US20220017384A1 - Bubble-Column-Humidification Apparatus and Method - Google Patents

Bubble-Column-Humidification Apparatus and Method Download PDF

Info

Publication number
US20220017384A1
US20220017384A1 US17/488,478 US202117488478A US2022017384A1 US 20220017384 A1 US20220017384 A1 US 20220017384A1 US 202117488478 A US202117488478 A US 202117488478A US 2022017384 A1 US2022017384 A1 US 2022017384A1
Authority
US
United States
Prior art keywords
humidifier
bath
bubble
feed liquid
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US17/488,478
Inventor
Prakash Narayan Govindan
Mostafa H. Elsharqawy
Steven Lam
Maximus G. St. John
John H. Lienhard
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
King Fahd University of Petroleum and Minerals
Massachusetts Institute of Technology
Original Assignee
King Fahd University of Petroleum and Minerals
Massachusetts Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by King Fahd University of Petroleum and Minerals, Massachusetts Institute of Technology filed Critical King Fahd University of Petroleum and Minerals
Priority to US17/488,478 priority Critical patent/US20220017384A1/en
Assigned to KING FAHD UNIVERSITY OF PETROLEUM & MINERALS reassignment KING FAHD UNIVERSITY OF PETROLEUM & MINERALS ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ELSHARQAWY, MOSTAFA H.
Assigned to MASSACHUSETTS INSTITUTE OF TECHNOLOGY reassignment MASSACHUSETTS INSTITUTE OF TECHNOLOGY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: LIENHARD, JOHN H., Govindan, Prakash Narayan, LAM, STEVEN, ST. JOHN, MAXIMUS
Publication of US20220017384A1 publication Critical patent/US20220017384A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • C02F1/048Purification of waste water by evaporation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D19/00Degasification of liquids
    • B01D19/0005Degasification of liquids with one or more auxiliary substances
    • B01D19/001Degasification of liquids with one or more auxiliary substances by bubbling steam through the liquid
    • B01D19/0015Degasification of liquids with one or more auxiliary substances by bubbling steam through the liquid in contact columns containing plates, grids or other filling elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/06Flash distillation
    • B01D3/065Multiple-effect flash distillation (more than two traps)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/14Fractional distillation or use of a fractionation or rectification column
    • B01D3/143Fractional distillation or use of a fractionation or rectification column by two or more of a fractionation, separation or rectification step
    • B01D3/146Multiple effect distillation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/14Fractional distillation or use of a fractionation or rectification column
    • B01D3/32Other features of fractionating columns ; Constructional details of fractionating columns not provided for in groups B01D3/16 - B01D3/30
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • C02F1/06Flash evaporation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D1/00Evaporating
    • B01D1/14Evaporating with heated gases or vapours or liquids in contact with the liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D19/00Degasification of liquids
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/08Seawater, e.g. for desalination
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/10Nature of the water, waste water, sewage or sludge to be treated from quarries or from mining activities
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Definitions

  • Fresh water is one of the most fundamental needs of humans and other organisms; each human needs to consume a minimum of about two liters per day.
  • the world also faces greater freshwater demands from farming and industrial processes.
  • RO Reverse osmosis
  • MSF thermal-energy-based multi-stage flash
  • MED multi-effect distillation
  • Humidification-dehumidification (HDH) desalination systems include a humidifier and a dehumidifier as their main components and use a carrier gas (e.g., air) to communicate energy between the heat source and the brine.
  • a carrier gas e.g., air
  • a simple version of this technology includes a humidifier, a dehumidifier, and a heater to heat the seawater stream.
  • the humidifier hot seawater comes in direct contact with dry air, and this air becomes heated and humidified.
  • the dehumidifier the heated and humidified air is brought into (indirect) contact with cold seawater and gets dehumidified, producing pure water and dehumidified air.
  • precipitation of scaling components can occur within the system with consequent damage if the temperature rises too high.
  • a bubble-column humidification apparatus and a method for bubble-column humidification are described herein.
  • Various embodiments of the methods and apparatus may include some or all of the elements, features and steps described below.
  • the bubble-column-humidification apparatus includes a feed-liquid source containing a feed liquid and a humidifier chamber configured to receive the feed liquid from the feed-liquid source.
  • a bubble distributor is contained in the humidifier chamber; additionally, a humidifier bath of the feed liquid is contained in the humidifier chamber above the bubble distributor.
  • the feed liquid in the humidifier bath forms a continuous and majority phase of the humidifier bath and fills a majority of the humidifier chamber.
  • the width of the humidifier bath is at least twice as great as its height.
  • a carrier-gas source contains a carrier gas, and a lower gas region is contained in the humidifier chamber and is located below the bubble distributor and the humidifier bath. The lower gas region is configured to receive the carrier gas from the carrier-gas source and to disperse the carrier gas through the bubble distributor.
  • the carrier gas in the lower gas region has a pressure greater than the hydrostatic pressure of the humidifier bath.
  • a feed liquid is introduced into a humidifier chamber to form a humidifier bath of the feed liquid above a bubble distributor contained in the humidifier chamber.
  • the feed liquid in the humidifier bath forms a continuous and majority phase of the humidifier bath and fills a majority of the humidifier chamber, and the width of the humidifier bath is at least twice as great as its height.
  • a carrier gas is introduced at a pressure greater than a hydrostatic pressure of the humidifier bath into a lower gas region in the humidifier chamber located below the bubble distributor and the humidifier bath.
  • the carrier gas is dispersed as bubbles from the lower gas region through the bubble distributor and through the humidifier bath, wherein the carrier gas is heated and humidified by the feed liquid in the humidifier bath.
  • the heated and humidified carrier gas is then extracted from the humidifier chamber above the humidifier bath.
  • the bubble-column humidifier described herein can substitute for the packed-bed heat exchanger previously used in humidification-dehumidification systems to efficiently humidify dry air.
  • Advantages that may be provided by embodiments of the methods and apparatus described herein include reduced-cost dehumidification, as both the equipment cost and the cost of energy for operation can be reduced.
  • the energy for humidification can be directly provided by the feed liquid in the humidification chambers.
  • very high heat and mass transfer rates in the humidifier enable the design and use of a very small humidification device.
  • the methods described herein can be used to advantageously extract water from contaminated waste streams (e.g., from oil and gas production) both to produce fresh water and to concentrate and reduce the volume of the waste streams, thereby reducing pollution and contamination and reducing costs.
  • contaminated waste streams e.g., from oil and gas production
  • FIG. 1 is a schematic sectional illustration of an embodiment of a multi-stage bubble-column humidifier.
  • FIG. 2 is a sectional illustration of an embodiment of a first-stage humidification chamber in the multi-stage bubble-column humidifier.
  • FIG. 3 is a schematic sectional illustration of a multi-stage, single-column humidification-dehumidification (HDH) system.
  • FIG. 4 is a schematic sectional illustration of a multi-stage, single-column HDH system including multi-extraction conduits for the feed liquid and carrier gas.
  • first, second, third, etc. may be used herein to describe various elements, these elements are not to be limited by these terms. These terms are simply used to distinguish one element from another. Thus, a first element, discussed below, could be termed a second element without departing from the teachings of the exemplary embodiments.
  • spatially relative terms such as “above,” “below,” “left,” “right,” “in front,” “behind,” and the like, may be used herein for ease of description to describe the relationship of one element to another element, as illustrated in the figures. It will be understood that the spatially relative terms, as well as the illustrated configurations, are intended to encompass different orientations of the apparatus in use or operation in addition to the orientations described herein and depicted in the figures. For example, if the apparatus in the figures is turned over, elements described as “below” or “beneath” other elements or features would then be oriented “above” the other elements or features. Thus, the exemplary term, “above,” may encompass both an orientation of above and below. The apparatus may be otherwise oriented (e.g., rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein interpreted accordingly.
  • FIG. 1 An embodiment of a multi-stage bubble-column humidifier 12 with four stages is illustrated FIG. 1 .
  • more or fewer humidification stages can be linked in series, as described below, for carrying out the humidification process.
  • Feed liquid containing dissolved components is fed from a feed-liquid source 14 (e.g., an ocean, pond or storage tank) into a fourth-stage humidification chamber 22 of the humidifier 12 , where the feed liquid forms a bath 24 contained within the chamber 22 .
  • the feed liquid is fed into the fourth-stage humidification chamber 22 at a temperature of 70° C.
  • a vaporizable component (e.g., water) of the feed liquid is vaporized into a carrier gas that bubbles through the bath 24 , as described below.
  • a remnant of the feed liquid (with further-concentrated dissolved components) is fed from the fourth-stage humidification chamber 22 via a conduit 26 into a third-stage humidification chamber 20 , in which the remnant of the feed liquid forms another bath 24 through which the carrier gas is bubbled.
  • the remnant of the feed liquid is fed into the third-stage humidification chamber 20 at a temperature of 62° C. in this embodiment; the temperature of the remaining feed is reduced from stage-to-stage, in part, via the energy used for vaporization of the vaporizable component from the feed liquid at each stage into the carrier gas.
  • a remnant of the feed liquid (with still-further-concentrated dissolved components) is fed from the third-stage humidification chamber 20 via a conduit 28 into a second-stage humidification chamber 18 , in which the remnant of the feed liquid forms another bath 24 through which the carrier gas is bubbled.
  • the remnant of the feed liquid is fed into the second-stage humidification chamber 18 at a temperature of 56° C. in this embodiment.
  • a remnant of the feed liquid (with still-further-concentrated dissolved components) is fed from the second-stage humidification chamber 18 via a conduit 30 into a first-stage humidification chamber 16 , in which the remnant of the feed liquid forms another bath 24 through which the carrier gas is bubbled.
  • the remnant of the feed liquid is fed into the first-stage humidification chamber 16 at a temperature of 51.3° C. in this embodiment.
  • the remnant of the feed liquid which can now be in the form of a cold brine, can be removed from the first-stage humidification chamber (e.g., at a temperature of 45.7° C. in this embodiment) via a conduit 32 to a brine storage reservoir 33 . Accordingly, the temperature of the feed liquid can drop by, e.g., about 5%-15% across each stage.
  • a cool, dry carrier gas is bubbled through the bath 24 of each stage to remove the vaporized component from the baths 24 (as shown in FIG. 2 ), where flow of the carrier gas between the chambers is shown with arrows 36 in FIG. 1 .
  • the carrier gas can be, e.g., air, and it can initially be fed into the first-stage humidification chamber 16 from a carrier-gas reservoir 35 pressurized by a blower pump 34 feeding into the reservoir 35 .
  • the carrier gas fills a lower gas region 38 inside the first-stage humidification chamber 16 and flows through a bubble distributor (here, a sparger plate) 40 into the bath 24 in the form of bubbles 42 (as shown in FIG.
  • the carrier gas is heated and humidified (with the heat and humidification provided by the feed liquid).
  • the vaporizable component e.g., water
  • the bubbles 42 flow up through the bath 24 , gaining thermal energy and the vaporizable component (in vapor form) from the bath 24 until the carrier gas enters the top gas region above the bath 24 and then out the gas conduit to the second-stage humidification chamber 18 .
  • the remaining humidification chambers 18 , 20 and 22 have a design and operation similar to or the same as that of the first-stage humidification chamber 16 ; and the bath 24 in each of the humidification chambers 16 , 18 , 20 and 22 can have a width (w) that is substantially greater than (e.g., at least twice as great as) its height (h) to enhance the efficiency with which the vaporizable component is vaporized and transferred to the carrier gas.
  • the pressure drop on the carrier-gas (bottom) side of the sparger plate 40 is a strong function of the height of the bath 24 because the hydrostatic height of the bath 24 needs to be overcome by the air to keep the bath liquid from “weeping” through the sparger plate 40 to the stage below.
  • a main advantage of the low height of the bath 24 is, hence, the reduced electricity consumption in the air-moving device (blower) 34 because of the lower pressure drop. Maintaining a low height of the bath is also feasible in this context because the characteristic dimension of heat transfer is of the order of a few millimeters.
  • FIG. 3 An embodiment in which a multi-stage bubble-column humidifier 12 and dehumidifier 48 are stacked is illustrated in FIG. 3 .
  • the humidifier 12 includes four stages 16 , 18 , 20 and 22 and operates as described in the embodiments, above.
  • the dehumidified carrier gas 66 from the fourth-stage humidification chamber 22 is pumped from the fourth-stage humidification chamber 22 into the first-stage dehumidification chamber 50 of the dehumidifier 48 .
  • the dehumidifier 48 can have the same or essentially the same design as the multi-stage bubble-column dehumidifier of U.S. application Ser. No. 13/241,907.
  • the baths 58 in the dehumidification chambers 50 , 52 , 54 , and 56 can be formed of a liquid having the same composition (e.g., water) as the component vaporized from the feed liquid in the humidifier 12 .
  • the temperature of the bath 58 in the first-stage dehumidification chamber 50 is higher than the temperature of the bath 58 in the second-stage dehumidification chamber 52 ; the temperature of the bath 58 in the second-stage dehumidification chamber 52 is higher than the temperature of the bath 58 in the third-stage dehumidification chamber 54 ; and the temperature of the bath 58 in the third-stage dehumidification chamber 54 is higher than the temperature of the bath 58 in the fourth-stage dehumidification chamber 56 .
  • Pure condensed liquid e.g., liquid water
  • output conduit 76 into which the condensate flows from each of the dehumidification chambers 50 , 52 , 54 and 56 .
  • the baths 58 can be heated by thermal energy transferred from the hot humidified carrier gas 66 successively injected into and through each of the baths 58 , where the condensable vapor component is condensed from the humidified carrier gas 66 in liquid form into the baths 58 as the carrier gas 66 is successively cooled through the stages.
  • the feed liquid is pumped from the feed-liquid source 14 through a serpentine conduit 60 that snakes through the bath 58 in each stage; thermal energy is conducted from the baths 58 through the conduit 60 into the feed liquid to gradually pre-heat the feed liquid en route to a heater 62 that injects additional thermal energy 70 into the feed liquid to raise its temperature, e.g., to 70° C. before the feed liquid is injected into the fourth-stage humidification chamber 22 to form the bath 24 therein.
  • the apparatus also includes multi-extraction conduits 72 and 74 extending between intermediate locations (i.e., locations between the initial and final chambers) in the multi-stage humidifier 12 and dehumidifier 48 .
  • Conduit 72 extracts a portion of the feed-liquid remnant from the fourth-to-third-stage conduit 26 (though it can also/alternatively extract from conduit 28 or 30 ) and recirculates the extracted feed-liquid remnant (at a warmer temperature) back to the feed-liquid conduit 60 between stages (here, between the first- and second-stage dehumidification chambers 50 and 52 ) of the multi-stage dehumidifier 48 .
  • the extraction/injection of the feed liquid from in-between the stages of the bubble column(s) via conduits 72 facilitates thermodynamic balancing of the system in operation.
  • a portion of the carrier gas can be extracted from at least one intermediate location in the humidifier 12 (here, from second-stage humidification chamber 28 ) via conduit 74 and injected into a stage (here, into the second-stage dehumidification chamber 52 ) of the multi-stage dehumidifier 12 .
  • parameters for various properties or other values can be adjusted up or down by 1/100 th , 1/50 th , 1/20 th , 1/10 th , 1 ⁇ 5 th , 1 ⁇ 3 rd , 1 ⁇ 2, 2 ⁇ 3 rd , 3 ⁇ 4 th , 4 ⁇ 5 th , 9/10 th , 19/20 th , 49/50 th , 99/100 th , etc. (or up by a factor of 1, 2, 3, 4, 5, 6, 8, 10, 20, 50, 100, etc.), or by rounded-off approximations thereof, unless otherwise specified.

Abstract

A bubble-column-humidification apparatus includes a humidifier chamber configured to receive the feed liquid from a feed-liquid source. A bubble distributor is contained in the humidifier chamber; and a humidifier bath of the feed liquid is also contained in the humidifier chamber above the bubble distributor. The feed liquid forms a continuous and majority phase of the humidifier bath and fills a majority of the humidifier chamber, which has a width at least twice as great as its height. A lower gas region is located below the bubble distributor and the humidifier bath in the humidifier chamber and is configured to receive a carrier gas from a carrier-gas source and to disperse the carrier gas through the bubble distributor. The carrier gas in the lower gas region has a pressure greater than the hydrostatic pressure of the humidifier bath.

Description

    RELATED APPLICATIONS
  • This application is a Continuation of U.S. application Ser. No. 16/042,423, filed 23 Jul. 2018, which is a Divisional of U.S. application Ser. No. 14/806,357, filed 22 Jul. 2015, which is a Divisional of U.S. application Ser. No. 13/916,038, filed 12 Jun. 2013 (now U.S. Pat. No. 9,120,033 B2, issued 1 Sep. 2015), the entire contents of each of which are incorporated herein by reference.
  • BACKGROUND
  • In this century, the shortage of fresh water will surpass the shortage of energy as a global concern for humanity; and these two challenges are inexorably linked, as explained, for example, in the “Special Report on Water” in the 20 May 2010 issue of The Economist. Fresh water is one of the most fundamental needs of humans and other organisms; each human needs to consume a minimum of about two liters per day. The world also faces greater freshwater demands from farming and industrial processes.
  • The hazards posed by insufficient water supplies are particularly acute. A shortage of fresh water may lead to a variety of crises, including famine, disease, death, forced mass migration, cross-region conflict/war, and collapsed ecosystems. Despite the criticality of the need for fresh water and the profound consequences of shortages, supplies of fresh water are particularly constrained. 97.5% of the water on Earth is salty, and about 70% of the remainder is locked up as ice (mostly in ice caps and glaciers), leaving only a fraction of all water on Earth as available fresh (non-saline) water.
  • Moreover, the earth's water that is fresh and available is not evenly distributed. For example, heavily populated countries, such as India and China, have many regions that are subject to scarce supplies. Further still, the supply of fresh water is often seasonally inconsistent. Meanwhile, demands for fresh water are tightening across the globe. Reservoirs are drying up; aquifers are falling; rivers are dying; and glaciers and ice caps are retracting. Rising populations increase demand, as do shifts in farming and increased industrialization. Climate change poses even more threats in many regions. Consequently, the number of people facing water shortages is increasing. Naturally occurring fresh water, however, is typically confined to regional drainage basins; and transport of water is expensive and energy-intensive. Nevertheless, many of the existing processes for producing fresh water from seawater (or from brackish water or contaminated waste streams) require massive amounts of energy. Reverse osmosis (RO) is currently the leading desalination technology. In large-scale plants, the specific electricity required can be as low as 4 kWh/m3 at 30% recovery, compared to the theoretical minimum of around 1 kWh/m3; smaller-scale RO systems (e.g., aboard ships) are less efficient.
  • Other existing seawater desalination systems include thermal-energy-based multi-stage flash (MSF) distillation, and multi-effect distillation (MED), both of which are energy- and capital-intensive processes. In MSF and MED systems, however, the maximum brine temperature and the maximum temperature of the heat input are limited in order to avoid calcium sulfate, magnesium hydroxide and calcium carbonate precipitation, which leads to the formation of soft and hard scale on the heat transfer equipment.
  • Humidification-dehumidification (HDH) desalination systems include a humidifier and a dehumidifier as their main components and use a carrier gas (e.g., air) to communicate energy between the heat source and the brine. A simple version of this technology includes a humidifier, a dehumidifier, and a heater to heat the seawater stream. In the humidifier, hot seawater comes in direct contact with dry air, and this air becomes heated and humidified. In the dehumidifier, the heated and humidified air is brought into (indirect) contact with cold seawater and gets dehumidified, producing pure water and dehumidified air. As with MSF and MED systems, precipitation of scaling components can occur within the system with consequent damage if the temperature rises too high.
  • Another approach, described in U.S. Pat. No. 8,119,007 B2 (A. Bajpayee, et al.), uses directional solvent that directionally dissolves water but does not dissolve salt. The directional solvent is heated to dissolve water from a salt solution into the directional solvent. The remaining highly concentrated salt water is removed, and the solution of directional solvent and water is cooled to precipitate substantially pure water out of the solution.
  • Some of the present inventors were also named as inventors on the following patents that include additional discussion of HDH and other processes for purifying water: U.S. application Ser. No. 12/554,726, filed 4 Sep. 2009 (now U.S. Pat. No. 8,465,006 B2); U.S. application Ser. No. 12/573,221, filed 5 Oct. 2009 (now U.S. Pat. No. 8,252,092 B2); U.S. application Ser. No. 13/028,170, filed 15 Feb. 2011 (now U.S. Pat. No. 8,647,477 B2); and U.S. application Ser. No. 13/241,907, filed 23 Sep. 2011 (now U.S. Pat. No. 9,072,984 B2); and U.S. application Ser. No. 13/550,094, filed 16 Jul. 2012 (now U.S. Pat. No. 8,496,234 B1).
  • SUMMARY
  • A bubble-column humidification apparatus and a method for bubble-column humidification are described herein. Various embodiments of the methods and apparatus may include some or all of the elements, features and steps described below.
  • The bubble-column-humidification apparatus includes a feed-liquid source containing a feed liquid and a humidifier chamber configured to receive the feed liquid from the feed-liquid source. A bubble distributor is contained in the humidifier chamber; additionally, a humidifier bath of the feed liquid is contained in the humidifier chamber above the bubble distributor. The feed liquid in the humidifier bath forms a continuous and majority phase of the humidifier bath and fills a majority of the humidifier chamber. The width of the humidifier bath is at least twice as great as its height. A carrier-gas source contains a carrier gas, and a lower gas region is contained in the humidifier chamber and is located below the bubble distributor and the humidifier bath. The lower gas region is configured to receive the carrier gas from the carrier-gas source and to disperse the carrier gas through the bubble distributor. The carrier gas in the lower gas region has a pressure greater than the hydrostatic pressure of the humidifier bath.
  • In a method for bubble-column humidification, a feed liquid is introduced into a humidifier chamber to form a humidifier bath of the feed liquid above a bubble distributor contained in the humidifier chamber. The feed liquid in the humidifier bath forms a continuous and majority phase of the humidifier bath and fills a majority of the humidifier chamber, and the width of the humidifier bath is at least twice as great as its height. A carrier gas is introduced at a pressure greater than a hydrostatic pressure of the humidifier bath into a lower gas region in the humidifier chamber located below the bubble distributor and the humidifier bath. The carrier gas is dispersed as bubbles from the lower gas region through the bubble distributor and through the humidifier bath, wherein the carrier gas is heated and humidified by the feed liquid in the humidifier bath. The heated and humidified carrier gas is then extracted from the humidifier chamber above the humidifier bath.
  • The bubble-column humidifier described herein can substitute for the packed-bed heat exchanger previously used in humidification-dehumidification systems to efficiently humidify dry air. Advantages that may be provided by embodiments of the methods and apparatus described herein include reduced-cost dehumidification, as both the equipment cost and the cost of energy for operation can be reduced. In particular the energy for humidification can be directly provided by the feed liquid in the humidification chambers. Additionally, very high heat and mass transfer rates in the humidifier enable the design and use of a very small humidification device.
  • Additionally, the methods described herein can be used to advantageously extract water from contaminated waste streams (e.g., from oil and gas production) both to produce fresh water and to concentrate and reduce the volume of the waste streams, thereby reducing pollution and contamination and reducing costs.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a schematic sectional illustration of an embodiment of a multi-stage bubble-column humidifier.
  • FIG. 2 is a sectional illustration of an embodiment of a first-stage humidification chamber in the multi-stage bubble-column humidifier.
  • FIG. 3 is a schematic sectional illustration of a multi-stage, single-column humidification-dehumidification (HDH) system.
  • FIG. 4 is a schematic sectional illustration of a multi-stage, single-column HDH system including multi-extraction conduits for the feed liquid and carrier gas.
  • In the accompanying drawings, like reference characters refer to the same or similar parts throughout the different views. The drawings are not necessarily to scale, emphasis instead being placed upon illustrating particular principles, discussed below.
  • DETAILED DESCRIPTION
  • The foregoing and other features and advantages of various aspects of the invention(s) will be apparent from the following, more-particular description of various concepts and specific embodiments within the broader bounds of the invention(s). Various aspects of the subject matter introduced above and discussed in greater detail below may be implemented in any of numerous ways, as the subject matter is not limited to any particular manner of implementation. Examples of specific implementations and applications are provided primarily for illustrative purposes.
  • Unless otherwise defined, used or characterized herein, terms that are used herein (including technical and scientific terms) are to be interpreted as having a meaning that is consistent with their accepted meaning in the context of the relevant art and are not to be interpreted in an idealized or overly formal sense unless expressly so defined herein. For example, if a particular composition is referenced, the composition may be substantially, though not perfectly pure, as practical and imperfect realities may apply; e.g., the potential presence of at least trace impurities (e.g., at less than 1 or 2%) can be understood as being within the scope of the description; likewise, if a particular shape is referenced, the shape is intended to include imperfect variations from ideal shapes, e.g., due to manufacturing tolerances. Percentages or concentrations expressed herein can represent either by weight or by volume.
  • Although the terms, first, second, third, etc., may be used herein to describe various elements, these elements are not to be limited by these terms. These terms are simply used to distinguish one element from another. Thus, a first element, discussed below, could be termed a second element without departing from the teachings of the exemplary embodiments.
  • Spatially relative terms, such as “above,” “below,” “left,” “right,” “in front,” “behind,” and the like, may be used herein for ease of description to describe the relationship of one element to another element, as illustrated in the figures. It will be understood that the spatially relative terms, as well as the illustrated configurations, are intended to encompass different orientations of the apparatus in use or operation in addition to the orientations described herein and depicted in the figures. For example, if the apparatus in the figures is turned over, elements described as “below” or “beneath” other elements or features would then be oriented “above” the other elements or features. Thus, the exemplary term, “above,” may encompass both an orientation of above and below. The apparatus may be otherwise oriented (e.g., rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein interpreted accordingly.
  • Further still, in this disclosure, when an element is referred to as being “on,” “connected to” or “coupled to” another element, it may be directly on, connected or coupled to the other element or intervening elements may be present unless otherwise specified.
  • The terminology used herein is for the purpose of describing particular embodiments and is not intended to be limiting of exemplary embodiments. As used herein, singular forms, such as “a” and “an,” are intended to include the plural forms as well, unless the context indicates otherwise. Additionally, the terms, “includes,” “including,” “comprises” and “comprising,” specify the presence of the stated elements or steps but do not preclude the presence or addition of one or more other elements or steps.
  • An embodiment of a multi-stage bubble-column humidifier 12 with four stages is illustrated FIG. 1. In other embodiments, more or fewer humidification stages can be linked in series, as described below, for carrying out the humidification process. Feed liquid containing dissolved components is fed from a feed-liquid source 14 (e.g., an ocean, pond or storage tank) into a fourth-stage humidification chamber 22 of the humidifier 12, where the feed liquid forms a bath 24 contained within the chamber 22. In a first embodiment, the feed liquid is fed into the fourth-stage humidification chamber 22 at a temperature of 70° C. A vaporizable component (e.g., water) of the feed liquid is vaporized into a carrier gas that bubbles through the bath 24, as described below.
  • A remnant of the feed liquid (with further-concentrated dissolved components) is fed from the fourth-stage humidification chamber 22 via a conduit 26 into a third-stage humidification chamber 20, in which the remnant of the feed liquid forms another bath 24 through which the carrier gas is bubbled. In the first embodiment, the remnant of the feed liquid is fed into the third-stage humidification chamber 20 at a temperature of 62° C. in this embodiment; the temperature of the remaining feed is reduced from stage-to-stage, in part, via the energy used for vaporization of the vaporizable component from the feed liquid at each stage into the carrier gas.
  • In turn, a remnant of the feed liquid (with still-further-concentrated dissolved components) is fed from the third-stage humidification chamber 20 via a conduit 28 into a second-stage humidification chamber 18, in which the remnant of the feed liquid forms another bath 24 through which the carrier gas is bubbled. The remnant of the feed liquid is fed into the second-stage humidification chamber 18 at a temperature of 56° C. in this embodiment.
  • Finally, a remnant of the feed liquid (with still-further-concentrated dissolved components) is fed from the second-stage humidification chamber 18 via a conduit 30 into a first-stage humidification chamber 16, in which the remnant of the feed liquid forms another bath 24 through which the carrier gas is bubbled. In the first embodiment, the remnant of the feed liquid is fed into the first-stage humidification chamber 16 at a temperature of 51.3° C. in this embodiment. The remnant of the feed liquid, which can now be in the form of a cold brine, can be removed from the first-stage humidification chamber (e.g., at a temperature of 45.7° C. in this embodiment) via a conduit 32 to a brine storage reservoir 33. Accordingly, the temperature of the feed liquid can drop by, e.g., about 5%-15% across each stage.
  • Meanwhile, a cool, dry carrier gas is bubbled through the bath 24 of each stage to remove the vaporized component from the baths 24 (as shown in FIG. 2), where flow of the carrier gas between the chambers is shown with arrows 36 in FIG. 1. The carrier gas can be, e.g., air, and it can initially be fed into the first-stage humidification chamber 16 from a carrier-gas reservoir 35 pressurized by a blower pump 34 feeding into the reservoir 35. The carrier gas fills a lower gas region 38 inside the first-stage humidification chamber 16 and flows through a bubble distributor (here, a sparger plate) 40 into the bath 24 in the form of bubbles 42 (as shown in FIG. 2), where the carrier gas is heated and humidified (with the heat and humidification provided by the feed liquid). The vaporizable component (e.g., water) of the feed liquid vaporizes into the bubbles 42 at the gas-liquid interface of the bath 24 and bubbles 42. The bubbles 42 flow up through the bath 24, gaining thermal energy and the vaporizable component (in vapor form) from the bath 24 until the carrier gas enters the top gas region above the bath 24 and then out the gas conduit to the second-stage humidification chamber 18. The remaining humidification chambers 18, 20 and 22 have a design and operation similar to or the same as that of the first-stage humidification chamber 16; and the bath 24 in each of the humidification chambers 16, 18, 20 and 22 can have a width (w) that is substantially greater than (e.g., at least twice as great as) its height (h) to enhance the efficiency with which the vaporizable component is vaporized and transferred to the carrier gas. The pressure drop on the carrier-gas (bottom) side of the sparger plate 40 is a strong function of the height of the bath 24 because the hydrostatic height of the bath 24 needs to be overcome by the air to keep the bath liquid from “weeping” through the sparger plate 40 to the stage below. A main advantage of the low height of the bath 24 is, hence, the reduced electricity consumption in the air-moving device (blower) 34 because of the lower pressure drop. Maintaining a low height of the bath is also feasible in this context because the characteristic dimension of heat transfer is of the order of a few millimeters.
  • An embodiment in which a multi-stage bubble-column humidifier 12 and dehumidifier 48 are stacked is illustrated in FIG. 3. In this embodiment, the humidifier 12 includes four stages 16, 18, 20 and 22 and operates as described in the embodiments, above. Here, however, the dehumidified carrier gas 66 from the fourth-stage humidification chamber 22 is pumped from the fourth-stage humidification chamber 22 into the first-stage dehumidification chamber 50 of the dehumidifier 48. The dehumidifier 48 can have the same or essentially the same design as the multi-stage bubble-column dehumidifier of U.S. application Ser. No. 13/241,907. The baths 58 in the dehumidification chambers 50, 52, 54, and 56 can be formed of a liquid having the same composition (e.g., water) as the component vaporized from the feed liquid in the humidifier 12.
  • Among the dehumidification chambers 50, 52, 54 and 56, the temperature of the bath 58 in the first-stage dehumidification chamber 50 is higher than the temperature of the bath 58 in the second-stage dehumidification chamber 52; the temperature of the bath 58 in the second-stage dehumidification chamber 52 is higher than the temperature of the bath 58 in the third-stage dehumidification chamber 54; and the temperature of the bath 58 in the third-stage dehumidification chamber 54 is higher than the temperature of the bath 58 in the fourth-stage dehumidification chamber 56. Pure condensed liquid (e.g., liquid water) is extracted from the dehumidifier 48 via output conduit 76 into which the condensate flows from each of the dehumidification chambers 50, 52, 54 and 56.
  • The baths 58 can be heated by thermal energy transferred from the hot humidified carrier gas 66 successively injected into and through each of the baths 58, where the condensable vapor component is condensed from the humidified carrier gas 66 in liquid form into the baths 58 as the carrier gas 66 is successively cooled through the stages. Meanwhile, the feed liquid is pumped from the feed-liquid source 14 through a serpentine conduit 60 that snakes through the bath 58 in each stage; thermal energy is conducted from the baths 58 through the conduit 60 into the feed liquid to gradually pre-heat the feed liquid en route to a heater 62 that injects additional thermal energy 70 into the feed liquid to raise its temperature, e.g., to 70° C. before the feed liquid is injected into the fourth-stage humidification chamber 22 to form the bath 24 therein.
  • In the embodiment of FIG. 4, the apparatus also includes multi-extraction conduits 72 and 74 extending between intermediate locations (i.e., locations between the initial and final chambers) in the multi-stage humidifier 12 and dehumidifier 48. Conduit 72 extracts a portion of the feed-liquid remnant from the fourth-to-third-stage conduit 26 (though it can also/alternatively extract from conduit 28 or 30) and recirculates the extracted feed-liquid remnant (at a warmer temperature) back to the feed-liquid conduit 60 between stages (here, between the first- and second-stage dehumidification chambers 50 and 52) of the multi-stage dehumidifier 48. With multi-extraction, the extraction/injection of the feed liquid from in-between the stages of the bubble column(s) via conduits 72 facilitates thermodynamic balancing of the system in operation. Similarly, a portion of the carrier gas can be extracted from at least one intermediate location in the humidifier 12 (here, from second-stage humidification chamber 28) via conduit 74 and injected into a stage (here, into the second-stage dehumidification chamber 52) of the multi-stage dehumidifier 12.
  • In describing embodiments of the invention, specific terminology is used for the sake of clarity. For the purpose of description, specific terms are intended to at least include technical and functional equivalents that operate in a similar manner to accomplish a similar result. Additionally, in some instances where a particular embodiment of the invention includes a plurality of system elements or method steps, those elements or steps may be replaced with a single element or step; likewise, a single element or step may be replaced with a plurality of elements or steps that serve the same purpose. Further, where parameters for various properties or other values are specified herein for embodiments of the invention, those parameters or values can be adjusted up or down by 1/100th, 1/50th, 1/20th, 1/10th, ⅕th, ⅓rd, ½, ⅔rd, ¾th, ⅘th, 9/10th, 19/20th, 49/50th, 99/100th, etc. (or up by a factor of 1, 2, 3, 4, 5, 6, 8, 10, 20, 50, 100, etc.), or by rounded-off approximations thereof, unless otherwise specified. Moreover, while this invention has been shown and described with references to particular embodiments thereof, those skilled in the art will understand that various substitutions and alterations in form and details may be made therein without departing from the scope of the invention. Further still, other aspects, functions and advantages are also within the scope of the invention; and all embodiments of the invention need not necessarily achieve all of the advantages or possess all of the characteristics described above. Additionally, steps, elements and features discussed herein in connection with one embodiment can likewise be used in conjunction with other embodiments. The contents of references, including reference texts, journal articles, patents, patent applications, etc., cited throughout the text are hereby incorporated by reference in their entirety; and appropriate components, steps, and characterizations from these references may or may not be included in embodiments of this invention. Still further, the components and steps identified in the Background section are integral to this disclosure and can be used in conjunction with or substituted for components and steps described elsewhere in the disclosure within the scope of the invention. In method claims, where stages are recited in a particular order—with or without sequenced prefacing characters added for ease of reference—the stages are not to be interpreted as being temporally limited to the order in which they are recited unless otherwise specified or implied by the terms and phrasing.

Claims (11)

What is claimed is:
1. A bubble-column-humidification apparatus, comprising:
a feed-liquid source containing a feed liquid;
a humidifier chamber configured to receive the feed liquid from the feed-liquid source;
a bubble distributor contained in the humidifier chamber;
a humidifier bath of the feed liquid contained in the humidifier chamber above the bubble distributor, wherein the feed liquid in the humidifier bath forms a continuous and majority phase of the humidifier bath and fills a majority of the humidifier chamber, and wherein the width of the humidifier bath is at least twice as great as its height;
a carrier-gas source containing a carrier gas; and
a lower gas region contained in the humidifier chamber and located below the bubble distributor and the humidifier bath, wherein the lower gas region of the humidifier chamber is configured to receive the carrier gas from the carrier-gas source and to disperse the carrier gas through the bubble distributor, wherein the carrier gas in the lower gas region has a pressure greater than a hydrostatic pressure of the humidifier bath.
2. The bubble-column-humidification apparatus of claim 1, wherein the feed liquid is sea water or brackish water.
3. The bubble-column-humidification apparatus of claim 1, wherein the feed liquid is flowback water or produced water from oil or gas extraction.
4. The bubble-column-humidification apparatus of claim 1, wherein the bubble distributor is a sparger plate, and wherein the humidifier chamber defines respective volumes for the carrier gas in the lower gas region and the humidifier bath separated only by the sparger plate.
5. The bubble-column-humidification apparatus of claim 1, wherein the humidifier chamber further comprises a top gas region above the humidifier bath.
6. The bubble-column-humidification apparatus of claim 5, wherein the top gas region of the humidifier chamber is in fluid communication with a dehumidification apparatus.
7. A method for bubble-column humidification comprising:
introducing a feed liquid into a humidifier chamber to form a humidifier bath of the feed liquid above a bubble distributor contained in the humidifier chamber, wherein the feed liquid in the humidifier bath forms a continuous and majority phase of the humidifier bath and fills a majority of the humidifier chamber, and wherein the width of the humidifier bath is at least twice as great as its height;
introducing a carrier gas at a pressure greater than a hydrostatic pressure of the humidifier bath into a lower gas region in the humidifier chamber located below the bubble distributor and the humidifier bath;
dispersing the carrier gas as bubbles from the lower gas region through the bubble distributor and through the humidifier bath, wherein the carrier gas is heated and humidified by the feed liquid in the humidifier bath; and
extracting the heated and humidified carrier gas from the humidifier chamber above the humidifier bath.
8. The method of claim 7, further comprising directing the heated and humidified carrier gas from the humidifier chamber into a dehumidifier chamber in which water is condensed and extracted from the humidified carrier gas.
9. The method of claim 7, wherein the feed liquid is sea water or brackish water.
10. The method of claim 7, wherein the feed liquid is flowback water or produced water from oil or gas extraction.
11. The method of claim 7, wherein the bubble distributor is a sparger plate, and wherein the humidifier chamber defines respective volumes for the carrier gas in the lower gas region and the humidifier bath separated only by the sparger plate.
US17/488,478 2013-06-12 2021-09-29 Bubble-Column-Humidification Apparatus and Method Abandoned US20220017384A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/488,478 US20220017384A1 (en) 2013-06-12 2021-09-29 Bubble-Column-Humidification Apparatus and Method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US13/916,038 US9120033B2 (en) 2013-06-12 2013-06-12 Multi-stage bubble column humidifier
US14/806,357 US10053373B2 (en) 2013-06-12 2015-07-22 Multi-stage bubble column humidification and dehumidification
US16/042,423 US11161755B2 (en) 2013-06-12 2018-07-23 Multi-stage bubble column humidification and dehumidification
US17/488,478 US20220017384A1 (en) 2013-06-12 2021-09-29 Bubble-Column-Humidification Apparatus and Method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US16/042,423 Continuation US11161755B2 (en) 2013-06-12 2018-07-23 Multi-stage bubble column humidification and dehumidification

Publications (1)

Publication Number Publication Date
US20220017384A1 true US20220017384A1 (en) 2022-01-20

Family

ID=51033559

Family Applications (5)

Application Number Title Priority Date Filing Date
US13/916,038 Active US9120033B2 (en) 2013-06-12 2013-06-12 Multi-stage bubble column humidifier
US14/806,357 Active 2033-07-11 US10053373B2 (en) 2013-06-12 2015-07-22 Multi-stage bubble column humidification and dehumidification
US14/840,478 Active US9790102B2 (en) 2013-06-12 2015-08-31 Multi-stage bubble column humidifier
US16/042,423 Active 2034-09-02 US11161755B2 (en) 2013-06-12 2018-07-23 Multi-stage bubble column humidification and dehumidification
US17/488,478 Abandoned US20220017384A1 (en) 2013-06-12 2021-09-29 Bubble-Column-Humidification Apparatus and Method

Family Applications Before (4)

Application Number Title Priority Date Filing Date
US13/916,038 Active US9120033B2 (en) 2013-06-12 2013-06-12 Multi-stage bubble column humidifier
US14/806,357 Active 2033-07-11 US10053373B2 (en) 2013-06-12 2015-07-22 Multi-stage bubble column humidification and dehumidification
US14/840,478 Active US9790102B2 (en) 2013-06-12 2015-08-31 Multi-stage bubble column humidifier
US16/042,423 Active 2034-09-02 US11161755B2 (en) 2013-06-12 2018-07-23 Multi-stage bubble column humidification and dehumidification

Country Status (14)

Country Link
US (5) US9120033B2 (en)
EP (1) EP3007789B1 (en)
JP (1) JP6224235B2 (en)
KR (1) KR20160025552A (en)
CN (2) CN107970627B (en)
AU (1) AU2014278506B2 (en)
CA (1) CA2915036C (en)
CL (1) CL2015003587A1 (en)
ES (1) ES2710377T3 (en)
MX (1) MX2015017050A (en)
RU (1) RU2648333C2 (en)
SG (1) SG11201509710WA (en)
WO (1) WO2014200829A1 (en)
ZA (1) ZA201600163B (en)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090158299A1 (en) 2007-10-31 2009-06-18 Carter Ernst B System for and method of uniform synchronization between multiple kernels running on single computer systems with multiple CPUs installed
US9072984B2 (en) * 2011-09-23 2015-07-07 Massachusetts Institute Of Technology Bubble-column vapor mixture condenser
US9120033B2 (en) * 2013-06-12 2015-09-01 Massachusetts Institute Of Technology Multi-stage bubble column humidifier
AU2014306078B2 (en) 2013-08-05 2018-10-18 Gradiant Corporation Water treatment systems and associated methods
CN105636661B (en) 2013-09-12 2018-02-23 格雷迪安特公司 Include the system of such as condensing unit of bubble column condenser
CN105683095B (en) 2013-09-23 2019-09-17 格雷迪安特公司 Desalination system and correlation technique
CA2934026C (en) 2013-12-18 2020-03-24 Gradiant Corporation Counter-flow heat/mass exchange feedback control
US9643102B2 (en) * 2014-06-05 2017-05-09 King Fahd University Of Petroleum And Minerals Humidification-dehumidifaction desalination system
US10308526B2 (en) 2015-02-11 2019-06-04 Gradiant Corporation Methods and systems for producing treated brines for desalination
US10167218B2 (en) 2015-02-11 2019-01-01 Gradiant Corporation Production of ultra-high-density brines
US9745208B2 (en) 2015-04-06 2017-08-29 King Fahd University Of Petroleum And Minerals Multi-stage bubble column humidifier apparatus
US9266748B1 (en) 2015-05-21 2016-02-23 Gradiant Corporation Transiently-operated desalination systems with heat recovery and associated methods
US10143935B2 (en) 2015-05-21 2018-12-04 Gradiant Corporation Systems including an apparatus comprising both a humidification region and a dehumidification region
US10463985B2 (en) 2015-05-21 2019-11-05 Gradiant Corporation Mobile humidification-dehumidification desalination systems and methods
US10179296B2 (en) 2015-05-21 2019-01-15 Gradiant Corporation Transiently-operated desalination systems and associated methods
US10143936B2 (en) 2015-05-21 2018-12-04 Gradiant Corporation Systems including an apparatus comprising both a humidification region and a dehumidification region with heat recovery and/or intermediate injection
US10981082B2 (en) 2015-05-21 2021-04-20 Gradiant Corporation Humidification-dehumidification desalination systems and methods
WO2017019944A1 (en) 2015-07-29 2017-02-02 Gradiant Corporation Osmotic desalination methods and associated systems
WO2017030932A1 (en) 2015-08-14 2017-02-23 Gradiant Corporation Selective retention of multivalent ions
US10245555B2 (en) 2015-08-14 2019-04-02 Gradiant Corporation Production of multivalent ion-rich process streams using multi-stage osmotic separation
US10345058B1 (en) 2015-11-18 2019-07-09 Gradiant Corporation Scale removal in humidification-dehumidification systems
WO2017147113A1 (en) 2016-02-22 2017-08-31 Gradiant Corporation Hybrid desalination systems and associated methods
US10294123B2 (en) 2016-05-20 2019-05-21 Gradiant Corporation Humidification-dehumidification systems and methods at low top brine temperatures
US10513445B2 (en) 2016-05-20 2019-12-24 Gradiant Corporation Control system and method for multiple parallel desalination systems
CN106178841B (en) * 2016-07-26 2019-03-01 西安交通大学 A kind of type smoke pollutant removal device
CN109422315A (en) * 2017-08-28 2019-03-05 北京佑陆科技有限公司 Desalinate object autocondensation multi-stage cross circulation air humidification dehumidifying saliferous water treatment facilities
AU2019325567A1 (en) 2018-08-22 2021-03-04 Gradiant Corporation Liquid solution concentration system comprising isolated subsystem and related methods
AU2021383601A1 (en) 2020-11-17 2023-06-08 Gradiant Corporaton Osmotic methods and systems involving energy recovery
CN116212420B (en) * 2022-12-28 2023-10-20 扬州永锋工业设备安装有限公司 Multi-effect evaporator for steam cycle use

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3434701A (en) * 1966-08-15 1969-03-25 Phillips Petroleum Co Vapor-liquid contacting apparatus
US4624747A (en) * 1982-05-24 1986-11-25 D.V.T. Buro Fur Anwendung Deutscher Verfahrenstechnik H. Morsy Process for the distillation of fresh water from sea water
US5378267A (en) * 1993-04-06 1995-01-03 Carbonair Environmental Services, Inc. Apparatus for air stripping contaminants from water
US11161755B2 (en) * 2013-06-12 2021-11-02 Massachusetts Institute Of Technology Multi-stage bubble column humidification and dehumidification

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1070594B (en) 1959-12-10
US2560978A (en) * 1943-05-18 1951-07-17 Persson Alef Ruben Method for aerating water
US2560073A (en) * 1948-11-12 1951-07-10 Centrifix Corp Fixed centrifugal device
DE907647C (en) 1948-12-23 1958-02-13 Chloberag Chlor Betr Rheinfeld Cooling, condensation or absorption device for highly corrosive or caustic liquids, gases or vapors
US3653186A (en) * 1970-02-24 1972-04-04 Hoyt B Mclendon Wet scrubber tank
DE2701938C2 (en) 1977-01-19 1980-06-26 Hans-Guenther 2000 Hamburg Krugmann Method and device for recovering the solvent from the exhaust air of dry cleaning machines
US4820456A (en) * 1986-05-29 1989-04-11 Ukrainsky Nauchno-Issledovatelsky Institut Prirodnykh Gazov "Ukrniigaz" Mass-transfer apparatus
US4762593A (en) 1986-06-13 1988-08-09 Youngner Philip G Distilling apparatus
US5290403A (en) 1987-03-17 1994-03-01 Saeaesk Aapo Liquid evaporating apparatus
US5096543A (en) * 1990-09-27 1992-03-17 Kamyr, Inc. Carrier gas apparatus for evaporation and condensation
US5939031A (en) * 1996-08-23 1999-08-17 Exxon Research And Engineering Co. Countercurrent reactor
WO2000064553A2 (en) 1999-04-23 2000-11-02 Arrison Norman L Horizontal distillation apparatus and method
US6919000B2 (en) 2002-12-17 2005-07-19 University Of Florida Diffusion driven desalination apparatus and process
RU2239460C1 (en) * 2003-05-22 2004-11-10 Кузьмин Анатолий Иванович Aerosol making and air humidifying device
CA2663820C (en) * 2006-09-22 2016-04-26 Altela, Inc. Process for separating a liquid component from a liquid mixture
US8292272B2 (en) 2009-09-04 2012-10-23 Massachusetts Institute Of Technology Water separation under reduced pressure
US8252092B2 (en) 2009-10-05 2012-08-28 Massachusetts Institute Of Technology Water separation under varied pressure
PE20130171A1 (en) 2009-11-25 2013-03-03 Massachusetts Inst Technology WATER DESALINATION USING EXTRACTION WITH DIRECTIONAL SOLVENTS
US20100314238A1 (en) 2010-04-30 2010-12-16 Sunlight Photonics Inc. Hybrid solar desalination system
US8647477B2 (en) * 2011-02-15 2014-02-11 Massachusetts Institute Of Technology High-efficiency thermal-energy-driven water purification system
US9072984B2 (en) * 2011-09-23 2015-07-07 Massachusetts Institute Of Technology Bubble-column vapor mixture condenser
HRPK20110835B3 (en) * 2011-11-14 2014-08-01 Zvonimir Glasnović Solar termal hydro electric powerplant for simultaneous production energy and drinking water
US8496234B1 (en) 2012-07-16 2013-07-30 Massachusetts Institute Of Technology Thermodynamic balancing of combined heat and mass exchange devices
CN105636661B (en) * 2013-09-12 2018-02-23 格雷迪安特公司 Include the system of such as condensing unit of bubble column condenser
US9643102B2 (en) * 2014-06-05 2017-05-09 King Fahd University Of Petroleum And Minerals Humidification-dehumidifaction desalination system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3434701A (en) * 1966-08-15 1969-03-25 Phillips Petroleum Co Vapor-liquid contacting apparatus
US4624747A (en) * 1982-05-24 1986-11-25 D.V.T. Buro Fur Anwendung Deutscher Verfahrenstechnik H. Morsy Process for the distillation of fresh water from sea water
US5378267A (en) * 1993-04-06 1995-01-03 Carbonair Environmental Services, Inc. Apparatus for air stripping contaminants from water
US11161755B2 (en) * 2013-06-12 2021-11-02 Massachusetts Institute Of Technology Multi-stage bubble column humidification and dehumidification

Also Published As

Publication number Publication date
US20140367871A1 (en) 2014-12-18
CA2915036A1 (en) 2014-12-18
JP2016522085A (en) 2016-07-28
CN105407994A (en) 2016-03-16
CN105407994B (en) 2018-01-26
WO2014200829A1 (en) 2014-12-18
JP6224235B2 (en) 2017-11-01
US20150321118A1 (en) 2015-11-12
CN107970627A (en) 2018-05-01
KR20160025552A (en) 2016-03-08
CL2015003587A1 (en) 2016-08-19
CN107970627B (en) 2020-08-07
EP3007789A1 (en) 2016-04-20
RU2648333C2 (en) 2018-03-23
MX2015017050A (en) 2016-07-19
CA2915036C (en) 2022-03-08
EP3007789B1 (en) 2018-12-19
AU2014278506B2 (en) 2018-02-08
ES2710377T3 (en) 2019-04-24
US9120033B2 (en) 2015-09-01
US9790102B2 (en) 2017-10-17
US10053373B2 (en) 2018-08-21
ZA201600163B (en) 2017-04-26
US20180327278A1 (en) 2018-11-15
US20150368121A1 (en) 2015-12-24
US11161755B2 (en) 2021-11-02
AU2014278506A1 (en) 2015-12-17
RU2015152497A (en) 2017-07-17
SG11201509710WA (en) 2015-12-30

Similar Documents

Publication Publication Date Title
US20220017384A1 (en) Bubble-Column-Humidification Apparatus and Method
US11007455B2 (en) Multi-stage bubble-column vapor mixture condensation
US20130199921A1 (en) Carrier-Gas Humidification-Dehumidification Using Heat-Transfer Members for Enhanced Heat Recovery
US10472258B2 (en) Thermal energy-driven mechanical compression humidification-dehumidification water purification

Legal Events

Date Code Title Description
AS Assignment

Owner name: KING FAHD UNIVERSITY OF PETROLEUM & MINERALS, SAUDI ARABIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ELSHARQAWY, MOSTAFA H.;REEL/FRAME:057645/0818

Effective date: 20210611

Owner name: MASSACHUSETTS INSTITUTE OF TECHNOLOGY, MASSACHUSETTS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:GOVINDAN, PRAKASH NARAYAN;LAM, STEVEN;ST. JOHN, MAXIMUS;AND OTHERS;SIGNING DATES FROM 20130610 TO 20130614;REEL/FRAME:057644/0760

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION