US20210308337A1 - Compositions and methods for enhancing healing and regeneration of bone and soft tissue - Google Patents
Compositions and methods for enhancing healing and regeneration of bone and soft tissue Download PDFInfo
- Publication number
- US20210308337A1 US20210308337A1 US17/230,023 US202117230023A US2021308337A1 US 20210308337 A1 US20210308337 A1 US 20210308337A1 US 202117230023 A US202117230023 A US 202117230023A US 2021308337 A1 US2021308337 A1 US 2021308337A1
- Authority
- US
- United States
- Prior art keywords
- poly
- composition
- layer
- membrane
- honey
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 130
- 238000000034 method Methods 0.000 title claims abstract description 80
- 210000000988 bone and bone Anatomy 0.000 title abstract description 46
- 210000004872 soft tissue Anatomy 0.000 title abstract description 14
- 230000035876 healing Effects 0.000 title abstract description 12
- 230000008929 regeneration Effects 0.000 title description 11
- 238000011069 regeneration method Methods 0.000 title description 11
- 230000002708 enhancing effect Effects 0.000 title description 6
- 238000001727 in vivo Methods 0.000 claims abstract description 8
- 239000012528 membrane Substances 0.000 claims description 218
- -1 poly(urethane) Polymers 0.000 claims description 105
- 235000012907 honey Nutrition 0.000 claims description 100
- 229920002988 biodegradable polymer Polymers 0.000 claims description 64
- 239000004621 biodegradable polymer Substances 0.000 claims description 64
- 108010010803 Gelatin Proteins 0.000 claims description 41
- 229920000159 gelatin Polymers 0.000 claims description 41
- 239000008273 gelatin Substances 0.000 claims description 41
- 235000019322 gelatine Nutrition 0.000 claims description 41
- 235000011852 gelatine desserts Nutrition 0.000 claims description 41
- 229920000954 Polyglycolide Polymers 0.000 claims description 13
- 230000001737 promoting effect Effects 0.000 claims description 13
- 108010035532 Collagen Proteins 0.000 claims description 12
- 102000008186 Collagen Human genes 0.000 claims description 12
- 229920003171 Poly (ethylene oxide) Polymers 0.000 claims description 12
- 229920001436 collagen Polymers 0.000 claims description 12
- 229920002463 poly(p-dioxanone) polymer Polymers 0.000 claims description 11
- 239000000622 polydioxanone Substances 0.000 claims description 11
- 239000011118 polyvinyl acetate Substances 0.000 claims description 9
- 229920002689 polyvinyl acetate Polymers 0.000 claims description 9
- 239000004626 polylactic acid Substances 0.000 claims description 8
- 229920000219 Ethylene vinyl alcohol Polymers 0.000 claims description 5
- 229920001054 Poly(ethylene‐co‐vinyl acetate) Polymers 0.000 claims description 5
- 229920002125 Sokalan® Polymers 0.000 claims description 5
- 229920001577 copolymer Polymers 0.000 claims description 5
- UFRKOOWSQGXVKV-UHFFFAOYSA-N ethene;ethenol Chemical compound C=C.OC=C UFRKOOWSQGXVKV-UHFFFAOYSA-N 0.000 claims description 5
- 239000004715 ethylene vinyl alcohol Substances 0.000 claims description 5
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 claims description 5
- 229920000747 poly(lactic acid) Polymers 0.000 claims description 5
- 229920001223 polyethylene glycol Polymers 0.000 claims description 5
- 229920001059 synthetic polymer Polymers 0.000 claims description 5
- 230000017423 tissue regeneration Effects 0.000 claims description 5
- 239000004952 Polyamide Substances 0.000 claims description 4
- 229920002732 Polyanhydride Polymers 0.000 claims description 4
- 229920001710 Polyorthoester Polymers 0.000 claims description 4
- 229920001778 nylon Polymers 0.000 claims description 4
- 229920000191 poly(N-vinyl pyrrolidone) Polymers 0.000 claims description 4
- 229920001713 poly(ethylene-co-vinyl alcohol) Polymers 0.000 claims description 4
- 229920003229 poly(methyl methacrylate) Polymers 0.000 claims description 4
- 229920002401 polyacrylamide Polymers 0.000 claims description 4
- 229920002647 polyamide Polymers 0.000 claims description 4
- 229920001610 polycaprolactone Polymers 0.000 claims description 4
- 239000004632 polycaprolactone Substances 0.000 claims description 4
- 229920002338 polyhydroxyethylmethacrylate Polymers 0.000 claims description 4
- 239000004926 polymethyl methacrylate Substances 0.000 claims description 4
- 229920001296 polysiloxane Polymers 0.000 claims description 4
- 229920002635 polyurethane Polymers 0.000 claims description 4
- 229920002451 polyvinyl alcohol Polymers 0.000 claims description 4
- AIJULSRZWUXGPQ-UHFFFAOYSA-N Methylglyoxal Chemical compound CC(=O)C=O AIJULSRZWUXGPQ-UHFFFAOYSA-N 0.000 claims 6
- 229920005615 natural polymer Polymers 0.000 claims 6
- 239000004677 Nylon Substances 0.000 claims 3
- 229920001963 Synthetic biodegradable polymer Polymers 0.000 claims 2
- 239000007787 solid Substances 0.000 claims 2
- 239000000463 material Substances 0.000 abstract description 23
- 238000000338 in vitro Methods 0.000 abstract description 4
- 230000008467 tissue growth Effects 0.000 abstract description 3
- 210000004379 membrane Anatomy 0.000 description 204
- 239000000835 fiber Substances 0.000 description 69
- 239000000945 filler Substances 0.000 description 48
- 239000002365 multiple layer Substances 0.000 description 40
- 239000002904 solvent Substances 0.000 description 31
- 210000001519 tissue Anatomy 0.000 description 28
- 210000004027 cell Anatomy 0.000 description 23
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 22
- 239000000243 solution Substances 0.000 description 22
- 239000006185 dispersion Substances 0.000 description 19
- LMDZBCPBFSXMTL-UHFFFAOYSA-N 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide Chemical compound CCN=C=NCCCN(C)C LMDZBCPBFSXMTL-UHFFFAOYSA-N 0.000 description 18
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 18
- 238000007906 compression Methods 0.000 description 16
- 230000006835 compression Effects 0.000 description 15
- 208000027418 Wounds and injury Diseases 0.000 description 14
- 238000001523 electrospinning Methods 0.000 description 14
- 239000003795 chemical substances by application Substances 0.000 description 13
- 239000010410 layer Substances 0.000 description 13
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 12
- 201000010099 disease Diseases 0.000 description 12
- 230000008961 swelling Effects 0.000 description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 12
- 108010009565 Bio-Gide Proteins 0.000 description 11
- 230000000844 anti-bacterial effect Effects 0.000 description 11
- 230000015556 catabolic process Effects 0.000 description 11
- 238000006731 degradation reaction Methods 0.000 description 11
- 238000012360 testing method Methods 0.000 description 11
- 230000007547 defect Effects 0.000 description 10
- 208000035475 disorder Diseases 0.000 description 10
- 238000004519 manufacturing process Methods 0.000 description 10
- 230000006378 damage Effects 0.000 description 9
- 208000014674 injury Diseases 0.000 description 9
- 102000004169 proteins and genes Human genes 0.000 description 9
- 108090000623 proteins and genes Proteins 0.000 description 9
- 229920002101 Chitin Polymers 0.000 description 8
- 239000003814 drug Substances 0.000 description 8
- 238000001356 surgical procedure Methods 0.000 description 8
- 230000001225 therapeutic effect Effects 0.000 description 8
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 7
- 229920001410 Microfiber Polymers 0.000 description 7
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 7
- 206010052428 Wound Diseases 0.000 description 7
- 230000000694 effects Effects 0.000 description 7
- 239000007788 liquid Substances 0.000 description 7
- 239000003658 microfiber Substances 0.000 description 7
- 208000024891 symptom Diseases 0.000 description 7
- 238000011282 treatment Methods 0.000 description 7
- FWBHETKCLVMNFS-UHFFFAOYSA-N 4',6-Diamino-2-phenylindol Chemical compound C1=CC(C(=N)N)=CC=C1C1=CC2=CC=C(C(N)=N)C=C2N1 FWBHETKCLVMNFS-UHFFFAOYSA-N 0.000 description 6
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 6
- 230000010478 bone regeneration Effects 0.000 description 6
- 230000001965 increasing effect Effects 0.000 description 6
- 210000002540 macrophage Anatomy 0.000 description 6
- 239000002953 phosphate buffered saline Substances 0.000 description 6
- 238000002360 preparation method Methods 0.000 description 6
- 230000004044 response Effects 0.000 description 6
- 230000004663 cell proliferation Effects 0.000 description 5
- 230000001186 cumulative effect Effects 0.000 description 5
- 210000000056 organ Anatomy 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- 229940124597 therapeutic agent Drugs 0.000 description 5
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 4
- 102100039620 Granulocyte-macrophage colony-stimulating factor Human genes 0.000 description 4
- 240000003553 Leptospermum scoparium Species 0.000 description 4
- 235000016887 Leptospermum scoparium Nutrition 0.000 description 4
- 241000124008 Mammalia Species 0.000 description 4
- RHQDFWAXVIIEBN-UHFFFAOYSA-N Trifluoroethanol Chemical group OCC(F)(F)F RHQDFWAXVIIEBN-UHFFFAOYSA-N 0.000 description 4
- 230000000845 anti-microbial effect Effects 0.000 description 4
- 230000004888 barrier function Effects 0.000 description 4
- 239000003102 growth factor Substances 0.000 description 4
- 208000015181 infectious disease Diseases 0.000 description 4
- 239000002121 nanofiber Substances 0.000 description 4
- 230000001172 regenerating effect Effects 0.000 description 4
- 238000001878 scanning electron micrograph Methods 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 239000002562 thickening agent Substances 0.000 description 4
- 230000029663 wound healing Effects 0.000 description 4
- BYEAHWXPCBROCE-UHFFFAOYSA-N 1,1,1,3,3,3-hexafluoropropan-2-ol Chemical compound FC(F)(F)C(O)C(F)(F)F BYEAHWXPCBROCE-UHFFFAOYSA-N 0.000 description 3
- 241000894006 Bacteria Species 0.000 description 3
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 3
- 230000002378 acidificating effect Effects 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 210000001909 alveolar process Anatomy 0.000 description 3
- 239000003242 anti bacterial agent Substances 0.000 description 3
- 238000003556 assay Methods 0.000 description 3
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 3
- 230000008468 bone growth Effects 0.000 description 3
- 239000002738 chelating agent Substances 0.000 description 3
- 239000002131 composite material Substances 0.000 description 3
- 238000004132 cross linking Methods 0.000 description 3
- 239000003431 cross linking reagent Substances 0.000 description 3
- 229940079593 drug Drugs 0.000 description 3
- 230000002500 effect on skin Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 210000002950 fibroblast Anatomy 0.000 description 3
- 239000000499 gel Substances 0.000 description 3
- 235000011187 glycerol Nutrition 0.000 description 3
- 230000036541 health Effects 0.000 description 3
- 229910052588 hydroxylapatite Inorganic materials 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 238000013508 migration Methods 0.000 description 3
- XYJRXVWERLGGKC-UHFFFAOYSA-D pentacalcium;hydroxide;triphosphate Chemical compound [OH-].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O XYJRXVWERLGGKC-UHFFFAOYSA-D 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 238000004321 preservation Methods 0.000 description 3
- 239000011780 sodium chloride Substances 0.000 description 3
- 239000000725 suspension Substances 0.000 description 3
- 238000002560 therapeutic procedure Methods 0.000 description 3
- 239000011800 void material Substances 0.000 description 3
- 102100033402 Angiopoietin-4 Human genes 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 208000006386 Bone Resorption Diseases 0.000 description 2
- 108010071942 Colony-Stimulating Factors Proteins 0.000 description 2
- 102000010834 Extracellular Matrix Proteins Human genes 0.000 description 2
- 108010037362 Extracellular Matrix Proteins Proteins 0.000 description 2
- 241000219051 Fagopyrum Species 0.000 description 2
- 235000009419 Fagopyrum esculentum Nutrition 0.000 description 2
- 102100037362 Fibronectin Human genes 0.000 description 2
- 108010067306 Fibronectins Proteins 0.000 description 2
- AZKVWQKMDGGDSV-BCMRRPTOSA-N Genipin Chemical compound COC(=O)C1=CO[C@@H](O)[C@@H]2C(CO)=CC[C@H]12 AZKVWQKMDGGDSV-BCMRRPTOSA-N 0.000 description 2
- SXRSQZLOMIGNAQ-UHFFFAOYSA-N Glutaraldehyde Chemical compound O=CCCCC=O SXRSQZLOMIGNAQ-UHFFFAOYSA-N 0.000 description 2
- 108010017213 Granulocyte-Macrophage Colony-Stimulating Factor Proteins 0.000 description 2
- 101000599951 Homo sapiens Insulin-like growth factor I Proteins 0.000 description 2
- 108060003951 Immunoglobulin Proteins 0.000 description 2
- 102100037852 Insulin-like growth factor I Human genes 0.000 description 2
- 102100037850 Interferon gamma Human genes 0.000 description 2
- 108010074328 Interferon-gamma Proteins 0.000 description 2
- 102000015696 Interleukins Human genes 0.000 description 2
- 108010063738 Interleukins Proteins 0.000 description 2
- 241001514662 Leptospermum Species 0.000 description 2
- 108090000581 Leukemia inhibitory factor Proteins 0.000 description 2
- 241001465754 Metazoa Species 0.000 description 2
- 102000008299 Nitric Oxide Synthase Human genes 0.000 description 2
- 108010021487 Nitric Oxide Synthase Proteins 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- 208000016247 Soft tissue disease Diseases 0.000 description 2
- 102100031372 Thymidine phosphorylase Human genes 0.000 description 2
- 108700023160 Thymidine phosphorylases Proteins 0.000 description 2
- 102000009524 Vascular Endothelial Growth Factor A Human genes 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- SHGAZHPCJJPHSC-YCNIQYBTSA-N all-trans-retinoic acid Chemical compound OC(=O)\C=C(/C)\C=C\C=C(/C)\C=C\C1=C(C)CCCC1(C)C SHGAZHPCJJPHSC-YCNIQYBTSA-N 0.000 description 2
- 230000004075 alteration Effects 0.000 description 2
- 229940035676 analgesics Drugs 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 108010069801 angiopoietin 4 Proteins 0.000 description 2
- 239000000730 antalgic agent Substances 0.000 description 2
- 229940121375 antifungal agent Drugs 0.000 description 2
- 239000003429 antifungal agent Substances 0.000 description 2
- 239000003963 antioxidant agent Substances 0.000 description 2
- 235000006708 antioxidants Nutrition 0.000 description 2
- 230000003416 augmentation Effects 0.000 description 2
- 244000052616 bacterial pathogen Species 0.000 description 2
- 239000012620 biological material Substances 0.000 description 2
- 230000024279 bone resorption Effects 0.000 description 2
- 239000000872 buffer Substances 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 230000021164 cell adhesion Effects 0.000 description 2
- 230000012292 cell migration Effects 0.000 description 2
- 230000003833 cell viability Effects 0.000 description 2
- 230000001413 cellular effect Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- OSASVXMJTNOKOY-UHFFFAOYSA-N chlorobutanol Chemical compound CC(C)(O)C(Cl)(Cl)Cl OSASVXMJTNOKOY-UHFFFAOYSA-N 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 210000004513 dentition Anatomy 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 239000008121 dextrose Substances 0.000 description 2
- 238000002405 diagnostic procedure Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 239000002552 dosage form Substances 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 210000002744 extracellular matrix Anatomy 0.000 description 2
- 238000004108 freeze drying Methods 0.000 description 2
- AZKVWQKMDGGDSV-UHFFFAOYSA-N genipin Natural products COC(=O)C1=COC(O)C2C(CO)=CCC12 AZKVWQKMDGGDSV-UHFFFAOYSA-N 0.000 description 2
- 229910001385 heavy metal Inorganic materials 0.000 description 2
- 239000005556 hormone Substances 0.000 description 2
- 229940088597 hormone Drugs 0.000 description 2
- 230000036571 hydration Effects 0.000 description 2
- 238000006703 hydration reaction Methods 0.000 description 2
- 102000018358 immunoglobulin Human genes 0.000 description 2
- 229940072221 immunoglobulins Drugs 0.000 description 2
- 238000002513 implantation Methods 0.000 description 2
- 238000010348 incorporation Methods 0.000 description 2
- CGIGDMFJXJATDK-UHFFFAOYSA-N indomethacin Chemical compound CC1=C(CC(O)=O)C2=CC(OC)=CC=C2N1C(=O)C1=CC=C(Cl)C=C1 CGIGDMFJXJATDK-UHFFFAOYSA-N 0.000 description 2
- 239000003112 inhibitor Substances 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 2
- 231100000636 lethal dose Toxicity 0.000 description 2
- 210000004373 mandible Anatomy 0.000 description 2
- 210000002050 maxilla Anatomy 0.000 description 2
- 230000008384 membrane barrier Effects 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229920000609 methyl cellulose Polymers 0.000 description 2
- 239000001923 methylcellulose Substances 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- 230000000921 morphogenic effect Effects 0.000 description 2
- 230000003204 osmotic effect Effects 0.000 description 2
- 239000008194 pharmaceutical composition Substances 0.000 description 2
- 229920006381 polylactic acid film Polymers 0.000 description 2
- 239000003755 preservative agent Substances 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 229930002330 retinoic acid Natural products 0.000 description 2
- 150000003378 silver Chemical class 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 238000009864 tensile test Methods 0.000 description 2
- 230000036346 tooth eruption Effects 0.000 description 2
- 230000008733 trauma Effects 0.000 description 2
- 229960001727 tretinoin Drugs 0.000 description 2
- 230000035899 viability Effects 0.000 description 2
- MZOFCQQQCNRIBI-VMXHOPILSA-N (3s)-4-[[(2s)-1-[[(2s)-1-[[(1s)-1-carboxy-2-hydroxyethyl]amino]-4-methyl-1-oxopentan-2-yl]amino]-5-(diaminomethylideneamino)-1-oxopentan-2-yl]amino]-3-[[2-[[(2s)-2,6-diaminohexanoyl]amino]acetyl]amino]-4-oxobutanoic acid Chemical compound OC[C@@H](C(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCCN=C(N)N)NC(=O)[C@H](CC(O)=O)NC(=O)CNC(=O)[C@@H](N)CCCCN MZOFCQQQCNRIBI-VMXHOPILSA-N 0.000 description 1
- IQVNEKKDSLOHHK-FNCQTZNRSA-N (E,E)-hydramethylnon Chemical compound N1CC(C)(C)CNC1=NN=C(/C=C/C=1C=CC(=CC=1)C(F)(F)F)\C=C\C1=CC=C(C(F)(F)F)C=C1 IQVNEKKDSLOHHK-FNCQTZNRSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N Acrylic acid Chemical compound OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 102400001318 Adrenomedullin Human genes 0.000 description 1
- 101800004616 Adrenomedullin Proteins 0.000 description 1
- 102100022987 Angiogenin Human genes 0.000 description 1
- 102100034594 Angiopoietin-1 Human genes 0.000 description 1
- 108010048154 Angiopoietin-1 Proteins 0.000 description 1
- 102100034608 Angiopoietin-2 Human genes 0.000 description 1
- 108010048036 Angiopoietin-2 Proteins 0.000 description 1
- 102400000068 Angiostatin Human genes 0.000 description 1
- 108010079709 Angiostatins Proteins 0.000 description 1
- 102400000345 Angiotensin-2 Human genes 0.000 description 1
- 101800000733 Angiotensin-2 Proteins 0.000 description 1
- 238000000035 BCA protein assay Methods 0.000 description 1
- 208000020084 Bone disease Diseases 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 1
- 102100021943 C-C motif chemokine 2 Human genes 0.000 description 1
- 101710155857 C-C motif chemokine 2 Proteins 0.000 description 1
- 102000000905 Cadherin Human genes 0.000 description 1
- 108050007957 Cadherin Proteins 0.000 description 1
- 229940127291 Calcium channel antagonist Drugs 0.000 description 1
- 241000282465 Canis Species 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- 239000004971 Cross linker Substances 0.000 description 1
- 102000004127 Cytokines Human genes 0.000 description 1
- 108090000695 Cytokines Proteins 0.000 description 1
- 240000001879 Digitalis lutea Species 0.000 description 1
- 108010036395 Endoglin Proteins 0.000 description 1
- 102100037241 Endoglin Human genes 0.000 description 1
- 102400001047 Endostatin Human genes 0.000 description 1
- 108010079505 Endostatins Proteins 0.000 description 1
- 108010041308 Endothelial Growth Factors Proteins 0.000 description 1
- 108050009340 Endothelin Proteins 0.000 description 1
- 102000002045 Endothelin Human genes 0.000 description 1
- 241000588697 Enterobacter cloacae Species 0.000 description 1
- 241000194031 Enterococcus faecium Species 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 241000283073 Equus caballus Species 0.000 description 1
- 102000003951 Erythropoietin Human genes 0.000 description 1
- 108090000394 Erythropoietin Proteins 0.000 description 1
- 241000588724 Escherichia coli Species 0.000 description 1
- 101150021185 FGF gene Proteins 0.000 description 1
- 241000282324 Felis Species 0.000 description 1
- 108090000379 Fibroblast growth factor 2 Proteins 0.000 description 1
- 102000003974 Fibroblast growth factor 2 Human genes 0.000 description 1
- 108090000380 Fibroblast growth factor 5 Proteins 0.000 description 1
- 102100028073 Fibroblast growth factor 5 Human genes 0.000 description 1
- 101000798427 Gallus gallus Basigin Proteins 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 101000898034 Homo sapiens Hepatocyte growth factor Proteins 0.000 description 1
- 101001076292 Homo sapiens Insulin-like growth factor II Proteins 0.000 description 1
- 101000990902 Homo sapiens Matrix metalloproteinase-9 Proteins 0.000 description 1
- 101000947178 Homo sapiens Platelet basic protein Proteins 0.000 description 1
- 101500025027 Homo sapiens Platelet factor 4, short form Proteins 0.000 description 1
- 101000990915 Homo sapiens Stromelysin-1 Proteins 0.000 description 1
- 239000000854 Human Growth Hormone Substances 0.000 description 1
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 description 1
- CZGUSIXMZVURDU-JZXHSEFVSA-N Ile(5)-angiotensin II Chemical compound C([C@@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC=1NC=NC=1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CC=1C=CC=CC=1)C([O-])=O)NC(=O)[C@@H](NC(=O)[C@H](CCCNC(N)=[NH2+])NC(=O)[C@@H]([NH3+])CC([O-])=O)C(C)C)C1=CC=C(O)C=C1 CZGUSIXMZVURDU-JZXHSEFVSA-N 0.000 description 1
- 102000004877 Insulin Human genes 0.000 description 1
- 108090001061 Insulin Proteins 0.000 description 1
- 102100025947 Insulin-like growth factor II Human genes 0.000 description 1
- 102000005755 Intercellular Signaling Peptides and Proteins Human genes 0.000 description 1
- 108010070716 Intercellular Signaling Peptides and Proteins Proteins 0.000 description 1
- 241000588749 Klebsiella oxytoca Species 0.000 description 1
- 108010000684 Matrix Metalloproteinases Proteins 0.000 description 1
- 102000002274 Matrix Metalloproteinases Human genes 0.000 description 1
- 102100030412 Matrix metalloproteinase-9 Human genes 0.000 description 1
- 229940123685 Monoamine oxidase inhibitor Drugs 0.000 description 1
- 102000002111 Neuropilin Human genes 0.000 description 1
- 108050009450 Neuropilin Proteins 0.000 description 1
- 229940084576 Neurotransmitter agonist Drugs 0.000 description 1
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical class O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 1
- 108091034117 Oligonucleotide Proteins 0.000 description 1
- 208000034530 PLAA-associated neurodevelopmental disease Diseases 0.000 description 1
- 102100036154 Platelet basic protein Human genes 0.000 description 1
- 102400000423 Platelet factor 4, short form Human genes 0.000 description 1
- 102100040681 Platelet-derived growth factor C Human genes 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 241000605862 Porphyromonas gingivalis Species 0.000 description 1
- 241000283984 Rodentia Species 0.000 description 1
- 108091027548 SiDNA Proteins 0.000 description 1
- 206010061363 Skeletal injury Diseases 0.000 description 1
- 108020004459 Small interfering RNA Proteins 0.000 description 1
- 208000026137 Soft tissue injury Diseases 0.000 description 1
- 241000191963 Staphylococcus epidermidis Species 0.000 description 1
- 102100030416 Stromelysin-1 Human genes 0.000 description 1
- 102000004887 Transforming Growth Factor beta Human genes 0.000 description 1
- 108090001012 Transforming Growth Factor beta Proteins 0.000 description 1
- 108060008682 Tumor Necrosis Factor Proteins 0.000 description 1
- 102000000852 Tumor Necrosis Factor-alpha Human genes 0.000 description 1
- 108010073929 Vascular Endothelial Growth Factor A Proteins 0.000 description 1
- 108010073925 Vascular Endothelial Growth Factor B Proteins 0.000 description 1
- 108010073923 Vascular Endothelial Growth Factor C Proteins 0.000 description 1
- 108010073919 Vascular Endothelial Growth Factor D Proteins 0.000 description 1
- 108010019530 Vascular Endothelial Growth Factors Proteins 0.000 description 1
- 102100038217 Vascular endothelial growth factor B Human genes 0.000 description 1
- 102100038232 Vascular endothelial growth factor C Human genes 0.000 description 1
- 102100038234 Vascular endothelial growth factor D Human genes 0.000 description 1
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 108010023082 activin A Proteins 0.000 description 1
- 230000001800 adrenalinergic effect Effects 0.000 description 1
- ULCUCJFASIJEOE-NPECTJMMSA-N adrenomedullin Chemical compound C([C@@H](C(=O)N[C@@H](CCC(N)=O)C(=O)NCC(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)NCC(=O)N[C@@H]1C(N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=2C=CC=CC=2)C(=O)NCC(=O)N[C@H](C(=O)N[C@@H](CSSC1)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](C)C(=O)N[C@@H](CC=1NC=NC=1)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](C)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CO)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCC(N)=O)C(=O)NCC(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(N)=O)[C@@H](C)O)=O)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CCSC)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@@H](N)CC=1C=CC(O)=CC=1)C1=CC=CC=C1 ULCUCJFASIJEOE-NPECTJMMSA-N 0.000 description 1
- 239000000556 agonist Substances 0.000 description 1
- 229930013930 alkaloid Natural products 0.000 description 1
- 239000002269 analeptic agent Substances 0.000 description 1
- 238000004873 anchoring Methods 0.000 description 1
- 229940035674 anesthetics Drugs 0.000 description 1
- 239000004037 angiogenesis inhibitor Substances 0.000 description 1
- 108010072788 angiogenin Proteins 0.000 description 1
- 238000010171 animal model Methods 0.000 description 1
- 230000000954 anitussive effect Effects 0.000 description 1
- 229940069428 antacid Drugs 0.000 description 1
- 239000003159 antacid agent Substances 0.000 description 1
- 239000005557 antagonist Substances 0.000 description 1
- 230000003288 anthiarrhythmic effect Effects 0.000 description 1
- 230000003266 anti-allergic effect Effects 0.000 description 1
- 230000003257 anti-anginal effect Effects 0.000 description 1
- 230000002456 anti-arthritic effect Effects 0.000 description 1
- 230000001088 anti-asthma Effects 0.000 description 1
- 230000003178 anti-diabetic effect Effects 0.000 description 1
- 230000003474 anti-emetic effect Effects 0.000 description 1
- 229940121363 anti-inflammatory agent Drugs 0.000 description 1
- 239000002260 anti-inflammatory agent Substances 0.000 description 1
- 230000003110 anti-inflammatory effect Effects 0.000 description 1
- 230000001022 anti-muscarinic effect Effects 0.000 description 1
- 230000000118 anti-neoplastic effect Effects 0.000 description 1
- 230000002141 anti-parasite Effects 0.000 description 1
- 230000001139 anti-pruritic effect Effects 0.000 description 1
- 230000001754 anti-pyretic effect Effects 0.000 description 1
- 230000003409 anti-rejection Effects 0.000 description 1
- 230000002421 anti-septic effect Effects 0.000 description 1
- 230000002785 anti-thrombosis Effects 0.000 description 1
- 230000000259 anti-tumor effect Effects 0.000 description 1
- 239000000043 antiallergic agent Substances 0.000 description 1
- 229940124345 antianginal agent Drugs 0.000 description 1
- 239000003416 antiarrhythmic agent Substances 0.000 description 1
- 229940124346 antiarthritic agent Drugs 0.000 description 1
- 239000000924 antiasthmatic agent Substances 0.000 description 1
- 229940088710 antibiotic agent Drugs 0.000 description 1
- 239000003146 anticoagulant agent Substances 0.000 description 1
- 229940127219 anticoagulant drug Drugs 0.000 description 1
- 229940125681 anticonvulsant agent Drugs 0.000 description 1
- 239000001961 anticonvulsive agent Substances 0.000 description 1
- 239000000935 antidepressant agent Substances 0.000 description 1
- 229940005513 antidepressants Drugs 0.000 description 1
- 239000003793 antidiarrheal agent Substances 0.000 description 1
- 239000002111 antiemetic agent Substances 0.000 description 1
- 229940125683 antiemetic agent Drugs 0.000 description 1
- 230000000890 antigenic effect Effects 0.000 description 1
- 229960002708 antigout preparations Drugs 0.000 description 1
- 239000000739 antihistaminic agent Substances 0.000 description 1
- 229940125715 antihistaminic agent Drugs 0.000 description 1
- 239000002220 antihypertensive agent Substances 0.000 description 1
- 229940030600 antihypertensive agent Drugs 0.000 description 1
- 229940034982 antineoplastic agent Drugs 0.000 description 1
- 239000002246 antineoplastic agent Substances 0.000 description 1
- 229940125687 antiparasitic agent Drugs 0.000 description 1
- 239000003096 antiparasitic agent Substances 0.000 description 1
- 239000003908 antipruritic agent Substances 0.000 description 1
- 239000000164 antipsychotic agent Substances 0.000 description 1
- 229940005529 antipsychotics Drugs 0.000 description 1
- 239000002221 antipyretic Substances 0.000 description 1
- 229940125716 antipyretic agent Drugs 0.000 description 1
- 229940064004 antiseptic throat preparations Drugs 0.000 description 1
- 229960004676 antithrombotic agent Drugs 0.000 description 1
- 239000003434 antitussive agent Substances 0.000 description 1
- 229940124584 antitussives Drugs 0.000 description 1
- 239000003443 antiviral agent Substances 0.000 description 1
- 239000002830 appetite depressant Substances 0.000 description 1
- FZCSTZYAHCUGEM-UHFFFAOYSA-N aspergillomarasmine B Natural products OC(=O)CNC(C(O)=O)CNC(C(O)=O)CC(O)=O FZCSTZYAHCUGEM-UHFFFAOYSA-N 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 108010023562 beta 2-Glycoprotein I Proteins 0.000 description 1
- 239000002876 beta blocker Substances 0.000 description 1
- 230000000975 bioactive effect Effects 0.000 description 1
- 230000003115 biocidal effect Effects 0.000 description 1
- 239000000560 biocompatible material Substances 0.000 description 1
- 229920000249 biocompatible polymer Polymers 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 230000037396 body weight Effects 0.000 description 1
- 210000002449 bone cell Anatomy 0.000 description 1
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 1
- 239000004327 boric acid Substances 0.000 description 1
- 239000000480 calcium channel blocker Substances 0.000 description 1
- 150000001718 carbodiimides Chemical class 0.000 description 1
- 229960001631 carbomer Drugs 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 229940105329 carboxymethylcellulose Drugs 0.000 description 1
- 239000002368 cardiac glycoside Substances 0.000 description 1
- 229940097217 cardiac glycoside Drugs 0.000 description 1
- 239000000799 cathartic agent Substances 0.000 description 1
- 230000024245 cell differentiation Effects 0.000 description 1
- 210000003855 cell nucleus Anatomy 0.000 description 1
- 230000036755 cellular response Effects 0.000 description 1
- 210000003169 central nervous system Anatomy 0.000 description 1
- 125000003636 chemical group Chemical group 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 229960004926 chlorobutanol Drugs 0.000 description 1
- 239000000544 cholinesterase inhibitor Substances 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000006735 deficit Effects 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 238000002716 delivery method Methods 0.000 description 1
- 239000004053 dental implant Substances 0.000 description 1
- 239000000645 desinfectant Substances 0.000 description 1
- UREBDLICKHMUKA-CXSFZGCWSA-N dexamethasone Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1C[C@@H](C)[C@@](C(=O)CO)(O)[C@@]1(C)C[C@@H]2O UREBDLICKHMUKA-CXSFZGCWSA-N 0.000 description 1
- 229960003957 dexamethasone Drugs 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 239000003866 digestant Substances 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- AUZONCFQVSMFAP-UHFFFAOYSA-N disulfiram Chemical compound CCN(CC)C(=S)SSC(=S)N(CC)CC AUZONCFQVSMFAP-UHFFFAOYSA-N 0.000 description 1
- 239000002934 diuretic Substances 0.000 description 1
- 229940030606 diuretics Drugs 0.000 description 1
- 239000013057 ectoparasiticide Substances 0.000 description 1
- 210000001671 embryonic stem cell Anatomy 0.000 description 1
- 239000002895 emetic Substances 0.000 description 1
- 239000003974 emollient agent Substances 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 210000002889 endothelial cell Anatomy 0.000 description 1
- ZUBDGKVDJUIMQQ-UBFCDGJISA-N endothelin-1 Chemical compound C([C@@H](C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(O)=O)NC(=O)[C@H]1NC(=O)[C@H](CC=2C=CC=CC=2)NC(=O)[C@@H](CC=2C=CC(O)=CC=2)NC(=O)[C@H](C(C)C)NC(=O)[C@H]2CSSC[C@@H](C(N[C@H](CO)C(=O)N[C@@H](CO)C(=O)N[C@H](CC(C)C)C(=O)N[C@@H](CCSC)C(=O)N[C@H](CC(O)=O)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCC(O)=O)C(=O)N2)=O)NC(=O)[C@@H](CO)NC(=O)[C@H](N)CSSC1)C1=CNC=N1 ZUBDGKVDJUIMQQ-UBFCDGJISA-N 0.000 description 1
- 108060002566 ephrin Proteins 0.000 description 1
- 102000012803 ephrin Human genes 0.000 description 1
- 229940105423 erythropoietin Drugs 0.000 description 1
- BEFDCLMNVWHSGT-UHFFFAOYSA-N ethenylcyclopentane Chemical compound C=CC1CCCC1 BEFDCLMNVWHSGT-UHFFFAOYSA-N 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000012091 fetal bovine serum Substances 0.000 description 1
- 239000002657 fibrous material Substances 0.000 description 1
- 239000000796 flavoring agent Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000012632 fluorescent imaging Methods 0.000 description 1
- 235000013355 food flavoring agent Nutrition 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 239000000417 fungicide Substances 0.000 description 1
- 239000003457 ganglion blocking agent Substances 0.000 description 1
- 230000000574 ganglionic effect Effects 0.000 description 1
- 239000003193 general anesthetic agent Substances 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 210000004195 gingiva Anatomy 0.000 description 1
- 201000005562 gingival recession Diseases 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 230000012010 growth Effects 0.000 description 1
- 239000000122 growth hormone Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000003667 hormone antagonist Substances 0.000 description 1
- 102000057308 human HGF Human genes 0.000 description 1
- 239000003906 humectant Substances 0.000 description 1
- 239000001863 hydroxypropyl cellulose Substances 0.000 description 1
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 description 1
- 229940071676 hydroxypropylcellulose Drugs 0.000 description 1
- 239000003326 hypnotic agent Substances 0.000 description 1
- 230000000147 hypnotic effect Effects 0.000 description 1
- 229960003444 immunosuppressant agent Drugs 0.000 description 1
- 239000003018 immunosuppressive agent Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 229960000905 indomethacin Drugs 0.000 description 1
- 239000000411 inducer Substances 0.000 description 1
- 230000036512 infertility Effects 0.000 description 1
- 230000008595 infiltration Effects 0.000 description 1
- 238000001764 infiltration Methods 0.000 description 1
- 230000002757 inflammatory effect Effects 0.000 description 1
- 229940125396 insulin Drugs 0.000 description 1
- 102000006495 integrins Human genes 0.000 description 1
- 108010044426 integrins Proteins 0.000 description 1
- 238000000185 intracerebroventricular administration Methods 0.000 description 1
- 238000007918 intramuscular administration Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 210000001847 jaw Anatomy 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- 239000008141 laxative Substances 0.000 description 1
- 229940125722 laxative agent Drugs 0.000 description 1
- 108010012808 leiomyoma-derived growth factor Proteins 0.000 description 1
- 239000008297 liquid dosage form Substances 0.000 description 1
- 239000006194 liquid suspension Substances 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 239000002062 molecular scaffold Substances 0.000 description 1
- 239000002899 monoamine oxidase inhibitor Substances 0.000 description 1
- 210000001616 monocyte Anatomy 0.000 description 1
- 210000004400 mucous membrane Anatomy 0.000 description 1
- 239000003149 muscarinic antagonist Substances 0.000 description 1
- 210000003205 muscle Anatomy 0.000 description 1
- 229940035363 muscle relaxants Drugs 0.000 description 1
- 239000003158 myorelaxant agent Substances 0.000 description 1
- 239000002159 nanocrystal Substances 0.000 description 1
- 239000002707 nanocrystalline material Substances 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 239000002071 nanotube Substances 0.000 description 1
- 210000005036 nerve Anatomy 0.000 description 1
- 230000001537 neural effect Effects 0.000 description 1
- 239000000842 neuromuscular blocking agent Substances 0.000 description 1
- 210000002569 neuron Anatomy 0.000 description 1
- 239000002840 nitric oxide donor Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 108020004707 nucleic acids Proteins 0.000 description 1
- 102000039446 nucleic acids Human genes 0.000 description 1
- 150000007523 nucleic acids Chemical class 0.000 description 1
- 238000010883 osseointegration Methods 0.000 description 1
- 230000000278 osteoconductive effect Effects 0.000 description 1
- 230000002138 osteoinductive effect Effects 0.000 description 1
- 239000006179 pH buffering agent Substances 0.000 description 1
- 239000000734 parasympathomimetic agent Substances 0.000 description 1
- 210000001428 peripheral nervous system Anatomy 0.000 description 1
- 239000000546 pharmaceutical excipient Substances 0.000 description 1
- 229960003742 phenol Drugs 0.000 description 1
- 150000002989 phenols Chemical class 0.000 description 1
- 239000002504 physiological saline solution Substances 0.000 description 1
- 239000000419 plant extract Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 108010017992 platelet-derived growth factor C Proteins 0.000 description 1
- 229920005594 polymer fiber Polymers 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 229920001184 polypeptide Polymers 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- OXCMYAYHXIHQOA-UHFFFAOYSA-N potassium;[2-butyl-5-chloro-3-[[4-[2-(1,2,4-triaza-3-azanidacyclopenta-1,4-dien-5-yl)phenyl]phenyl]methyl]imidazol-4-yl]methanol Chemical compound [K+].CCCCC1=NC(Cl)=C(CO)N1CC1=CC=C(C=2C(=CC=CC=2)C2=N[N-]N=N2)C=C1 OXCMYAYHXIHQOA-UHFFFAOYSA-N 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 102000004196 processed proteins & peptides Human genes 0.000 description 1
- 108090000765 processed proteins & peptides Proteins 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000000069 prophylactic effect Effects 0.000 description 1
- 238000011321 prophylaxis Methods 0.000 description 1
- 239000012474 protein marker Substances 0.000 description 1
- 102000005962 receptors Human genes 0.000 description 1
- 108020003175 receptors Proteins 0.000 description 1
- 230000009719 regenerative response Effects 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 229940125723 sedative agent Drugs 0.000 description 1
- 239000000932 sedative agent Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 210000003491 skin Anatomy 0.000 description 1
- HELHAJAZNSDZJO-OLXYHTOASA-L sodium L-tartrate Chemical compound [Na+].[Na+].[O-]C(=O)[C@H](O)[C@@H](O)C([O-])=O HELHAJAZNSDZJO-OLXYHTOASA-L 0.000 description 1
- 229910001415 sodium ion Inorganic materials 0.000 description 1
- 239000001433 sodium tartrate Substances 0.000 description 1
- 229960002167 sodium tartrate Drugs 0.000 description 1
- 235000011004 sodium tartrates Nutrition 0.000 description 1
- 239000008247 solid mixture Substances 0.000 description 1
- 239000004334 sorbic acid Substances 0.000 description 1
- 235000010199 sorbic acid Nutrition 0.000 description 1
- 229940075582 sorbic acid Drugs 0.000 description 1
- 238000010186 staining Methods 0.000 description 1
- 210000000130 stem cell Anatomy 0.000 description 1
- 239000008223 sterile water Substances 0.000 description 1
- 229930002534 steroid glycoside Natural products 0.000 description 1
- 150000008143 steroidal glycosides Chemical class 0.000 description 1
- 239000000021 stimulant Substances 0.000 description 1
- 230000004936 stimulating effect Effects 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- ZRKFYGHZFMAOKI-QMGMOQQFSA-N tgfbeta Chemical compound C([C@H](NC(=O)[C@H](C(C)C)NC(=O)CNC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CC(C)C)NC(=O)CNC(=O)[C@H](C)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@@H](NC(=O)[C@H](C)NC(=O)[C@H](C)NC(=O)[C@@H](NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](N)CCSC)C(C)C)[C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](C)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](C)C(=O)N[C@@H](CC(C)C)C(=O)N1[C@@H](CCC1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(C)C)C(O)=O)C1=CC=C(O)C=C1 ZRKFYGHZFMAOKI-QMGMOQQFSA-N 0.000 description 1
- 229960000103 thrombolytic agent Drugs 0.000 description 1
- 230000002537 thrombolytic effect Effects 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 239000003204 tranquilizing agent Substances 0.000 description 1
- 230000002936 tranquilizing effect Effects 0.000 description 1
- 238000002525 ultrasonication Methods 0.000 description 1
- 210000005167 vascular cell Anatomy 0.000 description 1
- 239000005526 vasoconstrictor agent Substances 0.000 description 1
- 229940124549 vasodilator Drugs 0.000 description 1
- 239000003071 vasodilator agent Substances 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 229940088594 vitamin Drugs 0.000 description 1
- 229930003231 vitamin Natural products 0.000 description 1
- 239000011782 vitamin Substances 0.000 description 1
- 235000013343 vitamin Nutrition 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
- 239000003357 wound healing promoting agent Substances 0.000 description 1
- 239000000230 xanthan gum Substances 0.000 description 1
- 229920001285 xanthan gum Polymers 0.000 description 1
- 235000010493 xanthan gum Nutrition 0.000 description 1
- 229940082509 xanthan gum Drugs 0.000 description 1
- PAPBSGBWRJIAAV-UHFFFAOYSA-N ε-Caprolactone Chemical compound O=C1CCCCCO1 PAPBSGBWRJIAAV-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/50—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
- A61L27/58—Materials at least partially resorbable by the body
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/02—Inorganic materials
- A61L27/12—Phosphorus-containing materials, e.g. apatite
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/14—Macromolecular materials
- A61L27/18—Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/14—Macromolecular materials
- A61L27/22—Polypeptides or derivatives thereof, e.g. degradation products
- A61L27/222—Gelatin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/14—Macromolecular materials
- A61L27/22—Polypeptides or derivatives thereof, e.g. degradation products
- A61L27/24—Collagen
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/14—Macromolecular materials
- A61L27/26—Mixtures of macromolecular compounds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/36—Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
- A61L27/3604—Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix characterised by the human or animal origin of the biological material, e.g. hair, fascia, fish scales, silk, shellac, pericardium, pleura, renal tissue, amniotic membrane, parenchymal tissue, fetal tissue, muscle tissue, fat tissue, enamel
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/36—Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
- A61L27/3641—Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix characterised by the site of application in the body
- A61L27/3645—Connective tissue
- A61L27/365—Bones
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/40—Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
- A61L27/44—Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix
- A61L27/46—Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix with phosphorus-containing inorganic fillers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/40—Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
- A61L27/44—Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix
- A61L27/48—Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix with macromolecular fillers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/50—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
- A61L27/54—Biologically active materials, e.g. therapeutic substances
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/50—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
- A61L27/56—Porous materials, e.g. foams or sponges
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P17/00—Drugs for dermatological disorders
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P19/00—Drugs for skeletal disorders
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2300/00—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
- A61L2300/20—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices containing or releasing organic materials
- A61L2300/30—Compounds of undetermined constitution extracted from natural sources, e.g. Aloe Vera
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2300/00—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
- A61L2300/40—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
- A61L2300/404—Biocides, antimicrobial agents, antiseptic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2300/00—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
- A61L2300/40—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
- A61L2300/404—Biocides, antimicrobial agents, antiseptic agents
- A61L2300/406—Antibiotics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2300/00—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
- A61L2300/40—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
- A61L2300/412—Tissue-regenerating or healing or proliferative agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2430/00—Materials or treatment for tissue regeneration
- A61L2430/02—Materials or treatment for tissue regeneration for reconstruction of bones; weight-bearing implants
Definitions
- the present invention features biodegradable barrier materials and in vitro and in vivo methods of using such materials to promote bone and soft tissue growth and healing.
- the invention provides a composition comprising.
- the composition additionally comprises c) a filler.
- the biodegradable polymer comprises a protein.
- the protein is gelatin.
- the protein is collagen.
- the biodegradable polymer comprises poly(lactic acid).
- the honey is present in an amount of about 1 part to about 300 parts by weight relative to 100 parts by weight of the biodegradable polymer, e.g. gelatin.
- the honey is present in an amount of about 1 part to about 100 parts by weight, of about 1 part to about 50 parts by weight, of about 1 part to about 15 parts by weight, or particularly of about 5 part to about 10 parts by weight relative to 100 parts by weight of the biodegradable polymer, e.g. gelatin.
- the biodegradable polymer e.g. gelatin.
- the filler is present in an amount of 1-300 parts by weight relative to 100 parts by weight of the biodegradable polymer. Preferably, the filler is present in an amount of about 1-100 parts by weight, 5-50 parts by weight or particularly 10-20 parts by weight.
- the filler comprises a nanofiller, a microfiller or mixtures thereof.
- the nanofiller has an average diameter in nanoscale ranging from about 1 nm to about 999 nm, or less than about 1 ⁇ m.
- the nanofiller suitably has an average diameter less than about 990 nm, less than about 900 nm, less than about 800 nm, less than about 700 nm, less than about 600 nm, less than about 500 nm, less than about 400 nm, less than about 300 nm, less than about 200 nm, or less than about 100 nm.
- the nanofiller suitably has an average diameter of about 1-100 nm, of about 10-80 nm, of about 25-75 nm, or particularly of about 50 nm.
- the microfiller is a micron-sized filler having an average diameter in microscale at least about 1 ⁇ m.
- the microfiller suitably has an average diameter of about less than about 10 ⁇ m, less than about 9 ⁇ m, less than about 8 ⁇ m, less than about 7 ⁇ m, less than about 6 ⁇ m, less than about 5 ⁇ m, less than about 4 ⁇ m, less than about 3 ⁇ m, less than about 2 ⁇ m, or particularly of about 1-2 ⁇ m.
- the filler comprises chitin whiskers. In certain embodiments, the filler comprises hydroxyapatite. In certain embodiments, the filler (such as chitin whiskers) are present in an amount of about 15 parts by weight relative to 100 parts by weight of the biodegradable polymer. In certain embodiments, the chitin whiskers have an average diameter of about 25-75 nm, or particularly an average diameter of about 50 nm. In certain embodiments, the chitin whiskers have an average length of about 200-400 nm, of about 250-300 nm, or particularly of about 280 nm.
- the composition further comprises at least one or more additional filler or at least one or more therapeutic agents, such as antibiotic.
- the therapeutic agent is a therapeutically effective amount of honey.
- the composition further comprises an antibacterially-effective amount of honey, which ranges from about 50 parts to about 300 parts, or from about 100 parts to about 200 parts by weight relative to 100 parts by weight of the biodegradable polymer.
- the composition further comprises an effective amount of honey for stimulating or enhancing regeneration (cell proliferation and migration), which ranges from about 10 parts to about 100 parts, from about 20 parts to about 70 parts by weight, or particularly of about 50 part by weight relative to 100 parts by weight of the biodegradable polymer.
- the honey for therapeutic use is same to or different from the above described honey.
- the invention provides a membrane comprising:
- the membrane may additionally comprise a filler.
- the multiple-layer membrane comprising at least two layers of a membrane of the invention.
- the multiple-layer membrane comprises 2-4 layers of the membrane of the invention. In certain embodiments, the multiple-layer membrane comprises four layers of the membrane. In certain embodiments, the at least two layers are crosslinked. In certain embodiments, the at least two layers are crosslinked with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide, genipin, glutaraldehyde or mixture thereof.
- the invention provides a method of making a composition of the invention (i.e., a composition comprising a biodegradable polymer and a honey.
- the composition may additionally include a filler.
- the method comprises: forming a composition by combining the biodegradable polymer and honey with a solvent.
- the method comprises:
- the solvent is 2,2,2-trifluoroethanol, 1,1,1,3,3,3-hexafluoro-2-propanol (HFP) or 9:1 acetic acid:water. In certain embodiments, the solvent does not significantly solubilize the honey under the conditions used to form and process the composition, fiber, and/or membrane.
- the invention provides a fiber comprising:
- the fiber may further comprise a filler.
- the “fiber” may include a nanofiber, a microfiber, or a nano-microfiber.
- the fiber may be formed in a bundle without limitation to the number or the total thickness thereof, comprising the nanofiber, the microfiber, the nano-microfiber or mixture thereof.
- the nanofiber has an average diameter or thickness in nanoscale ranging from about 1 nm to about 950 nm.
- the nanofiber suitably has an average diameter or a thickness less than about 100 nm.
- the microfiber has an average diameter or thickness in microscale ranging from about 1 ⁇ m to about 950 ⁇ m.
- the microfiber suitably has an average diameter or a thickness of about less than about 10 ⁇ m.
- the nano-microfiber suitably has an average diameter or thickness ranging from about 100 nm to about 10 ⁇ m.
- the invention provides a method of making a fiber comprising: a biodegradable polymer and a honey.
- the fiber may additionally comprise a filler.
- the method comprises:
- the method comprises:
- the invention provides a method of making a membrane comprising: a biodegradable polymer and a honey.
- the membrane may additionally comprise a filler. The method comprises:
- the method comprises:
- the invention provides a method of making a membrane of the invention, the method comprising:
- the step of compressing comprises compressing the sponge at a pressure of at least 3000 pounds.
- the membrane is further processed to form a block, a particulate, swelling membrane, non-compressed membrane or compressed membrane.
- the invention provides a multiple-layer membrane comprising:
- the multiple-layer membrane may further comprise a filler.
- the invention provides a method of making a multiple-layer membrane of the invention, the method comprising:
- composition by combining the biodegradable polymer and honey with a solvent
- the method comprises:
- the multi-layer membrane may be compressed or may not be compressed.
- the invention provides a method of promoting bone regeneration, the method comprising contacting a bone surface with a composition, fiber, compressed membrane, particulate, swelling membrane, non-compressed membrane, or multiple-layer membrane (compressed or non-compressed) of the invention.
- the invention provides a method of promoting healing of a bone defect, the method comprising contacting the bone defect with a composition, fiber, compressed membrane, particulate, swelling membrane, non-compressed membrane, or multiple-layer membrane (compressed or non-compressed) of the invention.
- the invention provides a method of preventing infection of a bone defect, the method comprising contacting the bone defect In another aspect, with a composition, fiber, compressed membrane, particulate, swelling membrane, non-compressed membrane, or multiple-layer membrane (compressed or non-compressed) of the invention.
- the invention provides a method of promoting soft tissue healing in a damaged tissue, the method comprising contacting the damaged tissue with a composition, fiber, compressed membrane, particulate, swelling membrane, non-compressed membrane, or multiple-layer membrane (compressed or non-compressed) of the invention.
- the invention provides a method of promoting a macrophage response in a tissue, the method comprising contacting the tissue with a composition, fiber, compressed membrane, particulate, swelling membrane, non-compressed membrane, or multiple-layer membrane (compressed or non-compressed) of the invention.
- agent any small molecule chemical compound, antibody, nucleic acid molecule, or polypeptide, or fragments thereof.
- ameliorate is meant decrease, suppress, attenuate, diminish, arrest, or stabilize the development or progression of a disease.
- alteration is meant a change (increase or decrease) as detected by standard art known methods such as those described herein. As used herein, an alteration includes a 10%, 25%, 40%, 50% or greater change.
- soft tissue disease or injury is meant any disease, disorder, or trauma that disrupts the normal function or connectivity of a soft tissue or tissues.
- disease is meant any condition or disorder that damages or interferes with the normal function of a cell, tissue, or organ, including bone.
- an effective amount or “therapeutically effective amount” is meant the amount of a composition of the invention required to provide desired effect or release the symptoms of a disease relative to an untreated subject.
- the effective amount of a cellular composition used to practice the present invention for therapeutic treatment of a disease varies depending upon the manner of administration, the age, body weight, and general health of the subject. Ultimately, the attending physician or veterinarian will decide the appropriate amount and dosage regimen. Such amount is referred to as an “therapeutically effective” amount.
- Engraft refers to the process of cellular contact and incorporation into an existing tissue of interest (e.g., bone or soft tissue) in vivo.
- enhancing bone healing is meant increasing the extent of bone growth or healing relative to a control condition. Preferably the increase is by at least 2-fold, 2.5-fold, 3-fold or more.
- microscale is meant between 100 nm and 999 ⁇ m in size.
- a particle that is microscale is larger in size than a nanotube.
- obtaining as in “obtaining an agent” includes synthesizing, purchasing, or otherwise acquiring the agent.
- subject is meant a mammal, including, but not limited to, a human or non-human mammal, such as a bovine, equine, canine, ovine, or feline.
- Ranges provided herein are understood to be shorthand for all of the values within the range.
- a range of 1 to 50 is understood to include any number, combination of numbers, or sub-range from the group consisting 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, or 50.
- the terms “treat,” treating,” “treatment,” and the like refer to reducing or ameliorating a disorder and/or symptoms associated therewith. It will be appreciated that, although not precluded, treating a disorder or condition does not require that the disorder, condition or symptoms associated therewith be completely eliminated.
- the term “about” is understood as within a range of normal tolerance in the art, for example within 2 standard deviations of the mean. About can be understood as within 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1%, 0.5%, 0.1%, 0.05%, or 0.01% of the stated value. Unless otherwise clear from context, all numerical values provided herein are modified by the term about.
- compositions or methods provided herein can be combined with one or more of any of the other compositions and methods provided herein.
- FIG. 1 1 shows SEM images of non-compressed and compressed electrospun gelatin+15% CW+honey scaffolds (non-crosslinked). Scale bars and magnification at 10 ⁇ m and 2kx, respectively.
- FIG. 2 shows FibraQuantTM automated fiber diameter analysis using SEM images from FIG. 1 .
- the above histograms show fiber size distribution along with the mean and standard deviations, in microns.
- FIGS. 3A-3B show the results of uniaxial tensile testing of compressed electrospun membranes: A. Strain at break, B. elastic modulus.
- FIGS. 4A-4B show exemplary formable hydrated 10% honey compressed membranes.
- FIG. 5 shows DAPI images of cellularized (HDFs) compressed electrospun membranes. Scale bars and magnification at 200 ⁇ m and 10 ⁇ , respectively.
- FIGS. 6A-6B show DinoLite images of general gross appearance of non-compressed and compressed gelatin+10% CW+30 mg/mL honey sponges.
- FIG. 7A shows an exemplary membrane (sponge) particulate of various sizes.
- FIG. 7B shows an exemplary sponge particular packed in a void (socket).
- FIG. 7C shows an exemplary use of the particulate that is covered by the compressed lyophilized membrane, when the particulate is packed in a void.
- FIG. 7D shows an exemplary dry lyophilized sponge compressed by hand.
- FIG. 7E shows an exemplary swollen back to original size when hydrated.
- FIG. 8 shows a Carver hydraulic unit used for scaffold compression.
- FIG. 9 schematically illustrates steps of an exemplary mechanical testing method.
- FIG. 10 shows SEM images of non-compressed and compressed gelatin+CW+MH membranes, which includes scale bars and magnification at 200 ⁇ m and 100 ⁇ , respectively.
- FIG. 11A shows a graph including Gelatin+CW+MH degradation results (BCA assay) as shown with cumulative mean release measurement.
- FIG. 11B shows a graph including Gelatin+CW+MH degradation results (BCA assay) as shown with cumulative percent release measurement.
- FIG. 12 shows DAPI images of cellularized (HDFs) compressed gelatin+CW+MH membranes. Scale bars and magnification at 100 ⁇ m and 10 ⁇ , respectively.
- FIGS. 13A-13C show exemplary formable hydrated membranes.
- the present invention features biodegradable polymer-based materials or matrices (e.g., fibers or membranes) comprising honey; and in vitro and in vivo methods of using such compositions to ameliorate an injury or condition (e.g., bone injury or trauma associated with dental surgery).
- biodegradable polymer-based materials or matrices e.g., fibers or membranes
- an injury or condition e.g., bone injury or trauma associated with dental surgery.
- the invention is based, at least in part, on the discovery that biodegradable membranes comprising honey can support and promote bone and tissue growth and regeneration.
- the biodegradable membranes include an antibacterially-effective amount of honey, thereby providing an antibacterial barrier against infection and promoting a sterile environment for wound healing.
- the materials of the invention comprise a biodegradable polymer and a honey (e.g., an antibacterial, bactericidal, and/or wound healing amount of honey).
- a honey e.g., an antibacterial, bactericidal, and/or wound healing amount of honey.
- the materials may additionally comprise a filler.
- biodegradable polymers include proteins (such as gelatin and collagen), polymers derived from naturally-occurring monomers (such as poly(lactic acid (PLA)), and polymers derived from synthetic monomers (such as polydioxanone (PDO)).
- PHA poly(lactic acid
- PDO polydioxanone
- biodegradable materials will degrade over a time period of less than a year, more preferably less than six months.
- any biodegradable polymer that is biocompatible, and can be shaped or formed into fibers and membranes can be employed in the present materials.
- Copolymers or mixtures/blends (multi-component) of biodegradable polymers can also be employed.
- biocompatible polymers include but are not limited to the following: poly(urethanes), poly(siloxanes) or silicones, poly(ethylene), poly(vinyl pyrrolidone), poly(2-hydroxy ethyl methacrylate), poly(N-vinyl pyrrolidone), poly(methyl methacrylate), poly(vinyl alcohol), poly(acrylic acid), polyacrylamide, poly(ethylene-co-vinyl acetate), poly(ethylene glycol), poly(methacrylic acid), polylactic acid (PLA), polyglycolic acids (PGA), poly(lactide-co-glycolides) (PLGA), nylons, polyamides, polyanhydrides, poly(ethylene-co-vinyl alcohol) (EVOH), polycaprolactone, poly(vinyl acetate) (PVA), polyvinylhydroxide, poly(ethylene oxide) (PEO) and polyorthoesters or any
- Some preferred synthetic matrix materials include PLA, PGA, copolymers of PLA and PGA, pol caprolactone, poly(ethylene-co-vinyl acetate). (EVOH). PVA, and PEO. See also U.S. Pat. No. 7,374,774 (which is incorporated herein by reference).
- filler refers to an organic or inorganic biocompatible material that provides structural reinforcement or rigidity to a polymer fiber, filament, or membrane.
- the filler may be a crystalline, a fiber, or a particle.
- the filler suitably has a shape of rod, fiber, sphere, oval, polyhedral crystal, and the like, however, the shape of the filler is not particularly limited thereto.
- the filler has an average diameter in nanoscale (nanofiller) ranging from about 1 nm to about 950 nm.
- the nanofiller suitably has an average diameter of about 1-100 nm, of about 10-80 nm, of about 25-75 nm, or particularly of about 50 nm.
- the filler has an average diameter in microscale (microfiller) that is greater than at least about 100 nm.
- the microfiller suitably has an average diameter of about less than about 10 ⁇ m, less than about 9 ⁇ m, less than about 8 ⁇ m, less than about 7 ⁇ m, less than about 6 ⁇ m, less than about 5 ⁇ m, less than about 4 ⁇ m, less than about 3 ⁇ m, less than about 2 ⁇ m, or particularly less than about 1 ⁇ m.
- the filler is a nanocrystalline or fiber material and has an average diameter or thickness of less than about 100 nm, and advantageously may have an average length of less than about 500 nm.
- a nanofiller can possess an electrostatic charge, which may adhere to or attract growth factors when implanted or applied to a wound site.
- nanofiller materials suitable for use in the present materials include chitin whiskers and hydroxyapatite nanocrystals. Mixtures of fillers comprising nanofillers and microfillers can also be used without limitation.
- the materials of the invention further comprise honey.
- honey Any type of honey can be used.
- types of honey include Manuka honey, Leptospermum Honey or buckwheat honey. Mixtures of different honeys can also be employed.
- Manuka honey is an active or a therapeutic Manuka honey that has a UMF rating above 10.
- the honey is present in the compositions and materials of the invention in an amount effect to inhibit the growth or spread of bacteria, such as pathogenic bacteria.
- Exemplary bacteria include S. aureus , (including methacillin-resistant S. aureus (MRSA)), P. gingivalis, S. epidermidis, Enterococcus faecium, E. coli, P. aeruginosa, E. cloacae , and Klebsiella oxytoca .
- the buckwheat honey can be included in an effective amount for healing.
- the amount of honey to be used depends in part on the nature of the wound or injury to be treated with a composition of the invention; the type of bacterium to be inhibited; the concentration of the honey; and the antibacterial properties of the particular honey employed.
- the antibacterial, antimicrobial, and bactericidal properties of honey are dependent on various factors including the concentration of methylglyoxyl (MGO), Unique Manuka Factor (UMF), the presence of additional phenolic compounds in the honey, wound pH, pH of the honey, and osmotic pressure exerted by the honey.
- MGO methylglyoxyl
- UMF Unique Manuka Factor
- the amount of honey is 1 part to 15 parts by weight (1-15 weight percent) based on the weight amount of the biodegradable polymer.
- a composition of the invention include 100 parts by weight of a biodegradable polymer, and about 1 part to about 15 parts by weight of honey.
- the composition may additionally comprise 10-20 parts by weight of filler. Additional compounds or agents can also be present as described herein.
- the composition further comprises a therapeutically effective amount of honey.
- honey in an antibacterially-effective amount is added to the composition, which ranges from about 50 parts to about 300 parts, or from about 100 parts to about 200 parts by weight relative to 100 parts by weight of the biodegradable polymer.
- additional amount of honey is added to the composition to stimulate or enhancing regeneration (cell proliferation and migration), which ranges from about 10 parts to about 100 parts, from about 20 parts to about 70 parts by weight, or particularly of about 50 part by weight relative to 100 parts by weight of the biodegradable polymer.
- compositions comprising a biodegradable polymer, a filler, and a honey can be prepared by any suitable method, some of which are known in the art.
- a filler can be suspended or dispersed in a solvent (which will not substantially dissolve the filler) to form a dispersion or suspension; the biodegradable polymer and the honey are then mixed with the dispersion or suspension to form a composition of the invention.
- a therapeutically effective amount of honey is additionally added to the composition for antibacterial effect or enhancing regeneration.
- the solvent is 2,2,2-trifluoroethanol, 1,1,1,3,3,3-hexafluoro-2-propanol (HFP) or 9:1 acetic acid:water. The amount of solvent used should be minimized to facilitate electrospinning or other processing of the composition into fibers and membranes.
- a composition comprising a biodegradable polymer, a filler, and an antibacterially-effective amount of honey can be used to prepare fibers and membranes by any suitable method, some of which are known in the art.
- a fiber or membrane is formed by electrospinning. Electrospinning is a known technique (see, e.g., Li et al., Biomaterials. 2005 October; 26(30):5999-6008.) and electrospinning apparatus can be purchased commercially. For example, a charged solution comprising, for example, a biodegradable polymer is fed through a small opening or nozzle (usually a needle or pipette tip).
- the solution Due to its charge, the solution is drawn toward a grounded collecting plate, e.g., a metal screen, plate, or rotating mandrel, typically 5-30 cm away, as a jet. During the jet's travel, the solvent gradually evaporates, and a charged fiber is left to accumulate on the grounded target. The charge on the fibers eventually dissipates into the surrounding environment. If the target is allowed to move with respect to the nozzle position, specific fiber orientations (aligned or random) can be achieved.
- a grounded collecting plate e.g., a metal screen, plate, or rotating mandrel, typically 5-30 cm away
- the solvent gradually evaporates, and a charged fiber is left to accumulate on the grounded target.
- the charge on the fibers eventually dissipates into the surrounding environment. If the target is allowed to move with respect to the nozzle position, specific fiber orientations (aligned or random) can be achieved.
- compositions of the invention can be made as electrospun fiber compositions.
- the invention provides a method of producing a membrane, the method comprising:
- the filler is added to the composition, such that the step a) can be omitted and the biodegradable polymer and honey can be combined with the solvent to form a composition.
- the method may further comprise adding at least one additional filler, at least one therapeutic agent, or a therapeutically effective amount of honey to the composition before electrospinning.
- the electrospun membrane can be formed in multiple layers.
- the composition can be additionally electrospun on top of one layer or other layers to create multiple-layer electrospun membrane.
- the solvent can be removed from a dispersion comprising a biodegradable polymer, a filler, and an antibacterially-effective amount of honey to form a sponge.
- Solvent can be removed by evaporation or lyophilization (freeze-drying).
- the invention provides a method of producing a membrane, the method comprising:
- the filler is added to the composition, such that the step a) can be omitted and the biodegradable polymer and honey can be combined with the solvent to form a composition.
- the method may further comprise adding at least one additional filler, at least one therapeutic agent, or a therapeutically effective amount of honey to the composition.
- membrane is used herein to refer to a product after compression of either electrospun mats/membranes or compression of a sponge, as described herein.
- the “membranes” herein include both compressed fibers and compressed sponge (unless otherwise clear from context).
- the sponge can be lyophilized before compressing.
- the sponge (lyophilized or non-lyophilized) can be suitably processed in a block or a particulate or ground form before compressing, for example, based on applications thereof depending on the bone grafting application.
- the compressed sponge, fibers or membrane can be suitably processed in a block or a particulate or ground form after compressing depending on the bone grafting application.
- the sponge is not compressed, or compressed with less pressure or substantially less pressure, e.g. by hand, only to give swelling potential ( FIGS. 7D-7E ).
- the multiple-layer membrane can be formed by attaching the at least two membranes.
- the multiple-layer membrane is formed by compressing multiple layers of sponges.
- the multiple-layer membrane is formed from multiple lyophilized sponges by compressing multiple layers thereof.
- the multiple-layer membrane can be compressed or not be compressed.
- the multiple-layer membranes can be formed by compressing multiple layers of membranes formed by any of the methods described herein. In general, compression of 2-10 membranes (more preferably 2-4 membranes) between two surfaces (such as stainless steel plates or blocks, e.g., in a hydraulic press) at a pressure of 4,000-24,000 pounds will generally result in compression bonding of the membranes to form a multiple-layer membrane.
- the multiple-layer membrane can be formed using multiple solvents.
- at least two or more of solvents having difference densities are used to dissolve the fillers and to combine other components (e.g. biodegradable polymer and honey).
- solvents having difference densities are used to dissolve the fillers and to combine other components (e.g. biodegradable polymer and honey).
- solutions made from the composition and different solvents are combined, and the combined solutions may form distinct layers based on the densities of the solvents.
- multiple-layered sponges and multiple-layered membrane can be prepared.
- the multiple-layer membrane may be compressed or may not be compressed.
- the membranes can be cross-linked using cross-linking reagents.
- the invention provides multiple-layer membranes having at least two layers, wherein the at least two layers are crosslinked, for example, to stabilize multiple-layered membrane structure.
- exemplary cross-linking reagents include 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (or other carbodiimides), genipin, or glutaraldehyde.
- the membranes can be immersed in a solution of the cross-linking agent (e.g., 20-40 mM) in a solvent such as ethanol. When the desired amount of cross-linking has occurred, the membranes can be removed from the solution and rinsed before use.
- a membrane for use in the therapeutic methods of the invention should have sufficient rigidity to support the surrounding soft tissue, be malleable at its glass transition temperature (Tg) but regain rigidity on cooling (i.e. hold shape formed in situ), and be biocompatible in that it will promote osseointegration and not adversely affect the surrounding soft tissue.
- the membrane should resorb within 6-9 months as it takes approximately 6 months for allograft bone to consolidate into new bone in the mandible and maxilla bone graft surgeries.
- the membranes of the invention are flexible, moldable upon heating, maintain their shape upon cooling, are less acidic during degradation, and the fibrous architecture will regulate the macrophage (MAC) response and allow for regeneration of bone and tissue (M2 MAC phenotype) versus the inflammatory (M1 MAC phenotype).
- MAC macrophage
- the size and thickness of a membrane of the invention can be varied according to the intended use.
- the membranes can be spun to a desired size, or a sponge can be cast to a desired size, followed by compression to a desired density and thickness.
- barrier membranes are commonly between 0.1-0.4 mm in thickness, so the sponge can be suitably compressed to a thickness of about 0.1-0.4 mm.
- a membrane of the invention has a width from 1 to 20 mm and a length from 1 to 20 mm. In certain embodiments, a membrane is less than 1 mm in thickness, less than 0.5 mm thickness, less than 0.3 mm in thickness, or less than 100 microns in thickness.
- a membrane of the invention has a strain at break of at least 90%, 100%, 110% or 120%. In certain embodiments, a membrane of the invention has modulus of elasticity of at least about 5 mPa, or 10, 15, 20, or 25 mPa. In certain embodiments, a membrane of the invention has a maximum compression load of at least about 0.26N.
- the present invention provides a ready supply of materials useful for ameliorating conditions associated with bone or soft tissue disease or injury.
- Compositions and materials of the invention are administered (e.g., directly or indirectly) to a damaged or diseased tissue or organ where they engraft and establish functional connections with a target tissue (e.g., bone, muscle, gum, gingiva, mucous membrane, skin).
- a membrane of the invention enhances bone healing. Methods for repairing damaged tissue or organs may be carried out either in vitro, in vivo, or ex vivo.
- the membrane is used in a dental application, e.g., in mandible and maxilla bone graft surgery.
- the invention provides a method of promoting bone regeneration, the method comprising contacting a bone surface with a composition, fiber, compressed membrane, particulate, swelling membrane, non-compressed membrane or multiple-layer membrane (compressed or non-compressed) of the invention.
- the method is a method of promoting bone regeneration after a surgical procedure on bone, including socket preservation, ridge augmentation, sinus grafting or bone grafting.
- the invention provides a method of promoting healing of a bone defect, the method comprising contacting the bone defect with a composition, fiber, compressed membrane, particulate, swelling membrane, non-compressed membrane or multiple-layer membrane (compressed or non-compressed) of the invention.
- the invention provides a method of preventing infection of a bone defect, the method comprising contacting the bone defect with a composition, fiber, membrane, particulate, swelling membrane, non-compressed membrane or multiple-layer membrane (compressed or non-compressed) of the invention.
- the invention provides a method of promoting soft tissue healing in a damaged tissue, the method comprising contacting the damaged tissue with a composition, fiber, membrane, particulate, swelling membrane, non-compressed membrane or multiple-layer membrane (compressed or non-compressed) of the invention.
- the method is a method of promoting bone regeneration after a surgical procedure on bone, including socket preservation, ridge augmentation, sinus grafting or bone grafting.
- the invention provides a method of promoting a macrophage response in a tissue, the method comprising contacting the tissue with a composition, fiber, membrane, particulate, swelling membrane, non-compressed membrane or multiple-layer membrane (compressed or non-compressed) of the invention.
- Compositions, fiber, and membranes of the invention can be provided directly to a tissue or organ of interest (e.g., by direct application to a bone or tissue surface, or by surgical implantation).
- a membrane can be applied to cover, surround, fill, or otherwise contact a bone or tissue defect, wound, skin/wound healing, gingival recession or surgical site.
- expansion and differentiation agents can be provided prior to, during or after administration of the composition, fiber, or membrane to increase, maintain, or enhance production or differentiation of cells in vivo, including bone cells from a subject's bone or from any type of bone graft material/transplant, i.e., allogenic, xenogenic, alloplastic or genetically produced bone.
- Compositions of the invention include pharmaceutical compositions. When administering a therapeutic composition or material of the present invention (e.g., a pharmaceutical composition), it will generally be formulated in a unit dosage form. Additional therapeutic agents can be applied to the fibers or incorporated within fibers during fabrication.
- compositions, fibers, membranes, or multiple-layer membranes of the invention of the invention can be conveniently provided as sterile preparations.
- a composition of the invention is provided as a liquid, liquid suspension, gel, viscous composition, or solid composition.
- Liquid, gel, and viscous compositions are somewhat more convenient to administer, especially by injection. Viscous compositions can be formulated within the appropriate viscosity range to provide longer contact periods with specific tissues.
- Liquid or viscous compositions can comprise carriers, which can be a solvent or dispersing medium containing, for example, water, saline, phosphate buffered saline, polyol (for example, glycerol, propylene glycol, liquid polyethylene glycol, and the like) and suitable mixtures thereof.
- carriers can be a solvent or dispersing medium containing, for example, water, saline, phosphate buffered saline, polyol (for example, glycerol, propylene glycol, liquid polyethylene glycol, and the like) and suitable mixtures thereof.
- Sterile injectable solutions can be prepared by incorporating the cells (e.g., embryonic stem cells, neuronal progenitors, differentiated neurons) as desired.
- Such compositions may be in admixture with a suitable carrier, diluent, or excipient such as sterile water, physiological saline, glucose, dextrose, or the like.
- the compositions can contain auxiliary substances such as wetting, dispersing, or emulsifying agents (e.g., methylcellulose), pH buffering agents, gelling or viscosity enhancing additives, preservatives, flavoring agents, colors, and the like, depending upon the route of administration and the preparation desired.
- Standard texts such as “REMINGTON'S PHARMACEUTICAL SCIENCE”, 17th edition, 1985, incorporated herein by reference, may be consulted to prepare suitable preparations, without undue experimentation.
- compositions which enhance the stability and sterility of the compositions, including antimicrobial preservatives, antioxidants, chelating agents, and buffers, can be added. Prevention of the action of microorganisms can be ensured by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, sorbic acid, and the like.
- the compositions can be isotonic, i.e., they can have the same osmotic pressure as blood and lacrimal fluid.
- the desired isotonicity of the compositions of this invention may be accomplished using sodium chloride, or other pharmaceutically acceptable agents such as dextrose, boric acid, sodium tartrate, propylene glycol or other inorganic or organic solutes. Sodium chloride is preferred particularly for buffers containing sodium ions.
- Viscosity of the compositions can be maintained at the selected level using a pharmaceutically acceptable thickening agent.
- Methylcellulose is preferred because it is readily and economically available and is easy to work with.
- suitable thickening agents include, for example, xanthan gum, carboxymethyl cellulose, hydroxypropyl cellulose, carbomer, and the like.
- silver salts can be used as thickening agent. See also U.S. Pat. Nos. 8,367,094; 8,173,151; and 7,998,498 (which are incorporated herein by reference). The silver salts may be added to further improve antibacterial effects of the composition. The preferred concentration of the thickener will depend upon the agent selected.
- liquid dosage form e.g., whether the composition is to be formulated into a solution, a suspension, gel or another liquid form, such as a time release form or liquid-filled form).
- Glycerin or similar components can be added to the admixture to improve fiber and membrane flexibility.
- agents that may be delivered together with a composition, fiber, membrane, or multiple-layer membrane of the invention of the invention include, but are not limited to, antibiotics (including. e.g., antibacterial silver salts), analgesics, anticoagulants, immunosuppressants, the therapeutic substance is selected from the group consisting of anesthetics, hypnotics, sedatives, sleep inducers, antipsychotics, antidepressants, antiallergics, antianginals, antiarthritics, antiasthmatics, antidiabetics, antidiarrheal drugs, anticonvulsants, antigout drugs, antihistamines, antipruritics, emetics, antiemetics, antispasmondics, appetite suppressants, neuroactive substances, neurotransmitter agonists, antagonists, receptor blockers, reuptake modulators, beta-adrenergic blockers, calcium channel blockers, disulfarim, muscle relaxants, analgesics, antipyretics,
- agents include proteins such as any one or more of activin A, adrenomedullin, acidic FGF, basic fibroblast growth factor, angiogenin, angiopoietin-1, angiopoietin-2, angiopoietin-3, angiopoietin-4, angiostatin, angiotropin, angiotensin-2, bone morphogenic protein 1, 2, or 3, cadherin, collagen, colony stimulating factor (CSF), endothelial cell-derived growth factor, endoglin, endothelin, endostatin, endothelial cell growth inhibitor, endothelial cell-viability maintaining factor, ephrins, erythropoietin, hepatocyte growth factor, human growth hormone, TNF-alpha.
- activin A adrenomedullin
- acidic FGF basic fibroblast growth factor
- angiogenin angiopoietin-1, angiopoietin-2
- TGF-beta platelet derived endothelial cell growth factor (PD-ECGF), platelet derived endothelial growth factor (PDGF), insulin-like growth factor-1 or -2 (IGF), interleukin (IL)-1 or 8, FGF-5, fibronectin, granulocyte macrophage colony stimulating factor (GM-CSF), heart derived inhibitor of vascular cell proliferation, IFN-gamma.
- PD-ECGF platelet derived endothelial cell growth factor
- PDGF platelet derived endothelial growth factor
- IGF insulin-like growth factor-1 or -2
- IGF-5 interleukin
- GM-CSF granulocyte macrophage colony stimulating factor
- IFN-gamma heart derived inhibitor of vascular cell proliferation
- IFN-gamma IFN-gamma, integrin receptor, LIF, leiomyoma-derived growth factor, MCP-1, macrophage-derived growth factor, monocyte-derived growth factor, MMP 2, MMP3, MMP9, neuropilin, neurothelin, nitric oxide donors, nitric oxide synthase (NOS), stem cell factor (SCF), VEGF-A, VEGF-B, VEGF-C, VEGF-D, VEGF-E, VEGF, and VEGF164.
- NOS nitric oxide synthase
- SCF stem cell factor
- agents that may be delivered together with a cell of the invention include one or more of LIF, bone morphogenic protein (BMP), retinoic acid, trans-retinoic acid, dexamethasone, insulin, indomethacin, fibronectin and/or 10% fetal bovine serum, or a derivative thereof.
- Other agents include small oligonucleotides, such as SiDNA or SiRNA including at least a portion of sequences to a therapeutic target.
- compositions should be selected to be chemically inert and will not affect the viability or efficacy of the cell as described in the present invention. This will present no problem to those skilled in chemical and pharmaceutical principles, or problems can be readily avoided by reference to standard texts or by simple experiments (not involving undue experimentation), from this disclosure and the documents cited herein.
- a composition, fiber, or membrane of this invention can be applied or implanted in an amount effective to provide wound-healing or other properties.
- a membrane of the invention provides a barrier effective to prevent infiltration of pathogenic bacteria into the wound site.
- the skilled artisan can readily determine the amount of the composition, fiber, or membrane of the invention to be administered in methods of the invention. Of course, for any composition to be administered to an animal or human, and for any particular method of administration, it is preferred to determine therefore, toxicity, such as by determining the lethal dose (LD) and LD 50 in a suitable animal model e.g., rodent such as mouse; and, the dosage of the composition(s), concentration of components therein and timing of administering the composition(s), which elicit a suitable response. Such determinations do not require undue experimentation from the knowledge of the skilled artisan, this disclosure and the documents cited herein. And, the time for sequential administrations can be ascertained without undue experimentation.
- compositions of the invention can be provided directly to a tissue or organ of interest, such as a tissue damaged from injury or disease (e.g., by administration into the central or peripheral nervous system).
- Compositions can be administered to subjects in need thereof by a variety of administration routes.
- Methods of administration generally speaking, may be practiced using any mode of administration that is medically acceptable, meaning any mode that produces effective levels of the active compounds without causing clinically unacceptable adverse effects.
- modes of administration include surgical engraftment or injection (e.g., intramuscular, intra-cardiac, intraocular, intracerebroventricular).
- kits can include instructions for the preparation of a material (such as a membrane), a treatment regime, reagents, and equipment (test tubes, reaction vessels, needles, syringes, etc.).
- the instructions provided in a kit according to the invention may be directed to suitable operational parameters in the form of a label or a separate insert.
- compositions, fiber, membranes, or multiple-layer membranes of the invention are useful for the treatment or prevention of injury or disease of bone or soft tissue.
- the present invention provides compositions and methods of treating such injuries or diseases and/or symptoms thereof characterized by the loss of cells, or loss of tissue structure, function or activity.
- the methods of the invention comprise administering a therapeutically effective amount of a composition, fiber, membrane, or multiple-layer membrane described herein to a subject (e.g., a mammal, such as a human).
- a subject e.g., a mammal, such as a human.
- the method includes the step of administering to the mammal a therapeutic amount of a characterized by the loss of cells, or loss of tissue structure, function or activity herein sufficient to treat the disease, condition, or disorder, or symptom thereof, under conditions such that the disease, condition, or disorder, or symptom thereof is treated.
- the methods herein include administering to the subject (including a subject identified as in need of such treatment) an effective amount of a composition, fiber, membrane, or multiple-layer membrane described herein, to produce such effect. Identifying a subject in need of such treatment can be in the judgment of a subject or a health care professional and can be subjective (e.g. opinion) or objective (e.g. measurable by a test or diagnostic method).
- the therapeutic methods of the invention in general comprise administration of a therapeutically effective amount of the compositions herein, such as a composition, fiber, membrane, or multiple-layer membrane described herein to a subject (e.g., animal, human) in need thereof, including a mammal, particularly a human.
- a subject e.g., animal, human
- Such treatment will be suitably administered to subjects, particularly humans, suffering from, having, susceptible to, or at risk for a disease, disorder, or symptom thereof. Determination of those subjects “at risk” can be made by any objective or subjective determination by a diagnostic test or opinion of a subject or health care provider (e.g., genetic test, enzyme or protein marker. Marker (as defined herein), family history, and the like).
- gelatin was dissolved in 1,1,1,3,3,3-hexafluoro-2-propanol (HFP) or 9:1 acetic acid:deionized (DI) water and electrospun with MEDIHONEY® or MANUKAGARD® (0-50 wt %). Electrospinning using HFP or acetic acid:DI water as a solvent resulted in scaffolds with micron- and nano-sized fibers, respectively. Membranes (crosslinked and non-crosslinked with 25 mM 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide) were compressed (one or multiple layers) using a hydraulic press.
- HFP 1,1,1,3,3,3-hexafluoro-2-propanol
- DI acetic acid:deionized
- Compressed membranes have increased handleability, are less porous, and maintain non-compressed fiber diameter. Less porous scaffolds are desired for this application to provide guided regeneration for tissue closure. Furthermore, it is documented that larger fibers and the addition of honey (antimicrobial by nature) can independently enhance the pro-regeneration response. This study will further analyze the regenerative response of human dermal fibroblasts seeded on composite membranes.
- CWs were prepared according to Dufresne's method with minor modification (Ji, Y-L, et al. Carbohydrate Polymers, 87, 2313-2319, 2012).
- the desired amount of CWs (15 wt % of gelatin) were redispersed in 2,2,2-trifluoroethanol (TFE) by ultrasonication.
- Gelatin Type B was added to the CW solution at 140 mg/mL.
- MEDIHONEY® (100% Active Leptospermum Honey) was then added to the gelatin+CW solution at 0, 5, 10 wt % of gelatin. Solutions were mixed and incubated at 37° C. overnight to ensure the complete dissolving/mixing of all components.
- Scaffolds were compressed to create multilayer membranes with improved mechanical integrity while maintaining the fibrous nanostructure. 4 layers of the same scaffold were compressed using metal platens on a hydraulic press for 30 seconds at 4500 pounds. Non-compressed and compressed samples of each scaffold (0, 5, 10 wt % honey) were imaged using a scanning electron microscope (SEM) at +20 kV to observe fiber diameter and general porosity. Fiber diameter of all non-crosslinked scaffold types, both compressed and non-compressed, was further analyzed by calculating average fiber diameters and standard deviations using FibraQuantTM 1.3 software (nanoScaffold Technologies, LLC).
- Crosslinking of all 4-layered membranes was achieved by placing each membrane in a medium petri dish containing 40 mM 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide) (EDC) in ethanol for 21 hours at room temperature. Upon completion, the membranes were immersed in ethanol and 6 mm discs were punched and used in cell studies.
- EDC 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide
- FIGS. 3A and 3B show the strain at break ( 3 A) and modulus of elasticity ( 3 B) measurements.
- Table 1 shows the assessment of clinical adaptability of dry and hydrated membranes having varying amounts of honey. Best membrane (wet): 0% and 10% honey. Worst membrane (wet): CollaPlug control (does not hold shape, difficult to adapt). Clinical significance: compressed membrane needs to be hydrated before use. Formability can be tailored by compressing fewer or more layers ( FIGS. 4A-4B ).
- FIG. 5 shows images of compressed electrospun membranes. Compression while maintaining fibrous architecture and dimensions was achieved. Some fiber welding was noticed post-compression which is most likely dependent on the crystallization state of the honey. A more dehydrated scaffold (in desiccator) will result in a more crystalline honey structure and ultimately, less non-welded fibers upon compression.
- HDFs Viable cells
- Sponges were fabricated using a 30 mg/mL gelatin solution in deionized water and heated to 37° C. to ensure all gelatin was in solution. 10% CW (chitin whisker) was added to the gelatin solution and sonicated. 0-30 mg/mL honey was then added to the gelatin+CW solution. After the honey went into solution, 25 mM 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide) (EDC) was added to the gelatin+CW+Honey solution, immediately transferred to a cylindrical mold, frozen at ⁇ 80° C., and lyophilized. Dry sponges were compressed at 4,500 pounds for 30 seconds using a hydraulic press.
- EDC 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide
- FIGS. 6A-6B show DinoLite images of general gross appearance of non-compressed and compressed gelatin+10% CW+30 mg/mL honey sponges.
- Sponges can be manufactured at any size (depending on the mold) and subsequently compressed.
- Particulate is formed similarly to the lyophilized membrane with on additional step ( FIGS. 7A-7B ).
- the particulate can be used in combination with the lyophilized membrane, as shown in FIG. 7C .
- the frozen material can be ground up (e.g. using a blender) to form something similar to “crushed ice”. This crushed ice is then lyophilized overnight to form the particulate. Since the particulate is intended for bone regeneration, the concentration of filler (e.g. hydroxyapatite) will be increased (e.g. to 50% or more) to enhance osteoconductivity.
- Development and refinement of particulate can consist of optimizing the manufacturing process to obtain fairly consistent particle size.
- the particulate has a size or an average diameter ranging from about 100 ⁇ m to about 10 mm, or particularly from about 1 mm to about 5 mm.
- Both dry and hydrated, compressed membranes of this composition should be hydrated before use ( FIG. 7E ) and can be easily cut/sized with scissors and have great handleability. Upon hydration, membranes become more flexible and can be maneuvered within the surgery site easily upon implantation. Once initially hydrated, the handleability alone is a significant improvement from existing membranes such as COLLAPLUG®. Even after a few days of being hydrated, current natural biodegradable membranes such as BIO-GIDE® begin to lose their mechanical integrity.
- Hydrated acellular scaffolds were analyzed using a uniaxial platen compression system to determine peak load. Rectangles (2.5 ⁇ 0.5 cm) were cut and fixed in an arch position by anchoring the ends 1 cm apart ( FIG. 9 ). The upper platen was lowered to the scaffold surface and the following parameters were used: 10 mm/min test speed and 250 samples/second data acquisition rate. Compression was continuous until the top platen reached the anchors. Run was terminated just before this contact occurred and maximum force exerted by the scaffolds was recorded in Newtons (N).
- N Newtons
- KLS Martin membranes significantly increased cell attachment on day 1 compared to 0% MH and Bio-Gide membranes ( FIG. 12 ).
- KLS Martin membranes also attached a high number of cells because of its 2D film surface similar to tissue culture plastic.
- the drawback of KLS Martin (PLA) is its degradation which leads to an acidic microenvironment. After 7 and 14 days, all gelatin+CW+MH membranes were covered in cells where Bio-Gide controls still had no visible cells attached. Fluorescent imaging became more difficult at 7 and 14 days most likely due to some migration of the cells as they remodeled the membrane. Future studies will analyze cell proliferation, viability, secreted regenerative markers, and extracellular matrix production.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Medicinal Chemistry (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Dermatology (AREA)
- Epidemiology (AREA)
- Transplantation (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Molecular Biology (AREA)
- Botany (AREA)
- Materials Engineering (AREA)
- Composite Materials (AREA)
- Vascular Medicine (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Inorganic Chemistry (AREA)
- Zoology (AREA)
- Urology & Nephrology (AREA)
- Biophysics (AREA)
- Organic Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Dispersion Chemistry (AREA)
- Physical Education & Sports Medicine (AREA)
- Materials For Medical Uses (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
- Medicinal Preparation (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Polymers & Plastics (AREA)
Abstract
Description
- This application is a continuation and cites the priority of U.S. application Ser. No. 16/249,748, filed 16 Jan. 2019, which is a divisional of and cites the priority of U.S. application Ser. No. 14/818,662, filed 5 Aug. 2015, which is issued, and cites the priority of U.S. App. No. 62/033,599, filed 5 Aug. 2014, each of which are incorporated herein by reference in its entirety.
- Clinically, bone resorption in the maxillary and mandibular jaws occurs after loss of dentition. Partial edentulism affects 40% of the adult population and is estimated to increase in the next 15 years to more than 200 million individuals (Facts and Figures. 2012, American College of Prosthodontics). In such cases, the bone resorption causes the alveolar ridge to decrease in width and height with a 50% loss in bone width occurring during the first year after a tooth is lost, two-thirds of which occur in the initial 3 months (Schropp, L., et al., Int J Periodontics Restorative Dent, 2003. 23(4). p. 313-23). The result of this is that before the patient's dentition is restored with dental implants, a separate procedure is required to replace this lost bone structure. There are various surgical procedures available to graft the deficit alveolar ridge for both height and width. To do this a bone graft, commonly allograft bone powder/particulate or block is placed in the void space to provide osteoconductive/osteoinductive cues for targeted bone regeneration. Many of these procedures utilize a guided bone regenerative (GBR) membrane to maintain the bone graft in place as well as soft tissues. To date, the “ideal” GBR membrane for large defect, alveolar ridge bone grafting has yet to be developed (Bottino, M. C., et al., Dent Mater, 2012. 28(7): p. 703-21; Dimitriou, R., et al., BMC Med, 2012. 10: p. 81).
- Current biomaterials used as membrane barriers in dental extractions are often difficult to handle, degrade quickly, and offer no enhanced wound regeneration which is paramount for complete and timely closure of the tissue over a bone graft. There is an urgent need for a biodegradable material that would support bone growth, promote bone and soft tissue healing, and inhibit infection. Such a material would be useful for treating injuries, conditions and disorders affecting bone and soft tissue.
- As described herein, the present invention features biodegradable barrier materials and in vitro and in vivo methods of using such materials to promote bone and soft tissue growth and healing.
- In one aspect, the invention provides a composition comprising.
- a) a biodegradable polymer; and
- b) a honey.
- In certain embodiments, the composition additionally comprises c) a filler.
- In certain embodiments, the biodegradable polymer comprises a protein. In certain embodiments, the protein is gelatin. In certain embodiments, the protein is collagen.
- In certain embodiments, the biodegradable polymer comprises poly(lactic acid).
- In certain embodiments, the honey is present in an amount of about 1 part to about 300 parts by weight relative to 100 parts by weight of the biodegradable polymer, e.g. gelatin.
- In certain embodiments, the honey is present in an amount of about 1 part to about 100 parts by weight, of about 1 part to about 50 parts by weight, of about 1 part to about 15 parts by weight, or particularly of about 5 part to about 10 parts by weight relative to 100 parts by weight of the biodegradable polymer, e.g. gelatin.
- In certain embodiments, the filler is present in an amount of 1-300 parts by weight relative to 100 parts by weight of the biodegradable polymer. Preferably, the filler is present in an amount of about 1-100 parts by weight, 5-50 parts by weight or particularly 10-20 parts by weight.
- In certain embodiments, the filler comprises a nanofiller, a microfiller or mixtures thereof. The nanofiller has an average diameter in nanoscale ranging from about 1 nm to about 999 nm, or less than about 1 μm. In certain embodiments, the nanofiller suitably has an average diameter less than about 990 nm, less than about 900 nm, less than about 800 nm, less than about 700 nm, less than about 600 nm, less than about 500 nm, less than about 400 nm, less than about 300 nm, less than about 200 nm, or less than about 100 nm. In certain embodiments, the nanofiller suitably has an average diameter of about 1-100 nm, of about 10-80 nm, of about 25-75 nm, or particularly of about 50 nm. The microfiller is a micron-sized filler having an average diameter in microscale at least about 1 μm. The microfiller suitably has an average diameter of about less than about 10 μm, less than about 9 μm, less than about 8 μm, less than about 7 μm, less than about 6 μm, less than about 5 μm, less than about 4 μm, less than about 3 μm, less than about 2 μm, or particularly of about 1-2 μm.
- In certain embodiments, the filler comprises chitin whiskers. In certain embodiments, the filler comprises hydroxyapatite. In certain embodiments, the filler (such as chitin whiskers) are present in an amount of about 15 parts by weight relative to 100 parts by weight of the biodegradable polymer. In certain embodiments, the chitin whiskers have an average diameter of about 25-75 nm, or particularly an average diameter of about 50 nm. In certain embodiments, the chitin whiskers have an average length of about 200-400 nm, of about 250-300 nm, or particularly of about 280 nm.
- In certain embodiments, the composition further comprises at least one or more additional filler or at least one or more therapeutic agents, such as antibiotic. In certain embodiment, the therapeutic agent is a therapeutically effective amount of honey. In particular embodiments, the composition further comprises an antibacterially-effective amount of honey, which ranges from about 50 parts to about 300 parts, or from about 100 parts to about 200 parts by weight relative to 100 parts by weight of the biodegradable polymer. In particular embodiment, the composition further comprises an effective amount of honey for stimulating or enhancing regeneration (cell proliferation and migration), which ranges from about 10 parts to about 100 parts, from about 20 parts to about 70 parts by weight, or particularly of about 50 part by weight relative to 100 parts by weight of the biodegradable polymer. The honey for therapeutic use is same to or different from the above described honey.
- In another aspect, the invention provides a membrane comprising:
- a) a biodegradable polymer;
- b) a honey.
- In certain embodiments, the membrane may additionally comprise a filler.
- In another aspect, the multiple-layer membrane comprising at least two layers of a membrane of the invention.
- In certain embodiments, the multiple-layer membrane comprises 2-4 layers of the membrane of the invention. In certain embodiments, the multiple-layer membrane comprises four layers of the membrane. In certain embodiments, the at least two layers are crosslinked. In certain embodiments, the at least two layers are crosslinked with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide, genipin, glutaraldehyde or mixture thereof.
- In another aspect, the invention provides a method of making a composition of the invention (i.e., a composition comprising a biodegradable polymer and a honey. The composition may additionally include a filler. The method comprises: forming a composition by combining the biodegradable polymer and honey with a solvent.
- Preferably, the method comprises:
- a) dispersing the filler in a solvent to form a dispersion; and
- b) combining the biodegradable polymer and honey with the dispersion to form the composition.
- In certain embodiments, the solvent is 2,2,2-trifluoroethanol, 1,1,1,3,3,3-hexafluoro-2-propanol (HFP) or 9:1 acetic acid:water. In certain embodiments, the solvent does not significantly solubilize the honey under the conditions used to form and process the composition, fiber, and/or membrane.
- In another aspect, the invention provides a fiber comprising:
- a) a biodegradable polymer; and
- b) a honey.
- The fiber may further comprise a filler.
- In a preferred aspect, the “fiber” may include a nanofiber, a microfiber, or a nano-microfiber. The fiber may be formed in a bundle without limitation to the number or the total thickness thereof, comprising the nanofiber, the microfiber, the nano-microfiber or mixture thereof. In certain embodiments, the nanofiber has an average diameter or thickness in nanoscale ranging from about 1 nm to about 950 nm. Preferably, the nanofiber suitably has an average diameter or a thickness less than about 100 nm. The microfiber has an average diameter or thickness in microscale ranging from about 1 μm to about 950 μm. Preferably, the microfiber suitably has an average diameter or a thickness of about less than about 10 μm. Further, the nano-microfiber suitably has an average diameter or thickness ranging from about 100 nm to about 10 μm.
- In another aspect, the invention provides a method of making a fiber comprising: a biodegradable polymer and a honey. The fiber may additionally comprise a filler. The method comprises:
- forming a composition by combining the biodegradable polymer and honey with a solvent; and
- electrospinning the composition to form the fiber.
- Preferably, the method comprises:
- a) dispersing the filler in a solvent to form a dispersion:
- b) combining the biodegradable polymer and honey with the dispersion to form a composition; and
- c) electrospinning the composition to form the fiber.
- In another aspect, the invention provides a method of making a membrane comprising: a biodegradable polymer and a honey. The membrane may additionally comprise a filler. The method comprises:
- forming a composition by combining the biodegradable polymer and honey with a solvent; and
- electrospinning the composition to form fibers, thereby forming the membrane.
- Preferably, the method comprises:
- a) dispersing the filler in a solvent to form a dispersion:
- b) combining the biodegradable polymer and honey with the dispersion to form a composition; and
- c) electrospinning the composition to form fibers, thereby forming the membrane.
- In another aspect, the invention provides a method of making a membrane of the invention, the method comprising:
- a) dispersing the filler in a solvent to form a dispersion:
- b) combining the biodegradable polymer and honey with the dispersion:
- c) removing solvent from the dispersion to form a sponge; and
- d) compressing the sponge to form the membrane.
- In certain embodiments, the step of compressing comprises compressing the sponge at a pressure of at least 3000 pounds.
- In certain embodiments, the membrane is further processed to form a block, a particulate, swelling membrane, non-compressed membrane or compressed membrane.
- In another aspect, the invention provides a multiple-layer membrane comprising:
- a) a biodegradable polymer; and
- b) a honey.
- The multiple-layer membrane may further comprise a filler.
- In another aspect, the invention provides a method of making a multiple-layer membrane of the invention, the method comprising:
- forming a composition by combining the biodegradable polymer and honey with a solvent;
- electrospinning the composition to form fibers;
- collecting the fibers to form at least two non-woven mesh membranes; and
- attaching the at least two non-woven mesh membranes to form the multiple-layer membrane.
- Preferably, the method comprises:
- a) dispersing the filler in a solvent to form a dispersion:
- b) combining the biodegradable polymer and honey with the dispersion;
- c) electrospinning the composition to form fibers:
- d) collecting the fibers to form at least two non-woven mesh membranes; and
- e) attaching the at least two non-woven mesh membranes to form the multiple-layer membrane.
- The multi-layer membrane may be compressed or may not be compressed.
- In another aspect, the invention provides a method of promoting bone regeneration, the method comprising contacting a bone surface with a composition, fiber, compressed membrane, particulate, swelling membrane, non-compressed membrane, or multiple-layer membrane (compressed or non-compressed) of the invention.
- In another aspect, the invention provides a method of promoting healing of a bone defect, the method comprising contacting the bone defect with a composition, fiber, compressed membrane, particulate, swelling membrane, non-compressed membrane, or multiple-layer membrane (compressed or non-compressed) of the invention.
- In another aspect, the invention provides a method of preventing infection of a bone defect, the method comprising contacting the bone defect In another aspect, with a composition, fiber, compressed membrane, particulate, swelling membrane, non-compressed membrane, or multiple-layer membrane (compressed or non-compressed) of the invention.
- In another aspect, the invention provides a method of promoting soft tissue healing in a damaged tissue, the method comprising contacting the damaged tissue with a composition, fiber, compressed membrane, particulate, swelling membrane, non-compressed membrane, or multiple-layer membrane (compressed or non-compressed) of the invention.
- In another aspect, the invention provides a method of promoting a macrophage response in a tissue, the method comprising contacting the tissue with a composition, fiber, compressed membrane, particulate, swelling membrane, non-compressed membrane, or multiple-layer membrane (compressed or non-compressed) of the invention.
- Unless defined otherwise, all technical and scientific terms used herein have the meaning commonly understood by a person skilled in the art to which this invention belongs. The following references provide one of skill with a general definition of many of the terms used in this invention: Singleton et al., Dictionary of Microbiology and Molecular Biology (2nd ed. 1994); The Cambridge Dictionary of Science and Technology (Walker ed., 1988); The Glossary of Genetics, 5th Ed., R. Rieger et al. (eds.), Springer Verlag (1991); and Hale & Marham, The Harper Collins Dictionary of Biology (1991). As used herein, the following terms have the meanings ascribed to them below, unless specified otherwise.
- By “agent” is meant any small molecule chemical compound, antibody, nucleic acid molecule, or polypeptide, or fragments thereof.
- By “ameliorate” is meant decrease, suppress, attenuate, diminish, arrest, or stabilize the development or progression of a disease.
- By “alteration” is meant a change (increase or decrease) as detected by standard art known methods such as those described herein. As used herein, an alteration includes a 10%, 25%, 40%, 50% or greater change.
- By “soft tissue disease or injury” is meant any disease, disorder, or trauma that disrupts the normal function or connectivity of a soft tissue or tissues.
- In this disclosure, “comprises,” “comprising,” “containing” and “having” and the like can have the meaning ascribed to them in U.S. Patent law and can mean “includes,” “including,” and the like; “consisting essentially of” or “consists essentially” likewise has the meaning ascribed in U.S. Patent law and the term is open-ended, allowing for the presence of more than that which is recited so long as basic or novel characteristics of that which is recited is not changed by the presence of more than that which is recited, but excludes prior art embodiments.
- By “disease” is meant any condition or disorder that damages or interferes with the normal function of a cell, tissue, or organ, including bone.
- By “effective amount” or “therapeutically effective amount” is meant the amount of a composition of the invention required to provide desired effect or release the symptoms of a disease relative to an untreated subject. The effective amount of a cellular composition used to practice the present invention for therapeutic treatment of a disease varies depending upon the manner of administration, the age, body weight, and general health of the subject. Ultimately, the attending physician or veterinarian will decide the appropriate amount and dosage regimen. Such amount is referred to as an “therapeutically effective” amount. “Engraft” refers to the process of cellular contact and incorporation into an existing tissue of interest (e.g., bone or soft tissue) in vivo.
- By “enhancing bone healing” is meant increasing the extent of bone growth or healing relative to a control condition. Preferably the increase is by at least 2-fold, 2.5-fold, 3-fold or more.
- By “microscale” is meant between 100 nm and 999 μm in size. A particle that is microscale is larger in size than a nanotube.
- As used herein, “obtaining” as in “obtaining an agent” includes synthesizing, purchasing, or otherwise acquiring the agent.
- By “reference” is meant a standard or control condition.
- By “subject” is meant a mammal, including, but not limited to, a human or non-human mammal, such as a bovine, equine, canine, ovine, or feline.
- Ranges provided herein are understood to be shorthand for all of the values within the range. For example, a range of 1 to 50 is understood to include any number, combination of numbers, or sub-range from the group consisting 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, or 50.
- As used herein, the terms “treat,” treating,” “treatment,” and the like refer to reducing or ameliorating a disorder and/or symptoms associated therewith. It will be appreciated that, although not precluded, treating a disorder or condition does not require that the disorder, condition or symptoms associated therewith be completely eliminated.
- Unless specifically stated or obvious from context, as used herein, the term “or” is understood to be inclusive. Unless specifically stated or obvious from context, as used herein, the terms “a”, “an”, and “the” are understood to be singular or plural.
- Unless specifically stated or obvious from context, as used herein, the term “about” is understood as within a range of normal tolerance in the art, for example within 2 standard deviations of the mean. About can be understood as within 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1%, 0.5%, 0.1%, 0.05%, or 0.01% of the stated value. Unless otherwise clear from context, all numerical values provided herein are modified by the term about.
- The recitation of a listing of chemical groups in any definition of a variable herein includes definitions of that variable as any single group or combination of listed groups. The recitation of an embodiment for a variable or aspect herein includes that embodiment as any single embodiment or in combination with any other embodiments or portions thereof.
- Any compositions or methods provided herein can be combined with one or more of any of the other compositions and methods provided herein.
-
FIG. 1 1 shows SEM images of non-compressed and compressed electrospun gelatin+15% CW+honey scaffolds (non-crosslinked). Scale bars and magnification at 10 μm and 2kx, respectively. -
FIG. 2 shows FibraQuant™ automated fiber diameter analysis using SEM images fromFIG. 1 . The above histograms show fiber size distribution along with the mean and standard deviations, in microns. -
FIGS. 3A-3B show the results of uniaxial tensile testing of compressed electrospun membranes: A. Strain at break, B. elastic modulus. -
FIGS. 4A-4B show exemplary formable hydrated 10% honey compressed membranes. -
FIG. 5 shows DAPI images of cellularized (HDFs) compressed electrospun membranes. Scale bars and magnification at 200 μm and 10×, respectively. -
FIGS. 6A-6B show DinoLite images of general gross appearance of non-compressed and compressed gelatin+10% CW+30 mg/mL honey sponges. -
FIG. 7A shows an exemplary membrane (sponge) particulate of various sizes. -
FIG. 7B shows an exemplary sponge particular packed in a void (socket). -
FIG. 7C shows an exemplary use of the particulate that is covered by the compressed lyophilized membrane, when the particulate is packed in a void. -
FIG. 7D shows an exemplary dry lyophilized sponge compressed by hand. -
FIG. 7E shows an exemplary swollen back to original size when hydrated. -
FIG. 8 shows a Carver hydraulic unit used for scaffold compression. -
FIG. 9 schematically illustrates steps of an exemplary mechanical testing method. -
FIG. 10 shows SEM images of non-compressed and compressed gelatin+CW+MH membranes, which includes scale bars and magnification at 200 μm and 100×, respectively. -
FIG. 11A shows a graph including Gelatin+CW+MH degradation results (BCA assay) as shown with cumulative mean release measurement. -
FIG. 11B shows a graph including Gelatin+CW+MH degradation results (BCA assay) as shown with cumulative percent release measurement. -
FIG. 12 shows DAPI images of cellularized (HDFs) compressed gelatin+CW+MH membranes. Scale bars and magnification at 100 μm and 10×, respectively. -
FIGS. 13A-13C show exemplary formable hydrated membranes. - The present invention features biodegradable polymer-based materials or matrices (e.g., fibers or membranes) comprising honey; and in vitro and in vivo methods of using such compositions to ameliorate an injury or condition (e.g., bone injury or trauma associated with dental surgery).
- The invention is based, at least in part, on the discovery that biodegradable membranes comprising honey can support and promote bone and tissue growth and regeneration. In addition, the biodegradable membranes include an antibacterially-effective amount of honey, thereby providing an antibacterial barrier against infection and promoting a sterile environment for wound healing.
- In general, the materials of the invention comprise a biodegradable polymer and a honey (e.g., an antibacterial, bactericidal, and/or wound healing amount of honey). Preferably, the materials may additionally comprise a filler.
- A variety of biodegradable polymers are known in the art. Preferred biodegradable polymers include proteins (such as gelatin and collagen), polymers derived from naturally-occurring monomers (such as poly(lactic acid (PLA)), and polymers derived from synthetic monomers (such as polydioxanone (PDO)). Desirably, biodegradable materials will degrade over a time period of less than a year, more preferably less than six months. In general, any biodegradable polymer that is biocompatible, and can be shaped or formed into fibers and membranes, can be employed in the present materials. Copolymers or mixtures/blends (multi-component) of biodegradable polymers can also be employed.
- Other biocompatible polymers, some of which are biodegradable, include, e.g., Such polymers include but are not limited to the following: poly(urethanes), poly(siloxanes) or silicones, poly(ethylene), poly(vinyl pyrrolidone), poly(2-hydroxy ethyl methacrylate), poly(N-vinyl pyrrolidone), poly(methyl methacrylate), poly(vinyl alcohol), poly(acrylic acid), polyacrylamide, poly(ethylene-co-vinyl acetate), poly(ethylene glycol), poly(methacrylic acid), polylactic acid (PLA), polyglycolic acids (PGA), poly(lactide-co-glycolides) (PLGA), nylons, polyamides, polyanhydrides, poly(ethylene-co-vinyl alcohol) (EVOH), polycaprolactone, poly(vinyl acetate) (PVA), polyvinylhydroxide, poly(ethylene oxide) (PEO) and polyorthoesters or any other similar synthetic polymers that may be developed that are biologically compatible. Some preferred synthetic matrix materials include PLA, PGA, copolymers of PLA and PGA, pol caprolactone, poly(ethylene-co-vinyl acetate). (EVOH). PVA, and PEO. See also U.S. Pat. No. 7,374,774 (which is incorporated herein by reference).
- The term “filler”, as used herein, refers to an organic or inorganic biocompatible material that provides structural reinforcement or rigidity to a polymer fiber, filament, or membrane. The filler may be a crystalline, a fiber, or a particle. Alternatively, the filler suitably has a shape of rod, fiber, sphere, oval, polyhedral crystal, and the like, however, the shape of the filler is not particularly limited thereto. The filler has an average diameter in nanoscale (nanofiller) ranging from about 1 nm to about 950 nm. The nanofiller suitably has an average diameter of about 1-100 nm, of about 10-80 nm, of about 25-75 nm, or particularly of about 50 nm. Alternatively, the filler has an average diameter in microscale (microfiller) that is greater than at least about 100 nm. The microfiller suitably has an average diameter of about less than about 10 μm, less than about 9 μm, less than about 8 μm, less than about 7 μm, less than about 6 μm, less than about 5 μm, less than about 4 μm, less than about 3 μm, less than about 2 μm, or particularly less than about 1 μm. For example, the filler is a nanocrystalline or fiber material and has an average diameter or thickness of less than about 100 nm, and advantageously may have an average length of less than about 500 nm. Advantageously, a nanofiller can possess an electrostatic charge, which may adhere to or attract growth factors when implanted or applied to a wound site. Examples of nanofiller materials suitable for use in the present materials include chitin whiskers and hydroxyapatite nanocrystals. Mixtures of fillers comprising nanofillers and microfillers can also be used without limitation.
- The materials of the invention further comprise honey. Any type of honey can be used. Examples of types of honey include Manuka honey, Leptospermum Honey or buckwheat honey. Mixtures of different honeys can also be employed. For example, Manuka honey is an active or a therapeutic Manuka honey that has a UMF rating above 10. The honey is present in the compositions and materials of the invention in an amount effect to inhibit the growth or spread of bacteria, such as pathogenic bacteria. Exemplary bacteria include S. aureus, (including methacillin-resistant S. aureus (MRSA)), P. gingivalis, S. epidermidis, Enterococcus faecium, E. coli, P. aeruginosa, E. cloacae, and Klebsiella oxytoca. In addition, the buckwheat honey can be included in an effective amount for healing.
- The amount of honey to be used depends in part on the nature of the wound or injury to be treated with a composition of the invention; the type of bacterium to be inhibited; the concentration of the honey; and the antibacterial properties of the particular honey employed. The antibacterial, antimicrobial, and bactericidal properties of honey are dependent on various factors including the concentration of methylglyoxyl (MGO), Unique Manuka Factor (UMF), the presence of additional phenolic compounds in the honey, wound pH, pH of the honey, and osmotic pressure exerted by the honey. One of ordinary skill in the art will be able to select a suitable type and amount of honey for use in the present compositions using no more than routine experimentation. In certain embodiments, the amount of honey is 1 part to 15 parts by weight (1-15 weight percent) based on the weight amount of the biodegradable polymer.
- In preferred embodiments, a composition of the invention include 100 parts by weight of a biodegradable polymer, and about 1 part to about 15 parts by weight of honey. The composition may additionally comprise 10-20 parts by weight of filler. Additional compounds or agents can also be present as described herein.
- In preferred embodiments, the composition further comprises a therapeutically effective amount of honey. For example, honey in an antibacterially-effective amount is added to the composition, which ranges from about 50 parts to about 300 parts, or from about 100 parts to about 200 parts by weight relative to 100 parts by weight of the biodegradable polymer. In addition, additional amount of honey is added to the composition to stimulate or enhancing regeneration (cell proliferation and migration), which ranges from about 10 parts to about 100 parts, from about 20 parts to about 70 parts by weight, or particularly of about 50 part by weight relative to 100 parts by weight of the biodegradable polymer.
- Compositions comprising a biodegradable polymer, a filler, and a honey can be prepared by any suitable method, some of which are known in the art. In general, a filler can be suspended or dispersed in a solvent (which will not substantially dissolve the filler) to form a dispersion or suspension; the biodegradable polymer and the honey are then mixed with the dispersion or suspension to form a composition of the invention. In certain embodiment, a therapeutically effective amount of honey is additionally added to the composition for antibacterial effect or enhancing regeneration. In certain embodiments, the solvent is 2,2,2-trifluoroethanol, 1,1,1,3,3,3-hexafluoro-2-propanol (HFP) or 9:1 acetic acid:water. The amount of solvent used should be minimized to facilitate electrospinning or other processing of the composition into fibers and membranes.
- A composition comprising a biodegradable polymer, a filler, and an antibacterially-effective amount of honey can be used to prepare fibers and membranes by any suitable method, some of which are known in the art. In one embodiment, a fiber or membrane is formed by electrospinning. Electrospinning is a known technique (see, e.g., Li et al., Biomaterials. 2005 October; 26(30):5999-6008.) and electrospinning apparatus can be purchased commercially. For example, a charged solution comprising, for example, a biodegradable polymer is fed through a small opening or nozzle (usually a needle or pipette tip). Due to its charge, the solution is drawn toward a grounded collecting plate, e.g., a metal screen, plate, or rotating mandrel, typically 5-30 cm away, as a jet. During the jet's travel, the solvent gradually evaporates, and a charged fiber is left to accumulate on the grounded target. The charge on the fibers eventually dissipates into the surrounding environment. If the target is allowed to move with respect to the nozzle position, specific fiber orientations (aligned or random) can be achieved.
- The compositions of the invention can be made as electrospun fiber compositions.
- In one embodiment, the invention provides a method of producing a membrane, the method comprising:
- a) dispersing a filler in a solvent to form a dispersion;
- b) combining a biodegradable polymer and honey with the dispersion to form a composition; and
- c) electrospinning the composition to form fibers, thereby forming a membrane comprising a biodegradable polymer, a filler, and an antibacterially-effective amount of honey.
- In certain embodiments, the filler is added to the composition, such that the step a) can be omitted and the biodegradable polymer and honey can be combined with the solvent to form a composition.
- The method may further comprise adding at least one additional filler, at least one therapeutic agent, or a therapeutically effective amount of honey to the composition before electrospinning. The electrospun membrane can be formed in multiple layers. For example, the composition can be additionally electrospun on top of one layer or other layers to create multiple-layer electrospun membrane.
- In another embodiment, the solvent can be removed from a dispersion comprising a biodegradable polymer, a filler, and an antibacterially-effective amount of honey to form a sponge. Solvent can be removed by evaporation or lyophilization (freeze-drying). Thus, in one embodiment, the invention provides a method of producing a membrane, the method comprising:
- a) dispersing a filler in a solvent to form a dispersion;
- b) combining a biodegradable polymer and honey with the dispersion:
- c) removing solvent from the dispersion to form a sponge; and
- d) compressing the sponge to form a membrane comprising a biodegradable polymer, a filler, and an antibacterially-effective amount of honey.
- In certain embodiments, the filler is added to the composition, such that the step a) can be omitted and the biodegradable polymer and honey can be combined with the solvent to form a composition.
- The method may further comprise adding at least one additional filler, at least one therapeutic agent, or a therapeutically effective amount of honey to the composition.
- It will be appreciated from context that the term “membrane” is used herein to refer to a product after compression of either electrospun mats/membranes or compression of a sponge, as described herein. Thus, the “membranes” herein include both compressed fibers and compressed sponge (unless otherwise clear from context).
- The sponge can be lyophilized before compressing.
- In certain embodiments, the sponge (lyophilized or non-lyophilized) can be suitably processed in a block or a particulate or ground form before compressing, for example, based on applications thereof depending on the bone grafting application.
- Alternatively, the compressed sponge, fibers or membrane can be suitably processed in a block or a particulate or ground form after compressing depending on the bone grafting application.
- Alternatively, the sponge is not compressed, or compressed with less pressure or substantially less pressure, e.g. by hand, only to give swelling potential (
FIGS. 7D-7E ). - The multiple-layer membrane can be formed by attaching the at least two membranes.
- In certain embodiments, the multiple-layer membrane is formed by compressing multiple layers of sponges. In particular embodiment, the multiple-layer membrane is formed from multiple lyophilized sponges by compressing multiple layers thereof. The multiple-layer membrane can be compressed or not be compressed. For example, the multiple-layer membranes can be formed by compressing multiple layers of membranes formed by any of the methods described herein. In general, compression of 2-10 membranes (more preferably 2-4 membranes) between two surfaces (such as stainless steel plates or blocks, e.g., in a hydraulic press) at a pressure of 4,000-24,000 pounds will generally result in compression bonding of the membranes to form a multiple-layer membrane.
- Alternatively, the multiple-layer membrane can be formed using multiple solvents. In certain embodiments, at least two or more of solvents having difference densities are used to dissolve the fillers and to combine other components (e.g. biodegradable polymer and honey). For example, solutions made from the composition and different solvents are combined, and the combined solutions may form distinct layers based on the densities of the solvents. After removing the solvents, multiple-layered sponges and multiple-layered membrane can be prepared. The multiple-layer membrane may be compressed or may not be compressed.
- The membranes can be cross-linked using cross-linking reagents. Thus, in certain embodiments, the invention provides multiple-layer membranes having at least two layers, wherein the at least two layers are crosslinked, for example, to stabilize multiple-layered membrane structure. Exemplary cross-linking reagents include 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (or other carbodiimides), genipin, or glutaraldehyde. The membranes can be immersed in a solution of the cross-linking agent (e.g., 20-40 mM) in a solvent such as ethanol. When the desired amount of cross-linking has occurred, the membranes can be removed from the solution and rinsed before use.
- A membrane for use in the therapeutic methods of the invention should have sufficient rigidity to support the surrounding soft tissue, be malleable at its glass transition temperature (Tg) but regain rigidity on cooling (i.e. hold shape formed in situ), and be biocompatible in that it will promote osseointegration and not adversely affect the surrounding soft tissue. The membrane should resorb within 6-9 months as it takes approximately 6 months for allograft bone to consolidate into new bone in the mandible and maxilla bone graft surgeries. The membranes of the invention are flexible, moldable upon heating, maintain their shape upon cooling, are less acidic during degradation, and the fibrous architecture will regulate the macrophage (MAC) response and allow for regeneration of bone and tissue (M2 MAC phenotype) versus the inflammatory (M1 MAC phenotype).
- The size and thickness of a membrane of the invention can be varied according to the intended use. The membranes can be spun to a desired size, or a sponge can be cast to a desired size, followed by compression to a desired density and thickness. For example, barrier membranes are commonly between 0.1-0.4 mm in thickness, so the sponge can be suitably compressed to a thickness of about 0.1-0.4 mm.
- The membrane can have any shape (round, square, rectangular, irregular). In exemplary embodiments, a membrane of the invention has a width from 1 to 20 mm and a length from 1 to 20 mm. In certain embodiments, a membrane is less than 1 mm in thickness, less than 0.5 mm thickness, less than 0.3 mm in thickness, or less than 100 microns in thickness.
- In certain embodiments, a membrane of the invention has a strain at break of at least 90%, 100%, 110% or 120%. In certain embodiments, a membrane of the invention has modulus of elasticity of at least about 5 mPa, or 10, 15, 20, or 25 mPa. In certain embodiments, a membrane of the invention has a maximum compression load of at least about 0.26N.
- The present invention provides a ready supply of materials useful for ameliorating conditions associated with bone or soft tissue disease or injury. Compositions and materials of the invention are administered (e.g., directly or indirectly) to a damaged or diseased tissue or organ where they engraft and establish functional connections with a target tissue (e.g., bone, muscle, gum, gingiva, mucous membrane, skin). In one embodiment, a membrane of the invention enhances bone healing. Methods for repairing damaged tissue or organs may be carried out either in vitro, in vivo, or ex vivo. In a particular embodiment, the membrane is used in a dental application, e.g., in mandible and maxilla bone graft surgery.
- In another embodiment, the invention provides a method of promoting bone regeneration, the method comprising contacting a bone surface with a composition, fiber, compressed membrane, particulate, swelling membrane, non-compressed membrane or multiple-layer membrane (compressed or non-compressed) of the invention. In certain embodiments, the method is a method of promoting bone regeneration after a surgical procedure on bone, including socket preservation, ridge augmentation, sinus grafting or bone grafting.
- In another embodiment, the invention provides a method of promoting healing of a bone defect, the method comprising contacting the bone defect with a composition, fiber, compressed membrane, particulate, swelling membrane, non-compressed membrane or multiple-layer membrane (compressed or non-compressed) of the invention.
- In another embodiment, the invention provides a method of preventing infection of a bone defect, the method comprising contacting the bone defect with a composition, fiber, membrane, particulate, swelling membrane, non-compressed membrane or multiple-layer membrane (compressed or non-compressed) of the invention.
- In still another embodiment, the invention provides a method of promoting soft tissue healing in a damaged tissue, the method comprising contacting the damaged tissue with a composition, fiber, membrane, particulate, swelling membrane, non-compressed membrane or multiple-layer membrane (compressed or non-compressed) of the invention.
- In certain embodiments of the above aspects, the method is a method of promoting bone regeneration after a surgical procedure on bone, including socket preservation, ridge augmentation, sinus grafting or bone grafting.
- In yet another embodiment, the invention provides a method of promoting a macrophage response in a tissue, the method comprising contacting the tissue with a composition, fiber, membrane, particulate, swelling membrane, non-compressed membrane or multiple-layer membrane (compressed or non-compressed) of the invention.
- Compositions, fiber, and membranes of the invention can be provided directly to a tissue or organ of interest (e.g., by direct application to a bone or tissue surface, or by surgical implantation). A membrane can be applied to cover, surround, fill, or otherwise contact a bone or tissue defect, wound, skin/wound healing, gingival recession or surgical site.
- If desired, expansion and differentiation agents can be provided prior to, during or after administration of the composition, fiber, or membrane to increase, maintain, or enhance production or differentiation of cells in vivo, including bone cells from a subject's bone or from any type of bone graft material/transplant, i.e., allogenic, xenogenic, alloplastic or genetically produced bone. Compositions of the invention include pharmaceutical compositions. When administering a therapeutic composition or material of the present invention (e.g., a pharmaceutical composition), it will generally be formulated in a unit dosage form. Additional therapeutic agents can be applied to the fibers or incorporated within fibers during fabrication.
- Compositions, fibers, membranes, or multiple-layer membranes of the invention of the invention can be conveniently provided as sterile preparations. In one embodiment, a composition of the invention is provided as a liquid, liquid suspension, gel, viscous composition, or solid composition. Liquid, gel, and viscous compositions are somewhat more convenient to administer, especially by injection. Viscous compositions can be formulated within the appropriate viscosity range to provide longer contact periods with specific tissues. Liquid or viscous compositions can comprise carriers, which can be a solvent or dispersing medium containing, for example, water, saline, phosphate buffered saline, polyol (for example, glycerol, propylene glycol, liquid polyethylene glycol, and the like) and suitable mixtures thereof.
- Sterile injectable solutions can be prepared by incorporating the cells (e.g., embryonic stem cells, neuronal progenitors, differentiated neurons) as desired. Such compositions may be in admixture with a suitable carrier, diluent, or excipient such as sterile water, physiological saline, glucose, dextrose, or the like. The compositions can contain auxiliary substances such as wetting, dispersing, or emulsifying agents (e.g., methylcellulose), pH buffering agents, gelling or viscosity enhancing additives, preservatives, flavoring agents, colors, and the like, depending upon the route of administration and the preparation desired. Standard texts, such as “REMINGTON'S PHARMACEUTICAL SCIENCE”, 17th edition, 1985, incorporated herein by reference, may be consulted to prepare suitable preparations, without undue experimentation.
- Various additives which enhance the stability and sterility of the compositions, including antimicrobial preservatives, antioxidants, chelating agents, and buffers, can be added. Prevention of the action of microorganisms can be ensured by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, sorbic acid, and the like. The compositions can be isotonic, i.e., they can have the same osmotic pressure as blood and lacrimal fluid. The desired isotonicity of the compositions of this invention may be accomplished using sodium chloride, or other pharmaceutically acceptable agents such as dextrose, boric acid, sodium tartrate, propylene glycol or other inorganic or organic solutes. Sodium chloride is preferred particularly for buffers containing sodium ions.
- Viscosity of the compositions, if desired, can be maintained at the selected level using a pharmaceutically acceptable thickening agent. Methylcellulose is preferred because it is readily and economically available and is easy to work with. Other suitable thickening agents include, for example, xanthan gum, carboxymethyl cellulose, hydroxypropyl cellulose, carbomer, and the like. In addition, silver salts can be used as thickening agent. See also U.S. Pat. Nos. 8,367,094; 8,173,151; and 7,998,498 (which are incorporated herein by reference). The silver salts may be added to further improve antibacterial effects of the composition. The preferred concentration of the thickener will depend upon the agent selected. The important point is to use an amount that will achieve the selected viscosity. Obviously, the choice of suitable carriers and other additives will depend on the exact route of administration and the nature of the particular dosage form, e.g., liquid dosage form (e.g., whether the composition is to be formulated into a solution, a suspension, gel or another liquid form, such as a time release form or liquid-filled form).
- Glycerin or similar components can be added to the admixture to improve fiber and membrane flexibility.
- Exemplary agents that may be delivered together with a composition, fiber, membrane, or multiple-layer membrane of the invention of the invention include, but are not limited to, antibiotics (including. e.g., antibacterial silver salts), analgesics, anticoagulants, immunosuppressants, the therapeutic substance is selected from the group consisting of anesthetics, hypnotics, sedatives, sleep inducers, antipsychotics, antidepressants, antiallergics, antianginals, antiarthritics, antiasthmatics, antidiabetics, antidiarrheal drugs, anticonvulsants, antigout drugs, antihistamines, antipruritics, emetics, antiemetics, antispasmondics, appetite suppressants, neuroactive substances, neurotransmitter agonists, antagonists, receptor blockers, reuptake modulators, beta-adrenergic blockers, calcium channel blockers, disulfarim, muscle relaxants, analgesics, antipyretics, stimulants, anticholinesterase agents, parasympathomimetic agents, hormones, antithrombotics, thrombolytics, immunoglobulins, hormone agonists, hormone antagonists, vitamins, antineoplastics, antacids, digestants, laxatives, cathartics, antiseptics, diuretics, disinfectants, fungicides, ectoparasiticides, antiparasitics, heavy metals, heavy metal antagonists, chelating agents, alkaloids, salts, ions, autacoids, digitalis, cardiac glycosides, antiarrhythmics, antihypertensives, vasodilators, vasoconstrictors, antimuscarinics, ganglionic stimulating agents, ganglionic blocking agents, neuromuscular blocking agents, adrenergic nerve inhibitors, anti-oxidants, anti-inflammatories, wound care products, antitumoral agents, antiangiogenic agents, antigenic agents, wound healing agents, plant extracts, growth factors, growth hormones, cytokines, immunoglobulins, emollients, humectants, anti-rejection drugs, spermicides, conditioners, antibacterial agents, antifungal agents, antiviral agents, tranquilizers, cholesterol-reducing drugs, antitussives, histamine-blocking drugs and monoamine oxidase inhibitors. Other agents include proteins such as any one or more of activin A, adrenomedullin, acidic FGF, basic fibroblast growth factor, angiogenin, angiopoietin-1, angiopoietin-2, angiopoietin-3, angiopoietin-4, angiostatin, angiotropin, angiotensin-2, bone
morphogenic protein MMP 2, MMP3, MMP9, neuropilin, neurothelin, nitric oxide donors, nitric oxide synthase (NOS), stem cell factor (SCF), VEGF-A, VEGF-B, VEGF-C, VEGF-D, VEGF-E, VEGF, and VEGF164. Other agents that may be delivered together with a cell of the invention include one or more of LIF, bone morphogenic protein (BMP), retinoic acid, trans-retinoic acid, dexamethasone, insulin, indomethacin, fibronectin and/or 10% fetal bovine serum, or a derivative thereof. Other agents include small oligonucleotides, such as SiDNA or SiRNA including at least a portion of sequences to a therapeutic target. - Those skilled in the art will recognize that the polymeric components of the compositions should be selected to be chemically inert and will not affect the viability or efficacy of the cell as described in the present invention. This will present no problem to those skilled in chemical and pharmaceutical principles, or problems can be readily avoided by reference to standard texts or by simple experiments (not involving undue experimentation), from this disclosure and the documents cited herein.
- A composition, fiber, or membrane of this invention can be applied or implanted in an amount effective to provide wound-healing or other properties. In certain embodiments, a membrane of the invention provides a barrier effective to prevent infiltration of pathogenic bacteria into the wound site. The skilled artisan can readily determine the amount of the composition, fiber, or membrane of the invention to be administered in methods of the invention. Of course, for any composition to be administered to an animal or human, and for any particular method of administration, it is preferred to determine therefore, toxicity, such as by determining the lethal dose (LD) and LD50 in a suitable animal model e.g., rodent such as mouse; and, the dosage of the composition(s), concentration of components therein and timing of administering the composition(s), which elicit a suitable response. Such determinations do not require undue experimentation from the knowledge of the skilled artisan, this disclosure and the documents cited herein. And, the time for sequential administrations can be ascertained without undue experimentation.
- Compositions of the invention (e.g., scaffolds comprising cells) can be provided directly to a tissue or organ of interest, such as a tissue damaged from injury or disease (e.g., by administration into the central or peripheral nervous system). Compositions can be administered to subjects in need thereof by a variety of administration routes. Methods of administration, generally speaking, may be practiced using any mode of administration that is medically acceptable, meaning any mode that produces effective levels of the active compounds without causing clinically unacceptable adverse effects. Such modes of administration include surgical engraftment or injection (e.g., intramuscular, intra-cardiac, intraocular, intracerebroventricular).
- Compositions, fibers, membranes, or multiple-layer membranes of the invention may be supplied along with additional reagents in a kit. The kits can include instructions for the preparation of a material (such as a membrane), a treatment regime, reagents, and equipment (test tubes, reaction vessels, needles, syringes, etc.). The instructions provided in a kit according to the invention may be directed to suitable operational parameters in the form of a label or a separate insert.
- In one embodiment, compositions, fiber, membranes, or multiple-layer membranes of the invention are useful for the treatment or prevention of injury or disease of bone or soft tissue. The present invention provides compositions and methods of treating such injuries or diseases and/or symptoms thereof characterized by the loss of cells, or loss of tissue structure, function or activity. The methods of the invention comprise administering a therapeutically effective amount of a composition, fiber, membrane, or multiple-layer membrane described herein to a subject (e.g., a mammal, such as a human). Thus, one embodiment is a method of treating a subject suffering from or susceptible to a disease, condition or disorder characterized by the loss of cells, or loss of tissue structure, function or activity. The method includes the step of administering to the mammal a therapeutic amount of a characterized by the loss of cells, or loss of tissue structure, function or activity herein sufficient to treat the disease, condition, or disorder, or symptom thereof, under conditions such that the disease, condition, or disorder, or symptom thereof is treated.
- The methods herein include administering to the subject (including a subject identified as in need of such treatment) an effective amount of a composition, fiber, membrane, or multiple-layer membrane described herein, to produce such effect. Identifying a subject in need of such treatment can be in the judgment of a subject or a health care professional and can be subjective (e.g. opinion) or objective (e.g. measurable by a test or diagnostic method).
- The therapeutic methods of the invention (which include prophylactic treatment) in general comprise administration of a therapeutically effective amount of the compositions herein, such as a composition, fiber, membrane, or multiple-layer membrane described herein to a subject (e.g., animal, human) in need thereof, including a mammal, particularly a human. Such treatment will be suitably administered to subjects, particularly humans, suffering from, having, susceptible to, or at risk for a disease, disorder, or symptom thereof. Determination of those subjects “at risk” can be made by any objective or subjective determination by a diagnostic test or opinion of a subject or health care provider (e.g., genetic test, enzyme or protein marker. Marker (as defined herein), family history, and the like).
- The following examples are put forth so as to provide those of ordinary skill in the art with a complete disclosure and description of how to make and use the assay, screening, and therapeutic methods of the invention, and are not intended to limit the scope of what the inventors regard as their invention.
- The purpose of this study was to engineer a membrane with antibacterial and regenerative properties that degrades within 6-12 weeks allowing for retention of the graft while promoting a more rapid closure of the overlying tissue. To achieve this, electrospun gelatin+chitin whiskers (CW)+honey membranes were fabricated and subsequently compressed. Compressed membranes have increased handleability, are less porous, and maintain non-compressed fiber diameter. Less porous scaffolds are desired for this application to provide guided regeneration for tissue closure. Furthermore, it is documented that larger fibers and the addition of honey (antimicrobial by nature) can independently enhance the pro-regeneration response. Chitin whiskers (CW) are an emerging, novel filler, and have been shown to reinforce both synthetic and natural polymeric structures. The good biocompatibility and biodegradability also make it one of the most promising fillers.
- In some experiments, gelatin was dissolved in 1,1,1,3,3,3-hexafluoro-2-propanol (HFP) or 9:1 acetic acid:deionized (DI) water and electrospun with MEDIHONEY® or MANUKAGARD® (0-50 wt %). Electrospinning using HFP or acetic acid:DI water as a solvent resulted in scaffolds with micron- and nano-sized fibers, respectively. Membranes (crosslinked and non-crosslinked with 25 mM 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide) were compressed (one or multiple layers) using a hydraulic press. Compressed membranes have increased handleability, are less porous, and maintain non-compressed fiber diameter. Less porous scaffolds are desired for this application to provide guided regeneration for tissue closure. Furthermore, it is documented that larger fibers and the addition of honey (antimicrobial by nature) can independently enhance the pro-regeneration response. This study will further analyze the regenerative response of human dermal fibroblasts seeded on composite membranes.
- CWs were prepared according to Dufresne's method with minor modification (Ji, Y-L, et al. Carbohydrate Polymers, 87, 2313-2319, 2012). The desired amount of CWs (15 wt % of gelatin) were redispersed in 2,2,2-trifluoroethanol (TFE) by ultrasonication. Gelatin (Type B) was added to the CW solution at 140 mg/mL. MEDIHONEY® (100% Active Leptospermum Honey) was then added to the gelatin+CW solution at 0, 5, 10 wt % of gelatin. Solutions were mixed and incubated at 37° C. overnight to ensure the complete dissolving/mixing of all components. Solutions were loaded into a 5 mL syringe and electrospun using the following parameters: 5 mL/hr, +22 kV, and 5 inch air gap distance. Fibers were collected on a 1 inch (diameter) rotating grounded stainless steel mandrel.
- Scaffolds were compressed to create multilayer membranes with improved mechanical integrity while maintaining the fibrous nanostructure. 4 layers of the same scaffold were compressed using metal platens on a hydraulic press for 30 seconds at 4500 pounds. Non-compressed and compressed samples of each scaffold (0, 5, 10 wt % honey) were imaged using a scanning electron microscope (SEM) at +20 kV to observe fiber diameter and general porosity. Fiber diameter of all non-crosslinked scaffold types, both compressed and non-compressed, was further analyzed by calculating average fiber diameters and standard deviations using FibraQuant™ 1.3 software (nanoScaffold Technologies, LLC).
- Crosslinking of all 4-layered membranes was achieved by placing each membrane in a medium petri dish containing 40 mM 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide) (EDC) in ethanol for 21 hours at room temperature. Upon completion, the membranes were immersed in ethanol and 6 mm discs were punched and used in cell studies.
- Dog-bone punches (2.71 mm wide at narrowest point with a length of 18.63 mm) were used for mechanical testing. Uniaxial tensile testing was performed on the dog-bone samples (n=3) with a 100 N load cell, extension rate of 1 mm/s, and a 7.7 mm starting distance between grips. Modulus of elasticity and strain at break were calculated from the stress-strain output.
- Clinical adaptability/formability of membranes was scored by an oral surgeon under both dry and hydrated (0.9% NaCl for 30 minutes) conditions. COLLAPLUG® collagen membrane (Zimmer Dental) was used as a control since it is currently one of the membrane barrier standards for socket preservation surgery.
- 6 mm punches of the compressed membranes were disinfected directly following crosslinking via a 30 minute ethanol soak followed by three 10 minute PBS washes. Human dermal fibroblasts (HDFs) were seeded on the scaffold punches (n=3) at 5,000 cells/well in a 96 well plate. Studies were completed over 7 days with time points at 1, 3, and 7 days. Media changes occurred at every time point. After each time point, cellularized scaffolds were fixed in 10% buffered formalin. 4′,6-diamidino-2-phenylindole (DAPI) cell nuclei staining was then performed. Scaffolds were imaged using an Olympus fluorescent microscope to visualize viable cells.
- SEM images of non-compressed and compressed electrospun gelatin+15% CW+honey, scaffolds (non-crosslinked) are shown in
FIG. 1 . Fiber size distributions are shown inFIG. 2 .FIGS. 3A and 3B show the strain at break (3A) and modulus of elasticity (3B) measurements. - Table 1 shows the assessment of clinical adaptability of dry and hydrated membranes having varying amounts of honey. Best membrane (wet): 0% and 10% honey. Worst membrane (wet): CollaPlug control (does not hold shape, difficult to adapt). Clinical significance: compressed membrane needs to be hydrated before use. Formability can be tailored by compressing fewer or more layers (
FIGS. 4A-4B ). -
TABLE 1 Clinical adaptability of dry (D) and hydrated (wet, W) compressed membranes and CollaPlug controls scored by an oral surgeon (top). 0 1 2 3 4 0% Honey D W 5% Honey W D 10% Honey D W CollaPlug W D Scale 0 = cannot be formed, either brittle or tears apart 4 = can easily be formed, maintains structure when handled -
FIG. 5 shows images of compressed electrospun membranes. Compression while maintaining fibrous architecture and dimensions was achieved. Some fiber welding was noticed post-compression which is most likely dependent on the crystallization state of the honey. A more dehydrated scaffold (in desiccator) will result in a more crystalline honey structure and ultimately, less non-welded fibers upon compression. - All scaffolds failed between 90-120% strain (no significant difference). Scaffolds containing 10% honey had significantly higher modulus values compared to 0% honey. This was unexpected at first since intuitively, more honey would cause the scaffolds to be less rigid. It was hypothesized since the mechanical testing was performed directly from ethanol that the honey was in a dehydrated (more crystalline) state, which caused the increase in modulus. Future work will incorporate glycerin and analysis of samples hydrated with PBS which will most likely induce a less crystalline honey architecture and result in less stiff scaffolds.
- Viable cells (HDFs) were visible on the surface of every scaffold for each time point. Visually, it is difficult to determine any differences. However, future studies will analyze cell proliferation and cell secreted regenerative markers and extracellular matrix.
- Sponges were fabricated using a 30 mg/mL gelatin solution in deionized water and heated to 37° C. to ensure all gelatin was in solution. 10% CW (chitin whisker) was added to the gelatin solution and sonicated. 0-30 mg/mL honey was then added to the gelatin+CW solution. After the honey went into solution, 25 mM 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide) (EDC) was added to the gelatin+CW+Honey solution, immediately transferred to a cylindrical mold, frozen at −80° C., and lyophilized. Dry sponges were compressed at 4,500 pounds for 30 seconds using a hydraulic press.
-
FIGS. 6A-6B show DinoLite images of general gross appearance of non-compressed and compressed gelatin+10% CW+30 mg/mL honey sponges. Noncompressed: 5.5 mm thickness; compressed: 0.3 mm thickness. - Sponges can be manufactured at any size (depending on the mold) and subsequently compressed.
- Particulate is formed similarly to the lyophilized membrane with on additional step (
FIGS. 7A-7B ). The particulate can be used in combination with the lyophilized membrane, as shown inFIG. 7C . After the composite solution is frozen, the frozen material can be ground up (e.g. using a blender) to form something similar to “crushed ice”. This crushed ice is then lyophilized overnight to form the particulate. Since the particulate is intended for bone regeneration, the concentration of filler (e.g. hydroxyapatite) will be increased (e.g. to 50% or more) to enhance osteoconductivity. Development and refinement of particulate can consist of optimizing the manufacturing process to obtain fairly consistent particle size. This can be achieved by controlling the blending of the frozen composite to achieve the crushed ice or by cryopulverizing (in liquid nitrogen) larger lyophilized pieces into smaller. Particle sizes can be filtered by size using sieves or equivalent technology to obtain uniform/defined particulate sizes. Multiple methods of achieving (lyophilizing the “crushed ice” versus cryopulverizing larger (mm-sized) particulate) particle size can be performed in order to optimize particulate size. Preferably, the particulate has a size or an average diameter ranging from about 100 μm to about 10 mm, or particularly from about 1 mm to about 5 mm. - Both dry and hydrated, compressed membranes of this composition should be hydrated before use (
FIG. 7E ) and can be easily cut/sized with scissors and have great handleability. Upon hydration, membranes become more flexible and can be maneuvered within the surgery site easily upon implantation. Once initially hydrated, the handleability alone is a significant improvement from existing membranes such as COLLAPLUG®. Even after a few days of being hydrated, current natural biodegradable membranes such as BIO-GIDE® begin to lose their mechanical integrity. - Further, the excellent biocompatibility and biodegradability also make it one of the most promising fillers. These compressed membranes combine the advantages of a film-like material with a bioactive surface to further enhance cell response and guided tissue regeneration (GTR). Gelatin+CW+MH membranes exhibit enhanced biocompatibility and biodegradability which suggests their use as an alternative to current clinical products.
- Scaffolds were fabricated using a 30 mg/mL gelatin solution. 10% CW (wt % of gelatin) were dispersed in DI water and sonicated using a microtip for 30 seconds at 2% amplitude. Gelatin and 0, 5, or 25% MH (wt % of gelatin) were then solubilized within the CW solution via incubation at 37° C. for 1 hour. After a uniform solution was achieved, 40 mM 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide) EDC cross-linker was added, briefly mixed, immediately transferred to a small Petri dish, frozen overnight at −80° C., and lyophilized. Lyophilized sponges were then sliced into 4 mm thick sections and compressed using a hydraulic press (
FIG. 8 ) at 4500 pounds for 30 seconds to create the final membranes (thickness between 300-400 μm). - Scaffold degradation via release kinetics was studied by quantifying protein release from each 6 mm scaffold over 14 days. Scaffolds were incubated at 37° C. in 1×PBS with PBS replaced at each time point. After 1, 4, 7, 11, and 14 days, the releasate was analyzed for general protein using the Pierce BCA Protein Assay. Gelatin and MH could not be distinguished and both contributed to the quantitative cumulative mean concentration results. To account for this, cumulative percent release was calculated by using fully degraded non-crosslinked scaffolds as total initial protein content: % release=(release)/(total initial content)*100.
- 6 mm discs of each scaffold type were loaded into 96-well plates. Current clinical membranes, GEISTLICH BIO-GIDE® (collagen) and KLS MARTIN RESORB-X®, (polylactic acid, PLA film), were punched and used as clinical controls. All membranes were disinfected (30 minutes Ethanol and three 10 minute PBS washes) prior to cell seeding. 20,000 human dermal fibroblasts (HDFs) were seeded on membranes and cultured for 14 days. After 1, 7, and 14 days, media was removed and frozen while cellularized membranes were fixed in 10% formalin. Fixed scaffolds were stained with 4′-6-diamidino-2-phenylindole (DAPI) and their cell seeded surfaces fluorescently imaged to visualize cell attachment.
- Hydrated acellular scaffolds were analyzed using a uniaxial platen compression system to determine peak load. Rectangles (2.5×0.5 cm) were cut and fixed in an arch position by anchoring the
ends 1 cm apart (FIG. 9 ). The upper platen was lowered to the scaffold surface and the following parameters were used: 10 mm/min test speed and 250 samples/second data acquisition rate. Compression was continuous until the top platen reached the anchors. Run was terminated just before this contact occurred and maximum force exerted by the scaffolds was recorded in Newtons (N). - After hydration, all gelatin+CW+MH membranes were scored by an oral surgeon under both dry and hydrated (0.9% NaCl for 30 minutes) conditions. KLS MARTIN, BIO-GIDE and COLLAPLUG® (collagen membrane, Zimmer Dental) were used as clinical control membranes.
- All gelatin+CW+MH scaffolds exhibited the same non-compressed (porous) and compressed (less porous) surface architecture with no visual discernible differences between scaffold types (
FIG. 10 ). The compressed surface provides a template for GTR compared to a porous membrane where cells initially migrate throughout the scaffold. - The addition of 5% MH resulted in a similar concentration release profile compared to 0% MH, with both beginning to plateau after 14 days (
FIGS. 11A-11B ). The +25% MH membranes exhibited a more linear release profile over 14 days, suggesting degradation at a constant rate. After 1 day, 0%, +5%, and +25% MH released 17%, 17%, and 22% of total initial content, respectively. After 14 days, 0%, +5%, and plus 25% MH released 44%, 34%, and 49% of total initial content, respectively. The cumulative percent release graphs revealed interesting profiles, suggesting the addition of 5% MH slows the degradation rate of the scaffold. This was not expected since the addition of any amount of MH was thought to increase the degradation rate (evident in +25% MH graph). The data provides insight to the tailorable degradation rates solely based on the incorporation of various concentrations of MH. - Clinical adaptability of dry (D) and hydrated (wet, W) compressed membranes and Bio-Gide, KLS Martin. and CollaPlug controls scored by an oral surgeon. When hydrated, all gelatin+CW+MH membranes handled similarly to Bio-Gide controls with higher percentages of incorporated MH resulting in increased membrane tearing (Table 2). However, dry gelatin+CW+MH membranes had greater adaptability compared to controls. In the hands of the surgeon, compressed membranes handled similar to clinical collagen membranes (
FIGS. 13A-13C ). -
TABLE 2 Adaptability/ Formability 1 2 3 4 5 0% MH W D +5% MH W D +25% MH W D Bio-Gide W D KLS Martin D W CollaPlug W D Scale 1 = cannot be formed, brittle or tears apart 5 = can easily be formed, maintains structure when handled - All gelatin+CW+MH membranes exerted a max force within the range of 0.02-0.03 N while the Bio-Gide and KLS Martin controls exerted 0 N and 0.75 N, respectively. Gelatin+CW+MH membranes show improved mechanical properties compared to the Bio-Gide control which would not maintain an arch for testing (Table 3). The higher KLS Martin values are expected since it is a non-porous PLA film.
-
TABLE 3 Compression Testing 0% MH +5% MH +25% MH Bio-Gide KLS Martin 0.03N 0.03N 0.02N 0N 0.75N - The addition of MH significantly increased cell attachment on
day 1 compared to 0% MH and Bio-Gide membranes (FIG. 12 ). KLS Martin membranes also attached a high number of cells because of its 2D film surface similar to tissue culture plastic. The drawback of KLS Martin (PLA) is its degradation which leads to an acidic microenvironment. After 7 and 14 days, all gelatin+CW+MH membranes were covered in cells where Bio-Gide controls still had no visible cells attached. Fluorescent imaging became more difficult at 7 and 14 days most likely due to some migration of the cells as they remodeled the membrane. Future studies will analyze cell proliferation, viability, secreted regenerative markers, and extracellular matrix production. - From the foregoing description, it w ill be apparent that variations and modifications may be made to the invention described herein to adopt it to various usages and conditions. Such embodiments are also within the scope of the following claims.
- The recitation of a listing of elements in any definition of a variable herein includes definitions of that variable as any single element or combination (or subcombination) of listed elements. The recitation of an embodiment herein includes that embodiment as any single embodiment or in combination with any other embodiments or portions thereof.
- All patents and publications mentioned in this specification are herein incorporated by reference to the same extent as if each independent patent and publication was specifically and individually indicated to be incorporated by reference.
Claims (30)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/230,023 US20210308337A1 (en) | 2014-08-05 | 2021-04-14 | Compositions and methods for enhancing healing and regeneration of bone and soft tissue |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201462033599P | 2014-08-05 | 2014-08-05 | |
US14/818,662 US10258717B2 (en) | 2014-08-05 | 2015-08-05 | Compositions and methods for enhancing healing and regeneration of bone and soft tissue |
US16/249,748 US20190224380A1 (en) | 2014-08-05 | 2019-01-16 | Compositions and methods for enhancing healing and regeneration of bone and soft tissue |
US17/230,023 US20210308337A1 (en) | 2014-08-05 | 2021-04-14 | Compositions and methods for enhancing healing and regeneration of bone and soft tissue |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/249,748 Continuation US20190224380A1 (en) | 2014-08-05 | 2019-01-16 | Compositions and methods for enhancing healing and regeneration of bone and soft tissue |
Publications (1)
Publication Number | Publication Date |
---|---|
US20210308337A1 true US20210308337A1 (en) | 2021-10-07 |
Family
ID=55264490
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/818,662 Active 2035-10-18 US10258717B2 (en) | 2014-08-05 | 2015-08-05 | Compositions and methods for enhancing healing and regeneration of bone and soft tissue |
US16/249,748 Pending US20190224380A1 (en) | 2014-08-05 | 2019-01-16 | Compositions and methods for enhancing healing and regeneration of bone and soft tissue |
US17/230,023 Pending US20210308337A1 (en) | 2014-08-05 | 2021-04-14 | Compositions and methods for enhancing healing and regeneration of bone and soft tissue |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/818,662 Active 2035-10-18 US10258717B2 (en) | 2014-08-05 | 2015-08-05 | Compositions and methods for enhancing healing and regeneration of bone and soft tissue |
US16/249,748 Pending US20190224380A1 (en) | 2014-08-05 | 2019-01-16 | Compositions and methods for enhancing healing and regeneration of bone and soft tissue |
Country Status (9)
Country | Link |
---|---|
US (3) | US10258717B2 (en) |
EP (2) | EP3656401A1 (en) |
JP (1) | JP6861151B2 (en) |
KR (1) | KR102511882B1 (en) |
CN (1) | CN107106695B (en) |
AU (1) | AU2015301070B2 (en) |
CA (1) | CA2957263A1 (en) |
ES (1) | ES2760923T3 (en) |
WO (1) | WO2016022670A1 (en) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BR112016025331A2 (en) | 2014-04-30 | 2017-08-15 | Matoke Holdings Ltd | antimicrobial compositions |
CN107708752A (en) * | 2015-02-03 | 2018-02-16 | 玛托克控股有限公司 | Antimicrobial fibre and composition |
WO2017099820A2 (en) * | 2015-12-11 | 2017-06-15 | Poly-Med, Inc. | Synthetic implant device replicating natural tissue structure and methods of making same |
FR3063886B1 (en) * | 2017-03-14 | 2019-04-12 | Cousin Biotech | IMPLANTABLE PROSTHESIS, IN PARTICULAR FOR PARIETAL SURGERY |
CN107459662B (en) * | 2017-09-06 | 2020-09-08 | 青岛农业大学 | Preparation method of nano composite hydrogel |
GB201716986D0 (en) | 2017-10-16 | 2017-11-29 | Matoke Holdings Ltd | Antimicrobial compositions |
CN107715176A (en) * | 2017-10-31 | 2018-02-23 | 无锡中科光远生物材料有限公司 | A kind of preparation method of the nanofiber coating support of promotion osteanagenesis |
CN109432497B (en) * | 2019-01-05 | 2021-10-19 | 西安点云生物科技有限公司 | Chitin nano whisker/hydroxyapatite composite artificial bone material, preparation method thereof and application thereof in 3D printing |
CN109675101B (en) * | 2019-01-05 | 2021-08-10 | 西安点云生物科技有限公司 | Chitin nano whisker/hydroxyapatite composite material, preparation method thereof and application thereof in 3D printing of artificial bone |
EP3771454B1 (en) * | 2019-07-29 | 2022-11-16 | Shanghai Ninth Peoples Hospital Affiliated Shanghai Jiaotong University School of Medicine | Sealing device for repairing perforation of maxillary sinus mucosa |
WO2021050933A1 (en) * | 2019-09-11 | 2021-03-18 | Warsaw Orthopedic, Inc. | Hydratable compositions comprising macroparticles and methods of making them |
CN111407755A (en) * | 2020-04-30 | 2020-07-14 | 重庆医科大学附属口腔医院 | Use of retinoic acid in tooth development |
CN114681678B (en) * | 2020-12-31 | 2023-04-18 | 广州迈普再生医学科技股份有限公司 | Nanofiber sponge and preparation method thereof |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100166854A1 (en) * | 2006-10-30 | 2010-07-01 | Rutgers, The State University Of New Jersey | Electrospun matrices for delivery of hydrophilic and lipophilic compounds |
GB2474851A (en) * | 2009-10-27 | 2011-05-04 | Univ Bolton | Wound dressing comprising anti-microbial honey encapsulated within biocompatible and biodegradable fibre, and the fibre's production |
US20110263528A1 (en) * | 2008-10-14 | 2011-10-27 | Manuka Health New Zealand Limited | Antimicrobial compositions |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3827561C1 (en) * | 1988-08-13 | 1989-12-28 | Lts Lohmann Therapie-Systeme Gmbh & Co Kg, 5450 Neuwied, De | |
EP1120439B1 (en) * | 1992-02-28 | 2004-06-16 | Cohesion Technologies, Inc. | Injectable ceramic compositions and methods for their preparation and use |
CN1045719C (en) * | 1993-04-10 | 1999-10-20 | 北京市西城区华新生化技术研究所 | Oral water-soluble active collagen medicine (Gulite) |
CN1140089A (en) * | 1995-07-07 | 1997-01-15 | 段和平 | Oral liquid of collagen protein and preparing process thereof |
US20020081732A1 (en) | 2000-10-18 | 2002-06-27 | Bowlin Gary L. | Electroprocessing in drug delivery and cell encapsulation |
CN1409636A (en) | 1999-12-09 | 2003-04-09 | 威凯托陵科有限公司 | Use of honey in medical dressings |
NZ505514A (en) | 2000-06-30 | 2003-02-28 | Bee & Herbal New Zealand Ltd | Method of manufacturing a wound dressing for the application of honey |
AU2002950744A0 (en) | 2002-08-13 | 2002-09-12 | Medihoney Pty Ltd | Composition |
US8469036B2 (en) * | 2003-11-07 | 2013-06-25 | U.S. Smokeless Tobacco Company Llc | Tobacco compositions |
CN1709502A (en) * | 2005-07-15 | 2005-12-21 | 北京东方兴企食品工业技术有限公司 | Composite joint-improving oral liquid |
ITRM20050585A1 (en) * | 2005-11-23 | 2007-05-24 | Mavi Sud S R L | CHITIN SPRAY-DRIED NANOFIBRILLE, PRODUCTION METHOD AND USES. |
CN1994274A (en) * | 2006-01-04 | 2007-07-11 | 吴天祥 | Sperm simulated cosmetic product |
US8524265B2 (en) * | 2006-08-17 | 2013-09-03 | Warsaw Orthopedic, Inc. | Medical implant sheets useful for tissue regeneration |
CN101283783B (en) * | 2007-01-25 | 2011-09-21 | 钟世杰 | Edible health collocryst and its preparation method |
US20090022811A1 (en) * | 2007-03-07 | 2009-01-22 | Legeros Racquel Z | Mineralized guided bone regeneration membranes and methods of making the same |
US7998498B2 (en) | 2008-01-22 | 2011-08-16 | Michael Szycher | Antimicrobial material and method for making the same |
US8367094B2 (en) | 2008-01-22 | 2013-02-05 | Michael Szycher | Antimicrobial material and method for making the same |
CN101879248A (en) * | 2010-05-21 | 2010-11-10 | 郭景龙 | Medicine composition with blood tonification effect |
GB2484319A (en) * | 2010-10-06 | 2012-04-11 | Univ Bolton | Electrospinning fibres comprising honey and biocompatible polymer |
GB2519072B (en) * | 2013-10-07 | 2019-12-04 | Welland Medical Ltd | Composition comprising collagen and honey |
-
2015
- 2015-08-05 EP EP19199349.2A patent/EP3656401A1/en active Pending
- 2015-08-05 US US14/818,662 patent/US10258717B2/en active Active
- 2015-08-05 CN CN201580054031.8A patent/CN107106695B/en active Active
- 2015-08-05 EP EP15829615.2A patent/EP3185905B1/en active Active
- 2015-08-05 KR KR1020177005687A patent/KR102511882B1/en active IP Right Grant
- 2015-08-05 AU AU2015301070A patent/AU2015301070B2/en active Active
- 2015-08-05 CA CA2957263A patent/CA2957263A1/en active Pending
- 2015-08-05 JP JP2017527194A patent/JP6861151B2/en active Active
- 2015-08-05 ES ES15829615T patent/ES2760923T3/en active Active
- 2015-08-05 WO PCT/US2015/043789 patent/WO2016022670A1/en active Application Filing
-
2019
- 2019-01-16 US US16/249,748 patent/US20190224380A1/en active Pending
-
2021
- 2021-04-14 US US17/230,023 patent/US20210308337A1/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100166854A1 (en) * | 2006-10-30 | 2010-07-01 | Rutgers, The State University Of New Jersey | Electrospun matrices for delivery of hydrophilic and lipophilic compounds |
US20110263528A1 (en) * | 2008-10-14 | 2011-10-27 | Manuka Health New Zealand Limited | Antimicrobial compositions |
GB2474851A (en) * | 2009-10-27 | 2011-05-04 | Univ Bolton | Wound dressing comprising anti-microbial honey encapsulated within biocompatible and biodegradable fibre, and the fibre's production |
Non-Patent Citations (5)
Title |
---|
Knaepler et al. Local application of gentamicin-containing collagen implant in the prophylaxis and treatment of surgical site infection in orthopaedic surgery. International Journal of Surgery 10 (2012) S15-S20. (Year: 2012) * |
Majtan et al. Methylglyoxal-induced modifications of significant honeybee proteinous components in manuka honey: Possible therapeutic implications. Fitoterapia 83 (2012) 671–677). (Year: 2012) * |
Pawar et al. Biomedical Applications of Poly(Lactic Acid). Recent Patents on Regenerative Medicine 2014, 4, 40-51; published on January 1, 2014. (Year: 2014) * |
Verstichel et al. Investigation of the Aerobic Biodegradability of Several Types of Cyclodextrins in a Laboratory-Controlled Composting Test. Journal of Polymers and the Environment. 2004; 12(2): 47-55. (Year: 2004) * |
Wang et al. Hydrogel sheets of chitosan, honey and gelatin as burn wound dressings. Carbohydrate Polymers 88 (2012) 75–83. (Year: 2012) * |
Also Published As
Publication number | Publication date |
---|---|
EP3656401A1 (en) | 2020-05-27 |
WO2016022670A1 (en) | 2016-02-11 |
AU2015301070B2 (en) | 2021-01-28 |
US20160038646A1 (en) | 2016-02-11 |
CN107106695B (en) | 2021-02-23 |
JP6861151B2 (en) | 2021-04-21 |
NZ729417A (en) | 2024-02-23 |
US20190224380A1 (en) | 2019-07-25 |
EP3185905A4 (en) | 2018-04-04 |
AU2015301070A1 (en) | 2017-03-16 |
CA2957263A1 (en) | 2016-02-11 |
KR20170042621A (en) | 2017-04-19 |
EP3185905B1 (en) | 2019-09-25 |
CN107106695A (en) | 2017-08-29 |
JP2017526739A (en) | 2017-09-14 |
US10258717B2 (en) | 2019-04-16 |
KR102511882B1 (en) | 2023-03-17 |
ES2760923T3 (en) | 2020-05-18 |
EP3185905A1 (en) | 2017-07-05 |
BR112017002259A2 (en) | 2017-11-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20210308337A1 (en) | Compositions and methods for enhancing healing and regeneration of bone and soft tissue | |
Bottino et al. | Recent advances in the development of GTR/GBR membranes for periodontal regeneration—A materials perspective | |
CN108601644A (en) | Fiber-hydrogel composite material surgery mesh sheet for tissue repair | |
US9295691B2 (en) | Method for repairing or replacing damaged tissue | |
US20210402065A1 (en) | Functionally Gradient Material for Guided Periodontal Hard and Soft Tissue Regeneration and A Preparation Method Thereof | |
CN108289734A (en) | Mesenchymal cell bonded composite for organized renewing | |
JP2021522938A (en) | Nanofiber-hydrogel complex for cell and tissue delivery | |
US20210283304A1 (en) | Nerve regeneration-inducing material | |
Lee et al. | The incorporation of bFGF mediated by heparin into PCL/gelatin composite fiber meshes for guided bone regeneration | |
Yuan et al. | Application of synthetic and natural polymers in surgical mesh for pelvic floor reconstruction | |
CN112999430B (en) | Oral cavity repairing film and preparation method thereof | |
Patel et al. | Cyclic acetal hydroxyapatite nanocomposites for orbital bone regeneration | |
BR112017002259B1 (en) | COMPOSITION COMPRISING A BIODEGRADABLE POLYMER AND HONEY, AND METHODS OF PREPARING SAID COMPOSITION AND FOR PREPARING A MEMBRANE OR A MULTI-LAYER MEMBRANE | |
US11202850B2 (en) | Compositions and methods for inhibiting inflammation | |
JP2020521803A (en) | Resorbable biodegradable medical and cosmetic compositions containing poly(1,3-trimethylene carbonate) | |
US20230263937A1 (en) | Biomaterial comprising at least one elastomeric matrix and a non-sulfated polysaccharide and uses thereof | |
Griffanti | Automated aspiration-ejection of protein based hydrogels for tissue engineering applications | |
RO137879A2 (en) | Matrix with topical antimicrobial and general immunomodulatory effect based on doxycycline encapsulated in nanofibres of polylactic acid and hydroxyapatite | |
Lu et al. | Janus Sponge/Electrospun Fibre Composite Combined with Egf/Bfgf/Chx Promotes Reconstruction in Oral Tissue Regeneration | |
Mansourzadeh et al. | Role of Tissue Scaffolds in Skin Wound Healing: A Systematic Review | |
Team | A New Biomimetic Synthetic Absorbable Dural Substitute |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
AS | Assignment |
Owner name: SWEETBIO, INC., TENNESSEE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BURGER, BRENTON;REEL/FRAME:067118/0022 Effective date: 20150526 Owner name: THE UNIVERSITY OF MEMPHIS, TENNESSEE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BOWLIN, GARY LEE;RODRIGUEZ, ISAAC ANTHONY;REEL/FRAME:067120/0562 Effective date: 20150807 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |