US20210346314A1 - Pouches - Google Patents

Pouches Download PDF

Info

Publication number
US20210346314A1
US20210346314A1 US17/315,089 US202117315089A US2021346314A1 US 20210346314 A1 US20210346314 A1 US 20210346314A1 US 202117315089 A US202117315089 A US 202117315089A US 2021346314 A1 US2021346314 A1 US 2021346314A1
Authority
US
United States
Prior art keywords
derivatives
different forms
including different
extracts therefrom
pouch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US17/315,089
Inventor
Case MANDEL
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Trinidad Consulting LLC
Original Assignee
Trinidad Consulting LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Trinidad Consulting LLC filed Critical Trinidad Consulting LLC
Priority to US17/315,089 priority Critical patent/US20210346314A1/en
Assigned to TRINIDAD CONSULTING, LLC reassignment TRINIDAD CONSULTING, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MANDEL, Case
Publication of US20210346314A1 publication Critical patent/US20210346314A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/66Phosphorus compounds
    • A61K31/675Phosphorus compounds having nitrogen as a ring hetero atom, e.g. pyridoxal phosphate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/01Hydrocarbons
    • A61K31/015Hydrocarbons carbocyclic
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/045Hydroxy compounds, e.g. alcohols; Salts thereof, e.g. alcoholates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/045Hydroxy compounds, e.g. alcohols; Salts thereof, e.g. alcoholates
    • A61K31/05Phenols
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/185Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
    • A61K31/19Carboxylic acids, e.g. valproic acid
    • A61K31/195Carboxylic acids, e.g. valproic acid having an amino group
    • A61K31/197Carboxylic acids, e.g. valproic acid having an amino group the amino and the carboxyl groups being attached to the same acyclic carbon chain, e.g. gamma-aminobutyric acid [GABA], beta-alanine, epsilon-aminocaproic acid or pantothenic acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/35Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom
    • A61K31/352Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom condensed with carbocyclic rings, e.g. methantheline 
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/365Lactones
    • A61K31/375Ascorbic acid, i.e. vitamin C; Salts thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/40Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil
    • A61K31/403Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil condensed with carbocyclic rings, e.g. carbazole
    • A61K31/404Indoles, e.g. pindolol
    • A61K31/4045Indole-alkylamines; Amides thereof, e.g. serotonin, melatonin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/519Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with heterocyclic rings
    • A61K31/52Purines, e.g. adenine
    • A61K31/522Purines, e.g. adenine having oxo groups directly attached to the heterocyclic ring, e.g. hypoxanthine, guanine, acyclovir
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/56Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids
    • A61K31/575Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids substituted in position 17 beta by a chain of three or more carbon atoms, e.g. cholane, cholestane, ergosterol, sitosterol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7042Compounds having saccharide radicals and heterocyclic rings
    • A61K31/7052Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides
    • A61K31/706Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/36Skin; Hair; Nails; Sebaceous glands; Cerumen; Epidermis; Epithelial cells; Keratinocytes; Langerhans cells; Ectodermal cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/185Magnoliopsida (dicotyledons)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/185Magnoliopsida (dicotyledons)
    • A61K36/25Araliaceae (Ginseng family), e.g. ivy, aralia, schefflera or tetrapanax
    • A61K36/258Panax (ginseng)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/185Magnoliopsida (dicotyledons)
    • A61K36/53Lamiaceae or Labiatae (Mint family), e.g. thyme, rosemary or lavender
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/44Oils, fats or waxes according to two or more groups of A61K47/02-A61K47/42; Natural or modified natural oils, fats or waxes, e.g. castor oil, polyethoxylated castor oil, montan wax, lignite, shellac, rosin, beeswax or lanolin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/46Ingredients of undetermined constitution or reaction products thereof, e.g. skin, bone, milk, cotton fibre, eggshell, oxgall or plant extracts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0053Mouth and digestive tract, i.e. intraoral and peroral administration
    • A61K9/0056Mouth soluble or dispersible forms; Suckable, eatable, chewable coherent forms; Forms rapidly disintegrating in the mouth; Lozenges; Lollipops; Bite capsules; Baked products; Baits or other oral forms for animals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0053Mouth and digestive tract, i.e. intraoral and peroral administration
    • A61K9/006Oral mucosa, e.g. mucoadhesive forms, sublingual droplets; Buccal patches or films; Buccal sprays
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0087Galenical forms not covered by A61K9/02 - A61K9/7023
    • A61K9/009Sachets, pouches characterised by the material or function of the envelope
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/70Web, sheet or filament bases ; Films; Fibres of the matrix type containing drug
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/90Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in food processing or handling, e.g. food conservation

Definitions

  • the present invention addresses this and other related needs in the art.
  • a pouch for administration of a bioactive ingredient comprises a fibrous matrix material incorporating a plurality of apertures defining a sealed pouch, and a bioactive ingredient containing fill material positioned within the sealed pouch.
  • the bioactive ingredient is a cannabinoid.
  • the pouch further comprises a terpene in the cannabinoid containing fill material.
  • the fill material is comprised of coconut coir, kenaf, abaca, flax, hemp, jute, ramie, sisal, rice, bamboo, corn husk, silk husk, fruit skin, straw, soy, mint leaf, spearmint leaf, lettuce leaf, synthetic fibers, animal-derived fibers, chitin, kudzu root, or a combination of two or more of the foregoing.
  • the apertures may be of uniform or varying sizes, with a diameter ranging often between at or about 200 ⁇ m to about at or about 1000 ⁇ m.
  • the aperture density in such an embodiment is 1, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, or 100. Also often about 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 100% of the fill material particles are larger than the aperture size in the pouch or fibrous matrix material. Often in such embodiments the pouch is adapted to release between 40% to 90% of the bioactive ingredient present in the fill material in between 5 to 10 minutes, 4 to 15 minutes, 3 to 12 minutes, 4 to 10 minutes, or under 10 minutes after being placed in a mouth of a user.
  • Bioactive ingredients contemplated herein as incorporated in the fill material include, for example, a cannabinoid, a terpene; kava root, including different forms, derivatives and extracts therefrom, such as those including a kavalactone; chili pepper, including different forms, derivatives and extracts therefrom, such as those including capsicum; kanna/sceletium tortuosum, including different forms, derivatives and extracts therefrom; yerba mate, including different forms, derivatives and extracts therefrom such as those derived from the holly genus ilex; guayusa, including different forms, derivatives and extracts therefrom; kratom, including different forms, derivatives and extracts therefrom such as those derived from mitragyna speciosa; mushroom, including different forms, derivatives and extracts therefrom such as those including psilocybin and extracts thereof; melatonin, including different forms, derivatives and extracts therefrom; spilanthes acmela
  • a pouch for administration of a bioactive ingredient comprises a fibrous matrix material incorporating a plurality of apertures defining a sealed pouch, and a bioactive ingredient containing fill material positioned within the sealed pouch.
  • the bioactive ingredient is selected from one or more of: a cannabinoid, a terpene; kava root, including different forms, derivatives and extracts therefrom, such as those including a kavalactone; chili pepper, including different forms, derivatives and extracts therefrom, such as those including capsicum; kanna/sceletium tortuosum, including different forms, derivatives and extracts therefrom; yerba mate, including different forms, derivatives and extracts therefrom such as those derived from the holly genus ilex; guayusa, including different forms, derivatives and extracts therefrom; kratom, including different forms, derivatives and extracts therefrom such as those derived from mitragyna speciosa; mushroom, including different
  • the pouch further comprises a terpene in the cannabinoid containing fill material.
  • the fill material is comprised of coconut coir, kenaf, abaca, flax, hemp, jute, ramie, sisal, rice, bamboo, corn husk, silk husk, fruit skin, straw, soy, mint leaf, spearmint leaf, lettuce leaf, synthetic fibers, animal-derived fibers, clitin, kudzu root, or a combination of two or more of the foregoing.
  • the apertures may be of uniform or varying sizes, with a diameter ranging often between at or about 200 ⁇ m to about at or about 1000 ⁇ m.
  • the aperture density in such an embodiment is 1, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, or 100. Also often about 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 100% of the fill material particles are larger than the aperture size in the pouch or fibrous matrix material.
  • a pouch comprised of a fibrous matrix material incorporating a plurality of apertures defining a sealed pouch, and a bioactive ingredient, as defined herein, containing fill material positioned within the sealed pouch is introduced to the mouth of a subject and contacted with an oromucosal surface of the mouth of the subject.
  • the pouch is thereafter maintained in the mouth of the subject between 1 minute to 30 minutes.
  • the pouch comprises a fibrous matrix material having a plurality of apertures on one or two opposing surfaces.
  • the pouch comprises a fibrous matrix material having a plurality of apertures on (one of) a front or rear surface and the surface having the apertures is applied to the oromucosal surface of the mouth of the subject.
  • each of the plurality of apertures is defined by an aperture size of between about at or 200 ⁇ m or 300 ⁇ m to about at or 800 ⁇ m in diameter. Also often, each of the plurality of apertures is defined by an aperture size of above at or about 200 ⁇ m or 300 ⁇ m or at or about 400 ⁇ m in diameter. In certain frequent embodiments, each of the plurality of apertures is defined by an aperture size of between at or about 200 ⁇ m or 300 ⁇ m to at or about 500 ⁇ m in diameter. In certain frequent embodiments, each of the plurality of apertures is defined by an aperture size of between at or about 200 ⁇ m or 300 ⁇ m to at or about 600 ⁇ m in diameter.
  • each of the plurality of apertures is defined by an aperture size of between at or about 200 ⁇ m or 300 ⁇ m to at or about 700 ⁇ m in diameter. In certain frequent embodiments, each of the plurality of apertures is defined by an aperture size of between at or about 200 ⁇ m or 300 ⁇ m to at or about 900 ⁇ m in diameter. In certain frequent embodiments, each of the plurality of apertures is defined by an aperture size of between at or about 200 ⁇ m or 300 ⁇ m to at or about 1000 ⁇ m in diameter. In certain frequent embodiments, each of the plurality of apertures is defined by an aperture size of between at or about 700 ⁇ m to at or about 900 ⁇ m in diameter.
  • each of the plurality of apertures is defined by an aperture size of between at or about 350 ⁇ m to at or about 750 ⁇ m in diameter. In certain frequent embodiments, each of the plurality of apertures is defined by an aperture size of between at or about 200 ⁇ m to at or about 1000 ⁇ m in diameter. Often in such embodiments, at least about 50% of the plurality of apertures have the identified size. Often in such embodiments, at least about 60% of the plurality of apertures have the identified size. Often in such embodiments, at least about 70% of the plurality of apertures have the identified size. Often in such embodiments, at least about 80% of the plurality of apertures have the identified size.
  • the term “diameter” is intended herein to have a non-conventional meaning that includes a measurement across the widest part of an opening of any shape.
  • the aperture size is greater than 1000 ⁇ m in diameter. In certain frequent embodiments, each of the plurality of apertures is defined by an aperture size of between at or about 1000 ⁇ m to at or about 1500 ⁇ m in diameter. In certain frequent embodiments, each of the plurality of apertures is defined by an aperture size of between at or about 1500 ⁇ m to at or about 2000 ⁇ m in diameter. In certain frequent embodiments, each of the plurality of apertures is defined by an aperture size of between at or about 2000 ⁇ m to at or about 5000 ⁇ m in diameter. In certain frequent embodiments, each of the plurality of apertures is defined by an aperture size of between at or about 5000 ⁇ m to at or about 10,000 ⁇ m in diameter.
  • At least about 50% of the plurality of apertures have the identified size.
  • at least about 60% of the plurality of apertures have the identified size.
  • at least about 70% of the plurality of apertures have the identified size.
  • at least about 80% of the plurality of apertures have the identified size.
  • at least about 90% of the plurality of apertures have the identified size.
  • at least about 99% of the plurality of apertures have the identified size.
  • the distances between apertures is understood as an aperture density in the matrix.
  • the aperture density is defined by the number of apertures per square centimeter. In frequent embodiments the aperture density is between 1 to 100. In certain embodiments, the aperture density is less than 1. In certain other embodiments, the aperture density is greater than 100. In certain embodiments, the aperture density is between 1 to 50. In certain embodiments, the aperture density is between 1 to 90. In certain embodiments, the aperture density is between 10 to 90. In certain embodiments, the aperture density is between 20 to 90. In certain embodiments, the aperture density is between 30 to 90. In certain embodiments, the aperture density is between 40 to 90. In certain embodiments, the aperture density is between 50 to 90.
  • the aperture density is between 60 to 95. In certain embodiments, the aperture density is between 70 to 95. In certain embodiments, the aperture density is between 20 to 80. In certain embodiments, the aperture density is between 10 to 80. In certain embodiments, the aperture density is between 10 to 70. In certain embodiments, the aperture density is between 10 to 60. In certain embodiments, the aperture density is between 10 to 50. In certain embodiments, the aperture density is between 20 to 70. In certain embodiments, the aperture density is between 30 to 80. In certain embodiments, the aperture density is between 30 to 70. In certain embodiments, the aperture density is at or about 1, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, or 100.
  • the aperture size may vary from the specific ranges specified herein with the proviso that the fill material is retained in the pouch without escaping through the apertures.
  • the aperture size may often be adapted to correlate with the particle size of the fill material such that the fill material particle size is larger than the aperture size.
  • 100% of the fill material particles are larger than the aperture size in the pouch or fibrous matrix material.
  • 95% of the fill material particles are larger than the aperture size in the pouch or fibrous matrix material.
  • 90% of the fill material particles are larger than the aperture size in the pouch or fibrous matrix material.
  • 85% of the fill material particles are larger than the aperture size in the pouch or fibrous matrix material.
  • 80% of the fill material particles are larger than the aperture size in the pouch or fibrous matrix material. In certain embodiments, 750% of the fill material particles are larger than the aperture size in the pouch or fibrous matrix material. In certain embodiments, 70% of the fill material particles are larger than the aperture size in the pouch or fibrous matrix material. In certain embodiments, 65% of the fill material particles are larger than the aperture size in the pouch or fibrous matrix material. In certain embodiments, 60% of the fill material particles are larger than the aperture size in the pouch or fibrous matrix material.
  • each of the plurality of apertures is circular in shape. In certain frequently included embodiments, each of the plurality of apertures is oval in shape. In certain frequently included embodiments, each of the plurality of apertures is triangle in shape. In certain frequently included embodiments, each of the plurality of apertures is square in shape. In certain frequently included embodiments, each of the plurality of apertures is rectangle in shape. In certain frequently included embodiments, each of the plurality of apertures is pentagonal, hexagonal, heptagonal, or octagonal in shape. In certain frequently included embodiments, each of the plurality of apertures is polygonal in shape. In certain frequently included embodiments, each of the plurality of apertures is non-polygonal in shape.
  • each of the plurality of apertures is either polygonal or non-polygonal in shape.
  • the pouch comprises a plurality of apertures, where the apertures are not the same shape.
  • two or more different shaped apertures are including, including one or more different polygonal shapes and/or one or more different non-polygonal shapes.
  • each of the plurality of apertures is selected from oval, circular, square, rectangular, or another polygon shape or non-polygon shape, where two or more apertures in the pouch are differently shaped.
  • the bioactive ingredient (as defined herein such as a cannabinoid and/or another bioactive ingredient) containing fill material comprises cannabidiol, coconut coir, a terpene, a natural oil, a sweetener, a stabilizer and a flavorant.
  • the bioactive ingredient containing fill material comprises tetrahydrocannabinol, coconut coir, a terpene, a natural oil, a sweetener, a stabilizer and a flavorant.
  • the coconut coir is comprised of coconut coir particles having a mean size range of between about 800 ⁇ m to at or about 900 ⁇ m. Also often, the coconut coir is comprised of coconut coir particles having a mean size range of between about 200 ⁇ m to at or about 900 ⁇ m. As noted herein, coconut coir being a fill material contemplated in the present disclosure, it is provided in the variety of fil material sizes contemplated herein. In this regard, the particle size of the fill material (coconut coir or another fill material) is larger than the diameter of the aperture size of the matrix material of the pouch.
  • the bioactive ingredient containing fill material comprises water dispersible cannabidiol and/or cannabidiol isolate.
  • the bioactive ingredient containing fill material comprises water dispersible form of cannabinoid, a terpene; kava root, including different forms, derivatives and extracts therefrom, such as those including a kavalactone; chili pepper, including different forms, derivatives and extracts therefrom, such as those including capsicum; kanna/sceletium tortuosum, including different forms, derivatives and extracts therefrom; yerba mate, including different forms, derivatives and extracts therefrom such as those derived from the holly genus ilex; guayusa, including different forms, derivatives and extracts therefrom; kratom, including different forms, derivatives and extracts therefrom such as those derived from mitragyna speciosa; mushroom, including different forms, derivatives and extracts therefrom such as those including psilocybin and extract
  • the plurality of apertures comprise holes extending through the fibrous matrix material.
  • the bioactive ingredient containing fill material comprises an electrospun nanofiber, wherein the electrospun nanofiber comprises cannabidiol.
  • the bioactive ingredient containing fill material comprises a cannabinoid selected from the group consisting of one or more of cannabidiol (CBD); cannabinol; cannabigerol; cannabichromene; cannabidivarol; tetrahydrocannabidiol (i.e., ⁇ 9-tetrahydrocannabinol); tetrahydrocannabigerol; tetrahydrocannabichromene; tetrahydrocannabidivarol; ⁇ 8 -THC, and carboxylic acid precursors of the foregoing.
  • CBD cannabidiol
  • CBD cannabidiol
  • cannabigerol cannabichromene
  • cannabidivarol tetrahydrocannabidiol (i.e., ⁇ 9-tetrahydrocannabinol)
  • tetrahydrocannabigerol tetrahydrocannabichromene
  • the bioactive ingredient containing fill material comprises a terpene selected from the group consisting of one or more of bomeol, caryophyllene, cineole/eucalyptol, delta3carene, limonene, linolool, myrcene, pinene, pulegone, d-limonene linalool, 1,8-cineole (eucalyptol), terpineol-4-ol, p-cymene, ⁇ -3-carene, ⁇ -sitosterol, or ⁇ -caryophyllene.cannflavin A, apigenin, and quercetin.
  • This list is exemplary and intended not to be limited to the specifically-listed terpenes. Instead, the present disclosure contemplates the full complement of cannabis-derived terpenes, including their natural and synthetic equivalents.
  • the bioactive ingredient containing fill material comprises a blended composition having a total weight, and a bioactive ingredient containing fill material includes a bioactive ingredient between about 1% to at or about 20% of the total weight of the fill material in a bulk batch or within an exemplary pouch.
  • the bioactive ingredient containing fill material comprises a blended composition having a total weight, and bioactive ingredient containing fill material includes a bioactive ingredient between about 1% to at or about 5% of the total weight of the fill material in an exemplary pouch.
  • the bioactive ingredient containing fill material comprises a blended composition having a total weight, and bioactive ingredient containing fill material includes a bioactive ingredient at or about 2% of the total weight of the fill material in an exemplary pouch. In all such embodiments the full complement of bioactive ingredients set forth herein are included, such as, for example, a cannabinoid.
  • the fibrous matrix material comprises viscose, cellulose, polyester, cotton, hemp, cellulose acetate, polylactic acid, polypropylene, modal cellulose, Tencel, or blends of two or more of the foregoing.
  • the cannabinoid containing fill material comprises coconut coir, CBD distillate, a terpene, a natural oil, a sweetener, salt, and a stabilizer within an apertured matrix pouch.
  • the bioactive ingredient fill material comprises an absorbent natural fiber selected from one or more of coconut coir, kenaf, abaca, flax, hemp, jute, ramie, sisal, rice, bamboo, corn husk, silk husk, fruit skin, straw, soy, mint leaf, spearmint leaf, lettuce leaf, synthetic fibers, animal-derived fibers, chitin, kudzu root, or a combination of two or more of the foregoing; a bioactive ingredient selected from one or more of cannabidiol (CBD); cannabinol; cannabigerol; cannabichromene; cannabidivarol; tetrahydrocannabidiol; tetrahydrocannabigerol; tetrahydrocannabichromene; tetrahydrocannabidivarol; Y-THC, and/or carboxylic acid precursors of the foregoing; kava root, including different forms, derivatives
  • the adaptations provided in the matrix material permit pouches formed therefrom to release the bioactive ingredient from the fill material faster than the same matrix material without apertures. Often such a release rate permits 30%, 40%, 50%, 60%, 70%, 80%, 90%, or 100% of the bioactive ingredient from the pouch in 3, minutes, 4, minutes, 5, minutes, 6 minutes, 7, minutes, 8, minutes, 9, minutes, 10 minutes, 11, minutes, 12, minutes, 13, minutes, 14 minutes, 15, minutes, 16, minutes, 17, minutes, 18 minutes, 19 minutes or 20 minutes. Often such a release rate permits 30%, 40%, 50%, 60%, 70%, 80%, 90%, or 100% of the bioactive ingredient from the pouch in between 3 minutes to 20 minutes.
  • such a release rate permits 30%, 40%, 50%, 60%, 70%, 80%, 90%, or 100% of the bioactive ingredient from the pouch in between 5 minutes to 15 minutes. Often such a release rate permits 30%, 40%, 50%, 60%, 70%, 80%, 90%, or 100% of the bioactive ingredient from the pouch in between 5 minutes to 10 minutes. Often such a release rate permits 30%, 40%, 50%, 60%, 70%, 80%, 90%, or 100% of the bioactive ingredient from the pouch in between 3 minutes to 20 minutes. Often such a release rate permits 30%, 40%, 50%, 60%, 70%, 80%, 90%, or 100% of the bioactive ingredient from the pouch in between 3 minutes to 15 minutes.
  • Kits comprising a plurality of pouches for administration of a cannabinoid as described herein contained within a sealed container are also included in the contemplated embodiments.
  • this sealed container is a container that is sealed such that it prohibits entry of gas and liquid into the interior of the container when closed and sealed.
  • FIG. 1 depicts a photo of an exemplary fibrous matrix material including apertures according to the present disclosure.
  • FIGS. 2A-2C depict an exemplary pouch formed of an aperture-containing fibrous matrix material.
  • FIG. 2A depicts a side view of an exemplary pouch.
  • FIG. 2B depicts a front view of an exemplary pouch.
  • FIG. 2C depicts a rear view of an exemplary pouch.
  • FIG. 3 depicts results showing the reduction of the canabidol in an exemplary pouch and a conventional pouch as evaluated over time resident in the mouth of a test subject.
  • the Y-axis depicts the total concentration of Canabidol remaining in the pouch and the X-axis depicts the amount of time resident in the mouth of a test subject.
  • FIG. 4 depicts additional results showing the reduction of the canabidol in an exemplary pouch and a conventional pouch as evaluated over time resident in the mouth of a test subject.
  • the Y-axis depicts the total concentration of Canabidol remaining in the pouch and the X-axis depicts the amount of time resident in the mouth of a test subject.
  • a or “an” means “at least one” or “one or more.” As such, “a” is intended to refer to a single unit as well as a plurality of units.
  • the term “and/or” may mean “and,” it may mean “or,” it may mean “exclusive-or,” it may mean “one,” it may mean “some, but not all,” it may mean “neither,” and/or it may mean “both.”
  • aperture refers to a hole or opening in a fibrous matrix material.
  • aperture refers to a hole or opening in a fibrous matrix material that is of a different character than a gap between fibers in a woven or nonwoven fabric material.
  • naturally existing gaps between fibers within a weave or mat of a woven or nonwoven fabric material are excluded from the meaning of “aperture” as this term is used herein.
  • annabinoids refers to a family of natural products that usually contain a 1,1′-di-methyl-pyrane ring, a variedly derivatized aromatic ring and a variedly unsaturated cyclohexyl ring and their immediate chemical precursors.
  • cannabinoids contemplated here include cannabidiol (CBD); cannabinol; cannabigerol; cannabichromene; cannabidivarol; tetrahydrocannabidiol; tetrahydrocannabigerol; tetrahydrocannabichromene; tetrahydrocannabidivarol; ⁇ 8 -THC; carboxylic acid precursors of the foregoing; in addition to other related compounds and their derivatives.
  • CBD cannabidiol
  • CBD is one of at least 113 known phytocannabinoids found in the cannabis plant.
  • CBD is one of the major phytocannabinoids in the cannabis plant, comprising a up to 40% of extracts.
  • terpene refers to bomeol, caryophyllene, cineole/eucalyptol, delta3carene, limonene, linolool, myrcene, pinene, or pulegone, among other terpenes, which are a diverse group of organic hydrocarbons that are the building blocks of the cannabinoids.
  • Certain examples include d-limonene linalool, 1,8-cineole (eucalyptol), ⁇ -pinene, terpineol-4-ol, p-cymene, bomeol, ⁇ -3-carene, ⁇ -sitosterol, ⁇ -myrcene, or ⁇ -caryophyllene.cannflavin A, apigenin, quercetin or pulegone. Over 100 different terpenes have been identified in the cannabis plant and while examples are noted above, these are non-limiting examples of the over 100 known terpenes contemplated herein.
  • Cannabis is a genus of flowering plants that includes three different species, Cannabis sativa, Cannabis indica and Cannabis ruderalis.
  • the term “Cannabis plant(s)” encompasses wild type Cannabis and also variants thereof, including cannabis chemovars which naturally contain different amounts of the individual cannabinoids.
  • Cannabis plants produce a unique family of terpeno-phenolic compounds called cannabinoids, which produce psychoactive effects. The two cannabinoids usually produced in greatest abundance are cannabidiol (CBD) and/or ⁇ 9-tetrahydrocannabinol (THC), but only THC is psychoactive.
  • CBD cannabidiol
  • THC ⁇ 9-tetrahydrocannabinol
  • Cannabis plants are categorized by their chemical phenotype or “chemotype,” based on the overall amount of THC produced, and on the ratio of THC to CBD. Although overall cannabinoid production is influenced by environmental factors, the THC/CBD ratio is genetically determined and remains fixed throughout the life of a plant. Non-drug plants produce relatively low levels of THC and high levels of CBD, while drug plants produce high levels of THC and low levels of CBD.
  • Cannabinoids are fat soluble and poorly soluble to insoluble in water. Poor aqueous solubility of many chemical entities represents a real challenge for the design of appropriate formulations aimed at enhancing oral bioavailability.
  • nicotine is a weak base (pKa of 8.0), it is primarily present in a non-ionised form in alkaline pH; thus nicotine is easily absorbed at normal to increased pH levels which are normal saliva conditions (Ciolino et al., J. Analytical Toxicol. 25:15-25 (2001)).
  • the present disclosure provides cannabinoid-containing pouches formed of a nonwoven or woven fiber matrix and characterized by the presence of apertures and methods of manufacturing such pouches.
  • the present disclosure also provides optionally cannabinoid-containing pouches formed of a nonwoven or woven fiber matrix and characterized by the presence of apertures and methods of manufacturing such pouches.
  • the pouch contains a cannabinoid, a terpene; kava root, including different forms, derivatives and extracts therefrom, such as those including a kavalactone; chili pepper, including different forms, derivatives and extracts therefrom, such as those including capsicum; kanna/sceletium tortuosum, including different forms, derivatives and extracts therefrom; yerba mate, including different forms, derivatives and extracts therefrom such as those derived from the holly genus ilex; guayusa, including different forms, derivatives and extracts therefrom; kratom, including different forms, derivatives and extracts therefrom such as those derived from mitragyna speciosa; mushroom, including different forms, derivatives and extracts therefrom such as those including psilocybin
  • a fill material is included in the exemplary pouches of the present disclosure.
  • This fill material frequently comprises at least one cannabinoid as a bioactive ingredient.
  • This fill material also often frequently includes at least one terpene as a bioactive ingredient.
  • This fill material also often frequently includes another bioactive ingredient described herein in replacement of or additional to the at least one cannabinoid and/or terpene.
  • This fill material also often comprises at least one additional ingredient that imparts a flavor and/or an aroma as an active component.
  • This fill material also often comprises at least one cannabinoid, at least one terpene, and an additional ingredient that imparts a flavor and an aroma as active components.
  • This fill material also often comprises at least one cannabinoid and an additional ingredient that imparts a flavor and an aroma as active components.
  • This fill material also often comprises at least one terpene and an additional ingredient that imparts a flavor and an aroma as active components.
  • This fill material also often comprises at least one terpene and an
  • the fill material comprises a ground base material that is dosed, infused or combined with an active component.
  • this fill material comprises coconut coir, which is the pith component of the coconut between the hard internal shell and the outer coat of the coconut.
  • this base material is often included at a predetermined particulate size, which size is generally larger than the apertures in the matrix of the pouch.
  • the fill material is a ground material such as ground coconut coir.
  • coconut coir has been surprisingly found by the inventors to have both a very absorbent nature and a relaxed release characteristic for the active components described herein.
  • the fill material can be large or small particulate material, threads, fibers, slices, or another shape of a piece (or collection of pieces) of the core base material.
  • the fill material is kenaf.
  • the fill material is abaca.
  • the fill material is flax.
  • the fill material is hemp.
  • the fill material is jute.
  • the fill material is ramie.
  • the fill material is sisal.
  • the fill material is rice.
  • the fill material is bamboo.
  • the fill material is corn husk.
  • the fill material is silk husk.
  • the fill material is fruit skin.
  • the fill material is straw. Also often, the fill material is soy.
  • the fill material is mint leaf. Also often, the fill material is spearmint leaf. Also often, the fill material is lettuce leaf. Also often, the fill material is comprised of synthetic fibers. Also often, the fill material is comprised of animal-derived fibers. Also often, the fill material is comprised of kudzu root.
  • the fill material of the present disclosure can be large or small particulate material, threads, fibers, slices, or another shape of a piece (or collection of pieces) of the core base material, which base material is selected from one or more of the following: coconut coir, kenaf, abaca, flax, hemp, jute, ramie, sisal, rice, bamboo, corn husk, silk husk, fruit skin, straw, soy, mint leaf, spearmint leaf, lettuce leaf, synthetic fibers, animal-derived fibers, chitin, and kudzu root.
  • coconut coir kenaf, abaca, flax, hemp, jute, ramie, sisal, rice, bamboo, corn husk, silk husk, fruit skin, straw, soy, mint leaf, spearmint leaf, lettuce leaf, synthetic fibers, animal-derived fibers, chitin, and kudzu root.
  • the base material such as coconut coir
  • the base material is ground/milled to a mean particulate size of at or about 600 ⁇ m.
  • the base material is ground to a mean particulate size of between about 800 ⁇ m to at or about 900 ⁇ m.
  • the base material is ground to a mean particulate size of between about 900 ⁇ m to at or about 1500 ⁇ m.
  • the screen size is larger than the milled mean particulate size. In this regard, often the screen pore size is between about 800 ⁇ m to at or about 900 ⁇ m.
  • the screen pore size is between about 900 ⁇ m to at or about 1500 ⁇ m.
  • the base material is ground and optionally further processed to a mean particulate size of between about 600 ⁇ m to at or about 900 ⁇ m.
  • the base material is ground and optionally further processed to a mean particulate size of between about 700 ⁇ m to at or about 800 ⁇ m.
  • the base material is ground and optionally further processed to a mean particulate size of between about 800 ⁇ m to at or about 2000 ⁇ m.
  • the base material is ground and optionally further processed to a mean particulate size of between about 900 ⁇ m to at or about 1500 ⁇ m.
  • the base material has this particle size. More frequently, over 60% of the base material has this particle size. More frequently, over 70% of the base material has this particle size. Often, over 80% of the base material has this particle size. Also often, over 90% of the base material has this particle size.
  • coconut coir is exemplified, it is merely exemplary and not intended to be limiting as a base material.
  • Other natural fibers such as other cellulosic fibers, may be utilized.
  • Additional materials may comprise the base material, for example the fill material comprises an absorbent natural fiber selected from one or more of coconut coir, kenaf, abaca, flax, hemp, jute, ramie, sisal, rice, bamboo, corn husk, silk husk, fruit skin, straw, soy, mint leaf, spearmint leaf, lettuce leaf, synthetic fibers, animal-derived fibers, chitin, kudzu root and the like, including combinations of two or more of the foregoing.
  • suitable base materials are those that are inert, biocompatible, have strong absorbent characteristics and release active components contained within or on the base material readily when in the oral environment or contacted with liquid such as saliva.
  • the material ground to form the base material is often generally sterilized prior to any additional processing steps to be sure the material is free from any inherent or processing-introduced bacterial contamination.
  • a combination of active components and base material are combined as fill materials. Though referred to as “bioactive ingredients,” these are simply intended to refer to the collected ingredients utilized to incorporate with the base material.
  • a CBD isolate or distillate a terpene (often including a plurality of terpenes) is included with one or more natural oils, one or more sweeteners, a salt, a thickening agent or stabilizer, and ground coconut coir in a fill material.
  • the sweetener is often selected from one or more of a sugar, glycerine, corn syrup, stevia, acesulfame potassium, aspartame, cyclamate, mogrosides, sucralose, maltodextrin, monkfruit, erythritol, a sugar alcohol, and the like.
  • the natural oil is often selected from one or more of vegetable oil, peanut oil, canola oil, sunflower oil, palm oil, walnut oil, safflower oil, grapeseed oil, flaxseed oil, hempseed oil, avocado oil, coconut oil, olive oil, or the like.
  • the fill material comprises an absorbent natural fiber selected from one or more of coconut coir, kenaf, abaca, flax, hemp, jute, ramie, sisal, rice, bamboo, corn husk, silk husk, fruit skin, straw, soy, mint leaf, spearmint leaf, lettuce leaf, synthetic fibers, animal-derived fibers, chitin, kudzu root and the like; a cannadbinoid selected from one or more of cannabidiol (CBD); cannabinol; cannabigerol; cannabichromene; cannabidivarol; tetrahydrocannabidiol; tetrahydrocannabigerol; tetrahydrocannabichromene; tetrahydrocannabidivarol; ⁇ 8 -THC; carboxylic acid precursors of the foregoing; in addition to other related compounds and their derivatives; a terpene selected from one or
  • the fill material comprises coconut coir, CBD distillate, a terpene, a natural oil, a sweetener, salt, and a stabilizer within an apertured matrix pouch.
  • the bioactive ingredient may be replaced with or additional to other bioactive ingredients described herein.
  • the core base material may be replaced with or additional to other base material described herein.
  • the bioactive ingredient comprises at or about 5% to at or about 20% w/w of the total fill material of the apertured pouch.
  • the bioactive ingredient e.g., a cannabinoid
  • the bioactive ingredient comprises between about 9/o-11% of the total fill material of the apertured pouch.
  • the bioactive ingredient comprises at or about 10% of the total fill material of the apertured pouch.
  • the bioactive ingredient comprises at or about 5%, 6%, 7%, 8%, 9%, 10%, 11%, 12%, 13%, 14%, 15%, 16%, 17%, 18%, 19%, or 20% of the total fill material of the apertured pouch.
  • the bioactive ingredient comprises above 20% of the total fill material of the apertured pouch, though in such embodiments the bioactive ingredient often comprises a non-isolated or non-concentrated form of the bioactive ingredient.
  • the bioactive ingredient comprises water dispersible bioactive ingredient.
  • the bioactive ingredient comprises naturally occurring bioactive ingredient.
  • the bioactive ingredient comprises a blend of water dispersible bioactive ingredient and naturally occurring bioactive ingredient.
  • the natural oil comprises at or about 5% to at or about 20% w/w of the total fill material of the apertured pouch. Often the natural oil is incorporated in the fill material at or about the same concentration of the bioactive agent.
  • the bioactive agent e.g., CBD
  • the bioactive agent is mixed with maltodextrin, sunflower lecithin and the resulting emulsion is dried to remove water.
  • This bioactive agent formulation is often used in exemplary embodiments to incorporate into coconut coir for the fill material.
  • this fill material is further processed to blend in and incorporate additional ingredients such as an additional oil, salt, a sweetener, a terpene, a flavorant, and a stabilizer, then left to cure for a period of time prior to filling an exemplary pouch.
  • Curing time often varies but is frequently between 24 hours to 72 hours. In certain embodiments, the curing time is at or about 48 hours.
  • the matrix material is prepared and shaped into a pouch by bending a flat sheet of matrix material into a U-shape, sealing the sides of the “U” to create a tube, sealing one lateral edge of the tube to create an open-topped pocket, and then sealing the open top after a fill material is introduced to the pocket.
  • This process including matrix material preparation, aperture introduction to the matrix material, sizing/sectioning of the apertured matrix material into a size for pouch formation, movement of raw materials, formation of the apertured matrix material pocket, filling the apertured matrix material pocket and sealing the pocket to form an apertured pouch of the present disclosure may be manual or automated. This process is most frequently automated.
  • the matrix material sealing process to form the “U” and then closure of the top is often dependent on the type of material forming the matrix, though combined heat and pressure is a preferred method.
  • the portion of the sheet of matrix material forming an exemplary pouch that is used to form the seal on the two or more (e.g., 3 or 4) sides of the eventual pouch is referred to herein as the sealing lip of the matrix material.
  • Materials useful in forming the matrix include viscose, cellulose, polyester, cotton, hemp, cellulose acetate, polylactic acid, polypropylene, modal cellulose, Tencel, or another material.
  • additional materials may be utilized with the caveat that such materials are non-reactive and/or do not degrade in the oromucosal environment.
  • the aperture size in the matrix material of the exemplary pouches often will range from between about 400 ⁇ m to about 800 ⁇ m in diameter. In the most frequent embodiments, the aperture is a circular aperture. In certain embodiments, the aperture size ranges between about 500 ⁇ m to about 800 ⁇ m in diameter. In certain embodiments, the aperture size ranges between about 600 ⁇ m to about 800 ⁇ m in diameter. In certain embodiments, the aperture size ranges between about 700 ⁇ m to about 800 ⁇ m in diameter. In certain embodiments, the aperture size ranges between about 600 ⁇ m to about 700 ⁇ m in diameter. In certain embodiments, the aperture size ranges between about 400 ⁇ m to about 600 ⁇ m in diameter.
  • the aperture size in the matrix material of the exemplary pouches ranges between about 750 ⁇ m to about 850 ⁇ m in diameter. In certain embodiments, the aperture size in the matrix material of the exemplary pouches is about 800 ⁇ m in diameter. In certain embodiments, the aperture size is greater than 1000 ⁇ m in diameter. In certain frequent embodiments, each of the plurality of apertures is defined by an aperture size of between at or about 1000 ⁇ m to at or about 1500 ⁇ m in diameter. In certain frequent embodiments, each of the plurality of apertures is defined by an aperture size of between at or about 1500 ⁇ m to at or about 2000 ⁇ m in diameter.
  • each of the plurality of apertures is defined by an aperture size of between at or about 2000 ⁇ m to at or about 5000 ⁇ m in diameter. In certain frequent embodiments, each of the plurality of apertures is defined by an aperture size of between at or about 5000 ⁇ m to at or about 10,000 ⁇ m in diameter.
  • the aperture size of at least 50% of the apertures present in the matrix material of the exemplary pouches is at or about 400 ⁇ m in diameter, at or about 450 ⁇ m in diameter, at or about 500 ⁇ m in diameter, at or about 550 ⁇ m in diameter, at or about 600 ⁇ m in diameter, at or about 650 ⁇ m in diameter, at or about 700 ⁇ m in diameter, at or about 750 ⁇ m in diameter, at or about 800 ⁇ m in diameter, at or about 850 ⁇ m in diameter, at or about 900 ⁇ m in diameter, at or about 950 ⁇ m in diameter, at or about 1000 ⁇ m in diameter, at or about 425 ⁇ m in diameter, at or about 475 ⁇ m in diameter, at or about 525 ⁇ m in diameter, at or about 575 ⁇ m in diameter, at or about 625 ⁇ m in diameter, at or about 675 ⁇ m in diameter, at or about 725 ⁇ m in diameter, at or about 775 ⁇ m in diameter, at or about 775
  • the aperture size of at least 50% of the apertures present in the matrix material of the exemplary pouches is at or about 1000 ⁇ m in diameter, between at or about 1000 ⁇ m to at or about 1500 ⁇ m in diameter, between at or about 1500 ⁇ m to at or about 2000 ⁇ m in diameter, between at or about 2000 ⁇ m to at or about 5000 ⁇ m in diameter, or between at or about 5000 ⁇ m to at or about 10,000 ⁇ m in diameter.
  • the above-noted aperture size is for at least 60% of the apertures present in the matrix material of the exemplary pouches.
  • the above-noted aperture size is for at least 70% of the apertures present in the matrix material of the exemplary pouches.
  • the above-noted aperture size is for at least 75% of the apertures present in the matrix material of the exemplary pouches. In certain related embodiments, the above-noted aperture size is for at least 80% of the apertures present in the matrix material of the exemplary pouches. In certain related embodiments, the above-noted aperture size is for at least 85% of the apertures present in the matrix material of the exemplary pouches. In certain related embodiments, the above-noted aperture size is for at least 90% of the apertures present in the matrix material of the exemplary pouches. In certain related embodiments, the above-noted aperture size is for at least 95% of the apertures present in the matrix material of the exemplary pouches. In certain related embodiments, the above-noted aperture size is for at least 100% of the apertures present in the matrix material of the exemplary pouches.
  • the pouch is comprised of a matrix material that contains apertures on at least one side or portion and another portion of matrix material that lacks defined apertures.
  • the pouch includes a section with apertures and a section that lacks apertures.
  • the pouch is adapted for use or particular placement in the mouth of a user, including the portion or side of the pouch having apertures facing away from the oromucosal surface.
  • the portion of the pouch that lacks apertures may be contacting or facing the oromucosal surface.
  • the pouch is adapted for use or particular placement in the mouth of a user, including the portion or side of the pouch having apertures facing toward, or contacting, the oromucosal surface.
  • the portion of the pouch that lacks apertures may be facing away from not contacting the oromucosal surface.
  • FIG. 1 a pouch formed from a fibrous matrix according to an embodiment of the present disclosure is shown in FIG. 1 .
  • FIGS. 2A-2C An exemplary pouch formed of the aperture-containing fibrous matrix material is depicted in FIGS. 2A-2C .
  • FIG. 2A depicts a side view of an exemplary pouch.
  • FIG. 2B depicts a front view of an exemplary pouch.
  • FIG. 2C depicts a rear view of an exemplary pouch.
  • the pouch includes a top face (A) and an opposing bottom face (B).
  • the top face is bound with the bottom face using seals along the bottom face ( 40 b ) and along the opposing lateral edges ( 40 a ).
  • a seal spans three sides of the pouch in frequent embodiments since the exemplary pouch is formed from a single contiguous fibrous matrix sheet.
  • This seal is often formed by aligning folded edges (sealing lip(s)) of the fibrous matrix sheet and applying pressure and heat to the sealing lip(s). Less frequently an adhesive is used.
  • the seal along the bottom face ( 40 b ) could also be shifted to an edge of the pouch instead of running down the middle of the bottom face (B).
  • the seal along the bottom face ( 40 b ) is shown for example to show another manner of forming a seal between two edges of the fibrous matrix material. In practice, formation of the seal along the bottom face ( 40 b ) creates a tube. Sealing one of the two lateral edges ( 40 a ) creates a pocket. If done in sequence, sealing the other of the two lateral edges ( 40 a ) creates a pouch.
  • the pouch generally contains fill material comprising a bioactive ingredient such as a cannabinoid or another bioactive ingredient described herein.
  • a bioactive ingredient such as a cannabinoid or another bioactive ingredient described herein.
  • the fibrous matrix is composed of non-woven fibers and is formed with a plurality of apertures, thus the fibrous matrix is referred to as an apertured fibrous matrix.
  • the fibrous matrix is composed of woven fibers and is formed with a plurality of apertures.
  • Forming the material for the fibrous matrix may be by conventional or other procedures.
  • conventional non-woven hydroentanglement processes and reagents may be used to form the fibrous matrix, thereafter the fibrous matrix is embossed to form the apertures.
  • Plate or roll based manufacturing may be utilized.
  • the fibrous matrix may be formed of electrospun fibers. Needle or needleless electrospinning may be utilized in such methods to form at least a portion of the fibrous matrix.
  • the fill material may comprise electrospun fibers such as electrospun nanofibers comprising a bioactive ingredient contemplated herein.
  • the electrospun nanofibers comprise a bioactive ingredient (e.g., CBD and/or a terpene) contemplated herein
  • the nanofibers are formed on what is or will become the inside of the apertured matrix material of the pouch. In such embodiments, it has been found that providing a strip/mat of nanofibers on and within the boundaries of a pre-formed apertured matrix material is suitable.
  • the width of the nanofiber comprising the bioactive ingredient is most suitable if it lies within what will be the true inside of the to-be-formed pouch such that a sealing lip of matrix material is left uncovered with nanofiber.
  • the matrix material is at or about 40 mm in width and the electrospun nanofiber comprising the bioactive ingredient is about 10 mm to 20 mm in width and positioned in the center of the matrix material, leaving at or about 10 mm on two sides for use as the sealing lip.
  • the heat utilized to seal pouches formed with exemplary matrix materials to is often at a level that would negatively affect the integrity of bioactive ingredients, placement of the electrospun nanofiber comprising the bioactive ingredient within and outside of the sealing lip has been found to be advantageous
  • the aperture shape is often circular. Alternatively, in other embodiments the aperture shape is a shape other than circular, including square, rectangle, oval, triangle, diamond, or another geometric shape. In the most frequent embodiments when the pouch is formed of a single sheet of fibrous matrix material the aperture shape is a single shape across the entirety of the pouch. Also often, two or more different shaped apertures are included in the same pouch. In certain frequently included embodiments, each of the plurality of apertures is pentagonal, hexagonal, heptagonal, or octagonal in shape. In certain frequently included embodiments, each of the plurality of apertures is polygonal in shape. In certain frequently included embodiments, each of the plurality of apertures is non-polygonal in shape.
  • each of the plurality of apertures is either polygonal or non-polygonal in shape.
  • the pouch comprises a plurality of apertures, where the apertures are not the same shape.
  • two or more different shaped apertures are including, including one or more different polygonal shapes and/or one or more different non-polygonal shapes.
  • each of the plurality of apertures is selected from oval, circular, square, rectangular, or another polygon shape or non-polygon shape, where two or more apertures in the pouch are differently shaped.
  • the apertured fibrous matrix includes between at or about 2 mm to at or about 4 mm between apertures of an exemplary pouch. In certain embodiments the distance between apertures in the fibrous matrix of an exemplary pouch is at or about 3.5 mm. In other embodiments, the apertured fibrous matrix of an exemplary pouch includes between at or about 1 mm to at or about 10 mm between apertures. In certain embodiments the distance between apertures of an exemplary pouch in the fibrous matrix is at or about 1.5 mm, 2.5 mm, 3.5 mm, 4.5 mm, 5.5 mm, 6.5 mm, 7.5 mm, 8.5 mm, or 9.5 mm.
  • the distance between apertures in the fibrous matrix of an exemplary pouch is at or about 2 mm, 3 mm, 4 mm, 5 mm, 6 mm, 7 mm, 8 mm, or 9 mm.
  • the apertured fibrous matrix includes a varied distance between apertures, which varied distance is at or about 2 mm to at or about 4 mm between apertures in one part of the fibrous matrix, and at or about 4 mm to at or about 10 mm in one part of the fibrous matrix of an exemplary pouch.
  • the distances between apertures is understood as an aperture density in the matrix.
  • the aperture density is defined by the number of apertures per square centimeter. In frequent embodiments the aperture density is between 1 to 100. In certain embodiments, the aperture density is less than 1. In certain other embodiments, the aperture density is greater than 100. In certain embodiments, the aperture density is between 1 to 50. In certain embodiments, the aperture density is between 1 to 90. In certain embodiments, the aperture density is between 10 to 90. In certain embodiments, the aperture density is between 20 to 90. In certain embodiments, the aperture density is between 30 to 90. In certain embodiments, the aperture density is between 40 to 90. In certain embodiments, the aperture density is between 50 to 90.
  • the aperture density is between 60 to 95. In certain embodiments, the aperture density is between 70 to 95. In certain embodiments, the aperture density is between 20 to 80. In certain embodiments, the aperture density is between 10 to 80. In certain embodiments, the aperture density is between 10 to 70. In certain embodiments, the aperture density is between 10 to 60. In certain embodiments, the aperture density is between 10 to 50. In certain embodiments, the aperture density is between 20 to 70. In certain embodiments, the aperture density is between 30 to 80. In certain embodiments, the aperture density is between 30 to 70. In certain embodiments, the aperture density is at or about 1, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, or 100.
  • the apertured fibrous matrix provides an increased rate of release of bioactive ingredients through the apertured fibrous matrix, without a loss of substrate material contained in the pouch.
  • bioactive ingredients can solubilize and pass through the apertures without loss of the substrate containing the bioactive ingredients.
  • the apertured fibrous matrix is more flexible.
  • pouches comprised of apertured fibrous matrix are more conformable in the mouth of a subject using the pouch. This enhances flexibility in oromucosal placement options.
  • bioactive ingredient constituents e.g., CBD, tetrahydrocannabinol, terpene, psilocybin, etc.
  • the rate of release of bioactive ingredient constituents from an exemplary pouch formed from the apertured fibrous matrix was tested and compared to the rate of release of bioactive ingredient constituents from a pouch formed from matrix material lacking apertures.
  • the bioactive ingredient was a cannabinoid. The results are set forth in FIGS. 3 and 4 .
  • the following pouches were used: an exemplary pouch formed from the apertured fibrous matrix containing a known amount of water dispersible cannabinoids; and a pouch formed from matrix material lacking apertures but also containing a known amount of water dispersible cannabinoids.
  • Multiple such pouches were prepared, each to be used in a different time duration experiment.
  • the concentration of cannabinoid in the pouch was measured prior to placement in vivo in the oromucosal environment of a subject and at defined time periods after being placed in the oromucosal environment of the subject. For example, a pouch was placed in the mouth of the subject and removed one minute later and the cannabinoids remaining in the pouch were measured.
  • FIGS. 3 and 4 The results of liquid chromatography analysis of the pouches are set forth in FIGS. 3 and 4 .
  • the Y-axis depicts the total concentration of Canabidol remaining in the pouch and the X-axis depicts the amount of time resident in the mouth of a test subject.
  • Rhodiola rosea A similar experimental design is prepared and evaluated for Rhodiola rosea as the bioactive ingredient.
  • a similar experimental design is prepared and evaluated for a bioactive active agents comprising two or more bioactive ingredients described herein.
  • the apertured fibrous matrix is configured such that a pouch formed from the apertured fibrous matrix has a release rate of a bioactive ingredient (e.g., CBD, tetrahydrocannabinol, terpene, psilocybin, etc.) that is at least 50% faster, when measured from 0 to 60 seconds compared to a pouch formed from a standard fibrous matrix lacking apertures, for example, a pouch formed from the apertured fibrous matrix has release rate that is at least 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 100%, 105%, 110%, 115%, 120%, 125%, 130%, 135%, 140%, 145%, 150%, 155%, 160%, 165%, 170%, 175%, 180%, 185%, 190%, 195% or 200% faster than the release rate of a pouch formed from standard fibrous matrix lacking apertures when measured from 0 to 60 seconds.
  • a bioactive ingredient e.g., CBD, tetrahydr
  • the release rate of a bioactive ingredient e.g., CBD, tetrahydrocannabinol, terpene, psilocybin, etc.
  • a bioactive ingredient e.g., CBD, tetrahydrocannabinol, terpene, psilocybin, etc.
  • the release rate of a bioactive ingredient is between 3 to 5 times faster in a pouch formed of the apertured fibrous matrix compared to a pouch formed from a standard fibrous matrix lacking apertures.
  • the release characteristics measured and noted herein are in connection with a cannabinoid, namely CBD, the same surprisingly increased release characteristics exist in connection with terpene and flavor.
  • the flavor is perceived as more intense for the same fill composition used in a pouch formed of the apertured fibrous matrix versus in a pouch formed of a standard fibrous matrix lacking apertures.
  • the release rate of a terpene or a composed flavor characteristic over 1 minute to 30 minutes is between 3 to 5 times faster in a pouch formed of the apertured fibrous matrix compared to a pouch formed from a standard fibrous matrix lacking apertures.
  • results discussed above in connection with the apertured fibrous matrix comprised of viscose demonstrate that the size and concentration of the apertures substantially increase the release of bioactive ingredients in comparison to standard fibrous matrix lacking apertures.
  • the size of the apertures are also adapted to retain physical substrate in the pouch.
  • a pouch for administration of a bioactive ingredient comprises cannabidiol, one or more of coconut coir, kenaf, abaca, flax, hemp, jute, ramie, sisal, rice, bamboo, corn husk, silk husk, fruit skin, straw, soy, mint leaf, spearmint leaf, lettuce leaf, synthetic fibers, animal-derived fibers, chitin, and kudzu root, and optionally one or more of a natural oil, a sweetener, a stabilizer or a flavorant.
  • a pouch for administration of a bioactive ingredient comprises kava root/kavalactone, one or more of coconut coir, kenaf, abaca, flax, hemp, jute, ramie, sisal, rice, bamboo, corn husk, silk husk, fruit skin, straw, soy, mint leaf, spearmint leaf, lettuce leaf, synthetic fibers, animal-derived fibers, chitin, and kudzu root, and optionally one or more of a natural oil, a sweetener, a stabilizer or a flavorant.
  • a pouch for administration of a bioactive ingredient comprises chili pepper extract/capsicum, one or more of coconut coir, kenaf, abaca, flax, hemp, jute, ramie, sisal, rice, bamboo, corn husk, silk husk, fruit skin, straw, soy, mint leaf, spearmint leaf, lettuce leaf, synthetic fibers, animal-derived fibers, chitin, and kudzu root, and optionally one or more of a natural oil, a sweetener, a stabilizer or a flavorant.
  • a pouch for administration of a bioactive ingredient comprises kanna/sceletium tortuosum, one or more of coconut coir, kenaf, abaca, flax, hemp, jute, ramie, sisal, rice, bamboo, corn husk, silk husk, fruit skin, straw, soy, mint leaf, spearmint leaf, lettuce leaf, synthetic fibers, animal-derived fibers, chitin, and kudzu root, and optionally one or more of a natural oil, a sweetener, a stabilizer or a flavorant.
  • a pouch for administration of a bioactive ingredient comprises yerba mate, one or more of coconut coir, kenaf, abaca, flax, hemp, jute, ramie, sisal, rice, bamboo, corn husk, silk husk, fruit skin, straw, soy, mint leaf, spearmint leaf, lettuce leaf, synthetic fibers, animal-derived fibers, chitin, and kudzu root, and optionally one or more of a natural oil, a sweetener, a stabilizer or a flavorant.
  • a pouch for administration of a bioactive ingredient comprises holly genus ilex, one or more of coconut coir, kenaf, abaca, flax, hemp, jute, ramie, sisal, rice, bamboo, corn husk, silk husk, fruit skin, straw, soy, mint leaf, spearmint leaf, lettuce leaf, synthetic fibers, animal-derived fibers, chitin, and kudzu root, and optionally one or more of a natural oil, a sweetener, a stabilizer or a flavorant.
  • a pouch for administration of a bioactive ingredient comprises guayusa, one or more of coconut coir, kenaf, abaca, flax, hemp, jute, ramie, sisal, rice, bamboo, corn husk, silk husk, fruit skin, straw, soy, mint leaf, spearmint leaf, lettuce leaf, synthetic fibers, animal-derived fibers, chitin, and kudzu root, and optionally one or more of a natural oil, a sweetener, a stabilizer or a flavorant.
  • a pouch for administration of a bioactive ingredient comprises kratom/mitragyna speciosa, one or more of coconut coir, kenaf, abaca, flax, hemp, jute, ramie, sisal, rice, bamboo, corn husk, silk husk, fruit skin, straw, soy, mint leaf, spearmint leaf, lettuce leaf, synthetic fibers, animal-derived fibers, chitin, and kudzu root, and optionally one or more of a natural oil, a sweetener, a stabilizer or a flavorant.
  • a pouch for administration of a bioactive ingredient comprises mushroom extract such as psilocybin, one or more of coconut coir, kenaf, abaca, flax, hemp, jute, ramie, sisal, rice, bamboo, corn husk, silk husk, fruit skin, straw, soy, mint leaf, spearmint leaf, lettuce leaf, synthetic fibers, animal-derived fibers, chitin, and kudzu root, and optionally one or more of a natural oil, a sweetener, a stabilizer or a flavorant.
  • mushroom extract such as psilocybin, one or more of coconut coir, kenaf, abaca, flax, hemp, jute, ramie, sisal, rice, bamboo, corn husk, silk husk, fruit skin, straw, soy, mint leaf, spearmint leaf, lettuce leaf, synthetic fibers, animal-derived fibers, chitin, and kudzu root, and optionally one
  • a pouch for administration of a bioactive ingredient comprises melatonin, one or more of coconut coir, kenaf, abaca, flax, hemp, jute, ramie, sisal, rice, bamboo, corn husk, silk husk, fruit skin, straw, soy, mint leaf, spearmint leaf, lettuce leaf, synthetic fibers, animal-derived fibers, chitin, and kudzu root, and optionally one or more of a natural oil, a sweetener, a stabilizer or a flavorant.
  • a pouch for administration of a bioactive ingredient comprises spilanthes acmela, one or more of coconut coir, kenaf, abaca, flax, hemp, jute, ramie, sisal, rice, bamboo, corn husk, silk husk, fruit skin, straw, soy, mint leaf, spearmint leaf, lettuce leaf, synthetic fibers, animal-derived fibers, chitin, and kudzu root, and optionally one or more of a natural oil, a sweetener, a stabilizer or a flavorant.
  • a pouch for administration of a bioactive ingredient comprises coenzyme-Q10, one or more of coconut coir, kenaf, abaca, flax, hemp, jute, ramie, sisal, rice, bamboo, corn husk, silk husk, fruit skin, straw, soy, mint leaf, spearmint leaf, lettuce leaf, synthetic fibers, animal-derived fibers, chitin, and kudzu root, and optionally one or more of a natural oil, a sweetener, a stabilizer or a flavorant.
  • a pouch for administration of a bioactive ingredient comprises nicotinamide riboside, one or more of coconut coir, kenaf, abaca, flax, hemp, jute, ramie, sisal, rice, bamboo, corn husk, silk husk, fruit skin, straw, soy, mint leaf, spearmint leaf, lettuce leaf, synthetic fibers, animal-derived fibers, chitin, and kudzu root, and optionally one or more of a natural oil, a sweetener, a stabilizer or a flavorant.
  • a pouch for administration of a bioactive ingredient comprises ascorbic acid, one or more of coconut coir, kenaf, abaca, flax, hemp, jute, ramie, sisal, rice, bamboo, corn husk, silk husk, fruit skin, straw, soy, mint leaf, spearmint leaf, lettuce leaf, synthetic fibers, animal-derived fibers, chitin, and kudzu root, and optionally one or more of a natural oil, a sweetener, a stabilizer or a flavorant.
  • a pouch for administration of a bioactive ingredient comprises cobalamin, one or more of coconut coir, kenaf, abaca, flax, hemp, jute, ramie, sisal, rice, bamboo, corn husk, silk husk, fruit skin, straw, soy, mint leaf, spearmint leaf, lettuce leaf, synthetic fibers, animal-derived fibers, chitin, and kudzu root, and optionally one or more of a natural oil, a sweetener, a stabilizer or a flavorant.
  • a pouch for administration of a bioactive ingredient comprises pyndoxal-5-phosphate, one or more of coconut coir, kenaf, abaca, flax, hemp, jute, ramie, sisal, rice, bamboo, corn husk, silk husk, fruit skin, straw, soy, mint leaf, spearmint leaf, lettuce leaf, synthetic fibers, animal-derived fibers, chitin, and kudzu root, and optionally one or more of a natural oil, a sweetener, a stabilizer or a flavorant.
  • a pouch for administration of a bioactive ingredient comprises 1-theanine, one or more of coconut coir, kenaf, abaca, flax, hemp, jute, ramie, sisal, rice, bamboo, corn husk, silk husk, fruit skin, straw, soy, mint leaf, spearmint leaf, lettuce leaf, synthetic fibers, animal-derived fibers, chitin, and kudzu root, and optionally one or more of a natural oil, a sweetener, a stabilizer or a flavorant.
  • a pouch for administration of a bioactive ingredient comprises caffeine, one or more of coconut coir, kenaf, abaca, flax, hemp, jute, ramie, sisal, rice, bamboo, corn husk, silk husk, fruit skin, straw, soy, mint leaf, spearmint leaf, lettuce leaf, synthetic fibers, animal-derived fibers, chitin, and kudzu root, and optionally one or more of a natural oil, a sweetener, a stabilizer or a flavorant.
  • a pouch for administration of a bioactive ingredient comprises Rhodiola rosea, one or more of coconut coir, kenaf, abaca, flax, hemp, jute, ramie, sisal, rice, bamboo, corn husk, silk husk, fruit skin, straw, soy, mint leaf, spearmint leaf, lettuce leaf, synthetic fibers, animal-derived fibers, chitin, and kudzu root, and optionally one or more of a natural oil, a sweetener, a stabilizer or a flavorant.
  • a pouch for administration of a bioactive ingredient comprises choline, one or more of coconut coir, kenaf, abaca, flax, hemp, jute, ramie, sisal, rice, bamboo, corn husk, silk husk, fruit skin, straw, soy, mint leaf, spearmint leaf, lettuce leaf, synthetic fibers, animal-derived fibers, chitin, and kudzu root, and optionally one or more of a natural oil, a sweetener, a stabilizer or a flavorant.
  • a pouch for administration of a bioactive ingredient comprises pine pollen extract, one or more of coconut coir, kenaf, abaca, flax, hemp, jute, ramie, sisal, rice, bamboo, corn husk, silk husk, fruit skin, straw, soy, mint leaf, spearmint leaf, lettuce leaf, synthetic fibers, animal-derived fibers, chitin, and kudzu root, and optionally one or more of a natural oil, a sweetener, a stabilizer or a flavorant.
  • a pouch for administration of a bioactive ingredient comprises deer antler velvet, one or more of coconut coir, kenaf, abaca, flax, hemp, jute, ramie, sisal, rice, bamboo, corn husk, silk husk, fruit skin, straw, soy, mint leaf, spearmint leaf, lettuce leaf, synthetic fibers, animal-derived fibers, chitin, and kudzu root, and optionally one or more of a natural oil, a sweetener, a stabilizer or a flavorant.
  • a pouch for administration of a bioactive ingredient comprises gingko biloba, one or more of coconut coir, kenaf, abaca, flax, hemp, jute, ramie, sisal, rice, bamboo, corn husk, silk husk, fruit skin, straw, soy, mint leaf, spearmint leaf, lettuce leaf, synthetic fibers, animal-derived fibers, chitin, and kudzu root, and optionally one or more of a natural oil, a sweetener, a stabilizer or a flavorant.
  • a pouch for administration of a bioactive ingredient comprises vinpocetine, one or more of coconut coir, kenaf, abaca, flax, hemp, jute, ramie, sisal, rice, bamboo, corn husk, silk husk, fruit skin, straw, soy, mint leaf, spearmint leaf, lettuce leaf, synthetic fibers, animal-derived fibers, chitin, and kudzu root, and optionally one or more of a natural oil, a sweetener, a stabilizer or a flavorant.
  • a pouch for administration of a bioactive ingredient comprises bacopa monnieri, one or more of coconut coir, kenaf, abaca, flax, hemp, jute, ramie, sisal, rice, bamboo, corn husk, silk husk, fruit skin, straw, soy, mint leaf, spearmint leaf, lettuce leaf, synthetic fibers, animal-derived fibers, chitin, and kudzu root, and optionally one or more of a natural oil, a sweetener, a stabilizer or a flavorant.
  • a pouch for administration of a bioactive ingredient comprises ganoderman lucidium, one or more of coconut coir, kenaf, abaca, flax, hemp, jute, ramie, sisal, rice, bamboo, corn husk, silk husk, fruit skin, straw, soy, mint leaf, spearmint leaf, lettuce leaf, synthetic fibers, animal-derived fibers, chitin, and kudzu root, and optionally one or more of a natural oil, a sweetener, a stabilizer or a flavorant.
  • a pouch for administration of a bioactive ingredient comprises cordyceps sinesis, one or more of coconut coir, kenaf, abaca, flax, hemp, jute, ramie, sisal, rice, bamboo, corn husk, silk husk, fruit skin, straw, soy, mint leaf, spearmint leaf, lettuce leaf, synthetic fibers, animal-derived fibers, chitin, and kudzu root, and optionally one or more of a natural oil, a sweetener, a stabilizer or a flavorant.
  • a pouch for administration of a bioactive ingredient comprises hericium erinaceus, one or more of coconut coir, kenaf, abaca, flax, hemp, jute, ramie, sisal, rice, bamboo, corn husk, silk husk, fruit skin, straw, soy, mint leaf, spearmint leaf, lettuce leaf, synthetic fibers, animal-derived fibers, chitin, and kudzu root, and optionally one or more of a natural oil, a sweetener, a stabilizer or a flavorant.
  • a pouch for administration of a bioactive ingredient comprises creatine monohydrate, one or more of coconut coir, kenaf, abaca, flax, hemp, jute, ramie, sisal, rice, bamboo, corn husk, silk husk, fruit skin, straw, soy, mint leaf, spearmint leaf, lettuce leaf, synthetic fibers, animal-derived fibers, chitin, and kudzu root, and optionally one or more of a natural oil, a sweetener, a stabilizer or a flavorant.
  • a pouch for administration of a bioactive ingredient comprises branched chain amino acids, one or more of coconut coir, kenaf, abaca, flax, hemp, jute, ramie, sisal, rice, bamboo, corn husk, silk husk, fruit skin, straw, soy, mint leaf, spearmint leaf, lettuce leaf, synthetic fibers, animal-derived fibers, chitin, and kudzu root, and optionally one or more of a natural oil, a sweetener, a stabilizer or a flavorant.
  • a pouch for administration of a bioactive ingredient comprises guarana seed, one or more of coconut coir, kenaf, abaca, flax, hemp, jute, ramie, sisal, rice, bamboo, corn husk, silk husk, fruit skin, straw, soy, mint leaf, spearmint leaf, lettuce leaf, synthetic fibers, animal-derived fibers, chitin, and kudzu root, and optionally one or more of a natural oil, a sweetener, a stabilizer or a flavorant.
  • a pouch for administration of a bioactive ingredient comprises panax ginseng root and/or sibering ginseng root, one or more of coconut coir, kenaf, abaca, flax, hemp, jute, ramie, sisal, rice, bamboo, corn husk, silk husk, fruit skin, straw, soy, mint leaf, spearmint leaf, lettuce leaf, synthetic fibers, animal-derived fibers, chitin, and kudzu root, and optionally one or more of a natural oil, a sweetener, a stabilizer or a flavorant.
  • a pouch for administration of a bioactive ingredient comprises ashwaghanda, one or more of coconut coir, kenaf, abaca, flax, hemp, jute, ramie, sisal, rice, bamboo, corn husk, silk husk, fruit skin, straw, soy, mint leaf, spearmint leaf, lettuce leaf, synthetic fibers, animal-derived fibers, chitin, and kudzu root, and optionally one or more of a natural oil, a sweetener, a stabilizer or a flavorant.
  • a pouch for administration of a bioactive ingredient comprises astralagus, one or more of coconut coir, kenaf, abaca, flax, hemp, jute, ramie, sisal, rice, bamboo, corn husk, silk husk, fruit skin, straw, soy, mint leaf, spearmint leaf, lettuce leaf, synthetic fibers, animal-derived fibers, chitin, and kudzu root, and optionally one or more of a natural oil, a sweetener, a stabilizer or a flavorant.
  • a pouch for administration of a bioactive ingredient comprises curcumin, one or more of coconut coir, kenaf, abaca, flax, hemp, jute, ramie, sisal, rice, bamboo, corn husk, silk husk, fruit skin, straw, soy, mint leaf, spearmint leaf, lettuce leaf, synthetic fibers, animal-derived fibers, chitin, and kudzu root, and optionally one or more of a natural oil, a sweetener, a stabilizer or a flavorant.
  • a pouch for administration of a bioactive ingredient comprises maca, one or more of coconut coir, kenaf, abaca, flax, hemp, jute, ramie, sisal, rice, bamboo, corn husk, silk husk, fruit skin, straw, soy, mint leaf, spearmint leaf, lettuce leaf, synthetic fibers, animal-derived fibers, chitin, and kudzu root, and optionally one or more of a natural oil, a sweetener, a stabilizer or a flavorant.
  • a pouch for administration of a bioactive ingredient comprises holy basil, one or more of coconut coir, kenaf, abaca, flax, hemp, jute, ramie, sisal, rice, bamboo, corn husk, silk husk, fruit skin, straw, soy, mint leaf, spearmint leaf, lettuce leaf, synthetic fibers, animal-derived fibers, chitin, and kudzu root, and optionally one or more of a natural oil, a sweetener, a stabilizer or a flavorant.
  • a pouch for administration of a bioactive ingredient comprises schisandra, one or more of coconut coir, kenaf, abaca, flax, hemp, jute, ramie, sisal, rice, bamboo, corn husk, silk husk, fruit skin, straw, soy, mint leaf, spearmint leaf, lettuce leaf, synthetic fibers, animal-derived fibers, chitin, and kudzu root, and optionally one or more of a natural oil, a sweetener, a stabilizer or a flavorant.
  • a pouch for administration of a bioactive ingredient comprises tongkat ali, one or more of coconut coir, kenaf, abaca, flax, hemp, jute, ramie, sisal, rice, bamboo, corn husk, silk husk, fruit skin, straw, soy, mint leaf, spearmint leaf, lettuce leaf, synthetic fibers, animal-derived fibers, chitin, and kudzu root, and optionally one or more of a natural oil, a sweetener, a stabilizer or a flavorant.
  • a pouch for administration of a bioactive ingredient comprises gamma aminobutyric acid, one or more of coconut coir, kenaf, abaca, flax, hemp, jute, ramie, sisal, rice, bamboo, corn husk, silk husk, fruit skin, straw, soy, mint leaf, spearmint leaf, lettuce leaf, synthetic fibers, animal-derived fibers, chitin, and kudzu root, and optionally one or more of a natural oil, a sweetener, a stabilizer or a flavorant.
  • a pouch for administration of a bioactive ingredient comprises tribulus terrestris, one or more of coconut coir, kenaf, abaca, flax, hemp, jute, ramie, sisal, rice, bamboo, corn husk, silk husk, fruit skin, straw, soy, mint leaf, spearmint leaf, lettuce leaf, synthetic fibers, animal-derived fibers, chitin, and kudzu root, and optionally one or more of a natural oil, a sweetener, a stabilizer or a flavorant.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Chemical & Material Sciences (AREA)
  • Epidemiology (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Natural Medicines & Medicinal Plants (AREA)
  • Engineering & Computer Science (AREA)
  • Botany (AREA)
  • Biotechnology (AREA)
  • Alternative & Traditional Medicine (AREA)
  • Medical Informatics (AREA)
  • Microbiology (AREA)
  • Mycology (AREA)
  • Zoology (AREA)
  • Cell Biology (AREA)
  • Nutrition Science (AREA)
  • Physiology (AREA)
  • Molecular Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Dermatology (AREA)
  • Biomedical Technology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Immunology (AREA)
  • Virology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

The present invention relates to apertured pouches comprising a fibrous matrix containing a bioactive ingredient, including kits, methods of use and methods of manufacture.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is claims priority to U.S. Provisional Application Ser. No. 63/021,661 filed May 7, 2020. The contents of this application are incorporated herein by reference in their entirety.
  • BACKGROUND
  • Many cannabis smokers desire smokeless alternatives because of the cumulative adverse effects of smoking. Until recently the main alternative to smoked cannabis was edible cannabis. However, most users of edible cannabis find that it has undesirable characteristics including slow action, often requiring an hour or more before effects are felt, and unpredictable dosing. Ingested cannabinoids are subject to first pass metabolism by the liver which generates metabolites with elevated psychoactivity. These problems are often exacerbated by users who subsequently consume additional quantities in the mistaken belief that their initial dose was inadequate. Negative health consequences may result from this dose disparity. This dose disparity is apparent and becoming better documented in a variety of other bioactive ingredients consumed as nutraceuticals without the doctor prescription dosing or recommendations.
  • The recent proliferation of cannabis concentrates has enabled a new generation of orally administered cannabis products which allow for fast action and more consistent absorption. Concentrates produced by these extraction processes can be easily combined with edible ingredients for consistent dosing. Unfortunately the resulting compositions continue to be slow acting because of the low water solubility of cannabinoids. Cannabinoids and the closely related terpenoids consist of combinations of five carbon isoprene units which have strong lipid character and are therefore not readily absorbed into blood until after being digested in the stomach.
  • Though the reasoning for it is unclear, conventional pouches for oral administration provide a slow and uneven oral release profile when incorporating cannabis compositions or other bioactive ingredients. Therefore, there is a need in the art for a delivery mechanism that orally delivers cannabis compositions and/or other bioactive ingredients in an even release profile.
  • The present invention addresses this and other related needs in the art.
  • SUMMARY
  • A pouch for administration of a bioactive ingredient is provided in frequent embodiments, which pouch comprises a fibrous matrix material incorporating a plurality of apertures defining a sealed pouch, and a bioactive ingredient containing fill material positioned within the sealed pouch. Often, the bioactive ingredient is a cannabinoid. Also often, the pouch further comprises a terpene in the cannabinoid containing fill material. Also often the fill material is comprised of coconut coir, kenaf, abaca, flax, hemp, jute, ramie, sisal, rice, bamboo, corn husk, silk husk, fruit skin, straw, soy, mint leaf, spearmint leaf, lettuce leaf, synthetic fibers, animal-derived fibers, chitin, kudzu root, or a combination of two or more of the foregoing. The apertures may be of uniform or varying sizes, with a diameter ranging often between at or about 200 μm to about at or about 1000 μm. Often the aperture density in such an embodiment is 1, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, or 100. Also often about 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 100% of the fill material particles are larger than the aperture size in the pouch or fibrous matrix material. Often in such embodiments the pouch is adapted to release between 40% to 90% of the bioactive ingredient present in the fill material in between 5 to 10 minutes, 4 to 15 minutes, 3 to 12 minutes, 4 to 10 minutes, or under 10 minutes after being placed in a mouth of a user.
  • Bioactive ingredients contemplated herein as incorporated in the fill material include, for example, a cannabinoid, a terpene; kava root, including different forms, derivatives and extracts therefrom, such as those including a kavalactone; chili pepper, including different forms, derivatives and extracts therefrom, such as those including capsicum; kanna/sceletium tortuosum, including different forms, derivatives and extracts therefrom; yerba mate, including different forms, derivatives and extracts therefrom such as those derived from the holly genus ilex; guayusa, including different forms, derivatives and extracts therefrom; kratom, including different forms, derivatives and extracts therefrom such as those derived from mitragyna speciosa; mushroom, including different forms, derivatives and extracts therefrom such as those including psilocybin and extracts thereof; melatonin, including different forms, derivatives and extracts therefrom; spilanthes acmela, including derivatives and extracts therefrom; coenzyme-Q10; pyrroloquinoline quinone, including different forms, derivatives and extracts therefrom; nicotinamide riboside, including different forms, derivatives and extracts therefrom; ascorbic acid, including different forms, derivatives and extracts therefrom; cobalamins, including different forms, derivatives and extracts therefrom; pyridoxal-5-phosphate, including different forms, derivatives and extracts therefrom; 1-theanine, including different forms, derivatives and extracts therefrom; caffeine, including different forms, derivatives and extracts therefrom; rhodiola rosca, including different forms, derivatives and extracts therefrom; choline, including different forms, derivatives and extracts therefrom; pine pollen extract, including different forms, derivatives and extracts therefrom; deer antler velvet, including different forms, derivatives and extracts therefrom; gingko biloba, including different forms, derivatives and extracts therefrom; vinpocetine, including different forms, derivatives and extracts therefrom; bacopa monnieri, including different forms, derivatives and extracts therefrom; ganodennan lucidium, including different forms, derivatives and extracts therefrom; cordyceps sinesis, including different forms, derivatives and extracts therefrom; hericium erinaceus, including different forms, derivatives and extracts therefrom; creatine monohydrate, including different forms, derivatives and extracts therefrom; branched chain amino acids, including different forms, derivatives and extracts therefrom; guarana seed, including different forms, derivatives and extracts therefrom; panax ginseng root, including different forms, derivatives and extracts therefrom; sibering ginseng root, including different forms, derivatives and extracts therefrom; ashwaghanda, including different forms, derivatives and extracts therefrom; astralagus, including different forms, derivatives and extracts therefrom; curcurmin, including different forms, derivatives and extracts therefrom; maca, including different forms, derivatives and extracts therefrom; holy basil, including different forms, derivatives and extracts therefrom; schisandra, including different forms, derivatives and extracts therefrom; tongkat ali, including different forms, derivatives and extracts therefrom; gamma aminobutyric acid, including different forms, derivatives and extracts therefrom; tribulus terrestris, including different forms, derivatives and extracts therefrom; and combinations of two or more of the foregoing. As noted, one or more of the bioactive ingredients is included in the fill material of the present compositions and pouches.
  • A pouch for administration of a bioactive ingredient is provided in frequent embodiments, which pouch comprises a fibrous matrix material incorporating a plurality of apertures defining a sealed pouch, and a bioactive ingredient containing fill material positioned within the sealed pouch. Often, the bioactive ingredient is selected from one or more of: a cannabinoid, a terpene; kava root, including different forms, derivatives and extracts therefrom, such as those including a kavalactone; chili pepper, including different forms, derivatives and extracts therefrom, such as those including capsicum; kanna/sceletium tortuosum, including different forms, derivatives and extracts therefrom; yerba mate, including different forms, derivatives and extracts therefrom such as those derived from the holly genus ilex; guayusa, including different forms, derivatives and extracts therefrom; kratom, including different forms, derivatives and extracts therefrom such as those derived from mitragyna speciosa; mushroom, including different forms, derivatives and extracts therefrom such as those including psilocybin and extracts thereof; melatonin, including different forms, derivatives and extracts therefrom; spilanthes acmela, including derivatives and extracts therefrom; coenzyme-Q10; pyrroloquinoline quinone, including different forms, derivatives and extracts therefrom; nicotinamide riboside, including different forms, derivatives and extracts therefrom; ascorbic acid, including different forms, derivatives and extracts therefrom; cobalamins, including different forms, derivatives and extracts therefrom; pyridoxal-5-phosphate, including different forms, derivatives and extracts therefrom; l-theanine, including different forms, derivatives and extracts therefrom; caffeine, including different forms, derivatives and extracts therefrom; Rhodiola rosea, including different forms, derivatives and extracts therefrom; choline, including different forms, derivatives and extracts therefrom; pine pollen extract, including different forms, derivatives and extracts therefrom; deer antler velvet, including different forms, derivatives and extracts therefrom; gingko biloba, including different forms, derivatives and extracts therefrom; vinpocetine, including different forms, derivatives and extracts therefrom; bacopa monnieri, including different forms, derivatives and extracts therefrom; ganoderman lucidum, including different forms, derivatives and extracts therefrom; cordyceps sinesis, including different forms, derivatives and extracts therefrom; hericium erinaceus, including different forms, derivatives and extracts therefrom; creatine monohydrate, including different forms, derivatives and extracts therefrom; branched chain amino acids, including different forms, derivatives and extracts therefrom; guarana seed, including different forms, derivatives and extracts therefrom; panax ginseng root, including different forms, derivatives and extracts therefrom; sibering ginseng root, including different forms, derivatives and extracts therefrom; ashwaghanda, including different forms, derivatives and extracts therefrom; astralagus, including different forms, derivatives and extracts therefrom; curcurmin, including different forms, derivatives and extracts therefrom; maca, including different forms, derivatives and extracts therefrom; holy basil, including different forms, derivatives and extracts therefrom; schisandra, including different forms, derivatives and extracts therefrom; tongkat ah, including different forms, derivatives and extracts therefrom; gamma aminobutyric acid, including different forms, derivatives and extracts therefrom; tribulus terrestris, including different forms, derivatives and extracts therefrom; and combinations of two or more of the foregoing. Also often, the pouch further comprises a terpene in the cannabinoid containing fill material. Also often the fill material is comprised of coconut coir, kenaf, abaca, flax, hemp, jute, ramie, sisal, rice, bamboo, corn husk, silk husk, fruit skin, straw, soy, mint leaf, spearmint leaf, lettuce leaf, synthetic fibers, animal-derived fibers, clitin, kudzu root, or a combination of two or more of the foregoing. The apertures may be of uniform or varying sizes, with a diameter ranging often between at or about 200 μm to about at or about 1000 μm. Often the aperture density in such an embodiment is 1, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, or 100. Also often about 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 100% of the fill material particles are larger than the aperture size in the pouch or fibrous matrix material.
  • Methods of administering a bioactive ingredient are also contemplated herein. According to an exemplary method a pouch comprised of a fibrous matrix material incorporating a plurality of apertures defining a sealed pouch, and a bioactive ingredient, as defined herein, containing fill material positioned within the sealed pouch is introduced to the mouth of a subject and contacted with an oromucosal surface of the mouth of the subject. The pouch is thereafter maintained in the mouth of the subject between 1 minute to 30 minutes. In certain related embodiments, the pouch comprises a fibrous matrix material having a plurality of apertures on one or two opposing surfaces. Often the pouch comprises a fibrous matrix material having a plurality of apertures on (one of) a front or rear surface and the surface having the apertures is applied to the oromucosal surface of the mouth of the subject.
  • In often included embodiments, each of the plurality of apertures is defined by an aperture size of between about at or 200 μm or 300 μm to about at or 800 μm in diameter. Also often, each of the plurality of apertures is defined by an aperture size of above at or about 200 μm or 300 μm or at or about 400 μm in diameter. In certain frequent embodiments, each of the plurality of apertures is defined by an aperture size of between at or about 200 μm or 300 μm to at or about 500 μm in diameter. In certain frequent embodiments, each of the plurality of apertures is defined by an aperture size of between at or about 200 μm or 300 μm to at or about 600 μm in diameter. In certain frequent embodiments, each of the plurality of apertures is defined by an aperture size of between at or about 200 μm or 300 μm to at or about 700 μm in diameter. In certain frequent embodiments, each of the plurality of apertures is defined by an aperture size of between at or about 200 μm or 300 μm to at or about 900 μm in diameter. In certain frequent embodiments, each of the plurality of apertures is defined by an aperture size of between at or about 200 μm or 300 μm to at or about 1000 μm in diameter. In certain frequent embodiments, each of the plurality of apertures is defined by an aperture size of between at or about 700 μm to at or about 900 μm in diameter. In certain frequent embodiments, each of the plurality of apertures is defined by an aperture size of between at or about 350 μm to at or about 750 μm in diameter. In certain frequent embodiments, each of the plurality of apertures is defined by an aperture size of between at or about 200 μm to at or about 1000 μm in diameter. Often in such embodiments, at least about 50% of the plurality of apertures have the identified size. Often in such embodiments, at least about 60% of the plurality of apertures have the identified size. Often in such embodiments, at least about 70% of the plurality of apertures have the identified size. Often in such embodiments, at least about 80% of the plurality of apertures have the identified size. Frequently in such embodiments, at least about 90/a of the plurality of apertures have the identified size. Often in such embodiments, at least about 99/a of the plurality of apertures have the identified size. When referring to “diameter” this term is referring to circular apertures and importantly is also intended to relate to the widest measurable opening (measured across the aperture opening) in the variety of non-circular shape apertures contemplated herein. So, in this sense, the term “diameter” is intended herein to have a non-conventional meaning that includes a measurement across the widest part of an opening of any shape.
  • In certain embodiments, the aperture size is greater than 1000 μm in diameter. In certain frequent embodiments, each of the plurality of apertures is defined by an aperture size of between at or about 1000 μm to at or about 1500 μm in diameter. In certain frequent embodiments, each of the plurality of apertures is defined by an aperture size of between at or about 1500 μm to at or about 2000 μm in diameter. In certain frequent embodiments, each of the plurality of apertures is defined by an aperture size of between at or about 2000 μm to at or about 5000 μm in diameter. In certain frequent embodiments, each of the plurality of apertures is defined by an aperture size of between at or about 5000 μm to at or about 10,000 μm in diameter. Often in such embodiments, at least about 50% of the plurality of apertures have the identified size. Often in such embodiments, at least about 60% of the plurality of apertures have the identified size. Often in such embodiments, at least about 70% of the plurality of apertures have the identified size. Often in such embodiments, at least about 80% of the plurality of apertures have the identified size. Frequently in such embodiments, at least about 90% of the plurality of apertures have the identified size. Often in such embodiments, at least about 99% of the plurality of apertures have the identified size.
  • When viewed on two axes, the distances between apertures is understood as an aperture density in the matrix. The aperture density is defined by the number of apertures per square centimeter. In frequent embodiments the aperture density is between 1 to 100. In certain embodiments, the aperture density is less than 1. In certain other embodiments, the aperture density is greater than 100. In certain embodiments, the aperture density is between 1 to 50. In certain embodiments, the aperture density is between 1 to 90. In certain embodiments, the aperture density is between 10 to 90. In certain embodiments, the aperture density is between 20 to 90. In certain embodiments, the aperture density is between 30 to 90. In certain embodiments, the aperture density is between 40 to 90. In certain embodiments, the aperture density is between 50 to 90. In certain embodiments, the aperture density is between 60 to 95. In certain embodiments, the aperture density is between 70 to 95. In certain embodiments, the aperture density is between 20 to 80. In certain embodiments, the aperture density is between 10 to 80. In certain embodiments, the aperture density is between 10 to 70. In certain embodiments, the aperture density is between 10 to 60. In certain embodiments, the aperture density is between 10 to 50. In certain embodiments, the aperture density is between 20 to 70. In certain embodiments, the aperture density is between 30 to 80. In certain embodiments, the aperture density is between 30 to 70. In certain embodiments, the aperture density is at or about 1, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, or 100.
  • The aperture size may vary from the specific ranges specified herein with the proviso that the fill material is retained in the pouch without escaping through the apertures. In this regard the aperture size may often be adapted to correlate with the particle size of the fill material such that the fill material particle size is larger than the aperture size. In certain embodiments, 100% of the fill material particles are larger than the aperture size in the pouch or fibrous matrix material. In certain embodiments, 95% of the fill material particles are larger than the aperture size in the pouch or fibrous matrix material. In certain embodiments, 90% of the fill material particles are larger than the aperture size in the pouch or fibrous matrix material. In certain embodiments, 85% of the fill material particles are larger than the aperture size in the pouch or fibrous matrix material. In certain embodiments, 80% of the fill material particles are larger than the aperture size in the pouch or fibrous matrix material. In certain embodiments, 750% of the fill material particles are larger than the aperture size in the pouch or fibrous matrix material. In certain embodiments, 70% of the fill material particles are larger than the aperture size in the pouch or fibrous matrix material. In certain embodiments, 65% of the fill material particles are larger than the aperture size in the pouch or fibrous matrix material. In certain embodiments, 60% of the fill material particles are larger than the aperture size in the pouch or fibrous matrix material. When referring to the particle size of the fill material, this is intended to be a broad reference, referring to diameter of circular particles, and the narrowest profile section of all other fill materials that are not circular in shape.
  • In certain frequently included embodiments, each of the plurality of apertures is circular in shape. In certain frequently included embodiments, each of the plurality of apertures is oval in shape. In certain frequently included embodiments, each of the plurality of apertures is triangle in shape. In certain frequently included embodiments, each of the plurality of apertures is square in shape. In certain frequently included embodiments, each of the plurality of apertures is rectangle in shape. In certain frequently included embodiments, each of the plurality of apertures is pentagonal, hexagonal, heptagonal, or octagonal in shape. In certain frequently included embodiments, each of the plurality of apertures is polygonal in shape. In certain frequently included embodiments, each of the plurality of apertures is non-polygonal in shape. In certain frequently included embodiments, each of the plurality of apertures is either polygonal or non-polygonal in shape. In certain frequently included embodiments, the pouch comprises a plurality of apertures, where the apertures are not the same shape. In such embodiments, two or more different shaped apertures are including, including one or more different polygonal shapes and/or one or more different non-polygonal shapes. In related embodiments, each of the plurality of apertures is selected from oval, circular, square, rectangular, or another polygon shape or non-polygon shape, where two or more apertures in the pouch are differently shaped.
  • According to related embodiments herein, the bioactive ingredient (as defined herein such as a cannabinoid and/or another bioactive ingredient) containing fill material comprises cannabidiol, coconut coir, a terpene, a natural oil, a sweetener, a stabilizer and a flavorant. According to other related embodiments herein, the bioactive ingredient containing fill material comprises tetrahydrocannabinol, coconut coir, a terpene, a natural oil, a sweetener, a stabilizer and a flavorant.
  • Often, the coconut coir is comprised of coconut coir particles having a mean size range of between about 800 μm to at or about 900 μm. Also often, the coconut coir is comprised of coconut coir particles having a mean size range of between about 200 μm to at or about 900 μm. As noted herein, coconut coir being a fill material contemplated in the present disclosure, it is provided in the variety of fil material sizes contemplated herein. In this regard, the particle size of the fill material (coconut coir or another fill material) is larger than the diameter of the aperture size of the matrix material of the pouch.
  • According to frequent embodiments, the bioactive ingredient containing fill material comprises water dispersible cannabidiol and/or cannabidiol isolate. Also often, the bioactive ingredient containing fill material comprises water dispersible form of cannabinoid, a terpene; kava root, including different forms, derivatives and extracts therefrom, such as those including a kavalactone; chili pepper, including different forms, derivatives and extracts therefrom, such as those including capsicum; kanna/sceletium tortuosum, including different forms, derivatives and extracts therefrom; yerba mate, including different forms, derivatives and extracts therefrom such as those derived from the holly genus ilex; guayusa, including different forms, derivatives and extracts therefrom; kratom, including different forms, derivatives and extracts therefrom such as those derived from mitragyna speciosa; mushroom, including different forms, derivatives and extracts therefrom such as those including psilocybin and extracts thereof; melatonin, including different forms, derivatives and extracts therefrom; spilanthes acmela, including derivatives and extracts therefrom; coenzyme-Q10; pyrroloquinoline quinone, including different forms, derivatives and extracts therefrom; nicotinamide riboside, including different forms, derivatives and extracts therefrom; ascorbic acid, including different forms, derivatives and extracts therefrom; cobalamins, including different forms, derivatives and extracts therefrom; pyridoxal-5-phosphate, including different forms, derivatives and extracts therefrom; 1-theanine, including different forms, derivatives and extracts therefrom; caffeine, including different forms, derivatives and extracts therefrom; Rhodiola rosea, including different forms, derivatives and extracts therefrom; choline, including different forms, derivatives and extracts therefrom; pine pollen extract, including different forms, derivatives and extracts therefrom; deer antler velvet, including different forms, derivatives and extracts therefrom; gingko biloba, including different forms, derivatives and extracts therefrom; vinpocetine, including different forms, derivatives and extracts therefrom; bacopa monnieri, including different forms, derivatives and extracts therefrom; ganoderman lucidium, including different forms, derivatives and extracts therefrom; cordyceps sinesis, including different forms, derivatives and extracts therefrom; hericium erinaceus, including different forms, derivatives and extracts therefrom; creatine monohydrate, including different forms, derivatives and extracts therefrom; branched chain amino acids, including different forms, derivatives and extracts therefrom; guarana seed, including different forms, derivatives and extracts therefrom; panax ginseng root, including different forms, derivatives and extracts therefrom; sibering ginseng root, including different forms, derivatives and extracts therefrom; ashwaghanda, including different forms, derivatives and extracts therefrom; astralagus, including different forms, derivatives and extracts therefrom; curcurmin, including different forms, derivatives and extracts therefrom; maca, including different forms, derivatives and extracts therefrom; holy basil, including different forms, derivatives and extracts therefrom; schisandra, including different forms, derivatives and extracts therefrom; tongkat ah, including different forms, derivatives and extracts therefrom; gamma aminobutyric acid, including different forms, derivatives and extracts therefrom; and/or tribulus terrestris, including different forms, derivatives and extracts therefrom.
  • In certain frequent embodiments, the plurality of apertures comprise holes extending through the fibrous matrix material.
  • In certain embodiments the bioactive ingredient containing fill material comprises an electrospun nanofiber, wherein the electrospun nanofiber comprises cannabidiol.
  • Often according to the embodiments of the present disclosure, the bioactive ingredient containing fill material comprises a cannabinoid selected from the group consisting of one or more of cannabidiol (CBD); cannabinol; cannabigerol; cannabichromene; cannabidivarol; tetrahydrocannabidiol (i.e., Δ9-tetrahydrocannabinol); tetrahydrocannabigerol; tetrahydrocannabichromene; tetrahydrocannabidivarol; Δ8-THC, and carboxylic acid precursors of the foregoing. This list is exemplary and intended not to be limited to the specifically-listed cannabinoids. Instead, the present disclosure contemplates the full complement of cannabis-derived cannabinoids, including their natural and synthetic equivalents.
  • Also often according to the embodiments of the present disclosure, the bioactive ingredient containing fill material comprises a terpene selected from the group consisting of one or more of bomeol, caryophyllene, cineole/eucalyptol, delta3carene, limonene, linolool, myrcene, pinene, pulegone, d-limonene linalool, 1,8-cineole (eucalyptol), terpineol-4-ol, p-cymene, Δ-3-carene, β-sitosterol, or β-caryophyllene.cannflavin A, apigenin, and quercetin. This list is exemplary and intended not to be limited to the specifically-listed terpenes. Instead, the present disclosure contemplates the full complement of cannabis-derived terpenes, including their natural and synthetic equivalents.
  • In certain embodiments, the bioactive ingredient containing fill material comprises a blended composition having a total weight, and a bioactive ingredient containing fill material includes a bioactive ingredient between about 1% to at or about 20% of the total weight of the fill material in a bulk batch or within an exemplary pouch. In certain embodiments, the bioactive ingredient containing fill material comprises a blended composition having a total weight, and bioactive ingredient containing fill material includes a bioactive ingredient between about 1% to at or about 5% of the total weight of the fill material in an exemplary pouch. In certain embodiments, the bioactive ingredient containing fill material comprises a blended composition having a total weight, and bioactive ingredient containing fill material includes a bioactive ingredient at or about 2% of the total weight of the fill material in an exemplary pouch. In all such embodiments the full complement of bioactive ingredients set forth herein are included, such as, for example, a cannabinoid.
  • In certain frequent embodiments, the fibrous matrix material comprises viscose, cellulose, polyester, cotton, hemp, cellulose acetate, polylactic acid, polypropylene, modal cellulose, Tencel, or blends of two or more of the foregoing.
  • In certain frequent embodiments, the cannabinoid containing fill material comprises coconut coir, CBD distillate, a terpene, a natural oil, a sweetener, salt, and a stabilizer within an apertured matrix pouch.
  • In certain frequent embodiments, the bioactive ingredient fill material comprises an absorbent natural fiber selected from one or more of coconut coir, kenaf, abaca, flax, hemp, jute, ramie, sisal, rice, bamboo, corn husk, silk husk, fruit skin, straw, soy, mint leaf, spearmint leaf, lettuce leaf, synthetic fibers, animal-derived fibers, chitin, kudzu root, or a combination of two or more of the foregoing; a bioactive ingredient selected from one or more of cannabidiol (CBD); cannabinol; cannabigerol; cannabichromene; cannabidivarol; tetrahydrocannabidiol; tetrahydrocannabigerol; tetrahydrocannabichromene; tetrahydrocannabidivarol; Y-THC, and/or carboxylic acid precursors of the foregoing; kava root, including different forms, derivatives and extracts therefrom, such as those including a kavalactone; chili pepper, including different forms, derivatives and extracts therefrom, such as those including capsicum; kanna/sceletium tortuosum, including different forms, derivatives and extracts therefrom; yerba mate, including different forms, derivatives and extracts therefrom such as those derived from the holly genus ilex; guayusa, including different forms, derivatives and extracts therefrom; kratom, including different forms, derivatives and extracts therefrom such as those derived from mitragyna speciosa; mushroom, including different forms, derivatives and extracts therefrom such as those including psilocybin and extracts thereof; melatonin, including different forms, derivatives and extracts therefrom; spilanthes acmela, including derivatives and extracts therefrom; coenzyme-Q10; pyrroloquinoline quinone, including different forms, derivatives and extracts therefrom; nicotinamide riboside, including different forms, derivatives and extracts therefrom; ascorbic acid, including different forms, derivatives and extracts therefrom; cobalamins, including different forms, derivatives and extracts therefrom; pyridoxal-5-phosphate, including different forms, derivatives and extracts therefrom; 1-theanine, including different forms, derivatives and extracts therefrom; caffeine, including different forms, derivatives and extracts therefrom; rhodiola rosca, including different forms, derivatives and extracts therefrom; choline, including different forms, derivatives and extracts therefrom; pine pollen extract, including different forms, derivatives and extracts therefrom; deer antler velvet, including different forms, derivatives and extracts therefrom; gingko biloba, including different forms, derivatives and extracts therefrom; vinpocetine, including different forms, derivatives and extracts therefrom; bacopa monnieri, including different forms, derivatives and extracts therefrom; ganoderman lucidium, including different forms, derivatives and extracts therefrom; cordyceps sinesis, including different forms, derivatives and extracts therefrom; hericium erinaceus, including different forms, derivatives and extracts therefrom; creatine monohydrate, including different forms, derivatives and extracts therefrom; branched chain amino acids, including different forms, derivatives and extracts therefrom; guarana seed, including different forms, derivatives and extracts therefrom; panax ginseng mot, including different forms, derivatives and extracts therefrom; sibering ginseng root, including different forms, derivatives and extracts therefrom; ashwaghanda, including different forms, derivatives and extracts therefrom; astralagus, including different forms, derivatives and extracts therefrom; curcurmin, including different forms, derivatives and extracts therefrom; maca, including different forms, derivatives and extracts therefrom; holy basil, including different forms, derivatives and extracts therefrom; schisandra, including different forms, derivatives and extracts therefrom; tongkat ali, including different forms, derivatives and extracts therefrom; gamma aminobutyric acid, including different forms, derivatives and extracts therefrom; and/or tribulus terrestris, including different forms, derivatives and extracts therefrom; in addition to other related compounds and their derivatives; a terpene selected from one or more of borneol, caryophyllene, cineole/eucalyptol, delta3carene, limonene, linolool, myrcene, pinene, pulegone, d-limonene linalool, 1,8-cineole (eucalyptol), terpineol-4-ol, p-cymene, Δ-3-carene, β-sitosterol, or β-caryophyllene.cannflavin A, apigenin, quercetin or the like; a natural oil selected from one or more of vegetable oil, peanut oil, canola oil, sunflower oil, palm oil, walnut oil, safflower oil, grapeseed oil, flaxseed oil, avocado oil, coconut oil, olive oil, and the like; a sweetener selected from one or more of a sugar, glycerine, corn syrup, stevia, acesulfame potassium, aspartame, cyclamate, mogrosides, sucralose, maltodextrin, a sugar alcohol, and the like; salt, a thickening agent or stabilizer selected from one or more of xanthum gum, an alginate, agar, carrageen, cellulose and cellulose derivatives, gelatin, guar gum, gum Arabic, locust bean gum, pectin, a starch, carrageenan, pectin, gelatin, a sulfonate, and the like; and a flavorant selected from one or more of spearmint, corn mint, herbal mint, peppermint, wintergreen, citrus grove, orange, lime, lemon, tangerine, mandarin, coffee flavor, espresso oil, spiced cayenne oil, mango, cinnamon, and other natural and artificial flavors within a apertured matrix pouch.
  • The adaptations provided in the matrix material permit pouches formed therefrom to release the bioactive ingredient from the fill material faster than the same matrix material without apertures. Often such a release rate permits 30%, 40%, 50%, 60%, 70%, 80%, 90%, or 100% of the bioactive ingredient from the pouch in 3, minutes, 4, minutes, 5, minutes, 6 minutes, 7, minutes, 8, minutes, 9, minutes, 10 minutes, 11, minutes, 12, minutes, 13, minutes, 14 minutes, 15, minutes, 16, minutes, 17, minutes, 18 minutes, 19 minutes or 20 minutes. Often such a release rate permits 30%, 40%, 50%, 60%, 70%, 80%, 90%, or 100% of the bioactive ingredient from the pouch in between 3 minutes to 20 minutes. Often such a release rate permits 30%, 40%, 50%, 60%, 70%, 80%, 90%, or 100% of the bioactive ingredient from the pouch in between 5 minutes to 15 minutes. Often such a release rate permits 30%, 40%, 50%, 60%, 70%, 80%, 90%, or 100% of the bioactive ingredient from the pouch in between 5 minutes to 10 minutes. Often such a release rate permits 30%, 40%, 50%, 60%, 70%, 80%, 90%, or 100% of the bioactive ingredient from the pouch in between 3 minutes to 20 minutes. Often such a release rate permits 30%, 40%, 50%, 60%, 70%, 80%, 90%, or 100% of the bioactive ingredient from the pouch in between 3 minutes to 15 minutes.
  • Kits comprising a plurality of pouches for administration of a cannabinoid as described herein contained within a sealed container are also included in the contemplated embodiments. Often this sealed container is a container that is sealed such that it prohibits entry of gas and liquid into the interior of the container when closed and sealed.
  • These and other embodiments, features, and advantages will become apparent to those skilled in the art when taken with reference to the following more detailed description of various exemplary embodiments of the present disclosure in conjunction with the accompanying drawings.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The skilled person in the art will understand that the drawings, described below, are for illustration purposes only.
  • FIG. 1 depicts a photo of an exemplary fibrous matrix material including apertures according to the present disclosure.
  • FIGS. 2A-2C depict an exemplary pouch formed of an aperture-containing fibrous matrix material. FIG. 2A depicts a side view of an exemplary pouch. FIG. 2B depicts a front view of an exemplary pouch. FIG. 2C depicts a rear view of an exemplary pouch.
  • FIG. 3 depicts results showing the reduction of the canabidol in an exemplary pouch and a conventional pouch as evaluated over time resident in the mouth of a test subject. The Y-axis depicts the total concentration of Canabidol remaining in the pouch and the X-axis depicts the amount of time resident in the mouth of a test subject.
  • FIG. 4 depicts additional results showing the reduction of the canabidol in an exemplary pouch and a conventional pouch as evaluated over time resident in the mouth of a test subject. The Y-axis depicts the total concentration of Canabidol remaining in the pouch and the X-axis depicts the amount of time resident in the mouth of a test subject.
  • DETAILED DESCRIPTION
  • For clarity of disclosure, and not by way of limitation, the detailed description of the invention is divided into the subsections that follow.
  • Unless defined otherwise, all technical and scientific terms used herein have the same meaning as is commonly understood by one of ordinary skill in the art to which this invention belongs. All patents, applications, published applications and other publications referred to herein are incorporated by reference in their entirety. If a definition set forth in this section is contrary to or otherwise inconsistent with a definition set forth in the patents, applications, published applications and other publications that are herein incorporated by reference, the definition set forth in this section prevails over the definition that is incorporated herein by reference.
  • As used herein, “a” or “an” means “at least one” or “one or more.” As such, “a” is intended to refer to a single unit as well as a plurality of units.
  • As used herein, the term “and/or” may mean “and,” it may mean “or,” it may mean “exclusive-or,” it may mean “one,” it may mean “some, but not all,” it may mean “neither,” and/or it may mean “both.”
  • As used herein, “aperture” refers to a hole or opening in a fibrous matrix material. In certain defined embodiments, “aperture” refers to a hole or opening in a fibrous matrix material that is of a different character than a gap between fibers in a woven or nonwoven fabric material. In these specific embodiments, naturally existing gaps between fibers within a weave or mat of a woven or nonwoven fabric material are excluded from the meaning of “aperture” as this term is used herein.
  • As used herein, “cannabinoids” refers to a family of natural products that usually contain a 1,1′-di-methyl-pyrane ring, a variedly derivatized aromatic ring and a variedly unsaturated cyclohexyl ring and their immediate chemical precursors.
  • Examples of cannabinoids contemplated here include cannabidiol (CBD); cannabinol; cannabigerol; cannabichromene; cannabidivarol; tetrahydrocannabidiol; tetrahydrocannabigerol; tetrahydrocannabichromene; tetrahydrocannabidivarol; Δ8-THC; carboxylic acid precursors of the foregoing; in addition to other related compounds and their derivatives. Cannabidiol (CBD), is one of at least 113 known phytocannabinoids found in the cannabis plant. CBD is one of the major phytocannabinoids in the cannabis plant, comprising a up to 40% of extracts.
  • As used herein, “terpene” refers to bomeol, caryophyllene, cineole/eucalyptol, delta3carene, limonene, linolool, myrcene, pinene, or pulegone, among other terpenes, which are a diverse group of organic hydrocarbons that are the building blocks of the cannabinoids. Certain examples include d-limonene linalool, 1,8-cineole (eucalyptol), α-pinene, terpineol-4-ol, p-cymene, bomeol, Δ-3-carene, β-sitosterol, β-myrcene, or β-caryophyllene.cannflavin A, apigenin, quercetin or pulegone. Over 100 different terpenes have been identified in the cannabis plant and while examples are noted above, these are non-limiting examples of the over 100 known terpenes contemplated herein.
  • Cannabis is a genus of flowering plants that includes three different species, Cannabis sativa, Cannabis indica and Cannabis ruderalis. The term “Cannabis plant(s)” encompasses wild type Cannabis and also variants thereof, including cannabis chemovars which naturally contain different amounts of the individual cannabinoids. Cannabis plants produce a unique family of terpeno-phenolic compounds called cannabinoids, which produce psychoactive effects. The two cannabinoids usually produced in greatest abundance are cannabidiol (CBD) and/or Δ9-tetrahydrocannabinol (THC), but only THC is psychoactive. Cannabis plants are categorized by their chemical phenotype or “chemotype,” based on the overall amount of THC produced, and on the ratio of THC to CBD. Although overall cannabinoid production is influenced by environmental factors, the THC/CBD ratio is genetically determined and remains fixed throughout the life of a plant. Non-drug plants produce relatively low levels of THC and high levels of CBD, while drug plants produce high levels of THC and low levels of CBD.
  • Cannabinoids are fat soluble and poorly soluble to insoluble in water. Poor aqueous solubility of many chemical entities represents a real challenge for the design of appropriate formulations aimed at enhancing oral bioavailability. By contrast, nicotine is a weak base (pKa of 8.0), it is primarily present in a non-ionised form in alkaline pH; thus nicotine is easily absorbed at normal to increased pH levels which are normal saliva conditions (Ciolino et al., J. Analytical Toxicol. 25:15-25 (2001)).
  • The isolation of cannabidiol from red oil obtained from hemp was initially described by Adams et al., J.A.C.S. 62:196-200 (1940); U.S. Pat. No. 2,304,669. This process involved treatment of purified oil with 3,5-dinitrobenzoyl chloride and the formation of cannabidiol bis-3,5-dinitrobenzoate. Ammonolysis of the benzoate yielded cannabidiol in pure form.
  • A variety of other solvent-based cannabinoid extraction and separation techniques are known in the art to purify cannabinoid from the cannabis plant and separate cannabinoid from Δ9-THC.
  • The present disclosure provides cannabinoid-containing pouches formed of a nonwoven or woven fiber matrix and characterized by the presence of apertures and methods of manufacturing such pouches.
  • The present disclosure also provides optionally cannabinoid-containing pouches formed of a nonwoven or woven fiber matrix and characterized by the presence of apertures and methods of manufacturing such pouches. In such embodiments, the pouch contains a cannabinoid, a terpene; kava root, including different forms, derivatives and extracts therefrom, such as those including a kavalactone; chili pepper, including different forms, derivatives and extracts therefrom, such as those including capsicum; kanna/sceletium tortuosum, including different forms, derivatives and extracts therefrom; yerba mate, including different forms, derivatives and extracts therefrom such as those derived from the holly genus ilex; guayusa, including different forms, derivatives and extracts therefrom; kratom, including different forms, derivatives and extracts therefrom such as those derived from mitragyna speciosa; mushroom, including different forms, derivatives and extracts therefrom such as those including psilocybin and extracts thereof; melatonin, including different forms, derivatives and extracts therefrom; spilanthes acmela, including derivatives and extracts therefrom; coenzyme-Q10; pyrroloquinoline quinone, including different forms, derivatives and extracts therefrom; nicotinamide riboside, including different forms, derivatives and extracts therefrom; ascorbic acid, including different forms, derivatives and extracts therefrom; cobalamins, including different forms, derivatives and extracts therefrom; pyndoxal-5-phosphate, including different forms, derivatives and extracts therefrom; l-theanine, including different forms, derivatives and extracts therefrom; caffeine, including different forms, derivatives and extracts therefrom; Rhodiola rosea, including different forms, derivatives and extracts therefrom; choline, including different forms, derivatives and extracts therefrom; pine pollen extract, including different forms, derivatives and extracts therefrom; deer antler velvet, including different forms, derivatives and extracts therefrom; gingko biloba, including different forms, derivatives and extracts therefrom; vinpocetine, including different forms, derivatives and extracts therefrom; bacopa monnieri, including different forms, derivatives and extracts therefrom; ganodennan lucidium, including different forms, derivatives and extracts therefrom; cordyceps sinesis, including different forms, derivatives and extracts therefrom; hericium erinaceus, including different forms, derivatives and extracts therefrom; creatine monohydrate, including different forms, derivatives and extracts therefrom; branched chain amino acids, including different forms, derivatives and extracts therefrom; guarana seed, including different forms, derivatives and extracts therefrom; panax ginseng root, including different forms, derivatives and extracts therefrom; sibering ginseng root, including different forms, derivatives and extracts therefrom; ashwaghanda, including different forms, derivatives and extracts therefrom; astralagus, including different forms, derivatives and extracts therefrom; curcurmin, including different forms, derivatives and extracts therefrom; maca, including different forms, derivatives and extracts therefrom; holy basil, including different forms, derivatives and extracts therefrom; schisandra, including different forms, derivatives and extracts therefrom; tongkat ali, including different forms, derivatives and extracts therefrom; gamma aminobutyric acid, including different forms, derivatives and extracts therefrom; tribulus terrestris, including different forms, derivatives and extracts therefrom; and/or combinations of two or more of the foregoing.
  • A fill material is included in the exemplary pouches of the present disclosure. This fill material frequently comprises at least one cannabinoid as a bioactive ingredient. This fill material also often frequently includes at least one terpene as a bioactive ingredient. This fill material also often frequently includes another bioactive ingredient described herein in replacement of or additional to the at least one cannabinoid and/or terpene. This fill material also often comprises at least one additional ingredient that imparts a flavor and/or an aroma as an active component. This fill material also often comprises at least one cannabinoid, at least one terpene, and an additional ingredient that imparts a flavor and an aroma as active components. This fill material also often comprises at least one cannabinoid and an additional ingredient that imparts a flavor and an aroma as active components. This fill material also often comprises at least one terpene and an additional ingredient that imparts a flavor and an aroma as active components.
  • In frequently included embodiments, the fill material comprises a ground base material that is dosed, infused or combined with an active component. Often this fill material comprises coconut coir, which is the pith component of the coconut between the hard internal shell and the outer coat of the coconut. When included, this base material is often included at a predetermined particulate size, which size is generally larger than the apertures in the matrix of the pouch. In certain exemplary embodiments, the fill material is a ground material such as ground coconut coir. Coconut coir has been surprisingly found by the inventors to have both a very absorbent nature and a relaxed release characteristic for the active components described herein. The fill material can be large or small particulate material, threads, fibers, slices, or another shape of a piece (or collection of pieces) of the core base material. Also often, the fill material is kenaf. Also often, the fill material is abaca. Also often, the fill material is flax. Also often, the fill material is hemp. Also often, the fill material is jute. Also often, the fill material is ramie. Also often, the fill material is sisal. Also often, the fill material is rice. Also often, the fill material is bamboo. Also often, the fill material is corn husk. Also often, the fill material is silk husk. Also often, the fill material is fruit skin. Also often, the fill material is straw. Also often, the fill material is soy. Also often, the fill material is mint leaf. Also often, the fill material is spearmint leaf. Also often, the fill material is lettuce leaf. Also often, the fill material is comprised of synthetic fibers. Also often, the fill material is comprised of animal-derived fibers. Also often, the fill material is comprised of kudzu root. Therefore, the fill material of the present disclosure can be large or small particulate material, threads, fibers, slices, or another shape of a piece (or collection of pieces) of the core base material, which base material is selected from one or more of the following: coconut coir, kenaf, abaca, flax, hemp, jute, ramie, sisal, rice, bamboo, corn husk, silk husk, fruit skin, straw, soy, mint leaf, spearmint leaf, lettuce leaf, synthetic fibers, animal-derived fibers, chitin, and kudzu root.
  • In certain embodiments the base material, such as coconut coir, is ground/milled to a mean particulate size of at or about 600 μm. Often the base material is ground to a mean particulate size of between about 800 μm to at or about 900 μm. Often the base material is ground to a mean particulate size of between about 900 μm to at or about 1500 μm. In processing different screen pore sizes may be utilized to further process the post-milled base material to ensure size consistency. For instance, in certain embodiments, the screen size is larger than the milled mean particulate size. In this regard, often the screen pore size is between about 800 μm to at or about 900 μm. Often the screen pore size is between about 900 μm to at or about 1500 μm. In certain embodiments, the base material is ground and optionally further processed to a mean particulate size of between about 600 μm to at or about 900 μm. In certain embodiments, the base material is ground and optionally further processed to a mean particulate size of between about 700 μm to at or about 800 μm. In certain embodiments, the base material is ground and optionally further processed to a mean particulate size of between about 800 μm to at or about 2000 μm. In certain embodiments, the base material is ground and optionally further processed to a mean particulate size of between about 900 μm to at or about 1500 μm. In related embodiments, over 50% of the base material has this particle size. More frequently, over 60% of the base material has this particle size. More frequently, over 70% of the base material has this particle size. Often, over 80% of the base material has this particle size. Also often, over 90% of the base material has this particle size. As noted, although coconut coir is exemplified, it is merely exemplary and not intended to be limiting as a base material. Other natural fibers, such as other cellulosic fibers, may be utilized. Additional materials may comprise the base material, for example the fill material comprises an absorbent natural fiber selected from one or more of coconut coir, kenaf, abaca, flax, hemp, jute, ramie, sisal, rice, bamboo, corn husk, silk husk, fruit skin, straw, soy, mint leaf, spearmint leaf, lettuce leaf, synthetic fibers, animal-derived fibers, chitin, kudzu root and the like, including combinations of two or more of the foregoing. Often beneficial characteristics of suitable base materials are those that are inert, biocompatible, have strong absorbent characteristics and release active components contained within or on the base material readily when in the oral environment or contacted with liquid such as saliva.
  • The material ground to form the base material is often generally sterilized prior to any additional processing steps to be sure the material is free from any inherent or processing-introduced bacterial contamination.
  • In exemplary pouch embodiments of the present disclosure a combination of active components and base material are combined as fill materials. Though referred to as “bioactive ingredients,” these are simply intended to refer to the collected ingredients utilized to incorporate with the base material. In certain embodiments, a CBD isolate or distillate, a terpene (often including a plurality of terpenes) is included with one or more natural oils, one or more sweeteners, a salt, a thickening agent or stabilizer, and ground coconut coir in a fill material. Also in certain embodiments, a pure form or an isolate or distillate of a cannabinoid, a terpene, kava root, a kavalactone, capsicum, kanna/sceletium tortuosum, yerba mate, holly genus ilex, guayusa, kratom, mitragyna speciosa, psilocybin, melatonin, spilanthes acmela, coenzyme-Q10, pyrroloquinoline quinone, nicotinamide riboside, ascorbic acid, a cobalamin, pyndoxal-5-phosphate, 1-theanine, caffeine, Rhodiola rosea, choline, pine pollen extract, deer antler velvet, gingko biloba, vinpocetine, bacopa monnieri, ganoderman lucidium, cordyceps sinesis, hericium erinaceus, creatine monohydrate, branched chain amino acids, guarana seed, panax ginseng root, sibering ginseng root, ashwaghanda, astralagus, curcumin, maca, holy basil, schisandra, tongkat ah, gamma aminobutyric acid, tribulus terrestris, and/or combinations of two or more of the foregoing is included with one or more natural oils, one or more sweeteners, a salt, a thickening agent or stabilizer, and ground coconut coir in a fill material. Also in certain embodiments, a pure form or an isolate or distillate of a cannabinoid, a terpene, kava root, a kavalactone, capsicum, kanna/sceletium tortuosum, yerba mate, holly genus ilex, guayusa, kratom, mitragyna speciosa, psilocybin, melatonin, spilanthes acmela, coenzyme-Q10, pyrroloquinoline quinone, nicotinamide riboside, ascorbic acid, a cobalamin, pyridoxal-5-phosphate, 1-theanine, caffeine, Rhodiola rosea, choline, pine pollen extract, deer antler velvet, gingko biloba, vinpocetine, bacopa monnieri, ganoderman lucidium, cordyceps sinesis, hericium erinaceus, creatine monohydrate, branched chain amino acids, guarana seed, panax ginseng root, sibering ginseng root, ashwaghanda, astralagus, curcurmin, maca, holy basil, schisandra, tongkat ali, gamma aminobutyric acid, tribulus terrestris, and/or combinations of two or more of the foregoing is included with one or more natural oils, one or more sweeteners, a salt, a thickening agent or stabilizer, and kenaf, abaca, flax, hemp, jute, ramie, sisal, rice, bamboo, corn husk, silk husk, fruit skin, straw, soy, mint leaf, spearmint leaf, lettuce leaf, synthetic fibers, animal-derived fibers, chitin, and/or kudzu root in a fill material.
  • In certain embodiments, the sweetener is often selected from one or more of a sugar, glycerine, corn syrup, stevia, acesulfame potassium, aspartame, cyclamate, mogrosides, sucralose, maltodextrin, monkfruit, erythritol, a sugar alcohol, and the like. In related embodiments, the natural oil is often selected from one or more of vegetable oil, peanut oil, canola oil, sunflower oil, palm oil, walnut oil, safflower oil, grapeseed oil, flaxseed oil, hempseed oil, avocado oil, coconut oil, olive oil, or the like.
  • In certain frequent embodiments, the fill material comprises an absorbent natural fiber selected from one or more of coconut coir, kenaf, abaca, flax, hemp, jute, ramie, sisal, rice, bamboo, corn husk, silk husk, fruit skin, straw, soy, mint leaf, spearmint leaf, lettuce leaf, synthetic fibers, animal-derived fibers, chitin, kudzu root and the like; a cannadbinoid selected from one or more of cannabidiol (CBD); cannabinol; cannabigerol; cannabichromene; cannabidivarol; tetrahydrocannabidiol; tetrahydrocannabigerol; tetrahydrocannabichromene; tetrahydrocannabidivarol; Δ8-THC; carboxylic acid precursors of the foregoing; in addition to other related compounds and their derivatives; a terpene selected from one or more of bomeol, caryophyllene, cineole/eucalyptol, delta3carene, limonene, linolool, myrcene, pinene, pulegone, d-limonene linalool, 1,8-cineole (eucalyptol), terpineol-4-ol, p-cymene, Δ-3-carene, β-sitosterol, or β-caryophyllene.cannflavin A, apigenin, quercetin or the like; a natural oil selected from one or more of vegetable oil, peanut oil, canola oil, sunflower oil, palm oil, walnut oil, safflower oil, grapeseed oil, flaxseed oil, avocado oil, coconut oil, olive oil, and the like; a sweetener selected from one or more of a sugar, glycerine, corn syrup, stevia, acesulfame potassium, aspartame, cyclamate, mogrosides, sucralose, maltodextrin, a sugar alcohol, and the like; salt, a thickening agent or stabilizer selected from one or more of xanthum gum, an alginate, agar, carrageen, cellulose and cellulose derivatives, gelatin, guar gum, gum Arabic, locust bean gum, pectin, a starch, carrageenan, pectin, gelatin, a sulfonate, and the like; and a flavorant selected from one or more of spearmint, corn mint, herbal mint, peppermint, wintergreen, citrus grove, orange, lime, lemon, tangerine, mandarin, coffee flavor, espresso oil, spiced cayenne oil, mango, cinnamon, and other natural and artificial flavors within a apertured matrix pouch. In certain frequent embodiments, the fill material comprises coconut coir, CBD distillate, a terpene, a natural oil, a sweetener, salt, and a stabilizer within an apertured matrix pouch. As described herein, the bioactive ingredient may be replaced with or additional to other bioactive ingredients described herein. Moreover, as described herein, the core base material may be replaced with or additional to other base material described herein.
  • In certain frequent embodiments, the bioactive ingredient comprises at or about 5% to at or about 20% w/w of the total fill material of the apertured pouch. In certain frequent embodiments, the bioactive ingredient (e.g., a cannabinoid) comprises between about 9/o-11% of the total fill material of the apertured pouch. In certain frequent embodiments, the bioactive ingredient comprises at or about 10% of the total fill material of the apertured pouch. In certain frequent embodiments, the bioactive ingredient comprises at or about 5%, 6%, 7%, 8%, 9%, 10%, 11%, 12%, 13%, 14%, 15%, 16%, 17%, 18%, 19%, or 20% of the total fill material of the apertured pouch. In certain frequent embodiments, the bioactive ingredient comprises above 20% of the total fill material of the apertured pouch, though in such embodiments the bioactive ingredient often comprises a non-isolated or non-concentrated form of the bioactive ingredient. In certain frequent embodiments the bioactive ingredient comprises water dispersible bioactive ingredient. In other embodiments the bioactive ingredient comprises naturally occurring bioactive ingredient. In other embodiments the bioactive ingredient comprises a blend of water dispersible bioactive ingredient and naturally occurring bioactive ingredient.
  • In certain embodiments the natural oil comprises at or about 5% to at or about 20% w/w of the total fill material of the apertured pouch. Often the natural oil is incorporated in the fill material at or about the same concentration of the bioactive agent.
  • In one exemplary embodiment, the bioactive agent (e.g., CBD) is mixed with maltodextrin, sunflower lecithin and the resulting emulsion is dried to remove water. This bioactive agent formulation is often used in exemplary embodiments to incorporate into coconut coir for the fill material. In certain embodiments, this fill material is further processed to blend in and incorporate additional ingredients such as an additional oil, salt, a sweetener, a terpene, a flavorant, and a stabilizer, then left to cure for a period of time prior to filling an exemplary pouch. Curing time often varies but is frequently between 24 hours to 72 hours. In certain embodiments, the curing time is at or about 48 hours.
  • According to the present disclosure the matrix material is prepared and shaped into a pouch by bending a flat sheet of matrix material into a U-shape, sealing the sides of the “U” to create a tube, sealing one lateral edge of the tube to create an open-topped pocket, and then sealing the open top after a fill material is introduced to the pocket. This process, including matrix material preparation, aperture introduction to the matrix material, sizing/sectioning of the apertured matrix material into a size for pouch formation, movement of raw materials, formation of the apertured matrix material pocket, filling the apertured matrix material pocket and sealing the pocket to form an apertured pouch of the present disclosure may be manual or automated. This process is most frequently automated. The matrix material sealing process to form the “U” and then closure of the top is often dependent on the type of material forming the matrix, though combined heat and pressure is a preferred method. The portion of the sheet of matrix material forming an exemplary pouch that is used to form the seal on the two or more (e.g., 3 or 4) sides of the eventual pouch is referred to herein as the sealing lip of the matrix material.
  • Materials useful in forming the matrix include viscose, cellulose, polyester, cotton, hemp, cellulose acetate, polylactic acid, polypropylene, modal cellulose, Tencel, or another material. A variety of additional materials may be utilized with the caveat that such materials are non-reactive and/or do not degrade in the oromucosal environment.
  • The aperture size in the matrix material of the exemplary pouches often will range from between about 400 μm to about 800 μm in diameter. In the most frequent embodiments, the aperture is a circular aperture. In certain embodiments, the aperture size ranges between about 500 μm to about 800 μm in diameter. In certain embodiments, the aperture size ranges between about 600 μm to about 800 μm in diameter. In certain embodiments, the aperture size ranges between about 700 μm to about 800 μm in diameter. In certain embodiments, the aperture size ranges between about 600 μm to about 700 μm in diameter. In certain embodiments, the aperture size ranges between about 400 μm to about 600 μm in diameter. In certain embodiments, the aperture size in the matrix material of the exemplary pouches ranges between about 750 μm to about 850 μm in diameter. In certain embodiments, the aperture size in the matrix material of the exemplary pouches is about 800 μm in diameter. In certain embodiments, the aperture size is greater than 1000 μm in diameter. In certain frequent embodiments, each of the plurality of apertures is defined by an aperture size of between at or about 1000 μm to at or about 1500 μm in diameter. In certain frequent embodiments, each of the plurality of apertures is defined by an aperture size of between at or about 1500 μm to at or about 2000 μm in diameter. In certain frequent embodiments, each of the plurality of apertures is defined by an aperture size of between at or about 2000 μm to at or about 5000 μm in diameter. In certain frequent embodiments, each of the plurality of apertures is defined by an aperture size of between at or about 5000 μm to at or about 10,000 μm in diameter. In certain embodiments, the aperture size of at least 50% of the apertures present in the matrix material of the exemplary pouches is at or about 400 μm in diameter, at or about 450 μm in diameter, at or about 500 μm in diameter, at or about 550 μm in diameter, at or about 600 μm in diameter, at or about 650 μm in diameter, at or about 700 μm in diameter, at or about 750 μm in diameter, at or about 800 μm in diameter, at or about 850 μm in diameter, at or about 900 μm in diameter, at or about 950 μm in diameter, at or about 1000 μm in diameter, at or about 425 μm in diameter, at or about 475 μm in diameter, at or about 525 μm in diameter, at or about 575 μm in diameter, at or about 625 μm in diameter, at or about 675 μm in diameter, at or about 725 μm in diameter, at or about 775 μm in diameter, at or about 825 μm in diameter, at or about 875 μm in diameter, at or about 925 μm in diameter, at or about 975 μm in diameter. In certain embodiments, the aperture size of at least 50% of the apertures present in the matrix material of the exemplary pouches is at or about 1000 μm in diameter, between at or about 1000 μm to at or about 1500 μm in diameter, between at or about 1500 μm to at or about 2000 μm in diameter, between at or about 2000 μm to at or about 5000 μm in diameter, or between at or about 5000 μm to at or about 10,000 μm in diameter. In certain related embodiments, the above-noted aperture size is for at least 60% of the apertures present in the matrix material of the exemplary pouches. In certain related embodiments, the above-noted aperture size is for at least 70% of the apertures present in the matrix material of the exemplary pouches. In certain related embodiments, the above-noted aperture size is for at least 75% of the apertures present in the matrix material of the exemplary pouches. In certain related embodiments, the above-noted aperture size is for at least 80% of the apertures present in the matrix material of the exemplary pouches. In certain related embodiments, the above-noted aperture size is for at least 85% of the apertures present in the matrix material of the exemplary pouches. In certain related embodiments, the above-noted aperture size is for at least 90% of the apertures present in the matrix material of the exemplary pouches. In certain related embodiments, the above-noted aperture size is for at least 95% of the apertures present in the matrix material of the exemplary pouches. In certain related embodiments, the above-noted aperture size is for at least 100% of the apertures present in the matrix material of the exemplary pouches.
  • In certain embodiments the pouch is comprised of a matrix material that contains apertures on at least one side or portion and another portion of matrix material that lacks defined apertures. In certain embodiments the pouch includes a section with apertures and a section that lacks apertures. Often in such embodiments, the pouch is adapted for use or particular placement in the mouth of a user, including the portion or side of the pouch having apertures facing away from the oromucosal surface. In such an embodiment, the portion of the pouch that lacks apertures may be contacting or facing the oromucosal surface. Alternatively, in other embodiments, the pouch is adapted for use or particular placement in the mouth of a user, including the portion or side of the pouch having apertures facing toward, or contacting, the oromucosal surface. In such an embodiment, the portion of the pouch that lacks apertures may be facing away from not contacting the oromucosal surface.
  • Referring now to the drawings, a pouch formed from a fibrous matrix according to an embodiment of the present disclosure is shown in FIG. 1.
  • An exemplary pouch formed of the aperture-containing fibrous matrix material is depicted in FIGS. 2A-2C. FIG. 2A depicts a side view of an exemplary pouch. FIG. 2B depicts a front view of an exemplary pouch. FIG. 2C depicts a rear view of an exemplary pouch. The pouch includes a top face (A) and an opposing bottom face (B). The top face is bound with the bottom face using seals along the bottom face (40 b) and along the opposing lateral edges (40 a). Thus, a seal spans three sides of the pouch in frequent embodiments since the exemplary pouch is formed from a single contiguous fibrous matrix sheet. This seal is often formed by aligning folded edges (sealing lip(s)) of the fibrous matrix sheet and applying pressure and heat to the sealing lip(s). Less frequently an adhesive is used. The seal along the bottom face (40 b) could also be shifted to an edge of the pouch instead of running down the middle of the bottom face (B). The seal along the bottom face (40 b) is shown for example to show another manner of forming a seal between two edges of the fibrous matrix material. In practice, formation of the seal along the bottom face (40 b) creates a tube. Sealing one of the two lateral edges (40 a) creates a pocket. If done in sequence, sealing the other of the two lateral edges (40 a) creates a pouch.
  • As described herein, the pouch generally contains fill material comprising a bioactive ingredient such as a cannabinoid or another bioactive ingredient described herein. In a process of manufacturing the presently described pouches, the added step of filling the pocket with a fill material is included prior to sealing the other of the two lateral edges (40 a) to create the pouch.
  • In the most frequent embodiments, the fibrous matrix is composed of non-woven fibers and is formed with a plurality of apertures, thus the fibrous matrix is referred to as an apertured fibrous matrix. In other embodiments, the fibrous matrix is composed of woven fibers and is formed with a plurality of apertures.
  • Forming the material for the fibrous matrix may be by conventional or other procedures. For example, conventional non-woven hydroentanglement processes and reagents may be used to form the fibrous matrix, thereafter the fibrous matrix is embossed to form the apertures. Plate or roll based manufacturing may be utilized.
  • Alternatively, the fibrous matrix may be formed of electrospun fibers. Needle or needleless electrospinning may be utilized in such methods to form at least a portion of the fibrous matrix. In other alternative embodiments, the fill material may comprise electrospun fibers such as electrospun nanofibers comprising a bioactive ingredient contemplated herein. In practice when the electrospun nanofibers comprise a bioactive ingredient (e.g., CBD and/or a terpene) contemplated herein, the nanofibers are formed on what is or will become the inside of the apertured matrix material of the pouch. In such embodiments, it has been found that providing a strip/mat of nanofibers on and within the boundaries of a pre-formed apertured matrix material is suitable. Generally, the width of the nanofiber comprising the bioactive ingredient (e.g., CBD) is most suitable if it lies within what will be the true inside of the to-be-formed pouch such that a sealing lip of matrix material is left uncovered with nanofiber. In certain embodiments, the matrix material is at or about 40 mm in width and the electrospun nanofiber comprising the bioactive ingredient is about 10 mm to 20 mm in width and positioned in the center of the matrix material, leaving at or about 10 mm on two sides for use as the sealing lip. As the heat utilized to seal pouches formed with exemplary matrix materials to is often at a level that would negatively affect the integrity of bioactive ingredients, placement of the electrospun nanofiber comprising the bioactive ingredient within and outside of the sealing lip has been found to be advantageous
  • The aperture shape is often circular. Alternatively, in other embodiments the aperture shape is a shape other than circular, including square, rectangle, oval, triangle, diamond, or another geometric shape. In the most frequent embodiments when the pouch is formed of a single sheet of fibrous matrix material the aperture shape is a single shape across the entirety of the pouch. Also often, two or more different shaped apertures are included in the same pouch. In certain frequently included embodiments, each of the plurality of apertures is pentagonal, hexagonal, heptagonal, or octagonal in shape. In certain frequently included embodiments, each of the plurality of apertures is polygonal in shape. In certain frequently included embodiments, each of the plurality of apertures is non-polygonal in shape. In certain frequently included embodiments, each of the plurality of apertures is either polygonal or non-polygonal in shape. In certain frequently included embodiments, the pouch comprises a plurality of apertures, where the apertures are not the same shape. In such embodiments, two or more different shaped apertures are including, including one or more different polygonal shapes and/or one or more different non-polygonal shapes. In related embodiments, each of the plurality of apertures is selected from oval, circular, square, rectangular, or another polygon shape or non-polygon shape, where two or more apertures in the pouch are differently shaped.
  • In certain embodiments the apertured fibrous matrix includes between at or about 2 mm to at or about 4 mm between apertures of an exemplary pouch. In certain embodiments the distance between apertures in the fibrous matrix of an exemplary pouch is at or about 3.5 mm. In other embodiments, the apertured fibrous matrix of an exemplary pouch includes between at or about 1 mm to at or about 10 mm between apertures. In certain embodiments the distance between apertures of an exemplary pouch in the fibrous matrix is at or about 1.5 mm, 2.5 mm, 3.5 mm, 4.5 mm, 5.5 mm, 6.5 mm, 7.5 mm, 8.5 mm, or 9.5 mm. In certain embodiments the distance between apertures in the fibrous matrix of an exemplary pouch is at or about 2 mm, 3 mm, 4 mm, 5 mm, 6 mm, 7 mm, 8 mm, or 9 mm. In certain embodiments the apertured fibrous matrix includes a varied distance between apertures, which varied distance is at or about 2 mm to at or about 4 mm between apertures in one part of the fibrous matrix, and at or about 4 mm to at or about 10 mm in one part of the fibrous matrix of an exemplary pouch.
  • When viewed on two axes, the distances between apertures is understood as an aperture density in the matrix. The aperture density is defined by the number of apertures per square centimeter. In frequent embodiments the aperture density is between 1 to 100. In certain embodiments, the aperture density is less than 1. In certain other embodiments, the aperture density is greater than 100. In certain embodiments, the aperture density is between 1 to 50. In certain embodiments, the aperture density is between 1 to 90. In certain embodiments, the aperture density is between 10 to 90. In certain embodiments, the aperture density is between 20 to 90. In certain embodiments, the aperture density is between 30 to 90. In certain embodiments, the aperture density is between 40 to 90. In certain embodiments, the aperture density is between 50 to 90. In certain embodiments, the aperture density is between 60 to 95. In certain embodiments, the aperture density is between 70 to 95. In certain embodiments, the aperture density is between 20 to 80. In certain embodiments, the aperture density is between 10 to 80. In certain embodiments, the aperture density is between 10 to 70. In certain embodiments, the aperture density is between 10 to 60. In certain embodiments, the aperture density is between 10 to 50. In certain embodiments, the aperture density is between 20 to 70. In certain embodiments, the aperture density is between 30 to 80. In certain embodiments, the aperture density is between 30 to 70. In certain embodiments, the aperture density is at or about 1, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, or 100.
  • The arrangement and the characteristics of the apertures in the apertured fibrous matrix provide a variety of advantages. For example, the apertured fibrous matrix provides an increased rate of release of bioactive ingredients through the apertured fibrous matrix, without a loss of substrate material contained in the pouch. Thus, bioactive ingredients can solubilize and pass through the apertures without loss of the substrate containing the bioactive ingredients.
  • In addition, when comparing fibrous matrix of a pouch lacking apertures with an apertured fibrous matrix, the apertured fibrous matrix is more flexible. As such, pouches comprised of apertured fibrous matrix are more conformable in the mouth of a subject using the pouch. This enhances flexibility in oromucosal placement options.
  • The rate of release of bioactive ingredient constituents (e.g., CBD, tetrahydrocannabinol, terpene, psilocybin, etc.) from an exemplary pouch formed from the apertured fibrous matrix was tested and compared to the rate of release of bioactive ingredient constituents from a pouch formed from matrix material lacking apertures. In this example, the bioactive ingredient was a cannabinoid. The results are set forth in FIGS. 3 and 4.
  • In this experiment, the following pouches were used: an exemplary pouch formed from the apertured fibrous matrix containing a known amount of water dispersible cannabinoids; and a pouch formed from matrix material lacking apertures but also containing a known amount of water dispersible cannabinoids. Multiple such pouches were prepared, each to be used in a different time duration experiment. The concentration of cannabinoid in the pouch was measured prior to placement in vivo in the oromucosal environment of a subject and at defined time periods after being placed in the oromucosal environment of the subject. For example, a pouch was placed in the mouth of the subject and removed one minute later and the cannabinoids remaining in the pouch were measured. Similarly, a different pouch was placed in the mouth of the subject and removed five minutes later and the cannabinoids remaining in the pouch were measured. Similarly, a different pouch was placed in the mouth of the subject and removed ten minutes later and the cannabinoids remaining in the pouch were measured. This process was repeated for both exemplary pouches formed from the apertured fibrous matrix cannabinoids and pouches formed from matrix material lacking apertures across the time periods noted in he Figures.
  • Since the present experiments were essentially multiple experiments run in parallel, the variability of the curves in FIGS. 2 & 3 is partially explained, particularly with regard to the apparent “rise” in CBD concentrations remaining in the pouch in the prior pouch at the 5 minute and 30 minute time periods. While not intending to be bound by any specific theory of operation, this in fact was not a rise in that CBD did not return to the pouch after leaving it, but is rather an artifact of the separate use of multiple identically prepared pouches. Attempts were made to reduce variability by subject selection, timing mode, accuracy in pouch preparation, consistency in chromatography, storage and transport of used pouches, and other aspects.
  • The results of liquid chromatography analysis of the pouches are set forth in FIGS. 3 and 4. In both FIGS. 3 and 4, the Y-axis depicts the total concentration of Canabidol remaining in the pouch and the X-axis depicts the amount of time resident in the mouth of a test subject.
  • These results indicate that cannabinoids are more rapidly released from a pouch formed from apertured fibrous matrix according to the present disclosure than a pouch formed from a standard fibrous matrix lacking apertures.
  • A similar experimental design is prepared and evaluated for a terpene as the bioactive ingredient.
  • A similar experimental design is prepared and evaluated for kava root/kavalactone as the bioactive ingredient.
  • A similar experimental design is prepared and evaluated for chili pepper extract/capsicum as the bioactive ingredient.
  • A similar experimental design is prepared and evaluated for kanna/sceletium tortuosum as the bioactive ingredient.
  • A similar experimental design is prepared and evaluated for yerba mate as the bioactive ingredient.
  • A similar experimental design is prepared and evaluated for the holly genus ilex as the bioactive ingredient.
  • A similar experimental design is prepared and evaluated for guayusa as the bioactive ingredient.
  • A similar experimental design is prepared and evaluated for kratom/mitragyna speciosa as the bioactive ingredient.
  • A similar experimental design is prepared and evaluated for mushroom extract as the bioactive ingredient.
  • A similar experimental design is prepared and evaluated for psilocybin as the bioactive ingredient.
  • A similar experimental design is prepared and evaluated for melatonin as the bioactive ingredient.
  • A similar experimental design is prepared and evaluated for spilanthes acmela as the bioactive ingredient.
  • A similar experimental design is prepared and evaluated for coenzyme-Q10 as the bioactive ingredient.
  • A similar experimental design is prepared and evaluated for pyrroloquinoline quinone as the bioactive ingredient.
  • A similar experimental design is prepared and evaluated for nicotinamide riboside as the bioactive ingredient.
  • A similar experimental design is prepared and evaluated for ascorbic acid as the bioactive ingredient.
  • A similar experimental design is prepared and evaluated for a cobalamin as the bioactive ingredient.
  • A similar experimental design is prepared and evaluated for pyridoxal-5-phosphate as the bioactive ingredient.
  • A similar experimental design is prepared and evaluated for 1-theanine as the bioactive ingredient.
  • A similar experimental design is prepared and evaluated for caffeine as the bioactive ingredient.
  • A similar experimental design is prepared and evaluated for Rhodiola rosea as the bioactive ingredient.
  • A similar experimental design is prepared and evaluated for choline as the bioactive ingredient.
  • A similar experimental design is prepared and evaluated for pine pollen extract as the bioactive ingredient.
  • A similar experimental design is prepared and evaluated for deer antler velvet as the bioactive ingredient.
  • A similar experimental design is prepared and evaluated for gingko biloba as the bioactive ingredient.
  • A similar experimental design is prepared and evaluated for vinpocetine as the bioactive ingredient.
  • A similar experimental design is prepared and evaluated for bacopa monnieri as the bioactive ingredient.
  • A similar experimental design is prepared and evaluated for ganodennan lucidium as the bioactive ingredient.
  • A similar experimental design is prepared and evaluated for cordyceps sinesis as the bioactive ingredient.
  • A similar experimental design is prepared and evaluated for hericium erinaceus as the bioactive ingredient.
  • A similar experimental design is prepared and evaluated for creatine monohydrate as the bioactive ingredient.
  • A similar experimental design is prepared and evaluated for branched chain amino acids as the bioactive ingredient.
  • A similar experimental design is prepared and evaluated for guarana seed as the bioactive ingredient.
  • A similar experimental design is prepared and evaluated for panax ginseng root as the bioactive ingredient.
  • A similar experimental design is prepared and evaluated for sibering ginseng root as the bioactive ingredient.
  • A similar experimental design is prepared and evaluated for ashwaghanda as the bioactive ingredient.
  • A similar experimental design is prepared and evaluated for astralagus as the bioactive ingredient.
  • A similar experimental design is prepared and evaluated for curcumin as the bioactive ingredient.
  • A similar experimental design is prepared and evaluated for maca as the bioactive ingredient.
  • A similar experimental design is prepared and evaluated for holy basil as the bioactive ingredient.
  • A similar experimental design is prepared and evaluated for schisandra as the bioactive ingredient.
  • A similar experimental design is prepared and evaluated for tongkat ali as the bioactive ingredient.
  • A similar experimental design is prepared and evaluated for gamma aminobutyric acid as the bioactive ingredient.
  • A similar experimental design is prepared and evaluated for tribulus terrestris as the bioactive ingredient.
  • A similar experimental design is prepared and evaluated for a bioactive active agents comprising two or more bioactive ingredients described herein.
  • In one embodiment, the apertured fibrous matrix is configured such that a pouch formed from the apertured fibrous matrix has a release rate of a bioactive ingredient (e.g., CBD, tetrahydrocannabinol, terpene, psilocybin, etc.) that is at least 50% faster, when measured from 0 to 60 seconds compared to a pouch formed from a standard fibrous matrix lacking apertures, for example, a pouch formed from the apertured fibrous matrix has release rate that is at least 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 100%, 105%, 110%, 115%, 120%, 125%, 130%, 135%, 140%, 145%, 150%, 155%, 160%, 165%, 170%, 175%, 180%, 185%, 190%, 195% or 200% faster than the release rate of a pouch formed from standard fibrous matrix lacking apertures when measured from 0 to 60 seconds. In certain embodiments, the release rate of a bioactive ingredient (e.g., CBD, tetrahydrocannabinol, terpene, psilocybin, etc.) over 1 minute to 30 minutes is between 3 to 5 times faster in a pouch formed of the apertured fibrous matrix compared to a pouch formed from a standard fibrous matrix lacking apertures.
  • While the release characteristics measured and noted herein are in connection with a cannabinoid, namely CBD, the same surprisingly increased release characteristics exist in connection with terpene and flavor. The flavor is perceived as more intense for the same fill composition used in a pouch formed of the apertured fibrous matrix versus in a pouch formed of a standard fibrous matrix lacking apertures. In certain embodiments, the release rate of a terpene or a composed flavor characteristic over 1 minute to 30 minutes is between 3 to 5 times faster in a pouch formed of the apertured fibrous matrix compared to a pouch formed from a standard fibrous matrix lacking apertures.
  • The results discussed above in connection with the apertured fibrous matrix comprised of viscose demonstrate that the size and concentration of the apertures substantially increase the release of bioactive ingredients in comparison to standard fibrous matrix lacking apertures. The size of the apertures are also adapted to retain physical substrate in the pouch.
  • In one embodiment a pouch for administration of a bioactive ingredient is provided, wherein the bioactive ingredient containing fill material comprises cannabidiol, one or more of coconut coir, kenaf, abaca, flax, hemp, jute, ramie, sisal, rice, bamboo, corn husk, silk husk, fruit skin, straw, soy, mint leaf, spearmint leaf, lettuce leaf, synthetic fibers, animal-derived fibers, chitin, and kudzu root, and optionally one or more of a natural oil, a sweetener, a stabilizer or a flavorant.
  • In another embodiment a pouch for administration of a bioactive ingredient is provided, wherein the bioactive ingredient containing fill material comprises kava root/kavalactone, one or more of coconut coir, kenaf, abaca, flax, hemp, jute, ramie, sisal, rice, bamboo, corn husk, silk husk, fruit skin, straw, soy, mint leaf, spearmint leaf, lettuce leaf, synthetic fibers, animal-derived fibers, chitin, and kudzu root, and optionally one or more of a natural oil, a sweetener, a stabilizer or a flavorant.
  • In another embodiment a pouch for administration of a bioactive ingredient is provided, wherein the bioactive ingredient containing fill material comprises chili pepper extract/capsicum, one or more of coconut coir, kenaf, abaca, flax, hemp, jute, ramie, sisal, rice, bamboo, corn husk, silk husk, fruit skin, straw, soy, mint leaf, spearmint leaf, lettuce leaf, synthetic fibers, animal-derived fibers, chitin, and kudzu root, and optionally one or more of a natural oil, a sweetener, a stabilizer or a flavorant.
  • In another embodiment a pouch for administration of a bioactive ingredient is provided, wherein the bioactive ingredient containing fill material comprises kanna/sceletium tortuosum, one or more of coconut coir, kenaf, abaca, flax, hemp, jute, ramie, sisal, rice, bamboo, corn husk, silk husk, fruit skin, straw, soy, mint leaf, spearmint leaf, lettuce leaf, synthetic fibers, animal-derived fibers, chitin, and kudzu root, and optionally one or more of a natural oil, a sweetener, a stabilizer or a flavorant.
  • In another embodiment a pouch for administration of a bioactive ingredient is provided, wherein the bioactive ingredient containing fill material comprises yerba mate, one or more of coconut coir, kenaf, abaca, flax, hemp, jute, ramie, sisal, rice, bamboo, corn husk, silk husk, fruit skin, straw, soy, mint leaf, spearmint leaf, lettuce leaf, synthetic fibers, animal-derived fibers, chitin, and kudzu root, and optionally one or more of a natural oil, a sweetener, a stabilizer or a flavorant.
  • In another embodiment a pouch for administration of a bioactive ingredient is provided, wherein the bioactive ingredient containing fill material comprises holly genus ilex, one or more of coconut coir, kenaf, abaca, flax, hemp, jute, ramie, sisal, rice, bamboo, corn husk, silk husk, fruit skin, straw, soy, mint leaf, spearmint leaf, lettuce leaf, synthetic fibers, animal-derived fibers, chitin, and kudzu root, and optionally one or more of a natural oil, a sweetener, a stabilizer or a flavorant.
  • In another embodiment a pouch for administration of a bioactive ingredient is provided, wherein the bioactive ingredient containing fill material comprises guayusa, one or more of coconut coir, kenaf, abaca, flax, hemp, jute, ramie, sisal, rice, bamboo, corn husk, silk husk, fruit skin, straw, soy, mint leaf, spearmint leaf, lettuce leaf, synthetic fibers, animal-derived fibers, chitin, and kudzu root, and optionally one or more of a natural oil, a sweetener, a stabilizer or a flavorant.
  • In another embodiment a pouch for administration of a bioactive ingredient is provided, wherein the bioactive ingredient containing fill material comprises kratom/mitragyna speciosa, one or more of coconut coir, kenaf, abaca, flax, hemp, jute, ramie, sisal, rice, bamboo, corn husk, silk husk, fruit skin, straw, soy, mint leaf, spearmint leaf, lettuce leaf, synthetic fibers, animal-derived fibers, chitin, and kudzu root, and optionally one or more of a natural oil, a sweetener, a stabilizer or a flavorant.
  • In another embodiment a pouch for administration of a bioactive ingredient is provided, wherein the bioactive ingredient containing fill material comprises mushroom extract such as psilocybin, one or more of coconut coir, kenaf, abaca, flax, hemp, jute, ramie, sisal, rice, bamboo, corn husk, silk husk, fruit skin, straw, soy, mint leaf, spearmint leaf, lettuce leaf, synthetic fibers, animal-derived fibers, chitin, and kudzu root, and optionally one or more of a natural oil, a sweetener, a stabilizer or a flavorant.
  • In another embodiment a pouch for administration of a bioactive ingredient is provided, wherein the bioactive ingredient containing fill material comprises melatonin, one or more of coconut coir, kenaf, abaca, flax, hemp, jute, ramie, sisal, rice, bamboo, corn husk, silk husk, fruit skin, straw, soy, mint leaf, spearmint leaf, lettuce leaf, synthetic fibers, animal-derived fibers, chitin, and kudzu root, and optionally one or more of a natural oil, a sweetener, a stabilizer or a flavorant.
  • In another embodiment a pouch for administration of a bioactive ingredient is provided, wherein the bioactive ingredient containing fill material comprises spilanthes acmela, one or more of coconut coir, kenaf, abaca, flax, hemp, jute, ramie, sisal, rice, bamboo, corn husk, silk husk, fruit skin, straw, soy, mint leaf, spearmint leaf, lettuce leaf, synthetic fibers, animal-derived fibers, chitin, and kudzu root, and optionally one or more of a natural oil, a sweetener, a stabilizer or a flavorant.
  • In another embodiment a pouch for administration of a bioactive ingredient is provided, wherein the bioactive ingredient containing fill material comprises coenzyme-Q10, one or more of coconut coir, kenaf, abaca, flax, hemp, jute, ramie, sisal, rice, bamboo, corn husk, silk husk, fruit skin, straw, soy, mint leaf, spearmint leaf, lettuce leaf, synthetic fibers, animal-derived fibers, chitin, and kudzu root, and optionally one or more of a natural oil, a sweetener, a stabilizer or a flavorant.
  • In another embodiment a pouch for administration of a bioactive ingredient is provided, wherein the bioactive ingredient containing fill material comprises nicotinamide riboside, one or more of coconut coir, kenaf, abaca, flax, hemp, jute, ramie, sisal, rice, bamboo, corn husk, silk husk, fruit skin, straw, soy, mint leaf, spearmint leaf, lettuce leaf, synthetic fibers, animal-derived fibers, chitin, and kudzu root, and optionally one or more of a natural oil, a sweetener, a stabilizer or a flavorant.
  • In another embodiment a pouch for administration of a bioactive ingredient is provided, wherein the bioactive ingredient containing fill material comprises ascorbic acid, one or more of coconut coir, kenaf, abaca, flax, hemp, jute, ramie, sisal, rice, bamboo, corn husk, silk husk, fruit skin, straw, soy, mint leaf, spearmint leaf, lettuce leaf, synthetic fibers, animal-derived fibers, chitin, and kudzu root, and optionally one or more of a natural oil, a sweetener, a stabilizer or a flavorant.
  • In another embodiment a pouch for administration of a bioactive ingredient is provided, wherein the bioactive ingredient containing fill material comprises cobalamin, one or more of coconut coir, kenaf, abaca, flax, hemp, jute, ramie, sisal, rice, bamboo, corn husk, silk husk, fruit skin, straw, soy, mint leaf, spearmint leaf, lettuce leaf, synthetic fibers, animal-derived fibers, chitin, and kudzu root, and optionally one or more of a natural oil, a sweetener, a stabilizer or a flavorant.
  • In another embodiment a pouch for administration of a bioactive ingredient is provided, wherein the bioactive ingredient containing fill material comprises pyndoxal-5-phosphate, one or more of coconut coir, kenaf, abaca, flax, hemp, jute, ramie, sisal, rice, bamboo, corn husk, silk husk, fruit skin, straw, soy, mint leaf, spearmint leaf, lettuce leaf, synthetic fibers, animal-derived fibers, chitin, and kudzu root, and optionally one or more of a natural oil, a sweetener, a stabilizer or a flavorant.
  • In another embodiment a pouch for administration of a bioactive ingredient is provided, wherein the bioactive ingredient containing fill material comprises 1-theanine, one or more of coconut coir, kenaf, abaca, flax, hemp, jute, ramie, sisal, rice, bamboo, corn husk, silk husk, fruit skin, straw, soy, mint leaf, spearmint leaf, lettuce leaf, synthetic fibers, animal-derived fibers, chitin, and kudzu root, and optionally one or more of a natural oil, a sweetener, a stabilizer or a flavorant.
  • In another embodiment a pouch for administration of a bioactive ingredient is provided, wherein the bioactive ingredient containing fill material comprises caffeine, one or more of coconut coir, kenaf, abaca, flax, hemp, jute, ramie, sisal, rice, bamboo, corn husk, silk husk, fruit skin, straw, soy, mint leaf, spearmint leaf, lettuce leaf, synthetic fibers, animal-derived fibers, chitin, and kudzu root, and optionally one or more of a natural oil, a sweetener, a stabilizer or a flavorant.
  • In another embodiment a pouch for administration of a bioactive ingredient is provided, wherein the bioactive ingredient containing fill material comprises Rhodiola rosea, one or more of coconut coir, kenaf, abaca, flax, hemp, jute, ramie, sisal, rice, bamboo, corn husk, silk husk, fruit skin, straw, soy, mint leaf, spearmint leaf, lettuce leaf, synthetic fibers, animal-derived fibers, chitin, and kudzu root, and optionally one or more of a natural oil, a sweetener, a stabilizer or a flavorant.
  • In another embodiment a pouch for administration of a bioactive ingredient is provided, wherein the bioactive ingredient containing fill material comprises choline, one or more of coconut coir, kenaf, abaca, flax, hemp, jute, ramie, sisal, rice, bamboo, corn husk, silk husk, fruit skin, straw, soy, mint leaf, spearmint leaf, lettuce leaf, synthetic fibers, animal-derived fibers, chitin, and kudzu root, and optionally one or more of a natural oil, a sweetener, a stabilizer or a flavorant.
  • In another embodiment a pouch for administration of a bioactive ingredient is provided, wherein the bioactive ingredient containing fill material comprises pine pollen extract, one or more of coconut coir, kenaf, abaca, flax, hemp, jute, ramie, sisal, rice, bamboo, corn husk, silk husk, fruit skin, straw, soy, mint leaf, spearmint leaf, lettuce leaf, synthetic fibers, animal-derived fibers, chitin, and kudzu root, and optionally one or more of a natural oil, a sweetener, a stabilizer or a flavorant.
  • In another embodiment a pouch for administration of a bioactive ingredient is provided, wherein the bioactive ingredient containing fill material comprises deer antler velvet, one or more of coconut coir, kenaf, abaca, flax, hemp, jute, ramie, sisal, rice, bamboo, corn husk, silk husk, fruit skin, straw, soy, mint leaf, spearmint leaf, lettuce leaf, synthetic fibers, animal-derived fibers, chitin, and kudzu root, and optionally one or more of a natural oil, a sweetener, a stabilizer or a flavorant.
  • In another embodiment a pouch for administration of a bioactive ingredient is provided, wherein the bioactive ingredient containing fill material comprises gingko biloba, one or more of coconut coir, kenaf, abaca, flax, hemp, jute, ramie, sisal, rice, bamboo, corn husk, silk husk, fruit skin, straw, soy, mint leaf, spearmint leaf, lettuce leaf, synthetic fibers, animal-derived fibers, chitin, and kudzu root, and optionally one or more of a natural oil, a sweetener, a stabilizer or a flavorant.
  • In another embodiment a pouch for administration of a bioactive ingredient is provided, wherein the bioactive ingredient containing fill material comprises vinpocetine, one or more of coconut coir, kenaf, abaca, flax, hemp, jute, ramie, sisal, rice, bamboo, corn husk, silk husk, fruit skin, straw, soy, mint leaf, spearmint leaf, lettuce leaf, synthetic fibers, animal-derived fibers, chitin, and kudzu root, and optionally one or more of a natural oil, a sweetener, a stabilizer or a flavorant.
  • In another embodiment a pouch for administration of a bioactive ingredient is provided, wherein the bioactive ingredient containing fill material comprises bacopa monnieri, one or more of coconut coir, kenaf, abaca, flax, hemp, jute, ramie, sisal, rice, bamboo, corn husk, silk husk, fruit skin, straw, soy, mint leaf, spearmint leaf, lettuce leaf, synthetic fibers, animal-derived fibers, chitin, and kudzu root, and optionally one or more of a natural oil, a sweetener, a stabilizer or a flavorant.
  • In another embodiment a pouch for administration of a bioactive ingredient is provided, wherein the bioactive ingredient containing fill material comprises ganoderman lucidium, one or more of coconut coir, kenaf, abaca, flax, hemp, jute, ramie, sisal, rice, bamboo, corn husk, silk husk, fruit skin, straw, soy, mint leaf, spearmint leaf, lettuce leaf, synthetic fibers, animal-derived fibers, chitin, and kudzu root, and optionally one or more of a natural oil, a sweetener, a stabilizer or a flavorant.
  • In another embodiment a pouch for administration of a bioactive ingredient is provided, wherein the bioactive ingredient containing fill material comprises cordyceps sinesis, one or more of coconut coir, kenaf, abaca, flax, hemp, jute, ramie, sisal, rice, bamboo, corn husk, silk husk, fruit skin, straw, soy, mint leaf, spearmint leaf, lettuce leaf, synthetic fibers, animal-derived fibers, chitin, and kudzu root, and optionally one or more of a natural oil, a sweetener, a stabilizer or a flavorant.
  • In another embodiment a pouch for administration of a bioactive ingredient is provided, wherein the bioactive ingredient containing fill material comprises hericium erinaceus, one or more of coconut coir, kenaf, abaca, flax, hemp, jute, ramie, sisal, rice, bamboo, corn husk, silk husk, fruit skin, straw, soy, mint leaf, spearmint leaf, lettuce leaf, synthetic fibers, animal-derived fibers, chitin, and kudzu root, and optionally one or more of a natural oil, a sweetener, a stabilizer or a flavorant.
  • In another embodiment a pouch for administration of a bioactive ingredient is provided, wherein the bioactive ingredient containing fill material comprises creatine monohydrate, one or more of coconut coir, kenaf, abaca, flax, hemp, jute, ramie, sisal, rice, bamboo, corn husk, silk husk, fruit skin, straw, soy, mint leaf, spearmint leaf, lettuce leaf, synthetic fibers, animal-derived fibers, chitin, and kudzu root, and optionally one or more of a natural oil, a sweetener, a stabilizer or a flavorant.
  • In another embodiment a pouch for administration of a bioactive ingredient is provided, wherein the bioactive ingredient containing fill material comprises branched chain amino acids, one or more of coconut coir, kenaf, abaca, flax, hemp, jute, ramie, sisal, rice, bamboo, corn husk, silk husk, fruit skin, straw, soy, mint leaf, spearmint leaf, lettuce leaf, synthetic fibers, animal-derived fibers, chitin, and kudzu root, and optionally one or more of a natural oil, a sweetener, a stabilizer or a flavorant.
  • In another embodiment a pouch for administration of a bioactive ingredient is provided, wherein the bioactive ingredient containing fill material comprises guarana seed, one or more of coconut coir, kenaf, abaca, flax, hemp, jute, ramie, sisal, rice, bamboo, corn husk, silk husk, fruit skin, straw, soy, mint leaf, spearmint leaf, lettuce leaf, synthetic fibers, animal-derived fibers, chitin, and kudzu root, and optionally one or more of a natural oil, a sweetener, a stabilizer or a flavorant.
  • In another embodiment a pouch for administration of a bioactive ingredient is provided, wherein the bioactive ingredient containing fill material comprises panax ginseng root and/or sibering ginseng root, one or more of coconut coir, kenaf, abaca, flax, hemp, jute, ramie, sisal, rice, bamboo, corn husk, silk husk, fruit skin, straw, soy, mint leaf, spearmint leaf, lettuce leaf, synthetic fibers, animal-derived fibers, chitin, and kudzu root, and optionally one or more of a natural oil, a sweetener, a stabilizer or a flavorant.
  • In another embodiment a pouch for administration of a bioactive ingredient is provided, wherein the bioactive ingredient containing fill material comprises ashwaghanda, one or more of coconut coir, kenaf, abaca, flax, hemp, jute, ramie, sisal, rice, bamboo, corn husk, silk husk, fruit skin, straw, soy, mint leaf, spearmint leaf, lettuce leaf, synthetic fibers, animal-derived fibers, chitin, and kudzu root, and optionally one or more of a natural oil, a sweetener, a stabilizer or a flavorant.
  • In another embodiment a pouch for administration of a bioactive ingredient is provided, wherein the bioactive ingredient containing fill material comprises astralagus, one or more of coconut coir, kenaf, abaca, flax, hemp, jute, ramie, sisal, rice, bamboo, corn husk, silk husk, fruit skin, straw, soy, mint leaf, spearmint leaf, lettuce leaf, synthetic fibers, animal-derived fibers, chitin, and kudzu root, and optionally one or more of a natural oil, a sweetener, a stabilizer or a flavorant.
  • In another embodiment a pouch for administration of a bioactive ingredient is provided, wherein the bioactive ingredient containing fill material comprises curcumin, one or more of coconut coir, kenaf, abaca, flax, hemp, jute, ramie, sisal, rice, bamboo, corn husk, silk husk, fruit skin, straw, soy, mint leaf, spearmint leaf, lettuce leaf, synthetic fibers, animal-derived fibers, chitin, and kudzu root, and optionally one or more of a natural oil, a sweetener, a stabilizer or a flavorant.
  • In another embodiment a pouch for administration of a bioactive ingredient is provided, wherein the bioactive ingredient containing fill material comprises maca, one or more of coconut coir, kenaf, abaca, flax, hemp, jute, ramie, sisal, rice, bamboo, corn husk, silk husk, fruit skin, straw, soy, mint leaf, spearmint leaf, lettuce leaf, synthetic fibers, animal-derived fibers, chitin, and kudzu root, and optionally one or more of a natural oil, a sweetener, a stabilizer or a flavorant.
  • In another embodiment a pouch for administration of a bioactive ingredient is provided, wherein the bioactive ingredient containing fill material comprises holy basil, one or more of coconut coir, kenaf, abaca, flax, hemp, jute, ramie, sisal, rice, bamboo, corn husk, silk husk, fruit skin, straw, soy, mint leaf, spearmint leaf, lettuce leaf, synthetic fibers, animal-derived fibers, chitin, and kudzu root, and optionally one or more of a natural oil, a sweetener, a stabilizer or a flavorant.
  • In another embodiment a pouch for administration of a bioactive ingredient is provided, wherein the bioactive ingredient containing fill material comprises schisandra, one or more of coconut coir, kenaf, abaca, flax, hemp, jute, ramie, sisal, rice, bamboo, corn husk, silk husk, fruit skin, straw, soy, mint leaf, spearmint leaf, lettuce leaf, synthetic fibers, animal-derived fibers, chitin, and kudzu root, and optionally one or more of a natural oil, a sweetener, a stabilizer or a flavorant.
  • In another embodiment a pouch for administration of a bioactive ingredient is provided, wherein the bioactive ingredient containing fill material comprises tongkat ali, one or more of coconut coir, kenaf, abaca, flax, hemp, jute, ramie, sisal, rice, bamboo, corn husk, silk husk, fruit skin, straw, soy, mint leaf, spearmint leaf, lettuce leaf, synthetic fibers, animal-derived fibers, chitin, and kudzu root, and optionally one or more of a natural oil, a sweetener, a stabilizer or a flavorant.
  • In another embodiment a pouch for administration of a bioactive ingredient is provided, wherein the bioactive ingredient containing fill material comprises gamma aminobutyric acid, one or more of coconut coir, kenaf, abaca, flax, hemp, jute, ramie, sisal, rice, bamboo, corn husk, silk husk, fruit skin, straw, soy, mint leaf, spearmint leaf, lettuce leaf, synthetic fibers, animal-derived fibers, chitin, and kudzu root, and optionally one or more of a natural oil, a sweetener, a stabilizer or a flavorant.
  • In another embodiment a pouch for administration of a bioactive ingredient is provided, wherein the bioactive ingredient containing fill material comprises tribulus terrestris, one or more of coconut coir, kenaf, abaca, flax, hemp, jute, ramie, sisal, rice, bamboo, corn husk, silk husk, fruit skin, straw, soy, mint leaf, spearmint leaf, lettuce leaf, synthetic fibers, animal-derived fibers, chitin, and kudzu root, and optionally one or more of a natural oil, a sweetener, a stabilizer or a flavorant.
  • The above embodiments are included for illustrative purposes only and are not intended to limit the scope of the invention. Many variations to those described above are possible. Since modifications and variations to the examples described above will be apparent to those of skill in this art, it is intended that this invention be limited only by the scope of the appended claims.
  • Citation of the above publications or documents is not intended as an admission that any of the foregoing is pertinent prior art, nor does it constitute any admission as to the contents or date of these publications or documents.

Claims (20)

We claim:
1. A pouch for administration of a bioactive ingredient, comprising a fibrous matrix material incorporating a plurality of apertures defining a sealed pouch, and a bioactive ingredient containing fill material positioned within the sealed pouch, and wherein the pouch is adapted to release between 40% to 90% of the bioactive ingredient present in the fill material in under 15 minutes after being placed in a mouth of a user.
2. The pouch for administration of a bioactive ingredient of claim 1, wherein the bioactive ingredient is a cannabinoid, a terpene; kava root, including different forms, derivatives and extracts therefrom, such as those including a kavalactone; chili pepper, including different forms, derivatives and extracts therefrom, such as those including capsicum; kanna/sceletium tortuosum, including different forms, derivatives and extracts therefrom; yerba mate, including different forms, derivatives and extracts therefrom such as those derived from the holly genus ilex; guayusa, including different forms, derivatives and extracts therefrom; kratom, including different forms, derivatives and extracts therefrom such as those derived from mitragyna speciosa; mushroom, including different forms, derivatives and extracts therefrom such as those including psilocybin and extracts thereof; melatonin, including different forms, derivatives and extracts therefrom; spilanthes acmela, including derivatives and extracts therefrom; coenzyme-Q10; pyrroloquinoline quinone, including different forms, derivatives and extracts therefrom; nicotinamide riboside, including different forms, derivatives and extracts cobalamins therefrom; ascorbic acid, including different forms, derivatives and extracts therefrom; cobalamins, including different forms, derivatives and extracts therefrom; pyridoxal-5-phosphate, including different forms, derivatives and extracts therefrom; 1-theanine, including different forms, derivatives and extracts therefrom; caffeine, including different forms, derivatives and extracts therefrom; Rhodiola rosea, including different forms, derivatives and extracts therefrom; choline, including different forms, derivatives and extracts therefrom; pine pollen extract, including different forms, derivatives and extracts therefrom; deer antler velvet, including different forms, derivatives and extracts therefrom; gingko biloba, including different forms, derivatives and extracts therefrom; vinpocetine, including different forms, derivatives and extracts therefrom; bacopa monnieri, including different forms, derivatives and extracts therefrom; ganoderman lucidium, including different forms, derivatives and extracts therefrom; cordyceps sinesis, including different forms, derivatives and extracts therefrom; hericium erinaceus, including different forms, derivatives and extracts therefrom; creatine monohydrate, including different forms, derivatives and extracts therefrom; branched chain amino acids, including different forms, derivatives and extracts therefrom; guarana seed, including different forms, derivatives and extracts therefrom; panax ginseng root, including different forms, derivatives and extracts therefrom; sibering ginseng root, including different forms, derivatives and extracts therefrom; ashwaghanda, including different forms, derivatives and extracts therefrom; astralagus, including different forms, derivatives and extracts therefrom; curcurmin, including different forms, derivatives and extracts therefrom; maca, including different forms, derivatives and extracts therefrom; holy basil, including different forms, derivatives and extracts therefrom; schisandra, including different forms, derivatives and extracts therefrom; tongkat ali, including different forms, derivatives and extracts therefrom; gamma aminobutyric acid, including different forms, derivatives and extracts therefrom; tribulus terrestris, including different forms, derivatives and extracts therefrom; or a combination of two or more of the foregoing.
3. The pouch for administration of a bioactive ingredient of claim 2, wherein the bioactive ingredient is a cannabinoid.
4. The pouch for administration of a bioactive ingredient of claim 3, further comprising a terpene in the fill material.
5. The pouch for administration of a bioactive ingredient of claim 2, wherein each of the plurality of apertures is defined by an aperture size of between about 400 μm to about 800 μm in diameter.
6. The pouch for administration of a bioactive ingredient of claim 2, wherein each of the plurality of apertures is defined by an aperture size of above about 400 μm in diameter.
7. The pouch for administration of a bioactive ingredient of claim 2, wherein the pouch is adapted to release between 40% to 90% of the bioactive ingredient present in the fill material in between 5 to 10 minutes after being placed in a mouth of a user.
8. The pouch for administration of a bioactive ingredient of claim 5, wherein at least about 50% of the plurality of apertures have the identified size.
9. The pouch for administration of a bioactive ingredient of claim 5, wherein at least about 90% of the plurality of apertures have the identified size.
10. The pouch for administration of a bioactive ingredient of claim 2, wherein the each of the plurality of apertures is circular in shape.
11. The pouch for administration of a bioactive ingredient of claim 1, wherein the cannabinoid containing fill material comprises cannabidiol, coconut coir, a terpene, a natural oil, a sweetener, a stabilizer and a flavorant.
12. The pouch for administration of a bioactive ingredient of claim 11, wherein the coconut coir is comprised of coconut coir particles having a mean size range of between about 800 μm to at or about 900 μm.
13. The pouch for administration of a bioactive ingredient of claim 1, wherein the cannabinoid containing fill material comprises water dispersible cannabidiol and/or cannabidiol isolate.
14. The pouch for administration of a bioactive ingredient of claim 2, wherein the plurality of apertures comprise holes extending through the fibrous matrix material.
15. The pouch for administration of a bioactive ingredient of claim 2, wherein the bioactive ingredient containing fill material comprises an electrospun nanofiber, wherein the electrospun nanofiber comprises cannabidiol.
16. The pouch for administration of a bioactive ingredient of claim 1, wherein the bioactive ingredient containing fill material comprises a cannabinoid selected from the group consisting of one or more of cannabidiol (CBD); cannabinol; cannabigerol; cannabichromene; cannabidivarol; tetrahydrocannabidiol; tetrahydrocannabigerol; tetrahydrocannabichromene; tetrahydrocannabidivarol; Δ8-THC, and carboxylic acid precursors of the foregoing.
17. The pouch for administration of a bioactive ingredient of claim 14, wherein the bioactive ingredient containing fill material further comprises a terpene selected from the group consisting of one or more of bomeol, caryophyllene, cineole/eucalyptol, delta3carene, limonene, linolool, myrcene, pinene, pulegone, d-limonene linalool, 1,8-cineole (eucalyptol), terpineol-4-ol, p-cymene, Δ-3-carene, β-sitosterol, or β-caryophyllene.cannflavin A, apigenin, and quercetin.
18. The pouch for administration of a bioactive ingredient of claim 2, wherein the bioactive ingredient containing fill material comprises a blended composition having a total weight, and bioactive ingredient containing fill material includes the bioactive ingredient between about 5% to at or about 20% of the total weight.
19. The pouch for administration of a bioactive ingredient of claim 2, wherein the fibrous matrix material is selected from one or more of coconut coir, kenaf, abaca, flax, hemp, jute, ramie, sisal, rice, bamboo, corn husk, silk husk, fruit skin, straw, soy, mint leaf, spearmint leaf, lettuce leaf, synthetic fibers, animal-derived fibers, chitin, and kudzu root.
20. A pouch for administration of a bioactive, comprising a fibrous matrix material incorporating a plurality of apertures defining a sealed pouch, and a bioactive ingredient containing fill material positioned within the sealed pouch, wherein
the bioactive ingredient containing fill material comprises a cannabinoid, a terpene; kava root, including different forms, derivatives and extracts therefrom, such as those including a kavalactone; chili pepper, including different forms, derivatives and extracts therefrom, such as those including capsicum; kanna/sceletium tortuosum, including different forms, derivatives and extracts therefrom; yerba mate, including different forms, derivatives and extracts therefrom such as those derived from the holly genus ilex; guayusa, including different forms, derivatives and extracts therefrom; kratom, including different forms, derivatives and extracts therefrom such as those derived from mitragyna speciosa; mushroom, including different forms, derivatives and extracts therefrom such as those including psilocybin and extracts thereof; melatonin, including different forms, derivatives and extracts therefrom; spilanthes acmela, including derivatives and extracts therefrom; coenzyme-Q10; pyrroloquinoline quinone, including different forms, derivatives and extracts therefrom; nicotinamide riboside, including different forms, derivatives and extracts therefrom; ascorbic acid, including different forms, derivatives and extracts therefrom; cobalamins, including different forms, derivatives and extracts therefrom; pyndoxal-5-phosphate, including different forms, derivatives and extracts therefrom; l-theanine, including different forms, derivatives and extracts therefrom; caffeine, including different forms, derivatives and extracts therefrom; rhodiola rosca, including different forms, derivatives and extracts therefrom; choline, including different forms, derivatives and extracts therefrom; pine pollen extract, including different forms, derivatives and extracts therefrom; deer antler velvet, including different forms, derivatives and extracts therefrom; gingko biloba, including different forms, derivatives and extracts therefrom; vinpocetine, including different forms, derivatives and extracts therefrom; bacopa monnieri, including different forms, derivatives and extracts therefrom; ganoderman lucidium, including different forms, derivatives and extracts therefrom; cordyceps sinesis, including different forms, derivatives and extracts therefrom; hericium erinaceus, including different forms, derivatives and extracts therefrom; creatine monohydrate, including different forms, derivatives and extracts therefrom; branched chain amino acids, including different forms, derivatives and extracts therefrom; guarana seed, including different forms, derivatives and extracts therefrom; panax ginseng root, including different forms, derivatives and extracts therefrom; sibering ginseng root, including different forms, derivatives and extracts therefrom; ashwaghanda, including different forms, derivatives and extracts therefrom; astralagus, including different forms, derivatives and extracts therefrom; curcurmin, including different forms, derivatives and extracts therefrom; maca, including different forms, derivatives and extracts therefrom; holy basil, including different forms, derivatives and extracts therefrom; schisandra, including different forms, derivatives and extracts therefrom; tongkat ali, including different forms, derivatives and extracts therefrom; gamma aminobutyric acid, including different forms, derivatives and extracts therefrom; tribulus terrestris, including different forms, derivatives and extracts therefrom; or a combination of two or more of the foregoing;
the fibrous matrix material selected from one or more of coconut coir, kenaf, abaca, flax, hemp, jute, ramie, sisal, rice, bamboo, corn husk, silk husk, fruit skin, straw, soy, mint leaf, spearmint leaf, lettuce leaf, synthetic fibers, animal-derived fibers, chitin, and kudzu root;
the bioactive ingredient containing fill material further comprises one or more of a natural oil, a sweetener, a stabilizer, or a flavorant; and
wherein the pouch is adapted to release between 40% to 90% of the bioactive ingredient present in the fill material in under 15 minutes after being placed in a mouth of a user.
US17/315,089 2020-05-07 2021-05-07 Pouches Abandoned US20210346314A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/315,089 US20210346314A1 (en) 2020-05-07 2021-05-07 Pouches

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202063021661P 2020-05-07 2020-05-07
US17/315,089 US20210346314A1 (en) 2020-05-07 2021-05-07 Pouches

Publications (1)

Publication Number Publication Date
US20210346314A1 true US20210346314A1 (en) 2021-11-11

Family

ID=78411856

Family Applications (3)

Application Number Title Priority Date Filing Date
US17/315,089 Abandoned US20210346314A1 (en) 2020-05-07 2021-05-07 Pouches
US17/315,066 Abandoned US20210346338A1 (en) 2020-05-07 2021-05-07 Cannabinoid pouches
US17/579,579 Active US11534413B2 (en) 2020-05-07 2022-01-19 Cannabinoid pouches

Family Applications After (2)

Application Number Title Priority Date Filing Date
US17/315,066 Abandoned US20210346338A1 (en) 2020-05-07 2021-05-07 Cannabinoid pouches
US17/579,579 Active US11534413B2 (en) 2020-05-07 2022-01-19 Cannabinoid pouches

Country Status (2)

Country Link
US (3) US20210346314A1 (en)
WO (2) WO2021226542A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11969502B2 (en) 2019-12-09 2024-04-30 Nicoventures Trading Limited Oral products
US11872231B2 (en) 2019-12-09 2024-01-16 Nicoventures Trading Limited Moist oral product comprising an active ingredient
US12060328B2 (en) 2022-03-04 2024-08-13 Reset Pharmaceuticals, Inc. Co-crystals or salts of psilocybin and methods of treatment therewith
WO2024033910A1 (en) * 2022-08-09 2024-02-15 Vitalmelt Ltd. Freeze-dried bite with single dose psychedelic

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140026912A1 (en) * 2012-07-30 2014-01-30 British American Tobacco (Investments) Limited Fleece for Smokeless Tobacco
WO2018135943A1 (en) * 2017-01-18 2018-07-26 Procare Beheer B.V. Psilocybin and/or psilocin in combination with cannabinoids and/or terpenes
WO2018233782A1 (en) * 2017-06-23 2018-12-27 Medcan Pharma A/S Cannabinoid pouch
US20190054036A1 (en) * 2017-08-17 2019-02-21 Nanofiber Solutions, Inc. Electrospun fibers having a pharmaceutical and methods of making and using the same

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8029837B2 (en) * 2007-06-08 2011-10-04 Philip Morris Usa Inc. Chewable pouch for flavored product delivery
US20080302682A1 (en) * 2007-06-11 2008-12-11 Radi Medical Biodegradable Ab Pouch for tobacco or tobacco substitute
BR102012031955A2 (en) * 2012-12-14 2014-10-07 Instituto De Pesquisas Tecnológicas Do Est S. Paulo S/A Ipt NANOFIBRAS CONTAINING ACTIVE SUBSTANCE WITH CONTROLLED RELEASE FOR DONTOLOGICAL APPLICATION AND PROCESS
MX2015013202A (en) * 2013-03-15 2016-04-07 Biotech Inst Llc Breeding, production, processing and use of specialty cannabis.
US20160296464A1 (en) * 2013-11-05 2016-10-13 First Watersign Llc Sublingual Cannabis Dosage Form and Method of Making and Using the Same
US20180177720A1 (en) * 2016-12-23 2018-06-28 Nicholas Cooper Chewable Composition and Delivery Pouch
US10933016B2 (en) * 2017-02-24 2021-03-02 Trinidad Consulting, Llc Compositions and methods for oral administration of cannabinoids and terpenoids
WO2018233781A1 (en) * 2017-06-23 2018-12-27 Medcan Pharma A/S Cannabinoid pouch
CA3098010A1 (en) * 2018-04-27 2019-10-31 Thomas Jefferson University Nanospun hemp-based materials
WO2019211771A1 (en) * 2018-05-03 2019-11-07 Radient Technologies Inc. Water soluble and water dispersible formulations of cannabinoids
EP4054352A1 (en) * 2019-11-04 2022-09-14 Cannabis Global, Inc, Electrosprayed and electrospun cannabinoid compositions and process to produce

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140026912A1 (en) * 2012-07-30 2014-01-30 British American Tobacco (Investments) Limited Fleece for Smokeless Tobacco
WO2018135943A1 (en) * 2017-01-18 2018-07-26 Procare Beheer B.V. Psilocybin and/or psilocin in combination with cannabinoids and/or terpenes
WO2018233782A1 (en) * 2017-06-23 2018-12-27 Medcan Pharma A/S Cannabinoid pouch
US20190054036A1 (en) * 2017-08-17 2019-02-21 Nanofiber Solutions, Inc. Electrospun fibers having a pharmaceutical and methods of making and using the same

Also Published As

Publication number Publication date
WO2021226542A1 (en) 2021-11-11
US20220142942A1 (en) 2022-05-12
US20210346338A1 (en) 2021-11-11
US11534413B2 (en) 2022-12-27
WO2021226536A1 (en) 2021-11-11

Similar Documents

Publication Publication Date Title
US20210346314A1 (en) Pouches
US20210186081A1 (en) Pouched oral product with cannabinoid
US11963545B2 (en) Moist botanical pouch processing and moist oral botanical pouch products
CA3160590A1 (en) Oral product
US20230071441A1 (en) Cigarette filter containing natural plant material, preparation method thereof, and cigarette including the filter
US11801219B2 (en) Pouch product suitable for application in an oral cavity
AU2020401471A1 (en) Oral product comprising a cannabinoid
WO2024074834A1 (en) Oral product
US20170151303A1 (en) Compositions and Methods for Alleviating Hyposalivation and for Providing Oral Comfort
US20230083927A1 (en) Electronic vapor liquid composition and method of use
WO2021116824A1 (en) Oral product comprising a cannabinoid
WO2021116823A1 (en) Oral product
US11878007B1 (en) Metabolism enhancing compositions
WO2024074836A1 (en) Oral product
US20210177044A1 (en) Oral product
WO2024074842A1 (en) Oral product
WO2024201031A1 (en) Oral product for the delivery of actives
WO2024074835A1 (en) Oral product
WO2024074843A1 (en) Oral product
CN104664589A (en) Nebulized liquid containing Korean ginseng and preparing method thereof
WO2024180481A1 (en) Caffeine-containing oral product
WO2024095013A1 (en) Oral product
Wientarsih et al. The effect of bay leaves infusum (Syzygium polyanthum (Wight)) on anti inflammation in white rat sprague-Dawley

Legal Events

Date Code Title Description
AS Assignment

Owner name: TRINIDAD CONSULTING, LLC, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MANDEL, CASE;REEL/FRAME:056206/0016

Effective date: 20200520

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION