • Patent literature 2 describes a lithium ion conductive material that is represented by the chemical formula: Li+ (12−n−x)Bn+X2− (6−x)Y x (wherein Bn+ represents at least one selected from P, As, Ge, Ga, Sb, Si, Sn, Al, In, Ti, V, Nb, and Ta; X2− represents at least one selected from S, Se, and Te; Yrepresents at least one selected from F, Cl, Br, I, CN, OCN, SCN, and N3; and 0≤x≤2) and has an argyrodite type crystal structure.
  • Patent literature 3 describes, as a solid compound that has a high mobility of lithium ion and is capable of being prepared as a single layer, a lithium argyrodite that is represented by the general formula (I): Li+ (12−n−x)Bn+X2− (6−x) Y x, wherein Bn+ is selected from the group consisting of P, As, Ge, Ga, Sb, Si, Sn, Al, In, Ti, V, Nb, and Ta; X2− is selected from the group consisting of S, Se, and Te; Yis selected from the group consisting of Cl, Br, I, F, CN, OCN, SCN, and N3; and 0≤x≤2.
  • Patent literature 4 describes, as a novel sulfide solid electrolyte that is capable of significantly enhancing the conductivity as compared to the ordinary solid electrolyte, a sulfide solid electrolyte that has a structural skeleton of Li7PS6, and has a compositional formula having P partially replaced by Si: Li7+xP1−ySiyS6 (wherein x is from −0.6 to 0.6, and y is from 0.1 to 0.6).
  • Patent literature 5 relates to a compound that has a cubic crystal structure in the F-43m space group, and represented by the compositional formula: Li7−xPS6−xHax (wherein Ha represents Cl or Br), and describes, as a sulfide solid electrolyte for a lithium secondary battery that is capable of increasing the lithium ion conductivity and decreasing the electron conductivity, so as to enhance the charge and discharge efficiency and the cycle characteristics, a sulfide solid electrolyte for a lithium secondary battery that has x in the compositional formula of from 0.2 to 1.8, and a luminance L* in the L*a*b* color space of 60.0 or more.
  • Patent literature 6 relates to a sulfide solid electrolyte compound for a lithium secondary battery that has a cubic argyrodite type crystal structure, and describes, as sulfide solid electrolyte compound for a lithium secondary battery that is capable of suppressing the generation amount of hydrogen sulfide even when touching the air, and is capable of retaining the high conductivity even when allowing to stand in the dry air, a sulfide solid electrolyte compound for a lithium secondary battery that is represented by the compositional formula: Li7−x+yPS6−xClx+y (wherein x and y satisfy 0.05≤y≤0.9 and −3.0x+1.8≤y≤−3.0x+5.7).
  • Non patent literature 1 reports the characteristic evaluation in the case where Li6PS5C1−xBrx (0≤x≤1) is produced by dissolving Li6PS5Br to Li6PS5Cl through synthesis by a mechanochemical process and a heat treatment.
  • Non patent literature 2 produces a solid solution of Li6PS5C1−xBrx (0≤x≤1) containing two kinds of halogens through a mechanochemical process and a subsequent heat treatment, and reports the relationship between the composition and the ion conductivity thereof.
  • CITATION LIST Patent Literatures
    • Patent literature 1: JP 2001-250580 A
    • Patent literature 2: JP 2011-96630 A
    • Patent literature 3: JP 2010-540396 T
    • Patent literature 4: JP 2013-137889 A
    • Patent literature 5: WO 2015/012042
    • Patent literature 6: WO 2016/104702
    Non Patent Literatures
    • Non patent literature 1: Yosuke UKAWA, et al., “Preparation procedure of argyrodite-type Li6PS5X (X=Cl, Br, I) solid electrolytes and their ionic conductivity”, Symposium on Basic Science of Ceramics, January 2015 (1G18), the Ceramic Society of Japan
    • Non patent literature 2: Yosuke UKAWA, et al., “Characterization of argyrodite-type Li6PS5Cl1−xBrx solid electrolytes”, the Electrochemical Society of Japan, March 2015 (2H08)
    SUMMARY OF THE INVENTION
  • Further decrease of the resistance of the all solid battery is being demanded. For further decreasing the resistance of the all solid battery, a solid electrolyte having a high ion conductivity has been developed. However, it is difficult to decrease the resistance of the all solid battery only from that standpoint, and therefore an approach from another standpoint is necessarily studied.
  • As a result of the studies by the present inventors, it has been found that with a solid electrolyte material that has a high crystallinity but has a low elastic modulus, the voids among the active material particles can be avoided through collapse of the solid electrolyte material by applying a pressing pressure thereto in the production of an electrode, the contact points and the contact area to the active material particles can be increased, and thereby the battery resistance can be decreased.
  • A sulfide compound having a cubic argyrodite type crystal structure generally has characteristics including high crystallinity and excellent ion conductivity, but has high hardness, and thus has a problem of difficulty in collapse with the pressing pressure in the production of an electrode.
  • Under the circumstances, the present invention relates to a sulfide compound having a cubic argyrodite type crystal structure, and is to propose a novel sulfide compound that has a low elastic modulus while retaining the high ion conductivity.
  • The present invention proposes a sulfide compound for a solid electrolyte of a lithium secondary battery that includes a crystal phase of a cubic argyrodite type crystal structure, and is represented by the compositional formula: Li7−xPS6−xClyBrz, wherein x in the compositional formula satisfies x=y+z and 1.0<x≤1.8, and a ratio (z/y) of the molar ratio of Br to the molar ratio of Cl is from 0.1 to 10.0.
  • The sulfide compound proposed in the present invention has a crystal phase of a cubic argyrodite type crystal structure, and in the sulfide compound represented by the compositional formula: Li7−xPS6−xClyBrz, the total molar ratio of Cl and Br is made larger than 1.0, and the ratio of the molar ratio of Br to the molar ratio of Cl is regulated to the particular range, whereby the elastic modulus can be decreased while retaining the high ion conductivity, resulting in decrease of the battery resistance. For example, in the production of an electrode by using the sulfide compound proposed in the present invention as the solid electrolyte, the solid electrolyte is collapsed to avoid the voids among the active material particles by applying a pressing pressure thereto, the contact points and the contact area to the active material particles can be increased, and thereby the battery resistance can be decreased. Accordingly, the sulfide compound proposed in the present invention can be used particularly favorably as a solid electrolyte of a lithium secondary battery.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1A is a micrograph of a scanning electron microscope (SEM) (magnification: 5,000) obtained through observation of the sulfide compound obtained in Example 4 (sample) with an SEM, and
  • FIG. 1B is a micrograph of an SEM (magnification: 5,000) obtained through observation of the cross section of the sulfide compound obtained in Example 4 (sample) having been pelletized under a pressure of 200 MPa with an SEM.
  • FIG. 2A is a micrograph of a scanning electron microscope (SEM) (magnification: 5,000) obtained through observation of the sulfide compound obtained in Comparative Example 1 (sample) with an SEM, and FIG. 2B is a micrograph of an SEM (magnification: 5,000) obtained through observation of the cross section of the sulfide compound obtained in Comparative Example 1 (sample) having been pelletized under a pressure of 200 MPa with an SEM.
  • DESCRIPTION OF THE INVENTION
  • Embodiments of the present invention will be described in detail below. However, the scope of the present invention is not limited to the embodiments described below.
  • <Present Solid Electrolyte>
  • The sulfide solid electrolyte according to one example of the present embodiment (which may be referred to as a “present solid electrolyte”) is a solid electrolyte for a lithium secondary battery containing a sulfide compound (which may be referred to as a “present sulfide compound”) that has a crystal phase of a cubic argyrodite type crystal structure and is represented by the compositional formula (1): Li7−xPS6−xClyBrz (x=y+z).
  • <Present Sulfide Compound>
  • The present sulfide compound is a compound that has a crystal phase of a cubic argyrodite type crystal structure and is represented by the compositional formula (1): Li7−xPS6−xClyBrz.
  • The presence of the crystal phase of a cubic argyrodite type crystal structure can be confirmed, for example, by the analysis by the X-ray diffractometry (XRD, Cu radiation source) as described below.
  • In the compositional formula (1), the total molar ratio x of Cl and Br (=y+z) preferably satisfies 1.0<x≤1.8.
  • The total molar ratio x of Cl and Br (=y+z) that is more than 1.0 and 1.8 or less is preferred since the ion conductivity can be further increased. In particular, in the case where x is 1.8 or less, the formation of a heterogeneous phase can be controlled, and the decreasing of ion conductivity can be suppressed.
  • From this standpoint, x in the compositional formula (1) is preferably more than 1.0 and 1.8 or less, and among others, it is more preferably 1.1 or more or 1.7 or less, even more preferably 1.2 or more or 1.6 or less.
  • In the compositional formula (1), the ratio (z/y) of the molar ratio of Br to the molar ratio of Cl is preferably from 0.1 to 10.
  • The ratio (z/y) of the molar ratio of Br to the molar ratio of Cl that is 0.1 or more is preferred since the solid electrolyte has a low elastic modulus, and on the other hand, the ratio (z/y) of the molar ratio of Br to the molar ratio of Cl that is 10 or less is preferred since a high ion conductivity is obtained.
  • From this standpoint, the ratio (z/y) of the molar ratio of Br to the molar ratio of Cl is preferably from 0.1 to 10, and among others, it is more preferably 0.2 or more or 5 or less, and even more preferably 0.3 or more or 3 or less.
  • In the compositional formula (1), y representing the molar ratio of Cl preferably satisfies 0.3≤y≤1.5.
  • The molar ratio y of Cl that is 0.3 or more is preferred since the ion conductivity can be further enhanced as compared to less than 0.3, and on the other hand, y of 1.5 or less is preferred since the low elastic modulus can be retained.
  • From this standpoint, y in the compositional formula (1) is preferably from 0.3 to 1.5, and among others, it is more preferably 0.4 or more or 1.2 or less, even more preferably 0.6 or more or 1.0 or less.
  • In the compositional formula (1), z representing the molar ratio of Br preferably satisfies 0.3≤y≤1.5.
  • The molar ratio z of Br that is 0.3 or more is preferred since the elastic modulus can be further decreased, and on the other hand, z of 1.5 or less is preferred since the ion conductivity can be retained.
  • A Br compound has a lower melting point than a Cl compound, and therefore the addition of a Br compound may enhance the reactivity, facilitating the synthesis of the sulfide compound.
  • From this standpoint, z in the compositional formula (1) is preferably from 0.3 to 1.5, and among others, it is more preferably 0.4 or more or 1.2 or less, even more preferably 0.6 or more or 1.0 or less.
  • It suffices that the present solid electrolyte contains the present sulfide compound, and therefore the present solid electrolyte may contain additional materials and components.
  • Accordingly, the present solid electrolyte may be formed of either: a single phase constituted by a crystal phase of a cubic argyrodite type crystal structure; a mixed phase containing a crystal phase of a cubic argyrodite type crystal structure and a crystal phase represented by LiCl; a mixed phase containing a crystal phase of a cubic argyrodite type crystal structure and a crystal phase represented by LiBr; and a mixed phase containing a crystal phase of a cubic argyrodite type crystal structure, a crystal phase represented by LiCl, and a crystal phase represented by LiBr.
  • The mixed phase containing a crystal phase of a cubic argyrodite type crystal structure and a crystal phase represented by LiCl and/or LiBr may encompass not only a mixed phase of a crystal phase of a cubic argyrodite type crystal structure and a crystal phase represented by LiCl and/or LiBr, but also cases containing a crystal phase other than these phases.
  • Examples of the additional materials include the other solid electrolyte materials, Li2S, Li3PS4, and Li4P2S6, but are not limited thereto.
  • The present solid electrolyte is preferably formed of the present sulfide compound as a major material, and the present solid electrolyte is preferably occupied by the present sulfide compound in a proportion of 50% by mass or more, particularly 80% by mass or more, and further particularly 90% by mass or more (including 100% by mass), and is particularly preferably constituted only by the present sulfide compound.
  • The present solid electrolyte may contain, in addition to the aforementioned materials, unavoidable impurities to a degree that does not adversely affect the effects of the present invention, for example, approximately less than 5% by mass, and particularly approximately less than 3% by mass.
  • (Particle Diameter)
  • The present solid electrolyte is preferably particles in the form of powder, and for the particle diameter thereof, the average particle diameter (D50), i.e., the average particle diameter (D50) obtained by the laser diffractive scattering particle size distribution measurement method, of the present solid electrolyte is preferably from 0.1 μm to 10 μm.
  • D50 that is 0.1 μm or more is preferred since the increase of resistance due to the increase of the surface of the solid electrolyte particles and the difficulty in mixing with the active material can be avoided. D50 that is 10 μm or less is preferred since the present solid electrolyte can readily intervene into gaps among the active material, so as to increase the contact points and the contact area.
  • From this standpoint, the average particle diameter (D50) of the present solid electrolyte is preferably from 0.1 μm to 10 μm, and among others, it is more preferably 0.3 μm or more or 7 μm or less, even more preferably 0.5 μm or more or 5 μm or less.
  • The average particle diameter (D50) of the present solid electrolyte is preferably from 1 to 100% of the average particle diameter (D50) of the positive electrode active material or the average particle diameter (D50) of the negative electrode active material.
  • The average particle diameter (D50) of the present solid electrolyte that is 1% or more of the average particle diameter (D50) of the positive electrode active material or the average particle diameter (D50) of the negative electrode active material is preferred since the present solid electrolyte can tightly fill the voids among the active material. On the other hand, 100% or less is preferred from the standpoint of the increase of the energy density of the battery since the proportion of the active material in the electrode is increased.
  • From this standpoint, the average particle diameter (D50) of the present solid electrolyte is preferably from 1 to 100% of the average particle diameter (D50) of the positive electrode active material or the average particle diameter (D50) of the negative electrode active material, and among others, it is more preferably 3% or more or 50% or less, even more preferably 5% or more or 30% or less.
  • (Elastic Modulus)
  • The Young's modulus of the present solid electrolyte is preferably from 1 GPa to 30 GPa.
  • The Young's modulus of the present solid electrolyte that is 1 GPa or more is preferred since the present solid electrolyte is hardly aggregated and can be readily produced. On the other hand, the Young's modulus of the present solid electrolyte that is 30 GPa or less is preferred since the present solid electrolyte may be collapsed at the interface to the active material and thereby the contact area can be increased.
  • From this standpoint, the Young's modulus of the present solid electrolyte is preferably from 1 GPa to 30 GPa, and among others, it is more preferably 5 GPa or more or 28 GPa or less, even more preferably 10 GPa or more or 25 GPa or less.
  • For controlling the Young's modulus of the present solid electrolyte to the aforementioned range, the present solid electrolyte is preferably subjected to a heat treatment at from 450 to 600° C. (material temperature), and particularly from 450 to 500° C. while flowing hydrogen sulfide (H2S) gas.
  • (Ion Conductivity)
  • It has been known that a sulfide solid electrolyte is inherently excellent in ion conductivity, and can form a favorable contact state to an active material at ordinary temperature to decrease the interface resistance, as compared to an oxide. In particular, the present solid electrolyte can achieve the decrease of the elastic modulus while retaining the ion conductivity.
  • (Production Method)
  • One example of the production method of the present sulfide compound or the present solid electrolyte will be described. However, the production method described herein is only one example, and the production method is not limited thereto.
  • The present sulfide compound or the present solid electrolyte may be obtained, for example, in such a manner that lithium sulfide (Li2S) powder, diphosphorus pentasulfide (P2S5) powder, lithium chloride (LiCl) powder, and lithium bromide (LiBr) powder are mixed and calcined.
  • As the mixing method of the raw materials, the raw materials are preferably pulverized and mixed, for example, with a ball mill, a bead mill, a homogenizer, or the like.
  • In the pulverization and mixing at this time, considerably strong mechanical pulverization and mixing with the mechanical alloying method or the like may cause the decrease in crystallinity or the amorphization of the raw material powder or the homogenization of the raw material mixed powder whereby the bond between cation and sulfur is broken to cause sulfur deficiency in calcining and exhibition of electron conductivity. Accordingly, pulverization and mixing are preferably performed to such an extent that the crystallinity of the raw material powder can be retained.
  • After mixing as shown above, present sulfide compound or the present solid electrolyte may be obtained in such a manner that the resulting powder is dried as necessary, then calcined in an inert atmosphere or under a stream of hydrogen sulfide gas (H2S), cracked and pulverized as necessary, and then classified.
  • The present sulfide compound undergoes crystallization at approximately 200° C., and therefore can be synthesized by calcining at a relatively low temperature. Accordingly, the present sulfide compound, which is a sulfide having the target chemical composition and substantially no sulfur deficiency, can be produced by calcining at 350° C. or more in an inert atmosphere or under a stream of hydrogen sulfide gas (H2S).
  • In particular, in the case where hydrogen sulfide gas is used in calcining, the sulfur partial pressure in the vicinity of the calcined sample can be increased with sulfur gas formed through decomposition of hydrogen sulfide in calcining, and thus sulfur deficiency hardly occurs at a high calcining temperature, thereby decreasing the electron conductivity. Accordingly, in the case where the calcining is performed in an atmosphere containing hydrogen sulfide gas, the calcining temperature is preferably from 350 to 650° C., and among others, it is more preferably 450° C. or more or 600° C. or less, even more preferably 500° C. or less.
  • In the case where the calcining is performed in an inert atmosphere, on the other hand, the sulfur partial pressure in the vicinity of the calcined sample cannot be increased in calcining, which is different from the case with hydrogen sulfide gas, and therefore sulfur deficiency tends to occur at a high calcining temperature, resulting in increase of the electron conductivity. Accordingly, in the case where the calcining is performed in an inert atmosphere, the calcining temperature is preferably from 350 to 500° C., and among others, it is more preferably 350° C. or more or 450° C. or less, even more preferably 400° C. or more or 450° C. or less.
  • For reacting the raw material powder completely to avoid the unreacted phase remaining, the calcining is generally preferably performed at 450° C. or more under a stream of hydrogen sulfide gas, but the raw material powder having a small particle diameter and thus having high reactivity may be calcined in an inert atmosphere since the reaction thereof can be accelerated at a low temperature.
  • The aforementioned raw materials are considerably unstable in the air and may undergo decomposition through reaction with water to generate hydrogen sulfide gas, or oxidation, and therefore the raw materials are preferably placed in the furnace in a glove box substituted by an inert gas atmosphere or the like, and then calcined.
  • According to the production in this manner, occurrence of sulfur deficiency can be suppressed, and the electron conductivity can be decreased. Accordingly, the all solid lithium secondary battery that is produced by using the present sulfide compound as the solid electrolyte can have favorable battery characteristics including the charge and discharge efficiency and the cycle characteristics.
  • In the production method of the present sulfide compound or the present solid electrolyte, for controlling the Young's modulus of the present sulfide compound or the present solid electrolyte to 30 GPa or less, it is preferred that a compound containing lithium (Li), a compound containing phosphorus (P), a compound containing sulfur (S), a chlorine-containing compound, and a bromine-containing compound are mixed, dried as necessary, then calcined under a stream of hydrogen sulfide gas (H2S) at from 450 to 600° C. (material temperature), and particularly from 450 to 500° C. (material temperature), cracked and pulverized as necessary, and then classified.
  • Examples of the compound containing lithium (Li) include a lithium compound, such as lithium sulfide (Li2S), lithium oxide (Li2O), and lithium carbonate (Li2CO3), and metallic lithium as an elemental substance.
  • Examples of the compound containing phosphorus (P) include a phosphorus sulfide, such as diphosphorus trisulfide (P2S3), and diphosphorus pentasulfide (P2S5), a phosphorus compound, such as sodium phosphate (Na3PO4), and phosphorus as an elemental substance.
  • Examples of the compound containing sulfur (S) include lithium sulfide and phosphorus sulfide described above.
  • Examples of the chlorine-containing compound include LiCl, PCl3, PCl5, POCl3, P2Cl4, SCl2, S2Cl2, NaCl, and BCl3.
  • Examples of the bromine-containing compound include LiBr, PBr3, POBr3, S2Br2, NaBr, and BBr3.
  • Among these, a combination of lithium sulfide, phosphorus sulfide, lithium chloride, and lithium bromide is preferred.
  • In the production method, preferred examples of the mixing method of the raw materials include pulverization and mixing with a ball mill, a bead mill, or a homogenizer, but not a mixing method imparting a strong mechanical stress, such as a planetary ball mill.
  • The aforementioned raw materials are unstable in the air and may undergo decomposition through reaction with water, generation of hydrogen sulfide gas, or oxidation, and therefore the raw materials are preferably placed in the furnace in a glove box substituted by an inert gas atmosphere or the like, and then calcined.
  • <Applications of Present Solid Electrolyte>
  • The present solid electrolyte can be used as a solid electrolyte layer of an all solid lithium secondary battery, a solid electrolyte to be mixed with a positive electrode or negative electrode mixture, and the like.
  • For example, an all solid lithium secondary battery can be constituted by forming a positive electrode, a negative electrode, and a layer containing the solid electrolyte between the positive electrode and the negative electrode.
  • At this time, the present solid electrolyte is excellent in water resistance and oxidation resistance and undergoes less characteristic deterioration even handling in dry air, and thus the assembling work of the all solid lithium secondary battery can be performed, for example, in a dry room.
  • The layer containing the solid electrolyte herein can be produced by methods, for example, a method of dropping a slurry containing the solid electrolyte, a binder, and a solvent on a substrate and cutting with a doctor blade or the like by rubbing, a method of bringing the slurry in contact with the substrate and cutting with an air knife, a method of forming a coated film by a screen printing method or the like, and then the solvent is removed through heating and drying. In alternative, the layer can also be produced in such a manner that powder of the solid electrolyte is formed into a green compact by pressing or the like, and then appropriately process the green compact.
  • The positive electrode material used may be a positive electrode material that has been used as a positive electrode active material of a lithium secondary battery. Examples of the positive electrode active material may include a spinel type lithium transition metal oxide, a lithium transition metal oxide having a layer structure, an olivine, or a mixture of two or more kinds thereof.
  • The negative electrode material used may be a negative electrode material that has been used as a negative electrode active material of a lithium secondary battery.
  • For example, since the present solid electrolyte is electrochemically stable, a carbonaceous material, such as artificial graphite, natural graphite, and non-graphitizable carbon (hard carbon), which performs charge and discharge at a baser potential (approximately 0.1 V vs. Li+/Li) comparable to metallic lithium, can be used as the negative electrode active material of the lithium secondary battery. Accordingly, the energy density of the all solid lithium secondary battery can be largely enhanced by using the carbonaceous material as the negative electrode active material along with the present solid electrolyte as the electrolyte of the lithium secondary battery. Consequently, a lithium secondary battery having the present solid electrolyte, and a negative electrode active material containing carbon, such as artificial graphite, natural graphite, and non-graphitizable carbon (hard carbon), can be constituted.
  • Furthermore, a silicon active material, which is expected as a high capacity negative electrode material, can be used as the negative electrode active material of the lithium secondary battery.
  • In an all solid battery, a silicon active material undergoes large expansion and contraction in repeated charge and discharge, and therefore is considered to be significantly difficult to retain the contact to the solid electrolyte.
  • The present solid electrolyte used as the electrolyte of the all solid lithium ion battery can be deformed following the expansion and contraction of the silicon active material since the present solid electrolyte has such characteristics as a low Young's modulus, i.e., a low elastic modulus, whereby an effect of enhancing the cycle characteristics can be expected. Consequently, a lithium secondary battery having the present solid electrolyte and a silicon negative electrode active material can be constituted.
  • <Production Method of Electrode for Lithium Secondary Battery Using Present Solid Electrolyte>
  • The negative electrode can be produced, for example, in such a manner that the present solid electrolyte, the negative electrode active material, and as necessary additional materials, such as a conductive auxiliary agent and a binder, are mixed and molded into a prescribed shape, such as a plate shape, by compression press.
  • The positive electrode can be produced, for example, in such a manner that the present solid electrolyte, the positive electrode active material, and as necessary additional materials, such as a conductive auxiliary agent and a binder, are mixed and molded into a prescribed shape, such as a plate shape, by compression press.
  • Explanation of Terms
  • In the present invention, the “solid electrolyte” means an entire substance retaining a solid state, in which an ion, such as Lit, can migrate.
  • In the present invention, the “lithium secondary battery” is a term that widely encompasses secondary batteries that perform charge and discharge through migration of lithium ion between a positive electrode and a negative electrode.
  • In the present invention, the expression “from X to Y” (wherein X and Y each show an arbitrary numeral) encompasses the meaning of “X or more and Y or less”, and also encompasses the meaning of “preferably greater than X” or “preferably less than Y” unless otherwise indicated.
  • The expression “X or more” (wherein X shows an arbitrary numeral) or “Y or less” (wherein Y shows an arbitrary numeral) encompasses the meaning of “preferably greater than X” or “preferably less than Y”.
  • EXAMPLES
  • The present invention will be described with reference to examples below. However, the present invention is not construed as being limited thereto.
  • Examples 1 to 5 and Comparative Examples 1 to 3
  • Lithium sulfide (Li2S) powder, diphosphorus pentasulfide (P2S5) powder, lithium chloride (LiCl) powder, and lithium bromide (LiBr) powder each were weighted to make a total amount of 75 g with the raw material composition (% by mol) shown in Table 1, and pulverized and mixed with a ball mill for 6 hours to prepare mixed powder. The mixed powder was filled into a carbon vessel, which was heated at a temperature raise rate of 200° C./h and calcined at 500° C. for 4 hours, under a stream of hydrogen sulfide gas (H2S, purity: 100%) at 1.0 L/min in a tubular electric furnace. Thereafter, the sample was cracked with a mortar and granulated with a sieve having an aperture of 53 μm to provide a sample (i.e., a sulfide compound as a solid electrolyte) in the form of powder.
  • At this time, the weighing, mixing, placing in the electric furnace, taking out from the electric furnace, cracking, and granulating operations were all performed in a glove box having been substituted by sufficiently dried Ar gas (dew point: −60° C. or less).
  • Example 6
  • A sample (i.e., a sulfide compound) in the form of powder was obtained in the same manner as above except that the stream gas was changed to argon, and the calcining temperature was changed to 450° C. The raw material composition is shown in Table 1.
  • <Measurement of Composition>
  • The samples (i.e., the sulfide compounds) obtained in Examples and Comparative Examples each were measured for the composition by the ICP emission spectrometry. The values of x, y, z, and (z/y) in the compositional formula: Li7−xPS6−xClyBrz are shown in Table 1.
  • <X-Ray Diffraction>
  • The samples (i.e., the solid electrolyte) in the form of powder obtained in Examples and Comparative Examples each were analyzed by the X-ray diffractometry (XRD, Cu radiation source) to identify the formed phases.
  • The samples obtained in Examples 1 to 5 each were confirmed to have a single phase constituted by a crystal phase of a cubic argyrodite type crystal structure and to have high crystallinity.
  • <Measurement of Average Particle Diameter>
  • The samples (i.e., the solid electrolyte) in the form of powder obtained in Examples and Comparative Examples each were measured for the particle size distribution in such a manner that the sample (powder) was placed in a non-aqueous solvent and irradiated with ultrasonic wave of 40 W for 360 seconds with an automatic sample feeder for a laser diffraction particle size analyzer (“Microtorac SDC”, produced by Nikkiso Co., Ltd.) at a flow rate of 40%, and then measured for the particle size distribution with a laser diffraction particle size analyzer “MT3000II”, produced by Nikkiso Co., Ltd., and the average particle diameter (D50) was measured from the resulting volume based particle size distribution chart.
  • Meanwhile, at the time of measurement, the non-aqueous solvent was filtered through a filter having a pore size of 60 μm, and the average value obtained by making two measurements under the conditions of a solvent refractive index of 1.50, penetration for the particle penetrability conditions, a particle refractive index of 1.59, a non-spherical shape, a measurement range of 0.133 to 704.0 μm, and a measurement time of 30 seconds, was defined as D50.
  • <Observation of SEM Micrograph>
  • The sulfide compounds (sample) obtained in Examples and Comparative Examples each were pelletized by applying a pressure of 200 MPa assuming the press compression in forming an electrode, and the cross section thereof was observed with a scanning electron microscope (SEM). Based on the resulting SEM micrograph (magnification: 5,000), the ratings “∘: good” and “x: poor” were judged by the following standard. The sample not evaluated was shown with “-”.
  • ∘ (good): Collapsed state of the sulfide compound was observed.
  • x (poor): Collapsed state of the sulfide compound was not observed.
  • <Measurement of Young's Modulus>
  • The samples (i.e., the sulfide compounds) in the form of powder obtained in Examples and Comparative Examples each were measured for the force curve with an atomic force microscope (AFM) (“Dimension Icon, produced by Bruker Corporation), and the elastic modulus (Young's modulus) was obtained from the resulting force curve.
  • In a glove box with an Ar atmosphere, the sample was scattered on and fixed to a silicon wafer having an epoxy resin thinly coated thereon, so as to prepare a measurement sample.
  • As for the measurement condition, the force curve was measured in the Ramp mode (force curve measurement mode) for 10 particles per one sample.
  • The measurement parameters were adjusted to calculate the prescribed value with the known standard sample (glass, elastic modulus: 72 GPa), and then the sample was measured.
  • The measurement environment was an Ar atmosphere (oxygen concentration: <0.1 ppm, water concentration: <0.1 ppm), 25° C., and a diamond probe (DNISP-HS), produced by Bruker Corporation as the measurement probe.
  • With the resulting force curve, the damping Young's modulus was obtained by force curve fit with DMT model, and the Young's modulus of the sample was obtained with a Poisson ratio of 0.3 derived from the relational expression of the damping Young's modulus and the Young's modulus of the sample.
  • F - F a d h = 4 3 E * R ( d - d 0 ) 3 Expression 1
  • In the expression 1, F represents the force applied with the cantilever; Fadh represents the absorption force; E* represents the damping Young's modulus; R represents the curvature radius of the cantilever; and d−d0 represents the distance between the cantilever and the sample.
  • E * = E S 1 - v S 2 Expression 2
  • In the expression 2, E* represents the damping Young's modulus; Es represents the Young's modulus of the sample; and νs represents the Poisson ratio of the sample.
  • By the use of the measurement of the Young's modulus by a compression test represented by indentation, it is difficult to distinguish between the cohesive force of the secondary particles formed through aggregation of the primary particles and the elastic modulus inherent to the primary particles, with the deformability of the secondary particles becoming predominant, and therefore it is difficult to measure the actual elastic modulus of the particles.
  • On the other hand, the measurement of the Young's modulus by the aforementioned method employed in the examples of the present invention calculates the value on the surface of the particles, and therefore the elastic modulus inherent to the particles can be measured.
  • <Measurement of Ion Conductivity>
  • The samples (i.e., the sulfide compounds) obtained in Examples and Comparative Examples each were subjected to uniaxial press molding at a pressure of 200 MPa and further subjected to cold isotropic press (CIP) at a pressure of 200 MPa, so as to prepare a pellet having a diameter of 10 mm and a thickness of from 2 to 5 mm, in a glove box having been substituted by sufficiently dried Ar gas (dew point: −60° C. or less), and a carbon paste as electrodes was coated on the upper and lower surface of the pellet and subjected to a heat treatment at 180° C. for 30 minutes, so as to produce a sample for measuring the ion conductivity. The ion conductivity was measured by the alternating current impedance method at room temperature (25° C.)
  • <Production and Use Method of Lithium Secondary Battery using Present Solid Electrolyte Compound>
  • (Materials)
  • LiNi0.5Co0.2Mn0.3O2 (NCM) powder (D50: 6.7 μm), which was a ternary layered compound, was used as the positive electrode active material, graphite (Gr) powder (D50: 20 μm) was used as the negative electrode active material, and the samples (i.e., the sulfide compounds) obtained in Examples and Comparative Examples were used as the solid electrolyte powder.
  • The positive electrode mixture powder was prepared by mixing the positive electrode active material powder, the solid electrolyte powder, and the conductive auxiliary agent (acetylene black) at a weight ratio of 60/37/3 with a mortar, and subjected to uniaxial press molding at 20 MPa to provide a positive electrode mixture pellet.
  • The negative electrode mixture powder was prepared by mixing the graphite powder and the solid electrolyte powder at a weight ratio of 64/36 with a mortar.
  • The lower opening of a polypropylene cylinder having openings on the upper and lower end thereof (opening diameter: 10.5 mm, height: 18 mm) was closed with a positive electrode (formed of stainless steel (SUS)), and the positive electrode mixture pellet was placed on the positive electrode. The powder solid electrolyte was placed thereon, and subjected to uniaxial pressing at 180 MPa to form the positive electrode mixture and the solid electrolyte layer. The negative electrode mixture powder was placed thereon, and after closing with a negative electrode (formed of stainless steel (SUS)), was subjected to uniaxial pressing at 550 MPa, so as to produce a dies battery having a three-layer structure including the positive electrode mixture having a thickness of approximately 100 μm, the solid electrolyte layer having a thickness of approximately 300 μm, and the negative electrode mixture having a thickness of approximately 20 μm.
  • (Evaluation of Battery)
  • The dies battery thus produced above was subjected to the measurement of the electric resistance and the charge and discharge test.
  • The battery was placed in an environmental tester configured to have an environmental temperature of 25° for charge and discharge of the battery, prepared for charge and discharge, and allowed to stand to conform the battery temperature to the environmental temperature.
  • The alternating current resistance at 1 kHz was measured before charging, and the resulting value was designated as the alternating current resistance before charging.
  • The battery was subjected to charge and discharge at 1 mA as C. The battery was then subjected to constant current and constant potential charge at 0.1 C to 4.5 V, and the initial charge capacity was obtained. The alternating current resistance at 1 kHz was measured as similar to before charging, and the resulting value was designated as the alternating current resistance before discharging.
  • The battery was then subjected to constant current discharge at 0.1 C to 2.5 V, and the initial discharge capacity was obtained. The initial charge and discharge efficiency was obtained from the discharge capacity with respect to the charge capacity.
  • The battery was then subjected to constant current and constant potential charge at 0.2 C to 4.5 V and then constant current discharge at 5 C to 2.5 V, and the discharge capacity at 5 C was obtained. The ratio of the discharge capacity at 5 C with respect to the discharge capacity at 0.1 C as 100% was calculated and designated as the rate characteristics (i.e., the 5 C capacity retention rate (%)).
  • TABLE 1
    Alter- Rate
    Alter- nating characte-
    nating current Initial ristics
    Ion Average current resistance Initial charge 5C
    conduc- particle resistance before Initial dis- and capacity SEM
    x tivity diameter Young′s before dis- charge charge discharge retention micro-
    y z (= y + (×10−3 (D50) modulus charging charging capacity capacity efficiency rate graph
    (Cl) (Br) z/y z) S/cm) (μm) (GPa) (Ω) (Ω) (mAh/g) (mAh/g) (%) (%) judgment
    Example 1 0.4 1.2 3.0 1.6 3.4 3.3 19 57 52 248.8 184   74.0 33.6
    (good)
    Example 2 1.2 0.4 0.3 1.6 5.0 2.6 22 53 54 236.5 176.8 74.8 31.7
    (good)
    Example 3 0.6 0.6 1.0 1.2 2.7 3.8 21 54 46 239.9 178.2 74.3 27.7
    Example 4 0.8 0.8 1.0 1.6 4.2 2.9 18 57 45 232.6 173.9 74.8 35.4
    (good)
    Example 5 0.8 0.8 1.0 1.6 5.5  0.76 19 58 48 239   186.6 78.1 52.9
    Comparative 1.2 0   0   1.2 2.9 2.4 42 136  139  231.8 173.9 75.0 28.3 ×
    Example 1 (poor)
    Comparative 0   1.6 1.6  0.35 3.4 22 51 46 243.6 178.9 73.4 19.1
    Example 2
    Comparative 0.5 0.5 1.0 1.0 1.6 3.6 24 54 57 237.7 177.1 74.5 19.6
    Example 3
    Example 6 0.8 0.8 1.0 1.6 2.4 3.9 32 54 55 240.3 181.3 75.5 20.3 ×
    (poor)
  • It is found from the results shown in Table 1 and the test results having been obtained that in the case where only Cl is contained as halogen, the ion conductivity can be retained, but the electric resistance tends to increase due to the high elastic modulus and the high hardness. It is also found that in the case where only Br is contained as halogen, the electric resistance is decreased due to the low elastic modulus and the low hardness, but the ion conductivity tends to decrease resulting in lower the rate characteristics. At this time, an ion conductivity of 2.0×10−3 S/cm or more, an alternating current resistance before charging of 100Ω or less, and rate characteristics (5 C capacity retention rate) of 20% or more are practically preferred, and these values can be used as the judgement standard.
  • It is confirmed from the comparison between Example 3 and Comparative Example 1 that as compared to Comparative Example 1, Example 3 had a low battery resistance, i.e., was excellent, irrespective of the low ion conductivity thereof.
  • It can be understood therefore that by containing Br in the prescribed ratio with respect to Cl as halogen, a solid electrolyte capable of exhibiting a more excellent battery capability for the battery resistance while retaining the practically high ion conductivity can be provided.
  • As a result of the observation of the cross sections of the pellets of the solid electrolytes of the examples with a scanning electron microscope (SEM), the collapsed state of the solid electrolyte could be observed as shown in FIGS. 1A and 1B (Example 4) in the case where the Young's modulus of the sulfide compound used as the solid electrolyte became 23 GPa or less. In the case where the Young's modulus of the sulfide compound exceeded GPa, on the other hand, the collapsed state of the solid electrolyte was not observed as shown in FIGS. 2A and 2B (Comparative Example 1).
  • It is found from the results shown in Table 1 and the test results having been obtained that as for the sulfide compound represented by the compositional formula: Li7−xPS6−xClyBrz, the elastic modulus can be decreased, and the battery resistance can be decreased, by making the total molar ratio of Cl and Br larger than 1.0, and making the ratio of the molar ratio of Br with respect to the molar ratio of Cl within the prescribed range.
  • It is also found that for further increasing the rate characteristics in the case where both Cl and Br are contained as halogen, the elastic modulus, i.e., the Young's modulus, is preferably further decreased by calcining at from 450 to 600° C. (material temperature) under a stream of hydrogen sulfide (H2S) gas in the production method thereof.

Claims (10)

1. A solid electrolyte for a lithium secondary battery, comprising a sulfide compound, the sulfide compound comprising a crystal phase of a cubic argyrodite type crystal structure, and being represented by the compositional formula: Li7−xPS6−xClyBrz, wherein x in the compositional formula satisfies x=y+z and 1.0<x≤1.8, and a ratio, z/y, of the molar ratio of Br to the molar ratio of Cl is from 0.1 to 10.0, and wherein the sulfide compound having an average particle diameter (D50) of from 0.1 μm to 10 μm, where the average particle diameter (D50) is obtained by the laser diffractive scattering particle size distribution measurement method.
2. The solid electrolyte for a lithium secondary battery according to claim 1, wherein in the compositional formula, y satisfies 0.3≤y≤1.5, and z satisfies 0.3≤z≤1.5.
3. The solid electrolyte for a lithium secondary battery according to claim 1, wherein the solid electrolyte comprises a single phase constituted by a crystal phase of a cubic argyrodite type crystal structure.
4. The solid electrolyte for a lithium secondary battery according to claim 1, wherein the sulfide compound has an average particle diameter (D50) of from 0.3 μm to 7 μm, where the average particle diameter (D50) is obtained by the laser diffractive scattering particle size distribution measurement method.
5. The solid electrolyte for a lithium secondary battery according to claim 1, wherein the content of the sulfide compound is 90% by mass or more.
6. A method for producing the solid electrolyte according to claim 1, comprising mixing a compound containing lithium (Li), a compound containing phosphorus (P), a compound containing sulfur (S), a chlorine-containing compound, and a bromine-containing compound, and calcining the compounds under a stream of hydrogen sulfide gas (H2S) at a material temperature from 450 to 600° C.
7. A negative electrode for a lithium secondary battery, comprising the solid electrolyte according to claim 1, and a negative electrode active material.
8. The negative electrode for a lithium secondary battery according to claim 7, wherein the negative electrode comprises a negative electrode active material comprising carbon or silicon.
9. A positive electrode for a lithium secondary battery, comprising the solid electrolyte according to claim 1, and a positive electrode active material.
10. A lithium secondary battery comprising the solid electrolyte according to claim 1.
US17/495,319 2017-07-07 2021-10-06 Solid Electrolyte of Lithium Secondary Battery and Sulfide Compound for Said Solid Electrolyte Abandoned US20220029196A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/495,319 US20220029196A1 (en) 2017-07-07 2021-10-06 Solid Electrolyte of Lithium Secondary Battery and Sulfide Compound for Said Solid Electrolyte

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2017-133772 2017-07-07
JP2017133772 2017-07-07
PCT/JP2018/025005 WO2019009228A1 (en) 2017-07-07 2018-07-02 Solid electrolyte of lithium secondary battery and sulfide compound for said solid electrolyte
US202016628651A 2020-01-03 2020-01-03
US17/495,319 US20220029196A1 (en) 2017-07-07 2021-10-06 Solid Electrolyte of Lithium Secondary Battery and Sulfide Compound for Said Solid Electrolyte

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2018/025005 Continuation WO2019009228A1 (en) 2017-07-07 2018-07-02 Solid electrolyte of lithium secondary battery and sulfide compound for said solid electrolyte
US16/628,651 Continuation US11196083B2 (en) 2017-07-07 2018-07-02 Solid electrolyte of lithium secondary battery and sulfide compound for said solid electrolyte

Publications (1)

Publication Number Publication Date
US20220029196A1 true US20220029196A1 (en) 2022-01-27

Family

ID=64951048

Family Applications (2)

Application Number Title Priority Date Filing Date
US16/628,651 Active US11196083B2 (en) 2017-07-07 2018-07-02 Solid electrolyte of lithium secondary battery and sulfide compound for said solid electrolyte
US17/495,319 Abandoned US20220029196A1 (en) 2017-07-07 2021-10-06 Solid Electrolyte of Lithium Secondary Battery and Sulfide Compound for Said Solid Electrolyte

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US16/628,651 Active US11196083B2 (en) 2017-07-07 2018-07-02 Solid electrolyte of lithium secondary battery and sulfide compound for said solid electrolyte

Country Status (6)

Country Link
US (2) US11196083B2 (en)
EP (1) EP3629412B1 (en)
JP (1) JP6595152B2 (en)
KR (1) KR102134749B1 (en)
CN (2) CN110800149B (en)
WO (1) WO2019009228A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023127830A1 (en) 2021-12-27 2023-07-06 三井金属鉱業株式会社 Composite active material

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112652810A (en) 2016-09-12 2021-04-13 出光兴产株式会社 Sulfide solid electrolyte
CN110800149B (en) 2017-07-07 2021-04-20 三井金属矿业株式会社 Solid electrolyte for lithium secondary battery and sulfide-based compound for the solid electrolyte
JP7239337B2 (en) * 2019-02-04 2023-03-14 三井金属鉱業株式会社 solid electrolyte
US20220173428A1 (en) * 2019-03-29 2022-06-02 Mitsui Mining & Smelting Co., Ltd. Sulfide solid electrolyte
JP7453765B2 (en) * 2019-09-18 2024-03-21 日産自動車株式会社 All solid state battery
US11702337B2 (en) * 2019-09-27 2023-07-18 Samsung Sdi Co., Ltd. Solid ion conductor, solid electrolyte including the solid ion conductor, electrochemical cell including the solid ion conductor, and preparation method of the same
CN114600200A (en) * 2019-10-29 2022-06-07 三井金属矿业株式会社 Sulfide solid electrolyte, and electrode mixture, solid electrolyte layer, and solid-state battery using same
KR20210054817A (en) 2019-11-06 2021-05-14 삼성에스디아이 주식회사 Solid electrolyte, electrochemical cell comprising solid electrolyte, and Method for preparing solid electrolyte
EP3819964A1 (en) 2019-11-07 2021-05-12 Samsung SDI Co., Ltd. Solid electrolyte, electrochemical cell including solid electrolyte, and method of preparing solid electrolyte
JP6952216B1 (en) * 2019-12-27 2021-10-20 三井金属鉱業株式会社 Sulfide solid electrolyte and its manufacturing method
KR20210098246A (en) 2020-01-31 2021-08-10 삼성에스디아이 주식회사 All Solid secondary battery, and Method for preparing the same
KR20210112926A (en) * 2020-03-06 2021-09-15 삼성에스디아이 주식회사 Solid electrolyte, electrochemical cell comprising solid electrolyte, and Method for preparing solid electrolyte
JP7328166B2 (en) * 2020-03-12 2023-08-16 マクセル株式会社 All-solid secondary battery
WO2021195111A1 (en) * 2020-03-23 2021-09-30 Solid Power, Inc. Solid electrolyte material and solid-state battery made therewith
JP7453037B2 (en) * 2020-03-31 2024-03-19 マクセル株式会社 all solid state battery
US10916802B1 (en) 2020-04-29 2021-02-09 Nanostar Inc. Ionic conductivity in silicon electrolyte composite particles
US11411211B2 (en) 2020-05-07 2022-08-09 Advano, Inc. Solid electrolyte-secondary particle composites
US20230343996A1 (en) 2020-07-09 2023-10-26 Mitsui Mining & Smelting Co., Ltd. Method for producing lithium sulfide
CN111977681B (en) * 2020-08-08 2023-10-10 天目湖先进储能技术研究院有限公司 Sulfide solid electrolyte material, gas phase synthesis method of raw material thereof and application thereof
KR20220028942A (en) 2020-08-31 2022-03-08 삼성에스디아이 주식회사 Sulfide solid electrolyte for all solid secondary battery, preparing method thereof, and all solid secondary battery including the same
US20240063428A1 (en) * 2020-12-18 2024-02-22 Research Institute Of Industrial Science & Technology Solid electrolyte, method for preparing same, and all-solid-state battery comprising same
US20240079642A1 (en) * 2021-01-15 2024-03-07 Korea Electrotechnology Research Institute Method for preparing solid electrolyte, solid electrolyte prepared thereby, and all-solid-state battery comprising same
KR102542111B1 (en) * 2021-01-15 2023-06-12 한국전기연구원 Method for producing solid electrolyte, solid electrolyte prepared therefrom, and all-solid-state battery comprising the same
CN112768759B (en) * 2021-02-09 2022-11-11 中创新航技术研究院(江苏)有限公司 Solid electrolyte precursor, solid electrolyte and preparation method thereof
KR20240023206A (en) * 2021-05-17 2024-02-20 세인트-고바인 세라믹스 앤드 플라스틱스, 인크. Electrolyte material and methods of forming
KR20230107405A (en) * 2021-11-17 2023-07-14 미쓰이금속광업주식회사 battery
CN114551992B (en) * 2022-03-17 2024-04-19 蜂巢能源科技(无锡)有限公司 Sulfide solid electrolyte and preparation method and application thereof
CN114852980B (en) * 2022-04-22 2024-04-05 武汉理工大学 Solid electrolyte material for lithium battery and preparation method thereof
KR102560211B1 (en) * 2022-04-26 2023-07-28 주식회사 포스코제이케이솔리드솔루션 Sulfide-based solid electrolyte for a secondary batteries and preparation method thereof
WO2024126691A1 (en) * 2022-12-16 2024-06-20 Umicore Positive electrode active material and method for manufacturing a positive electrode active material
WO2024126689A1 (en) * 2022-12-16 2024-06-20 Umicore Lithium nickel-based composite oxide as a positive electrode active material for sulfide solid-state rechargeable batteries
CN117039114B (en) * 2023-08-29 2024-04-12 深圳市贝特瑞新能源技术研究院有限公司 Rechargeable high-safety lithium battery
CN117594869B (en) * 2024-01-17 2024-05-14 中国第一汽车股份有限公司 Sulfide and preparation method thereof, solid electrolyte, all-solid-state battery and electric equipment
CN117613371B (en) * 2024-01-18 2024-09-13 中国第一汽车股份有限公司 Preparation method of solid electrolyte, solid electrolyte and application of solid electrolyte
CN118270836B (en) * 2024-06-03 2024-08-16 北京紫越知新科技有限公司 Sulfide electrolyte and preparation method thereof, composition for composite electrolyte membrane, preparation method of composite electrolyte membrane and lithium ion battery

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001250580A (en) 2000-03-06 2001-09-14 Masahiro Tatsumisuna Sulfide ceramics with high lithium ion conductivity and all solid cell using the same
DE102007048289A1 (en) * 2007-10-08 2009-04-09 Universität Siegen Lithium argyrodites
JP4835736B2 (en) * 2009-08-31 2011-12-14 トヨタ自動車株式会社 Method for producing solid electrolyte sheet
JP2011096630A (en) 2009-10-02 2011-05-12 Sanyo Electric Co Ltd Solid-state lithium secondary battery, and method for producing the same
JP5701741B2 (en) 2011-12-28 2015-04-15 三井金属鉱業株式会社 Sulfide-based solid electrolyte
WO2015011937A1 (en) * 2013-07-25 2015-01-29 三井金属鉱業株式会社 Sulfide-based solid electrolyte for lithium ion battery
DE102013219606A1 (en) * 2013-09-27 2015-04-02 Robert Bosch Gmbh Electrode material with lithium argyrodite
CN103560267B (en) * 2013-11-01 2016-05-11 国家电网公司 All solid lithium secondary battery electrolyte, its preparation method and all solid lithium secondary battery
JP5985120B1 (en) 2014-12-26 2016-09-06 三井金属鉱業株式会社 Sulfide solid electrolyte and solid electrolyte compound for lithium ion battery
DE102015210402A1 (en) * 2015-06-05 2016-12-08 Robert Bosch Gmbh Cathode material for lithium-sulfur cell
JP6683363B2 (en) * 2015-06-17 2020-04-22 出光興産株式会社 Method for producing solid electrolyte
JP6735096B2 (en) * 2015-12-28 2020-08-05 三星電子株式会社Samsung Electronics Co.,Ltd. All solid state battery
JP6936073B2 (en) * 2016-08-12 2021-09-15 出光興産株式会社 Sulfide solid electrolyte
JP6945382B2 (en) * 2016-09-08 2021-10-06 出光興産株式会社 Sulfide solid electrolyte
CN112652810A (en) 2016-09-12 2021-04-13 出光兴产株式会社 Sulfide solid electrolyte
JP6936251B2 (en) * 2016-12-14 2021-09-15 出光興産株式会社 Method for producing sulfide solid electrolyte
CN106532112A (en) * 2017-01-11 2017-03-22 厦门大学 Solid electrolyte material for lithium battery and preparation method and application of solid electrolyte material
WO2018164224A1 (en) 2017-03-08 2018-09-13 出光興産株式会社 Sulfide solid electrolyte particle
CN110800149B (en) * 2017-07-07 2021-04-20 三井金属矿业株式会社 Solid electrolyte for lithium secondary battery and sulfide-based compound for the solid electrolyte

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023127830A1 (en) 2021-12-27 2023-07-06 三井金属鉱業株式会社 Composite active material
KR20240128667A (en) 2021-12-27 2024-08-26 미쓰이금속광업주식회사 Composite active material

Also Published As

Publication number Publication date
JP6595152B2 (en) 2019-10-23
EP3629412B1 (en) 2022-10-19
EP3629412A1 (en) 2020-04-01
CN112331910B (en) 2024-10-18
US11196083B2 (en) 2021-12-07
KR102134749B1 (en) 2020-07-16
US20200127325A1 (en) 2020-04-23
CN110800149B (en) 2021-04-20
WO2019009228A1 (en) 2019-01-10
EP3629412A4 (en) 2020-06-24
CN110800149A (en) 2020-02-14
CN112331910A (en) 2021-02-05
JPWO2019009228A1 (en) 2019-11-07
KR20200003929A (en) 2020-01-10

Similar Documents

Publication Publication Date Title
US20220029196A1 (en) Solid Electrolyte of Lithium Secondary Battery and Sulfide Compound for Said Solid Electrolyte
US9899702B2 (en) Sulfide-based solid electrolyte for lithium ion cell, and solid electrolyte compound
US10938064B2 (en) Sulfide-type compound particles, solid electrolyte, and lithium secondary battery
JP6997216B2 (en) Solid electrolyte
JP5873533B2 (en) Sulfide-based solid electrolyte for lithium-ion battery
US20190312304A1 (en) Sulfide-Based Solid Electrolyte for Lithium Secondary Battery
KR102151511B1 (en) Sulfide-based solid electrolyte particles
TW201336147A (en) Sulfide-based solid electrolyte
TW202204263A (en) Solid electrolyte, electrode mixture and battery
WO2022186303A1 (en) Solid electrolyte, and electrode mixture, solid electrolyte layer and battery, each using solid electrolyte
TWI829873B (en) Sulfide solid electrolyte and battery
TWI839436B (en) Sulfide compound particle, solid electrolyte and lithium secondary battery

Legal Events

Date Code Title Description
AS Assignment

Owner name: MITSUI MINING & SMELTING CO., LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:TAKAHASHI, TSUKASA;CHIKUMOTO, TAKASHI;ITO, TAKAHIRO;AND OTHERS;SIGNING DATES FROM 20190702 TO 20190704;REEL/FRAME:057718/0246

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION