US20220000329A1 - Method for removing stains during a cleaning cycle of a household appliance - Google Patents

Method for removing stains during a cleaning cycle of a household appliance Download PDF

Info

Publication number
US20220000329A1
US20220000329A1 US17/295,379 US201917295379A US2022000329A1 US 20220000329 A1 US20220000329 A1 US 20220000329A1 US 201917295379 A US201917295379 A US 201917295379A US 2022000329 A1 US2022000329 A1 US 2022000329A1
Authority
US
United States
Prior art keywords
cleaning agent
household appliance
cleaning
cycle
main
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
US17/295,379
Inventor
Arnd Kessler
Annette Dietrich
Thomas Juckel
Thorsten Bastigkeit
Thomas Doering
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henkel AG and Co KGaA
Original Assignee
Henkel AG and Co KGaA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henkel AG and Co KGaA filed Critical Henkel AG and Co KGaA
Publication of US20220000329A1 publication Critical patent/US20220000329A1/en
Assigned to HENKEL AG & CO. KGAA reassignment HENKEL AG & CO. KGAA ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BASTIGKEIT, THORSTEN, Dietrich, Annette, DOERING, THOMAS, JUCKEL, THOMAS, KESSLER, ARND
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L15/00Washing or rinsing machines for crockery or tableware
    • A47L15/0018Controlling processes, i.e. processes to control the operation of the machine characterised by the purpose or target of the control
    • A47L15/0055Metering or indication of used products, e.g. type or quantity of detergent, rinse aid or salt; for measuring or controlling the product concentration
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L15/00Washing or rinsing machines for crockery or tableware
    • A47L15/0018Controlling processes, i.e. processes to control the operation of the machine characterised by the purpose or target of the control
    • A47L15/0021Regulation of operational steps within the washing processes, e.g. optimisation or improvement of operational steps depending from the detergent nature or from the condition of the crockery
    • A47L15/0028Washing phases
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L15/00Washing or rinsing machines for crockery or tableware
    • A47L15/0002Washing processes, i.e. machine working principles characterised by phases or operational steps
    • A47L15/0007Washing phases
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L15/00Washing or rinsing machines for crockery or tableware
    • A47L15/0018Controlling processes, i.e. processes to control the operation of the machine characterised by the purpose or target of the control
    • A47L15/006Controlling processes, i.e. processes to control the operation of the machine characterised by the purpose or target of the control using wireless communication between internal components of the machine
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L15/00Washing or rinsing machines for crockery or tableware
    • A47L15/0018Controlling processes, i.e. processes to control the operation of the machine characterised by the purpose or target of the control
    • A47L15/0063Controlling processes, i.e. processes to control the operation of the machine characterised by the purpose or target of the control using remote monitoring or controlling of the dishwasher operation, e.g. networking systems
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L15/00Washing or rinsing machines for crockery or tableware
    • A47L15/42Details
    • A47L15/44Devices for adding cleaning agents; Devices for dispensing cleaning agents, rinsing aids or deodorants
    • A47L15/4445Detachable devices
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F33/00Control of operations performed in washing machines or washer-dryers 
    • D06F33/30Control of washing machines characterised by the purpose or target of the control 
    • D06F33/32Control of operational steps, e.g. optimisation or improvement of operational steps depending on the condition of the laundry
    • D06F33/37Control of operational steps, e.g. optimisation or improvement of operational steps depending on the condition of the laundry of metering of detergents or additives
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L2301/00Manual input in controlling methods of washing or rinsing machines for crockery or tableware, i.e. information entered by a user
    • A47L2301/04Operation mode, e.g. delicate washing, economy washing, reduced time, sterilizing, water softener regenerating, odor eliminating or service
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L2401/00Automatic detection in controlling methods of washing or rinsing machines for crockery or tableware, e.g. information provided by sensors entered into controlling devices
    • A47L2401/04Crockery or tableware details, e.g. material, quantity, condition
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L2401/00Automatic detection in controlling methods of washing or rinsing machines for crockery or tableware, e.g. information provided by sensors entered into controlling devices
    • A47L2401/10Water cloudiness or dirtiness, e.g. turbidity, foaming or level of bacteria
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L2401/00Automatic detection in controlling methods of washing or rinsing machines for crockery or tableware, e.g. information provided by sensors entered into controlling devices
    • A47L2401/12Water temperature
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L2401/00Automatic detection in controlling methods of washing or rinsing machines for crockery or tableware, e.g. information provided by sensors entered into controlling devices
    • A47L2401/18Air temperature
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L2401/00Automatic detection in controlling methods of washing or rinsing machines for crockery or tableware, e.g. information provided by sensors entered into controlling devices
    • A47L2401/20Time, e.g. elapsed operating time
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L2501/00Output in controlling method of washing or rinsing machines for crockery or tableware, i.e. quantities or components controlled, or actions performed by the controlling device executing the controlling method
    • A47L2501/07Consumable products, e.g. detergent, rinse aids or salt
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L2601/00Washing methods characterised by the use of a particular treatment
    • A47L2601/02Pressurised cleaning liquid delivered by a pump
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F2103/00Parameters monitored or detected for the control of domestic laundry washing machines, washer-dryers or laundry dryers
    • D06F2103/02Characteristics of laundry or load
    • D06F2103/12Temperature
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F2105/00Systems or parameters controlled or affected by the control systems of washing machines, washer-dryers or laundry dryers
    • D06F2105/42Detergent or additive supply
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F35/00Washing machines, apparatus, or methods not otherwise provided for
    • D06F35/005Methods for washing, rinsing or spin-drying
    • D06F35/006Methods for washing, rinsing or spin-drying for washing or rinsing only
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F39/00Details of washing machines not specific to a single type of machines covered by groups D06F9/00 - D06F27/00 
    • D06F39/02Devices for adding soap or other washing agents
    • D06F39/024Devices for adding soap or other washing agents mounted on the agitator or the rotating drum; Free body dispensers

Definitions

  • the present disclosure relates to the field of cleaning programs and more particularly to methods enabling an optimized removal of stains on objects such as cups arranged inside a household appliance such as a dishwasher.
  • the method of the present disclosure is particularly suitable for removing tea stains on cups without requiring the use of bleach.
  • Household appliances are used to clean stains on textiles, which are typically cleaned in a washing machine, or on objects such as dishes, cups or other utensils, which are typically cleaned using a dishwashing machine. Washing machines and dishwashing machines are very convenient devices that allow users to save time while achieving a satisfactory level of cleanliness in a more environmentally friendly way than manual wash.
  • each program In a dishwashing machine, it is typically possible to select between an intensive wash program or a more economical program, each program generally differing by its maximum temperature, duration, and amount and type of cleaning agent used.
  • Typical cleaning cycles in a dishwashing machine include a first “main wash” cycle, during which cleaning agents are released in the first minutes after filling of the dishwashing machine with water. The temperature is typically increased beyond 40° C. This main wash cycle is followed by one or more rinse cycles until the end of the cleaning cycle which leaves the objects inside the dishwashing machine dry.
  • dishwashing involves the use of cleaning agents such as dishwashing liquids, tablets, or pouches.
  • the cleaning agents can be either dispensed from a dispensing unit that is an integral part of the household appliance, or from a removable device independent from the household appliance that is placed inside a chamber of the household appliance.
  • a first enzyme phase in the first minutes of the main wash cycle, followed by the dispensing of an alkaline agent a few minutes later.
  • These cleaning agents are typically administered at temperatures below 35° C. in the early stages of the cleaning cycle, so that they may act longer at removing dirt and stains throughout the cleaning cycle.
  • a third cleaning agent (generally called finisher) is sometimes further administered during the last rinse cycle.
  • cleaning programs are generally well designed and can eliminate most stains by adjusting temperature, dosage of cleaning agents, and cleaning cycle duration, some stains are much harder to remove without reverting to very high temperatures or cleaning agent doses. This is the case for example with tea stains on ceramic cups, for which best results are obtained when using bleach.
  • bleach is not always compatible with other items loaded inside the household appliance.
  • liquid bleach-containing cleaning agents are generally not stable and not suitable for use in a household appliance, in particular when they are to be stored in cartridge of a removable or non-removable dosing system or in pouches.
  • the present disclosure provides a method for removing stains during a cleaning cycle of a household appliance, the cleaning cycle comprising at least a main wash cycle, the method comprising releasing an amount of a main cleaning agent during the main wash cycle when a temperature inside the household appliance during the main wash cycle exceeds a predetermined temperature threshold, wherein the predetermined temperature threshold is higher than 40° C.
  • the method of the present disclosure is particularly suitable for dishwashing machines and is efficient in removing persistent stains such as tea stains that typically form on ceramic utensils.
  • the present disclosure successfully removes such stains without requiring the use of bleach, nor the need to necessarily use large amounts of cleaning agents or very high temperatures (above 70° C.) during the cleaning cycle.
  • the “main wash” cycle refers to the cycle during which active cleaning agents are released. Other cleaning agents, in particular finishers, can further be released during subsequent rinse cycles.
  • the predetermined temperature threshold may be chosen among one of the following values: 50° C., 55° C., 58° C., 60° C., a maximum temperature reached during the main wash cycle before a decrease in temperature, or 95% of the maximum temperature reached during the cleaning cycle.
  • the main cleaning agent may comprise an alkali.
  • alkali encompasses cleaning agents with a pH value above 7. More particularly, it targets cleaning agents with a pH above 8, such as cleaning agents having a strong alkalinity with a pH above 10.
  • the method may further comprise:
  • the main cleaning agent may further benefit from the dispensing of a first cleaning agent at the earlier stages of the main wash at lower temperatures.
  • This first cleaning agent typically comprises an enzyme phase.
  • the timing of the release of the main cleaning agent can be correlated with the heating rate inside the household appliance. It is also possible to start dispensing the main cleaning agent at least 2 minutes after the end of the release of the last portion of the first cleaning agent.
  • the method may further comprise:
  • the first cleaning agent comprising an enzyme
  • the main cleaning agent is released at higher temperatures in addition to the release of another cleaning agent or a similar released at the earlier stages of the main wash cycle.
  • This mode can be implemented when the household appliance, in particular a dishwashing machine runs a pre-stored cleaning program and only adds an additional step consisting in the supplementary release of an amount of main cleaning agent at higher temperatures, in addition to the standard operation of the selected pre-stored cleaning program.
  • the first cleaning agent and the second cleaning agent can both be enzymes, for example the same type of enzyme, released at different times of the cleaning cycle.
  • the first cleaning agent can be released during a pre-wash of the cleaning cycle whereas the second cleaning agent can be released during a main wash of the cleaning cycle.
  • the first cleaning agent can be dosed relative to the second cleaning in a ratio of from about 0.1 to about 10 times an amount of the second cleaning agent.
  • the first cleaning agent and the second cleaning agent can both be enzymes, typically but not necessarily the same type of enzyme.
  • the first cleaning agent can be dosed at 3 ⁇ 5 of the total amount of enzymes released whereas the second cleaning agent can be dosed at 2 ⁇ 5 of the total amount of enzymes released.
  • the first cleaning agent may be an enzyme whereas the second cleaning agent is an alkali. Care would be taken to adjust the alkalinity inside the household appliance upon dispensing the main cleaning agent.
  • the method may further comprise:
  • the dosage of main cleaning agent can be set to a lower value, for example between about 15 grams and about 25 grams.
  • the dosage of main cleaning agent can advantageously be set to a higher value, for example between about 25 grams and about 40 grams.
  • the amount of main cleaning agent to be released may be between about 3 grams and about 40 grams.
  • the temperature inside the household appliance can be measured at regular time intervals with a sensor or based on estimations of the temperature variations for the cleaning program that the machine is running
  • This information is not necessarily a temperature as such, but could be a related parameter that makes it possible to determine the temperature inside the machine. It could be, for example, a setting of a heating unit inside the machine, a tension or current measured at such a heating unit, an information provided by an external sensor or an information provided manually by a user or obtained from a distant source, for example online.
  • the household appliance, dishwasher can also transfer a temperature measurement made inside the appliance to a dosing device via an “API” (for “Applications Programming Interface) for example.
  • API Applications Programming Interface
  • the information regarding the temperature inside the household appliance at different times of the cleaning cycle may be provided by a temperature sensor.
  • the information regarding the temperature inside the household appliance at different times of the cleaning cycle may be provided by a database of programs run by the household appliance.
  • the sample rate of this querying of information relating to the temperature can be occurring at frequencies ranging from about 0.01 Hz to about 1 kHz. for example.
  • a removable dosing device can be for example an automated unit comprising cartridges filled with different cleaning agents and a dispensing unit capable of releasing a controlled amount of cleaning agent at controlled times.
  • Different types of hardware might be part of the dosing device for controlling the dispensing of the cleaning agents, or for communicating with external devices such as data processing units, the household appliance or a mobile device or server that a user can operate.
  • the presence of mugs or cups inside the machine might be assessed based on a specific vibration signature during the loading process inside the machine. Turbidity of water during the cleaning cycle or specific markers identifiable by biosensors could also be used to determine the presence of tea stains.
  • a user might select a special program or an option within a program that parameterizes the household appliance to implement the method of the present disclosure. Such a selection can also be viewed as an “information relating to the presence of tea stains” or an assumption thereof.
  • This program can be selected by pressing a button on the machine or can be chosen within a menu selectable on the machine or on a man-machine interface capable of setting a program on the household appliance.
  • a user might set a “tea stains” cleaning option for a currently selected program form the household appliance or via a mobile device or server, in an “app” for example.
  • the present disclosure also pertains to a system for removing stains during a cleaning cycle of a household appliance, the cleaning cycle comprising at least a main wash cycle, the system comprising:
  • the non-transitory data processing unit may be a piece of dedicated hardware placed on the dosing device (for example in the case when the dosing device is a removable automatic dosing device to be placed inside the household appliance). It may also be a separate device incorporated into the household appliance or placed removably inside the household appliance or outside of it.
  • the non-transitory data processing device may also be part of another device such as a mobile device, smartphone, tablet, computer, server for example.
  • the dosing device may be a removable dosing device configured to be positioned inside the household appliance.
  • the present disclosure also pertains to a non-transitory computer readable storage medium having stored thereon a computer program comprising instructions for execution of a method as described above for removing stains during a cleaning cycle of a household appliance.
  • the present disclosure also pertains to a computer program product comprising instructions for execution of a method as described above for removing stains during a cleaning cycle of a household appliance.
  • FIG. 1 shows a set of devices that can be used to implement the method according to an exemplary embodiment
  • FIG. 2 shows a schematic representation of the components that can be part of a system according to an embodiment
  • FIG. 3 shows a simplified workflow of a method according to an exemplary embodiment
  • FIGS. 4-8 show 5 examples of graphs of the evolution of temperature inside dishwashing machines as a function of time during a cleaning program.
  • the present disclosure pertains to a method that provides a more efficient and economical way for removing persistent stains such as tea stains that can typically be found on ceramics (cups) without using bleach.
  • the present disclosure postpones the dispensing of a cleaning agent during the main wash cycle of a household appliance until the temperature reaches a predetermined temperature threshold.
  • This method can be applied to all sorts of household appliances but is particularly efficient for removing stains during the cleaning cycle of dishwashing machines.
  • FIG. 1 represents an environment 1 in which a household appliance 300 can receive cleaning agents dispensed from a dosing device 200 configured to dispense cleaning agents during the cleaning cycles of the household appliance.
  • a mobile device 400 such as a mobile phone, a tablet, or any other computer or assimilated device can further interact with the dosing device 200 and/or the household appliance 300 .
  • the mobile device 400 can for example be used to set parameters for the dispensing of the cleaning agents or to select a cleaning program from programs runnable on the household appliance 300 .
  • the mobile device 400 can further either receive information from or send information to the dosing device 200 and/or the household appliance 300 .
  • the mobile device can provide the household appliance 300 and/or the dosing device 200 with information relating to the state of the objects inserted inside the household appliance 300 such as the nature of these objects, the presence of stains, for example tea stains, the type of the stains and the level of dirtiness of the inserted objects.
  • information relating to the state of the objects inserted inside the household appliance 300 such as the nature of these objects, the presence of stains, for example tea stains, the type of the stains and the level of dirtiness of the inserted objects.
  • the dosing device 200 can be a separate device as shown on FIG. 1 comprising several cartridges with different cleaning agents (for example an enzyme containing liquid, an alkali containing liquid and a finisher) and a dispensing unit coupled with the cartridges.
  • the dosing device may also be an integral part of the household appliance 300 , for example a dosing compartment thereof.
  • FIG. 2 schematically shows a system 22 that can be used to implement the method of the present disclosure.
  • This system comprises the dosing device 200 , already described in connection with FIG. 1 , and a non-transitory data processing unit 20 .
  • the non-transitory data processing unit 20 processes an information relating to the temperature inside the household appliance 300 and communicates with the dosing device 200 to instruct when an amount of main cleaning agent or any other cleaning agent is to be dispensed.
  • the non-transitory data processing unit 20 may further instruct the amount of cleaning agent that is to be released by the dosing device 200 .
  • the non-transitory data processing unit 20 can be either an integral part of the dosing device 200 or a separate element.
  • the non-transitory data processing unit 20 can for example also be part of the household appliance 300 , inside the mobile device 400 or part of another element capable of communicating with the dosing device 200 .
  • the non-transitory data processing unit 20 can typically comprise at least one processor 212 , a storage element 211 (for example a hard drive or a volatile memory such as a random access memory), an interface 213 capable of displaying information to a user and/or to receive inputs from a user and optionally a sensor 214 .
  • the storage element 211 can for example be used to download information from a network, to store information sent for example by the mobile device 400 or information received via the interface 213 . It can also comprise pre-stored information for example regarding programs run by household appliance 300 , in particular the evolution of the temperature inside household appliance 300 as a function of time. The information received or already stored can be kept in the storage element 211 .
  • the sensor 214 may be a device such a temperature sensor capable of determining a temperature inside the household appliance 300 during a cleaning cycle.
  • the non-transitory data processing unit 20 may further comprise other sensors (in replacement of the temperature sensor or in addition thereto) for example a timer, an accelerometer, a spectrometer, a pH-meter, a conductivity measuring sensor, a turbidity measuring sensor.
  • Information regarding the temperature inside the household appliance 300 may be communicated to the non-transitory data processing unit 20 via an external source, such as an external sensor located in the household appliance 300 , or via an access to a database comprising information regarding the temperature inside the household appliance 300 at different times of the cleaning cycle.
  • an external source such as an external sensor located in the household appliance 300
  • a database comprising information regarding the temperature inside the household appliance 300 at different times of the cleaning cycle.
  • Wireless communication can be implemented using for example Radio Frequency identification (RFID), Near Field Communication (NFC), Bluetooth, Wireless Local Area Network (WLAN), Thread, Zigbee.
  • RFID Radio Frequency identification
  • NFC Near Field Communication
  • WLAN Wireless Local Area Network
  • Thread Zigbee
  • the system 20 described above can typically be used to implement the improved stain removal method of the present disclosure.
  • This stain removal method consists in postponing the time at which a main cleaning agent, typically comprising an alkali liquid, is dispensed during the main wash cycle of the cleaning cycle of a household appliance 300 .
  • a main cleaning agent typically comprising an alkali liquid
  • Maximum efficiency has been observed when the main cleaning agent is dispensed not at the beginning of the main wash cycle, but rather when a predetermined temperature threshold is exceeded, for example a temperature threshold higher than about 40° C.
  • FIG. 3 shows an example of a method 30 for removing stains during a cleaning cycle of a household appliance consisting in obtaining an information 31 relating to the temperature inside the household appliance 300 at different times of the cleaning cycle.
  • This information can either be provided by a sensor 214 or read in a database that comprises recordings or estimations of the temperature evolution inside the household appliance 300 as a function of time.
  • the method proceeds by releasing 32 a first cleaning agent, typically comprising an enzyme, at the early stages of the main wash cycle at temperatures inside the household appliance 300 typically lower than about 30° C.
  • a first cleaning agent typically comprising an enzyme
  • the method proceeds by releasing an amount 33 of main cleaning agent, typically a cleaning agent comprising an alkali, when the temperature inside the household appliance 300 exceeds about 40° C.
  • main cleaning agent typically a cleaning agent comprising an alkali
  • the moment when such a condition is met can be determined either using a measured temperature, or via estimations based on the knowledge of the evolution of temperature inside the household appliance as a function of time.
  • the amount released can be increased when the predetermined temperature threshold is closer to about 40° C. and decreased if the predetermined temperature threshold is closer to about 55° C., advantageously above about 58° C.
  • the predetermined temperature threshold can be set at a fixed value (for example about 40° C., 50° C., 55° C., 58° C. or 60° C.), or be dynamically associated with an event observed during the cleaning cycle. For example, it is possible to start dispensing the main cleaning agent once the temperature inside the household appliance 300 reaches a maximum value and starts decreasing. Should a database contain the expected or predicted temperature evolution inside the household appliance 300 as a function of time, it is possible to set the condition for dispensing the main cleaning agent as exceeding a temperature corresponding to a certain percentage of the maximum temperature during the main wash cycle, for example 80% or 90% or 95% of that maximum temperature value, or at a predicted time when such temperatures are expected. In that case, a timer can be used to trigger the dispensing of the main cleaning agent.
  • a timer can be used to trigger the dispensing of the main cleaning agent.
  • Another possibility is to further set a time separating the beginning of the main cycle from the release of the main cleaning agent. For example, it could be possible to wait 5 or 10 minutes after the start of the main wash cycle or 5 or 10 minutes after the start of the dispensing of a first cleaning agent during the main wash cycle, before releasing the main cleaning agent.
  • the amount of main cleaning agent released during a main wash cycle can be comprised between about 3 grams and about 40 grams, the amount depending on the level of dirtiness and load of objects inside the household appliance 300 , as well as on the predetermined temperature threshold that is selected.
  • the dispensing of an amount of main cleaning agent when the temperature inside the household appliance 300 exceeds a predetermined temperature threshold can also be implemented on top of a normal cleaning cycle.
  • a first cleaning agent typically comprising an enzyme phase can be dispensed in the first minutes of the main wash cycle, followed within the next ten minutes by the release of a second cleaning agent typically comprising an alkali, when the temperature is still lower than 40° C.
  • an amount of main cleaning agent that can be substantially smaller than in the examples described above can be dispensed at higher temperatures above 40° C. inside the household appliance.
  • the method described above can be stored within a cleaning program of the household appliance 300 , and ready to be selected by a user. It may also be available as an option to be added to any program of the household appliance, for example as a stain removal option, particularly suitable for removing tea stains, in particular in dishwashing machines.
  • the decision to run a cleaning program that comprises the above-described method can be taken by a user. The user selects such a special program or option either on the household appliance 300 , or via any other interface, for example on a mobile device 400 .
  • the decision to implement the method of the present disclosure can be taken by the dosing device 200 or the non-transitory data processing unit 22 , based for example on information regarding the presence of hard to remove stains such as tea stains.
  • the cleaning strategy upon determination of the presence of such harder to remove stains or upon indication by an external source such as the user that such stains might be present. If the preselected program does not reach temperatures above 40° C., it is possible to adapt the main wash cycle to include a short time frame during which the temperature exceeds 40° C., advantageously 55° C. or higher, to dispense the main cleaning agent at such higher temperatures.
  • control of the household appliance using the method described above can be provided in the form of an app on a mobile phone for example, or a computer program loadable into any electronic device capable of communicating with household appliances and updating their programming
  • FIGS. 4 to 8 provide five examples of cleaning cycles inside different dishwashing machines which benefited from the method for cleaning stains described above.
  • 102 objects were placed inside the dishwashing machine, comprising all sorts of items and dirt types.
  • the objects include knives, tea spoons, large spoons, salad bowls, pans, cups, mugs, saucers, plates, sieves, spatulas, soup ladle, cans, glass bowls, a chopping board, forks, and pots.
  • the type of stains found on these 102 items were the following: egg yolk, spinach, tea stains, milk stains, minced meat, oat flakes, egg, burnt lasagna.
  • the cleanliness of cups comprising tea stains was graded from 0 to 10, 10 being associated with a perfectly clean result.
  • the grade provided for tea stains is an average value obtained over 6 cups that were inserted into the dishwashing machine.
  • the total cleanliness of all items was rated from 0 to 5, 5 being associated with a perfectly cleaned set of items.
  • the presence of droplets was also rated using a method consisting in counting the presence of droplets on the cleaned items. The grades go from 0 (no droplets found) to 6 (6 or more droplets found).
  • FIG. 4 shows the evolution of temperature as a function of time throughout a cleaning cycle of a MIELE G6730SC dishwashing machine.
  • the selected program that is represented on FIG. 4 is labeled “quick power wash 60° C.”.
  • the diagram of FIG. 4 comprises a vertical temperature axis 408 and a horizontal time axis 409 .
  • the cleaning program can be decomposed into 6 cycles: filling 401 of the dishwasher with water, a main wash cycle 402 , a first water exchange cycle 403 , a first rinse cycle 404 , a second water exchange cycle 405 and a final rinse cycle 406 .
  • the temperature inside the dishwashing machine rises to almost 65° C. during the main wash cycle.
  • the dispensing of cleaning agents comprises: releasing a first cleaning agent 410 at the beginning of the main wash cycle, releasing a finisher 430 in the final rinse cycle, and releasing a main cleaning agent 420 during the main wash cycle.
  • FIG. 4 illustrates 4 different timings for the release of the main cleaning agent 420 , referred to under the reference numbers 2a-2d.
  • This dispensing of main cleaning agent 420 occurs after a delay of more than 10 minutes after the dispensing of the first cleaning agent 410 .
  • a delay 440 of about 7 minutes could have also led to satisfactory results.
  • a first test was performed using the classical “quick power wash 60° C.” cycle of the dishwashing machine. This normal cycle consists in releasing the main cleaning agent 2 minutes after dispensing the first cleaning agent 410 . Table 1 shown below summarizes the results observed after this normal cleaning cycle. It was repeated twice with a different dosage of the first cleaning agent (enzyme phase), the main cleaning agent (alkali phase) and the finisher.
  • Table 2 shown below provides the results observed when the main cleaning agent 420 is dispensed at higher temperatures, more than 10 minutes after dispensing of the first cleaning agent 410 .
  • Tests 4 and 5 were both done with a dispensing of the main cleaning agent at a temperature T above 60° C. Test 4 was done with a normal dosage of the main cleaning agent whereas test 5 was done with a higher dosage of cleaning agent than test 4.
  • Table 2 demonstrates that dispensing the main cleaning agent 420 at temperatures above 55° C. with a normal dosing enables a perfect removal of teas stains. It further shows that the dosage does not play any significant role in the cleanliness result if the temperature threshold for dispensing the main cleaning agent is above 55° C.
  • FIG. 5 shows the evolution of temperature as a function of time throughout a cleaning cycle of an AEG FS56302WO dishwashing machine running a 60 minutes program.
  • the diagram of FIG. 5 comprises a vertical temperature axis 408 and a horizontal time axis 409 .
  • the cleaning program can be decomposed into 4 cycles: filling 501 of the dishwasher with water, a main wash cycle 502 , a first water exchange cycle 503 and a final rinse cycle 504 .
  • the dispensing of cleaning agents comprises: releasing a first cleaning agent 510 at the beginning of the main wash cycle, releasing a finisher 530 in the final rinse cycle, and releasing a main cleaning agent 520 during the main wash cycle.
  • FIG. 5 illustrates 4 different timings for the release of the main cleaning agent 520 , referred to under the reference numbers 2, 2a-2c.
  • the “classical” or “normal” timing for dispensing the main cleaning agent corresponds to reference number 2 and is referred to under numeral 550 .
  • the dispensing of main cleaning agent 520 occurs after a delay of more than 10 minutes after the dispensing of the first cleaning agent 510 .
  • a delay 540 of about 7 minutes could also lead to satisfactory results.
  • Table 3 shown below provides the result observed when the main cleaning agent 520 is released at the different times 2, 2a-2c represented on FIG. 5 .
  • release times 2 and 2c normal and higher dosage of cleaning agents were tested.
  • FIG. 6 shows the evolution of temperature as a function of time throughout a cleaning cycle of a Bosch SMS68TW06E dishwashing machine running a short one-hour program with a 1 hour drying cycle.
  • the diagram of FIG. 6 comprises a vertical temperature axis 408 and a horizontal time axis 409 .
  • the cleaning program can be decomposed into 6 cycles: filling 601 of the dishwasher with water, a main wash cycle 602 , a first rinse cycle 603 , a final rinse cycle 604 , a zeolite drying cycle 605 and a drying cycle 606 .
  • the dispensing of cleaning agents comprises: releasing a first cleaning agent 610 at the beginning of the main wash cycle and releasing a main cleaning agent 620 during the main wash cycle.
  • FIG. 6 illustrates 3 different timings for the release of the main cleaning agent 620 , referred to under the reference numbers 2, 2a and 2b.
  • the “classical” or “normal” timing for dispensing the main cleaning agent corresponds to reference number 2 and is referred to under numeral 650 .
  • Table 4 shown below provides the result observed when the main cleaning agent 620 is released at the different times 2, 2a-2b represented on FIG. 6 .
  • FIG. 7 shows the evolution of temperature as a function of time throughout a cleaning cycle of a Bosch SMS68TWO6E dishwashing machine running a long two-hour program with a 1 hour drying cycle.
  • the diagram of FIG. 7 comprises a vertical temperature axis 408 and a horizontal time axis 409 .
  • the cleaning program can be decomposed into 5 cycles: filling 701 of the dishwasher with water, a main wash cycle 702 , a first rinse cycle 703 , a final rinse cycle 704 and a drying cycle 706 .
  • the dispensing of cleaning agents comprises: releasing a first cleaning agent 710 at the beginning of the main wash cycle and releasing a main cleaning agent 720 during the main wash cycle.
  • FIG. 7 illustrates 2 different timings for the release of the main cleaning agent 720 , referred to under the reference numbers 2 and 2a.
  • the “classical” or “normal” timing for dispensing the main cleaning agent corresponds to reference number 2 and is referred to under numeral 750 .
  • Table 5 shown below provides the result observed when the main cleaning agent 720 is released at the different times 2 and 2a represented on FIG. 7 .
  • Tests 1 and 2 are conducted with a normal dosage of cleaning agents whereas tests 3 and 4 were done with a higher dosage of cleaning agent than tests 1 and 2.
  • a further observation that was made, but not represented on FIG. 7 is that the total cleanliness can be further improved by splitting the dispensing of the enzyme phase into two separate phases.
  • a first portion of the enzyme phase for example 3 ⁇ 5 of the total of the enzyme phase, can be dispensed at the beginning of the cleaning cycle, either during a pre-wash cycle or during the first minutes of the main wash cycle.
  • a second amount of the enzyme phase for example 2 ⁇ 5 of the total amount of the enzyme phase, can be dispensed at a later stage of the cleaning cycle, for example about 10 minutes after dispensing the first amount.
  • FIG. 8 shows the evolution of temperature as a function of time throughout a cleaning cycle of a Bauknecht BFE 2B19 dishwashing machine running a short intensive program with a drying cycle.
  • the diagram of FIG. 8 comprises a vertical temperature axis 408 and a horizontal time axis 409 .
  • the cleaning program can be decomposed into 6 cycles: filling 801 of the dishwasher with water, a main wash cycle 802 , a first rinse cycle 803 , a second rinse cycle 804 , a final rinse cycle 805 and a drying cycle 806 .
  • the dispensing of cleaning agents comprises: releasing a first cleaning agent 810 at the beginning of the main wash cycle and releasing a main cleaning agent 820 during the main wash cycle.
  • FIG. 8 illustrates 2 different timings for the release of the main cleaning agent 820 , referred to under the reference numbers 2 and 2a.
  • the “classical” or “normal” timing for dispensing the main cleaning agent corresponds to reference number 2 and is referred to under numeral 850 .
  • Table 6 shown below provides the result observed when the main cleaning agent 820 is released at the different times 2 and 2a represented on FIG. 8 .
  • Non-transitory computer readable storage mediums These could for example comprise a processor or chip, FPGA (field programmable gate array), an electronic circuit comprising several processors or chips, a hard drive, a flash or SD card, a USB stick, a CD-ROM or DVD-ROM or Blue-Ray disc, or a diskette 216 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Detergent Compositions (AREA)
  • Washing And Drying Of Tableware (AREA)

Abstract

A method for removing stains, in particular tea stains, during a cleaning cycle of a household appliance, such as a dishwashing machine. The cleaning cycle comprises at least a main wash cycle. A cleaning agent is released during the main wash cycle when the temperature inside the household appliance during the main wash cycle exceeds a predetermined temperature threshold, the threshold being higher than about 40° C., for example higher than about 55° C.

Description

    CROSS-REFERENCE TO RELATED APPLICATION
  • This application is a U.S. National-Stage entry under 35 U.S.C. § 371 based on International Application No. PCT/EP2019/082134, filed Nov. 21, 2019, which was published under PCT Article 21(2) and which claims priority to European Application No. 18208126.5, filed Nov. 23, 2018, which are all hereby incorporated in their entirety by reference.
  • TECHNICAL FIELD
  • The present disclosure relates to the field of cleaning programs and more particularly to methods enabling an optimized removal of stains on objects such as cups arranged inside a household appliance such as a dishwasher. The method of the present disclosure is particularly suitable for removing tea stains on cups without requiring the use of bleach.
  • TECHNOLOGICAL BACKGROUND
  • Household appliances are used to clean stains on textiles, which are typically cleaned in a washing machine, or on objects such as dishes, cups or other utensils, which are typically cleaned using a dishwashing machine. Washing machines and dishwashing machines are very convenient devices that allow users to save time while achieving a satisfactory level of cleanliness in a more environmentally friendly way than manual wash.
  • When cleaning textiles in a washing machine or utensils in a dishwashing machine, users expect all stains to be eliminated. Typically, it is possible to select an appropriate program on the machine depending on the level of dirtiness of the objects to be cleaned or the total load inside the machine.
  • In a dishwashing machine, it is typically possible to select between an intensive wash program or a more economical program, each program generally differing by its maximum temperature, duration, and amount and type of cleaning agent used.
  • Typical cleaning cycles in a dishwashing machine include a first “main wash” cycle, during which cleaning agents are released in the first minutes after filling of the dishwashing machine with water. The temperature is typically increased beyond 40° C. This main wash cycle is followed by one or more rinse cycles until the end of the cleaning cycle which leaves the objects inside the dishwashing machine dry.
  • Generally, dishwashing involves the use of cleaning agents such as dishwashing liquids, tablets, or pouches. The cleaning agents can be either dispensed from a dispensing unit that is an integral part of the household appliance, or from a removable device independent from the household appliance that is placed inside a chamber of the household appliance. During the cleaning cycle, it is customary to dispense a first enzyme phase in the first minutes of the main wash cycle, followed by the dispensing of an alkaline agent a few minutes later. These cleaning agents are typically administered at temperatures below 35° C. in the early stages of the cleaning cycle, so that they may act longer at removing dirt and stains throughout the cleaning cycle. A third cleaning agent (generally called finisher) is sometimes further administered during the last rinse cycle.
  • Although cleaning programs are generally well designed and can eliminate most stains by adjusting temperature, dosage of cleaning agents, and cleaning cycle duration, some stains are much harder to remove without reverting to very high temperatures or cleaning agent doses. This is the case for example with tea stains on ceramic cups, for which best results are obtained when using bleach. However, bleach is not always compatible with other items loaded inside the household appliance. Furthermore, liquid bleach-containing cleaning agents are generally not stable and not suitable for use in a household appliance, in particular when they are to be stored in cartridge of a removable or non-removable dosing system or in pouches.
  • For the above reasons, a method for more efficiently removing stains during the cleaning cycle of a household appliance is needed.
  • SUMMARY
  • To address the above need, the present disclosure provides a method for removing stains during a cleaning cycle of a household appliance, the cleaning cycle comprising at least a main wash cycle, the method comprising releasing an amount of a main cleaning agent during the main wash cycle when a temperature inside the household appliance during the main wash cycle exceeds a predetermined temperature threshold, wherein the predetermined temperature threshold is higher than 40° C.
  • The method of the present disclosure is particularly suitable for dishwashing machines and is efficient in removing persistent stains such as tea stains that typically form on ceramic utensils. The present disclosure successfully removes such stains without requiring the use of bleach, nor the need to necessarily use large amounts of cleaning agents or very high temperatures (above 70° C.) during the cleaning cycle.
  • Surprisingly, it has been observed that hard to remove stains, such as tea stains, can be efficiently removed by dispensing the alkali phase at higher temperatures during the main wash cycle. In methods of the state of the art, cleaning agents are dispensed during the main wash cycle very early at the start of the main wash, when the temperature inside the machine barely goes above 30° C. However, when the cleaning agent is administered only at higher temperatures, above 40° C., the combined effect of the temperature and the cleaning action of the active components comprised in the main cleaning agent enhances the cleanliness of the objects to be cleaned.
  • The “main wash” cycle refers to the cycle during which active cleaning agents are released. Other cleaning agents, in particular finishers, can further be released during subsequent rinse cycles.
  • According to an embodiment, the predetermined temperature threshold may be chosen among one of the following values: 50° C., 55° C., 58° C., 60° C., a maximum temperature reached during the main wash cycle before a decrease in temperature, or 95% of the maximum temperature reached during the cleaning cycle.
  • It has been observed that the effect described above is particularly enhanced for the above-mentioned temperature thresholds. Should the program run by the machine not reach temperatures above 50° C., it is possible to dispense the main cleaning agent when the temperature inside the machines reaches its maximum before decreasing again. The determination of this temperature can for example be done by employing a temperature sensor, located on a dosing device or somewhere inside the machine. It is also possible to estimate the time at which these temperatures will be reached based on a database describing the program run by the machine. Such a database can be provided by manufacturers, be determined based on previously run programs or found via external sources, for example online.
  • According to an embodiment, the main cleaning agent may comprise an alkali.
  • The term “alkali” encompasses cleaning agents with a pH value above 7. More particularly, it targets cleaning agents with a pH above 8, such as cleaning agents having a strong alkalinity with a pH above 10.
  • According to an embodiment, the method may further comprise:
    • releasing a first cleaning agent at temperatures below 40° C. during the main wash cycle; and
    • releasing the main cleaning agent at least 5 minutes after starting the release of the first cleaning agent.
  • The main cleaning agent may further benefit from the dispensing of a first cleaning agent at the earlier stages of the main wash at lower temperatures. This first cleaning agent typically comprises an enzyme phase. By postponing the release of the alkali phase, the efficiency of the cleaning cycle can be further improved. The timing of the release of the main cleaning agent can be correlated with the heating rate inside the household appliance. It is also possible to start dispensing the main cleaning agent at least 2 minutes after the end of the release of the last portion of the first cleaning agent.
  • According to an embodiment, the method may further comprise:
  • releasing a first cleaning agent at temperatures below 40° C. during the main wash cycle, the first cleaning agent comprising an enzyme; and
  • releasing a second cleaning agent after starting the release of the first cleaning agent.
  • In such a case, the main cleaning agent is released at higher temperatures in addition to the release of another cleaning agent or a similar released at the earlier stages of the main wash cycle. This mode can be implemented when the household appliance, in particular a dishwashing machine runs a pre-stored cleaning program and only adds an additional step consisting in the supplementary release of an amount of main cleaning agent at higher temperatures, in addition to the standard operation of the selected pre-stored cleaning program. Alternatively, the first cleaning agent and the second cleaning agent can both be enzymes, for example the same type of enzyme, released at different times of the cleaning cycle. For example, the first cleaning agent can be released during a pre-wash of the cleaning cycle whereas the second cleaning agent can be released during a main wash of the cleaning cycle.
  • According to an embodiment, the first cleaning agent can be dosed relative to the second cleaning in a ratio of from about 0.1 to about 10 times an amount of the second cleaning agent.
  • For example, the first cleaning agent and the second cleaning agent can both be enzymes, typically but not necessarily the same type of enzyme. The first cleaning agent can be dosed at ⅗ of the total amount of enzymes released whereas the second cleaning agent can be dosed at ⅖ of the total amount of enzymes released. By dispensing enzymes at two different times of the cleaning cycle, a better total cleanliness result is observed at the end of the cleaning cycle in a household appliance. Alternatively, the first cleaning agent may be an enzyme whereas the second cleaning agent is an alkali. Care would be taken to adjust the alkalinity inside the household appliance upon dispensing the main cleaning agent.
  • According to an embodiment, the method may further comprise:
    • determining the amount of main cleaning agent to be released based on a value of the predetermined temperature threshold, the amount of main cleaning agent being higher when the predetermined temperature threshold is lower.
  • A correlation has been observed between the amount of main cleaning agent released and the cleanliness of the objects cleaned during the cleaning cycle of the household appliance. For predetermined temperature thresholds set above 55° C., the dosage of main cleaning agent can be set to a lower value, for example between about 15 grams and about 25 grams. For predetermined temperature thresholds at 40° C., the dosage of main cleaning agent can advantageously be set to a higher value, for example between about 25 grams and about 40 grams.
  • According to an embodiment the amount of main cleaning agent to be released may be between about 3 grams and about 40 grams.
  • According to an embodiment the method may further comprise:
    • obtaining an information regarding the temperature inside the household appliance at different times of the cleaning cycle.
  • The temperature inside the household appliance can be measured at regular time intervals with a sensor or based on estimations of the temperature variations for the cleaning program that the machine is running This information is not necessarily a temperature as such, but could be a related parameter that makes it possible to determine the temperature inside the machine. It could be, for example, a setting of a heating unit inside the machine, a tension or current measured at such a heating unit, an information provided by an external sensor or an information provided manually by a user or obtained from a distant source, for example online. The household appliance, dishwasher, can also transfer a temperature measurement made inside the appliance to a dosing device via an “API” (for “Applications Programming Interface) for example.
  • According to an embodiment the information regarding the temperature inside the household appliance at different times of the cleaning cycle may be provided by a temperature sensor. According to an embodiment the information regarding the temperature inside the household appliance at different times of the cleaning cycle may be provided by a database of programs run by the household appliance.
  • The sample rate of this querying of information relating to the temperature (or mere reception thereof) can be occurring at frequencies ranging from about 0.01 Hz to about 1 kHz. for example.
  • According to an embodiment the method may further comprise:
    • releasing the amount of the main cleaning agent from a removable dosing device positioned inside the household appliance.
  • A removable dosing device can be for example an automated unit comprising cartridges filled with different cleaning agents and a dispensing unit capable of releasing a controlled amount of cleaning agent at controlled times. Different types of hardware might be part of the dosing device for controlling the dispensing of the cleaning agents, or for communicating with external devices such as data processing units, the household appliance or a mobile device or server that a user can operate.
  • According to an embodiment the method may further comprise:
    • releasing the amount of the main cleaning agent from a compartment configured to receive cleaning agents in the household appliance.
  • According to an embodiment the method may further comprise:
    • obtaining an information relating to the presence of tea stains among objects arranged inside the household appliance.
  • For example, the presence of mugs or cups inside the machine might be assessed based on a specific vibration signature during the loading process inside the machine. Turbidity of water during the cleaning cycle or specific markers identifiable by biosensors could also be used to determine the presence of tea stains. Otherwise, a user might select a special program or an option within a program that parameterizes the household appliance to implement the method of the present disclosure. Such a selection can also be viewed as an “information relating to the presence of tea stains” or an assumption thereof. This program can be selected by pressing a button on the machine or can be chosen within a menu selectable on the machine or on a man-machine interface capable of setting a program on the household appliance. A user might set a “tea stains” cleaning option for a currently selected program form the household appliance or via a mobile device or server, in an “app” for example.
  • The present disclosure also pertains to a system for removing stains during a cleaning cycle of a household appliance, the cleaning cycle comprising at least a main wash cycle, the system comprising:
    • a non-transitory data processing unit configured to obtain an information regarding a temperature inside the household appliance at different times of the cleaning cycle; and
    • a dosing device containing a main cleaning agent and capable of receiving information from the non-transitory data processing unit, the dosing device being configured to release an amount of the main cleaning agent during the main wash cycle at a time provided by the non-transitory data processing unit, the time being associated with temperature inside the household appliance during the main wash cycle exceeding a predetermined temperature threshold, wherein the predetermined temperature threshold is higher than 40° C.
  • Such a system may be implemented in different forms. The non-transitory data processing unit may be a piece of dedicated hardware placed on the dosing device (for example in the case when the dosing device is a removable automatic dosing device to be placed inside the household appliance). It may also be a separate device incorporated into the household appliance or placed removably inside the household appliance or outside of it. The non-transitory data processing device may also be part of another device such as a mobile device, smartphone, tablet, computer, server for example.
  • According to an embodiment the dosing device may be a removable dosing device configured to be positioned inside the household appliance.
  • The present disclosure also pertains to a non-transitory computer readable storage medium having stored thereon a computer program comprising instructions for execution of a method as described above for removing stains during a cleaning cycle of a household appliance.
  • In other words, the present disclosure also pertains to a computer program product comprising instructions for execution of a method as described above for removing stains during a cleaning cycle of a household appliance.
  • BRIEF DESRIPTION OF THE DRAWINGS
  • The present disclosure will hereinafter be described in conjunction with the following drawing figures, wherein like numerals denote like elements, and:
  • FIG. 1 shows a set of devices that can be used to implement the method according to an exemplary embodiment;
  • FIG. 2 shows a schematic representation of the components that can be part of a system according to an embodiment;
  • FIG. 3 shows a simplified workflow of a method according to an exemplary embodiment; and
  • FIGS. 4-8 show 5 examples of graphs of the evolution of temperature inside dishwashing machines as a function of time during a cleaning program.
  • DETAILED DESCRIPTION
  • The present disclosure pertains to a method that provides a more efficient and economical way for removing persistent stains such as tea stains that can typically be found on ceramics (cups) without using bleach.
  • To do so, the present disclosure postpones the dispensing of a cleaning agent during the main wash cycle of a household appliance until the temperature reaches a predetermined temperature threshold.
  • This method can be applied to all sorts of household appliances but is particularly efficient for removing stains during the cleaning cycle of dishwashing machines.
  • FIG. 1 represents an environment 1 in which a household appliance 300 can receive cleaning agents dispensed from a dosing device 200 configured to dispense cleaning agents during the cleaning cycles of the household appliance. A mobile device 400 such as a mobile phone, a tablet, or any other computer or assimilated device can further interact with the dosing device 200 and/or the household appliance 300. The mobile device 400 can for example be used to set parameters for the dispensing of the cleaning agents or to select a cleaning program from programs runnable on the household appliance 300. The mobile device 400 can further either receive information from or send information to the dosing device 200 and/or the household appliance 300. For example, the mobile device can provide the household appliance 300 and/or the dosing device 200 with information relating to the state of the objects inserted inside the household appliance 300 such as the nature of these objects, the presence of stains, for example tea stains, the type of the stains and the level of dirtiness of the inserted objects.
  • The dosing device 200 can be a separate device as shown on FIG. 1 comprising several cartridges with different cleaning agents (for example an enzyme containing liquid, an alkali containing liquid and a finisher) and a dispensing unit coupled with the cartridges. The dosing device may also be an integral part of the household appliance 300, for example a dosing compartment thereof.
  • FIG. 2 schematically shows a system 22 that can be used to implement the method of the present disclosure. This system comprises the dosing device 200, already described in connection with FIG. 1, and a non-transitory data processing unit 20. The non-transitory data processing unit 20 processes an information relating to the temperature inside the household appliance 300 and communicates with the dosing device 200 to instruct when an amount of main cleaning agent or any other cleaning agent is to be dispensed. The non-transitory data processing unit 20 may further instruct the amount of cleaning agent that is to be released by the dosing device 200. The non-transitory data processing unit 20 can be either an integral part of the dosing device 200 or a separate element. The non-transitory data processing unit 20 can for example also be part of the household appliance 300, inside the mobile device 400 or part of another element capable of communicating with the dosing device 200.
  • The non-transitory data processing unit 20 can typically comprise at least one processor 212, a storage element 211 (for example a hard drive or a volatile memory such as a random access memory), an interface 213 capable of displaying information to a user and/or to receive inputs from a user and optionally a sensor 214. The storage element 211 can for example be used to download information from a network, to store information sent for example by the mobile device 400 or information received via the interface 213. It can also comprise pre-stored information for example regarding programs run by household appliance 300, in particular the evolution of the temperature inside household appliance 300 as a function of time. The information received or already stored can be kept in the storage element 211. The sensor 214 may be a device such a temperature sensor capable of determining a temperature inside the household appliance 300 during a cleaning cycle. The non-transitory data processing unit 20 may further comprise other sensors (in replacement of the temperature sensor or in addition thereto) for example a timer, an accelerometer, a spectrometer, a pH-meter, a conductivity measuring sensor, a turbidity measuring sensor.
  • Information regarding the temperature inside the household appliance 300 may be communicated to the non-transitory data processing unit 20 via an external source, such as an external sensor located in the household appliance 300, or via an access to a database comprising information regarding the temperature inside the household appliance 300 at different times of the cleaning cycle.
  • Information may be transferred between the non-transitory data processing unit 20 and the dosing device 200 and/or the household appliance 300 and/or the mobile device 400 via a wired or wireless connection. Wireless communication can be implemented using for example Radio Frequency identification (RFID), Near Field Communication (NFC), Bluetooth, Wireless Local Area Network (WLAN), Thread, Zigbee.
  • The system 20 described above can typically be used to implement the improved stain removal method of the present disclosure. This stain removal method consists in postponing the time at which a main cleaning agent, typically comprising an alkali liquid, is dispensed during the main wash cycle of the cleaning cycle of a household appliance 300. Maximum efficiency has been observed when the main cleaning agent is dispensed not at the beginning of the main wash cycle, but rather when a predetermined temperature threshold is exceeded, for example a temperature threshold higher than about 40° C.
  • FIG. 3 shows an example of a method 30 for removing stains during a cleaning cycle of a household appliance consisting in obtaining an information 31 relating to the temperature inside the household appliance 300 at different times of the cleaning cycle. This information can either be provided by a sensor 214 or read in a database that comprises recordings or estimations of the temperature evolution inside the household appliance 300 as a function of time.
  • The method proceeds by releasing 32 a first cleaning agent, typically comprising an enzyme, at the early stages of the main wash cycle at temperatures inside the household appliance 300 typically lower than about 30° C.
  • Then, the method proceeds by releasing an amount 33 of main cleaning agent, typically a cleaning agent comprising an alkali, when the temperature inside the household appliance 300 exceeds about 40° C. The moment when such a condition is met can be determined either using a measured temperature, or via estimations based on the knowledge of the evolution of temperature inside the household appliance as a function of time.
  • It is to be noted that the amount released can be increased when the predetermined temperature threshold is closer to about 40° C. and decreased if the predetermined temperature threshold is closer to about 55° C., advantageously above about 58° C.
  • The predetermined temperature threshold can be set at a fixed value (for example about 40° C., 50° C., 55° C., 58° C. or 60° C.), or be dynamically associated with an event observed during the cleaning cycle. For example, it is possible to start dispensing the main cleaning agent once the temperature inside the household appliance 300 reaches a maximum value and starts decreasing. Should a database contain the expected or predicted temperature evolution inside the household appliance 300 as a function of time, it is possible to set the condition for dispensing the main cleaning agent as exceeding a temperature corresponding to a certain percentage of the maximum temperature during the main wash cycle, for example 80% or 90% or 95% of that maximum temperature value, or at a predicted time when such temperatures are expected. In that case, a timer can be used to trigger the dispensing of the main cleaning agent.
  • Another possibility is to further set a time separating the beginning of the main cycle from the release of the main cleaning agent. For example, it could be possible to wait 5 or 10 minutes after the start of the main wash cycle or 5 or 10 minutes after the start of the dispensing of a first cleaning agent during the main wash cycle, before releasing the main cleaning agent.
  • Typically, the amount of main cleaning agent released during a main wash cycle can be comprised between about 3 grams and about 40 grams, the amount depending on the level of dirtiness and load of objects inside the household appliance 300, as well as on the predetermined temperature threshold that is selected.
  • According to another embodiment, the dispensing of an amount of main cleaning agent when the temperature inside the household appliance 300 exceeds a predetermined temperature threshold can also be implemented on top of a normal cleaning cycle. In such a case, a first cleaning agent typically comprising an enzyme phase can be dispensed in the first minutes of the main wash cycle, followed within the next ten minutes by the release of a second cleaning agent typically comprising an alkali, when the temperature is still lower than 40° C. Then, an amount of main cleaning agent that can be substantially smaller than in the examples described above can be dispensed at higher temperatures above 40° C. inside the household appliance.
  • The method described above can be stored within a cleaning program of the household appliance 300, and ready to be selected by a user. It may also be available as an option to be added to any program of the household appliance, for example as a stain removal option, particularly suitable for removing tea stains, in particular in dishwashing machines. The decision to run a cleaning program that comprises the above-described method can be taken by a user. The user selects such a special program or option either on the household appliance 300, or via any other interface, for example on a mobile device 400. Alternatively, the decision to implement the method of the present disclosure can be taken by the dosing device 200 or the non-transitory data processing unit 22, based for example on information regarding the presence of hard to remove stains such as tea stains.
  • It is further possible to adapt the cleaning strategy upon determination of the presence of such harder to remove stains or upon indication by an external source such as the user that such stains might be present. If the preselected program does not reach temperatures above 40° C., it is possible to adapt the main wash cycle to include a short time frame during which the temperature exceeds 40° C., advantageously 55° C. or higher, to dispense the main cleaning agent at such higher temperatures.
  • The control of the household appliance using the method described above can be provided in the form of an app on a mobile phone for example, or a computer program loadable into any electronic device capable of communicating with household appliances and updating their programming
  • FIGS. 4 to 8 provide five examples of cleaning cycles inside different dishwashing machines which benefited from the method for cleaning stains described above. In the examples provided below, 102 objects were placed inside the dishwashing machine, comprising all sorts of items and dirt types.
  • The objects include knives, tea spoons, large spoons, salad bowls, pans, cups, mugs, saucers, plates, sieves, spatulas, soup ladle, cans, glass bowls, a chopping board, forks, and pots.
  • These objects provide a good example of the type of surfaces that can be found in items cleaned by dishwashing machines. The type of stains found on these 102 items were the following: egg yolk, spinach, tea stains, milk stains, minced meat, oat flakes, egg, burnt lasagna.
  • The distribution of items and dirt is consistent with European norm EN 50242 established to test the efficiency of cleaning programs. In addition to the limits set by this norm, different types of materials such as glass, ceramic, or plastic items such as plastic cans were loaded in the dishwashing machines.
  • To test the efficiency of the cleaning strategy that was adopted, the cleanliness of cups comprising tea stains was graded from 0 to 10, 10 being associated with a perfectly clean result. In the following examples, the grade provided for tea stains is an average value obtained over 6 cups that were inserted into the dishwashing machine. The total cleanliness of all items was rated from 0 to 5, 5 being associated with a perfectly cleaned set of items. The presence of droplets was also rated using a method consisting in counting the presence of droplets on the cleaned items. The grades go from 0 (no droplets found) to 6 (6 or more droplets found).
  • FIG. 4 shows the evolution of temperature as a function of time throughout a cleaning cycle of a MIELE G6730SC dishwashing machine. The selected program that is represented on FIG. 4 is labeled “quick power wash 60° C.”. the diagram of FIG. 4 comprises a vertical temperature axis 408 and a horizontal time axis 409. The cleaning program can be decomposed into 6 cycles: filling 401 of the dishwasher with water, a main wash cycle 402, a first water exchange cycle 403, a first rinse cycle 404, a second water exchange cycle 405 and a final rinse cycle 406.
  • The temperature inside the dishwashing machine rises to almost 65° C. during the main wash cycle. The dispensing of cleaning agents comprises: releasing a first cleaning agent 410 at the beginning of the main wash cycle, releasing a finisher 430 in the final rinse cycle, and releasing a main cleaning agent 420 during the main wash cycle.
  • FIG. 4 illustrates 4 different timings for the release of the main cleaning agent 420, referred to under the reference numbers 2a-2d. This dispensing of main cleaning agent 420 occurs after a delay of more than 10 minutes after the dispensing of the first cleaning agent 410. Theoretically, a delay 440 of about 7 minutes could have also led to satisfactory results.
  • A first test was performed using the classical “quick power wash 60° C.” cycle of the dishwashing machine. This normal cycle consists in releasing the main cleaning agent 2 minutes after dispensing the first cleaning agent 410. Table 1 shown below summarizes the results observed after this normal cleaning cycle. It was repeated twice with a different dosage of the first cleaning agent (enzyme phase), the main cleaning agent (alkali phase) and the finisher.
  • TABLE 1
    En- Al- Fin- Total Drop- Tea
    zyme kali isher clean- lets stains
    (g) (g) (g) liness count grade
    1st test 3.54 21.5 3.36 4.8 0.9 6.6
    2nd test 5.9 35.8 5.6 4.8 0.8 8.3
  • As can be seen on table 1, the normal cleaning cycle of the dishwashing machine does not allow to reach a satisfactory level of tea stain removal. At high dosage of cleaning agent, the result remains below 9 (9 being considered as a satisfactory grade above which the user does not notice any tea stains on cups).
  • Table 2 shown below provides the results observed when the main cleaning agent 420 is dispensed at higher temperatures, more than 10 minutes after dispensing of the first cleaning agent 410. Tests 4 and 5 were both done with a dispensing of the main cleaning agent at a temperature T above 60° C. Test 4 was done with a normal dosage of the main cleaning agent whereas test 5 was done with a higher dosage of cleaning agent than test 4.
  • TABLE 2
    En- Al- Fin- Total Drop- Tea
    zyme kali isher clean- lets T stains
    (g) (g) (g) liness count (° C.) grade
    Test 1(2a) 3.54 21.5 3.36 4.8 0.9 50 7.2
    Test 2 (2b) 3.54 21.5 3.36 4.8 0.7 55 8.7
    Test 3 (2c) 3.54 21.5 3.36 4.7 0.9 58 9.3
    Test 4 (2d) 3.54 21.5 3.36 4.6 0.5 60 9.1
    Test 5 (2d) 5.9 35.8 5.6 4.8 0.5 60 9.2
  • Table 2 demonstrates that dispensing the main cleaning agent 420 at temperatures above 55° C. with a normal dosing enables a perfect removal of teas stains. It further shows that the dosage does not play any significant role in the cleanliness result if the temperature threshold for dispensing the main cleaning agent is above 55° C.
  • Further tests tend to confirm these observations.
  • FIG. 5 shows the evolution of temperature as a function of time throughout a cleaning cycle of an AEG FS56302WO dishwashing machine running a 60 minutes program. The diagram of FIG. 5 comprises a vertical temperature axis 408 and a horizontal time axis 409. The cleaning program can be decomposed into 4 cycles: filling 501 of the dishwasher with water, a main wash cycle 502, a first water exchange cycle 503 and a final rinse cycle 504.
  • The dispensing of cleaning agents comprises: releasing a first cleaning agent 510 at the beginning of the main wash cycle, releasing a finisher 530 in the final rinse cycle, and releasing a main cleaning agent 520 during the main wash cycle.
  • FIG. 5 illustrates 4 different timings for the release of the main cleaning agent 520, referred to under the reference numbers 2, 2a-2c. The “classical” or “normal” timing for dispensing the main cleaning agent corresponds to reference number 2 and is referred to under numeral 550. The dispensing of main cleaning agent 520 occurs after a delay of more than 10 minutes after the dispensing of the first cleaning agent 510. Theoretically, a delay 540 of about 7 minutes could also lead to satisfactory results.
  • Table 3 shown below provides the result observed when the main cleaning agent 520 is released at the different times 2, 2a-2c represented on FIG. 5. For release times 2 and 2c, normal and higher dosage of cleaning agents were tested.
  • TABLE 3
    En- Al- Fin- Total Drop- Tea
    zyme kali isher clean- lets T stains
    (g) (g) (g) liness count (° C.) grade
    Test 1 (2) 3.54 21.5 3.36 4.7 0.8 25-30 6.3
    Test 2 (2a) 3.54 21.5 3.36 4.6 0.5 50 6
    Test 3 (2b) 3.54 21.5 3.36 4.7 0.8 55 9.3
    Test 4 (2c) 3.54 21.5 3.36 4.8 0.7 58 8.8
    Test 5 (2) 5.9 35.8 5.6 4.8 0.8 30 6.5
    Test 6 (2c) 5.9 35.8 5.6 4.8 0.6 58 9
  • This table confirms the observation made in connection with FIG. 4. Furthermore, although this is not represented on table 3, it has been seen that an increase of the amount of main cleaning agent dispensed even at lower temperatures, below 55° C. but above 40° C. can also lead to very satisfactory removal of tea stains with high cleanliness grades.
  • FIG. 6 shows the evolution of temperature as a function of time throughout a cleaning cycle of a Bosch SMS68TW06E dishwashing machine running a short one-hour program with a 1 hour drying cycle. The diagram of FIG. 6 comprises a vertical temperature axis 408 and a horizontal time axis 409. The cleaning program can be decomposed into 6 cycles: filling 601 of the dishwasher with water, a main wash cycle 602, a first rinse cycle 603, a final rinse cycle 604, a zeolite drying cycle 605 and a drying cycle 606.
  • The dispensing of cleaning agents comprises: releasing a first cleaning agent 610 at the beginning of the main wash cycle and releasing a main cleaning agent 620 during the main wash cycle.
  • FIG. 6 illustrates 3 different timings for the release of the main cleaning agent 620, referred to under the reference numbers 2, 2a and 2b. The “classical” or “normal” timing for dispensing the main cleaning agent corresponds to reference number 2 and is referred to under numeral 650.
  • Table 4 shown below provides the result observed when the main cleaning agent 620 is released at the different times 2, 2a-2b represented on FIG. 6.
  • TABLE 4
    En- Al- Fin- Total Drop- Tea
    zyme kali isher clean- lets T stains
    (g) (g) (g) liness count (° C.) grade
    Test 1 (2) 3.54 21.5 3.36 4.7 0.8 25-30 6.3
    Test 2 (2a) 3.54 21.5 3.36 4.6 0.5 40 6.0
    Test 3 (2b) 3.54 21.5 3.36 4.7 0.8 58 9.0
  • This table confirms the observation made in connection with FIGS. 4 and 5. Furthermore, although this is not represented on table 4, it has been seen that an increase of the amount of main cleaning agent dispensed at 40° C. can also lead to very satisfactory removal of tea stains with high cleanliness grades.
  • FIG. 7 shows the evolution of temperature as a function of time throughout a cleaning cycle of a Bosch SMS68TWO6E dishwashing machine running a long two-hour program with a 1 hour drying cycle. The diagram of FIG. 7 comprises a vertical temperature axis 408 and a horizontal time axis 409. The cleaning program can be decomposed into 5 cycles: filling 701 of the dishwasher with water, a main wash cycle 702, a first rinse cycle 703, a final rinse cycle 704 and a drying cycle 706.
  • The dispensing of cleaning agents comprises: releasing a first cleaning agent 710 at the beginning of the main wash cycle and releasing a main cleaning agent 720 during the main wash cycle.
  • FIG. 7 illustrates 2 different timings for the release of the main cleaning agent 720, referred to under the reference numbers 2 and 2a. The “classical” or “normal” timing for dispensing the main cleaning agent corresponds to reference number 2 and is referred to under numeral 750.
  • Table 5 shown below provides the result observed when the main cleaning agent 720 is released at the different times 2 and 2a represented on FIG. 7. Tests 1 and 2 are conducted with a normal dosage of cleaning agents whereas tests 3 and 4 were done with a higher dosage of cleaning agent than tests 1 and 2.
  • TABLE5
    En- Al- Fin- Total Drop- Tea
    zyme kali isher clean- lets T stains
    (g) (g) (g) liness count (° C.) grade
    Test 1 (2) 3.54 21.5 3.36 4.8 0.3 25-30 6
    Test 2 (2a) 3.54 21.5 3.36 4.7 0.2 50-52 6
    Test 3 (2) 5.9 35.8 5.6 4.9 0.2 25-30 6.8
    Test 4 (2a) 5.9 35.8 5.6 5 0.3 50-52 8
  • This table confirms the observation made in connection with FIGS. 4, 5 and 6. Furthermore, it can be seen that dosage of the cleaning agents is a second employing acting on the removal of tea stains, with results that are synergistically combined with the temperature at which the alkali main cleaning agent 720 is dispensed.
  • A further observation that was made, but not represented on FIG. 7, is that the total cleanliness can be further improved by splitting the dispensing of the enzyme phase into two separate phases. A first portion of the enzyme phase, for example ⅗ of the total of the enzyme phase, can be dispensed at the beginning of the cleaning cycle, either during a pre-wash cycle or during the first minutes of the main wash cycle. A second amount of the enzyme phase, for example ⅖ of the total amount of the enzyme phase, can be dispensed at a later stage of the cleaning cycle, for example about 10 minutes after dispensing the first amount.
  • FIG. 8 shows the evolution of temperature as a function of time throughout a cleaning cycle of a Bauknecht BFE 2B19 dishwashing machine running a short intensive program with a drying cycle. The diagram of FIG. 8 comprises a vertical temperature axis 408 and a horizontal time axis 409. The cleaning program can be decomposed into 6 cycles: filling 801 of the dishwasher with water, a main wash cycle 802, a first rinse cycle 803, a second rinse cycle 804, a final rinse cycle 805 and a drying cycle 806.
  • The dispensing of cleaning agents comprises: releasing a first cleaning agent 810 at the beginning of the main wash cycle and releasing a main cleaning agent 820 during the main wash cycle.
  • FIG. 8 illustrates 2 different timings for the release of the main cleaning agent 820, referred to under the reference numbers 2 and 2a. The “classical” or “normal” timing for dispensing the main cleaning agent corresponds to reference number 2 and is referred to under numeral 850.
  • Table 6 shown below provides the result observed when the main cleaning agent 820 is released at the different times 2 and 2a represented on FIG. 8.
  • TABLE 6
    En- Al- Fin- Total Drop- Tea
    zyme kali isher clean- lets T stains
    (g) (g) (g) liness count (° C.) grade
    Test 1 (2) 5.9 35.8 5.6 4.9 0.4 25-30 7.7
    Test 2 (2a) 5.9 35.8 5.6 4.9 0.3 60 9.3
  • This table confirms the observation made in connection with FIGS. 4-7. It further proves that dosage alone is not enough to achieve a perfect removal of tea stains, but can be achieved with the synergistical effect of the timing of the dispensing of the main cleaning agent 820 and the dosage of the cleaning agent.
  • Although not represented in the above examples, it is also possible to dispense the main cleaning agent in calculated amounts twice, once at the beginning of the main wash cycle according to a “normal” release of the cleaning agents, followed by a second dispensing of the main cleaning agent at higher temperatures.
  • The steps of the examples and embodiments described above can be implemented by a processor such as a computer. A computer program product comprising steps of the above-described method can be used to implement the method on a computer.
  • It is possible to store a computer program comprising instructions to implement the method of the present disclosure on different non-transitory computer readable storage mediums. These could for example comprise a processor or chip, FPGA (field programmable gate array), an electronic circuit comprising several processors or chips, a hard drive, a flash or SD card, a USB stick, a CD-ROM or DVD-ROM or Blue-Ray disc, or a diskette 216.
  • While at least one exemplary embodiment has been presented in the foregoing detailed description, it should be appreciated that a vast number of variations exist. It should also be appreciated that the exemplary embodiment or exemplary embodiments are only examples, and are not intended to limit the scope, applicability, or configuration of the various embodiments in any way. Rather, the foregoing detailed description will provide those skilled in the art with a convenient road map for implementing an exemplary embodiment as contemplated herein. It being understood that various changes may be made in the function and arrangement of elements described in an exemplary embodiment without departing from the scope of the various embodiments as set forth in the appended claims.

Claims (18)

1. A method for removing stains during a cleaning cycle of a household appliance, the cleaning cycle comprising at least a main wash cycle, the method comprising:
releasing an amount of a main cleaning agent during the main wash cycle when a temperature inside the household appliance during the main wash cycle exceeds a predetermined temperature threshold, wherein the predetermined temperature threshold is higher than about 40° C.
2. The method according to claim 1, wherein the predetermined temperature threshold is chosen from among one of the following values: about 50° C., about 55° C., about 58° C., about 60° C., a maximum temperature reached during the main wash cycle before a decrease in temperature, or about 95% of the maximum temperature reached during the cleaning cycle.
3. The method according to claim 1, wherein the main cleaning agent comprises an alkali.
4. The method according to claim 1, further comprising:
releasing a first cleaning agent at temperatures below about 40° C. during the main wash cycle;
releasing the main cleaning agent at least about 5 minutes after starting the release of the first cleaning agent.
5. The method according to claim 1, further comprising:
releasing a first cleaning agent at temperatures below about 40° C. during the main wash cycle, the first cleaning agent comprising an enzyme; and
releasing a second cleaning agent after starting the release of the first cleaning agent.
6. The method according to claim 5, wherein the first cleaning agent is dosed relative to the second cleaning in a of from about 0.1 to about 10 times an amount of the second cleaning agent.
7. The method according to claim 1, further comprising:
determining the amount of main cleaning agent to be released based on a value of the predetermined temperature threshold, the amount of main cleaning agent being higher when the predetermined temperature threshold is lower.
8. The method according to claim 1, wherein the amount of main cleaning agent to be released is from about 3 to about 40 grams.
9. The method according to claim 1, further comprising:
obtaining an information regarding the temperature inside the household appliance at different times of the cleaning cycle.
10. The method according to claim 9, where the information regarding the temperature inside the household appliance at different times of the cleaning cycle is provided by a database of programs runnable by the household appliance.
11. The method according to claim 1, further comprising:
releasing the amount of the main cleaning agent from a removable dosing device positioned inside the household appliance.
12. The method according to claim 1, further comprising:
obtaining an information relating to the presence of tea stains among objects arranged inside the household appliance.
13. A system for removing stains during a cleaning cycle of a household appliance, the cleaning cycle comprising at least a main wash cycle, the system comprising:
a non-transitory data processing unit, configured to obtain an information regarding a temperature inside the household appliance at different times of the cleaning cycle;
a dosing device comprising a main cleaning agent and configured to receive information from the non-transitory data processing unit, the dosing device being configured to release an amount of the main cleaning agent during the main wash cycle at a time provided by the non-transitory data processing unit, the time being associated with temperature inside the household appliance during the main wash cycle exceeding a predetermined temperature threshold, wherein the predetermined temperature threshold is higher than about 40° C.
14. The system according to claim 11, wherein the dosing device is a removable dosing device configured to be positioned inside the household appliance.
15. A non-transitory computer readable storage medium having stored thereon a computer program comprising instructions for execution of a method according to claim 1 for removing stains during a cleaning cycle of a household appliance.
16. The method according to claim 1, wherein the predetermined temperature threshold is about 60° C.
17. The method according to claim 1, wherein the predetermined temperature threshold is set at a maximum temperature reached during the main wash cycle before a decrease in temperature, or at about 95% of the maximum temperature reached during the cleaning cycle.
18. The method according to claim 1, further comprising:
releasing a first cleaning agent at temperatures below about 40° C. during the main wash cycle;
releasing the main cleaning agent from a removable dosing device positioned inside the household appliance. at least about 5 minutes after starting the release of the first cleaning agent;
obtaining an information regarding the temperature inside the household appliance at different times of the cleaning cycle, where the information regarding the temperature inside the household appliance at different times of the cleaning cycle is provided by a database of programs runnable by the household appliance; and
obtaining an information relating to the presence of tea stains among objects arranged inside the household appliance.
US17/295,379 2018-11-23 2019-11-21 Method for removing stains during a cleaning cycle of a household appliance Pending US20220000329A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP18208126.5A EP3656272A1 (en) 2018-11-23 2018-11-23 Method for removing stains during a cleaning cycle of a household appliance
PCT/EP2019/082134 WO2020104611A1 (en) 2018-11-23 2019-11-21 Method for removing stains during a cleaning cycle of a household appliance

Publications (1)

Publication Number Publication Date
US20220000329A1 true US20220000329A1 (en) 2022-01-06

Family

ID=64456886

Family Applications (1)

Application Number Title Priority Date Filing Date
US17/295,379 Pending US20220000329A1 (en) 2018-11-23 2019-11-21 Method for removing stains during a cleaning cycle of a household appliance

Country Status (5)

Country Link
US (1) US20220000329A1 (en)
EP (2) EP3656272A1 (en)
KR (1) KR20210093902A (en)
CN (1) CN113164003A (en)
WO (1) WO2020104611A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220400929A1 (en) * 2021-06-22 2022-12-22 The Procter & Gamble Company Method of treating dishware in a domestic automatic dishwashing machine

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023537336A (en) 2020-08-04 2023-08-31 ザ プロクター アンド ギャンブル カンパニー Automatic dishwashing method and pack

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001510680A (en) * 1997-02-05 2001-07-31 フィッシャー アンド ペイケル リミティド Brushless DC motor control
US20060157086A1 (en) * 2005-01-20 2006-07-20 General Electric Company Apparatus and method for dispensing fluid
WO2008034696A1 (en) * 2006-09-19 2008-03-27 BSH Bosch und Siemens Hausgeräte GmbH Method for operating a water-conducting domestic appliance
US20100000580A1 (en) * 2006-09-19 2010-01-07 Bsh Bosch Und Siemens Hausgerate Gmbh Water-conducting domestic appliance comprising a detergent dosing system and cartridge therefor
US20100083989A1 (en) * 2006-09-19 2010-04-08 Bsh Bosch Und Siemens Hausgerate Gmbh Cartridge for a water-conducting domestic appliance comprising a detergent dosing system
US20100108105A1 (en) * 2006-09-19 2010-05-06 Bsh Bosch Und Siemens Hausgerate Gmbh Water-conducting domestic appliance comprising a detergent dosing system and cartridge therefor
US20110000511A1 (en) * 2009-07-01 2011-01-06 General Electric Company Deep clean cycle
US20120125366A1 (en) * 2010-11-23 2012-05-24 Whirlpool Corporation Non-integrated bulk dispenser and method of operating a dishwasher having same
JP5753962B1 (en) * 2015-04-13 2015-07-22 株式会社ニイタカ Cartridge cleaning agent

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8047024B2 (en) * 2007-05-07 2011-11-01 Whirlpool Corporation Control and wash cycle for activation and deactivation of chemistry in the wash bath of an automatic washer
WO2011051415A1 (en) * 2009-10-30 2011-05-05 Henkel Ag & Co. Kgaa Machine cleaning method
US8529705B2 (en) * 2009-12-17 2013-09-10 Whirlpool Corporation Method and apparatus of controlling the release of cleaning agents into a dishwasher cycle
DE102010027993A1 (en) * 2010-04-20 2012-05-31 Henkel Ag & Co. Kgaa Dosing system for a water-conducting household appliance
DE102010028482A1 (en) * 2010-05-03 2011-11-03 Henkel Ag & Co. Kgaa Machine dishwashing process
GB2496857A (en) * 2011-11-22 2013-05-29 Reckitt & Colman Overseas A method and device for dispensing detergent in a washing machine
CN105534439A (en) * 2016-01-22 2016-05-04 宁波欧琳厨具有限公司 Double-washing cleaning method for water basin type cleaning equipment
CN105942943A (en) * 2016-04-01 2016-09-21 宁波欧琳厨具有限公司 Dual washing cleaning method for cleaning water tank
CN106758010A (en) * 2016-11-30 2017-05-31 无锡小天鹅股份有限公司 External hanging type liquid delivers box device, the detergent of washing system delivers control method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001510680A (en) * 1997-02-05 2001-07-31 フィッシャー アンド ペイケル リミティド Brushless DC motor control
US20060157086A1 (en) * 2005-01-20 2006-07-20 General Electric Company Apparatus and method for dispensing fluid
WO2008034696A1 (en) * 2006-09-19 2008-03-27 BSH Bosch und Siemens Hausgeräte GmbH Method for operating a water-conducting domestic appliance
US20100000580A1 (en) * 2006-09-19 2010-01-07 Bsh Bosch Und Siemens Hausgerate Gmbh Water-conducting domestic appliance comprising a detergent dosing system and cartridge therefor
US20100083989A1 (en) * 2006-09-19 2010-04-08 Bsh Bosch Und Siemens Hausgerate Gmbh Cartridge for a water-conducting domestic appliance comprising a detergent dosing system
US20100108105A1 (en) * 2006-09-19 2010-05-06 Bsh Bosch Und Siemens Hausgerate Gmbh Water-conducting domestic appliance comprising a detergent dosing system and cartridge therefor
US20110000511A1 (en) * 2009-07-01 2011-01-06 General Electric Company Deep clean cycle
US20120125366A1 (en) * 2010-11-23 2012-05-24 Whirlpool Corporation Non-integrated bulk dispenser and method of operating a dishwasher having same
JP5753962B1 (en) * 2015-04-13 2015-07-22 株式会社ニイタカ Cartridge cleaning agent

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
JP 2001510680 A (Year: 2001) *
JP 2014503171 (Year: 2014) *
JP 2014511681 (Year: 2014) *
JP 5753962 B1 (Year: 2015) *
KR 20130056739 (Year: 2013) *
WO 2008034696 A1 (Year: 2008) *
wo 2015018728 (Year: 2015) *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220400929A1 (en) * 2021-06-22 2022-12-22 The Procter & Gamble Company Method of treating dishware in a domestic automatic dishwashing machine

Also Published As

Publication number Publication date
WO2020104611A1 (en) 2020-05-28
EP3656272A1 (en) 2020-05-27
EP3883448A1 (en) 2021-09-29
CN113164003A (en) 2021-07-23
KR20210093902A (en) 2021-07-28

Similar Documents

Publication Publication Date Title
US20050022314A1 (en) Processes
EP3311724B1 (en) Commercial dishwasher
US20220000329A1 (en) Method for removing stains during a cleaning cycle of a household appliance
RU2748747C2 (en) Method for controlled dosed administration of processing compositions in washing machines and device for its implementation
AU2010212402B2 (en) Dishwasher and method for the operation of a dishwasher using a detergent composition containing plural active substances
US8778090B2 (en) Method for operating a dishwasher
EP3160322B1 (en) Dishwasher and method of operating the dishwasher
CN114828722A (en) Dishwasher, device having a dishwasher and method for operating a dishwasher
CN108113522B (en) Material cleaning method, material cleaning device and cooking utensil
US9351627B2 (en) Dishwashing machine and method for the operation thereof
JP2023504290A (en) Solid detergent dispenser for washing machine
KR20200029343A (en) Washing apparatus for dinnerware and washing method using the same
CN112790693A (en) Control method of dish-washing machine and dish-washing machine
CN115697168A (en) System, method and computer program product with dishwasher
EP2756789A2 (en) Method of washing dishes
WO2018001850A1 (en) A dishwasher
US20240335088A1 (en) System for dispensing a detergent solution from a solid detergent into a dishwasher comprising a dispenser
CN115486783A (en) Method for feeding washing additives into dishwasher and dishwasher
EP3562372A1 (en) A dishwasher
CN113712477A (en) Method for putting dish brightening agent and washing equipment

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: ADVISORY ACTION MAILED

AS Assignment

Owner name: HENKEL AG & CO. KGAA, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KESSLER, ARND;DIETRICH, ANNETTE;JUCKEL, THOMAS;AND OTHERS;SIGNING DATES FROM 20210514 TO 20210616;REEL/FRAME:067068/0135

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER