US20210277130A1 - Methods of Treating Conditions with Antibodies that Bind Colony Stimulating Factor 1 Receptor (CSF1R) - Google Patents

Methods of Treating Conditions with Antibodies that Bind Colony Stimulating Factor 1 Receptor (CSF1R) Download PDF

Info

Publication number
US20210277130A1
US20210277130A1 US17/173,886 US202117173886A US2021277130A1 US 20210277130 A1 US20210277130 A1 US 20210277130A1 US 202117173886 A US202117173886 A US 202117173886A US 2021277130 A1 US2021277130 A1 US 2021277130A1
Authority
US
United States
Prior art keywords
antibody
csf1r
seq
sequence
human
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
US17/173,886
Inventor
Brian Wong
Emma Masteller
Justin Wong
Haishan Lin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Five Prime Therapeutics Inc
Original Assignee
Five Prime Therapeutics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Five Prime Therapeutics Inc filed Critical Five Prime Therapeutics Inc
Priority to US17/173,886 priority Critical patent/US20210277130A1/en
Publication of US20210277130A1 publication Critical patent/US20210277130A1/en
Assigned to FIVE PRIME THERAPEUTICS, INC. reassignment FIVE PRIME THERAPEUTICS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: WONG, BRIAN, MASTELLER, EMMA, WONG, JUSTIN, LIN, HAISHAN
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2869Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against hormone receptors
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2866Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against receptors for cytokines, lymphokines, interferons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • A61K39/39533Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals
    • A61K39/3955Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals against proteinaceous materials, e.g. enzymes, hormones, lymphokines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/20Immunoglobulins specific features characterized by taxonomic origin
    • C07K2317/24Immunoglobulins specific features characterized by taxonomic origin containing regions, domains or residues from different species, e.g. chimeric, humanized or veneered
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/30Immunoglobulins specific features characterized by aspects of specificity or valency
    • C07K2317/33Crossreactivity, e.g. for species or epitope, or lack of said crossreactivity
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/51Complete heavy chain or Fd fragment, i.e. VH + CH1
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/515Complete light chain, i.e. VL + CL
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/54F(ab')2
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/55Fab or Fab'
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/56Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
    • C07K2317/565Complementarity determining region [CDR]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/60Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments
    • C07K2317/62Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments comprising only variable region components
    • C07K2317/622Single chain antibody (scFv)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/73Inducing cell death, e.g. apoptosis, necrosis or inhibition of cell proliferation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/76Antagonist effect on antigen, e.g. neutralization or inhibition of binding
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/90Immunoglobulins specific features characterized by (pharmaco)kinetic aspects or by stability of the immunoglobulin
    • C07K2317/92Affinity (KD), association rate (Ka), dissociation rate (Kd) or EC50 value

Definitions

  • CSF1R colony stimulating factor 1 receptor
  • Colony stimulating factor 1 receptor (referred to herein as CSF1R; also referred to in the art as FMS, FIM2, C-FMS, M-CSF receptor, and CD115) is a single-pass transmembrane receptor with an N-terminal extracellular domain (ECD) and a C-terminal intracellular domain with tyrosine kinase activity.
  • CSF1R Colony stimulating factor 1 receptor
  • CSF1 or the interleukin 34 ligand referred to herein as IL-34; Lin et al., Science 320: 807-11 (2008)
  • CSF1R the interleukin 34 ligand
  • IL-34 the interleukin 34 ligand
  • Both CSF1 and IL-34 stimulate monocyte survival, proliferation, and differentiation into macrophages, as well as other monocytic cell lineages such as osteoclasts, dendritic cells, and microglia.
  • CSF1R tumor-associated macrophages
  • TAMs tumor-associated macrophages
  • CSF1R plays a role in osteolytic bone destruction in bone metastasis. See, e.g., Ohno et al., Mol. Cancer Ther. 5: 2634-43 (2006).
  • CSF1 and its receptor have also been found to be involved in various inflammatory and autoimmune diseases. See, e.g., Hamilton, Nat. Rev. 8: 533-44 (2008). For example, synovial endothelial cells from joints afflicted with rheumatoid arthritis have been found to produce CSF1, suggesting a role for CSF1 and its receptor in the disease. Blocking CSF1R activity with an antibody results in positive clinical effects in mouse models of arthritis, including a reduction in the destruction of bone and cartilage and a reduction in macrophage numbers. See, e.g., Kitaura et al., J. Clin. Invest. 115: 3418-3427 (2005).
  • Mature differentiated myeloid lineage cells such as macrophages, microglial cells, and osteoclasts contribute to pathology of various diseases such as rheumatoid arthritis, multiple sclerosis and diseases of bone loss.
  • Differentiated myeloid lineage cells are derived from peripheral blood monocyte intermediates.
  • CSF1R stimulation contributes to development of monocytes from bone marrow precursors, to monocyte proliferation and survival, and to differentiation of peripheral blood monocytes into differentiated myeloid lineage cells such as macrophages, microglial cells, and osteoclasts.
  • CSF1R stimulation thus contributes to proliferation, survival, activation, and maturation of differentiated myeloid lineage cells, and in the pathologic setting, CSF1R stimulation contributes to the ability of differentiated myeloid lineage cells to mediate disease pathology.
  • a method of treating a condition associated with rheumatoid arthritis comprises administering an antibody that binds colony stimulating factor 1 receptor (CSF1R) to a subject with rheumatoid arthritis, wherein the antibody blocks binding of colony stimulating factor 1 (CSF1) to CSF1R and blocks binding of IL-34 to CSF1R.
  • CSF1R colony stimulating factor 1 receptor
  • treating a condition associated with rheumatoid arthritis comprises at least one effect selected from reducing inflammation, reducing pannus formation, reducing cartilage damage, reducing bone resorption, reducing the number of macrophages in at least one joint affected by rheumatoid arthritis, reducing autoantibody levels, and reducing bone loss.
  • treating a condition associated with rheumatoid arthritis comprises reducing inflammation.
  • a method of reducing inflammation associated with rheumatoid arthritis comprises determining an erythrocyte sedimentation rate, wherein a reduced sedimentation rate indicates reduced inflammation.
  • a method of treating a condition associated with rheumatoid arthritis comprises at least one effect selected from reducing pannus formation, reducing bone resorption, and reducing bone loss.
  • treating a condition associated with rheumatoid arthritis comprises reducing bone resorption.
  • the level of at least one marker of bone resorption is reduced.
  • the bone resorption marker is selected from tartrate resistant acid phosphatase 5b (TRAP5b), urinary total pyridinoline, Urinary total deoxypyridinoline, urinary free pyridinoline, serum collagen type I cross-linked N-telopeptide, urinary collagen type I cross-linked N-telopeptide, and serum carboxyterminal telopeptide of type I collagen.
  • TRIP5b tartrate resistant acid phosphatase 5b
  • urinary total pyridinoline Urinary total deoxypyridinoline
  • urinary free pyridinoline serum collagen type I cross-linked N-telopeptide
  • urinary collagen type I cross-linked N-telopeptide urinary collagen type I cross-linked N-telopeptide
  • serum carboxyterminal telopeptide of type I collagen serum carboxyterminal telopeptide of type I collagen.
  • treating a condition associated with rheumatoid arthritis comprises at least one effect selected from reducing pannus formation, and reducing bone loss.
  • the at least one effect is measured using an imaging technique.
  • the imaging technique comprises a method selected from x-ray imaging, magnetic resonance imaging, computed tomography (CT) scan, arthroscopy, scintigraphy, ultrasonography, bone densitometry, single photon absorptiometry (SPA), dual photon absorptiometry (DPA), single energy x-ray absorptiometry (SXA), dual energy x-ray absorptiometry (DXA), scintigraphy, ultrasonography, duplex ultrasonography, and power doppler imaging.
  • CT computed tomography
  • SPA single photon absorptiometry
  • DPA dual photon absorptiometry
  • SXA single energy x-ray absorptiometry
  • DXA
  • the number of CD16+ monocytes is reduced by at least 30%. In some embodiments of the method, the number of CD16 ⁇ monocytes is not reduced or is reduced by less than 20%. In some embodiments, the CD16+ monocytes are CD16+ peripheral blood monocytes.
  • a method of treating rheumatoid arthritis comprising administering an antibody that binds CSF1R to a subject with rheumatoid arthritis, wherein the antibody blocks binding of CSF1 to CSF1R and blocks binding of IL-34 to CSF1R, and wherein the antibody reduces the number of CD16+ monocytes in the subject by at least 30%, and wherein CD16 ⁇ monocytes are not reduced or are reduced by less than 20%.
  • the CD16+ monocytes are CD16+ peripheral blood monocytes.
  • the method further comprises administering at least one additional therapeutic agent selected from methotrexate, an anti-TNF agent, a glucocorticoid, cyclosporine, leflunomide, azathioprine, a JAK inhibitor, a SYK inhibitor, an anti-IL-6 antibody, an anti-IL-6R antibody, an anti-CD-20 antibody, an anti-CD19 antibody, an anti-GM-CSF antibody, an IL-1 receptor antagonist, a CTLA-4 antagonist, and an anti-GM-CSF-R antibody.
  • at least one additional therapeutic agent selected from methotrexate, an anti-TNF agent, a glucocorticoid, cyclosporine, leflunomide, azathioprine, a JAK inhibitor, a SYK inhibitor, an anti-IL-6 antibody, an anti-IL-6R antibody, an anti-CD-20 antibody, an anti-CD19 antibody, an anti-GM-CSF antibody, an IL-1 receptor antagonist, a CTLA-4 antagonist, and an anti-
  • methods of treating skin lesions associated with lupus comprise administering an antibody that binds CSF1R to a subject with lupus, wherein the antibody blocks binding of CSF1 to CSF1R and blocks binding of IL-34 to CSF1R.
  • treating skin lesions associated with lupus comprises at least one effect selected from reducing the number of skin lesions, reducing the rate of formation of skin lesions, and reducing the severity of skin lesions.
  • methods of treating lupus nephritis comprise administering an antibody that binds CSF1R to a subject with lupus nephritis, wherein the antibody blocks binding of CSF1 to CSF1R and blocks binding of IL-34 to CSF1R.
  • kidney function is improved in the subject.
  • proteinuria is reduced in the subject.
  • glomerular filtration rate is improved in the subject.
  • a method comprises administering an antibody that binds CSF1R to a subject with lupus, wherein the antibody blocks binding of CSF1 to CSF1R and blocks binding of IL-34 to CSF1R.
  • the antibody reduces the number of CD16+ monocytes in the subject by at least 30%, and CD16 ⁇ monocytes are not reduced or are reduced by less than 20%.
  • CD16+ monocytes are reduced by at least 50%.
  • the CD16+ monocytes are CD16+ peripheral blood monocytes.
  • the method of treating lupus, lupus nephritis, or skin lesions associated with lupus further comprises administering at least one additional therapeutic agent selected from hydroxychloroquine (Plaquenil), a corticosteroids, cyclophosphamide (Cytoxan), azathioprine (Imuran, Azasan), mycophenolate (Cellcept), leflunomide (Arava) and methotrexate (Trexall), and belimumab (Benlysta).
  • hydroxychloroquine Plaquenil
  • a corticosteroids cyclophosphamide
  • azathioprine Imuran, Azasan
  • mycophenolate Cellcept
  • leflunomide Arava
  • methotrexate Terexall
  • belimumab belimumab
  • a method comprises administering an antibody that binds CSF1R to a subject with an inflammatory condition, wherein the antibody blocks binding of CSF1 to CSF1R and blocks binding of IL-34 to CSF1R.
  • the antibody reduces the number of CD16+ monocytes by at least 30%, and CD16-monocytes are not reduced or are reduced by less than 20%.
  • CD16+ monocytes are reduced by at least 50%.
  • the CD16+ monocytes are CD16+ peripheral blood monocytes.
  • a method comprises administering an antibody that binds CSF1R to a subject with a CD16+ disorder, wherein the antibody blocks binding of CSF1 to CSF1R and blocks binding of IL-34 to CSF1R.
  • the antibody reduces the number of CD16+ monocytes by at least 30%, and CD16 ⁇ monocytes are not reduced or are reduced by less than 20%.
  • CD16+ monocytes are reduced by at least 50%.
  • the CD16+ monocytes are CD16+ peripheral blood monocytes.
  • the CD16+ disorder is selected from rheumatoid arthritis, juvenile idiopathic arthritis, psoriasis, psoriatic arthritis, ankylosing spondylitis, Crohn's disease, and ulcerative colitis, lupus erythematosus, inflammatory bowel disease, Sjogren's syndrome, coronary artery disease, asthma, and sarcoidosis.
  • a method of treating discussed herein comprises treating a condition that does not respond to methotrexate.
  • a method comprises administering an antibody that binds CSF1R to a subject, wherein the antibody blocks binding of CSF1 to CSF1R and blocks binding of IL-34 to CSF1R.
  • the antibody reduces the number of CD16+ monocytes by at least 30%, and CD16 ⁇ monocytes are not reduced or are reduced by less than 20%.
  • CD16+ monocytes are reduced by at least 50%.
  • the CD16+ monocytes are CD16+ peripheral blood monocytes.
  • methods of slowing the progression of a kidney condition associated with lupus comprise administering an antibody that binds CSF1R to a subject, wherein the antibody blocks binding of CSF1 to CSF1R and blocks binding of IL-34 to CSF1R.
  • proteinuria does not increase in the subject or does not increase in the subject at the same rate as in subjects not administered the antibody.
  • glomerular filtration rate does not decrease in the subject or does not decrease in the subject at the same rate as in a subjects not administered the antibody.
  • a method comprises administering an antibody that binds CSF1R to a subject with rheumatoid arthritis, wherein the antibody blocks binding of CSF1 to CSF1R and blocks binding of IL-34 to CSF1R.
  • a method comprises administering an antibody that binds colony stimulating factor 1 receptor (CSF1R) to a subject with rheumatoid arthritis, wherein the antibody blocks binding of colony stimulating factor 1 (CSF1) to CSF1R and blocks binding of IL-34 to CSF1R.
  • CSF1R colony stimulating factor 1 receptor
  • the antibody heavy chain and/or the antibody light chain have the following structure.
  • the heavy chain comprises a sequence that is at least 90%, at least 95%, at least 97%, at least 99%, or 100% identical to a sequence selected from SEQ ID NOs: 9, 11, 13, and 39 to 45.
  • the light chain comprises a sequence that is at least 90%, at least 95%, at least 97%, at least 99%, or 100% identical to a sequence selected from SEQ ID NOs: 10, 12, 14, and 46 to 52.
  • the heavy chain comprises a sequence that is at least 90%, at least 95%, at least 97%, at least 99%, or 100% identical to a sequence selected from SEQ ID NOs: 9, 11, 13, and 39 to 45
  • the light chain comprises a sequence that is at least 90%, at least 95%, at least 97%, at least 99%, or 100% identical to a sequence selected from SEQ ID NOs: 10, 12, 14, and 46 to 52.
  • the HC CDR1, HC CDR2, and HC CDR3 comprise a set of sequences selected from: (a) SEQ ID NOs: 15, 16, and 17; (b) SEQ ID NOs: 21, 22, and 23; and (c) SEQ ID NOs: 27, 28, and 29.
  • the LC CDR1, LC CDR2, and LC CDR3 comprise a set of sequences selected from: (a) SEQ ID NOs: 18, 19, and 20; (b) SEQ ID NOs: 24, 25, and 26; and (c) SEQ ID NOs: 30, 31, and 32.
  • the heavy chain comprises an HC CDR1, HC CDR2, and HC CDR3, wherein the HC CDR1, HC CDR2, and HC CDR3 comprise a set of sequences selected from: (a) SEQ ID NOs: 15, 16, and 17; (b) SEQ ID NOs: 21, 22, and 23; and (c) SEQ ID NOs: 27, 28, and 29; and the light chain comprises an LC CDR1, LC CDR2, and LC CDR3, wherein the LC CDR1, LC CDR2, and LC CDR3 comprise a set of sequences selected from: (a) SEQ ID NOs: 18, 19, and 20; (b) SEQ ID NOs: 24, 25, and 26; and (c) SEQ ID NOs: 30, 31, and 32.
  • an isolated antibody comprising a heavy chain and a light chain, wherein the antibody comprises: (a) a heavy chain comprising a sequence that is at least 95%, at least 97%, at least 99%, or 100% identical to SEQ ID NO: 9 and a light chain comprising a sequence that is at least 95%, at least 97%, at least 99%, or 100% identical to SEQ ID NO: 10; (b) a heavy chain comprising a sequence that is at least 95%, at least 97%, at least 99%, or 100% identical to SEQ ID NO: 11 and a light chain comprising a sequence that is at least 95%, at least 97%, at least 99%, or 100% identical to SEQ ID NO: 12; (c) a heavy chain comprising a sequence that is at least 95%, at least 97%, at least 99%, or 100% identical to SEQ ID NO: 13 and a light chain comprising a sequence that is at least 95%, at least 97%, at least 99%, or 100% identical to SEQ ID NO: 13 and a
  • an antibody comprising a heavy chain and a light chain
  • the antibody comprises: (a) a heavy chain comprising a heavy chain (HC) CDR1 having the sequence of SEQ ID NO: 15, an HC CDR2 having the sequence of SEQ ID NO: 16, and an HC CDR3 having the sequence of SEQ ID NO: 17, and a light chain comprising a light chain (LC) CDR1 having the sequence of SEQ ID NO: 18, a LC CDR2 having the sequence of SEQ ID NO: 19, and a LC CDR3 having the sequence of SEQ ID NO: 20; (b) a heavy chain comprising a heavy chain (HC) CDR1 having the sequence of SEQ ID NO: 21, an HC CDR2 having the sequence of SEQ ID NO: 22, and an HC CDR3 having the sequence of SEQ ID NO: 23, and a light chain comprising a light chain (LC) CDR1 having the sequence of SEQ ID NO: 24, a LC CDR2 having the sequence
  • an antibody comprises a heavy chain and a light chain, wherein the antibody comprises: (a) a heavy chain comprising a sequence of SEQ ID NO: 53 and a light chain comprising a sequence of SEQ ID NO: 60; (b) a heavy chain comprising a sequence of SEQ ID NO: 53 and a light chain comprising a sequence of SEQ ID NO: 61; or (c) a heavy chain comprising a sequence of SEQ ID NO: 58 and a light chain comprising a sequence of SEQ ID NO: 65.
  • an antibody comprises a heavy chain and a light chain, wherein the antibody comprises: (a) a heavy chain consisting of the sequence of SEQ ID NO: 53 and a light chain consisting of the sequence of SEQ ID NO: 60; (b) a heavy chain consisting of the sequence of SEQ ID NO: 53 and a light chain consisting of the sequence of SEQ ID NO: 61; or (c) a heavy chain consisting of the sequence of SEQ ID NO: 58 and a light chain consisting of the sequence of SEQ ID NO: 65.
  • an antibody is a humanized antibody. In some embodiments, an antibody is selected from a Fab, an Fv, an scFv, a Fab′, and a (Fab′) 2 . In some embodiments, an antibody is a chimeric antibody. In some embodiments, an antibody is selected from an IgA, an IgG, and an IgD. In some embodiments, an antibody is an IgG. In some embodiments, an antibody is an IgG4. In some embodiments, an antibody is an IgG4 comprising an S241P mutation in at least one IgG4 heavy chain constant region.
  • an antibody binds to human CSF1R and/or binds to cynomolgus CSF1R. In some embodiments, an antibody blocks ligand binding to CSF1R. In some embodiments, an antibody blocks binding of CSF1 and/or IL-34 to CSF1R. In some embodiments, an antibody blocks binding of both CSF1 and IL-34 to CSF1R. In some embodiments, an antibody inhibits ligand-induced CSF1R phosphorylation. In some embodiments, an antibody inhibits CSF1- and/or IL-34-induced CSF1R phosphorylation. In some embodiments, an antibody binds to human CSF1R with an affinity (K D ) of less than 1 nM. In some embodiments, antibody inhibits monocyte proliferation and/or survival responses in the presence of CSF1 or IL-34.
  • K D affinity
  • a pharmaceutical composition comprising an antibody that binds CSF1R is provided.
  • compositions comprising antibodies that bind CSF1R are provided for use in methods of treatment of human or animals.
  • antibodies that bind CSF1R and compositions comprising antibodies that bind CSF1R are provided for use in a method of treating conditions associated with rheumatoid arthritis in a human or animal.
  • antibodies that bind CSF1R and compositions comprising antibodies that bind CSF1R are provided for use in a method of treating multiple sclerosis in a human or animal.
  • antibodies that bind CSF1R and compositions comprising antibodies that bind CSF1R are provided for use in a method of treating conditions associated with systemic lupus erythematosus are provided.
  • FIG. 1A-C shows an alignment of the humanized heavy chain variable regions for each of humanized antibodies huAb1 to huAb16, as discussed in Example 1. Boxed residues are amino acids in the human acceptor sequence that were changed back to the corresponding mouse residue.
  • FIG. 2A-C shows an alignment of the humanized light chain variable regions for each of humanized antibodies huAb1 to huAb16, as discussed in Example 1 Boxed amino acids are residues in the human acceptor sequence that were changed back to the corresponding mouse residue.
  • FIG. 3 shows reduction in CD16+ monocytes in cynomolgus monkeys administered huAb1, as described in Example 2.
  • FIG. 4 shows dose-dependent binding of surrogate antibody cAb1 to mouse CSF1R, as described in Example 3.
  • FIG. 5 shows dose-dependent inhibition of CSF1- and IL-34-induced proliferation in mNFS60 cells, as described in Example 4.
  • FIG. 6 shows suppression of clinical disease scores in a mouse model of rheumatoid arthritis following administration of cAb1, as described in Example 5.
  • FIG. 7 shows suppression of bone loss, indicated by plasma TRAP5b levels, in a mouse model of rheumatoid arthritis following administration of cAb1, as described in Example 6.
  • FIG. 8 shows suppression of inflammation, pannus formation, cartilage damage, and bone damage in a mouse model of rheumatoid arthritis following administration of cAb1, as described in Example 7.
  • FIG. 9 shows suppression of macrophage numbers in paw joints and knee joints in a mouse model of rheumatoid arthritis following administration of cAb1, as described in Example 8.
  • FIG. 10 shows suppression of autoantibody formation in a mouse model of rheumatoid arthritis following administration of cAb1, as described in Example 9.
  • FIG. 11 shows suppression of bone loss in a mouse model of established rheumatoid arthritis following administration of cAb1, as described in Example 10.
  • FIG. 12 shows suppression of pannus formation and bone destruction in a mouse model of established rheumatoid arthritis following administration of cAb1, as described in Example 11.
  • FIG. 13 shows suppression of glomerulonephritis, interstitial nephritis, and perivascular infiltrates in a mouse model of systemic lupus erythematosus following administration of cAb1, as described in Example 12.
  • FIG. 14 shows suppression of skin lesions in a mouse model of systemic lupus erythematosus following administration of cAb1, as described in Example 13.
  • FIG. 15 shows suppression of clinical disease scores in a mouse model of multiple sclerosis following administration of cAb1, as described in Example 14.
  • Methods of treating conditions comprising administering antibodies that bind CSF1R and block CSF1 and IL-34 ligand binding are provided.
  • antibodies that bind CSF1R and block CSF1 and IL-34 ligand binding are effective for treating rheumatoid arthritis, systemic lupus erythematosus, and multiple sclerosis.
  • the present inventors found that administering such antibodies to cynomolgus monkeys reduced the number of CD16+ peripheral blood monocytes in cynomolgus monkeys, but does not affect CD16 ⁇ peripheral blood monocyte numbers CD16+ peripheral blood monocytes are highly inflammatory monocytes. See, e.g., Ziegler-Heitbrock, J.
  • administering such antibodies in a mouse model of rheumatoid arthritis suppressed clinical disease scores, including suppression of erythema and swelling; suppressed bone loss as measured by a reduction in tartrate resistant acid phosphatase 5b (TRAP5b) levels; and suppressed inflammation, cartilage destruction, pannus formation, and bone destruction.
  • TRAP5b tartrate resistant acid phosphatase 5b
  • the antibodies were administered after the appearance of clinical manifestations of rheumatoid arthritis, bone loss (as measured by a reduction in TRAP5b levels), pannus formation, and bone destruction were reduced.
  • Administering such antibodies in a mouse model of rheumatoid arthritis also reduced joint macrophage numbers and autoantibody formation.
  • Administering antibodies that bind CSF1R and block CSF1 and IL-34 ligand binding in a systemic lupus erythematosus mouse model suppressed glomerulonephritis, interstitial nephritis, and perivascular infiltrates. Further, administering such antibodies in a systemic lupus erythematosus mouse model suppressed skin lesions. Finally, administering the antibodies in a mouse model of multiple sclerosis suppressed clinical disease scores of MS.
  • Exemplary techniques used in connection with recombinant DNA, oligonucleotide synthesis, tissue culture and transformation (e.g., electroporation, lipofection), enzymatic reactions, and purification techniques are known in the art. Many such techniques and procedures are described, e.g., in Sambrook et al. Molecular Cloning: A Laboratory Manual (2nd ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (1989)), among other places.
  • exemplary techniques for chemical syntheses, chemical analyses, pharmaceutical preparation, formulation, and delivery, and treatment of patients are also known in the art.
  • nucleic acid molecule and “polynucleotide” may be used interchangeably, and refer to a polymer of nucleotides. Such polymers of nucleotides may contain natural and/or non-natural nucleotides, and include, but are not limited to, DNA, RNA, and PNA.
  • Nucleic acid sequence refers to the linear sequence of nucleotides that comprise the nucleic acid molecule or polynucleotide.
  • polypeptide and “protein” are used interchangeably to refer to a polymer of amino acid residues, and are not limited to a minimum length. Such polymers of amino acid residues may contain natural or non-natural amino acid residues, and include, but are not limited to, peptides, oligopeptides, dimers, trimers, and multimers of amino acid residues. Both full-length proteins and fragments thereof are encompassed by the definition.
  • the terms also include post-expression modifications of the polypeptide, for example, glycosylation, sialylation, acetylation, phosphorylation, and the like.
  • a “polypeptide” refers to a protein which includes modifications, such as deletions, additions, and substitutions (generally conservative in nature), to the native sequence, as long as the protein maintains the desired activity. These modifications may be deliberate, as through site-directed mutagenesis, or may be accidental, such as through mutations of hosts which produce the proteins or errors due to PCR amplification.
  • CSF1R refers herein to the full-length CSF1R, which includes the N-terminal ECD, the transmembrane domain, and the intracellular tyrosine kinase domain, with or without an N-terminal leader sequence.
  • the CSF1R is a human CSF1R having the amino acid sequence of SEQ ID NO: 1 or SEQ ID NO: 2.
  • CSF1R extracellular domain refers to a CSF1R polypeptide that lacks the intracellular and transmembrane domains.
  • CSF1R ECDs include the full-length CSF1R ECD and CSF1R ECD fragments that are capable of binding CSF1R and/or IL-34.
  • the human full-length CSF1R ECD is defined herein as comprising either amino acids 1 to 512 (i.e., including the leader sequence) or amino acids 20 to 512 (i.e., lacking the leader sequence) of SEQ ID NO: 2.
  • a human CSF1R ECD fragment comprises amino acids 20 to 506 of SEQ ID NO: 2 (see SEQ ID NO:5). In some embodiments, a human CSF1R fragment ends at amino acid 507, 508, 509, 510, or 511. In some embodiments, a cyno CSF1R ECD comprises the sequence of SEQ ID NO: 7 (with leader sequence) or amino acids 20 to 506 of SEQ ID NO: 7 (without leader sequence).
  • anti-CSF1R antibodies With reference to anti-CSF1R antibodies the terms “active” or “activity” or “function”, and grammatical variants thereof, are used to refer to the ability to inhibit (blocking or antagonist antibodies) or mimic (agonist antibodies) at least one of the foregoing activities. Antibodies and antibody fragments referred to as “functional” are characterized by having such properties.
  • an “immunological” activity refers only to the ability to induce the production of an antibody against an antigenic epitope possessed by a native or naturally-occurring CSF1R polypeptide.
  • antibody refers to a molecule comprising at least complementarity-determining region (CDR) 1, CDR2, and CDR3 of a heavy chain and at least CDR1, CDR2, and CDR3 of a light chain, wherein the molecule is capable of binding to antigen.
  • CDR complementarity-determining region
  • the term antibody includes, but is not limited to, fragments that are capable of binding antigen, such as Fv, single-chain Fv (scFv), Fab, Fab′, and (Fab′) 2 .
  • the term antibody also includes, but is not limited to, chimeric antibodies, humanized antibodies, and antibodies of various species such as mouse, human, cynomolgus monkey, etc.
  • an antibody comprises a heavy chain variable region and a light chain variable region. In some embodiments, an antibody comprises at least one heavy chain comprising a heavy chain variable region and at least a portion of a heavy chain constant region, and at least one light chain comprising a light chain variable region and at least a portion of a light chain constant region. In some embodiments, an antibody comprises two heavy chains, wherein each heavy chain comprises a heavy chain variable region and at least a portion of a heavy chain constant region, and two light chains, wherein each light chain comprises a light chain variable region and at least a portion of a light chain constant region.
  • a single-chain Fv or any other antibody that comprises, for example, a single polypeptide chain comprising all six CDRs (three heavy chain CDRs and three light chain CDRs) is considered to have a heavy chain and a light chain.
  • the heavy chain is the region of the antibody that comprises the three heavy chain CDRs and the light chain in the region of the antibody that comprises the three light chain CDRs.
  • heavy chain variable region refers to a region comprising heavy chain CDR1, framework (FR) 2, CDR2, FR3, and CDR3.
  • a heavy chain variable region also comprises at least a portion of an FR1 and/or at least a portion of an FR4.
  • a heavy chain CDR1 corresponds to Kabat residues 26 to 35;
  • a heavy chain CDR2 corresponds to Kabat residues 50 to 65;
  • a heavy chain CDR3 corresponds to Kabat residues 95 to 102. See, e.g., Kabat Sequences of Proteins of Immunological Interest (1987 and 1991, NIH, Bethesda, Md.); and FIG. 1 .
  • heavy chain constant region refers to a region comprising at least three heavy chain constant domains, C H 1, C H 2, and C H 3.
  • Nonlimiting exemplary heavy chain constant regions include ⁇ , ⁇ , and ⁇ .
  • Nonlimiting exemplary heavy chain constant regions also include ⁇ and ⁇ .
  • Each heavy constant region corresponds to an antibody isotype.
  • an antibody comprising a ⁇ constant region is an IgG antibody
  • an antibody comprising a ⁇ constant region is an IgD antibody
  • an antibody comprising an ⁇ constant region is an IgA antibody.
  • an antibody comprising a ⁇ constant region is an IgM antibody
  • an antibody comprising an c constant region is an IgE antibody.
  • IgG antibodies include, but are not limited to, IgG1 (comprising a ⁇ 1 constant region), IgG2 (comprising a ⁇ 2 constant region), IgG3 (comprising a ⁇ 3 constant region), and IgG4 (comprising a ⁇ 4 constant region) antibodies;
  • IgA antibodies include, but are not limited to, IgA1 (comprising an ⁇ 1 constant region) and IgA2 (comprising an ⁇ 2 constant region) antibodies;
  • IgM antibodies include, but are not limited to, IgM1 and IgM2.
  • a heavy chain constant region comprises one or more mutations (or substitutions), additions, or deletions that confer a desired characteristic on the antibody.
  • a nonlimiting exemplary mutation is the S241P mutation in the IgG4 hinge region (between constant domains C H 1 and C H 2), which alters the IgG4 motif CPSCP to CPPCP, which is similar to the corresponding motif in IgG1. That mutation, in some embodiments, results in a more stable IgG4 antibody. See, e.g., Angal et al., Mol. Immunol. 30: 105-108 (1993); Bloom et al., Prot. Sci. 6: 407-415 (1997); Schuurman et al., Mol. Immunol. 38: 1-8 (2001).
  • heavy chain refers to a polypeptide comprising at least a heavy chain variable region, with or without a leader sequence.
  • a heavy chain comprises at least a portion of a heavy chain constant region.
  • full-length heavy chain refers to a polypeptide comprising a heavy chain variable region and a heavy chain constant region, with or without a leader sequence.
  • light chain variable region refers to a region comprising light chain CDR1, framework (FR) 2, CDR2, FR3, and CDR3.
  • a light chain variable region also comprises an FR1 and/or an FR4.
  • a light chain CDR1 corresponds to Kabat residues 24 to 34
  • a light chain CDR2 corresponds to Kabat residues 50 to 56
  • a light chain CDR3 corresponds to Kabat residues 89 to 97. See, e.g., Kabat Sequences of Proteins of Immunological Interest (1987 and 1991, NIH, Bethesda, Md.); and FIG. 1 .
  • light chain constant region refers to a region comprising a light chain constant domain, C L .
  • Nonlimiting exemplary light chain constant regions include ⁇ and ⁇ .
  • light chain refers to a polypeptide comprising at least a light chain variable region, with or without a leader sequence.
  • a light chain comprises at least a portion of a light chain constant region.
  • full-length light chain refers to a polypeptide comprising a light chain variable region and a light chain constant region, with or without a leader sequence.
  • a “chimeric antibody” as used herein refers to an antibody comprising at least one variable region from a first species (such as mouse, rat, cynomolgus monkey, etc.) and at least one constant region from a second species (such as human, cynomolgus monkey, etc.).
  • a chimeric antibody comprises at least one mouse variable region and at least one human constant region.
  • a chimeric antibody comprises at least one cynomolgus variable region and at least one human constant region.
  • a chimeric antibody comprises at least one rat variable region and at least one mouse constant region.
  • all of the variable regions of a chimeric antibody are from a first species and all of the constant regions of the chimeric antibody are from a second species.
  • a “humanized antibody” as used herein refers to an antibody in which at least one amino acid in a framework region of a non-human variable region has been replaced with the corresponding amino acid from a human variable region.
  • a humanized antibody comprises at least one human constant region or fragment thereof.
  • a humanized antibody is an Fab, an scFv, a (Fab′) 2 , etc.
  • CDR-grafted antibody refers to a humanized antibody in which the complementarity determining regions (CDRs) of a first (non-human) species have been grafted onto the framework regions (FRs) of a second (human) species.
  • a “human antibody” as used herein refers to antibodies produced in humans, antibodies produced in non-human animals that comprise human immunoglobulin genes, such as XenoMouse®, and antibodies selected using in vitro methods, such as phage display, wherein the antibody repertoire is based on a human immunoglobulin sequences.
  • leader sequence refers to a sequence of amino acid residues located at the N terminus of a polypeptide that facilitates secretion of a polypeptide from a mammalian cell.
  • a leader sequence may be cleaved upon export of the polypeptide from the mammalian cell, forming a mature protein.
  • Leader sequences may be natural or synthetic, and they may be heterologous or homologous to the protein to which they are attached.
  • Exemplary leader sequences include, but are not limited to, antibody leader sequences, such as, for example, the amino acid sequences of SEQ ID NOs: 3 and 4, which correspond to human light and heavy chain leader sequences, respectively.
  • Nonlimiting exemplary leader sequences also include leader sequences from heterologous proteins.
  • an antibody lacks a leader sequence.
  • an antibody comprises at least one leader sequence, which may be selected from native antibody leader sequences and heterologous leader sequences.
  • vector is used to describe a polynucleotide that may be engineered to contain a cloned polynucleotide or polynucleotides that may be propagated in a host cell.
  • a vector may include one or more of the following elements: an origin of replication, one or more regulatory sequences (such as, for example, promoters and/or enhancers) that regulate the expression of the polypeptide of interest, and/or one or more selectable marker genes (such as, for example, antibiotic resistance genes and genes that may be used in colorimetric assays, e.g., ⁇ -galactosidase).
  • expression vector refers to a vector that is used to express a polypeptide of interest in a host cell.
  • a “host cell” refers to a cell that may be or has been a recipient of a vector or isolated polynucleotide.
  • Host cells may be prokaryotic cells or eukaryotic cells.
  • Exemplary eukaryotic cells include mammalian cells, such as primate or non-primate animal cells; fungal cells, such as yeast; plant cells; and insect cells.
  • Nonlimiting exemplary mammalian cells include, but are not limited to, NSO cells, PER.C6® cells (Crucell), and 293 and CHO cells, and their derivatives, such as 293-6E and DG44 cells, respectively.
  • isolated refers to a molecule that has been separated from at least some of the components with which it is typically found in nature.
  • a polypeptide is referred to as “isolated” when it is separated from at least some of the components of the cell in which it was produced.
  • a polypeptide is secreted by a cell after expression, physically separating the supernatant containing the polypeptide from the cell that produced it is considered to be “isolating” the polypeptide.
  • a polynucleotide is referred to as “isolated” when it is not part of the larger polynucleotide (such as, for example, genomic DNA or mitochondrial DNA, in the case of a DNA polynucleotide) in which it is typically found in nature, or is separated from at least some of the components of the cell in which it was produced, e.g., in the case of an RNA polynucleotide.
  • a DNA polynucleotide that is contained in a vector inside a host cell may be referred to as “isolated” so long as that polynucleotide is not found in that vector in nature.
  • subject and “patient” are used interchangeably herein to refer to a human.
  • methods of treating other mammals including, but not limited to, rodents, simians, felines, canines, equines, bovines, porcines, ovines, caprines, mammalian laboratory animals, mammalian farm animals, mammalian sport animals, and mammalian pets, are also provided.
  • rheumatoid arthritis refers to a recognized disease state that may be diagnosed according to the 2000 revised American Rheumatoid Association criteria for the classification of RA, or any similar criteria.
  • rheumatoid arthritis refers to a chronic autoimmune disease characterized primarily by inflammation of the lining (synovium) of the joints, which can lead to joint damage, resulting in chronic pain, loss of function, and disability. Because RA can affect multiple organs of the body, including skin, lungs, and eyes, it is referred to as a systemic illness.
  • rheumatoid arthritis includes not only active and early RA, but also incipient RA, as defined below.
  • Physiological indicators of RA include, symmetric joint swelling which is characteristic though not invariable in RA. Fusiform swelling of the proximal interphalangeal (PIP) joints of the hands as well as metacarpophalangeal (MCP), wrists, elbows, knees, ankles, and metatarsophalangeal (MTP) joints are commonly affected and swelling is easily detected. Pain on passive motion is the most sensitive test for joint inflammation, and inflammation and structural deformity often limits the range of motion for the affected joint.
  • Typical visible changes include ulnar deviation of the fingers at the MCP joints, hyperextension, or hyperflexion of the MCP and PIP joints, flexion contractures of the elbows, and subluxation of the carpal bones and toes.
  • the subject with RA may be resistant to a disease-modifying anti-rheumatic drug (DMARD), and/or a non-steroidal anti-inflammatory drug (NSAID).
  • DMARD disease-modifying anti-rheumatic drug
  • NSAID non-steroidal anti-inflammatory drug
  • Nonlimiting exemplary “DMARDs” include hydroxycloroquine, sulfasalazine, methotrexate (MTX), leflunomide, etanercept, infliximab (plus oral and subcutaneous MTX), azathioprine, D-penicillamine, gold salts (oral), gold salts (intramuscular), minocycline, cyclosporine including cyclosporine A and topical cyclosporine, staphylococcal protein A (Goodyear and Silverman, J. Exp. Med., 197(9):1125-1139 (2003)), including salts and derivatives thereof, etc.
  • Further candidates for therapy according to this invention include those who have experienced an inadequate response to previous or current treatment with TNF inhibitors such as etanercept, infliximab and/or adalimumab because of toxicity or inadequate efficacy.
  • a patient with “active rheumatoid arthritis” means a patient with active and not latent symptoms of RA.
  • Subjects with “early active rheumatoid arthritis” are those subjects with active RA diagnosed for at least 8 weeks but no longer than four years, according to the revised 1987 ACR criteria for the classification of RA.
  • Subjects with “early rheumatoid arthritis” are those subjects with RA diagnosed for at least eight weeks but no longer than four years, according to the revised 1987 ACR criteria for classification of RA.
  • RA includes, for example, juvenile-onset RA, juvenile idiopathic arthritis (JIA), or juvenile RA (JRA).
  • Patients with “incipient RA” have early polyarthritis that does not fully meet ACR criteria for a diagnosis of RA, in association with the presence of RA-specific prognostic biomarkers such as anti-CCP and shared epitope. They include patients with positive anti-CCP antibodies who present with polyarthritis, but do not yet have a diagnosis of RA, and are at high risk for going on to develop bona fide ACR criteria RA (95% probability).
  • “Joint damage” is used in the broadest sense and refers to damage or partial or complete destruction to any part of one or more joints, including the connective tissue and cartilage, where damage includes structural and/or functional damage of any cause, and may or may not cause joint pain/arthalgia. It includes, without limitation, joint damage associated with or resulting from inflammatory joint disease as well as non-inflammatory joint disease. This damage may be caused by any condition, such as an autoimmune disease, especially arthritis, and most especially RA.
  • Exemplary such conditions include acute and chronic arthritis, rheumatoid arthritis (including juvenile-onset RA, juvenile idiopathic arthritis (JIA), and juvenile rheumatoid arthritis (JRA)), and stages such as rheumatoid synovitis, gout or gouty arthritis, acute immunological arthritis, chronic inflammatory arthritis, degenerative arthritis, type II collagen-induced arthritis, infectious arthritis, septic arthritis, Lyme arthritis, proliferative arthritis, psoriatic arthritis, Still's disease, vertebral arthritis, osteoarthritis, arthritis chronica progrediente, arthritis deformans, polyarthritis chronica primaria, reactive arthritis, menopausal arthritis, estrogen-depletion arthritis, and ankylosing spondylitis/rheumatoid spondylitis), rheumatic autoimmune disease other than RA, and significant systemic involvement secondary to RA (including but not limited to vasculitis, pulmonary fibrosis or Felty's
  • joints are points of contact between elements of a skeleton (of a vertebrate such as an animal) with the parts that surround and support it and include, but are not limited to, for example, hips, joints between the vertebrae of the spine, joints between the spine and pelvis (sacroiliac joints), joints where the tendons and ligaments attach to bones, joints between the ribs and spine, shoulders, knees, feet, elbows, hands, fingers, ankles and toes, but especially joints in the hands and feet.
  • lupus as used herein is an autoimmune disease or disorder that in general involves antibodies that attack connective tissue.
  • the principal form of lupus is a systemic one, systemic lupus erythematosus (SLE), including cutaneous SLE and subacutecutaneous SLE, as well as other types of lupus (including nephritis, extrarenal, cerebritis, pediatric, non-renal, discoid, and alopecia).
  • systemic lupus erythematosus refers to a chronic autoimmune disease that can result in skin lesions, joint pain and swelling, kidney disease (lupus nephritis), fluid around the heart and/or lungs, inflammation of the heart, and various other systemic conditions.
  • the term “lupus nephritis” refers to inflammation of the kidneys that occurs in patients with SLE. Lupus nephritis may include, for example, glomerulonephritis and/or interstitial nephritis, and can lead to hypertension, proteinuria, and kidney failure.
  • Lupus nephritis may be classified based on severity and extent of disease, for example, as defined by the International Society of Nephrology/Renal/Pathology Society.
  • Lupus nephritis classes include class I (minimal mesangial lupus nephritis), class II (mesangial proliferative lupus nephritis), class III (focal lupus nephritis), class IV (diffuse segmental (IV-S) or diffuse global (IV-G) lupus nephritis), class V (membranous lupus nephritis), and class VI (advanced sclerosing lupus nephritis).
  • the term “lupus nephritis” encompasses all of the classes.
  • MS multiple sclerosis
  • PPMS primary progressive multiple sclerosis
  • RRMS relapsing-remitting multiple sclerosis
  • SPMS secondary progressive multiple sclerosis
  • PRMS progressive relapsing multiple sclerosis
  • PPMS Primary progressive multiple sclerosis
  • PPMS is the sub-type of MS that is least likely to show inflammatory (gadolinium enhancing) lesions on MRI scans.
  • the primary progressive form of the disease affects between 10 and 15% of all people with multiple sclerosis.
  • PPMS may be defined according to the criteria in McDonald et al. Ann Neurol 50:121-7 (2001).
  • the subject with PPMS treated herein is usually one with a probable or definitive diagnosis of PPMS.
  • RRMS Relapsing-remitting multiple sclerosis
  • RRMS Relapsing-remitting multiple sclerosis
  • RRMS is characterized by relapses (also known as exacerbations) during which time new symptoms can appear and old ones resurface or worsen. The relapses are followed by periods of remission, during which time the person fully or partially recovers from the deficits acquired during the relapse. Relapses can last for days, weeks, or months, and recovery can be slow and gradual or almost instantaneous.
  • the vast majority of people presenting with MS are first diagnosed with RRMS. This is typically when they are in their twenties or thirties, though diagnoses much earlier or later are known. Twice as many women as men present with this sub-type of MS.
  • myelin a protective insulating sheath around the nerve fibers (neurons) in the white matter regions of the central nervous system (CNS)
  • CNS central nervous system
  • an oligodendrocyte a special type of glial cell in the CNS
  • Approximately 50% of patients with RRMS convert to SPMS within 10 years of disease onset. After 30 years, this figure rises to 90%.
  • the relapsing-remitting form of the disease accounts around 55% of all people with MS.
  • SPMS Secondary progressive multiple sclerosis
  • PRMS Progressive relapsing multiple sclerosis
  • CD16+ disorder means a disease in which CD16+ monocytes of a mammal cause, mediate or otherwise contribute to a morbidity in the mammal. Also included are diseases in which reduction of CD16+ monocytes has an ameliorative effect on progression of the disease. Included within this term are CD16+ inflammatory diseases, infectious diseases, immunodeficiency diseases, neoplasia, etc. In certain embodiments, CD16+ inflammatory diseases include inflammatory diseases that are not responsive to methotrexate therapy.
  • CD16+ inflammatory diseases include methotrexate-resistant rheumatoid arthritis, methotrexate-resistant multiple sclerosis, methotrexate-resistant lupus, methotrexate-resistant inflammatory bowel disease, methotrexate-resistant Crohn's disease, methotrexate-resistant asthma, and methotrexate-resistant psoriasis.
  • patients having methotrexate-resistant diseases, such as methotrexate-resistant rheumatoid arthritis are referred to as methotrexate incomplete responders or methotrexate inadequate responders.
  • CD16+ disorders that can be treated according to the invention include, but are not limited to, systemic lupus erythematosus, rheumatoid arthritis, juvenile chronic arthritis, spondyloarthropathies, systemic sclerosis (scieroderma), idiopathic inflammatory myopathies (dermatomyositis, polymyositis), Sjogren's syndrome, systemic vasculitis, sarcoidosis, autoimmune hemolytic anemia (immune pancytopenia, paroxysmal nocturnal hemoglobinuria), autoimmune thrombocytopenia (idiopathic thrombocytopenic purpura, immune-mediated thrombocytopenia), thyroiditis (Grave's disease, Hashimoto's thyroiditis, juvenile lymphocytic thyroiditis, atrophic thyroiditis), diabetes mellitus, immune-mediated renal disease (glomerulonephritis, tubulointerstitial nephritis), demye
  • Treatment refers to both therapeutic treatment and prophylactic or preventative measures, wherein the object is to prevent or slow down (lessen) the targeted pathologic condition or disorder.
  • treatment covers any administration or application of a therapeutic for disease in a mammal, including a human, and includes inhibiting or slowing the disease or progression of the disease; partially or fully relieving the disease, for example, by causing regression, or restoring or repairing a lost, missing, or defective function; stimulating an inefficient process; or causing the disease plateau to have reduced severity.
  • treatment also includes reducing the severity of any phenotypic characteristic and/or reducing the incidence, degree, or likelihood of that characteristic. Those in need of treatment include those already with the disorder as well as those prone to have the disorder or those in whom the disorder is to be prevented.
  • Chronic administration refers to administration of an agent in a continuous mode as opposed to an acute mode, so as to maintain the initial therapeutic effect (activity) for an extended period of time.
  • Intermittent administration is treatment that is not consecutively done without interruption, but rather is cyclic in nature.
  • an effective amount refers to an amount of a drug effective to treat a disease or disorder in a subject.
  • an effective amount refers to an amount effective, at dosages and for periods of time necessary, to achieve the desired therapeutic or prophylactic result.
  • a therapeutically effective amount of an anti-CSF1R antibody of the invention may vary according to factors such as the disease state, age, sex, and weight of the individual, and the ability of the anti-CSF1R antibody to elicit a desired response in the individual.
  • a therapeutically effective amount encompasses an amount in which any toxic or detrimental effects of the anti-CSF1R antibody are outweighed by the therapeutically beneficial effects.
  • prophylactically effective amount refers to an amount effective, at dosages and for periods of time necessary, to achieve the desired prophylactic result. Typically, but not necessarily, since a prophylactic dose is used in subjects prior to or at an earlier stage of disease, the prophylactically effective amount would be less than the therapeutically effective amount.
  • Administration “in combination with” one or more further therapeutic agents includes simultaneous (concurrent) and consecutive administration in any order.
  • a “pharmaceutically acceptable carrier” refers to a non-toxic solid, semisolid, or liquid filler, diluent, encapsulating material, formulation auxiliary, or carrier conventional in the art for use with a therapeutic agent that together comprise a “pharmaceutical composition” for administration to a subject.
  • a pharmaceutically acceptable carrier is non-toxic to recipients at the dosages and concentrations employed and is compatible with other ingredients of the formulation.
  • the pharmaceutically acceptable carrier is appropriate for the formulation employed.
  • the carrier may be a gel capsule. If the therapeutic agent is to be administered subcutaneously, the carrier ideally is not irritable to the skin and does not cause injection site reaction.
  • Anti-CSF1R antibodies include, but are not limited to, humanized antibodies, chimeric antibodies, mouse antibodies, human antibodies, and antibodies comprising the heavy chain and/or light chain CDRs discussed herein.
  • humanized antibodies that bind CSF1R are provided.
  • Humanized antibodies are useful as therapeutic molecules because humanized antibodies reduce or eliminate the human immune response to non-human antibodies (such as the human anti-mouse antibody (HAMA) response), which can result in an immune response to an antibody therapeutic, and decreased effectiveness of the therapeutic.
  • HAMA human anti-mouse antibody
  • Nonlimiting exemplary humanized antibodies include huAb1 through huAb16, described herein.
  • Nonlimiting exemplary humanized antibodies also include antibodies comprising a heavy chain variable region of an antibody selected from huAb1 to huAb16 and/or a light chain variable region of an antibody selected from huAb1 to huAb16.
  • Nonlimiting exemplary humanized antibodies include antibodies comprising a heavy chain variable region selected from SEQ ID NOs: 39 to 45 and/or a light chain variable region selected from SEQ ID NOs: 46 to 52.
  • Exemplary humanized antibodies also include, but are not limited to, humanized antibodies comprising heavy chain CDR1, CDR2, and CDR3, and/or light chain CDR1, CDR2, and CDR3 of an antibody selected from 0301, 0302, and 0311.
  • a humanized anti-CSF1R antibody comprises heavy chain CDR1, CDR2, and CDR3 and/or a light chain CDR1, CDR2, and CDR3 of an antibody selected from 0301, 0302, and 0311.
  • Nonlimiting exemplary humanized anti-CSF1R antibodies include antibodies comprising sets of heavy chain CDR1, CDR2, and CDR3 selected from: SEQ ID NOs: 15, 16, and 17; SEQ ID NOs: 21, 22, and 23; and SEQ ID NOs: 27, 28, and 29.
  • Nonlimiting exemplary humanized anti-CSF1R antibodies also include antibodies comprising sets of light chain CDR1, CDR2, and CDR3 selected from: SEQ ID NOs: 18, 19, and 20; SEQ ID NOs: 24, 25, and 26; and SEQ ID NOs: 30, 31, and 32.
  • Nonlimiting exemplary humanized anti-CSF1R antibodies include antibodies comprising the sets of heavy chain CDR1, CDR2, and CDR3, and light chain CDR1, CDR2, and CDR3 in Table 1 (SEQ ID NOs shown; see Table 8 for sequences). Each row of Table 1 shows the heavy chain CDR1, CDR2, and CDR3, and light chain CDR1, CDR2, and CDR3 of an exemplary antibody.
  • a humanized anti-CSF1R antibody comprises a heavy chain comprising a variable region sequence that is at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to a sequence selected from SEQ ID NOs: 9, 11, 13, and 39 to 45, and wherein the antibody binds CSF1R.
  • a humanized anti-CSF1R antibody comprises a light chain comprising a variable region sequence that is at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to a sequence selected from SEQ ID NOs: 10, 12, 14, and 46 to 52, wherein the antibody binds CSF1R.
  • a humanized anti-CSF1R antibody comprises a heavy chain comprising a variable region sequence that is at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to a sequence selected from SEQ ID NOs: 9, 11, 13, and 39 to 45; and a light chain comprising a variable region sequence that is at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to a sequence selected from SEQ ID NOs: 10, 12, 14, and 46 to 52; wherein the antibody binds CSF1R.
  • whether a particular polypeptide is, for example, at least 95% identical to an amino acid sequence can be determined using, e.g., a computer program.
  • the percentage of identity is calculated over the full length of the reference amino acid sequence.
  • a humanized anti-CSF1R antibody comprises at least one of the CDRs discussed herein. That is, in some embodiments, a humanized anti-CSF1R antibody comprises at least one CDR selected from a heavy chain CDR1 discussed herein, a heavy chain CDR2 discussed herein, a heavy chain CDR3 discussed herein, a light chain CDR1 discussed herein, a light chain CDR2 discussed herein, and a light chain CDR3 discussed herein. Further, in some embodiments, a humanized anti-CSF1R antibody comprises at least one mutated CDR based on a CDR discussed herein, wherein the mutated CDR comprises 1, 2, 3, or 4 amino acid substitutions relative to the CDR discussed herein.
  • one or more of the amino acid substitutions are conservative amino acid substitutions.
  • One skilled in the art can select one or more suitable conservative amino acid substitutions for a particular CDR sequence, wherein the suitable conservative amino acid substitutions are not predicted to significantly alter the binding properties of the antibody comprising the mutated CDR.
  • Exemplary humanized anti-CSF1R antibodies also include antibodies that compete for binding to CSF1R with an antibody described herein.
  • a humanized anti-CSF1R antibody is provided that competes for binding to CSF1R with an antibody selected from Fabs 0301, 0302, and 0311; and bivalent (i.e., having two heavy chains and two light chains) antibody versions of those Fabs.
  • a humanized antibody described herein comprises one or more human constant regions.
  • the human heavy chain constant region is of an isotype selected from IgA, IgG, and IgD.
  • the human light chain constant region is of an isotype selected from ⁇ and ⁇ .
  • a humanized antibody described herein comprises a human IgG constant region.
  • a humanized antibody described herein comprises a human IgG4 heavy chain constant region.
  • a humanized antibody described herein comprises an S241P mutation in the human IgG4 constant region.
  • a humanized antibody described herein comprises a human IgG4 constant region and a human ⁇ light chain.
  • the choice of heavy chain constant region can determine whether or not an antibody will have effector function in vivo.
  • effector function includes antibody-dependent cell-mediated cytotoxicity (ADCC) and/or complement-dependent cytotoxicity (CDC), and can result in killing of the cell to which the antibody is bound.
  • cell killing may be desirable, for example, when the antibody binds to a cell that supports the maintenance or growth of the tumor.
  • Exemplary cells that may support the maintenance or growth of a tumor include, but are not limited to, tumor cells themselves, cells that aid in the recruitment of vasculature to the tumor, and cells that provide ligands, growth factors, or counter-receptors that support or promote tumor growth or tumor survival.
  • an anti-CSF1R antibody comprising a human IgG1 heavy chain or a human IgG3 heavy chain is selected.
  • effector function may not be desirable.
  • anti-CSF1R antibodies developed for the treatment of cancer may not be suitable for use in treatment of lupus and/or MS and/or RA and/or osteolysis.
  • an anti-CSF1R antibody that lacks significant effector function is used in treatment of lupus and/or MS and/or RA and/or osteolysis.
  • an anti-CSF1R antibody for treatment of lupus and/or MS and/or RA and/or osteolysis comprises a human IgG4 or IgG2 heavy chain constant region.
  • an IgG4 constant region comprises an S241P mutation.
  • An antibody may be humanized by any method.
  • Nonlimiting exemplary methods of humanization include methods described, e.g., in U.S. Pat. Nos. 5,530,101; 5,585,089; 5,693,761; 5,693,762; 6,180,370; Jones et al., Nature 321: 522-525 (1986); Riechmann et al., Nature 332: 323-27 (1988); Verhoeyen et al., Science 239: 1534-36 (1988); and U.S. Publication No. US 2009/0136500.
  • a humanized antibody is an antibody in which at least one amino acid in a framework region of a non-human variable region has been replaced with the amino acid from the corresponding location in a human framework region.
  • at least two, at least three, at least four, at least five, at least six, at least seven, at least eight, at least nine, at least 10, at least 11, at least 12, at least 15, or at least 20 amino acids in the framework regions of a non-human variable region are replaced with an amino acid from one or more corresponding locations in one or more human framework regions.
  • some of the corresponding human amino acids used for substitution are from the framework regions of different human immunoglobulin genes. That is, in some such embodiments, one or more of the non-human amino acids may be replaced with corresponding amino acids from a human framework region of a first human antibody or encoded by a first human immunoglobulin gene, one or more of the non-human amino acids may be replaced with corresponding amino acids from a human framework region of a second human antibody or encoded by a second human immunoglobulin gene, one or more of the non-human amino acids may be replaced with corresponding amino acids from a human framework region of a third human antibody or encoded by a third human immunoglobulin gene, etc.
  • all of the corresponding human amino acids being used for substitution in a single framework region need not be from the same human framework. In some embodiments, however, all of the corresponding human amino acids being used for substitution are from the same human antibody or encoded by the same human immunoglobulin gene.
  • an antibody is humanized by replacing one or more entire framework regions with corresponding human framework regions.
  • a human framework region is selected that has the highest level of homology to the non-human framework region being replaced.
  • such a humanized antibody is a CDR-grafted antibody.
  • one or more framework amino acids are changed back to the corresponding amino acid in a mouse framework region.
  • Such “back mutations” are made, in some embodiments, to retain one or more mouse framework amino acids that appear to contribute to the structure of one or more of the CDRs and/or that may be involved in antigen contacts and/or appear to be involved in the overall structural integrity of the antibody.
  • ten or fewer, nine or fewer, eight or fewer, seven or fewer, six or fewer, five or fewer, four or fewer, three or fewer, two or fewer, one, or zero back mutations are made to the framework regions of an antibody following CDR grafting.
  • a humanized antibody also comprises a human heavy chain constant region and/or a human light chain constant region.
  • an anti-CSF1R antibody is a chimeric antibody.
  • an anti-CSF1R antibody comprises at least one non-human variable region and at least one human constant region.
  • all of the variable regions of an anti-CSF1R antibody are non-human variable regions, and all of the constant regions of an anti-CSF1R antibody are human constant regions.
  • one or more variable regions of a chimeric antibody are mouse variable regions.
  • the human constant region of a chimeric antibody need not be of the same isotype as the non-human constant region, if any, it replaces. Chimeric antibodies are discussed, e.g., in U.S. Pat. No. 4,816,567; and Morrison et al. Proc. Natl. Acad. Sci. USA 81: 6851-55 (1984).
  • Nonlimiting exemplary chimeric antibodies include chimeric antibodies comprising the heavy and/or light chain variable regions of an antibody selected from 0301, 0302, and 0311. Additional nonlimiting exemplary chimeric antibodies include chimeric antibodies comprising heavy chain CDR1, CDR2, and CDR3, and/or light chain CDR1, CDR2, and CDR3 of an antibody selected from 0301, 0302, and 0311.
  • Nonlimiting exemplary chimeric anti-CSF1R antibodies include antibodies comprising the following pairs of heavy and light chain variable regions: SEQ ID NOs: 9 and 10; SEQ ID NOs: 11 and 12; and SEQ ID NOs: 13 and 14.
  • Nonlimiting exemplary anti-CSF1R antibodies include antibodies comprising a set of heavy chain CDR1, CDR2, and CDR3, and light chain CDR1, CDR2, and CDR3 shown above in Table 1.
  • a chimeric anti-CSF1R antibody comprises a heavy chain comprising a variable region sequence that is at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to a sequence selected from SEQ ID NOs: 9, 11, 13, and 39 to 45, wherein the antibody binds CSF1R.
  • a chimeric anti-CSF1R antibody comprises a light chain comprising a variable region sequence that is at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to a sequence selected from SEQ ID NOs: 10, 12, 14, and 46 to 52, wherein the antibody binds CSF1R.
  • a chimeric anti-CSF1R antibody comprises a heavy chain comprising a variable region sequence that is at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to a sequence selected from SEQ ID NOs: 9, 11, 13, and 39 to 45; and a light chain comprising a variable region sequence that is at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to a sequence selected from SEQ ID NOs: 10, 12, 14, and 46 to 52; wherein the antibody binds CSF1R.
  • a chimeric anti-CSF1R antibody comprises at least one of the CDRs discussed herein. That is, in some embodiments, a chimeric anti-CSF1R antibody comprises at least one CDR selected from a heavy chain CDR1 discussed herein, a heavy chain CDR2 discussed herein, a heavy chain CDR3 discussed herein, a light chain CDR1 discussed herein, a light chain CDR2 discussed herein, and a light chain CDR3 discussed herein. Further, in some embodiments, a chimeric anti-CSF1R antibody comprises at least one mutated CDR based on a CDR discussed herein, wherein the mutated CDR comprises 1, 2, 3, or 4 amino acid substitutions relative to the CDR discussed herein.
  • one or more of the amino acid substitutions are conservative amino acid substitutions.
  • One skilled in the art can select one or more suitable conservative amino acid substitutions for a particular CDR sequence, wherein the suitable conservative amino acid substitutions are not predicted to significantly alter the binding properties of the antibody comprising the mutated CDR.
  • Exemplary chimeric anti-CSF1R antibodies also include chimeric antibodies that compete for binding to CSF1R with an antibody described herein.
  • a chimeric anti-CSF1R antibody is provided that competes for binding to CSF1R with an antibody selected from Fabs 0301, 0302, and 0311; and bivalent (i.e., having two heavy chains and two light chains) antibody versions of those Fabs.
  • a chimeric antibody described herein comprises one or more human constant regions.
  • the human heavy chain constant region is of an isotype selected from IgA, IgG, and IgD.
  • the human light chain constant region is of an isotype selected from ⁇ and ⁇ .
  • a chimeric antibody described herein comprises a human IgG constant region.
  • a chimeric antibody described herein comprises a human IgG4 heavy chain constant region.
  • a chimeric antibody described herein comprises an S241P mutation in the human IgG4 constant region.
  • a chimeric antibody described herein comprises a human IgG4 constant region and a human ⁇ light chain.
  • effector function may depend on the particular method of treatment intended for an antibody.
  • a chimeric anti-CSF1R antibody comprising a human IgG1 heavy chain constant region or a human IgG3 heavy chain constant region is selected.
  • a chimeric anti-CSF1R antibody comprising a human IgG4 or IgG2 heavy chain constant region is selected.
  • Human antibodies can be made by any suitable method.
  • Nonlimiting exemplary methods include making human antibodies in transgenic mice that comprise human immunoglobulin loci. See, e.g., Jakobovits et al., Proc. Natl. Acad. Sci. USA 90: 2551-55 (1993); Jakobovits et al., Nature 362: 255-8 (1993); Lonberg et al., Nature 368: 856-9 (1994); and U.S. Pat. Nos. 5,545,807; 6,713,610; 6,673,986; 6,162,963; 5,545,807; 6,300,129; 6,255,458; 5,877,397; 5,874,299; and 5,545,806.
  • Nonlimiting exemplary methods also include making human antibodies using phage display libraries. See, e.g., Hoogenboom et al., J. Mol. Biol. 227: 381-8 (1992); Marks et al., J. Mol. Biol. 222: 581-97 (1991); and PCT Publication No. WO 99/10494.
  • a human anti-CSF1R antibody binds to a polypeptide having the sequence of SEQ ID NO: 1.
  • Exemplary human anti-CSF1R antibodies also include antibodies that compete for binding to CSF1R with an antibody described herein.
  • a human anti-CSF1R antibody is provided that competes for binding to CSF1R with an antibody selected from Fabs 0301, 0302, and 0311, and bivalent (i.e., having two heavy chains and two light chains) antibody versions of those Fabs.
  • a human anti-CSF1R antibody comprises one or more human constant regions.
  • the human heavy chain constant region is of an isotype selected from IgA, IgG, and IgD.
  • the human light chain constant region is of an isotype selected from ⁇ and ⁇ .
  • a human antibody described herein comprises a human IgG constant region.
  • a human antibody described herein comprises a human IgG4 heavy chain constant region.
  • a human antibody described herein comprises an S241P mutation in the human IgG4 constant region.
  • a human antibody described herein comprises a human IgG4 constant region and a human ⁇ light chain.
  • a human anti-CSF1R antibody comprising a human IgG1 heavy chain constant region or a human IgG3 heavy chain constant region is selected. In some embodiments, when effector function is not desirable, a human anti-CSF1R antibody comprising a human IgG4 or IgG2 heavy chain constant region is selected.
  • anti-CSF1R antibodies also include, but are not limited to, mouse, humanized, human, chimeric, and engineered antibodies that comprise, for example, one or more of the CDR sequences described herein.
  • an anti-CSF1R antibody comprises a heavy chain variable region described herein.
  • an anti-CSF1R antibody comprises a light chain variable region described herein.
  • an anti-CSF1R antibody comprises a heavy chain variable region described herein and a light chain variable region described herein.
  • an anti-CSF1R antibody comprises heavy chain CDR1, CDR2, and CDR3 described herein.
  • an anti-CSF1R antibody comprises light chain CDR1, CDR2, and CDR3 described herein. In some embodiments, an anti-CSF1R antibody comprises heavy chain CDR1, CDR2, and CDR3 described herein and light chain CDR1, CDR2, and CDR3 described herein.
  • an anti-CSF1R antibody comprises a heavy chain variable region of an antibody selected from Fabs 0301, 0302, and 0311.
  • Nonlimiting exemplary anti-CSF1R antibodies also include antibodies comprising a heavy chain variable region of an antibody selected from humanized antibodies huAb1 to huAb16.
  • Nonlimiting exemplary anti-CSF1R antibodies include antibodies comprising a heavy chain variable region comprising a sequence selected from SEQ ID NOs: 9, 11, 13, and 39 to 45.
  • an anti-CSF1R antibody comprises a light chain variable region of an antibody selected from Fabs 0301, 0302, and 311.
  • Nonlimiting exemplary anti-CSF1R antibodies also include antibodies comprising a light chain variable region of an antibody selected from humanized antibodies huAb1 to huAb16.
  • Nonlimiting exemplary anti-CSF1R antibodies include antibodies comprising a light chain variable region comprising a sequence selected from SEQ ID NOs: 10, 12, 14, and 46 to 52.
  • an anti-CSF1R antibody comprises a heavy chain variable region and a light chain variable region of an antibody selected from Fabs 0301, 0302, and 0311.
  • Nonlimiting exemplary anti-CSF1R antibodies also include antibodies comprising a heavy chain variable region and a light chain variable region of an antibody selected from humanized antibodies huAb1 to huAb16.
  • Nonlimiting exemplary anti-CSF1R antibodies include antibodies comprising the following pairs of heavy and light chain variable regions: SEQ ID NOs: 9 and 10; SEQ ID NOs: 11 and 12; and SEQ ID NOs: 13 and 14; SEQ ID NOs: 39 and 40; SEQ ID NOs: 41 and 42; SEQ ID NOs: 43 and 44; SEQ ID NOs: 45 and 46; SEQ ID NOs: 47 and 48; SEQ ID NOs: 49 and 50; and SEQ ID NOs: 51 and 52.
  • Nonlimiting exemplary anti-CSF1R antibodies also include antibodies comprising the following pairs of heavy and light chains: SEQ ID NOs: 33 and 34; SEQ ID NOs: 35 and 36; and SEQ ID NOs: 37 and 38.
  • an anti-CSF1R antibody comprises heavy chain CDR1, CDR2, and CDR3 of an antibody selected from Fabs 0301, 0302, and 0311.
  • Nonlimiting exemplary anti-CSF1R antibodies include antibodies comprising sets of heavy chain CDR1, CDR2, and CDR3 selected from: SEQ ID NOs: 15, 16, and 17; SEQ ID NOs: 21, 22, and 23; and SEQ ID NOs: 27, 28, and 29.
  • an anti-CSF1R antibody comprises light chain CDR1, CDR2, and CDR3 of an antibody selected from Fabs 0301, 0302, and 0311.
  • Nonlimiting exemplary anti-CSF1R antibodies include antibodies comprising sets of light chain CDR1, CDR2, and CDR3 selected from: SEQ ID NOs: 18, 19, and 20; SEQ ID NOs: 24, 25, and 26; and SEQ ID NOs: 30, 31, and 32.
  • an anti-CSF1R antibody comprises heavy chain CDR1, CDR2, and CDR3, and light chain CDR1, CDR2, and CDR3 of an antibody selected from Fabs 0301, 0302, and 0311.
  • Nonlimiting exemplary anti-CSF1R antibodies include antibodies comprising the sets of heavy chain CDR1, CDR2, and CDR3, and light chain CDR1, CDR2, and CDR3 shown above in Table 1.
  • an anti-CSF1R antibody comprises a heavy chain comprising a variable region sequence that is at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to a sequence selected from SEQ ID NOs: 9, 11, 13, and 39 to 45, wherein the antibody binds CSF1R.
  • an anti-CSF1R antibody comprises a light chain comprising a variable region sequence that is at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to a sequence selected from SEQ ID NOs: 10, 12, 14, and 46 to 52, wherein the antibody binds CSF1R.
  • an anti-CSF1R antibody comprises a heavy chain comprising a variable region sequence that is at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to a sequence selected from SEQ ID NOs: 9, 11, 13, and 39 to 45; and a light chain comprising a variable region sequence that is at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to a sequence selected from SEQ ID NOs: 10, 12, 14, and 46 to 52; wherein the antibody binds CSF1R.
  • an anti-CSF1R antibody comprises at least one of the CDRs discussed herein. That is, in some embodiments, an anti-CSF1R antibody comprises at least one CDR selected from a heavy chain CDR1 discussed herein, a heavy chain CDR2 discussed herein, a heavy chain CDR3 discussed herein, a light chain CDR1 discussed herein, a light chain CDR2 discussed herein, and a light chain CDR3 discussed herein. Further, in some embodiments, an anti-CSF1R antibody comprises at least one mutated CDR based on a CDR discussed herein, wherein the mutated CDR comprises 1, 2, 3, or 4 amino acid substitutions relative to the CDR discussed herein.
  • one or more of the amino acid substitutions are conservative amino acid substitutions.
  • One skilled in the art can select one or more suitable conservative amino acid substitutions for a particular CDR sequence, wherein the suitable conservative amino acid substitutions are not predicted to significantly alter the binding properties of the antibody comprising the mutated CDR.
  • anti-CSF1R antibodies also include antibodies that compete for binding to CSF1R with an antibody described herein.
  • an anti-CSF1R antibody is provided that competes for binding to CSF1R with an antibody selected from Fabs 0301, 0302, and 0311, and bivalent (i.e., having two heavy chains and two light chains) antibody versions of those Fabs.
  • an antibody described herein comprises one or more human constant regions.
  • the human heavy chain constant region is of an isotype selected from IgA, IgG, and IgD.
  • the human light chain constant region is of an isotype selected from ⁇ and ⁇ .
  • an antibody described herein comprises a human IgG constant region.
  • an antibody described herein comprises a human IgG4 heavy chain constant region.
  • an antibody described herein comprises an S241P mutation in the human IgG4 constant region.
  • an antibody described herein comprises a human IgG4 constant region and a human ⁇ light chain.
  • effector function may depend on the particular method of treatment intended for an antibody.
  • an anti-CSF1R antibody comprising a human IgG1 heavy chain constant region or a human IgG3 heavy chain constant region is selected.
  • an anti-CSF1R antibody comprising a human IgG4 or IgG2 heavy chain constant region is selected.
  • anti-CSF1R antibody heavy chain variable regions are provided.
  • an anti-CSF1R antibody heavy chain variable region is a mouse variable region, a human variable region, or a humanized variable region.
  • An anti-CSF1R antibody heavy chain variable region comprises a heavy chain CDR1, FR2, CDR2, FR3, and CDR3.
  • an anti-CSF1R antibody heavy chain variable region further comprises a heavy chain FR1 and/or FR4.
  • Nonlimiting exemplary heavy chain variable regions include, but are not limited to, heavy chain variable regions having an amino acid sequence selected from SEQ ID NOs: 9, 11, 13, and 39 to 45.
  • an anti-CSF1R antibody heavy chain variable region comprises a CDR1 comprising a sequence selected from SEQ ID NOs: 15, 21, and 27.
  • an anti-CSF1R antibody heavy chain variable region comprises a CDR2 comprising a sequence selected from SEQ ID NOs: 16, 22, and 28.
  • an anti-CSF1R antibody heavy chain variable region comprises a CDR3 comprising a sequence selected from SEQ ID NOs: 17, 23, and 29.
  • Nonlimiting exemplary heavy chain variable regions include, but are not limited to, heavy chain variable regions comprising sets of CDR1, CDR2, and CDR3 selected from: SEQ ID NOs: 15, 16, and 17; SEQ ID NOs: 21, 22, and 23; and SEQ ID NOs: 27, 28, and 29.
  • an anti-CSF1R antibody heavy chain comprises a variable region sequence that is at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to a sequence selected from SEQ ID NOs: 9, 11, 13, and 39 to 45, wherein the heavy chain, together with a light chain, is capable of forming an antibody that binds CSF1R.
  • an anti-CSF1R antibody heavy chain comprises at least one of the CDRs discussed herein. That is, in some embodiments, an anti-CSF1R antibody heavy chain comprises at least one CDR selected from a heavy chain CDR1 discussed herein, a heavy chain CDR2 discussed herein, and a heavy chain CDR3 discussed herein. Further, in some embodiments, an anti-CSF1R antibody heavy chain comprises at least one mutated CDR based on a CDR discussed herein, wherein the mutated CDR comprises 1, 2, 3, or 4 amino acid substitutions relative to the CDR discussed herein. In some embodiments, one or more of the amino acid substitutions are conservative amino acid substitutions. One skilled in the art can select one or more suitable conservative amino acid substitutions for a particular CDR sequence, wherein the suitable conservative amino acid substitutions are not predicted to significantly alter the binding properties of the heavy chain comprising the mutated CDR.
  • a heavy chain comprises a heavy chain constant region. In some embodiments, a heavy chain comprises a human heavy chain constant region. In some embodiments, the human heavy chain constant region is of an isotype selected from IgA, IgG, and IgD. In some embodiments, the human heavy chain constant region is an IgG constant region. In some embodiments, a heavy chain comprises a human igG4 heavy chain constant region. In some such embodiments, the human IgG4 heavy chain constant region comprises an S241P mutation.
  • a heavy chain when effector function is desirable, comprises a human IgG1 or IgG3 heavy chain constant region. In some embodiments, when effector function is less desirable, a heavy chain comprises a human IgG4 or IgG2 heavy chain constant region.
  • anti-CSF1R antibody light chain variable regions are provided.
  • an anti-CSF1R antibody light chain variable region is a mouse variable region, a human variable region, or a humanized variable region.
  • An anti-CSF1R antibody light chain variable region comprises a light chain CDR1, FR2, CDR2, FR3, and CDR3.
  • an anti-CSF1R antibody light chain variable region further comprises a light chain FR1 and/or FR4.
  • Nonlimiting exemplary light chain variable regions include light chain variable regions having an amino acid sequence selected from SEQ ID NOs: 10, 12, 14, and 46 to 52.
  • an anti-CSF1R antibody light chain variable region comprises a CDR1 comprising a sequence selected from SEQ ID NOs: 18, 24 and 30.
  • an anti-CSF1R antibody light chain variable region comprises a CDR2 comprising a sequence selected from SEQ ID NOs: 19, 25, and 31.
  • an anti-CSF1R antibody light chain variable region comprises a CDR3 comprising a sequence selected from SEQ ID NOs: 20, 26, and 32.
  • Nonlimiting exemplary light chain variable regions include, but are not limited to, light chain variable regions comprising sets of CDR1, CDR2, and CDR3 selected from: SEQ ID NOs: 18, 19, and 20; SEQ ID NOs: 24, 25, and 26; and SEQ ID NOs: 30, 31, and 32.
  • an anti-CSF1R antibody light chain comprises a variable region sequence that is at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to a sequence selected from SEQ ID NOs: 10, 12, 14, and 46 to 52, wherein the light chain, together with a heavy chain, is capable of forming an antibody that binds CSF1R.
  • an anti-CSF1R antibody light chain comprises at least one of the CDRs discussed herein. That is, in some embodiments, an anti-CSF1R antibody light chain comprises at least one CDR selected from a light chain CDR1 discussed herein, a light chain CDR2 discussed herein, and a light chain CDR3 discussed herein. Further, in some embodiments, an anti-CSF1R antibody light chain comprises at least one mutated CDR based on a CDR discussed herein, wherein the mutated CDR comprises 1, 2, 3, or 4 amino acid substitutions relative to the CDR discussed herein. In some embodiments, one or more of the amino acid substitutions are conservative amino acid substitutions. One skilled in the art can select one or more suitable conservative amino acid substitutions for a particular CDR sequence, wherein the suitable conservative amino acid substitutions are not predicted to significantly alter the binding properties of the light chain comprising the mutated CDR.
  • a light chain comprises a human light chain constant region.
  • a human light chain constant region is selected from a human ⁇ and a human ⁇ , light chain constant region.
  • additional molecules that bind CSF1R are provided.
  • Such molecules include, but are not limited to, non-canonical scaffolds, such as anti-calins, adnectins, ankyrin repeats, etc. See, e.g., Hosse et al., Prot. Sci. 15:14 (2006); Fiedler, M. and Skerra, A., “Non-Antibody Scaffolds,” pp. 467-499 in Handbook of Therapeutic Antibodies, Dubel, S., ed., Wiley-VCH, Weinheim, Germany, 2007.
  • an antibody having a structure described above binds to the CSF1R with a binding affinity (K D ) of less than 1 nM, blocks binding of CSF1 and/or IL-34 to CSF1R, and inhibits CSF1R phosphorylation induced by CSF1 and/or IL-34.
  • K D binding affinity
  • an anti-CSF1R antibody binds to the extracellular domain of CSF1R (CSF1R-ECD).
  • an anti-CSF1R antibody has a binding affinity (K D ) for CSF1R of less than 1 nM, less than 0.5 nM, less than 0.1 nM, or less than 0.05 nM.
  • an anti-CSF1R antibody has a K D of between 0.01 and 1 nM, between 0.01 and 0.5 nM, between 0.01 and 0.1 nM, between 0.01 and 0.05 nM, or between 0.02 and 0.05 nM.
  • an anti-CSF1R antibody blocks ligand binding to CSF1R. In some embodiments, an anti-CSF1R antibody blocks binding of CSF1 to CSF1R. In some embodiments, an anti-CSF1R antibody blocks binding of IL-34 to CSF1R. In some embodiments, an anti-CSF1R antibody blocks binding of both CSF1 and IL-34 to CSF1R. In some embodiments, an antibody that blocks ligand binding binds to the extracellular domain of CSF1R. An antibody is considered to “block ligand binding to CSF1R” when it reduces the amount of detectable binding of a ligand to CSF1R by at least 50%, using the assay described in Example 7.
  • an antibody reduces the amount of detectable binding of a ligand to CSF1R by at least 60%, at least 70%, at least 80%, or at least 90%, using the assay described in Example 7.
  • the antibody is said to block ligand binding by at least 50%, at least 60%, at least 70%, etc.
  • an anti-CSF1R antibody inhibits ligand-induced CSF1R phosphorylation. In some embodiments, an anti-CSF1R antibody inhibits CSF1-induced CSF1R phosphorylation. In some embodiments, an anti-CSF1R antibody inhibits IL-34-induced CSF1R phosphorylation. In some embodiments, an anti-CSF1R antibody inhibits both CSF1-induced and IL-34-induced CSF1R phosphorylation. An antibody is considered to “inhibit ligand-induced CSF1R phosphorylation” when it reduces the amount of detectable ligand-induced CSF1R phosphorylation by at least 50%, using the assay described in Example 6.
  • an antibody reduces the amount of detectable ligand-induced CSF1R phosphorylation by at least 60%, at least 70%, at least 80%, or at least 90%, using the assay described in Example 6. In some such embodiments, the antibody is said to inhibit ligand-induced CSF1R phosphorylation by at least at least 50%, at least 60%, at least 70%, etc.
  • an antibody inhibits monocyte proliferation and/or survival responses in the presence of CSF1 and/or IL-34.
  • An antibody is considered to “inhibit monocyte proliferation and/or survival responses” when it reduces the amount of monocyte proliferation and/or survival responses in the presence of CSF1 and/or IL-34 by at least 50%, using the assay described in Example 10.
  • an antibody reduces the amount of monocyte proliferation and/or survival responses in the presence of CSF1 and/or IL-34 by at least 60%, at least 70%, at least 80%, or at least 90%, using the assay described in Example 10.
  • the antibody is said to inhibit monocyte proliferation and/or survival responses by at least at least 50%, at least 60%, at least 70%, etc.
  • an anti-CSF1R antibody is conjugated to a label and/or a cytotoxic agent.
  • a label is a moiety that facilitates detection of the antibody and/or facilitates detection of a molecule to which the antibody binds.
  • Nonlimiting exemplary labels include, but are not limited to, radioisotopes, fluorescent groups, enzymatic groups, chemiluminescent groups, biotin, epitope tags, metal-binding tags, etc.
  • One skilled in the art can select a suitable label according to the intended application.
  • a cytotoxic agent is a moiety that reduces the proliferative capacity of one or more cells.
  • a cell has reduced proliferative capacity when the cell becomes less able to proliferate, for example, because the cell undergoes apoptosis or otherwise dies, the cell fails to proceed through the cell cycle and/or fails to divide, the cell differentiates, etc.
  • Nonlimiting exemplary cytotoxic agents include, but are not limited to, radioisotopes, toxins, and chemotherapeutic agents.
  • One skilled in the art can select a suitable cytotoxic according to the intended application.
  • a label and/or a cytotoxic agent is conjugated to an antibody using chemical methods in vitro.
  • Nonlimiting exemplary chemical methods of conjugation are known in the art, and include services, methods and/or reagents commercially available from, e.g., Thermo Scientific Life Science Research Produces (formerly Pierce; Rockford, Ill.), Prozyme (Hayward, Calif.), SACRI Antibody Services (Calgary, Canada), AbD Serotec (Raleigh, N.C.), etc.
  • the label and/or cytotoxic agent when a label and/or cytotoxic agent is a polypeptide, the label and/or cytotoxic agent can be expressed from the same expression vector with at least one antibody chain to produce a polypeptide comprising the label and/or cytotoxic agent fused to an antibody chain.
  • a suitable method for conjugating a label and/or cytotoxic agent to an antibody can be selected from the same expression vector with at least one antibody chain to produce a polypeptide comprising the label and/or cytotoxic agent fused to an antibody chain.
  • a leader sequence from a heterologous protein may be desirable.
  • a leader sequence is selected from SEQ ID NOs: 3 and 4, which are light chain and heavy chain leader sequences, respectively.
  • employing heterologous leader sequences may be advantageous in that a resulting mature polypeptide may remain unaltered as the leader sequence is removed in the ER during the secretion process.
  • the addition of a heterologous leader sequence may be required to express and secrete some proteins.
  • leader sequence sequences are described, e.g., in the online Leader sequence Database maintained by the Department of Biochemistry, National University of Singapore. See Choo et al., BMC Bioinformatics, 6: 249 (2005); and PCT Publication No. WO 2006/081430.
  • nucleic acid molecules comprising polynucleotides that encode one or more chains of anti-CSF1R antibodies are provided.
  • a nucleic acid molecule comprises a polynucleotide that encodes a heavy chain or a light chain of an anti-CSF1R antibody.
  • a nucleic acid molecule comprises both a polynucleotide that encodes a heavy chain and a polynucleotide that encodes a light chain, of an anti-CSF1R antibody.
  • a first nucleic acid molecule comprises a first polynucleotide that encodes a heavy chain and a second nucleic acid molecule comprises a second polynucleotide that encodes a light chain.
  • the heavy chain and the light chain are expressed from one nucleic acid molecule, or from two separate nucleic acid molecules, as two separate polypeptides.
  • a single polynucleotide encodes a single polypeptide comprising both a heavy chain and a light chain linked together.
  • a polynucleotide encoding a heavy chain or light chain of an anti-CSF1R antibody comprises a nucleotide sequence that encodes a leader sequence, which, when translated, is located at the N terminus of the heavy chain or light chain.
  • the leader sequence may be the native heavy or light chain leader sequence, or may be another heterologous leader sequence.
  • Nucleic acid molecules may be constructed using recombinant DNA techniques conventional in the art.
  • a nucleic acid molecule is an expression vector that is suitable for expression in a selected host cell.
  • Vectors comprising polynucleotides that encode anti-CSF1R heavy chains and/or anti-CSF1R light chains are provided. Vectors comprising polynucleotides that encode anti-CSF1R heavy chains and/or anti-CSF1R light chains are also provided. Such vectors include, but are not limited to, DNA vectors, phage vectors, viral vectors, retroviral vectors, etc.
  • a vector comprises a first polynucleotide sequence encoding a heavy chain and a second polynucleotide sequence encoding a light chain.
  • the heavy chain and light chain are expressed from the vector as two separate polypeptides. In some embodiments, the heavy chain and light chain are expressed as part of a single polypeptide, such as, for example, when the antibody is an scFv.
  • a first vector comprises a polynucleotide that encodes a heavy chain and a second vector comprises a polynucleotide that encodes a light chain.
  • the first vector and second vector are transfected into host cells in similar amounts (such as similar molar amounts or similar mass amounts).
  • a mole- or mass-ratio of between 5:1 and 1:5 of the first vector and the second vector is transfected into host cells.
  • a mass ratio of between 1:1 and 1:5 for the vector encoding the heavy chain and the vector encoding the light chain is used.
  • a mass ratio of 1:2 for the vector encoding the heavy chain and the vector encoding the light chain is used.
  • a vector is selected that is optimized for expression of polypeptides in CHO or CHO-derived cells, or in NSO cells. Exemplary such vectors are described, e.g., in Running Deer et al., Biotechnol. Prog. 20:880-889 (2004).
  • a vector is chosen for in vivo expression of anti-CSF1R heavy chains and/or anti-CSF1R light chains in animals, including humans.
  • expression of the polypeptide is under the control of a promoter that functions in a tissue-specific manner.
  • tissue-specific promoters are described, e.g., in PCT Publication No. WO 2006/076288.
  • anti-CSF1R heavy chains and/or anti-CSF1R light chains may be expressed in prokaryotic cells, such as bacterial cells; or in eukaryotic cells, such as fungal cells (such as yeast), plant cells, insect cells, and mammalian cells. Such expression may be carried out, for example, according to procedures known in the art.
  • exemplary eukaryotic cells that may be used to express polypeptides include, but are not limited to, COS cells, including COS 7 cells; 293 cells, including 293-6E cells; CHO cells, including CHO-S and DG44 cells; PER.C6® cells (Crucell); and NSO cells.
  • anti-CSF1R heavy chains and/or anti-CSF1R light chains may be expressed in yeast. See, e.g., U.S. Publication No. US 2006/0270045 A1.
  • a particular eukaryotic host cell is selected based on its ability to make desired post-translational modifications to the anti-CSF1R heavy chains and/or anti-CSF1R light chains.
  • CHO cells produce polypeptides that have a higher level of sialylation than the same polypeptide produced in 293 cells.
  • nucleic acids into a desired host cell may be accomplished by any method, including but not limited to, calcium phosphate transfection, DEAE-dextran mediated transfection, cationic lipid-mediated transfection, electroporation, transduction, infection, etc.
  • Nonlimiting exemplary methods are described, e.g., in Sambrook et al., Molecular Cloning, A Laboratory Manual, 3 rd ed. Cold Spring Harbor Laboratory Press (2001).
  • Nucleic acids may be transiently or stably transfected in the desired host cells, according to any suitable method.
  • one or more polypeptides may be produced in vivo in an animal that has been engineered or transfected with one or more nucleic acid molecules encoding the polypeptides, according to any suitable method.
  • Anti-CSF1R antibodies may be purified by any suitable method. Such methods include, but are not limited to, the use of affinity matrices or hydrophobic interaction chromatography. Suitable affinity ligands include the CSF1R ECD and ligands that bind antibody constant regions. For example, a Protein A, Protein G, Protein A/G, or an antibody affinity column may be used to bind the constant region and to purify an anti-CSF1R antibody. Hydrophobic interactive chromatography, for example, a butyl or phenyl column, may also suitable for purifying some polypeptides. Many methods of purifying polypeptides are known in the art.
  • an anti-CSF1R antibody is produced in a cell-free system.
  • a cell-free system Nonlimiting exemplary cell-free systems are described, e.g., in Sitaraman et al., Methods Mol. Biol. 498: 229-44 (2009); Spirin, Trends Biotechnol. 22: 538-45 (2004); Endo et al., Biotechnol. Adv. 21: 695-713 (2003).
  • SLE systemic lupus erythematosus
  • rheumatoid arthritis and multiple sclerosis with an antibody that binds CSF1R and blocks CSF1 and IL-34 ligand binding.
  • a method of treating SLE comprises administering an antibody that binds CSF1R and blocks CSF1 and IL-34 ligand binding, such as an antibody selected from huAb1 to huAb16, to a subject with SLE.
  • Treating SLE in some embodiments, means reducing the incidence and/or severity of skin lesions associated with SLE, and/or reducing a kidney condition selected from glomerulonephritis, interstitial nephritis, and perivascular infiltrates.
  • a method of treating lupus nephritis comprises administering an antibody that binds CSF1R and blocks CSF1 and IL-34 ligand binding, such as an antibody selected from huAb1 to huAb16, to a subject with lupus nephritis.
  • a method of treating a class of lupus nephritis selected from class I, class II, class III, class IV, class V, and class VI lupus nephritis comprises administering an antibody that binds CSF1R and blocks CSF1 and IL-34 ligand binding, such as an antibody selected from huAb1 to huAb16, to a subject with lupus nephritis.
  • Class III and class IV lupus nephritis have significantly greater CD16+ monocyte counts than other classes of lupus nephritis. See Yoshimoto et al., Am. J. Kidney Dis.
  • a method of treating class III or class IV lupus nephritis comprises administering an antibody that binds CSF1R and blocks CSF1 and IL-34 ligand binding, such as an antibody selected from huAb1 to huAb16, to a subject with lupus nephritis.
  • the method comprises administering huAb1 to the subject.
  • a method of treating skin lesions associated with SLE comprises administering an antibody that binds CSF1R, such as an antibody selected from huAb1 to huAb16, to a subject with SLE.
  • a method of treating skin lesions associated with SLE comprises administering huAb1 to a subject with SLE.
  • a method of reducing the number, severity, and/or rate of formation of skin lesions associated with SLE is provided, wherein the method comprises administering an antibody that binds CSF1R, such as an antibody selected from huAb1 to huAb16, to a subject with SLE.
  • a method of reducing the number, severity, and/or rate of formation of skin lesions associated with SLE comprises administering huAb1 to a subject with SLE.
  • the number, severity, and/or rate of formation of skin lesions may be determined, in some embodiments, by visual inspection. Such visual inspection may be carried out, for example, by a clinician or by the subject (e.g., self-reported visual inspection).
  • a method of treating a kidney condition associated with SLE comprises administering an antibody that binds CSF1R and blocks CSF1 and IL-34 ligand binding, such as an antibody selected from huAb1 to huAb16, to a subject with a kidney condition associated with SLE.
  • antibody huAb1 is administered to the subject.
  • the kidney condition is selected from glomerulonephritis, interstitial nephritis, and perivascular infiltrates.
  • a method of treating lupus nephritis comprises administering an antibody that binds CSF1R and blocks CSF1 and IL-34 ligand binding, such as an antibody selected from huAb1 to huAb16, to a subject with lupus nephritis.
  • a method of treating lupus nephritis comprises administering antibody huAb1 to a subject with lupus nephritis.
  • the extent of kidney damage in lupus nephritis may be determined, in some embodiments, using ultrasonography, scintigraphy, pyelography, or needle biopsy.
  • the extent of kidney damage in lupus nephritis may also be determined, in some embodiments, by measuring kidney function, such as, for example, by measuring proteinuria and/or glomerular filtration rate.
  • a method of reducing proteinuria associated with lupus nephritis comprising administering an antibody that binds CSF1R and blocks CSF1 and IL-34 ligand binding, such as an antibody selected from huAb1 to huAb16, to a subject exhibiting proteinuria.
  • Proteinuria may be detected by any method in the art, including, but not limited to, dipstick testing, protein/creatinine ratio, serum albumin/creatinine ratio, and protein electrophoresis.
  • Levels of protein in urine may be indicated, in some embodiments, using the following scale: trace (5-20 mg/dl), 1+ (30 mg/dl), 2+ (100 mg/dl), 3+ (300 mg/dl), and 4+ (>2000 mg/dl).
  • a protein/creatinine ratio of ⁇ 200 mg/g is considered normal.
  • a serum albumin/creatinine ratio of ⁇ 17 mg/g and ⁇ 25 mg/g is considered normal for men and women, respectively.
  • Proteinuria is defined by the National Kidney Foundation Kidney Disease Outcome Quality Initiative as the presence of >300 mg/d total protein or albumin for 24-hour urine excretions; as >30 mg/dL total protein for spot urine dipstick measurements (i.e., 1+ or greater on the scale described above); as >200 mg/g total protein-to-creatinine ratio; as >300 mg/g albumin-to-creatinine ratio for spot urine measurements (or >250 mg/g albumin-to-creatinine ratio for spot urine measurements from men; and >355 mg/g albumin-to-creatinine ratio for spot urine measurements from women).
  • administration of an antibody that binds CSF1R and blocks CSF1 and IL-34 ligand binding to a subject reduces proteinuria by at least one number or at least two numbers on the “trace, 1+, 2+, 3+, 4+” scale.
  • administration of an antibody that binds CSF1R and blocks CSF1 and IL-34 ligand binding to a subject with 3+ proteinuria reduces the proteinuria to a 2+ level or lower, or a 1+ level or lower.
  • administration of an antibody that binds CSF1R and blocks CSF1 and IL-34 ligand binding to a subject reduces the protein/creatinine ratio and/or albumin/creatinine ratio by at least 50 mg/g, at least 100 mg/g, at least 150 mg/g, at least 200 mg/g, at least 250 mg/g, or at least 300 mg/g. In some embodiments, administration of an antibody that binds CSF1R and blocks CSF1 and IL-34 ligand binding to a subject reduces the protein/creatinine ratio and/or albumin/creatinine ratio to below 250 mg/g, below 200 mg/g, below 150 mg/g, or below 100 mg/g.
  • administering reduces the protein/creatinine ratio and/or albumin/creatinine ratio to within 2-fold, within 3-fold, within 4-fold, within 5-fold of a normal ratio.
  • the reduction in proteinuria is determined in the first week, in the first two weeks, in the first month, in the first two months, in the first three months, in the first 4 months, or in the first six months after beginning treatment.
  • a subject is monitored for continued suppression of proteinuria while being treated with an antibody that binds CSF1R and blocks CSF1 and IL-34 ligand binding.
  • a method of improving glomerular filtration rate in a subject with lupus nephritis comprising administering an antibody that binds CSF1R and blocks CSF1 and IL-34 ligand binding, such as an antibody selected from huAb1 to huAb16 to a subject with lupus nephritis.
  • Glomerular filtration rate may be determined by any method in the art, including, but not limited to, serum or urine levels of insulin or sinistrin (in some embodiments, insulin or sinistrin is injected prior to analysis), creatinine clearance estimated from creatinine concentrations in 24 urine collection and serum, and serum cystatin C levels.
  • Normal glomerular filtration rates in adults are in the range of 90-130 ml/min/1.73 m 2 .
  • Glomerular filtration rates below 90 ml/min/1.73 m 2 , below 80 ml/min/1.73 m 2 , below 70 ml/min/1.73 m 2 , or below 60 ml/min/1.73 m 2 are, in some embodiments, indicative of chronic kidney disease, while rates below 15 ml/min/1.73 m 2 are indicative of kidney failure.
  • a method of improving glomerular filtration rate in a subject with lupus nephritis comprising administering an antibody that binds CSF1R and blocks CSF1 and IL-34 ligand binding, such as an antibody selected from huAb1 to huAb16, to a subject with lupus nephritis.
  • a subject's glomerular filtration rate improves by at least 10 ml/min/1.73 m 2 , at least 15 ml/min/1.73 m 2 , at least 20 ml/min/1.73 m 2 , at least 25 ml/min/1.73 m 2 , at least 30 ml/min/1.73 m 2 , at least 40 ml/min/1.73 m 2 , or at least 50 ml/min/1.73 m 2 .
  • a subject's glomerular filtration rate is at least 60 ml/min/1.73 m 2 , at least 70 ml/min/1.73 m 2 , at least 80 ml/min/1.73 m 2 , or at least 90 ml/min/1.73 m 2 .
  • the reduction in glomerular filtration rate is determined in the first week, in the first two weeks, in the first month, in the first two months, in the first three months, in the first 4 months, or in the first six months after beginning treatment.
  • a subject is monitored for continued improvement of glomerular filtration rate while being treated with an antibody that binds CSF1R and blocks CSF1 and IL-34 ligand binding.
  • a method of treating lupus nephritis comprising administering an antibody that binds CSF1R and blocks CSF1 and IL-34 ligand binding, such as an antibody selected from huAb1 to huAb16 to a subject with lupus nephritis, wherein administration of the antibody slows or prevents the progression of a kidney condition associated with lupus nephritis.
  • proteinuria and/or the glomerular filtration rate in the subject does not worsen (i.e., proteinuria does not increase and/or the glomerular filtration rate does not decrease) following administration of the antibody and/or during a particular time interval during which the subject is undergoing treatment with the antibody.
  • the treatment may be a single dose or multiple doses.
  • methods of treating rheumatoid arthritis comprising administering an antibody that binds CSF1R and blocks CSF1 and IL-34 ligand binding, such as an antibody selected from huAb1 to huAb16, to a subject with rheumatoid arthritis.
  • methods of treating rheumatoid arthritis are provided, wherein the method comprises administering antibody huAb1 to a subject with rheumatoid arthritis.
  • Treating rheumatoid arthritis in some embodiments, means reducing clinical disease scores, which may be measured, for example, by measuring erythema and swelling in joints affected by rheumatoid arthritis.
  • Treating rheumatoid arthritis in some embodiments, means reducing inflammation, reducing pannus formation, reducing cartilage damage, reducing bone resorption, reducing macrophage numbers in the joints, reducing autoantibody formation, and/or reducing bone loss.
  • a method of reducing inflammation associated with rheumatoid arthritis comprises administering an antibody that binds CSF1R and blocks CSF1 and IL-34 ligand binding, such as an antibody selected from huAb1 to huAb16, to a subject with rheumatoid arthritis.
  • a method of reducing inflammation associated with rheumatoid arthritis is provided, wherein the method comprises administering antibody huAb1 to a subject with rheumatoid arthritis.
  • Reducing inflammation comprises reducing erythrocyte sedimentation rate and/or reducing the levels of C-reactive proteins in blood.
  • the erythrocyte sedimentation rate increases, possibly due to increased levels of fibrinogen in the blood.
  • the erythrocyte sedimentation rate may be determined by any method in the art, including, but not limited to, calculating the rate by measuring the change in height of anticoagulated erythrocytes in one hour in a Westergren tube. See also Procedures for the Erythrocyte Sedimentation Rate Test; Approved Standard—Fifth Edition , CLSI document H02-A5. Wayne, Pa.: Clinical and Laboratory Standards institute; 2011. Levels of C-reactive protein in blood may be determined by any methods in the art, including but not limited to using the RAPITEX® CRP test kit (Siemens).
  • Reducing inflammation comprises reducing peripheral edema, which is tissue swelling due to the buildup of fluids.
  • Peripheral edema may occur, in some instances, in the ankles, feet, legs, and/or calves of a subject with rheumatoid arthritis.
  • Reducing inflammation comprises reducing infiltration of inflammatory cells in the synovium of one or more affected joints. Synovial fluid may be collected, in some embodiments, by athrocentesis.
  • a method of reducing pannus formation associated with rheumatoid arthritis comprises administering an antibody that binds CSF1R and blocks CSF1 and IL-34 ligand binding, such as an antibody selected from huAb1 to huAb16, to a subject with rheumatoid arthritis.
  • a method of reducing pannus formation associated with rheumatoid arthritis comprises administering antibody huAb1 to a subject with rheumatoid arthritis.
  • Reducing pannus formation comprises reducing infiltration of pannus into cartilage and/or subchondrial bone, and/or reducing hard tissue destruction resulting from pannus infiltration.
  • Pannus formation can be measured by any method in the art, including, but not limited to, imaging one or more affected joints.
  • Nonlimiting exemplary imaging techniques for detecting pannus formation include magnetic resonance imaging (MM), computed tomography (CT) scan, arthroscopy, ultrasonography, duplex ultrasonography, and power doppler imaging.
  • a method of slowing the progression of pannus formation associated with rheumatoid arthritis comprises administering an antibody that binds CSF1R and blocks CSF1 and IL-34 ligand binding, such as an antibody selected from huAb1 to huAb16, to a subject with rheumatoid arthritis.
  • the antibody is huAb1.
  • the formation of pannus is slower following administration of the antibody and/or during a particular time interval during which the subject is undergoing treatment with the antibody.
  • the treatment may be a single dose or multiple doses.
  • a method of reducing cartilage damage associated with rheumatoid arthritis comprises administering an antibody that binds CSF1R and blocks CSF1 and IL-34 ligand binding, such as an antibody selected from huAb1 to huAb16, to a subject with rheumatoid arthritis.
  • a method of reducing cartilage damage associated with rheumatoid arthritis is provided, wherein the method comprises administering antibody huAb1 to a subject with rheumatoid arthritis.
  • Reducing cartilage damage in some embodiments, comprises reducing chondrocyte loss, reducing collagen disruption, and/or reducing cartilage loss.
  • Cartilage damage can be measured by any method in the art, including, but not limited to, imaging one or more affected joints.
  • Nonlimiting exemplary imaging techniques for detecting cartilage damage include MM, CT scan, arthroscopy, and x-ray imaging.
  • a method of slowing the progression of cartilage damage associated with rheumatoid arthritis comprises administering an antibody that binds CSF1R and blocks CSF1 and IL-34 ligand binding, such as an antibody selected from huAb1 to huAb16, to a subject with rheumatoid arthritis.
  • the antibody is huAb1.
  • the progression of cartilage damage is slower following administration of the antibody and/or during a particular time interval during which the subject is undergoing treatment with the antibody.
  • the treatment may be a single dose or multiple doses.
  • a method of reducing bone resorption associated with rheumatoid arthritis comprises administering an antibody that binds CSF1R and blocks CSF1 and IL-34 ligand binding, such as an antibody selected from huAb1 to huAb16, to a subject with rheumatoid arthritis.
  • a method of reducing bone resorption associated with rheumatoid arthritis is provided, wherein the method comprises administering antibody huAb1 to a subject with rheumatoid arthritis.
  • Reducing bone resorption comprises reducing the number of osteoclasts in joints affected by rheumatoid arthritis.
  • bone resorption may be measured by determining the level of TRAP5b in plasma from the subject, wherein an elevated level of TRAP5b indicates elevated bone resorption in the subject.
  • a reduced level of TRAP5b indicates a reduction in bone resorption.
  • TRAP5b levels may be determined, in certain instances, before and after treatment with an antibody that binds CSF1R, and/or may be determined periodically throughout the course of treatment to monitor the effectiveness of the treatment in reducing bone loss.
  • TRAP5b levels may be determined using any method in the art, including, but not limited to, ELISA (including FAICEA, or fragments absorbed immunocapture enzymatic assay; see, e.g., Quidel® TRAP5b assay, TECOmedical Group, Sissach, Switzerland).
  • ELISA including FAICEA, or fragments absorbed immunocapture enzymatic assay; see, e.g., Quidel® TRAP5b assay, TECOmedical Group, Sissach, Switzerland).
  • a method of reducing bone loss associated with rheumatoid arthritis comprises administering an antibody that binds CSF1R and blocks CSF1 and IL-34 ligand binding, such as an antibody selected from huAb1 to huAb16, to a subject with rheumatoid arthritis.
  • a method of reducing bone loss associated with rheumatoid arthritis comprises administering antibody huAb1 to a subject with rheumatoid arthritis.
  • Bone loss may be determined using any method in the art, including, but not limited to, x-ray imaging, MM, CT, bone densitometry, single and dual photon absorptiometry (SPA, DPA), single and dual energy x-ray absorptiometry (SXA, DXA), ultrasonography, scintigraphy, and by measuring levels of serum markers of bone formation and resorption.
  • x-ray imaging MM, CT, bone densitometry
  • SPA single and dual photon absorptiometry
  • SXA single and dual energy x-ray absorptiometry
  • ultrasonography scintigraphy
  • Serum osteocalcin Serum and urinary hydroxyproline (Hyp) Serum total alkaline phosphatase (ALP) Urinary total pyridinoline (Pyr) Serum bone specific alkaline Urinary total phosphatase (BSAP, BALP, or B-ALP) deoxypyridinoline (dPyr) Serum procollagen I carboxyterminal Urinary free pyridinoline (f-Pyr, also propeptide (PICP) known as Pyrilinks ® (Metra Biosystems)) Serum procollagen type I N-terminal Urinary free deoxypyridinoline propeptide (PINP) (f-dPyr, also known as Pyrilinks-D ®) Bone sialoprotein Serum and urinary collagen type I cross-linked N-telopeptide (NTx, also referred to as Osteomark) Serum and urinary hydroxyproline (Hyp) Serum total alkaline phosphata
  • a method of slowing the progression of bone loss associated with rheumatoid arthritis comprises administering an antibody that binds CSF1R and blocks CSF1 and IL-34 ligand binding, such as an antibody selected from huAb1 to huAb16, to a subject with rheumatoid arthritis.
  • the antibody is huAb1.
  • bone loss is slower following administration of the antibody and/or during a particular time interval during which the subject is undergoing treatment with the antibody.
  • the treatment may be a single dose or multiple doses.
  • a method of reducing the number of monocyte lineage cells, such as macrophages and/or CD16+ monocytes, in joints affected by rheumatoid arthritis comprises administering an antibody that binds CSF1R and blocks CSF1 and IL-34 ligand binding, such as an antibody selected from huAb1 to huAb16, to a subject with rheumatoid arthritis.
  • a method of reducing the number of monocyte lineage cells, such as macrophages and/or CD16+ monocytes, in joints affected by rheumatoid arthritis comprises administering antibody huAb1 to a subject with rheumatoid arthritis.
  • a method of reducing the number of monocyte lineage cells, such as macrophages and/or CD16+ monocytes, in synovial fluid of joints affected by rheumatoid arthritis comprises administering an antibody that binds CSF1R and blocks CSF1 and IL-34 ligand binding, such as an antibody selected from huAb1 to huAb16, to a subject with rheumatoid arthritis.
  • a method of reducing the number of monocyte lineage cells, such as macrophages and/or CD16+ monocytes, in synovial fluid of joints affected by rheumatoid arthritis comprises administering antibody huAb1 to a subject with rheumatoid arthritis.
  • a method of reducing autoantibody levels in a subject with rheumatoid arthritis comprises administering an antibody that binds CSF1R and blocks CSF1 and IL-34 ligand binding, such as an antibody selected from huAb1 to huAb16, to a subject with rheumatoid arthritis.
  • a method of reducing autoantibody levels in a subject with rheumatoid arthritis comprises administering antibody huAb1 to a subject with rheumatoid arthritis.
  • a method of reducing autoantibody levels in a subject with rheumatoid arthritis comprising administering an antibody that binds CSF1R and blocks CSF1 and IL-34 ligand binding, such as an antibody selected from huAb1 to huAb16, to a subject with rheumatoid arthritis.
  • the method comprises administering huAb1 to a subject with rheumatoid arthritis.
  • the levels of autoantibodies may be determined by any method in the art.
  • autoantibody levels are determined by the level of rheumatoid factor (RF) and/or anti-citrullinated protein antibodies (ACPA) and/or anti-nuclear antibodies (ANA).
  • methods of treating multiple sclerosis comprising administering an antibody that binds CSF1R and blocks CSF1 and IL-34 ligand binding, such as an antibody selected from huAb1 to huAb16, to a subject with multiple sclerosis.
  • Treating multiple sclerosis means reducing clinical disease scores.
  • methods of treating CD16+ disorders comprising administering an antibody that binds CSF1R, wherein the antibody blocks binding of CSF1 to CSF1R and blocks binding of IL-34 to CSF1R, such as an antibody selected from huAb1 to huAb16, to a subject with a CD16+ disorder.
  • the antibody reduces the number of CD16+ monocytes by at least 30%, and CD16 ⁇ monocytes are not reduced or are reduced by less than 20%.
  • CD16+ monocytes are reduced by at least 50%.
  • the CD16+ monocytes are CD16+ peripheral blood monocytes.
  • the CD16+ disorder is selected from rheumatoid arthritis, juvenile idiopathic arthritis, psoriasis, psoriatic arthritis, ankylosing spondylitis, Crohn's disease, and ulcerative colitis, lupus erythematosus, inflammatory bowel disease, Sjogren's syndrome, coronary artery disease, asthma, and sarcoidosis.
  • methods of decreasing CD16+ monocytes comprise administering an antibody that binds CSF1R and blocks CSF1 and IL-34 ligand binding, such as an antibody selected from huAb1 to huAb16, to a subject with increased CD16+ monocytes.
  • the subject has an autoimmune condition selected from rheumatoid arthritis and SLE.
  • administering an antibody that binds CSF1R and blocks CSF1 and IL-34 ligand binding does not decrease the number of CD16 ⁇ monocytes.
  • CD16+ monocytes are reduced to a greater extent than CD16 ⁇ monocytes are reduced when an antibody that binds CSF1R and blocks CSF1 and IL-34 ligand binding is administered to the subject.
  • CD16+ monocytes are reduced by at least 20%, at least 30%, at least 50%, at least 60%, at least 70%, at least 80%, or at least 90%.
  • CD16 ⁇ monocytes are reduced by less than 30%, less than 20%, or less than 10%.
  • the CD16+ monocytes are CD16+ peripheral blood monocytes.
  • the CD16 ⁇ monocytes are CD16 ⁇ peripheral blood monocytes.
  • anti-CSF1R antibodies may be administered in vivo by various routes, including, but not limited to, oral, intra-arterial, parenteral, intranasal, intramuscular, intracardiac, intraventricular, intratracheal, buccal, rectal, intraperitoneal, intradermal, topical, transdermal, and intrathecal, or otherwise by implantation or inhalation.
  • the subject compositions may be formulated into preparations in solid, semi-solid, liquid, or gaseous forms; including, but not limited to, tablets, capsules, powders, granules, ointments, solutions, suppositories, enemas, injections, inhalants, and aerosols.
  • a nucleic acid molecule encoding an anti-CSF1R antibody may be coated onto gold microparticles and delivered intradermally by a particle bombardment device, or “gene gun,” as described in the literature (see, e.g., Tang et al., Nature 356:152-154 (1992)).
  • a particle bombardment device or “gene gun,” as described in the literature (see, e.g., Tang et al., Nature 356:152-154 (1992)).
  • the appropriate formulation and route of administration may be selected according to the intended application.
  • compositions comprising anti-CSF1R antibodies are provided in formulations with a wide variety of pharmaceutically acceptable carriers (see, e.g., Gennaro, Remington: The Science and Practice of Pharmacy with Facts and Comparisons: Drugfacts Plus, 20th ed. (2003); Ansel et al., Pharmaceutical Dosage Forms and Drug Delivery Systems, 7 th ed., Lippencott Williams and Wilkins (2004); Kibbe et al., Handbook of Pharmaceutical Excipients, 3 rd ed., Pharmaceutical Press (2000)).
  • Various pharmaceutically acceptable carriers which include vehicles, adjuvants, and diluents, are available.
  • Non-limiting exemplary carriers include saline, buffered saline, dextrose, water, glycerol, ethanol, and combinations thereof.
  • compositions comprising anti-CSF1R antibodies may be formulated for injection, including subcutaneous administration, by dissolving, suspending, or emulsifying them in an aqueous or nonaqueous solvent, such as vegetable or other oils, synthetic aliphatic acid glycerides, esters of higher aliphatic acids, or propylene glycol; and if desired, with conventional additives such as solubilizers, isotonic agents, suspending agents, emulsifying agents, stabilizers and preservatives.
  • the compositions may be formulated for inhalation, for example, using pressurized acceptable propellants such as dichlorodifluoromethane, propane, nitrogen, and the like.
  • compositions may also be formulated, in various embodiments, into sustained release microcapsules, such as with biodegradable or non-biodegradable polymers.
  • a non-limiting exemplary biodegradable formulation includes poly lactic acid-glycolic acid polymer.
  • a non-limiting exemplary non-biodegradable formulation includes a polyglycerin fatty acid ester. Certain methods of making such formulations are described, for example, in EP 1 125 584 A1.
  • compositions contained in the unit dosage may comprise saline, sucrose, or the like; a buffer, such as phosphate, or the like; and/or be formulated within a stable and effective pH range.
  • the composition may be provided as a lyophilized powder that may be reconstituted upon addition of an appropriate liquid, for example, sterile water.
  • the composition comprises one or more substances that inhibit protein aggregation, including, but not limited to, sucrose and arginine.
  • a composition of the invention comprises heparin and/or a proteoglycan.
  • compositions are administered in an amount effective for treatment or prophylaxis of the specific indication.
  • the therapeutically effective amount is typically dependent on the weight of the subject being treated, his or her physical or health condition, the extensiveness of the condition to be treated, or the age of the subject being treated.
  • anti-CSF1R antibodies may be administered in an amount in the range of about 10 ⁇ g/kg body weight to about 100 mg/kg body weight per dose. In some embodiments, anti-CSF1R antibodies may be administered in an amount in the range of about 50 ⁇ g/kg body weight to about 5 mg/kg body weight per dose. In some embodiments, anti-CSF1R antibodies may be administered in an amount in the range of about 100 ⁇ g/kg body weight to about 10 mg/kg body weight per dose.
  • anti-CSF1R antibodies may be administered in an amount in the range of about 100 ⁇ g/kg body weight to about 20 mg/kg body weight per dose. In some embodiments, anti-CSF1R antibodies may be administered in an amount in the range of about 0.5 mg/kg body weight to about 20 mg/kg body weight per dose.
  • the anti-CSF1R antibody compositions may be administered as needed to subjects. Determination of the frequency of administration may be made by persons skilled in the art, such as an attending physician based on considerations of the condition being treated, age of the subject being treated, severity of the condition being treated, general state of health of the subject being treated and the like.
  • an effective dose of an anti-CSF1R antibody is administered to a subject one or more times.
  • an effective dose of an anti-CSF1R antibody is administered to the subject once a month, less than once a month, such as, for example, every two months or every three months.
  • an effective dose of an anti-CSF1R antibody is administered more than once a month, such as, for example, every three weeks, every two weeks or every week.
  • An effective dose of an anti-CSF1R antibody is administered to the subject at least once.
  • the effective dose of an anti-CSF1R antibody may be administered multiple times, including for periods of at least a month, at least six months, or at least a year.
  • Anti-CSF1R antibodies may be administered alone or with other modes of treatment. They may be provided before, substantially contemporaneous with, or after other modes of treatment, for example, surgery, chemotherapy, radiation therapy, or the administration of a biologic, such as another therapeutic antibody.
  • anti-CSF1R antibodies may be administered with other therapeutic agents, for example, methotrexate, anti-TNF agents such as Remicade (infliximab), Humira (adalimumab), Simponi (golimumab), and Enbrel (etanercept); glucocorticoids such as prednisone; leflunomide; azothioprine; JAK inhibitors such as CP 590690; SYK inhibitors such as R788; anti-IL-6 antibodies; anti-IL-6R antibodies such as tocilizumab; anti-CD-20 antibodies such as rituximab; anti-CD19 antibodies; anti-GM-CSF antibodies; anti-GM-CSF-
  • anti-CSF1R antibodies may be administered with other therapeutic agents, for example, hydroxychloroquine (Plaquenil); corticosteroids, such as prednisone, methylprednisone, and prednisolone; immunosuppressants, such as cyclophosphamide (Cytoxan), azathioprine (Imuran, Azasan), mycophenolate (Cellcept), leflunomide (Arava) and methotrexate (Trexall), and belimumab (Benlysta).
  • hydroxychloroquine Plaquenil
  • corticosteroids such as prednisone, methylprednisone, and prednisolone
  • immunosuppressants such as cyclophosphamide (Cytoxan), azathioprine (Imuran, Azasan), mycophenolate (Cellcept), leflunomide (Arava) and methotrexate (Tre
  • anti-CSF1R antibodies may be administered with other therapeutic agents, for example, interferon alpha; interferon beta; prednisone; anti-alpha4 integrin antibodies such as Tysabri; anti-CD20 antibodies such as Rituxan; FTY720 (Fingolimod); and Cladribine (Leustatin).
  • other therapeutic agents for example, interferon alpha; interferon beta; prednisone; anti-alpha4 integrin antibodies such as Tysabri; anti-CD20 antibodies such as Rituxan; FTY720 (Fingolimod); and Cladribine (Leustatin).
  • FIGS. 1 and 2 The sequences for each of the humanized heavy chain variable regions and humanized light chain variable regions, aligned with the sequences of the parental chimeric antibody variable regions and the sequences of the human acceptor variable framework regions are shown in FIGS. 1 (heavy chains) and 2 (light chains).
  • the changes in humanized variable region sequences relative to the human acceptor variable framework region sequences are boxed.
  • Each of the CDRs for each of the variable regions is shown in a boxed region, and labeled as “CDR” above the boxed sequences.
  • Table 5 shows the full sequences for the humanized heavy chains and humanized light chains of antibodies huAb1 to huAb16.
  • the name and SEQ ID NOs of the humanized heavy chain and humanized light chain of each of those antibodies is shown in Table 3.
  • the 16 humanized antibodies were tested for binding to human, cynomolgus monkey, and mouse CSF1R ECD, as described previously. See, e.g., PCT Publication No. WO 2011/140249.
  • the antibodies were found to bind to both human and cynomolgus monkey CSF1R ECD, but not to mouse CSF1R ECD.
  • the humanized antibodies were also found to block binding of CSF1 and IL-34 to both human and mouse CSF1R and to inhibit CSF1-induced and IL-34-induced phosphorylation of human CSF1R expressed in CHO cells. See, e.g., PCT Publication No. WO 2011/140249.
  • the k a , k d , and K D for binding to human CSF1R ECD were previously determined and are shown in Table 4. See, e.g., PCT Publication No. WO 2011/140249.
  • huAb1 was administered intravenously to cynomolgus monkeys (2 monkeys per group). Peripheral blood was drawn 14 days later, and CD16+ or CD16 ⁇ monocyte numbers were analyzed by flow cytometry. Briefly, 0.2 ml peripheral blood was labeled with 20 ⁇ l anti-CD16-PE (Becton-Dickenson) for 30 minutes at room temperature in the dark.
  • Erythrocytes were lysed by incubation with 2 ml of 1 ⁇ BD PharmLyse (Becton-Dickenson) for 20 min, and cells were washed with 1 ml FACS buffer (PBS/0.1% BSA) prior to analysis. Data was collected on an LSRII flow cytometer using the Diva software program (Becton-Dickenson), and results were analyzed using FloJo data analysis program (Tree Star).
  • FIG. 3 shows that treatment of monkeys with huAb1 resulted in a dose-dependent decrease in CD16+ but not CD16 ⁇ peripheral blood monocytes compared to untreated animals.
  • cAb1 chimeric anti-mouse CSF1R antibody
  • the antibody comprises rat variable regions and mouse constant regions.
  • rats were immunized with a mouse CSF1R-ECD-Fc fusion protein, and hybridomas secreting antibodies that blocked binding of both mouse CSF1 and mouse IL-34 to mouse CSF1R were identified by ELISA assay.
  • variable regions of one such blocking antibody were grafted onto mouse IgG constant regions using standard molecular biologic techniques (Sambrook and Russell, Molecular Cloning: A Laboratory Manual, Third Edition , CSH Press, Cold Spring Harbor, N.Y., 2001). Recombinant chimeric antibody cAb1 was then expressed in CHO cells using standard techniques (Sambrook and Russell, Ibid.).
  • Binding of cAb1 to mouse CSF1R was determined as follows. Ninety-six well clear-bottom ELISA plates were coated overnight with 1 ⁇ g/ml recombinant mouse CSF1R ECD-Fc Chimera (R&D Systems) in PBS. The next morning, wells were washed four times with 0.05% Tween20 in PBS (PBST) and blocked with Blocker-Blotto (Pierce). Fifty ⁇ l of 0.5 ⁇ serial dilutions of cAb1, starting with a concentration of 2.6 ⁇ g/ml, diluted 1:1 in Blocker-Blotto were added to the CSF1R-coated wells.
  • cAb1 was tested for the ability to block ligand-induced proliferation of the factor dependent mouse cell line mNFS60 as follows. mNFS60 cells were stimulated with 10 ng/ml recombinant mouse CSF1 or 100 ng/ml recombinant mouse IL-34 (both from R&D Systems) in the presence or absence of serial dilutions of cAb1. After incubation at 37° C. for 48 hours, relative cellular ATP content of each individual culture was assessed using Cell Titer Glo reagent (Promega) according to the manufacturer's instructions. In this assay, relative cellular ATP content is directly proportional to the number of viable cells in culture, and thus reflects the mNFS60 cell proliferation response.
  • Example 5 cAb1 Suppresses Clinical Disease Scores in a Mouse Model of Rheumatoid Arthritis
  • FIG. 6 shows the results of that experiment.
  • cAb1 suppressed Clinical Disease Scores in the Collagen Induced Arthritis model of rheumatoid arthritis.
  • TRAP5b Tartrate Resistant Acid Phosphatase 5b
  • TRAP5b levels can therefore be used as a marker for bone resorption (i.e., bone loss).
  • TRAP5b Stemcells 5b
  • TRAP5b Stemcells 5b
  • Plasma Resistant Acid Phosphatase 5b Plasma Resistant Acid Phosphatase 5b
  • TRAP5b is a marker for bone turnover.
  • FIG. 7 shows the results of that experiment.
  • cAb1 suppressed bone loss in the collagen induced arthritis mode of rheumatoid arthritis, as measured by the suppression of the TRAP5b bone turnover marker.
  • Example 7 cAb1 Suppresses Inflammation, Cartilage Damage, Pannus Formation, and Bone Destruction in a Mouse Model of Rheumatoid Arthritis
  • mice Arthritis was induced in mice, and mice were treated with cAb1 as described in Example 5.
  • cAb1 was treated with cAb1 as described in Example 5.
  • paws and knees were collected and placed into neutral buffered formalin (NBF; available from Sigma-Aldrich, cat #HT-501128) overnight and then moved to 70% ethanol for histopathology and immunohistochemistry.
  • NBF neutral buffered formalin
  • FIG. 8 shows the results of that experiment.
  • cAb1 suppressed inflammation, cartilage damage, pannus formation, and bone destruction in the Collagen Induced Arthritis model of rheumatoid arthritis.
  • Example 8 cAb1 Suppresses Paw and Knee Joint Macrophage Numbers in a Mouse Model of Rheumatoid Arthritis
  • Example 9 cAb1 Suppresses Autoantibody Formation in a Mouse Model of Rheumatoid Arthritis
  • cAb1 suppressed the formation of anti-mouse collagen II autoantibodies in the Collagen Induced Arthritis mode of rheumatoid arthritis.
  • an antibody that binds CSF1R and blocks ligand binding such as huAb1 may reduce an important trigger of joint inflammation, namely autoantibodies.
  • autoantibodies such as RF and ACPA may, in some embodiments, be used to monitor drug effect.
  • TRAP5b Stemrate Resistant Acid Phosphatase 5b
  • Plasma levels of TRAP5b were measured using a commercial solid phase immunofixed enzyme activity assay for the determination of osteoclast-derived TRAP5b in mouse serum (Immunodiagnostics Systems) according to the manufacturer's instructions.
  • TRAP5b is a marker for bone turnover.
  • Example 11 cAb1 Suppresses Pannus Formation and Bone Destruction in a Mouse Model of Established Rheumatoid Arthritis
  • mice Arthritis was induced in mice, and mice were treated with cAb1 as described in Example 10.
  • cAb1 was treated with cAb1 as described in Example 10.
  • paws and knees were collected and placed into neutral buffered formalin (NBF) overnight and then moved to 70% ethanol for histopathology and immunohistochemistry.
  • Example 12 cAb1 Suppresses Glomerulonephritis, Interstitial Nephritis, and Perivascular Infiltrates in a Mouse Model of Systemic Lupus Erythematosus
  • Lupus nephritis A subset of lupus patients develop lupus nephritis, which involves inflammation in one or more structures in the kidney and can lead to kidney failure.
  • Lupus nephritis may detected in patients and severity of disease assessed, for example, by measuring proteinuria, or protein in the urine, and/or determining the glomerular filtration rate, which is a measurement of how much fluid is filtered through the kidneys per unit time. Lupus nephritis may also be detected histologically through examination of kidney biopsies, or through imaging techniques such as ultrasonography (Hahn et al., Arthr. Care Res., 2012, 64: 797-808).
  • mice spontaneously develops lupus-like symptoms, including glomerular, tubulointerstitial, and perivascular kidney disease; lymphadenopathy; splenomegaly; circulating autoantibodies; and skin lesions.
  • Female MRL/MpJ-Fas lpr /J mice were dosed intraperitoneally every day for 10 weeks from the age of 10 weeks to the age of 20 weeks with vehicle or with 50 mg/kg cAb1. At the end of the study (mouse age 20 weeks), kidneys were collected, weighed, and placed in 10% neutral buffered formalin (NBF) for Histopathologic evaluation. Kidneys were scored according to the following system:
  • Example 13 cAb1 Suppresses Skin Lesions in a Mouse Model of Systemic Lupus Erythematosus
  • mice Female MRL/MpJ-Fas lpr /J mice were dosed with cAb1 described in Example 12. Mice were scored for the presence and severity of skin lesions from the age of 10 weeks through the age of 20 weeks. Skin lesions were scored as follows:
  • Example 14 cAb1 Suppresses Clinical Disease Scores in a Mouse Model of Multiple Sclerosis
  • EAE Experimental autoimmune encephalitis
  • Table 5 provides certain sequences discussed herein. All polypeptide and antibody sequences are shown without leader sequences, unless otherwise indicated.

Abstract

Methods of treating conditions with antibodies that bind colony stimulating factor 1 receptor (CSF1R) are provided. Such methods include, but are not limited to, methods of treating rheumatoid arthritis and associated conditions, methods of treating systemic lupus erythematosus and associated conditions, and methods of treating multiple sclerosis.

Description

  • This application is a divisional of U.S. application Ser. No. 15/152,161, filed May 11, 2016, which is a divisional of U.S. application Ser. No. 13/891,455, filed May 10, 2013, now abandoned, which claims the benefit of U.S. Provisional Application No. 61/645,901, filed May 11, 2012, which is incorporated by reference herein in its entirety for any purpose.
  • TECHNICAL FIELD
  • Methods of treating conditions with antibodies that bind colony stimulating factor 1 receptor (CSF1R) are provided. Such methods include, but are not limited to, methods of treating rheumatoid arthritis, multiple sclerosis, and systemic lupus erythematosus.
  • BACKGROUND
  • Colony stimulating factor 1 receptor (referred to herein as CSF1R; also referred to in the art as FMS, FIM2, C-FMS, M-CSF receptor, and CD115) is a single-pass transmembrane receptor with an N-terminal extracellular domain (ECD) and a C-terminal intracellular domain with tyrosine kinase activity. Ligand binding of CSF1 or the interleukin 34 ligand (referred to herein as IL-34; Lin et al., Science 320: 807-11 (2008)) to CSF1R leads to receptor dimerization, upregulation of CSF1R protein tyrosine kinase activity, phosphorylation of CSF1R tyrosine residues, and downstream signaling events. Both CSF1 and IL-34 stimulate monocyte survival, proliferation, and differentiation into macrophages, as well as other monocytic cell lineages such as osteoclasts, dendritic cells, and microglia.
  • Many tumor cells have been found to secrete CSF1, which activates monocyte/macrophage cells through CSF1R. The level of CSF1 in tumors has been shown to correlate with the level of tumor-associated macrophages (TAMs) in the tumor. Higher levels of TAMs have been found to correlate with poorer patient prognoses. In addition, CSF1 has been found to promote tumor growth and progression to metastasis in, for example, human breast cancer xenografts in mice. See, e.g., Paulus et al., Cancer Res. 66: 4349-56 (2006). Further, CSF1R plays a role in osteolytic bone destruction in bone metastasis. See, e.g., Ohno et al., Mol. Cancer Ther. 5: 2634-43 (2006).
  • CSF1 and its receptor have also been found to be involved in various inflammatory and autoimmune diseases. See, e.g., Hamilton, Nat. Rev. 8: 533-44 (2008). For example, synovial endothelial cells from joints afflicted with rheumatoid arthritis have been found to produce CSF1, suggesting a role for CSF1 and its receptor in the disease. Blocking CSF1R activity with an antibody results in positive clinical effects in mouse models of arthritis, including a reduction in the destruction of bone and cartilage and a reduction in macrophage numbers. See, e.g., Kitaura et al., J. Clin. Invest. 115: 3418-3427 (2005).
  • Mature differentiated myeloid lineage cells such as macrophages, microglial cells, and osteoclasts contribute to pathology of various diseases such as rheumatoid arthritis, multiple sclerosis and diseases of bone loss. Differentiated myeloid lineage cells are derived from peripheral blood monocyte intermediates. CSF1R stimulation contributes to development of monocytes from bone marrow precursors, to monocyte proliferation and survival, and to differentiation of peripheral blood monocytes into differentiated myeloid lineage cells such as macrophages, microglial cells, and osteoclasts. CSF1R stimulation thus contributes to proliferation, survival, activation, and maturation of differentiated myeloid lineage cells, and in the pathologic setting, CSF1R stimulation contributes to the ability of differentiated myeloid lineage cells to mediate disease pathology.
  • SUMMARY
  • In some embodiments, a method of treating a condition associated with rheumatoid arthritis is provided. In some embodiments, the method comprises administering an antibody that binds colony stimulating factor 1 receptor (CSF1R) to a subject with rheumatoid arthritis, wherein the antibody blocks binding of colony stimulating factor 1 (CSF1) to CSF1R and blocks binding of IL-34 to CSF1R. In some embodiments, treating a condition associated with rheumatoid arthritis comprises at least one effect selected from reducing inflammation, reducing pannus formation, reducing cartilage damage, reducing bone resorption, reducing the number of macrophages in at least one joint affected by rheumatoid arthritis, reducing autoantibody levels, and reducing bone loss. In some embodiments, treating a condition associated with rheumatoid arthritis comprises reducing inflammation. In some embodiments, a method of reducing inflammation associated with rheumatoid arthritis comprises determining an erythrocyte sedimentation rate, wherein a reduced sedimentation rate indicates reduced inflammation.
  • In some embodiments, a method of treating a condition associated with rheumatoid arthritis comprises at least one effect selected from reducing pannus formation, reducing bone resorption, and reducing bone loss. In some embodiments, treating a condition associated with rheumatoid arthritis comprises reducing bone resorption. In some such embodiments, the level of at least one marker of bone resorption is reduced. In some embodiments, the bone resorption marker is selected from tartrate resistant acid phosphatase 5b (TRAP5b), urinary total pyridinoline, Urinary total deoxypyridinoline, urinary free pyridinoline, serum collagen type I cross-linked N-telopeptide, urinary collagen type I cross-linked N-telopeptide, and serum carboxyterminal telopeptide of type I collagen.
  • In some embodiments, treating a condition associated with rheumatoid arthritis comprises at least one effect selected from reducing pannus formation, and reducing bone loss. In some embodiments, the at least one effect is measured using an imaging technique. In some such embodiments, the imaging technique comprises a method selected from x-ray imaging, magnetic resonance imaging, computed tomography (CT) scan, arthroscopy, scintigraphy, ultrasonography, bone densitometry, single photon absorptiometry (SPA), dual photon absorptiometry (DPA), single energy x-ray absorptiometry (SXA), dual energy x-ray absorptiometry (DXA), scintigraphy, ultrasonography, duplex ultrasonography, and power doppler imaging.
  • In some embodiments of a method of treating a condition associated with rheumatoid arthritis, the number of CD16+ monocytes is reduced by at least 30%. In some embodiments of the method, the number of CD16− monocytes is not reduced or is reduced by less than 20%. In some embodiments, the CD16+ monocytes are CD16+ peripheral blood monocytes.
  • In some embodiments, a method of treating rheumatoid arthritis is provided, comprising administering an antibody that binds CSF1R to a subject with rheumatoid arthritis, wherein the antibody blocks binding of CSF1 to CSF1R and blocks binding of IL-34 to CSF1R, and wherein the antibody reduces the number of CD16+ monocytes in the subject by at least 30%, and wherein CD16− monocytes are not reduced or are reduced by less than 20%. In some embodiments, the CD16+ monocytes are CD16+ peripheral blood monocytes.
  • In some embodiments of a method of treating rheumatoid arthritis, the method further comprises administering at least one additional therapeutic agent selected from methotrexate, an anti-TNF agent, a glucocorticoid, cyclosporine, leflunomide, azathioprine, a JAK inhibitor, a SYK inhibitor, an anti-IL-6 antibody, an anti-IL-6R antibody, an anti-CD-20 antibody, an anti-CD19 antibody, an anti-GM-CSF antibody, an IL-1 receptor antagonist, a CTLA-4 antagonist, and an anti-GM-CSF-R antibody.
  • In some embodiments, methods of treating skin lesions associated with lupus are provided. In some embodiments, the method comprises administering an antibody that binds CSF1R to a subject with lupus, wherein the antibody blocks binding of CSF1 to CSF1R and blocks binding of IL-34 to CSF1R. In some embodiments, treating skin lesions associated with lupus comprises at least one effect selected from reducing the number of skin lesions, reducing the rate of formation of skin lesions, and reducing the severity of skin lesions.
  • In some embodiments, methods of treating lupus nephritis are provided. In some embodiments, the method comprises administering an antibody that binds CSF1R to a subject with lupus nephritis, wherein the antibody blocks binding of CSF1 to CSF1R and blocks binding of IL-34 to CSF1R. In some embodiments, kidney function is improved in the subject. In some embodiments, proteinuria is reduced in the subject. In some embodiments, glomerular filtration rate is improved in the subject.
  • In some embodiments, methods of treating lupus are provided. In some embodiments, a method comprises administering an antibody that binds CSF1R to a subject with lupus, wherein the antibody blocks binding of CSF1 to CSF1R and blocks binding of IL-34 to CSF1R. In some embodiments, the antibody reduces the number of CD16+ monocytes in the subject by at least 30%, and CD16− monocytes are not reduced or are reduced by less than 20%. In some embodiments, CD16+ monocytes are reduced by at least 50%. In some embodiments, the CD16+ monocytes are CD16+ peripheral blood monocytes.
  • In some embodiments, the method of treating lupus, lupus nephritis, or skin lesions associated with lupus further comprises administering at least one additional therapeutic agent selected from hydroxychloroquine (Plaquenil), a corticosteroids, cyclophosphamide (Cytoxan), azathioprine (Imuran, Azasan), mycophenolate (Cellcept), leflunomide (Arava) and methotrexate (Trexall), and belimumab (Benlysta).
  • In some embodiments, methods of treating inflammatory conditions are provided. In some such embodiments, a method comprises administering an antibody that binds CSF1R to a subject with an inflammatory condition, wherein the antibody blocks binding of CSF1 to CSF1R and blocks binding of IL-34 to CSF1R. In some embodiments, the antibody reduces the number of CD16+ monocytes by at least 30%, and CD16-monocytes are not reduced or are reduced by less than 20%. In some embodiments, CD16+ monocytes are reduced by at least 50%. In some embodiments, the CD16+ monocytes are CD16+ peripheral blood monocytes.
  • In some embodiments, methods of treating CD16+ disorders are provided. In some embodiments, a method comprises administering an antibody that binds CSF1R to a subject with a CD16+ disorder, wherein the antibody blocks binding of CSF1 to CSF1R and blocks binding of IL-34 to CSF1R. In some embodiments, the antibody reduces the number of CD16+ monocytes by at least 30%, and CD16− monocytes are not reduced or are reduced by less than 20%. In some embodiments, CD16+ monocytes are reduced by at least 50%. In some embodiments, the CD16+ monocytes are CD16+ peripheral blood monocytes. In some embodiments, the CD16+ disorder is selected from rheumatoid arthritis, juvenile idiopathic arthritis, psoriasis, psoriatic arthritis, ankylosing spondylitis, Crohn's disease, and ulcerative colitis, lupus erythematosus, inflammatory bowel disease, Sjogren's syndrome, coronary artery disease, asthma, and sarcoidosis.
  • In some embodiments, a method of treating discussed herein comprises treating a condition that does not respond to methotrexate.
  • In some embodiments, methods of reducing the number of CD16+ monocytes are provided. In some embodiments, a method comprises administering an antibody that binds CSF1R to a subject, wherein the antibody blocks binding of CSF1 to CSF1R and blocks binding of IL-34 to CSF1R. In some embodiments, the antibody reduces the number of CD16+ monocytes by at least 30%, and CD16− monocytes are not reduced or are reduced by less than 20%. In some embodiments, CD16+ monocytes are reduced by at least 50%. In some embodiments, the CD16+ monocytes are CD16+ peripheral blood monocytes.
  • In some embodiments, methods of slowing the progression of a kidney condition associated with lupus are provided. In some embodiments, the method comprises administering an antibody that binds CSF1R to a subject, wherein the antibody blocks binding of CSF1 to CSF1R and blocks binding of IL-34 to CSF1R. In some embodiments, proteinuria does not increase in the subject or does not increase in the subject at the same rate as in subjects not administered the antibody. In some embodiments, glomerular filtration rate does not decrease in the subject or does not decrease in the subject at the same rate as in a subjects not administered the antibody.
  • In some embodiments, methods of slowing the progression of pannus formation in a subject with rheumatoid arthritis are provided. In some such embodiments, a method comprises administering an antibody that binds CSF1R to a subject with rheumatoid arthritis, wherein the antibody blocks binding of CSF1 to CSF1R and blocks binding of IL-34 to CSF1R.
  • In some embodiments, methods of slowing the progression of bone loss in a subject with rheumatoid arthritis are provided. In some embodiments, a method comprises administering an antibody that binds colony stimulating factor 1 receptor (CSF1R) to a subject with rheumatoid arthritis, wherein the antibody blocks binding of colony stimulating factor 1 (CSF1) to CSF1R and blocks binding of IL-34 to CSF1R.
  • In some embodiments of the methods described herein, the antibody heavy chain and/or the antibody light chain have the following structure.
  • In some embodiments, the heavy chain comprises a sequence that is at least 90%, at least 95%, at least 97%, at least 99%, or 100% identical to a sequence selected from SEQ ID NOs: 9, 11, 13, and 39 to 45. In some embodiments, the light chain comprises a sequence that is at least 90%, at least 95%, at least 97%, at least 99%, or 100% identical to a sequence selected from SEQ ID NOs: 10, 12, 14, and 46 to 52. In some embodiments, the heavy chain comprises a sequence that is at least 90%, at least 95%, at least 97%, at least 99%, or 100% identical to a sequence selected from SEQ ID NOs: 9, 11, 13, and 39 to 45, and the light chain comprises a sequence that is at least 90%, at least 95%, at least 97%, at least 99%, or 100% identical to a sequence selected from SEQ ID NOs: 10, 12, 14, and 46 to 52.
  • In some embodiments, the HC CDR1, HC CDR2, and HC CDR3 comprise a set of sequences selected from: (a) SEQ ID NOs: 15, 16, and 17; (b) SEQ ID NOs: 21, 22, and 23; and (c) SEQ ID NOs: 27, 28, and 29. In some embodiments, the LC CDR1, LC CDR2, and LC CDR3 comprise a set of sequences selected from: (a) SEQ ID NOs: 18, 19, and 20; (b) SEQ ID NOs: 24, 25, and 26; and (c) SEQ ID NOs: 30, 31, and 32.
  • In some embodiments, the heavy chain comprises an HC CDR1, HC CDR2, and HC CDR3, wherein the HC CDR1, HC CDR2, and HC CDR3 comprise a set of sequences selected from: (a) SEQ ID NOs: 15, 16, and 17; (b) SEQ ID NOs: 21, 22, and 23; and (c) SEQ ID NOs: 27, 28, and 29; and the light chain comprises an LC CDR1, LC CDR2, and LC CDR3, wherein the LC CDR1, LC CDR2, and LC CDR3 comprise a set of sequences selected from: (a) SEQ ID NOs: 18, 19, and 20; (b) SEQ ID NOs: 24, 25, and 26; and (c) SEQ ID NOs: 30, 31, and 32.
  • In some embodiments, an isolated antibody is provided, wherein the antibody comprises a heavy chain and a light chain, wherein the antibody comprises: (a) a heavy chain comprising a sequence that is at least 95%, at least 97%, at least 99%, or 100% identical to SEQ ID NO: 9 and a light chain comprising a sequence that is at least 95%, at least 97%, at least 99%, or 100% identical to SEQ ID NO: 10; (b) a heavy chain comprising a sequence that is at least 95%, at least 97%, at least 99%, or 100% identical to SEQ ID NO: 11 and a light chain comprising a sequence that is at least 95%, at least 97%, at least 99%, or 100% identical to SEQ ID NO: 12; (c) a heavy chain comprising a sequence that is at least 95%, at least 97%, at least 99%, or 100% identical to SEQ ID NO: 13 and a light chain comprising a sequence that is at least 95%, at least 97%, at least 99%, or 100% identical to SEQ ID NO: 14; (d) a heavy chain comprising a sequence that is at least 95%, at least 97%, at least 99%, or 100% identical to SEQ ID NO: 39 and a light chain comprising a sequence that is at least 95%, at least 97%, at least 99%, or 100% identical to SEQ ID NO: 46; (e) a heavy chain comprising a sequence that is at least 95%, at least 97%, at least 99%, or 100% identical to SEQ ID NO: 40 and a light chain comprising a sequence that is at least 95%, at least 97%, at least 99%, or 100% identical to SEQ ID NO: 46; (f) a heavy chain comprising a sequence that is at least 95%, at least 97%, at least 99%, or 100% identical to SEQ ID NO: 41 and a light chain comprising a sequence that is at least 95%, at least 97%, at least 99%, or 100% identical to SEQ ID NO: 46; (g) a heavy chain comprising a sequence that is at least 95%, at least 97%, at least 99%, or 100% identical to SEQ ID NO: 39 and a light chain comprising a sequence that is at least 95%, at least 97%, at least 99%, or 100% identical to SEQ ID NO: 47; (h) a heavy chain comprising a sequence that is at least 95%, at least 97%, at least 99%, or 100% identical to SEQ ID NO: 40 and a light chain comprising a sequence that is at least 95%, at least 97%, at least 99%, or 100% identical to SEQ ID NO: 47; (i) a heavy chain comprising a sequence that is at least 95%, at least 97%, at least 99%, or 100% identical to SEQ ID NO: 41 and a light chain comprising a sequence that is at least 95%, at least 97%, at least 99%, or 100% identical to SEQ ID NO: 47; and (j) a heavy chain comprising a sequence that is at least 95%, at least 97%, at least 99%, or 100% identical to SEQ ID NO: 42 and a light chain comprising a sequence that is at least 95%, at least 97%, at least 99%, or 100% identical to SEQ ID NO: 48; (k) a heavy chain comprising a sequence that is at least 95%, at least 97%, at least 99%, or 100% identical to SEQ ID NO: 42 and a light chain comprising a sequence that is at least 95%, at least 97%, at least 99%, or 100% identical to SEQ ID NO: 49; (1) a heavy chain comprising a sequence that is at least 95%, at least 97%, at least 99%, or 100% identical to SEQ ID NO: 42 and a light chain comprising a sequence that is at least 95%, at least 97%, at least 99%, or 100% identical to SEQ ID NO: 50; (m) a heavy chain comprising a sequence that is at least 95%, at least 97%, at least 99%, or 100% identical to SEQ ID NO: 43 and a light chain comprising a sequence that is at least 95%, at least 97%, at least 99%, or 100% identical to SEQ ID NO: 48; (n) a heavy chain comprising a sequence that is at least 95%, at least 97%, at least 99%, or 100% identical to SEQ ID NO: 43 and a light chain comprising a sequence that is at least 95%, at least 97%, at least 99%, or 100% identical to SEQ ID NO: 49; (o) a heavy chain comprising a sequence that is at least 95%, at least 97%, at least 99%, or 100% identical to SEQ ID NO: 43 and a light chain comprising a sequence that is at least 95%, at least 97%, at least 99%, or 100% identical to SEQ ID NO: 50; (p) a heavy chain comprising a sequence that is at least 95%, at least 97%, at least 99%, or 100% identical to SEQ ID NO: 44 and a light chain comprising a sequence that is at least 95%, at least 97%, at least 99%, or 100% identical to SEQ ID NO: 51; (q) a heavy chain comprising a sequence that is at least 95%, at least 97%, at least 99%, or 100% identical to SEQ ID NO: 44 and a light chain comprising a sequence that is at least 95%, at least 97%, at least 99%, or 100% identical to SEQ ID NO: 52; (r) a heavy chain comprising a sequence that is at least 95%, at least 97%, at least 99%, or 100% identical to SEQ ID NO: 45 and a light chain comprising a sequence that is at least 95%, at least 97%, at least 99%, or 100% identical to SEQ ID NO: 51; or (s) a heavy chain comprising a sequence that is at least 95%, at least 97%, at least 99%, or 100% identical to SEQ ID NO: 45 and a light chain comprising a sequence that is at least 95%, at least 97%, at least 99%, or 100% identical to SEQ ID NO: 52.
  • In some embodiments, an antibody is provided, wherein the antibody comprises a heavy chain and a light chain, wherein the antibody comprises: (a) a heavy chain comprising a heavy chain (HC) CDR1 having the sequence of SEQ ID NO: 15, an HC CDR2 having the sequence of SEQ ID NO: 16, and an HC CDR3 having the sequence of SEQ ID NO: 17, and a light chain comprising a light chain (LC) CDR1 having the sequence of SEQ ID NO: 18, a LC CDR2 having the sequence of SEQ ID NO: 19, and a LC CDR3 having the sequence of SEQ ID NO: 20; (b) a heavy chain comprising a heavy chain (HC) CDR1 having the sequence of SEQ ID NO: 21, an HC CDR2 having the sequence of SEQ ID NO: 22, and an HC CDR3 having the sequence of SEQ ID NO: 23, and a light chain comprising a light chain (LC) CDR1 having the sequence of SEQ ID NO: 24, a LC CDR2 having the sequence of SEQ ID NO: 25, and a LC CDR3 having the sequence of SEQ ID NO: 26; or (c) a heavy chain comprising a heavy chain (HC) CDR1 having the sequence of SEQ ID NO: 27, an HC CDR2 having the sequence of SEQ ID NO: 28, and an HC CDR3 having the sequence of SEQ ID NO: 29, and a light chain comprising a light chain (LC) CDR1 having the sequence of SEQ ID NO: 30, a LC CDR2 having the sequence of SEQ ID NO: 31, and a LC CDR3 having the sequence of SEQ ID NO: 32.
  • In some embodiments, an antibody comprises a heavy chain and a light chain, wherein the antibody comprises: (a) a heavy chain comprising a sequence of SEQ ID NO: 53 and a light chain comprising a sequence of SEQ ID NO: 60; (b) a heavy chain comprising a sequence of SEQ ID NO: 53 and a light chain comprising a sequence of SEQ ID NO: 61; or (c) a heavy chain comprising a sequence of SEQ ID NO: 58 and a light chain comprising a sequence of SEQ ID NO: 65. In some embodiments, an antibody comprises a heavy chain and a light chain, wherein the antibody comprises: (a) a heavy chain consisting of the sequence of SEQ ID NO: 53 and a light chain consisting of the sequence of SEQ ID NO: 60; (b) a heavy chain consisting of the sequence of SEQ ID NO: 53 and a light chain consisting of the sequence of SEQ ID NO: 61; or (c) a heavy chain consisting of the sequence of SEQ ID NO: 58 and a light chain consisting of the sequence of SEQ ID NO: 65.
  • In some embodiments, an antibody is a humanized antibody. In some embodiments, an antibody is selected from a Fab, an Fv, an scFv, a Fab′, and a (Fab′)2. In some embodiments, an antibody is a chimeric antibody. In some embodiments, an antibody is selected from an IgA, an IgG, and an IgD. In some embodiments, an antibody is an IgG. In some embodiments, an antibody is an IgG4. In some embodiments, an antibody is an IgG4 comprising an S241P mutation in at least one IgG4 heavy chain constant region.
  • In some embodiments, an antibody binds to human CSF1R and/or binds to cynomolgus CSF1R. In some embodiments, an antibody blocks ligand binding to CSF1R. In some embodiments, an antibody blocks binding of CSF1 and/or IL-34 to CSF1R. In some embodiments, an antibody blocks binding of both CSF1 and IL-34 to CSF1R. In some embodiments, an antibody inhibits ligand-induced CSF1R phosphorylation. In some embodiments, an antibody inhibits CSF1- and/or IL-34-induced CSF1R phosphorylation. In some embodiments, an antibody binds to human CSF1R with an affinity (KD) of less than 1 nM. In some embodiments, antibody inhibits monocyte proliferation and/or survival responses in the presence of CSF1 or IL-34.
  • In some embodiments, a pharmaceutical composition comprising an antibody that binds CSF1R is provided.
  • In some embodiments, compositions comprising antibodies that bind CSF1R are provided for use in methods of treatment of human or animals. In some embodiments, antibodies that bind CSF1R and compositions comprising antibodies that bind CSF1R are provided for use in a method of treating conditions associated with rheumatoid arthritis in a human or animal. In some embodiments, antibodies that bind CSF1R and compositions comprising antibodies that bind CSF1R are provided for use in a method of treating multiple sclerosis in a human or animal. In some embodiments, antibodies that bind CSF1R and compositions comprising antibodies that bind CSF1R are provided for use in a method of treating conditions associated with systemic lupus erythematosus are provided.
  • BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1A-C shows an alignment of the humanized heavy chain variable regions for each of humanized antibodies huAb1 to huAb16, as discussed in Example 1. Boxed residues are amino acids in the human acceptor sequence that were changed back to the corresponding mouse residue.
  • FIG. 2A-C shows an alignment of the humanized light chain variable regions for each of humanized antibodies huAb1 to huAb16, as discussed in Example 1 Boxed amino acids are residues in the human acceptor sequence that were changed back to the corresponding mouse residue.
  • FIG. 3 shows reduction in CD16+ monocytes in cynomolgus monkeys administered huAb1, as described in Example 2.
  • FIG. 4 shows dose-dependent binding of surrogate antibody cAb1 to mouse CSF1R, as described in Example 3.
  • FIG. 5 shows dose-dependent inhibition of CSF1- and IL-34-induced proliferation in mNFS60 cells, as described in Example 4.
  • FIG. 6 shows suppression of clinical disease scores in a mouse model of rheumatoid arthritis following administration of cAb1, as described in Example 5.
  • FIG. 7 shows suppression of bone loss, indicated by plasma TRAP5b levels, in a mouse model of rheumatoid arthritis following administration of cAb1, as described in Example 6.
  • FIG. 8 shows suppression of inflammation, pannus formation, cartilage damage, and bone damage in a mouse model of rheumatoid arthritis following administration of cAb1, as described in Example 7.
  • FIG. 9 shows suppression of macrophage numbers in paw joints and knee joints in a mouse model of rheumatoid arthritis following administration of cAb1, as described in Example 8.
  • FIG. 10 shows suppression of autoantibody formation in a mouse model of rheumatoid arthritis following administration of cAb1, as described in Example 9.
  • FIG. 11 shows suppression of bone loss in a mouse model of established rheumatoid arthritis following administration of cAb1, as described in Example 10.
  • FIG. 12 shows suppression of pannus formation and bone destruction in a mouse model of established rheumatoid arthritis following administration of cAb1, as described in Example 11.
  • FIG. 13 shows suppression of glomerulonephritis, interstitial nephritis, and perivascular infiltrates in a mouse model of systemic lupus erythematosus following administration of cAb1, as described in Example 12.
  • FIG. 14 shows suppression of skin lesions in a mouse model of systemic lupus erythematosus following administration of cAb1, as described in Example 13.
  • FIG. 15 shows suppression of clinical disease scores in a mouse model of multiple sclerosis following administration of cAb1, as described in Example 14.
  • DETAILED DESCRIPTION
  • Methods of treating conditions comprising administering antibodies that bind CSF1R and block CSF1 and IL-34 ligand binding are provided. As discussed herein, antibodies that bind CSF1R and block CSF1 and IL-34 ligand binding are effective for treating rheumatoid arthritis, systemic lupus erythematosus, and multiple sclerosis. The present inventors found that administering such antibodies to cynomolgus monkeys reduced the number of CD16+ peripheral blood monocytes in cynomolgus monkeys, but does not affect CD16− peripheral blood monocyte numbers CD16+ peripheral blood monocytes are highly inflammatory monocytes. See, e.g., Ziegler-Heitbrock, J. Leukocyte Biol., 2007, 81: 584-592. Further, administering such antibodies in a mouse model of rheumatoid arthritis suppressed clinical disease scores, including suppression of erythema and swelling; suppressed bone loss as measured by a reduction in tartrate resistant acid phosphatase 5b (TRAP5b) levels; and suppressed inflammation, cartilage destruction, pannus formation, and bone destruction. Notably, when the antibodies were administered after the appearance of clinical manifestations of rheumatoid arthritis, bone loss (as measured by a reduction in TRAP5b levels), pannus formation, and bone destruction were reduced. Administering such antibodies in a mouse model of rheumatoid arthritis also reduced joint macrophage numbers and autoantibody formation.
  • Administering antibodies that bind CSF1R and block CSF1 and IL-34 ligand binding in a systemic lupus erythematosus mouse model suppressed glomerulonephritis, interstitial nephritis, and perivascular infiltrates. Further, administering such antibodies in a systemic lupus erythematosus mouse model suppressed skin lesions. Finally, administering the antibodies in a mouse model of multiple sclerosis suppressed clinical disease scores of MS.
  • The section headings used herein are for organizational purposes only and are not to be construed as limiting the subject matter described. All references cited herein, including patent applications and publications, are incorporated by reference in their entirety.
  • Definitions
  • Unless otherwise defined, scientific and technical terms used in connection with the present invention shall have the meanings that are commonly understood by those of ordinary skill in the art. Further, unless otherwise required by context, singular terms shall include pluralities and plural terms shall include the singular.
  • Exemplary techniques used in connection with recombinant DNA, oligonucleotide synthesis, tissue culture and transformation (e.g., electroporation, lipofection), enzymatic reactions, and purification techniques are known in the art. Many such techniques and procedures are described, e.g., in Sambrook et al. Molecular Cloning: A Laboratory Manual (2nd ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (1989)), among other places. In addition, exemplary techniques for chemical syntheses, chemical analyses, pharmaceutical preparation, formulation, and delivery, and treatment of patients are also known in the art.
  • In this application, the use of “or” means “and/or” unless stated otherwise. In the context of a multiple dependent claim, the use of “or” refers back to more than one preceding independent or dependent claim in the alternative only. Also, terms such as “element” or “component” encompass both elements and components comprising one unit and elements and components that comprise more than one subunit unless specifically stated otherwise.
  • As utilized in accordance with the present disclosure, the following terms, unless otherwise indicated, shall be understood to have the following meanings:
  • The terms “nucleic acid molecule” and “polynucleotide” may be used interchangeably, and refer to a polymer of nucleotides. Such polymers of nucleotides may contain natural and/or non-natural nucleotides, and include, but are not limited to, DNA, RNA, and PNA. “Nucleic acid sequence” refers to the linear sequence of nucleotides that comprise the nucleic acid molecule or polynucleotide.
  • The terms “polypeptide” and “protein” are used interchangeably to refer to a polymer of amino acid residues, and are not limited to a minimum length. Such polymers of amino acid residues may contain natural or non-natural amino acid residues, and include, but are not limited to, peptides, oligopeptides, dimers, trimers, and multimers of amino acid residues. Both full-length proteins and fragments thereof are encompassed by the definition. The terms also include post-expression modifications of the polypeptide, for example, glycosylation, sialylation, acetylation, phosphorylation, and the like. Furthermore, for purposes of the present invention, a “polypeptide” refers to a protein which includes modifications, such as deletions, additions, and substitutions (generally conservative in nature), to the native sequence, as long as the protein maintains the desired activity. These modifications may be deliberate, as through site-directed mutagenesis, or may be accidental, such as through mutations of hosts which produce the proteins or errors due to PCR amplification.
  • The term “CSF1R” refers herein to the full-length CSF1R, which includes the N-terminal ECD, the transmembrane domain, and the intracellular tyrosine kinase domain, with or without an N-terminal leader sequence. In some embodiments, the CSF1R is a human CSF1R having the amino acid sequence of SEQ ID NO: 1 or SEQ ID NO: 2.
  • The term “CSF1R extracellular domain” (“CSF1R ECD”) as used herein refers to a CSF1R polypeptide that lacks the intracellular and transmembrane domains. CSF1R ECDs include the full-length CSF1R ECD and CSF1R ECD fragments that are capable of binding CSF1R and/or IL-34. The human full-length CSF1R ECD is defined herein as comprising either amino acids 1 to 512 (i.e., including the leader sequence) or amino acids 20 to 512 (i.e., lacking the leader sequence) of SEQ ID NO: 2. In some embodiments, a human CSF1R ECD fragment comprises amino acids 20 to 506 of SEQ ID NO: 2 (see SEQ ID NO:5). In some embodiments, a human CSF1R fragment ends at amino acid 507, 508, 509, 510, or 511. In some embodiments, a cyno CSF1R ECD comprises the sequence of SEQ ID NO: 7 (with leader sequence) or amino acids 20 to 506 of SEQ ID NO: 7 (without leader sequence).
  • With reference to anti-CSF1R antibodies the terms “active” or “activity” or “function”, and grammatical variants thereof, are used to refer to the ability to inhibit (blocking or antagonist antibodies) or mimic (agonist antibodies) at least one of the foregoing activities. Antibodies and antibody fragments referred to as “functional” are characterized by having such properties.
  • An “immunological” activity refers only to the ability to induce the production of an antibody against an antigenic epitope possessed by a native or naturally-occurring CSF1R polypeptide.
  • The term “antibody” as used herein refers to a molecule comprising at least complementarity-determining region (CDR) 1, CDR2, and CDR3 of a heavy chain and at least CDR1, CDR2, and CDR3 of a light chain, wherein the molecule is capable of binding to antigen. The term antibody includes, but is not limited to, fragments that are capable of binding antigen, such as Fv, single-chain Fv (scFv), Fab, Fab′, and (Fab′)2. The term antibody also includes, but is not limited to, chimeric antibodies, humanized antibodies, and antibodies of various species such as mouse, human, cynomolgus monkey, etc.
  • In some embodiments, an antibody comprises a heavy chain variable region and a light chain variable region. In some embodiments, an antibody comprises at least one heavy chain comprising a heavy chain variable region and at least a portion of a heavy chain constant region, and at least one light chain comprising a light chain variable region and at least a portion of a light chain constant region. In some embodiments, an antibody comprises two heavy chains, wherein each heavy chain comprises a heavy chain variable region and at least a portion of a heavy chain constant region, and two light chains, wherein each light chain comprises a light chain variable region and at least a portion of a light chain constant region. As used herein, a single-chain Fv (scFv), or any other antibody that comprises, for example, a single polypeptide chain comprising all six CDRs (three heavy chain CDRs and three light chain CDRs) is considered to have a heavy chain and a light chain. In some such embodiments, the heavy chain is the region of the antibody that comprises the three heavy chain CDRs and the light chain in the region of the antibody that comprises the three light chain CDRs.
  • The term “heavy chain variable region” as used herein refers to a region comprising heavy chain CDR1, framework (FR) 2, CDR2, FR3, and CDR3. In some embodiments, a heavy chain variable region also comprises at least a portion of an FR1 and/or at least a portion of an FR4. In some embodiments, a heavy chain CDR1 corresponds to Kabat residues 26 to 35; a heavy chain CDR2 corresponds to Kabat residues 50 to 65; and a heavy chain CDR3 corresponds to Kabat residues 95 to 102. See, e.g., Kabat Sequences of Proteins of Immunological Interest (1987 and 1991, NIH, Bethesda, Md.); and FIG. 1. In some embodiments, a heavy chain CDR1 corresponds to Kabat residues 31 to 35; a heavy chain CDR2 corresponds to Kabat residues 50 to 65; and a heavy chain CDR3 corresponds to Kabat residues 95 to 102. See id.
  • The term “heavy chain constant region” as used herein refers to a region comprising at least three heavy chain constant domains, C H1, C H2, and C H3. Nonlimiting exemplary heavy chain constant regions include γ, δ, and α. Nonlimiting exemplary heavy chain constant regions also include ε and μ. Each heavy constant region corresponds to an antibody isotype. For example, an antibody comprising a γ constant region is an IgG antibody, an antibody comprising a δ constant region is an IgD antibody, and an antibody comprising an α constant region is an IgA antibody. Further, an antibody comprising a μ constant region is an IgM antibody, and an antibody comprising an c constant region is an IgE antibody. Certain isotypes can be further subdivided into subclasses. For example, IgG antibodies include, but are not limited to, IgG1 (comprising a γ1 constant region), IgG2 (comprising a γ2 constant region), IgG3 (comprising a γ3 constant region), and IgG4 (comprising a γ4 constant region) antibodies; IgA antibodies include, but are not limited to, IgA1 (comprising an α1 constant region) and IgA2 (comprising an α2 constant region) antibodies; and IgM antibodies include, but are not limited to, IgM1 and IgM2.
  • In some embodiments, a heavy chain constant region comprises one or more mutations (or substitutions), additions, or deletions that confer a desired characteristic on the antibody. A nonlimiting exemplary mutation is the S241P mutation in the IgG4 hinge region (between constant domains C H1 and CH2), which alters the IgG4 motif CPSCP to CPPCP, which is similar to the corresponding motif in IgG1. That mutation, in some embodiments, results in a more stable IgG4 antibody. See, e.g., Angal et al., Mol. Immunol. 30: 105-108 (1993); Bloom et al., Prot. Sci. 6: 407-415 (1997); Schuurman et al., Mol. Immunol. 38: 1-8 (2001).
  • The term “heavy chain” as used herein refers to a polypeptide comprising at least a heavy chain variable region, with or without a leader sequence. In some embodiments, a heavy chain comprises at least a portion of a heavy chain constant region. The term “full-length heavy chain” as used herein refers to a polypeptide comprising a heavy chain variable region and a heavy chain constant region, with or without a leader sequence.
  • The term “light chain variable region” as used herein refers to a region comprising light chain CDR1, framework (FR) 2, CDR2, FR3, and CDR3. In some embodiments, a light chain variable region also comprises an FR1 and/or an FR4. In some embodiments, a light chain CDR1 corresponds to Kabat residues 24 to 34; a light chain CDR2 corresponds to Kabat residues 50 to 56; and a light chain CDR3 corresponds to Kabat residues 89 to 97. See, e.g., Kabat Sequences of Proteins of Immunological Interest (1987 and 1991, NIH, Bethesda, Md.); and FIG. 1.
  • The term “light chain constant region” as used herein refers to a region comprising a light chain constant domain, CL. Nonlimiting exemplary light chain constant regions include λ and κ.
  • The term “light chain” as used herein refers to a polypeptide comprising at least a light chain variable region, with or without a leader sequence. In some embodiments, a light chain comprises at least a portion of a light chain constant region. The term “full-length light chain” as used herein refers to a polypeptide comprising a light chain variable region and a light chain constant region, with or without a leader sequence.
  • A “chimeric antibody” as used herein refers to an antibody comprising at least one variable region from a first species (such as mouse, rat, cynomolgus monkey, etc.) and at least one constant region from a second species (such as human, cynomolgus monkey, etc.). In some embodiments, a chimeric antibody comprises at least one mouse variable region and at least one human constant region. In some embodiments, a chimeric antibody comprises at least one cynomolgus variable region and at least one human constant region. In some embodiments, a chimeric antibody comprises at least one rat variable region and at least one mouse constant region. In some embodiments, all of the variable regions of a chimeric antibody are from a first species and all of the constant regions of the chimeric antibody are from a second species.
  • A “humanized antibody” as used herein refers to an antibody in which at least one amino acid in a framework region of a non-human variable region has been replaced with the corresponding amino acid from a human variable region. In some embodiments, a humanized antibody comprises at least one human constant region or fragment thereof. In some embodiments, a humanized antibody is an Fab, an scFv, a (Fab′)2, etc.
  • A “CDR-grafted antibody” as used herein refers to a humanized antibody in which the complementarity determining regions (CDRs) of a first (non-human) species have been grafted onto the framework regions (FRs) of a second (human) species.
  • A “human antibody” as used herein refers to antibodies produced in humans, antibodies produced in non-human animals that comprise human immunoglobulin genes, such as XenoMouse®, and antibodies selected using in vitro methods, such as phage display, wherein the antibody repertoire is based on a human immunoglobulin sequences.
  • The term “leader sequence” refers to a sequence of amino acid residues located at the N terminus of a polypeptide that facilitates secretion of a polypeptide from a mammalian cell. A leader sequence may be cleaved upon export of the polypeptide from the mammalian cell, forming a mature protein. Leader sequences may be natural or synthetic, and they may be heterologous or homologous to the protein to which they are attached. Exemplary leader sequences include, but are not limited to, antibody leader sequences, such as, for example, the amino acid sequences of SEQ ID NOs: 3 and 4, which correspond to human light and heavy chain leader sequences, respectively. Nonlimiting exemplary leader sequences also include leader sequences from heterologous proteins. In some embodiments, an antibody lacks a leader sequence. In some embodiments, an antibody comprises at least one leader sequence, which may be selected from native antibody leader sequences and heterologous leader sequences.
  • The term “vector” is used to describe a polynucleotide that may be engineered to contain a cloned polynucleotide or polynucleotides that may be propagated in a host cell. A vector may include one or more of the following elements: an origin of replication, one or more regulatory sequences (such as, for example, promoters and/or enhancers) that regulate the expression of the polypeptide of interest, and/or one or more selectable marker genes (such as, for example, antibiotic resistance genes and genes that may be used in colorimetric assays, e.g., β-galactosidase). The term “expression vector” refers to a vector that is used to express a polypeptide of interest in a host cell.
  • A “host cell” refers to a cell that may be or has been a recipient of a vector or isolated polynucleotide. Host cells may be prokaryotic cells or eukaryotic cells. Exemplary eukaryotic cells include mammalian cells, such as primate or non-primate animal cells; fungal cells, such as yeast; plant cells; and insect cells. Nonlimiting exemplary mammalian cells include, but are not limited to, NSO cells, PER.C6® cells (Crucell), and 293 and CHO cells, and their derivatives, such as 293-6E and DG44 cells, respectively.
  • The term “isolated” as used herein refers to a molecule that has been separated from at least some of the components with which it is typically found in nature. For example, a polypeptide is referred to as “isolated” when it is separated from at least some of the components of the cell in which it was produced. Where a polypeptide is secreted by a cell after expression, physically separating the supernatant containing the polypeptide from the cell that produced it is considered to be “isolating” the polypeptide. Similarly, a polynucleotide is referred to as “isolated” when it is not part of the larger polynucleotide (such as, for example, genomic DNA or mitochondrial DNA, in the case of a DNA polynucleotide) in which it is typically found in nature, or is separated from at least some of the components of the cell in which it was produced, e.g., in the case of an RNA polynucleotide. Thus, a DNA polynucleotide that is contained in a vector inside a host cell may be referred to as “isolated” so long as that polynucleotide is not found in that vector in nature.
  • The terms “subject” and “patient” are used interchangeably herein to refer to a human. In some embodiments, methods of treating other mammals, including, but not limited to, rodents, simians, felines, canines, equines, bovines, porcines, ovines, caprines, mammalian laboratory animals, mammalian farm animals, mammalian sport animals, and mammalian pets, are also provided.
  • As used herein, “rheumatoid arthritis” or “RA” refers to a recognized disease state that may be diagnosed according to the 2000 revised American Rheumatoid Association criteria for the classification of RA, or any similar criteria. In some embodiments, the term “rheumatoid arthritis” refers to a chronic autoimmune disease characterized primarily by inflammation of the lining (synovium) of the joints, which can lead to joint damage, resulting in chronic pain, loss of function, and disability. Because RA can affect multiple organs of the body, including skin, lungs, and eyes, it is referred to as a systemic illness.
  • The term “rheumatoid arthritis” includes not only active and early RA, but also incipient RA, as defined below. Physiological indicators of RA include, symmetric joint swelling which is characteristic though not invariable in RA. Fusiform swelling of the proximal interphalangeal (PIP) joints of the hands as well as metacarpophalangeal (MCP), wrists, elbows, knees, ankles, and metatarsophalangeal (MTP) joints are commonly affected and swelling is easily detected. Pain on passive motion is the most sensitive test for joint inflammation, and inflammation and structural deformity often limits the range of motion for the affected joint. Typical visible changes include ulnar deviation of the fingers at the MCP joints, hyperextension, or hyperflexion of the MCP and PIP joints, flexion contractures of the elbows, and subluxation of the carpal bones and toes. The subject with RA may be resistant to a disease-modifying anti-rheumatic drug (DMARD), and/or a non-steroidal anti-inflammatory drug (NSAID). Nonlimiting exemplary “DMARDs” include hydroxycloroquine, sulfasalazine, methotrexate (MTX), leflunomide, etanercept, infliximab (plus oral and subcutaneous MTX), azathioprine, D-penicillamine, gold salts (oral), gold salts (intramuscular), minocycline, cyclosporine including cyclosporine A and topical cyclosporine, staphylococcal protein A (Goodyear and Silverman, J. Exp. Med., 197(9):1125-1139 (2003)), including salts and derivatives thereof, etc. Further candidates for therapy according to this invention include those who have experienced an inadequate response to previous or current treatment with TNF inhibitors such as etanercept, infliximab and/or adalimumab because of toxicity or inadequate efficacy.
  • A patient with “active rheumatoid arthritis” means a patient with active and not latent symptoms of RA. Subjects with “early active rheumatoid arthritis” are those subjects with active RA diagnosed for at least 8 weeks but no longer than four years, according to the revised 1987 ACR criteria for the classification of RA.
  • Subjects with “early rheumatoid arthritis” are those subjects with RA diagnosed for at least eight weeks but no longer than four years, according to the revised 1987 ACR criteria for classification of RA. RA includes, for example, juvenile-onset RA, juvenile idiopathic arthritis (JIA), or juvenile RA (JRA).
  • Patients with “incipient RA” have early polyarthritis that does not fully meet ACR criteria for a diagnosis of RA, in association with the presence of RA-specific prognostic biomarkers such as anti-CCP and shared epitope. They include patients with positive anti-CCP antibodies who present with polyarthritis, but do not yet have a diagnosis of RA, and are at high risk for going on to develop bona fide ACR criteria RA (95% probability).
  • “Joint damage” is used in the broadest sense and refers to damage or partial or complete destruction to any part of one or more joints, including the connective tissue and cartilage, where damage includes structural and/or functional damage of any cause, and may or may not cause joint pain/arthalgia. It includes, without limitation, joint damage associated with or resulting from inflammatory joint disease as well as non-inflammatory joint disease. This damage may be caused by any condition, such as an autoimmune disease, especially arthritis, and most especially RA. Exemplary such conditions include acute and chronic arthritis, rheumatoid arthritis (including juvenile-onset RA, juvenile idiopathic arthritis (JIA), and juvenile rheumatoid arthritis (JRA)), and stages such as rheumatoid synovitis, gout or gouty arthritis, acute immunological arthritis, chronic inflammatory arthritis, degenerative arthritis, type II collagen-induced arthritis, infectious arthritis, septic arthritis, Lyme arthritis, proliferative arthritis, psoriatic arthritis, Still's disease, vertebral arthritis, osteoarthritis, arthritis chronica progrediente, arthritis deformans, polyarthritis chronica primaria, reactive arthritis, menopausal arthritis, estrogen-depletion arthritis, and ankylosing spondylitis/rheumatoid spondylitis), rheumatic autoimmune disease other than RA, and significant systemic involvement secondary to RA (including but not limited to vasculitis, pulmonary fibrosis or Felty's syndrome). For purposes herein, joints are points of contact between elements of a skeleton (of a vertebrate such as an animal) with the parts that surround and support it and include, but are not limited to, for example, hips, joints between the vertebrae of the spine, joints between the spine and pelvis (sacroiliac joints), joints where the tendons and ligaments attach to bones, joints between the ribs and spine, shoulders, knees, feet, elbows, hands, fingers, ankles and toes, but especially joints in the hands and feet.
  • The term “lupus” as used herein is an autoimmune disease or disorder that in general involves antibodies that attack connective tissue. The principal form of lupus is a systemic one, systemic lupus erythematosus (SLE), including cutaneous SLE and subacutecutaneous SLE, as well as other types of lupus (including nephritis, extrarenal, cerebritis, pediatric, non-renal, discoid, and alopecia). In certain embodiments, the term “systemic lupus erythematosus” refers to a chronic autoimmune disease that can result in skin lesions, joint pain and swelling, kidney disease (lupus nephritis), fluid around the heart and/or lungs, inflammation of the heart, and various other systemic conditions. In certain embodiments, the term “lupus nephritis” refers to inflammation of the kidneys that occurs in patients with SLE. Lupus nephritis may include, for example, glomerulonephritis and/or interstitial nephritis, and can lead to hypertension, proteinuria, and kidney failure. Lupus nephritis may be classified based on severity and extent of disease, for example, as defined by the International Society of Nephrology/Renal/Pathology Society. Lupus nephritis classes include class I (minimal mesangial lupus nephritis), class II (mesangial proliferative lupus nephritis), class III (focal lupus nephritis), class IV (diffuse segmental (IV-S) or diffuse global (IV-G) lupus nephritis), class V (membranous lupus nephritis), and class VI (advanced sclerosing lupus nephritis). The term “lupus nephritis” encompasses all of the classes.
  • The term “multiple sclerosis” (“MS”) refers to the chronic and often disabling disease of the central nervous system characterized by the progressive destruction of the myelin. “Demyelination” occurs when the myelin sheath becomes inflamed, injured, and detaches from the nerve fiber. There are four internationally recognized forms of MS, namely, primary progressive multiple sclerosis (PPMS), relapsing-remitting multiple sclerosis (RRMS), secondary progressive multiple sclerosis (SPMS), and progressive relapsing multiple sclerosis (PRMS).
  • “Primary progressive multiple sclerosis” or “PPMS” is characterized by a gradual progression of the disease from its onset with no superimposed relapses and remissions at all. There may be periods of a leveling off of disease activity and there may be good and bad days or weeks. PPMS differs from RRMS and SPMS in that onset is typically in the late thirties or early forties, men are as likely as women to develop it, and initial disease activity is often in the spinal cord and not in the brain. PPMS often migrates into the brain, but is less likely to damage brain areas than RRMS or SPMS; for example, people with PPMS are less likely to develop cognitive problems. PPMS is the sub-type of MS that is least likely to show inflammatory (gadolinium enhancing) lesions on MRI scans. The primary progressive form of the disease affects between 10 and 15% of all people with multiple sclerosis. PPMS may be defined according to the criteria in McDonald et al. Ann Neurol 50:121-7 (2001). The subject with PPMS treated herein is usually one with a probable or definitive diagnosis of PPMS.
  • “Relapsing-remitting multiple sclerosis” or “RRMS” is characterized by relapses (also known as exacerbations) during which time new symptoms can appear and old ones resurface or worsen. The relapses are followed by periods of remission, during which time the person fully or partially recovers from the deficits acquired during the relapse. Relapses can last for days, weeks, or months, and recovery can be slow and gradual or almost instantaneous. The vast majority of people presenting with MS are first diagnosed with RRMS. This is typically when they are in their twenties or thirties, though diagnoses much earlier or later are known. Twice as many women as men present with this sub-type of MS. During relapses, myelin, a protective insulating sheath around the nerve fibers (neurons) in the white matter regions of the central nervous system (CNS), may be damaged in an inflammatory response by the body's own immune system. This causes a wide variety of neurological symptoms that vary considerably depending on which areas of the CNS are damaged. Immediately after a relapse, the inflammatory response dies down and a special type of glial cell in the CNS (called an oligodendrocyte) sponsors remyelination—a process whereby the myelin sheath around the axon may be repaired. It is this remyelination that may be responsible for the remission. Approximately 50% of patients with RRMS convert to SPMS within 10 years of disease onset. After 30 years, this figure rises to 90%. At any one time, the relapsing-remitting form of the disease accounts around 55% of all people with MS.
  • “Secondary progressive multiple sclerosis” or “SPMS” is characterized by a steady progression of clinical neurological damage with or without superimposed relapses and minor remissions and plateau. People who develop SPMS will have previously experienced a period of RRMS which may have lasted anywhere from two to forty years or more. Any superimposed relapses and remissions tend to tail off over time. From the onset of the secondary progressive phase of the disease, disability starts advancing much quicker than it did during RRMS though the progress can still be quite slow in some individuals. SPMS tends to be associated with lower levels of inflammatory lesion formation than in RRMS but the total burden of disease continues to progress. At any one time, SPMS accounts around 30% of all people with multiple sclerosis.
  • “Progressive relapsing multiple sclerosis” or “PRMS” is characterized by a steady progression of clinical neurological damage with superimposed relapses and remissions. There is significant recovery immediately following a relapse but between relapses there is a gradual worsening of symptoms. PRMS affects around 5% of all people with multiple sclerosis. Some neurologists believe PRMS is a variant of PPMS.
  • The term “CD16+ disorder” means a disease in which CD16+ monocytes of a mammal cause, mediate or otherwise contribute to a morbidity in the mammal. Also included are diseases in which reduction of CD16+ monocytes has an ameliorative effect on progression of the disease. Included within this term are CD16+ inflammatory diseases, infectious diseases, immunodeficiency diseases, neoplasia, etc. In certain embodiments, CD16+ inflammatory diseases include inflammatory diseases that are not responsive to methotrexate therapy. In certain embodiments, CD16+ inflammatory diseases include methotrexate-resistant rheumatoid arthritis, methotrexate-resistant multiple sclerosis, methotrexate-resistant lupus, methotrexate-resistant inflammatory bowel disease, methotrexate-resistant Crohn's disease, methotrexate-resistant asthma, and methotrexate-resistant psoriasis. In certain embodiments, patients having methotrexate-resistant diseases, such as methotrexate-resistant rheumatoid arthritis, are referred to as methotrexate incomplete responders or methotrexate inadequate responders.
  • Examples of CD16+ disorders that can be treated according to the invention include, but are not limited to, systemic lupus erythematosus, rheumatoid arthritis, juvenile chronic arthritis, spondyloarthropathies, systemic sclerosis (scieroderma), idiopathic inflammatory myopathies (dermatomyositis, polymyositis), Sjogren's syndrome, systemic vasculitis, sarcoidosis, autoimmune hemolytic anemia (immune pancytopenia, paroxysmal nocturnal hemoglobinuria), autoimmune thrombocytopenia (idiopathic thrombocytopenic purpura, immune-mediated thrombocytopenia), thyroiditis (Grave's disease, Hashimoto's thyroiditis, juvenile lymphocytic thyroiditis, atrophic thyroiditis), diabetes mellitus, immune-mediated renal disease (glomerulonephritis, tubulointerstitial nephritis), demyelinating diseases of the central and peripheral nervous systems such as multiple sclerosis, idiopathic demyelinating polyneuropathy or Guillain-Barre syndrome, and chronic inflammatory demyelinating polyneuropathy, hepatobiliary diseases such as infectious hepatitis (hepatitis A, B, C, D, E and other non-hepatotropic viruses), autoimmune chronic active hepatitis, primary biliary cirrhosis, granulomatous hepatitis, and sclerosing cholangitis, inflammatory bowel disease (IBD), including ulcerative colitis, Crohn's disease, gluten-sensitive enteropathy, and Whipple's disease, autoimmune or immune-mediated skin diseases including bullous skin diseases, erythema multiforme and contact dermatitis, psoriasis, allergic diseases such as asthma, allergic rhinitis, atopic dermatitis, food hypersensitivity and urticaria, immunologic diseases of the lung such as eosinophilic pneumonia, idiopathic pulmonary fibrosis and hypersensitivity pneumonitis, transplantation associated diseases including graft rejection and graft-versus-host-disease; fibrosis, including kidney fibrosis and hepatic fibrosis, cardiovascular disease, including atherosclerosis and coronary artery disease, cardiovascular events associated with chronic kidney disease, myocardial infarction, and congestive heart failure, diabetes, including type II diabetes, Bronchiolitis obliterans with organizing pneumonia (BOOP), hemophagocytic syndrome, macrophage activation syndrome, sarcoidosis, and periodontitis. Infectious diseases including viral diseases such as AIDS (HIV infection), hepatitis A, B, C, D, and E, herpes, etc., bacterial infections, fungal infections, protozoal infections and parasitic infections.
  • “Treatment,” as used herein, refers to both therapeutic treatment and prophylactic or preventative measures, wherein the object is to prevent or slow down (lessen) the targeted pathologic condition or disorder. In certain embodiments, the term “treatment” covers any administration or application of a therapeutic for disease in a mammal, including a human, and includes inhibiting or slowing the disease or progression of the disease; partially or fully relieving the disease, for example, by causing regression, or restoring or repairing a lost, missing, or defective function; stimulating an inefficient process; or causing the disease plateau to have reduced severity. The term “treatment” also includes reducing the severity of any phenotypic characteristic and/or reducing the incidence, degree, or likelihood of that characteristic. Those in need of treatment include those already with the disorder as well as those prone to have the disorder or those in whom the disorder is to be prevented.
  • “Chronic” administration refers to administration of an agent in a continuous mode as opposed to an acute mode, so as to maintain the initial therapeutic effect (activity) for an extended period of time. “Intermittent” administration is treatment that is not consecutively done without interruption, but rather is cyclic in nature.
  • The term “effective amount” or “therapeutically effective amount” refers to an amount of a drug effective to treat a disease or disorder in a subject. In certain embodiments, an effective amount refers to an amount effective, at dosages and for periods of time necessary, to achieve the desired therapeutic or prophylactic result. A therapeutically effective amount of an anti-CSF1R antibody of the invention may vary according to factors such as the disease state, age, sex, and weight of the individual, and the ability of the anti-CSF1R antibody to elicit a desired response in the individual. A therapeutically effective amount encompasses an amount in which any toxic or detrimental effects of the anti-CSF1R antibody are outweighed by the therapeutically beneficial effects.
  • A “prophylactically effective amount” refers to an amount effective, at dosages and for periods of time necessary, to achieve the desired prophylactic result. Typically, but not necessarily, since a prophylactic dose is used in subjects prior to or at an earlier stage of disease, the prophylactically effective amount would be less than the therapeutically effective amount.
  • Administration “in combination with” one or more further therapeutic agents includes simultaneous (concurrent) and consecutive administration in any order.
  • A “pharmaceutically acceptable carrier” refers to a non-toxic solid, semisolid, or liquid filler, diluent, encapsulating material, formulation auxiliary, or carrier conventional in the art for use with a therapeutic agent that together comprise a “pharmaceutical composition” for administration to a subject. A pharmaceutically acceptable carrier is non-toxic to recipients at the dosages and concentrations employed and is compatible with other ingredients of the formulation. The pharmaceutically acceptable carrier is appropriate for the formulation employed. For example, if the therapeutic agent is to be administered orally, the carrier may be a gel capsule. If the therapeutic agent is to be administered subcutaneously, the carrier ideally is not irritable to the skin and does not cause injection site reaction.
  • Anti-CSF1R Antibodies
  • Anti-CSF1R antibodies include, but are not limited to, humanized antibodies, chimeric antibodies, mouse antibodies, human antibodies, and antibodies comprising the heavy chain and/or light chain CDRs discussed herein.
  • Exemplary Humanized Antibodies
  • In some embodiments, humanized antibodies that bind CSF1R are provided. Humanized antibodies are useful as therapeutic molecules because humanized antibodies reduce or eliminate the human immune response to non-human antibodies (such as the human anti-mouse antibody (HAMA) response), which can result in an immune response to an antibody therapeutic, and decreased effectiveness of the therapeutic.
  • Nonlimiting exemplary humanized antibodies include huAb1 through huAb16, described herein. Nonlimiting exemplary humanized antibodies also include antibodies comprising a heavy chain variable region of an antibody selected from huAb1 to huAb16 and/or a light chain variable region of an antibody selected from huAb1 to huAb16. Nonlimiting exemplary humanized antibodies include antibodies comprising a heavy chain variable region selected from SEQ ID NOs: 39 to 45 and/or a light chain variable region selected from SEQ ID NOs: 46 to 52. Exemplary humanized antibodies also include, but are not limited to, humanized antibodies comprising heavy chain CDR1, CDR2, and CDR3, and/or light chain CDR1, CDR2, and CDR3 of an antibody selected from 0301, 0302, and 0311.
  • In some embodiments, a humanized anti-CSF1R antibody comprises heavy chain CDR1, CDR2, and CDR3 and/or a light chain CDR1, CDR2, and CDR3 of an antibody selected from 0301, 0302, and 0311. Nonlimiting exemplary humanized anti-CSF1R antibodies include antibodies comprising sets of heavy chain CDR1, CDR2, and CDR3 selected from: SEQ ID NOs: 15, 16, and 17; SEQ ID NOs: 21, 22, and 23; and SEQ ID NOs: 27, 28, and 29. Nonlimiting exemplary humanized anti-CSF1R antibodies also include antibodies comprising sets of light chain CDR1, CDR2, and CDR3 selected from: SEQ ID NOs: 18, 19, and 20; SEQ ID NOs: 24, 25, and 26; and SEQ ID NOs: 30, 31, and 32.
  • Nonlimiting exemplary humanized anti-CSF1R antibodies include antibodies comprising the sets of heavy chain CDR1, CDR2, and CDR3, and light chain CDR1, CDR2, and CDR3 in Table 1 (SEQ ID NOs shown; see Table 8 for sequences). Each row of Table 1 shows the heavy chain CDR1, CDR2, and CDR3, and light chain CDR1, CDR2, and CDR3 of an exemplary antibody.
  • TABLE 1
    Heavy chain and light chain CDRs
    Heavy chain Light chain
    CDR1 CDR2 CDR3 CDR1 CDR2 CDR3
    Ab SEQ ID SEQ ID SEQ ID SEQ ID SEQ ID SEQ ID
    0301 15 16 17 18 19 20
    0302 21 22 23 24 25 26
    0311 27 28 29 30 31 32
  • Further Exemplary Humanized Antibodies
  • In some embodiments, a humanized anti-CSF1R antibody comprises a heavy chain comprising a variable region sequence that is at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to a sequence selected from SEQ ID NOs: 9, 11, 13, and 39 to 45, and wherein the antibody binds CSF1R. In some embodiments, a humanized anti-CSF1R antibody comprises a light chain comprising a variable region sequence that is at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to a sequence selected from SEQ ID NOs: 10, 12, 14, and 46 to 52, wherein the antibody binds CSF1R. In some embodiments, a humanized anti-CSF1R antibody comprises a heavy chain comprising a variable region sequence that is at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to a sequence selected from SEQ ID NOs: 9, 11, 13, and 39 to 45; and a light chain comprising a variable region sequence that is at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to a sequence selected from SEQ ID NOs: 10, 12, 14, and 46 to 52; wherein the antibody binds CSF1R.
  • As used herein, whether a particular polypeptide is, for example, at least 95% identical to an amino acid sequence can be determined using, e.g., a computer program. When determining whether a particular sequence is, for example, 95% identical to a reference sequence, the percentage of identity is calculated over the full length of the reference amino acid sequence.
  • In some embodiments, a humanized anti-CSF1R antibody comprises at least one of the CDRs discussed herein. That is, in some embodiments, a humanized anti-CSF1R antibody comprises at least one CDR selected from a heavy chain CDR1 discussed herein, a heavy chain CDR2 discussed herein, a heavy chain CDR3 discussed herein, a light chain CDR1 discussed herein, a light chain CDR2 discussed herein, and a light chain CDR3 discussed herein. Further, in some embodiments, a humanized anti-CSF1R antibody comprises at least one mutated CDR based on a CDR discussed herein, wherein the mutated CDR comprises 1, 2, 3, or 4 amino acid substitutions relative to the CDR discussed herein. In some embodiments, one or more of the amino acid substitutions are conservative amino acid substitutions. One skilled in the art can select one or more suitable conservative amino acid substitutions for a particular CDR sequence, wherein the suitable conservative amino acid substitutions are not predicted to significantly alter the binding properties of the antibody comprising the mutated CDR.
  • Exemplary humanized anti-CSF1R antibodies also include antibodies that compete for binding to CSF1R with an antibody described herein. Thus, in some embodiments, a humanized anti-CSF1R antibody is provided that competes for binding to CSF1R with an antibody selected from Fabs 0301, 0302, and 0311; and bivalent (i.e., having two heavy chains and two light chains) antibody versions of those Fabs.
  • Exemplary Humanized Antibody Constant Regions
  • In some embodiments, a humanized antibody described herein comprises one or more human constant regions. In some embodiments, the human heavy chain constant region is of an isotype selected from IgA, IgG, and IgD. In some embodiments, the human light chain constant region is of an isotype selected from κ and λ. In some embodiments, a humanized antibody described herein comprises a human IgG constant region. In some embodiments, a humanized antibody described herein comprises a human IgG4 heavy chain constant region. In some such embodiments, a humanized antibody described herein comprises an S241P mutation in the human IgG4 constant region. In some embodiments, a humanized antibody described herein comprises a human IgG4 constant region and a human κ light chain.
  • The choice of heavy chain constant region can determine whether or not an antibody will have effector function in vivo. Such effector function, in some embodiments, includes antibody-dependent cell-mediated cytotoxicity (ADCC) and/or complement-dependent cytotoxicity (CDC), and can result in killing of the cell to which the antibody is bound. In some methods of treatment, including methods of treating some cancers, cell killing may be desirable, for example, when the antibody binds to a cell that supports the maintenance or growth of the tumor. Exemplary cells that may support the maintenance or growth of a tumor include, but are not limited to, tumor cells themselves, cells that aid in the recruitment of vasculature to the tumor, and cells that provide ligands, growth factors, or counter-receptors that support or promote tumor growth or tumor survival. In some embodiments, when effector function is desirable, an anti-CSF1R antibody comprising a human IgG1 heavy chain or a human IgG3 heavy chain is selected.
  • In some methods of treatment, effector function may not be desirable. For example, in some embodiments, it may be desirable that antibodies used in the treatment of lupus and/or MS and/or RA and/or osteolysis do not have effector function. Thus, in some embodiments, anti-CSF1R antibodies developed for the treatment of cancer may not be suitable for use in treatment of lupus and/or MS and/or RA and/or osteolysis. Accordingly, in some embodiments, an anti-CSF1R antibody that lacks significant effector function is used in treatment of lupus and/or MS and/or RA and/or osteolysis. In some embodiments, an anti-CSF1R antibody for treatment of lupus and/or MS and/or RA and/or osteolysis comprises a human IgG4 or IgG2 heavy chain constant region. In some embodiments, an IgG4 constant region comprises an S241P mutation.
  • An antibody may be humanized by any method. Nonlimiting exemplary methods of humanization include methods described, e.g., in U.S. Pat. Nos. 5,530,101; 5,585,089; 5,693,761; 5,693,762; 6,180,370; Jones et al., Nature 321: 522-525 (1986); Riechmann et al., Nature 332: 323-27 (1988); Verhoeyen et al., Science 239: 1534-36 (1988); and U.S. Publication No. US 2009/0136500.
  • As noted above, a humanized antibody is an antibody in which at least one amino acid in a framework region of a non-human variable region has been replaced with the amino acid from the corresponding location in a human framework region. In some embodiments, at least two, at least three, at least four, at least five, at least six, at least seven, at least eight, at least nine, at least 10, at least 11, at least 12, at least 15, or at least 20 amino acids in the framework regions of a non-human variable region are replaced with an amino acid from one or more corresponding locations in one or more human framework regions.
  • In some embodiments, some of the corresponding human amino acids used for substitution are from the framework regions of different human immunoglobulin genes. That is, in some such embodiments, one or more of the non-human amino acids may be replaced with corresponding amino acids from a human framework region of a first human antibody or encoded by a first human immunoglobulin gene, one or more of the non-human amino acids may be replaced with corresponding amino acids from a human framework region of a second human antibody or encoded by a second human immunoglobulin gene, one or more of the non-human amino acids may be replaced with corresponding amino acids from a human framework region of a third human antibody or encoded by a third human immunoglobulin gene, etc. Further, in some embodiments, all of the corresponding human amino acids being used for substitution in a single framework region, for example, FR2, need not be from the same human framework. In some embodiments, however, all of the corresponding human amino acids being used for substitution are from the same human antibody or encoded by the same human immunoglobulin gene.
  • In some embodiments, an antibody is humanized by replacing one or more entire framework regions with corresponding human framework regions. In some embodiments, a human framework region is selected that has the highest level of homology to the non-human framework region being replaced. In some embodiments, such a humanized antibody is a CDR-grafted antibody.
  • In some embodiments, following CDR-grafting, one or more framework amino acids are changed back to the corresponding amino acid in a mouse framework region. Such “back mutations” are made, in some embodiments, to retain one or more mouse framework amino acids that appear to contribute to the structure of one or more of the CDRs and/or that may be involved in antigen contacts and/or appear to be involved in the overall structural integrity of the antibody. In some embodiments, ten or fewer, nine or fewer, eight or fewer, seven or fewer, six or fewer, five or fewer, four or fewer, three or fewer, two or fewer, one, or zero back mutations are made to the framework regions of an antibody following CDR grafting.
  • In some embodiments, a humanized antibody also comprises a human heavy chain constant region and/or a human light chain constant region.
  • Exemplary Chimeric Antibodies
  • In some embodiments, an anti-CSF1R antibody is a chimeric antibody. In some embodiments, an anti-CSF1R antibody comprises at least one non-human variable region and at least one human constant region. In some such embodiments, all of the variable regions of an anti-CSF1R antibody are non-human variable regions, and all of the constant regions of an anti-CSF1R antibody are human constant regions. In some embodiments, one or more variable regions of a chimeric antibody are mouse variable regions. The human constant region of a chimeric antibody need not be of the same isotype as the non-human constant region, if any, it replaces. Chimeric antibodies are discussed, e.g., in U.S. Pat. No. 4,816,567; and Morrison et al. Proc. Natl. Acad. Sci. USA 81: 6851-55 (1984).
  • Nonlimiting exemplary chimeric antibodies include chimeric antibodies comprising the heavy and/or light chain variable regions of an antibody selected from 0301, 0302, and 0311. Additional nonlimiting exemplary chimeric antibodies include chimeric antibodies comprising heavy chain CDR1, CDR2, and CDR3, and/or light chain CDR1, CDR2, and CDR3 of an antibody selected from 0301, 0302, and 0311.
  • Nonlimiting exemplary chimeric anti-CSF1R antibodies include antibodies comprising the following pairs of heavy and light chain variable regions: SEQ ID NOs: 9 and 10; SEQ ID NOs: 11 and 12; and SEQ ID NOs: 13 and 14.
  • Nonlimiting exemplary anti-CSF1R antibodies include antibodies comprising a set of heavy chain CDR1, CDR2, and CDR3, and light chain CDR1, CDR2, and CDR3 shown above in Table 1.
  • Further Exemplary Chimeric Antibodies
  • In some embodiments, a chimeric anti-CSF1R antibody comprises a heavy chain comprising a variable region sequence that is at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to a sequence selected from SEQ ID NOs: 9, 11, 13, and 39 to 45, wherein the antibody binds CSF1R. In some embodiments, a chimeric anti-CSF1R antibody comprises a light chain comprising a variable region sequence that is at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to a sequence selected from SEQ ID NOs: 10, 12, 14, and 46 to 52, wherein the antibody binds CSF1R. In some embodiments, a chimeric anti-CSF1R antibody comprises a heavy chain comprising a variable region sequence that is at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to a sequence selected from SEQ ID NOs: 9, 11, 13, and 39 to 45; and a light chain comprising a variable region sequence that is at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to a sequence selected from SEQ ID NOs: 10, 12, 14, and 46 to 52; wherein the antibody binds CSF1R.
  • In some embodiments, a chimeric anti-CSF1R antibody comprises at least one of the CDRs discussed herein. That is, in some embodiments, a chimeric anti-CSF1R antibody comprises at least one CDR selected from a heavy chain CDR1 discussed herein, a heavy chain CDR2 discussed herein, a heavy chain CDR3 discussed herein, a light chain CDR1 discussed herein, a light chain CDR2 discussed herein, and a light chain CDR3 discussed herein. Further, in some embodiments, a chimeric anti-CSF1R antibody comprises at least one mutated CDR based on a CDR discussed herein, wherein the mutated CDR comprises 1, 2, 3, or 4 amino acid substitutions relative to the CDR discussed herein. In some embodiments, one or more of the amino acid substitutions are conservative amino acid substitutions. One skilled in the art can select one or more suitable conservative amino acid substitutions for a particular CDR sequence, wherein the suitable conservative amino acid substitutions are not predicted to significantly alter the binding properties of the antibody comprising the mutated CDR.
  • Exemplary chimeric anti-CSF1R antibodies also include chimeric antibodies that compete for binding to CSF1R with an antibody described herein. Thus, in some embodiments, a chimeric anti-CSF1R antibody is provided that competes for binding to CSF1R with an antibody selected from Fabs 0301, 0302, and 0311; and bivalent (i.e., having two heavy chains and two light chains) antibody versions of those Fabs.
  • Exemplary Chimeric Antibody Constant Regions
  • In some embodiments, a chimeric antibody described herein comprises one or more human constant regions. In some embodiments, the human heavy chain constant region is of an isotype selected from IgA, IgG, and IgD. In some embodiments, the human light chain constant region is of an isotype selected from κ and λ. In some embodiments, a chimeric antibody described herein comprises a human IgG constant region. In some embodiments, a chimeric antibody described herein comprises a human IgG4 heavy chain constant region. In some such embodiments, a chimeric antibody described herein comprises an S241P mutation in the human IgG4 constant region. In some embodiments, a chimeric antibody described herein comprises a human IgG4 constant region and a human κ light chain.
  • As noted above, whether or not effector function is desirable may depend on the particular method of treatment intended for an antibody. Thus, in some embodiments, when effector function is desirable, a chimeric anti-CSF1R antibody comprising a human IgG1 heavy chain constant region or a human IgG3 heavy chain constant region is selected. In some embodiments, when effector function is not desirable, a chimeric anti-CSF1R antibody comprising a human IgG4 or IgG2 heavy chain constant region is selected.
  • Exemplary Human Antibodies
  • Human antibodies can be made by any suitable method. Nonlimiting exemplary methods include making human antibodies in transgenic mice that comprise human immunoglobulin loci. See, e.g., Jakobovits et al., Proc. Natl. Acad. Sci. USA 90: 2551-55 (1993); Jakobovits et al., Nature 362: 255-8 (1993); Lonberg et al., Nature 368: 856-9 (1994); and U.S. Pat. Nos. 5,545,807; 6,713,610; 6,673,986; 6,162,963; 5,545,807; 6,300,129; 6,255,458; 5,877,397; 5,874,299; and 5,545,806.
  • Nonlimiting exemplary methods also include making human antibodies using phage display libraries. See, e.g., Hoogenboom et al., J. Mol. Biol. 227: 381-8 (1992); Marks et al., J. Mol. Biol. 222: 581-97 (1991); and PCT Publication No. WO 99/10494.
  • In some embodiments, a human anti-CSF1R antibody binds to a polypeptide having the sequence of SEQ ID NO: 1. Exemplary human anti-CSF1R antibodies also include antibodies that compete for binding to CSF1R with an antibody described herein. Thus, in some embodiments, a human anti-CSF1R antibody is provided that competes for binding to CSF1R with an antibody selected from Fabs 0301, 0302, and 0311, and bivalent (i.e., having two heavy chains and two light chains) antibody versions of those Fabs.
  • In some embodiments, a human anti-CSF1R antibody comprises one or more human constant regions. In some embodiments, the human heavy chain constant region is of an isotype selected from IgA, IgG, and IgD. In some embodiments, the human light chain constant region is of an isotype selected from κ and λ. In some embodiments, a human antibody described herein comprises a human IgG constant region. In some embodiments, a human antibody described herein comprises a human IgG4 heavy chain constant region. In some such embodiments, a human antibody described herein comprises an S241P mutation in the human IgG4 constant region. In some embodiments, a human antibody described herein comprises a human IgG4 constant region and a human κ light chain.
  • In some embodiments, when effector function is desirable, a human anti-CSF1R antibody comprising a human IgG1 heavy chain constant region or a human IgG3 heavy chain constant region is selected. In some embodiments, when effector function is not desirable, a human anti-CSF1R antibody comprising a human IgG4 or IgG2 heavy chain constant region is selected.
  • Additional Exemplary Anti-CSF1R Antibodies
  • Exemplary anti-CSF1R antibodies also include, but are not limited to, mouse, humanized, human, chimeric, and engineered antibodies that comprise, for example, one or more of the CDR sequences described herein. In some embodiments, an anti-CSF1R antibody comprises a heavy chain variable region described herein. In some embodiments, an anti-CSF1R antibody comprises a light chain variable region described herein. In some embodiments, an anti-CSF1R antibody comprises a heavy chain variable region described herein and a light chain variable region described herein. In some embodiments, an anti-CSF1R antibody comprises heavy chain CDR1, CDR2, and CDR3 described herein. In some embodiments, an anti-CSF1R antibody comprises light chain CDR1, CDR2, and CDR3 described herein. In some embodiments, an anti-CSF1R antibody comprises heavy chain CDR1, CDR2, and CDR3 described herein and light chain CDR1, CDR2, and CDR3 described herein.
  • In some embodiments, an anti-CSF1R antibody comprises a heavy chain variable region of an antibody selected from Fabs 0301, 0302, and 0311. Nonlimiting exemplary anti-CSF1R antibodies also include antibodies comprising a heavy chain variable region of an antibody selected from humanized antibodies huAb1 to huAb16. Nonlimiting exemplary anti-CSF1R antibodies include antibodies comprising a heavy chain variable region comprising a sequence selected from SEQ ID NOs: 9, 11, 13, and 39 to 45.
  • In some embodiments, an anti-CSF1R antibody comprises a light chain variable region of an antibody selected from Fabs 0301, 0302, and 311. Nonlimiting exemplary anti-CSF1R antibodies also include antibodies comprising a light chain variable region of an antibody selected from humanized antibodies huAb1 to huAb16. Nonlimiting exemplary anti-CSF1R antibodies include antibodies comprising a light chain variable region comprising a sequence selected from SEQ ID NOs: 10, 12, 14, and 46 to 52.
  • In some embodiments, an anti-CSF1R antibody comprises a heavy chain variable region and a light chain variable region of an antibody selected from Fabs 0301, 0302, and 0311. Nonlimiting exemplary anti-CSF1R antibodies also include antibodies comprising a heavy chain variable region and a light chain variable region of an antibody selected from humanized antibodies huAb1 to huAb16. Nonlimiting exemplary anti-CSF1R antibodies include antibodies comprising the following pairs of heavy and light chain variable regions: SEQ ID NOs: 9 and 10; SEQ ID NOs: 11 and 12; and SEQ ID NOs: 13 and 14; SEQ ID NOs: 39 and 40; SEQ ID NOs: 41 and 42; SEQ ID NOs: 43 and 44; SEQ ID NOs: 45 and 46; SEQ ID NOs: 47 and 48; SEQ ID NOs: 49 and 50; and SEQ ID NOs: 51 and 52. Nonlimiting exemplary anti-CSF1R antibodies also include antibodies comprising the following pairs of heavy and light chains: SEQ ID NOs: 33 and 34; SEQ ID NOs: 35 and 36; and SEQ ID NOs: 37 and 38.
  • In some embodiments, an anti-CSF1R antibody comprises heavy chain CDR1, CDR2, and CDR3 of an antibody selected from Fabs 0301, 0302, and 0311. Nonlimiting exemplary anti-CSF1R antibodies include antibodies comprising sets of heavy chain CDR1, CDR2, and CDR3 selected from: SEQ ID NOs: 15, 16, and 17; SEQ ID NOs: 21, 22, and 23; and SEQ ID NOs: 27, 28, and 29.
  • In some embodiments, an anti-CSF1R antibody comprises light chain CDR1, CDR2, and CDR3 of an antibody selected from Fabs 0301, 0302, and 0311. Nonlimiting exemplary anti-CSF1R antibodies include antibodies comprising sets of light chain CDR1, CDR2, and CDR3 selected from: SEQ ID NOs: 18, 19, and 20; SEQ ID NOs: 24, 25, and 26; and SEQ ID NOs: 30, 31, and 32.
  • In some embodiments, an anti-CSF1R antibody comprises heavy chain CDR1, CDR2, and CDR3, and light chain CDR1, CDR2, and CDR3 of an antibody selected from Fabs 0301, 0302, and 0311.
  • Nonlimiting exemplary anti-CSF1R antibodies include antibodies comprising the sets of heavy chain CDR1, CDR2, and CDR3, and light chain CDR1, CDR2, and CDR3 shown above in Table 1.
  • Further Exemplary Antibodies
  • In some embodiments, an anti-CSF1R antibody comprises a heavy chain comprising a variable region sequence that is at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to a sequence selected from SEQ ID NOs: 9, 11, 13, and 39 to 45, wherein the antibody binds CSF1R. In some embodiments, an anti-CSF1R antibody comprises a light chain comprising a variable region sequence that is at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to a sequence selected from SEQ ID NOs: 10, 12, 14, and 46 to 52, wherein the antibody binds CSF1R. In some embodiments, an anti-CSF1R antibody comprises a heavy chain comprising a variable region sequence that is at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to a sequence selected from SEQ ID NOs: 9, 11, 13, and 39 to 45; and a light chain comprising a variable region sequence that is at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to a sequence selected from SEQ ID NOs: 10, 12, 14, and 46 to 52; wherein the antibody binds CSF1R.
  • In some embodiments, an anti-CSF1R antibody comprises at least one of the CDRs discussed herein. That is, in some embodiments, an anti-CSF1R antibody comprises at least one CDR selected from a heavy chain CDR1 discussed herein, a heavy chain CDR2 discussed herein, a heavy chain CDR3 discussed herein, a light chain CDR1 discussed herein, a light chain CDR2 discussed herein, and a light chain CDR3 discussed herein. Further, in some embodiments, an anti-CSF1R antibody comprises at least one mutated CDR based on a CDR discussed herein, wherein the mutated CDR comprises 1, 2, 3, or 4 amino acid substitutions relative to the CDR discussed herein. In some embodiments, one or more of the amino acid substitutions are conservative amino acid substitutions. One skilled in the art can select one or more suitable conservative amino acid substitutions for a particular CDR sequence, wherein the suitable conservative amino acid substitutions are not predicted to significantly alter the binding properties of the antibody comprising the mutated CDR.
  • Exemplary anti-CSF1R antibodies also include antibodies that compete for binding to CSF1R with an antibody described herein. Thus, in some embodiments, an anti-CSF1R antibody is provided that competes for binding to CSF1R with an antibody selected from Fabs 0301, 0302, and 0311, and bivalent (i.e., having two heavy chains and two light chains) antibody versions of those Fabs.
  • Exemplary Antibody Constant Regions
  • In some embodiments, an antibody described herein comprises one or more human constant regions. In some embodiments, the human heavy chain constant region is of an isotype selected from IgA, IgG, and IgD. In some embodiments, the human light chain constant region is of an isotype selected from κ and λ. In some embodiments, an antibody described herein comprises a human IgG constant region. In some embodiments, an antibody described herein comprises a human IgG4 heavy chain constant region. In some such embodiments, an antibody described herein comprises an S241P mutation in the human IgG4 constant region. In some embodiments, an antibody described herein comprises a human IgG4 constant region and a human κ light chain.
  • As noted above, whether or not effector function is desirable may depend on the particular method of treatment intended for an antibody. Thus, in some embodiments, when effector function is desirable, an anti-CSF1R antibody comprising a human IgG1 heavy chain constant region or a human IgG3 heavy chain constant region is selected. In some embodiments, when effector function is not desirable, an anti-CSF1R antibody comprising a human IgG4 or IgG2 heavy chain constant region is selected.
  • Exemplary Anti-CSF1R Heavy Chain Variable Regions
  • In some embodiments, anti-CSF1R antibody heavy chain variable regions are provided. In some embodiments, an anti-CSF1R antibody heavy chain variable region is a mouse variable region, a human variable region, or a humanized variable region.
  • An anti-CSF1R antibody heavy chain variable region comprises a heavy chain CDR1, FR2, CDR2, FR3, and CDR3. In some embodiments, an anti-CSF1R antibody heavy chain variable region further comprises a heavy chain FR1 and/or FR4. Nonlimiting exemplary heavy chain variable regions include, but are not limited to, heavy chain variable regions having an amino acid sequence selected from SEQ ID NOs: 9, 11, 13, and 39 to 45.
  • In some embodiments, an anti-CSF1R antibody heavy chain variable region comprises a CDR1 comprising a sequence selected from SEQ ID NOs: 15, 21, and 27.
  • In some embodiments, an anti-CSF1R antibody heavy chain variable region comprises a CDR2 comprising a sequence selected from SEQ ID NOs: 16, 22, and 28.
  • In some embodiments, an anti-CSF1R antibody heavy chain variable region comprises a CDR3 comprising a sequence selected from SEQ ID NOs: 17, 23, and 29.
  • Nonlimiting exemplary heavy chain variable regions include, but are not limited to, heavy chain variable regions comprising sets of CDR1, CDR2, and CDR3 selected from: SEQ ID NOs: 15, 16, and 17; SEQ ID NOs: 21, 22, and 23; and SEQ ID NOs: 27, 28, and 29.
  • In some embodiments, an anti-CSF1R antibody heavy chain comprises a variable region sequence that is at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to a sequence selected from SEQ ID NOs: 9, 11, 13, and 39 to 45, wherein the heavy chain, together with a light chain, is capable of forming an antibody that binds CSF1R.
  • In some embodiments, an anti-CSF1R antibody heavy chain comprises at least one of the CDRs discussed herein. That is, in some embodiments, an anti-CSF1R antibody heavy chain comprises at least one CDR selected from a heavy chain CDR1 discussed herein, a heavy chain CDR2 discussed herein, and a heavy chain CDR3 discussed herein. Further, in some embodiments, an anti-CSF1R antibody heavy chain comprises at least one mutated CDR based on a CDR discussed herein, wherein the mutated CDR comprises 1, 2, 3, or 4 amino acid substitutions relative to the CDR discussed herein. In some embodiments, one or more of the amino acid substitutions are conservative amino acid substitutions. One skilled in the art can select one or more suitable conservative amino acid substitutions for a particular CDR sequence, wherein the suitable conservative amino acid substitutions are not predicted to significantly alter the binding properties of the heavy chain comprising the mutated CDR.
  • In some embodiments, a heavy chain comprises a heavy chain constant region. In some embodiments, a heavy chain comprises a human heavy chain constant region. In some embodiments, the human heavy chain constant region is of an isotype selected from IgA, IgG, and IgD. In some embodiments, the human heavy chain constant region is an IgG constant region. In some embodiments, a heavy chain comprises a human igG4 heavy chain constant region. In some such embodiments, the human IgG4 heavy chain constant region comprises an S241P mutation.
  • In some embodiments, when effector function is desirable, a heavy chain comprises a human IgG1 or IgG3 heavy chain constant region. In some embodiments, when effector function is less desirable, a heavy chain comprises a human IgG4 or IgG2 heavy chain constant region.
  • Exemplary Anti-CSF1R Light Chain Variable Regions
  • In some embodiments, anti-CSF1R antibody light chain variable regions are provided. In some embodiments, an anti-CSF1R antibody light chain variable region is a mouse variable region, a human variable region, or a humanized variable region.
  • An anti-CSF1R antibody light chain variable region comprises a light chain CDR1, FR2, CDR2, FR3, and CDR3. In some embodiments, an anti-CSF1R antibody light chain variable region further comprises a light chain FR1 and/or FR4. Nonlimiting exemplary light chain variable regions include light chain variable regions having an amino acid sequence selected from SEQ ID NOs: 10, 12, 14, and 46 to 52.
  • In some embodiments, an anti-CSF1R antibody light chain variable region comprises a CDR1 comprising a sequence selected from SEQ ID NOs: 18, 24 and 30.
  • In some embodiments, an anti-CSF1R antibody light chain variable region comprises a CDR2 comprising a sequence selected from SEQ ID NOs: 19, 25, and 31.
  • In some embodiments, an anti-CSF1R antibody light chain variable region comprises a CDR3 comprising a sequence selected from SEQ ID NOs: 20, 26, and 32.
  • Nonlimiting exemplary light chain variable regions include, but are not limited to, light chain variable regions comprising sets of CDR1, CDR2, and CDR3 selected from: SEQ ID NOs: 18, 19, and 20; SEQ ID NOs: 24, 25, and 26; and SEQ ID NOs: 30, 31, and 32.
  • In some embodiments, an anti-CSF1R antibody light chain comprises a variable region sequence that is at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to a sequence selected from SEQ ID NOs: 10, 12, 14, and 46 to 52, wherein the light chain, together with a heavy chain, is capable of forming an antibody that binds CSF1R.
  • In some embodiments, an anti-CSF1R antibody light chain comprises at least one of the CDRs discussed herein. That is, in some embodiments, an anti-CSF1R antibody light chain comprises at least one CDR selected from a light chain CDR1 discussed herein, a light chain CDR2 discussed herein, and a light chain CDR3 discussed herein. Further, in some embodiments, an anti-CSF1R antibody light chain comprises at least one mutated CDR based on a CDR discussed herein, wherein the mutated CDR comprises 1, 2, 3, or 4 amino acid substitutions relative to the CDR discussed herein. In some embodiments, one or more of the amino acid substitutions are conservative amino acid substitutions. One skilled in the art can select one or more suitable conservative amino acid substitutions for a particular CDR sequence, wherein the suitable conservative amino acid substitutions are not predicted to significantly alter the binding properties of the light chain comprising the mutated CDR.
  • In some embodiments, a light chain comprises a human light chain constant region. In some embodiments, a human light chain constant region is selected from a human κ and a human λ, light chain constant region.
  • Exemplary Additional CSF1R Binding Molecules
  • In some embodiments, additional molecules that bind CSF1R are provided. Such molecules include, but are not limited to, non-canonical scaffolds, such as anti-calins, adnectins, ankyrin repeats, etc. See, e.g., Hosse et al., Prot. Sci. 15:14 (2006); Fiedler, M. and Skerra, A., “Non-Antibody Scaffolds,” pp. 467-499 in Handbook of Therapeutic Antibodies, Dubel, S., ed., Wiley-VCH, Weinheim, Germany, 2007.
  • Exemplary Properties of Anti-CSF1R Antibodies
  • In some embodiments, an antibody having a structure described above binds to the CSF1R with a binding affinity (KD) of less than 1 nM, blocks binding of CSF1 and/or IL-34 to CSF1R, and inhibits CSF1R phosphorylation induced by CSF1 and/or IL-34.
  • In some embodiments, an anti-CSF1R antibody binds to the extracellular domain of CSF1R (CSF1R-ECD). In some embodiments, an anti-CSF1R antibody has a binding affinity (KD) for CSF1R of less than 1 nM, less than 0.5 nM, less than 0.1 nM, or less than 0.05 nM. In some embodiments, an anti-CSF1R antibody has a KD of between 0.01 and 1 nM, between 0.01 and 0.5 nM, between 0.01 and 0.1 nM, between 0.01 and 0.05 nM, or between 0.02 and 0.05 nM.
  • In some embodiments, an anti-CSF1R antibody blocks ligand binding to CSF1R. In some embodiments, an anti-CSF1R antibody blocks binding of CSF1 to CSF1R. In some embodiments, an anti-CSF1R antibody blocks binding of IL-34 to CSF1R. In some embodiments, an anti-CSF1R antibody blocks binding of both CSF1 and IL-34 to CSF1R. In some embodiments, an antibody that blocks ligand binding binds to the extracellular domain of CSF1R. An antibody is considered to “block ligand binding to CSF1R” when it reduces the amount of detectable binding of a ligand to CSF1R by at least 50%, using the assay described in Example 7. In some embodiments, an antibody reduces the amount of detectable binding of a ligand to CSF1R by at least 60%, at least 70%, at least 80%, or at least 90%, using the assay described in Example 7. In some such embodiments, the antibody is said to block ligand binding by at least 50%, at least 60%, at least 70%, etc.
  • In some embodiments, an anti-CSF1R antibody inhibits ligand-induced CSF1R phosphorylation. In some embodiments, an anti-CSF1R antibody inhibits CSF1-induced CSF1R phosphorylation. In some embodiments, an anti-CSF1R antibody inhibits IL-34-induced CSF1R phosphorylation. In some embodiments, an anti-CSF1R antibody inhibits both CSF1-induced and IL-34-induced CSF1R phosphorylation. An antibody is considered to “inhibit ligand-induced CSF1R phosphorylation” when it reduces the amount of detectable ligand-induced CSF1R phosphorylation by at least 50%, using the assay described in Example 6. In some embodiments, an antibody reduces the amount of detectable ligand-induced CSF1R phosphorylation by at least 60%, at least 70%, at least 80%, or at least 90%, using the assay described in Example 6. In some such embodiments, the antibody is said to inhibit ligand-induced CSF1R phosphorylation by at least at least 50%, at least 60%, at least 70%, etc.
  • In some embodiments, an antibody inhibits monocyte proliferation and/or survival responses in the presence of CSF1 and/or IL-34. An antibody is considered to “inhibit monocyte proliferation and/or survival responses” when it reduces the amount of monocyte proliferation and/or survival responses in the presence of CSF1 and/or IL-34 by at least 50%, using the assay described in Example 10. In some embodiments, an antibody reduces the amount of monocyte proliferation and/or survival responses in the presence of CSF1 and/or IL-34 by at least 60%, at least 70%, at least 80%, or at least 90%, using the assay described in Example 10. In some such embodiments, the antibody is said to inhibit monocyte proliferation and/or survival responses by at least at least 50%, at least 60%, at least 70%, etc.
  • Exemplary Antibody Conjugates
  • In some embodiments, an anti-CSF1R antibody is conjugated to a label and/or a cytotoxic agent. As used herein, a label is a moiety that facilitates detection of the antibody and/or facilitates detection of a molecule to which the antibody binds. Nonlimiting exemplary labels include, but are not limited to, radioisotopes, fluorescent groups, enzymatic groups, chemiluminescent groups, biotin, epitope tags, metal-binding tags, etc. One skilled in the art can select a suitable label according to the intended application.
  • As used herein, a cytotoxic agent is a moiety that reduces the proliferative capacity of one or more cells. A cell has reduced proliferative capacity when the cell becomes less able to proliferate, for example, because the cell undergoes apoptosis or otherwise dies, the cell fails to proceed through the cell cycle and/or fails to divide, the cell differentiates, etc. Nonlimiting exemplary cytotoxic agents include, but are not limited to, radioisotopes, toxins, and chemotherapeutic agents. One skilled in the art can select a suitable cytotoxic according to the intended application.
  • In some embodiments, a label and/or a cytotoxic agent is conjugated to an antibody using chemical methods in vitro. Nonlimiting exemplary chemical methods of conjugation are known in the art, and include services, methods and/or reagents commercially available from, e.g., Thermo Scientific Life Science Research Produces (formerly Pierce; Rockford, Ill.), Prozyme (Hayward, Calif.), SACRI Antibody Services (Calgary, Canada), AbD Serotec (Raleigh, N.C.), etc. In some embodiments, when a label and/or cytotoxic agent is a polypeptide, the label and/or cytotoxic agent can be expressed from the same expression vector with at least one antibody chain to produce a polypeptide comprising the label and/or cytotoxic agent fused to an antibody chain. One skilled in the art can select a suitable method for conjugating a label and/or cytotoxic agent to an antibody according to the intended application.
  • Exemplary Leader Sequences
  • In order for some secreted proteins to express and secrete in large quantities, a leader sequence from a heterologous protein may be desirable. In some embodiments, a leader sequence is selected from SEQ ID NOs: 3 and 4, which are light chain and heavy chain leader sequences, respectively. In some embodiments, employing heterologous leader sequences may be advantageous in that a resulting mature polypeptide may remain unaltered as the leader sequence is removed in the ER during the secretion process. The addition of a heterologous leader sequence may be required to express and secrete some proteins.
  • Certain exemplary leader sequence sequences are described, e.g., in the online Leader sequence Database maintained by the Department of Biochemistry, National University of Singapore. See Choo et al., BMC Bioinformatics, 6: 249 (2005); and PCT Publication No. WO 2006/081430.
  • Nucleic Acid Molecules Encoding Anti-CSF1R Antibodies
  • Nucleic acid molecules comprising polynucleotides that encode one or more chains of anti-CSF1R antibodies are provided. In some embodiments, a nucleic acid molecule comprises a polynucleotide that encodes a heavy chain or a light chain of an anti-CSF1R antibody. In some embodiments, a nucleic acid molecule comprises both a polynucleotide that encodes a heavy chain and a polynucleotide that encodes a light chain, of an anti-CSF1R antibody. In some embodiments, a first nucleic acid molecule comprises a first polynucleotide that encodes a heavy chain and a second nucleic acid molecule comprises a second polynucleotide that encodes a light chain.
  • In some such embodiments, the heavy chain and the light chain are expressed from one nucleic acid molecule, or from two separate nucleic acid molecules, as two separate polypeptides. In some embodiments, such as when an antibody is an scFv, a single polynucleotide encodes a single polypeptide comprising both a heavy chain and a light chain linked together.
  • In some embodiments, a polynucleotide encoding a heavy chain or light chain of an anti-CSF1R antibody comprises a nucleotide sequence that encodes a leader sequence, which, when translated, is located at the N terminus of the heavy chain or light chain. As discussed above, the leader sequence may be the native heavy or light chain leader sequence, or may be another heterologous leader sequence.
  • Nucleic acid molecules may be constructed using recombinant DNA techniques conventional in the art. In some embodiments, a nucleic acid molecule is an expression vector that is suitable for expression in a selected host cell.
  • Anti-CSF1R Antibody Expression and Production
  • Vectors
  • Vectors comprising polynucleotides that encode anti-CSF1R heavy chains and/or anti-CSF1R light chains are provided. Vectors comprising polynucleotides that encode anti-CSF1R heavy chains and/or anti-CSF1R light chains are also provided. Such vectors include, but are not limited to, DNA vectors, phage vectors, viral vectors, retroviral vectors, etc. In some embodiments, a vector comprises a first polynucleotide sequence encoding a heavy chain and a second polynucleotide sequence encoding a light chain. In some embodiments, the heavy chain and light chain are expressed from the vector as two separate polypeptides. In some embodiments, the heavy chain and light chain are expressed as part of a single polypeptide, such as, for example, when the antibody is an scFv.
  • In some embodiments, a first vector comprises a polynucleotide that encodes a heavy chain and a second vector comprises a polynucleotide that encodes a light chain. In some embodiments, the first vector and second vector are transfected into host cells in similar amounts (such as similar molar amounts or similar mass amounts). In some embodiments, a mole- or mass-ratio of between 5:1 and 1:5 of the first vector and the second vector is transfected into host cells. In some embodiments, a mass ratio of between 1:1 and 1:5 for the vector encoding the heavy chain and the vector encoding the light chain is used. In some embodiments, a mass ratio of 1:2 for the vector encoding the heavy chain and the vector encoding the light chain is used.
  • In some embodiments, a vector is selected that is optimized for expression of polypeptides in CHO or CHO-derived cells, or in NSO cells. Exemplary such vectors are described, e.g., in Running Deer et al., Biotechnol. Prog. 20:880-889 (2004).
  • In some embodiments, a vector is chosen for in vivo expression of anti-CSF1R heavy chains and/or anti-CSF1R light chains in animals, including humans. In some such embodiments, expression of the polypeptide is under the control of a promoter that functions in a tissue-specific manner. For example, liver-specific promoters are described, e.g., in PCT Publication No. WO 2006/076288.
  • Host Cells
  • In various embodiments, anti-CSF1R heavy chains and/or anti-CSF1R light chains may be expressed in prokaryotic cells, such as bacterial cells; or in eukaryotic cells, such as fungal cells (such as yeast), plant cells, insect cells, and mammalian cells. Such expression may be carried out, for example, according to procedures known in the art. Exemplary eukaryotic cells that may be used to express polypeptides include, but are not limited to, COS cells, including COS 7 cells; 293 cells, including 293-6E cells; CHO cells, including CHO-S and DG44 cells; PER.C6® cells (Crucell); and NSO cells. In some embodiments, anti-CSF1R heavy chains and/or anti-CSF1R light chains may be expressed in yeast. See, e.g., U.S. Publication No. US 2006/0270045 A1. In some embodiments, a particular eukaryotic host cell is selected based on its ability to make desired post-translational modifications to the anti-CSF1R heavy chains and/or anti-CSF1R light chains. For example, in some embodiments, CHO cells produce polypeptides that have a higher level of sialylation than the same polypeptide produced in 293 cells.
  • Introduction of one or more nucleic acids into a desired host cell may be accomplished by any method, including but not limited to, calcium phosphate transfection, DEAE-dextran mediated transfection, cationic lipid-mediated transfection, electroporation, transduction, infection, etc. Nonlimiting exemplary methods are described, e.g., in Sambrook et al., Molecular Cloning, A Laboratory Manual, 3rd ed. Cold Spring Harbor Laboratory Press (2001). Nucleic acids may be transiently or stably transfected in the desired host cells, according to any suitable method.
  • In some embodiments, one or more polypeptides may be produced in vivo in an animal that has been engineered or transfected with one or more nucleic acid molecules encoding the polypeptides, according to any suitable method.
  • Purification of Anti-CSF1R Antibodies
  • Anti-CSF1R antibodies may be purified by any suitable method. Such methods include, but are not limited to, the use of affinity matrices or hydrophobic interaction chromatography. Suitable affinity ligands include the CSF1R ECD and ligands that bind antibody constant regions. For example, a Protein A, Protein G, Protein A/G, or an antibody affinity column may be used to bind the constant region and to purify an anti-CSF1R antibody. Hydrophobic interactive chromatography, for example, a butyl or phenyl column, may also suitable for purifying some polypeptides. Many methods of purifying polypeptides are known in the art.
  • Cell-Free Production of Anti-CSF1R Antibodies
  • In some embodiments, an anti-CSF1R antibody is produced in a cell-free system. Nonlimiting exemplary cell-free systems are described, e.g., in Sitaraman et al., Methods Mol. Biol. 498: 229-44 (2009); Spirin, Trends Biotechnol. 22: 538-45 (2004); Endo et al., Biotechnol. Adv. 21: 695-713 (2003).
  • Therapeutic Compositions and Methods
  • Methods of Treating Diseases Using Anti-CSF1R Antibodies
  • Provided herein are methods of treating systemic lupus erythematosus (SLE), rheumatoid arthritis, and multiple sclerosis with an antibody that binds CSF1R and blocks CSF1 and IL-34 ligand binding.
  • In some embodiments, a method of treating SLE is provided. In some such embodiments, the method comprises administering an antibody that binds CSF1R and blocks CSF1 and IL-34 ligand binding, such as an antibody selected from huAb1 to huAb16, to a subject with SLE. Treating SLE, in some embodiments, means reducing the incidence and/or severity of skin lesions associated with SLE, and/or reducing a kidney condition selected from glomerulonephritis, interstitial nephritis, and perivascular infiltrates. In some embodiments, a method of treating lupus nephritis is provided, wherein the method comprises administering an antibody that binds CSF1R and blocks CSF1 and IL-34 ligand binding, such as an antibody selected from huAb1 to huAb16, to a subject with lupus nephritis. In some embodiments, a method of treating a class of lupus nephritis selected from class I, class II, class III, class IV, class V, and class VI lupus nephritis is provided, wherein the method comprises administering an antibody that binds CSF1R and blocks CSF1 and IL-34 ligand binding, such as an antibody selected from huAb1 to huAb16, to a subject with lupus nephritis. Class III and class IV lupus nephritis have significantly greater CD16+ monocyte counts than other classes of lupus nephritis. See Yoshimoto et al., Am. J. Kidney Dis. 50: 47-58 (2007). Accordingly, in some embodiments, a method of treating class III or class IV lupus nephritis is provided, wherein the method comprises administering an antibody that binds CSF1R and blocks CSF1 and IL-34 ligand binding, such as an antibody selected from huAb1 to huAb16, to a subject with lupus nephritis. In some such embodiments, the method comprises administering huAb1 to the subject.
  • In some embodiments, a method of treating skin lesions associated with SLE is provided, wherein the method comprises administering an antibody that binds CSF1R, such as an antibody selected from huAb1 to huAb16, to a subject with SLE. In some embodiments, a method of treating skin lesions associated with SLE comprises administering huAb1 to a subject with SLE. In some embodiments, a method of reducing the number, severity, and/or rate of formation of skin lesions associated with SLE is provided, wherein the method comprises administering an antibody that binds CSF1R, such as an antibody selected from huAb1 to huAb16, to a subject with SLE. In some embodiments, a method of reducing the number, severity, and/or rate of formation of skin lesions associated with SLE comprises administering huAb1 to a subject with SLE. The number, severity, and/or rate of formation of skin lesions may be determined, in some embodiments, by visual inspection. Such visual inspection may be carried out, for example, by a clinician or by the subject (e.g., self-reported visual inspection).
  • In some embodiments, a method of treating a kidney condition associated with SLE is provided. In some such embodiments, the method comprises administering an antibody that binds CSF1R and blocks CSF1 and IL-34 ligand binding, such as an antibody selected from huAb1 to huAb16, to a subject with a kidney condition associated with SLE. In some embodiments, antibody huAb1 is administered to the subject. In some embodiments, the kidney condition is selected from glomerulonephritis, interstitial nephritis, and perivascular infiltrates. In some embodiments, a method of treating lupus nephritis is provided, wherein the method comprises administering an antibody that binds CSF1R and blocks CSF1 and IL-34 ligand binding, such as an antibody selected from huAb1 to huAb16, to a subject with lupus nephritis. In some embodiments, a method of treating lupus nephritis comprises administering antibody huAb1 to a subject with lupus nephritis. The extent of kidney damage in lupus nephritis may be determined, in some embodiments, using ultrasonography, scintigraphy, pyelography, or needle biopsy. The extent of kidney damage in lupus nephritis may also be determined, in some embodiments, by measuring kidney function, such as, for example, by measuring proteinuria and/or glomerular filtration rate.
  • In some embodiments, a method of reducing proteinuria associated with lupus nephritis is provided, comprising administering an antibody that binds CSF1R and blocks CSF1 and IL-34 ligand binding, such as an antibody selected from huAb1 to huAb16, to a subject exhibiting proteinuria. Proteinuria may be detected by any method in the art, including, but not limited to, dipstick testing, protein/creatinine ratio, serum albumin/creatinine ratio, and protein electrophoresis. Levels of protein in urine may be indicated, in some embodiments, using the following scale: trace (5-20 mg/dl), 1+ (30 mg/dl), 2+ (100 mg/dl), 3+ (300 mg/dl), and 4+ (>2000 mg/dl). A protein/creatinine ratio of <200 mg/g is considered normal. A serum albumin/creatinine ratio of <17 mg/g and <25 mg/g is considered normal for men and women, respectively. Proteinuria is defined by the National Kidney Foundation Kidney Disease Outcome Quality Initiative as the presence of >300 mg/d total protein or albumin for 24-hour urine excretions; as >30 mg/dL total protein for spot urine dipstick measurements (i.e., 1+ or greater on the scale described above); as >200 mg/g total protein-to-creatinine ratio; as >300 mg/g albumin-to-creatinine ratio for spot urine measurements (or >250 mg/g albumin-to-creatinine ratio for spot urine measurements from men; and >355 mg/g albumin-to-creatinine ratio for spot urine measurements from women).
  • In some embodiments, administration of an antibody that binds CSF1R and blocks CSF1 and IL-34 ligand binding to a subject reduces proteinuria by at least one number or at least two numbers on the “trace, 1+, 2+, 3+, 4+” scale. In other words, in some embodiments, administration of an antibody that binds CSF1R and blocks CSF1 and IL-34 ligand binding to a subject with 3+ proteinuria reduces the proteinuria to a 2+ level or lower, or a 1+ level or lower. In some embodiments, administration of an antibody that binds CSF1R and blocks CSF1 and IL-34 ligand binding to a subject reduces the protein/creatinine ratio and/or albumin/creatinine ratio by at least 50 mg/g, at least 100 mg/g, at least 150 mg/g, at least 200 mg/g, at least 250 mg/g, or at least 300 mg/g. In some embodiments, administration of an antibody that binds CSF1R and blocks CSF1 and IL-34 ligand binding to a subject reduces the protein/creatinine ratio and/or albumin/creatinine ratio to below 250 mg/g, below 200 mg/g, below 150 mg/g, or below 100 mg/g. In some embodiments, administration of an antibody that binds CSF1R and blocks CSF1 and IL-34 ligand binding to a subject reduces the protein/creatinine ratio and/or albumin/creatinine ratio to within 2-fold, within 3-fold, within 4-fold, within 5-fold of a normal ratio. In some embodiments, the reduction in proteinuria is determined in the first week, in the first two weeks, in the first month, in the first two months, in the first three months, in the first 4 months, or in the first six months after beginning treatment. In some embodiments, a subject is monitored for continued suppression of proteinuria while being treated with an antibody that binds CSF1R and blocks CSF1 and IL-34 ligand binding.
  • In some embodiments, a method of improving glomerular filtration rate in a subject with lupus nephritis is provided, comprising administering an antibody that binds CSF1R and blocks CSF1 and IL-34 ligand binding, such as an antibody selected from huAb1 to huAb16 to a subject with lupus nephritis. Glomerular filtration rate may be determined by any method in the art, including, but not limited to, serum or urine levels of insulin or sinistrin (in some embodiments, insulin or sinistrin is injected prior to analysis), creatinine clearance estimated from creatinine concentrations in 24 urine collection and serum, and serum cystatin C levels. Normal glomerular filtration rates in adults are in the range of 90-130 ml/min/1.73 m2. Glomerular filtration rates below 90 ml/min/1.73 m2, below 80 ml/min/1.73 m2, below 70 ml/min/1.73 m2, or below 60 ml/min/1.73 m2 are, in some embodiments, indicative of chronic kidney disease, while rates below 15 ml/min/1.73 m2 are indicative of kidney failure. In some embodiments, a method of improving glomerular filtration rate in a subject with lupus nephritis is provided, comprising administering an antibody that binds CSF1R and blocks CSF1 and IL-34 ligand binding, such as an antibody selected from huAb1 to huAb16, to a subject with lupus nephritis. In some embodiments, following administration of an antibody that binds CSF1R and blocks CSF1 and IL-34 ligand binding, a subject's glomerular filtration rate improves by at least 10 ml/min/1.73 m2, at least 15 ml/min/1.73 m2, at least 20 ml/min/1.73 m2, at least 25 ml/min/1.73 m2, at least 30 ml/min/1.73 m2, at least 40 ml/min/1.73 m2, or at least 50 ml/min/1.73 m2. In some embodiments, following administration of an antibody that binds CSF1R and blocks CSF1 and IL-34 ligand binding, a subject's glomerular filtration rate is at least 60 ml/min/1.73 m2, at least 70 ml/min/1.73 m2, at least 80 ml/min/1.73 m2, or at least 90 ml/min/1.73 m2. In some embodiments, the reduction in glomerular filtration rate is determined in the first week, in the first two weeks, in the first month, in the first two months, in the first three months, in the first 4 months, or in the first six months after beginning treatment. In some embodiments, a subject is monitored for continued improvement of glomerular filtration rate while being treated with an antibody that binds CSF1R and blocks CSF1 and IL-34 ligand binding.
  • In some embodiments, a method of treating lupus nephritis is provided, comprising administering an antibody that binds CSF1R and blocks CSF1 and IL-34 ligand binding, such as an antibody selected from huAb1 to huAb16 to a subject with lupus nephritis, wherein administration of the antibody slows or prevents the progression of a kidney condition associated with lupus nephritis. In some such embodiments, proteinuria and/or the glomerular filtration rate in the subject does not worsen (i.e., proteinuria does not increase and/or the glomerular filtration rate does not decrease) following administration of the antibody and/or during a particular time interval during which the subject is undergoing treatment with the antibody. The treatment may be a single dose or multiple doses.
  • In some embodiments, methods of treating rheumatoid arthritis are provided, wherein the method comprises administering an antibody that binds CSF1R and blocks CSF1 and IL-34 ligand binding, such as an antibody selected from huAb1 to huAb16, to a subject with rheumatoid arthritis. In some embodiments, methods of treating rheumatoid arthritis are provided, wherein the method comprises administering antibody huAb1 to a subject with rheumatoid arthritis. Treating rheumatoid arthritis, in some embodiments, means reducing clinical disease scores, which may be measured, for example, by measuring erythema and swelling in joints affected by rheumatoid arthritis. Treating rheumatoid arthritis, in some embodiments, means reducing inflammation, reducing pannus formation, reducing cartilage damage, reducing bone resorption, reducing macrophage numbers in the joints, reducing autoantibody formation, and/or reducing bone loss.
  • In some embodiments, a method of reducing inflammation associated with rheumatoid arthritis is provided, wherein the method comprises administering an antibody that binds CSF1R and blocks CSF1 and IL-34 ligand binding, such as an antibody selected from huAb1 to huAb16, to a subject with rheumatoid arthritis. In some embodiments, a method of reducing inflammation associated with rheumatoid arthritis is provided, wherein the method comprises administering antibody huAb1 to a subject with rheumatoid arthritis. Reducing inflammation, in some embodiments, comprises reducing erythrocyte sedimentation rate and/or reducing the levels of C-reactive proteins in blood. When inflammation is present in a subject, the erythrocyte sedimentation rate increases, possibly due to increased levels of fibrinogen in the blood. The erythrocyte sedimentation rate may be determined by any method in the art, including, but not limited to, calculating the rate by measuring the change in height of anticoagulated erythrocytes in one hour in a Westergren tube. See also Procedures for the Erythrocyte Sedimentation Rate Test; Approved Standard—Fifth Edition, CLSI document H02-A5. Wayne, Pa.: Clinical and Laboratory Standards institute; 2011. Levels of C-reactive protein in blood may be determined by any methods in the art, including but not limited to using the RAPITEX® CRP test kit (Siemens).
  • Reducing inflammation, in some embodiments, comprises reducing peripheral edema, which is tissue swelling due to the buildup of fluids. Peripheral edema may occur, in some instances, in the ankles, feet, legs, and/or calves of a subject with rheumatoid arthritis. Reducing inflammation, in some embodiments, comprises reducing infiltration of inflammatory cells in the synovium of one or more affected joints. Synovial fluid may be collected, in some embodiments, by athrocentesis.
  • In some embodiments, a method of reducing pannus formation associated with rheumatoid arthritis is provided, wherein the method comprises administering an antibody that binds CSF1R and blocks CSF1 and IL-34 ligand binding, such as an antibody selected from huAb1 to huAb16, to a subject with rheumatoid arthritis. In some embodiments, a method of reducing pannus formation associated with rheumatoid arthritis is provided, wherein the method comprises administering antibody huAb1 to a subject with rheumatoid arthritis. Reducing pannus formation, in some embodiments, comprises reducing infiltration of pannus into cartilage and/or subchondrial bone, and/or reducing hard tissue destruction resulting from pannus infiltration. Pannus formation can be measured by any method in the art, including, but not limited to, imaging one or more affected joints. Nonlimiting exemplary imaging techniques for detecting pannus formation include magnetic resonance imaging (MM), computed tomography (CT) scan, arthroscopy, ultrasonography, duplex ultrasonography, and power doppler imaging.
  • In some embodiments, a method of slowing the progression of pannus formation associated with rheumatoid arthritis is provided, wherein the method comprises administering an antibody that binds CSF1R and blocks CSF1 and IL-34 ligand binding, such as an antibody selected from huAb1 to huAb16, to a subject with rheumatoid arthritis. In some embodiments, the antibody is huAb1. In some embodiments, the formation of pannus is slower following administration of the antibody and/or during a particular time interval during which the subject is undergoing treatment with the antibody. The treatment may be a single dose or multiple doses.
  • In some embodiments, a method of reducing cartilage damage associated with rheumatoid arthritis is provided, wherein the method comprises administering an antibody that binds CSF1R and blocks CSF1 and IL-34 ligand binding, such as an antibody selected from huAb1 to huAb16, to a subject with rheumatoid arthritis. In some embodiments, a method of reducing cartilage damage associated with rheumatoid arthritis is provided, wherein the method comprises administering antibody huAb1 to a subject with rheumatoid arthritis. Reducing cartilage damage, in some embodiments, comprises reducing chondrocyte loss, reducing collagen disruption, and/or reducing cartilage loss. Cartilage damage can be measured by any method in the art, including, but not limited to, imaging one or more affected joints. Nonlimiting exemplary imaging techniques for detecting cartilage damage include MM, CT scan, arthroscopy, and x-ray imaging.
  • In some embodiments, a method of slowing the progression of cartilage damage associated with rheumatoid arthritis is provided, wherein the method comprises administering an antibody that binds CSF1R and blocks CSF1 and IL-34 ligand binding, such as an antibody selected from huAb1 to huAb16, to a subject with rheumatoid arthritis. In some embodiments, the antibody is huAb1. In some embodiments, the progression of cartilage damage is slower following administration of the antibody and/or during a particular time interval during which the subject is undergoing treatment with the antibody. The treatment may be a single dose or multiple doses.
  • In some embodiments, a method of reducing bone resorption associated with rheumatoid arthritis is provided, wherein the method comprises administering an antibody that binds CSF1R and blocks CSF1 and IL-34 ligand binding, such as an antibody selected from huAb1 to huAb16, to a subject with rheumatoid arthritis. In some embodiments, a method of reducing bone resorption associated with rheumatoid arthritis is provided, wherein the method comprises administering antibody huAb1 to a subject with rheumatoid arthritis. Reducing bone resorption, in some embodiments, comprises reducing the number of osteoclasts in joints affected by rheumatoid arthritis.
  • In some embodiments, bone resorption may be measured by determining the level of TRAP5b in plasma from the subject, wherein an elevated level of TRAP5b indicates elevated bone resorption in the subject. Thus, in some embodiments, a reduced level of TRAP5b indicates a reduction in bone resorption. TRAP5b levels may be determined, in certain instances, before and after treatment with an antibody that binds CSF1R, and/or may be determined periodically throughout the course of treatment to monitor the effectiveness of the treatment in reducing bone loss. TRAP5b levels may be determined using any method in the art, including, but not limited to, ELISA (including FAICEA, or fragments absorbed immunocapture enzymatic assay; see, e.g., Quidel® TRAP5b assay, TECOmedical Group, Sissach, Switzerland).
  • In some embodiments, a method of reducing bone loss associated with rheumatoid arthritis is provided, wherein the method comprises administering an antibody that binds CSF1R and blocks CSF1 and IL-34 ligand binding, such as an antibody selected from huAb1 to huAb16, to a subject with rheumatoid arthritis. In some embodiments, a method of reducing bone loss associated with rheumatoid arthritis is provided, wherein the method comprises administering antibody huAb1 to a subject with rheumatoid arthritis. Bone loss may be determined using any method in the art, including, but not limited to, x-ray imaging, MM, CT, bone densitometry, single and dual photon absorptiometry (SPA, DPA), single and dual energy x-ray absorptiometry (SXA, DXA), ultrasonography, scintigraphy, and by measuring levels of serum markers of bone formation and resorption. Nonlimiting exemplary serum markers of bone formation and bone resorption are shown in Table 2.
  • TABLE 2
    Serum markers of bone formation and resorption
    Formation Markers Resorption Markers
    Serum osteocalcin (OC) Serum and urinary hydroxyproline (Hyp)
    Serum total alkaline phosphatase (ALP) Urinary total pyridinoline (Pyr)
    Serum bone specific alkaline Urinary total
    phosphatase (BSAP, BALP, or B-ALP) deoxypyridinoline (dPyr)
    Serum procollagen I carboxyterminal Urinary free pyridinoline (f-Pyr, also
    propeptide (PICP) known as Pyrilinks ® (Metra Biosystems))
    Serum procollagen type I N-terminal Urinary free deoxypyridinoline
    propeptide (PINP) (f-dPyr, also known as Pyrilinks-D ®)
    Bone sialoprotein Serum and urinary collagen type I
    cross-linked N-telopeptide
    (NTx, also referred to as Osteomark)
    Serum and urinary collagen type I
    cross-linked C-terminal telopeptide
    (CTx, also referred to as CrossLaps ®)
    Serum carboxyterminal telopeptide
    of type I collagen (ITCP)
    Tartrate-resistant acid phosphatase
    (TRAP or RACP)
  • In some embodiments, a method of slowing the progression of bone loss associated with rheumatoid arthritis is provided, wherein the method comprises administering an antibody that binds CSF1R and blocks CSF1 and IL-34 ligand binding, such as an antibody selected from huAb1 to huAb16, to a subject with rheumatoid arthritis. In some embodiments, the antibody is huAb1. In some embodiments, bone loss is slower following administration of the antibody and/or during a particular time interval during which the subject is undergoing treatment with the antibody. The treatment may be a single dose or multiple doses.
  • In some embodiments, a method of reducing the number of monocyte lineage cells, such as macrophages and/or CD16+ monocytes, in joints affected by rheumatoid arthritis is provided, wherein the method comprises administering an antibody that binds CSF1R and blocks CSF1 and IL-34 ligand binding, such as an antibody selected from huAb1 to huAb16, to a subject with rheumatoid arthritis. In some embodiments, a method of reducing the number of monocyte lineage cells, such as macrophages and/or CD16+ monocytes, in joints affected by rheumatoid arthritis is provided, wherein the method comprises administering antibody huAb1 to a subject with rheumatoid arthritis. In some embodiments, a method of reducing the number of monocyte lineage cells, such as macrophages and/or CD16+ monocytes, in synovial fluid of joints affected by rheumatoid arthritis is provided, wherein the method comprises administering an antibody that binds CSF1R and blocks CSF1 and IL-34 ligand binding, such as an antibody selected from huAb1 to huAb16, to a subject with rheumatoid arthritis. In some embodiments, a method of reducing the number of monocyte lineage cells, such as macrophages and/or CD16+ monocytes, in synovial fluid of joints affected by rheumatoid arthritis is provided, wherein the method comprises administering antibody huAb1 to a subject with rheumatoid arthritis.
  • In some embodiments, a method of reducing autoantibody levels in a subject with rheumatoid arthritis is provided, wherein the method comprises administering an antibody that binds CSF1R and blocks CSF1 and IL-34 ligand binding, such as an antibody selected from huAb1 to huAb16, to a subject with rheumatoid arthritis. In some embodiments, a method of reducing autoantibody levels in a subject with rheumatoid arthritis is provided, wherein the method comprises administering antibody huAb1 to a subject with rheumatoid arthritis.
  • In some embodiments, a method of reducing autoantibody levels in a subject with rheumatoid arthritis are provided, comprising administering an antibody that binds CSF1R and blocks CSF1 and IL-34 ligand binding, such as an antibody selected from huAb1 to huAb16, to a subject with rheumatoid arthritis. In some such embodiments, the method comprises administering huAb1 to a subject with rheumatoid arthritis. The levels of autoantibodies may be determined by any method in the art. In some embodiments, autoantibody levels are determined by the level of rheumatoid factor (RF) and/or anti-citrullinated protein antibodies (ACPA) and/or anti-nuclear antibodies (ANA).
  • In some embodiments, methods of treating multiple sclerosis are provided, wherein the method comprises administering an antibody that binds CSF1R and blocks CSF1 and IL-34 ligand binding, such as an antibody selected from huAb1 to huAb16, to a subject with multiple sclerosis. Treating multiple sclerosis, in some embodiments, means reducing clinical disease scores.
  • In some embodiments, methods of treating CD16+ disorders are provided, wherein the method comprises administering an antibody that binds CSF1R, wherein the antibody blocks binding of CSF1 to CSF1R and blocks binding of IL-34 to CSF1R, such as an antibody selected from huAb1 to huAb16, to a subject with a CD16+ disorder. In some embodiments, the antibody reduces the number of CD16+ monocytes by at least 30%, and CD16− monocytes are not reduced or are reduced by less than 20%. In some embodiments, CD16+ monocytes are reduced by at least 50%. In some embodiments, the CD16+ monocytes are CD16+ peripheral blood monocytes. In some embodiments, the CD16+ disorder is selected from rheumatoid arthritis, juvenile idiopathic arthritis, psoriasis, psoriatic arthritis, ankylosing spondylitis, Crohn's disease, and ulcerative colitis, lupus erythematosus, inflammatory bowel disease, Sjogren's syndrome, coronary artery disease, asthma, and sarcoidosis.
  • In some embodiments, methods of decreasing CD16+ monocytes are provided, wherein the methods comprise administering an antibody that binds CSF1R and blocks CSF1 and IL-34 ligand binding, such as an antibody selected from huAb1 to huAb16, to a subject with increased CD16+ monocytes. In some embodiments, the subject has an autoimmune condition selected from rheumatoid arthritis and SLE. In some embodiments, administering an antibody that binds CSF1R and blocks CSF1 and IL-34 ligand binding does not decrease the number of CD16− monocytes. In some embodiments, CD16+ monocytes are reduced to a greater extent than CD16− monocytes are reduced when an antibody that binds CSF1R and blocks CSF1 and IL-34 ligand binding is administered to the subject. In some embodiments, CD16+ monocytes are reduced by at least 20%, at least 30%, at least 50%, at least 60%, at least 70%, at least 80%, or at least 90%. In some embodiments, CD16− monocytes are reduced by less than 30%, less than 20%, or less than 10%. In some embodiments, the CD16+ monocytes are CD16+ peripheral blood monocytes. In some embodiments, the CD16− monocytes are CD16− peripheral blood monocytes.
  • Routes of Administration and Carriers
  • In various embodiments, anti-CSF1R antibodies may be administered in vivo by various routes, including, but not limited to, oral, intra-arterial, parenteral, intranasal, intramuscular, intracardiac, intraventricular, intratracheal, buccal, rectal, intraperitoneal, intradermal, topical, transdermal, and intrathecal, or otherwise by implantation or inhalation. The subject compositions may be formulated into preparations in solid, semi-solid, liquid, or gaseous forms; including, but not limited to, tablets, capsules, powders, granules, ointments, solutions, suppositories, enemas, injections, inhalants, and aerosols. A nucleic acid molecule encoding an anti-CSF1R antibody may be coated onto gold microparticles and delivered intradermally by a particle bombardment device, or “gene gun,” as described in the literature (see, e.g., Tang et al., Nature 356:152-154 (1992)). The appropriate formulation and route of administration may be selected according to the intended application.
  • In various embodiments, compositions comprising anti-CSF1R antibodies are provided in formulations with a wide variety of pharmaceutically acceptable carriers (see, e.g., Gennaro, Remington: The Science and Practice of Pharmacy with Facts and Comparisons: Drugfacts Plus, 20th ed. (2003); Ansel et al., Pharmaceutical Dosage Forms and Drug Delivery Systems, 7th ed., Lippencott Williams and Wilkins (2004); Kibbe et al., Handbook of Pharmaceutical Excipients, 3rd ed., Pharmaceutical Press (2000)). Various pharmaceutically acceptable carriers, which include vehicles, adjuvants, and diluents, are available. Moreover, various pharmaceutically acceptable auxiliary substances, such as pH adjusting and buffering agents, tonicity adjusting agents, stabilizers, wetting agents and the like, are also available. Non-limiting exemplary carriers include saline, buffered saline, dextrose, water, glycerol, ethanol, and combinations thereof.
  • In various embodiments, compositions comprising anti-CSF1R antibodies may be formulated for injection, including subcutaneous administration, by dissolving, suspending, or emulsifying them in an aqueous or nonaqueous solvent, such as vegetable or other oils, synthetic aliphatic acid glycerides, esters of higher aliphatic acids, or propylene glycol; and if desired, with conventional additives such as solubilizers, isotonic agents, suspending agents, emulsifying agents, stabilizers and preservatives. In various embodiments, the compositions may be formulated for inhalation, for example, using pressurized acceptable propellants such as dichlorodifluoromethane, propane, nitrogen, and the like. The compositions may also be formulated, in various embodiments, into sustained release microcapsules, such as with biodegradable or non-biodegradable polymers. A non-limiting exemplary biodegradable formulation includes poly lactic acid-glycolic acid polymer. A non-limiting exemplary non-biodegradable formulation includes a polyglycerin fatty acid ester. Certain methods of making such formulations are described, for example, in EP 1 125 584 A1.
  • Pharmaceutical packs and kits comprising one or more containers, each containing one or more doses of an anti-CSF1R antibody are also provided. In some embodiments, a unit dosage is provided wherein the unit dosage contains a predetermined amount of a composition comprising an anti-CSF1R antibody, with or without one or more additional agents. In some embodiments, such a unit dosage is supplied in single-use prefilled syringe for injection. In various embodiments, the composition contained in the unit dosage may comprise saline, sucrose, or the like; a buffer, such as phosphate, or the like; and/or be formulated within a stable and effective pH range. Alternatively, in some embodiments, the composition may be provided as a lyophilized powder that may be reconstituted upon addition of an appropriate liquid, for example, sterile water. In some embodiments, the composition comprises one or more substances that inhibit protein aggregation, including, but not limited to, sucrose and arginine. In some embodiments, a composition of the invention comprises heparin and/or a proteoglycan.
  • Pharmaceutical compositions are administered in an amount effective for treatment or prophylaxis of the specific indication. The therapeutically effective amount is typically dependent on the weight of the subject being treated, his or her physical or health condition, the extensiveness of the condition to be treated, or the age of the subject being treated. In general, anti-CSF1R antibodies may be administered in an amount in the range of about 10 μg/kg body weight to about 100 mg/kg body weight per dose. In some embodiments, anti-CSF1R antibodies may be administered in an amount in the range of about 50 μg/kg body weight to about 5 mg/kg body weight per dose. In some embodiments, anti-CSF1R antibodies may be administered in an amount in the range of about 100 μg/kg body weight to about 10 mg/kg body weight per dose. In some embodiments, anti-CSF1R antibodies may be administered in an amount in the range of about 100 μg/kg body weight to about 20 mg/kg body weight per dose. In some embodiments, anti-CSF1R antibodies may be administered in an amount in the range of about 0.5 mg/kg body weight to about 20 mg/kg body weight per dose.
  • The anti-CSF1R antibody compositions may be administered as needed to subjects. Determination of the frequency of administration may be made by persons skilled in the art, such as an attending physician based on considerations of the condition being treated, age of the subject being treated, severity of the condition being treated, general state of health of the subject being treated and the like. In some embodiments, an effective dose of an anti-CSF1R antibody is administered to a subject one or more times. In various embodiments, an effective dose of an anti-CSF1R antibody is administered to the subject once a month, less than once a month, such as, for example, every two months or every three months. In other embodiments, an effective dose of an anti-CSF1R antibody is administered more than once a month, such as, for example, every three weeks, every two weeks or every week. An effective dose of an anti-CSF1R antibody is administered to the subject at least once. In some embodiments, the effective dose of an anti-CSF1R antibody may be administered multiple times, including for periods of at least a month, at least six months, or at least a year.
  • Combination Therapy
  • Anti-CSF1R antibodies may be administered alone or with other modes of treatment. They may be provided before, substantially contemporaneous with, or after other modes of treatment, for example, surgery, chemotherapy, radiation therapy, or the administration of a biologic, such as another therapeutic antibody. For treatment of rheumatoid arthritis, anti-CSF1R antibodies may be administered with other therapeutic agents, for example, methotrexate, anti-TNF agents such as Remicade (infliximab), Humira (adalimumab), Simponi (golimumab), and Enbrel (etanercept); glucocorticoids such as prednisone; leflunomide; azothioprine; JAK inhibitors such as CP 590690; SYK inhibitors such as R788; anti-IL-6 antibodies; anti-IL-6R antibodies such as tocilizumab; anti-CD-20 antibodies such as rituximab; anti-CD19 antibodies; anti-GM-CSF antibodies; anti-GM-CSF-R antibodies; IL-1 receptor antagonists such as anakinra; CTLA-4 antagonists, such as abatacept; immunosuppressants such as cyclosporine.
  • For treatment of systemic lupus erythematosus, anti-CSF1R antibodies may be administered with other therapeutic agents, for example, hydroxychloroquine (Plaquenil); corticosteroids, such as prednisone, methylprednisone, and prednisolone; immunosuppressants, such as cyclophosphamide (Cytoxan), azathioprine (Imuran, Azasan), mycophenolate (Cellcept), leflunomide (Arava) and methotrexate (Trexall), and belimumab (Benlysta).
  • For treatment of multiple sclerosis, anti-CSF1R antibodies may be administered with other therapeutic agents, for example, interferon alpha; interferon beta; prednisone; anti-alpha4 integrin antibodies such as Tysabri; anti-CD20 antibodies such as Rituxan; FTY720 (Fingolimod); and Cladribine (Leustatin).
  • EXAMPLES
  • The examples discussed below are intended to be purely exemplary of the invention and should not be considered to limit the invention in any way. The examples are not intended to represent that the experiments below are all or the only experiments performed. Efforts have been made to ensure accuracy with respect to numbers used (for example, amounts, temperature, etc.) but some experimental errors and deviations should be accounted for. Unless indicated otherwise, parts are parts by weight, molecular weight is weight average molecular weight, temperature is in degrees Centigrade, and pressure is at or near atmospheric.
  • Example 1: Humanized Anti-CSF1R Antibodies
  • Various humanized anti-CSF1R antibodies were developed previously. See, e.g., PCT Publication No. WO 2011/140249.
  • The sequences for each of the humanized heavy chain variable regions and humanized light chain variable regions, aligned with the sequences of the parental chimeric antibody variable regions and the sequences of the human acceptor variable framework regions are shown in FIGS. 1 (heavy chains) and 2 (light chains). The changes in humanized variable region sequences relative to the human acceptor variable framework region sequences are boxed. Each of the CDRs for each of the variable regions is shown in a boxed region, and labeled as “CDR” above the boxed sequences.
  • Table 5, below, shows the full sequences for the humanized heavy chains and humanized light chains of antibodies huAb1 to huAb16. The name and SEQ ID NOs of the humanized heavy chain and humanized light chain of each of those antibodies is shown in Table 3.
  • TABLE 3
    Humanized heavy chains and light chains of huAb1 to huAb16
    Humanized Humanized SEQ ID Humanized SEQ ID
    antibody HC NO LC NO
    huAbl h0301-H0 53 h0301-L0 60
    huAb2 h0301-H1 54 h0301-L0 60
    huAb3 h0301-H2 55 h0301-L0 60
    huAb4 h0301-H0 53 h0301-L1 61
    huAb5 h0301-H1 54 h0301-L1 61
    huAb6 h0301-H2 55 h0301-L1 61
    huAb7 h0302-H1 56 h0302-L0 62
    huAb8 h0302-H1 56 h0302-L1 63
    huAb9 h0302-H1 56 h0302-L2 64
    huAb10 h0302-H2 57 h0302-L0 62
    huAb11 h0302-H2 57 h0302-L1 63
    huAb12 h0302-H2 57 h0302-L2 64
    huAb13 h0311-H1 58 h0311-L0 65
    huAb14 h0311-H1 58 h0311-L1 66
    huAb15 h0311-H2 59 h0311-L0 65
    huAb16 h0311-H2 59 h0311-L1 66
  • The 16 humanized antibodies were tested for binding to human, cynomolgus monkey, and mouse CSF1R ECD, as described previously. See, e.g., PCT Publication No. WO 2011/140249. The antibodies were found to bind to both human and cynomolgus monkey CSF1R ECD, but not to mouse CSF1R ECD. The humanized antibodies were also found to block binding of CSF1 and IL-34 to both human and mouse CSF1R and to inhibit CSF1-induced and IL-34-induced phosphorylation of human CSF1R expressed in CHO cells. See, e.g., PCT Publication No. WO 2011/140249.
  • The ka, kd, and KD for binding to human CSF1R ECD were previously determined and are shown in Table 4. See, e.g., PCT Publication No. WO 2011/140249.
  • TABLE 4
    Humanized antibody binding affinity for human CSF1R
    huAb ka (M−1s−1) Kd (s−1) KD (nM)
    huAb 0301-L0H0 3.22 × 106 1.11 × 10−03 0.35
    huAb 0301-L0H1 3.56 × 106 1.22 × 10−03 0.34
    huAb 0301-L0H2 2.32 × 106 6.60 × 10−04 0.28
    huAb 0301-L1H0 3.29 × 106 1.15 × 10−03 0.35
    huAb 0301-L1H1 2.87 × 106 9.21 × 10−04 0.32
    huAb 0301-L1H2 2.95 × 106 7.42 × 10−04 0.25
    huAb 0302-L0H1 3.54 × 106 3.69 × 10−03 1.04
    huAb 0302-L1H1 3.47 × 106 4.04 × 10−03 1.17
    huAb 0302-L2H1 1.60 × 106 9.14 × 10−04 0.57
    huAb 0302-L0H2 3.40 × 106 1.79 × 10−03 0.53
    huAb 0302-L1H2 2.71 × 106 1.53 × 10−03 0.56
    huAb 0302-L2H2 1.84 × 106 8.40 × 10−04 0.46
    huAb 0311-L0H1 1.22 × 106 5.40 × 10−04 0.44
    huAb 0311-L1H1 1.32 × 106 6.64 × 10−04 0.50
    huAb 0311-L0H2 1.34 × 106 4.73 × 10−04 0.35
    huAb 0311-L1H2 1.51 × 106 6.09 × 10−04 0.40
  • Example 2: HuAb1 Decreases CD16+ but not CD16− Peripheral Blood Monocytes in Cynomolgus Monkeys
  • 0 mg/kg, 3 mg/kg, 10 mg/kg, or 30 mg/kg huAb1 was administered intravenously to cynomolgus monkeys (2 monkeys per group). Peripheral blood was drawn 14 days later, and CD16+ or CD16− monocyte numbers were analyzed by flow cytometry. Briefly, 0.2 ml peripheral blood was labeled with 20 μl anti-CD16-PE (Becton-Dickenson) for 30 minutes at room temperature in the dark. Erythrocytes were lysed by incubation with 2 ml of 1×BD PharmLyse (Becton-Dickenson) for 20 min, and cells were washed with 1 ml FACS buffer (PBS/0.1% BSA) prior to analysis. Data was collected on an LSRII flow cytometer using the Diva software program (Becton-Dickenson), and results were analyzed using FloJo data analysis program (Tree Star).
  • FIG. 3 shows that treatment of monkeys with huAb1 resulted in a dose-dependent decrease in CD16+ but not CD16− peripheral blood monocytes compared to untreated animals. These data show that huAb1 can reduce monocytes that are mainly response for autoimmune disorders while leaving other subsets of monocytes that are responsible for pathogen clearance intact. This suggests that an antibody that binds CSF1R and blocks ligand binding, such as huAb1, may be effective for treating autoimmune disorders while maintaining a good safety profile with respect to infections.
  • Example 3: Characterization of a Surrogate Anti-Mouse CSF1R Antibody
  • Because humanized antibodies huAb1 to huAb16 do not bind to mouse CSF1R, a chimeric anti-mouse CSF1R antibody (“cAb1”) was selected as a surrogate antibody for use in mouse models. The antibody comprises rat variable regions and mouse constant regions. To generate cAb1, rats were immunized with a mouse CSF1R-ECD-Fc fusion protein, and hybridomas secreting antibodies that blocked binding of both mouse CSF1 and mouse IL-34 to mouse CSF1R were identified by ELISA assay. The variable regions of one such blocking antibody were grafted onto mouse IgG constant regions using standard molecular biologic techniques (Sambrook and Russell, Molecular Cloning: A Laboratory Manual, Third Edition, CSH Press, Cold Spring Harbor, N.Y., 2001). Recombinant chimeric antibody cAb1 was then expressed in CHO cells using standard techniques (Sambrook and Russell, Ibid.).
  • Binding of cAb1 to mouse CSF1R was determined as follows. Ninety-six well clear-bottom ELISA plates were coated overnight with 1 μg/ml recombinant mouse CSF1R ECD-Fc Chimera (R&D Systems) in PBS. The next morning, wells were washed four times with 0.05% Tween20 in PBS (PBST) and blocked with Blocker-Blotto (Pierce). Fifty μl of 0.5× serial dilutions of cAb1, starting with a concentration of 2.6 μg/ml, diluted 1:1 in Blocker-Blotto were added to the CSF1R-coated wells. After incubation at room temperature (RT) for 90 min, wells were washed four times with PBST, and a 1:5000 dilution of a peroxidase-conjugated goat anti-mouse IgG (Sigma) in Blocker-Blotto was added to each well. After incubation at RT for 60 min, wells were washed four times with PBST, and 50 μl o-phenylenediamine dihydrochloride peroxidase substrate (Sigma) was added to each well. After incubation at RT for 30 min, A450 values of each well were read directly on a SpectraMaxPlus spectrophotometer with SoftMaxPro software (Molecular Devices).
  • The results of that experiment are shown in FIG. 4. cAb1 bound to mouse CSF1R ECD in a dose-dependent manner.
  • Example 4: cAb1 Blocks Ligand-Induced Proliferation of a Factor Dependent Cell Line
  • cAb1 was tested for the ability to block ligand-induced proliferation of the factor dependent mouse cell line mNFS60 as follows. mNFS60 cells were stimulated with 10 ng/ml recombinant mouse CSF1 or 100 ng/ml recombinant mouse IL-34 (both from R&D Systems) in the presence or absence of serial dilutions of cAb1. After incubation at 37° C. for 48 hours, relative cellular ATP content of each individual culture was assessed using Cell Titer Glo reagent (Promega) according to the manufacturer's instructions. In this assay, relative cellular ATP content is directly proportional to the number of viable cells in culture, and thus reflects the mNFS60 cell proliferation response.
  • The results of that experiment are shown in FIG. 5. cAb1 blocked CSF1 or IL-34 induced proliferation of mNFS60 cells in a dose-dependent manner.
  • Example 5: cAb1 Suppresses Clinical Disease Scores in a Mouse Model of Rheumatoid Arthritis
  • Arthritis was induced in male DBA/1 mice by intradermal injection of 150 μl of 2 mg/ml bovine Type II collagen (Elastin Products, Owensville, Mo.) in Freund's complete adjuvant (Sigma) on study day 0 and again on study day 21. Mice were randomized into treatment groups on study day 0 and dosing was initiated. Mice were dosed intraperitoneally 3 times per week (3×/wk) with vehicle or with cAb1 (3, 6, 10, or 30 mg/kg) through day 32 of the study, and Clinical Disease Scores were measured for each paw on study days 18 to 35. Clinical Disease Scores were assigned as follows:
      • 0=normal
      • 1=1 hind or fore paw joint affected or minimal diffuse erythema and swelling
      • 2=2 hind or fore paw joints affected or mild diffuse erythema and swelling
      • 3=3 hind or fore paw joints affected or moderate diffuse erythema and swelling
      • 4=4 hind or fore paw joints affected or marked diffuse erythema and swelling
      • 5=Entire paw affected, severe diffuse erythema and severe swelling, unable to flex digits
  • FIG. 6 shows the results of that experiment. cAb1 suppressed Clinical Disease Scores in the Collagen Induced Arthritis model of rheumatoid arthritis. These data suggest that in human patients, an antibody that binds CSF1R and blocks ligand binding, such as huAb1, may be effective for reducing the signs and symptoms of rheumatoid arthritis.
  • Example 6: cAb1 Suppresses Bone Loss in a Mouse Model of Rheumatoid Arthritis
  • High levels of Tartrate Resistant Acid Phosphatase 5b (TRAP5b) are associated with bone remodeling, and have been observed in various conditions characterized by increased bone resorption. TRAP5b levels can therefore be used as a marker for bone resorption (i.e., bone loss).
  • Arthritis was induced in mice, and mice were treated with cAb1 as described in Example 5. Blood was collected at day 35, and plasma levels of TRAP5b (Tartrate Resistant Acid Phosphatase 5b) were measured using a commercial solid phase immunofixed enzyme activity assay for the determination of osteoclast-derived TRAP5b in mouse serum (Immunodiagnostics Systems) according to the manufacturer's instructions. TRAP5b is a marker for bone turnover.
  • FIG. 7 shows the results of that experiment. cAb1 suppressed bone loss in the collagen induced arthritis mode of rheumatoid arthritis, as measured by the suppression of the TRAP5b bone turnover marker. These data suggest that in human patients, an antibody that binds CSF1R and blocks ligand binding, such as huAb1, may suppress bone erosions and joint destruction in rheumatoid arthritis.
  • Example 7: cAb1 Suppresses Inflammation, Cartilage Damage, Pannus Formation, and Bone Destruction in a Mouse Model of Rheumatoid Arthritis
  • Arthritis was induced in mice, and mice were treated with cAb1 as described in Example 5. At the end of the study, paws and knees were collected and placed into neutral buffered formalin (NBF; available from Sigma-Aldrich, cat #HT-501128) overnight and then moved to 70% ethanol for histopathology and immunohistochemistry.
  • Six joints from each animal were processed for histopathologic evaluation. The joints were then scored as follows:
  • Inflammation
      • 0=Normal
      • 1=Minimal infiltration of inflammatory cells in synovium and periarticular tissue of affected joints
      • 2=Mild infiltration of inflammatory cells. If referring to paws, generally restricted to affected joints (1-3 affected)
      • 3=Moderate infiltration with moderate edema. If referring to paws, restricted to affected joints, generally 3-4 joints, including at least one wrist or ankle joint
      • 4=Marked infiltration affecting most areas with marked edema, 1 or 2 unaffected joints may be present
      • 5=Severe diffuse infiltration with severe edema affecting all joints and periarticular tissues
  • Pannus
      • 0=Normal
      • 1=Minimal infiltration of pannus in cartilage and subchondral bone, marginal zones
      • 2=Mild infiltration with marginal zone destruction of hard tissue in affected joints
      • 3=Moderate infiltration with moderate hard tissue destruction in affected joints
      • 4=Marked infiltration with marked destruction of joint architecture, affecting most joints
      • 5=Severe infiltration associated with total or near total destruction of joint architecture, affects all joints
  • Cartilage Damage
      • 0=Normal
      • 1=Minimal=generally minimal to mild loss of toluidine blue staining with no obvious chondrocyte loss or collagen disruption in affected joints
      • 2=Mild=generally mild loss of toluidine blue staining with focal areas of chondrocyte loss and/or collagen disruption in some affected joints
      • 3=Moderate=generally moderate loss of toluidine blue staining with multifocal chondrocyte loss and/or collagen disruption in affected joints, some matrix remains on any affected surface with areas of severe matrix loss
      • 4=Marked=marked loss of toluidine blue staining with multifocal marked (depth to deep zone) chondrocyte loss and/or collagen disruption in most joints, if knee-one surface with total to near total cartilage loss
      • 5=Severe=severe diffuse loss of toluidine blue staining with multifocal severe (depth to tide mark) chondrocyte loss and/or collagen disruption in all joints, if knee-2 or more surfaces with total to near total cartilage loss
  • Bone Resorption
      • 0=Normal
      • 1=Minimal=small areas of resorption, not readily apparent on low magnification, rare osteoclasts in affected joints, restricted to marginal zones
      • 2=Mild=more numerous areas of resorption, not readily apparent on low magnification, osteoclasts more numerous in affected joints, restricted to marginal zones
      • 3=Moderate=obvious resorption of medullary trabecular and cortical bone without full thickness defects in cortex, loss of some medullary trabeculae, lesion apparent on low magnification, osteoclasts more numerous in affected joints
      • 4=Marked=Full thickness defects in cortical bone, often with distortion of profile of remaining cortical surface, marked loss of medullary bone, numerous osteoclasts, affects most joints
      • 5=Severe=Full thickness defects in cortical bone and destruction of joint architecture of all joints
        A sum total histologic score for each parameter for all six joints was calculated.
  • FIG. 8 shows the results of that experiment. cAb1 suppressed inflammation, cartilage damage, pannus formation, and bone destruction in the Collagen Induced Arthritis model of rheumatoid arthritis.
  • Example 8: cAb1 Suppresses Paw and Knee Joint Macrophage Numbers in a Mouse Model of Rheumatoid Arthritis
  • Arthritis was induced in mice, and mice were treated with cAb1 as described in Example 5, and paw and knee joint sections were prepared as described in Example 7. Paw and knee joint sections were stained with a peroxidase conjugated anti-F4/80 antibody, and macrophage numbers were enumerated by counting positive staining cells under a microscope. Tissue sectioning and staining were done by Histotox Labs, Boulder, Colo. F4/80 is a mouse macrophage marker (Leenen et al., J. Immunol. Methods, 1994, 174: 5-19).
  • The results of that experiment are shown in FIG. 9. cAb1 reduced both paw and knee joint macrophage numbers in the Collagen Induced Arthritis model of rheumatoid arthritis.
  • Example 9: cAb1 Suppresses Autoantibody Formation in a Mouse Model of Rheumatoid Arthritis
  • Arthritis was induced in mice, and mice were treated with cAb1 as described in Example 5. Blood was collected at day 35, and plasma levels of anti-mouse collagen II antibodies were measured using a mouse anti-type1 and type2 collagen IgG assay kit (Chondrex) according to the manufacturer's instructions.
  • The results of that experiment are shown in FIG. 10. cAb1 suppressed the formation of anti-mouse collagen II autoantibodies in the Collagen Induced Arthritis mode of rheumatoid arthritis. These data suggest that in human patients, an antibody that binds CSF1R and blocks ligand binding, such as huAb1, may reduce an important trigger of joint inflammation, namely autoantibodies. In addition, autoantibodies such as RF and ACPA may, in some embodiments, be used to monitor drug effect.
  • Example 10: cAb1 Suppresses Bone Loss in a Mouse Model of Established Rheumatoid Arthritis
  • Arthritis was induced in mice as described in Example 5. Mice were treated intraperitoneally 3×/week with 30 mg/kg cAb1 starting when clinical disease scores reached 0.05 to 1.0. Blood was collected 23 days after initial treatment with cAb1, and plasma levels of TRAP5b (Tartrate Resistant Acid Phosphatase 5b) were measured using a commercial solid phase immunofixed enzyme activity assay for the determination of osteoclast-derived TRAP5b in mouse serum (Immunodiagnostics Systems) according to the manufacturer's instructions. TRAP5b is a marker for bone turnover.
  • The results of that experiment are shown in FIG. 11. cAb1 administered after development of clinical disease scores suppressed bone loss in the Collagen Induced Arthritis mode of rheumatoid arthritis as measured by the suppression of the TRAP5b bone turnover marker. These data suggest that in human patients, an antibody that binds CSF1R and blocks ligand binding, such as huAb1, may suppress bone erosion and joint destruction in rheumatoid arthritis.
  • Example 11: cAb1 Suppresses Pannus Formation and Bone Destruction in a Mouse Model of Established Rheumatoid Arthritis
  • Arthritis was induced in mice, and mice were treated with cAb1 as described in Example 10. At the end of the study paws and knees were collected and placed into neutral buffered formalin (NBF) overnight and then moved to 70% ethanol for histopathology and immunohistochemistry.
  • Six joints from each animal were processed for histopathologic evaluation, and a sum total histologic score for all six joints was calculated. The joints were scored as described in Example 7.
  • The results of that experiment are shown in FIG. 12. cAb1 administered after development of clinical disease scores suppressed pannus formation, and bone destruction in the Collagen Induced Arthritis model of rheumatoid arthritis. Histologic scores of inflammation and cartilage damage were unaffected. These data also suggest that in human patients, an antibody that binds CSF1R and blocks ligand binding, such as huAb1, may suppress bone erosion and joint destruction in rheumatoid arthritis.
  • Example 12: cAb1 Suppresses Glomerulonephritis, Interstitial Nephritis, and Perivascular Infiltrates in a Mouse Model of Systemic Lupus Erythematosus
  • A subset of lupus patients develop lupus nephritis, which involves inflammation in one or more structures in the kidney and can lead to kidney failure. Lupus nephritis may detected in patients and severity of disease assessed, for example, by measuring proteinuria, or protein in the urine, and/or determining the glomerular filtration rate, which is a measurement of how much fluid is filtered through the kidneys per unit time. Lupus nephritis may also be detected histologically through examination of kidney biopsies, or through imaging techniques such as ultrasonography (Hahn et al., Arthr. Care Res., 2012, 64: 797-808).
  • The MRL/MpJ-Faslpr/J strain of mice spontaneously develops lupus-like symptoms, including glomerular, tubulointerstitial, and perivascular kidney disease; lymphadenopathy; splenomegaly; circulating autoantibodies; and skin lesions. Female MRL/MpJ-Faslpr/J mice were dosed intraperitoneally every day for 10 weeks from the age of 10 weeks to the age of 20 weeks with vehicle or with 50 mg/kg cAb1. At the end of the study (mouse age 20 weeks), kidneys were collected, weighed, and placed in 10% neutral buffered formalin (NBF) for Histopathologic evaluation. Kidneys were scored according to the following system:
  • Glomerulonephritis
      • 0=Normal.
      • 1=Focal or multifocal, minimal to mild, early proliferative.
      • 2=Multifocal mild to moderate or mild diffuse proliferative.
      • 3=Diffuse moderate proliferative with or without multifocal severe areas.
      • 4=Marked diffuse proliferative, with crescents/sclerosis, multifocal protein casts present.
      • 5=Severe diffuse proliferative, with crescents/sclerosis, diffuse protein casts present.
  • Protein Cast Severity
      • 0=Normal tubules.
      • 1=Minimal=One to 5 profiles of tubules with protein casts.
      • 2=Mild=Multifocal tubules with protein casts (6-20).
      • 3=Moderate=Multifocal tubules with protein casts (21-40).
      • 4=Marked=Multifocal tubules with protein casts (>40 but affects less than
      • 50% of all tubules).
      • 5=Severe=Diffuse tubules with protein casts, affects greater than 50% of all Tubules.
  • Interstitial Nephritis (inflammation not obviously associated with vessels)
      • 0=Normal.
      • 0.5=Very Minimal=Small focal area of MNC in pelvis only.
      • 1=Minimal=Occasional small focal, accumulations of MNC: affects less than 10% of total interstitium and generally localized around pelvis.
      • 2=Mild=Multifocal small to larger infiltrates distributed around pelvis and cortex: affects 10-25% of cortex area.
      • 3=Moderate=Multifocal small to extensive infiltrates in pelvis and cortex: affects 26-50% of cortex area.
      • 4=Marked=Multifocal to diffuse infiltration: affects 51-75% of pelvis and cortex area.
      • 5=Severe=Diffuse infiltration: affects 76-100% of pelvis and cortex area.
  • Vessels
      • 0=Normal.
      • 0.5=Very Minimal=One vessel with minimal perivascular infiltrate.
      • 1=Minimal=Small but definite perivascular infiltrates (1-2).
      • 2=Mild=Several (3-4) foci of perivascular infiltrate, no necrosis.
      • 3=Moderate=Multifocal (5-6) foci of perivascular infiltrate, more extensive, may have some necrosis of vessel wall.
      • 4=Marked=Multifocal (7-8) foci of perivascular infiltrate, extensive with necrosis.
      • 5=Severe=Multifocal (>8) foci of perivascular infiltrate, extensive with necrosis.
  • The results of that experiment are shown in FIG. 13. cAb1 suppressed glomerulonephritis, intersitital nephritis, and perivascular infiltrates in the MRL/lpr model of lupus. Histologic scores of protein cast severity were unaffected. These data suggest that in human patients, an antibody that binds CSF1R and blocks ligand binding, such as huAb1, may reduce renal inflammation associated with systemic lupus erythematosus and restore renal function.
  • Example 13: cAb1 Suppresses Skin Lesions in a Mouse Model of Systemic Lupus Erythematosus
  • Female MRL/MpJ-Faslpr/J mice were dosed with cAb1 described in Example 12. Mice were scored for the presence and severity of skin lesions from the age of 10 weeks through the age of 20 weeks. Skin lesions were scored as follows:
      • 0=none
      • 1=mild (snout and ears)
      • 2=moderate (<2 cm snout, ears, and intrascapular)
      • 3=severe (>2 cm snout, ears, and intrascapular)
  • The results of that experiment are shown in FIG. 14. cAb1 suppressed the incidence and severity of skin lesions in the MRL/lpr model of lupus. These data suggest that in human patients, an antibody that binds CSF1R and blocks ligand binding, such as huAb1, may reduce the systemic manifestations of SLE, including skin inflammation, rash, and discoid lesions.
  • Example 14: cAb1 Suppresses Clinical Disease Scores in a Mouse Model of Multiple Sclerosis
  • Experimental autoimmune encephalitis (EAE) was induced in female C57Bl/6 mice by subcutaneous injection of 300 ng myelin oligodendrocyte glycoprotein peptide 35-55 (MOG 35-55, Sigma-Aldrich, Cat #M4939) in complete Freund's adjuvant on study day 0 and again on study day 7. To enhance the induction and consistency of EAE, 500 ng pertussis toxin (List Biological Laboratories, Cat #180) was administered intraperitoneally on days 0 and 2. EAE is a model of multiple sclerosis. Mice were randomized into treatment groups on study day 0 and dosing was initiated. Mice were dosed intraperitoneally 3 times per week (3×/wk) with vehicle or with 30 mg/kg cAb1 through day 15 of the study. Clinical Disease Scores were measured on study days 6-15. Clinical Disease Scores were assigned as follows:
      • 0.0=No clinical signs
      • 0.5=Partially limp tail
      • 1.0=Paralyzed tail
      • 2.0=Loss in coordinated movement; hind limb paresis
      • 2.5=One hind limb paralyzed
      • 3.0=Both hind limbs paralyzed
      • 3.5=Hind limbs paralyzed; weakness in forelimbs
      • 4.0=Forelimbs and hindlimbs paralyzed
      • 5.0=Moribund
  • The results of that experiment are shown in FIG. 15. cAb1 suppressed Clinical Disease Scores in the Experimental Autoimmune Encephalitis model of multiple sclerosis. These data suggest that in human patients, an antibody that binds CSF1R and blocks ligand binding, such as huAb1, may reduce inflammation in the CNS associated with multiple sclerosis and may reverse paralysis caused by MS-associated demyelination and neuronal damage.
  • Table of Sequences
  • Table 5 provides certain sequences discussed herein. All polypeptide and antibody sequences are shown without leader sequences, unless otherwise indicated.
  • TABLE 5
    Sequences and Descriptions
    SEQ
    ID
    NO Description Sequence
    1 hCSF1R IPVIEPSVPE LVVKPGATVT LRCVGNGSVE WDGPPSPHWT LYSDGSSSIL
    (full-length, STNNATFQNT GTYRCTEPGD PLGGSAAIHL YVKDPARPWN VLAQEVVVFE
    no leader DQDALLPCLL TDPVLEAGVS LVRVRGRPLM RHTNYSFSPW HGFTIHRAKF
    sequence) IQSQDYQCSA LMGGRKVMSI SIRLKVQKVI PGPPALTLVP AELVRIRGEA
    AQIVCSASSV DVNFDVFLQH NNTKLAIPQQ SDFHNNRYQK VLTLNLDQVD
    FQHAGNYSCV ASNVQGKHST SMFFRVVESA YLNLSSEQNL IQEVTVGEGL
    NLKVMVEAYP GLQGFNWTYL GPFSDHQPEP KLANATTKDT YRHTFTLSLP
    RLKPSEAGRY SFLARNPGGW RALTFELTLR YPPEVSVIWT FINGSGTLLC
    AASGYPQPNV TWLQCSGHTD RCDEAQVLQV WDDPYPEVLS QEPFHKVTVQ
    SLLTVETLEH NQTYECRAHN SVGSGSWAFI PISAGAHTHP PDEFLFTPVV
    VACMSIMALL LLLLLLLLYK YKQKPKYQVR WKIIESYEGN SYTFIDPTQL
    PYNEKWEFPR NNLQFGKTLG AGAFGKVVEA TAFGLGKEDA VLKVAVKMLK
    STAHADEKEA LMSELKIMSH LGQHENIVNL LGACTHGGPV LVITEYCCYG
    DLLNFLRRKA EAMLGPSLSP GQDPEGGVDY KNIHLEKKYV RRDSGFSSQG
    VDTYVEMRPV STSSNDSFSE QDLDKEDGRP LELRDLLHFS SQVAQGMAFL
    ASKNCIHRDV AARNVLLTNG HVAKIGDFGL ARDIMNDSNY IVKGNARLPV
    KWMAPESIFD CVYTVQSDVW SYGILLWEIF SLGLNPYPGI LVNSKFYKLV
    KDGYQMAQPA FAPKNIYSIM QACWALEPTH RPTFQQICSF LQEQAQEDRR
    ERDYTNLPSS SRSGGSGSSS SELEEESSSE HLTCCEQGDI AQPLLQPNNY
    QFC
    2 hCSF1R MGPGVLLLLL VATAWHGQGI PVIEPSVPEL VVKPGATVTL RCVGNGSVEW
    (full-length, + DGPPSPHWTL YSDGSSSILS TNNATFQNTG TYRCTEPGDP LGGSAAIHLY
    leader VKDPARPWNV LAQEVVVFED QDALLPCLLT DPVLEAGVSL VRVRGRPLMR
    sequence) HTNYSFSPWH GFTIHRAKFI QSQDYQCSAL MGGRKVMSIS IRLKVQKVIP
    GPPALTLVPA ELVRIRGEAA QIVCSASSVD VNFDVFLQHN NTKLAIPQQS
    DFHNNRYQKV LTLNLDQVDF QHAGNYSCVA SNVQGKHSTS MFFRVVESAY
    LNLSSEQNLI QEVTVGEGLN LKVMVEAYPG LQGFNWTYLG PFSDHQPEPK
    LANATTKDTY RHTFTLSLPR LKPSEAGRYS FLARNPGGWR ALTFELTLRY
    PPEVSVIWTF INGSGTLLCA ASGYPQPNVT WLQCSGHTDR CDEAQVLQVW
    DDPYPEVLSQ EPFHKVTVQS LLTVETLEHN QTYECRAHNS VGSGSWAFIP
    ISAGAHTHPP DEFLFTPVVV ACMSIMALLL LLLLLLLYKY KQKPKYQVRW
    KIIESYEGNS YTFIDPTQLP YNEKWEFPRN NLQFGKTLGA GAFGKVVEAT
    AFGLGKEDAV LKVAVKMLKS TAHADEKEAL MSELKIMSHL GQHENIVNLL
    GACTHGGPVL VITEYCCYGD LLNFLRRKAE AMLGPSLSPG QDPEGGVDYK
    NIHLEKKYVR RDSGFSSQGV DTYVEMRPVS TSSNDSFSEQ DLDKEDGRPL
    ELRDLLHFSS QVAQGMAFLA SKNCIHRDVA ARNVLLTNGH VAKIGDFGLA
    RDIMNDSNYI VKGNARLPVK WMAPESIFDC VYTVQSDVWS YGILLWEIFS
    LGLNPYPGIL VNSKFYKLVK DGYQMAQPAF APKNIYSIMQ ACWALEPTHR
    PTFQQICSFL QEQAQEDRRE RDYTNLPSSS RSGGSGSSSS ELEEESSSEH
    LTCCEQGDIA QPLLQPNNYQ FC
    5 hCSF1R IPVIEPSVPE LVVKPGATVT LRCVGNGSVE WDGPPSPHWT LYSDGSSSIL
    ECD.506 STNNATFQNT GTYRCTEPGD PLGGSAAIHL YVKDPARPWN VLAQEVVVFE
    DQDALLPCLL TDPVLEAGVS LVRVRGRPLM RHTNYSFSPW HGFTIHRAKF
    IQSQDYQCSA LMGGRKVMSI SIRLKVQKVI PGPPALTLVP AELVRIRGEA
    AQIVCSASSV DVNFDVFLQH NNTKLAIPQQ SDFHNNRYQK VLTLNLDQVD
    FQHAGNYSCV ASNVQGKHST SMFFRVVESA YLNLSSEQNL IQEVTVGEGL
    NLKVMVEAYP GLQGFNWTYL GPFSDHQPEP KLANATTKDT YRHTFTLSLP
    RLKPSEAGRY SFLARNPGGW RALTFELTLR YPPEVSVIWT FINGSGTLLC
    AASGYPQPNV TWLQCSGHTD RCDEAQVLQV WDDPYPEVLS QEPFHKVTVQ
    SLLTVETLEH NQTYECRAHN SVGSGSWAFI
    PISAGAH
    6 hCSF1R IPVIEPSVPE LVVKPGATVT LRCVGNGSVE WDGPPSPHWT LYSDGSSSIL
    ECD.506-Fc STNNATFQNT GTYRCTEPGD PLGGSAAIHL YVKDPARPWN VLAQEVVVFE
    DQDALLPCLL TDPVLEAGVS LVRVRGRPLM RHTNYSFSPW HGFTIHRAKF
    IQSQDYQCSA LMGGRKVMSI SIRLKVQKVI PGPPALTLVP AELVRIRGEA
    AQIVCSASSV DVNFDVFLQH NNTKLAIPQQ SDFHNNRYQK VLTLNLDQVD
    FQHAGNYSCV ASNVQGKHST SMFFRVVESA YLNLSSEQNL IQEVTVGEGL
    NLKVMVEAYP GLQGFNWTYL GPFSDHQPEP KLANATTKDT YRHTFTLSLP
    RLKPSEAGRY SFLARNPGGW RALTFELTLR YPPEVSVIWT FINGSGTLLC
    AASGYPQPNV TWLQCSGHTD RCDEAQVLQV WDDPYPEVLS QEPFHKVTVQ
    SLLTVETLEH NQTYECRAHN SVGSGSWAFI PISAGAHEPK SSDKTHTCPP
    CPAPELLGGP SVFLFPPKPK DTLMISRTPE VTCVVVDVSH EDPEVKFNWY
    VDGVEVHNAK TKPREEQYNS TYRVVSVLTV LHQDWLNGKE YKCKVSNKAL
    PAPIEKTISK AKGQPREPQV YTLPPSRDEL TKNQVSLTCL VKGFYPSDIA
    VEWESNGQPE NNYKTTPPVL DSDGSFFLYS KLTVDKSRWQ QGNVFSCSVM
    HEALHNHYTQ KSLSLSPGK
    7 cynoCSF1R MGPGVLLLLL VVTAWHGQGI PVIEPSGPEL VVKPGETVTL RCVGNGSVEW
    ECD (with DGPISPHWTL YSDGPSSVLT TTNATFQNTR TYRCTEPGDP LGGSAAIHLY
    leader VKDPARPWNV LAKEVVVFED QDALLPCLLT DPVLEAGVSL VRLRGRPLLR
    sequence) HTNYSFSPWH GFTIHRAKFI QGQDYQCSAL MGSRKVMSIS IRLKVQKVIP
    GPPALTLVPA ELVRIRGEAA QIVCSASNID VDFDVFLQHN TTKLAIPQRS
    DFHDNRYQKV LTLSLGQVDF QHAGNYSCVA SNVQGKHSTS MFFRVVESAY
    LDLSSEQNLI QEVTVGEGLN LKVMVEAYPG LQGFNWTYLG PFSDHQPEPK
    LANATTKDTY RHTFTLSLPR LKPSEAGRYS FLARNPGGWR ALTFELTLRY
    PPEVSVIWTS INGSGTLLCA ASGYPQPNVT WLQCAGHTDR CDEAQVLQVW
    VDPHPEVLSQ EPFQKVTVQS LLTAETLEHN QTYECRAHNS VGSGSWAFIP
    ISAGAR
    8 cynoCSF1R MGPGVLLLLL VVTAWHGQGI PVIEPSGPEL VVKPGETVTL RCVGNGSVEW
    ECD-Fc DGPISPHWTL YSDGPSSVLT TTNATFQNTR TYRCTEPGDP LGGSAAIHLY
    (with leader VKDPARPWNV LAKEVVVFED QDALLPCLLT DPVLEAGVSL VRLRGRPLLR
    sequence) HTNYSFSPWH GFTIHRAKFI QGQDYQCSAL MGSRKVMSIS IRLKVQKVIP
    GPPALTLVPA ELVRIRGEAA QIVCSASNID VDFDVFLQHN TTKLAIPQRS
    DFHDNRYQKV LTLSLGQVDF QHAGNYSCVA SNVQGKHSTS MFFRVVESAY
    LDLSSEQNLI QEVTVGEGLN LKVMVEAYPG LQGFNWTYLG PFSDHQPEPK
    LANATTKDTY RHTFTLSLPR LKPSEAGRYS FLARNPGGWR ALTFELTLRY
    PPEVSVIWTS INGSGTLLCA ASGYPQPNVT WLQCAGHTDR CDEAQVLQVW
    VDPHPEVLSQ EPFQKVTVQS LLTAETLEHN QTYECRAHNS VGSGSWAFIP
    ISAGARGSEP KSSDKTHTCP PCPAPELLGG PSVFLFPPKP KDTLMISRTP
    EVTCVVVDVS HEDPEVKFNW YVDGVEVHNA KTKPREEQYN STYRVVSVLT
    VLHQDWLNGK EYKCKVSNKA LPAPIEKTIS KAKGQPREPQ VYTLPPSRDE
    LTKNQVSLTC LVKGFYPSDI AVEWESNGQP ENNYKTTPPV LDSDGSFFLY
    SKLTVDKSRW QQGNVFSCSV MHEALHNHYT QKSLSLSPGK
    3 Light chain METDTLLLWV LLLWVPGSTG
    leader
    sequence
    4 Heavy chain MAVLGLLLCL VTFPSCVLS
    leader
    sequence
    9 Fab 0301 EVQLQQSGPE LVRPGASVKM SCKASGYTFT DNYMIWVKQS HGKSLEWIGD
    heavy chain INPYNGGTTF NQKFKGKATL TVEKSSSTAY MQLNSLTSED SAVYYCARES
    variable PYFSNLYVMD YWGQGTSVTV SS
    region
    10 Fab 0301 NIVLTQSPAS LAVSLGQRAT ISCKASQSVD YDGDNYMNWY QQKPGQPPKL
    light chain LIYAASNLES GIPARFSGSG SGTDFTLNIH PVEEEDAATY YCHLSNEDLS
    variable TFGGGTKLEI K
    region
    11 Fab 0302 EIQLQQSGPE LVKPGASVKM SCKASGYTFS DFNIHWVKQK PGQGLEWIGY
    heavy chain INPYTDVTVY NEKFKGKATL TSDRSSSTAY MDLSSLTSED SAVYYCASYF
    variable DGTFDYALDY WGQGTSITVS S
    region
    12 Fab 0302 DVVVTQTPAS LAVSLGQRAT ISCRASESVD NYGLSFMNWF QQKPGQPPKL
    light chain LIYTASNLES GIPARFSGGG SRTDFTLTID PVEADDAATY FCQQSKELPW
    variable TFGGGTRLEI K
    region
    13 Fab 0311 EIQLQQSGPD LMKPGASVKM SCKASGYIFT DYNMHWVKQN QGKSLEWMGE
    heavy chain INPNNGVVVY NQKFKGTTTL TVDKSSSTAY MDLHSLTSED SAVYYCTRAL
    variable YHSNFGWYFD SWGKGTTLTV SS
    region
    14 Fab 0311 DIVLTQSPAS LAVSLGQRAT ISCKASQSVD YDGDSHMNWY QQKPGQPPKL
    light chain LIYTASNLES GIPARFSGSG SGADFTLTIH PVEEEDAATY YCQQGNEDPW
    variable TFGGGTRLEI K
    region
    15 0301 heavy GYTFTDNYMI
    chain CDR1
    16 0301 heavy DINPYNGGTT FNQKFKG
    chain CDR2
    17 0301 heavy ESPYFSNLYV MDY
    chain CDR3
    18 0301 light KASQSVDYDG DNYMN
    chain CDR1
    19 0301 light AASNLES
    chain CDR2
    20 0301 light HLSNEDLST
    chain CDR3
    21 0302 heavy GYTFSDFNIH
    chain CDR1
    22 0302 heavy YINPYTDVTV YNEKFKG
    chain CDR2
    23 0302 heavy YFDGTFDYAL DY
    chain CDR3
    24 0302 light RASESVDNYG LSFMN
    chain CDR1
    25 0302 light TASNLES
    chain CDR2
    26 0302 light QQSKELPWT
    chain CDR3
    27 0311 heavy GYIFTDYNMH
    chain CDR1
    28 0311 heavy EINPNNGVVV YNQKFKG
    chain CDR2
    29 0311 heavy ALYHSNFGWY FDS
    chain CDR3
    30 0311 light KASQSVDYDG DSHMN
    chain CDR1
    31 0311 light TASNLES
    chain CDR2
    32 0311 light QQGNEDPWT
    chain CDR3
    33 cAb 0301 EVQLQQSGPE LVRPGASVKM SCKASGYTFT DNYMIWVKQS HGKSLEWIGD
    heavy chain INPYNGGTTF NQKFKGKATL TVEKSSSTAY MQLNSLTSED SAVYYCARES
    PYFSNLYVMD YWGQGTSVTV SSASTKGPSV FPLAPCSRST SESTAALGCL
    VKDYFPEPVT VSWNSGALTS GVHTFPAVLQ SSGLYSLSSV VTVPSSSLGT
    KTYTCNVDHK PSNTKVDKRV ESKYGPPCPP CPAPEFLGGP SVFLFPPKPK
    DTLMISRTPE VTCVVVDVSQ EDPEVQFNWY VDGVEVHNAK TKPREEQFNS
    TYRVVSVLTV LHQDWLNGKE YKCKVSNKGL PSSIEKTISK AKGQPREPQV
    YTLPPSQEEM TKNQVSLTCL VKGFYPSDIA VEWESNGQPE NNYKTTPPVL
    DSDGSFFLYS RLTVDKSRWQ EGNVFSCSVM HEALHNHYTQ KSLSLSLGK
    34 cAb 0301 NIVLTQSPAS LAVSLGQRAT ISCKASQSVD YDGDNYMNWY QQKPGQPPKL
    light chain LIYAASNLES GIPARFSGSG SGTDFTLNIH PVEEEDAATY YCHLSNEDLS
    TFGGGTKLEI KRTVAAPSVF IFPPSDEQLK SGTASVVCLL NNFYPREAKV
    QWKVDNALQS GNSQESVTEQ DSKDSTYSLS STLTLSKADY EKHKVYACEV
    THQGLSSPVT KSFNRGEC
    35 cAb 0302 EIQLQQSGPE LVKPGASVKM SCKASGYTFS DFNIHWVKQK PGQGLEWIGY
    heavy chain INPYTDVTVY NEKFKGKATL TSDRSSSTAY MDLSSLTSED SAVYYCASYF
    DGTFDYALDY WGQGTSITVS SASTKGPSVF PLAPCSRSTS ESTAALGCLV
    KDYFPEPVTV SWNSGALTSG VHTFPAVLQS SGLYSLSSVV TVPSSSLGTK
    TYTCNVDHKP SNTKVDKRVE SKYGPPCPPC PAPEFLGGPS VFLFPPKPKD
    TLMISRTPEV TCVVVDVSQE DPEVQFNWYV DGVEVHNAKT KPREEQFNST
    YRVVSVLTVL HQDWLNGKEY KCKVSNKGLP SSIEKTISKA KGQPREPQVY
    TLPPSQEEMT KNQVSLTCLV KGFYPSDIAV EWESNGQPEN NYKTTPPVLD
    SDGSFFLYSR LTVDKSRWQE GNVFSCSVMH EALHNHYTQK SLSLSLGK
    36 cAb 0302 DVVVTQTPAS LAVSLGQRAT ISCRASESVD NYGLSFMNWF QQKPGQPPKL
    light chain LIYTASNLES GIPARFSGGG SRTDFTLTID PVEADDAATY FCQQSKELPW
    TFGGGTRLEI KRTVAAPSVF IFPPSDEQLK SGTASVVCLL NNFYPREAKV
    QWKVDNALQS GNSQESVTEQ DSKDSTYSLS STLTLSKADY EKHKVYACEV
    THQGLSSPVT KSFNRGEC
    37 cAb 0311 EIQLQQSGPD LMKPGASVKM SCKASGYIFT DYNMHWVKQN QGKSLEWMGE
    heavy chain INPNNGVVVY NQKFKGTTTL TVDKSSSTAY MDLHSLTSED SAVYYCTRAL
    YHSNFGWYFD SWGKGTTLTV SSASTKGPSV FPLAPCSRST SESTAALGCL
    VKDYFPEPVT VSWNSGALTS GVHTFPAVLQ SSGLYSLSSV VTVPSSSLGT
    KTYTCNVDHK PSNTKVDKRV ESKYGPPCPP CPAPEFLGGP SVFLFPPKPK
    DTLMISRTPE VTCVVVDVSQ EDPEVQFNWY VDGVEVHNAK TKPREEQFNS
    TYRVVSVLTV LHQDWLNGKE YKCKVSNKGL PSSIEKTISK AKGQPREPQV
    YTLPPSQEEM TKNQVSLTCL VKGFYPSDIA VEWESNGQPE NNYKTTPPVL
    DSDGSFFLYS RLTVDKSRWQ EGNVFSCSVM HEALHNHYTQ KSLSLSLGK
    38 cAb 0311 DIVLTQSPAS LAVSLGQRAT ISCKASQSVD YDGDSHMNWY QQKPGQPPKL
    light chain LIYTASNLES GIPARFSGSG SGADFTLTIH PVEEEDAATY YCQQGNEDPW
    TFGGGTRLEI KRTVAAPSVF IFPPSDEQLK SGTASVVCLL NNFYPREAKV
    QWKVDNALQS GNSQESVTEQ DSKDSTYSLS STLTLSKADY EKHKVYACEV
    THQGLSSPVT KSFNRGEC
    39 h0301-H0 QVQLVQSGAE VKKPGSSVKV SCKASGYTFT DNYMIWVRQA PGQGLEWMGD
    heavy chain INPYNGGTTF NQKFKGRVTI TADKSTSTAY MELSSLRSED TAVYYCARES
    variable PYFSNLYVMD YWGQGTLVTV SS
    region
    40 h0301-H1 QVQLVQSGAE VKKPGSSVKV SCKASGYTFT DNYMIWVRQA PGQGLEWMGD
    heavy chain INPYNGGTTF NQKFKGRVTI TVDKSTSTAY MELSSLRSED TAVYYCARES
    variable PYFSNLYVMD YWGQGTLVTV SS
    region
    41 h0301-H2 QVQLVQSGAE VKKPGSSVKV SCKASGYTFT DNYMIWVRQA PGQGLEWIGD
    heavy chain INPYNGGTTF NQKFKGRATL TVDKSTSTAY MELSSLRSED TAVYYCARES
    variable PYFSNLYVMD YWGQGTLVTV SS
    region
    42 H0302-H1 QVQLVQSGAE VKKPGSSVKV SCKASGYTFS DFNIHWVRQA PGQGLEWMGY
    heavy chain INPYTDVTVY NEKFKGRVTI TSDKSTSTAY MELSSLRSED TAVYYCASYF
    variable DGTFDYALDY WGQGTLVTVS S
    region
    43 H0302-H2 QVQLVQSGAE VKKPGSSVKV SCKASGYTFS DFNIHWVRQA PGQGLEWIGY
    heavy chain INPYTDVTVY NEKFKGRATL TSDKSTSTAY MELSSLRSED TAVYYCASYF
    variable DGTFDYALDY WGQGTLVTVS S
    region
    44 H0311-H1 QVQLVQSGAE VKKPGSSVKV SCKASGYIFT DYNMHWVRQA PGQGLEWMGE
    heavy chain INPNNGVVVY NQKFKGRVTI TVDKSTSTAY MELSSLRSED TAVYYCTRAL
    variable YHSNFGWYFD SWGQGTLVTV SS
    region
    45 H0311-H2 QVQLVQSGAE VKKPGSSVKV SCKASGYIFT DYNMHWVRQA PGQGLEWMGE
    heavy chain INPNNGVVVY NQKFKGTTTL TVDKSTSTAY MELSSLRSED TAVYYCTRAL
    variable YHSNFGWYFD SWGQGTLVTV SS
    region
    46 h0301-L0 EIVLTQSPAT LSLSPGERAT LSCKASQSVD YDGDNYMNWY QQKPGQAPRL
    light chain LIYAASNLES GIPARFSGSG SGTDFTLTIS SLEPEDFAVY YCHLSNEDLS
    variable TFGGGTKVEI K
    region
    47 h0301-L1 NIVLTQSPAT LSLSPGERAT LSCKASQSVD YDGDNYMNWY QQKPGQAPRL
    light chain LIYAASNLES GIPARFSGSG SGTDFTLTIS SLEPEDFAVY YCHLSNEDLS
    variable TFGGGTKVEI K
    region
    48 H0302-L0 EIVLTQSPAT LSLSPGERAT LSCRASESVD NYGLSFMNWY QQKPGQAPRL
    light chain LIYTASNLES GIPARFSGSG SGTDFTLTIS SLEPEDFAVY YCQQSKELPW
    variable TFGQGTKVEI K
    region
    49 H0302-L1 EIVLTQSPAT LSLSPGERAT LSCRASESVD NYGLSFMNWY QQKPGQAPRL
    light chain LIYTASNLES GIPARFSGSG SRTDFTLTIS SLEPEDFAVY YCQQSKELPW
    variable TFGQGTKVEI K
    region
    50 H0302-L2 EIVVTQSPAT LSLSPGERAT LSCRASESVD NYGLSFMNWF QQKPGQAPRL
    light chain LIYTASNLES GIPARFSGSG SRTDFTLTIS SLEPEDFAVY YCQQSKELPW
    variable TFGQGTKVEI K
    region
    51 H0311-L0 EIVLTQSPAT LSLSPGERAT LSCKASQSVD YDGDSHMNWY QQKPGQAPRL
    light chain LIYTASNLES GIPARFSGSG SGTDFTLTIS SLEPEDFAVY YCQQGNEDPW
    variable TFGQGTKVEI K
    region
    52 H0311-L1 DIVLTQSPAT LSLSPGERAT LSCKASQSVD YDGDSHMNWY QQKPGQAPRL
    light chain LIYTASNLES GIPARFSGSG SGADFTLTIS SLEPEDFAVY YCQQGNEDPW
    variable TFGQGTKVEI K
    region
    53 h0301-H0 QVQLVQSGAE VKKPGSSVKV SCKASGYTFT DNYMIWVRQA PGQGLEWMGD
    heavy chain INPYNGGTTF NQKFKGRVTI TADKSTSTAY MELSSLRSED TAVYYCARES
    PYFSNLYVMD YWGQGTLVTV SSASTKGPSV FPLAPCSRST SESTAALGCL
    VKDYFPEPVT VSWNSGALTS GVHTFPAVLQ SSGLYSLSSV VTVPSSSLGT
    KTYTCNVDHK PSNTKVDKRV ESKYGPPCPP CPAPEFLGGP SVFLFPPKPK
    DTLMISRTPE VTCVVVDVSQ EDPEVQFNWY VDGVEVHNAK TKPREEQFNS
    TYRVVSVLTV LHQDWLNGKE YKCKVSNKGL PSSIEKTISK AKGQPREPQV
    YTLPPSQEEM TKNQVSLTCL VKGFYPSDIA VEWESNGQPE NNYKTTPPVL
    DSDGSFFLYS RLTVDKSRWQ EGNVFSCSVM HEALHNHYTQ KSLSLSLGK
    54 h0301-H1 QVQLVQSGAE VKKPGSSVKV SCKASGYTFT DNYMIWVRQA PGQGLEWMGD
    heavy chain INPYNGGTTF NQKFKGRVTI TVDKSTSTAY MELSSLRSED TAVYYCARES
    PYFSNLYVMD YWGQGTLVTV SSASTKGPSV FPLAPCSRST SESTAALGCL
    VKDYFPEPVT VSWNSGALTS GVHTFPAVLQ SSGLYSLSSV VTVPSSSLGT
    KTYTCNVDHK PSNTKVDKRV ESKYGPPCPP CPAPEFLGGP SVFLFPPKPK
    DTLMISRTPE VTCVVVDVSQ EDPEVQFNWY VDGVEVHNAK TKPREEQFNS
    TYRVVSVLTV LHQDWLNGKE YKCKVSNKGL PSSIEKTISK AKGQPREPQV
    YTLPPSQEEM TKNQVSLTCL VKGFYPSDIA VEWESNGQPE NNYKTTPPVL
    DSDGSFFLYS RLTVDKSRWQ EGNVFSCSVM HEALHNHYTQ KSLSLSLGK
    55 h0301-H2 QVQLVQSGAE VKKPGSSVKV SCKASGYTFT DNYMIWVRQA PGQGLEWIGD
    heavy chain INPYNGGTTF NQKFKGRATL TVDKSTSTAY MELSSLRSED TAVYYCARES
    PYFSNLYVMD YWGQGTLVTV SSASTKGPSV FPLAPCSRST SESTAALGCL
    VKDYFPEPVT VSWNSGALTS GVHTFPAVLQ SSGLYSLSSV VTVPSSSLGT
    KTYTCNVDHK PSNTKVDKRV ESKYGPPCPP CPAPEFLGGP SVFLFPPKPK
    DTLMISRTPE VTCVVVDVSQ EDPEVQFNWY VDGVEVHNAK TKPREEQFNS
    TYRVVSVLTV LHQDWLNGKE YKCKVSNKGL PSSIEKTISK AKGQPREPQV
    YTLPPSQEEM TKNQVSLTCL VKGFYPSDIA VEWESNGQPE NNYKTTPPVL
    DSDGSFFLYS RLTVDKSRWQ EGNVFSCSVM HEALHNHYTQ KSLSLSLGK
    56 H0302-H1 QVQLVQSGAE VKKPGSSVKV SCKASGYTFS DFNIHWVRQA PGQGLEWMGY
    heavy chain INPYTDVTVY NEKFKGRVTI TSDKSTSTAY MELSSLRSED TAVYYCASYF
    DGTFDYALDY WGQGTLVTVS SASTKGPSVF PLAPCSRSTS ESTAALGCLV
    KDYFPEPVTV SWNSGALTSG VHTFPAVLQS SGLYSLSSVV TVPSSSLGTK
    TYTCNVDHKP SNTKVDKRVE SKYGPPCPPC PAPEFLGGPS VFLFPPKPKD
    TLMISRTPEV TCVVVDVSQE DPEVQFNWYV DGVEVHNAKT KPREEQFNST
    YRVVSVLTVL HQDWLNGKEY KCKVSNKGLP SSIEKTISKA KGQPREPQVY
    TLPPSQEEMT KNQVSLTCLV KGFYPSDIAV EWESNGQPEN NYKTTPPVLD
    SDGSFFLYSR LTVDKSRWQE GNVFSCSVMH EALHNHYTQK SLSLSLGK
    57 H0302-H2 QVQLVQSGAE VKKPGSSVKV SCKASGYTFS DFNIHWVRQA PGQGLEWIGY
    heavy chain INPYTDVTVY NEKFKGRATL TSDKSTSTAY MELSSLRSED TAVYYCASYF
    DGTFDYALDY WGQGTLVTVS SASTKGPSVF PLAPCSRSTS ESTAALGCLV
    KDYFPEPVTV SWNSGALTSG VHTFPAVLQS SGLYSLSSVV TVPSSSLGTK
    TYTCNVDHKP SNTKVDKRVE SKYGPPCPPC PAPEFLGGPS VFLFPPKPKD
    TLMISRTPEV TCVVVDVSQE DPEVQFNWYV DGVEVHNAKT KPREEQFNST
    YRVVSVLTVL HQDWLNGKEY KCKVSNKGLP SSIEKTISKA KGQPREPQVY
    TLPPSQEEMT KNQVSLTCLV KGFYPSDIAV EWESNGQPEN NYKTTPPVLD
    SDGSFFLYSR LTVDKSRWQE GNVFSCSVMH EALHNHYTQK SLSLSLGK
    58 H0311-H1 QVQLVQSGAE VKKPGSSVKV SCKASGYIFT DYNMHWVRQA PGQGLEWMGE
    heavy chain INPNNGVVVY NQKFKGRVTI TVDKSTSTAY MELSSLRSED TAVYYCTRAL
    YHSNFGWYFD SWGQGTLVTV SSASTKGPSV FPLAPCSRST SESTAALGCL
    VKDYFPEPVT VSWNSGALTS GVHTFPAVLQ SSGLYSLSSV VTVPSSSLGT
    KTYTCNVDHK PSNTKVDKRV ESKYGPPCPP CPAPEFLGGP SVFLFPPKPK
    DTLMISRTPE VTCVVVDVSQ EDPEVQFNWY VDGVEVHNAK TKPREEQFNS
    TYRVVSVLTV LHQDWLNGKE YKCKVSNKGL PSSIEKTISK AKGQPREPQV
    YTLPPSQEEM TKNQVSLTCL VKGFYPSDIA VEWESNGQPE NNYKTTPPVL
    DSDGSFFLYS RLTVDKSRWQ EGNVFSCSVM HEALHNHYTQ KSLSLSLGK
    59 H0311-H2 QVQLVQSGAE VKKPGSSVKV SCKASGYIFT DYNMHWVRQA PGQGLEWMGE
    heavy chain INPNNGVVVY NQKFKGTTTL TVDKSTSTAY MELSSLRSED TAVYYCTRAL
    YHSNFGWYFD SWGQGTLVTV SSASTKGPSV FPLAPCSRST SESTAALGCL
    VKDYFPEPVT VSWNSGALTS GVHTFPAVLQ SSGLYSLSSV VTVPSSSLGT
    KTYTCNVDHK PSNTKVDKRV ESKYGPPCPP CPAPEFLGGP SVFLFPPKPK
    DTLMISRTPE VTCVVVDVSQ EDPEVQFNWY VDGVEVHNAK TKPREEQFNS
    TYRVVSVLTV LHQDWLNGKE YKCKVSNKGL PSSIEKTISK AKGQPREPQV
    YTLPPSQEEM TKNQVSLTCL VKGFYPSDIA VEWESNGQPE NNYKTTPPVL
    DSDGSFFLYS RLTVDKSRWQ EGNVFSCSVM HEALHNHYTQ KSLSLSLGK
    60 h0301-L0 EIVLTQSPAT LSLSPGERAT LSCKASQSVD YDGDNYMNWY QQKPGQAPRL
    light chain LIYAASNLES GIPARFSGSG SGTDFTLTIS SLEPEDFAVY YCHLSNEDLS
    TFGGGTKVEI KRTVAAPSVF IFPPSDEQLK SGTASVVCLL NNFYPREAKV
    QWKVDNALQS GNSQESVTEQ DSKDSTYSLS STLTLSKADY EKHKVYACEV
    THQGLSSPVT KSFNRGEC
    61 h0301-L1 NIVLTQSPAT LSLSPGERAT LSCKASQSVD YDGDNYMNWY QQKPGQAPRL
    light chain LIYAASNLES GIPARFSGSG SGTDFTLTIS SLEPEDFAVY YCHLSNEDLS
    TFGGGTKVEI KRTVAAPSVF IFPPSDEQLK SGTASVVCLL NNFYPREAKV
    QWKVDNALQS GNSQESVTEQ DSKDSTYSLS STLTLSKADY EKHKVYACEV
    THQGLSSPVT KSFNRGEC
    62 H0302-L0 EIVLTQSPAT LSLSPGERAT LSCRASESVD NYGLSFMNWY QQKPGQAPRL
    light chain LIYTASNLES GIPARFSGSG SGTDFTLTIS SLEPEDFAVY YCQQSKELPW
    TFGQGTKVEI KRTVAAPSVF IFPPSDEQLK SGTASVVCLL NNFYPREAKV
    QWKVDNALQS GNSQESVTEQ DSKDSTYSLS STLTLSKADY EKHKVYACEV
    THQGLSSPVT KSFNRGEC
    63 H0302-L1 EIVLTQSPAT LSLSPGERAT LSCRASESVD NYGLSFMNWY QQKPGQAPRL
    light chain LIYTASNLES GIPARFSGSG SRTDFTLTIS SLEPEDFAVY YCQQSKELPW
    TFGQGTKVEI KRTVAAPSVF IFPPSDEQLK SGTASVVCLL NNFYPREAKV
    QWKVDNALQS GNSQESVTEQ DSKDSTYSLS STLTLSKADY EKHKVYACEV
    THQGLSSPVT KSFNRGEC
    64 H0302-L2 EIVVTQSPAT LSLSPGERAT LSCRASESVD NYGLSFMNWF QQKPGQAPRL
    light chain LIYTASNLES GIPARFSGSG SRTDFTLTIS SLEPEDFAVY YCQQSKELPW
    TFGQGTKVEI KRTVAAPSVF IFPPSDEQLK SGTASVVCLL NNFYPREAKV
    QWKVDNALQS GNSQESVTEQ DSKDSTYSLS STLTLSKADY EKHKVYACEV
    THQGLSSPVT KSFNRGEC
    65 H0311-L0 EIVLTQSPAT LSLSPGERAT LSCKASQSVD YDGDSHMNWY QQKPGQAPRL
    light chain LIYTASNLES GIPARFSGSG SGTDFTLTIS SLEPEDFAVY YCQQGNEDPW
    TFGQGTKVEI KRTVAAPSVF IFPPSDEQLK SGTASVVCLL NNFYPREAKV
    QWKVDNALQS GNSQESVTEQ DSKDSTYSLS STLTLSKADY EKHKVYACEV
    THQGLSSPVT KSFNRGEC
    66 H0311-L1 DIVLTQSPAT LSLSPGERAT LSCKASQSVD YDGDSHMNWY QQKPGQAPRL
    light chain LIYTASNLES GIPARFSGSG SGADFTLTIS SLEPEDFAVY YCQQGNEDPW
    TFGQGTKVEI KRTVAAPSVF IFPPSDEQLK SGTASVVCLL NNFYPREAKV
    QWKVDNALQS GNSQESVTEQ DSKDSTYSLS STLTLSKADY EKHKVYACEV
    THQGLSSPVT KSFNRGEC
    67 Human EEVSEYCSHM IGSGHLQSLQ RLIDSQMETS CQITFEFVDQ EQLKDPVCYL
    CSF1 KKAFLLVQDI MEDTMRFRDN TPNAIAIVQL QELSLRLKSC FTKDYEEHDK
    ACVRTFYETP LQLLEKVKNV FNETKNLLDK DWNIFSKNCN NSFAECSSQG
    HERQSEGS
    68 Human IL- NEPLEMWPLT QNEECTVTGF LRDKLQYRSR LQYMKHYFPI NYKISVPYEG
    34 VFRIANVTRL QRAQVSEREL RYLWVLVSLSATESVQDVLL EGHPSWKYLQ
    EVQTLLLNVQ QGLTDVEVSP KVESVLSLLN APGPNLKLVR PKALLDNCFR
    VMELLYCSCC KQSSVLNWQD CEVPSPQSCS PEPSLQYAAT QLYPPPPWSP
    SSPPHSTGSV RPVRAQGEGL LP
    69 Human QVQLVQSGAE VKKPGSSVKV SCKAS
    acceptor A
    FR1
    70 Human WVRQAPGQGL EWMG
    acceptor A
    FR2
    71 Human RVTITADKST STAYMELSSL RSEDTAVYYC AR
    acceptor A
    FR3
    72 Human WGQGTLVTVS S
    acceptor A
    FR4
    73 Human QVQLVQSGAE VKKPGSSVKV SCKAS
    acceptor B
    FR1
    74 Human WVRQAPGQGL EWMG
    acceptor B
    FR2
    75 Human RVTITADKST STAYMELSSL RSEDTAVYYC AR
    acceptor B
    FR3
    76 Human WGQGTLVTVSS
    acceptor B
    FR4
    77 Human QVQLVQSGAE VKKPGSSVKV SCKAS
    acceptor C
    FR1
    78 Human WVRQAPGQGL EWMG
    acceptor C
    FR2
    79 Human RVTITADKST STAYMELSSL RSEDTAVYYC AR
    acceptor C
    FR3
    80 Human WGQGTLVTVS S
    acceptor C
    FR4
    81 Human EIVLTQSPAT LSLSPGERAT LSC
    acceptor D
    FR1
    82 Human
    acceptor D WYQQKPGQAP RLLIY
    FR2
    83 Human
    acceptor D GIPARFSGSG SGTDFTLTIS SLEPEDFAVY YC
    FR3
    84 Human
    acceptor D FGGGTKVEIK
    FR4
    85 Human EIVLTQSPAT LSLSPGERAT LSC
    acceptor E
    FR1
    86 Human WYQQKPGQAP RLLIY
    acceptor E
    FR2
    87 Human GIPARFSGSG SGTDFTLTIS SLEPEDFAVY YC
    acceptor E
    FR3
    88 Human FGQGTKVEIK
    acceptor E
    FR4
    89 Human EIVLTQSPAT LSLSPGERAT LSC
    acceptor F
    FR1
    90 Human WYQQKPGQAP RLLIY
    acceptor F
    FR2
    91 Human GIPARFSGSG SGTDFTLTIS SLEPEDFAVY YC
    acceptor F
    FR3
    92 Human FGQGTKVEIK
    acceptor F
    FR4
    93 mCSF1R APVIEPSGPE LVVEPGETVT LRCVSNGSVE WDGPISPYWT LDPESPGSTL
    ECD-Fc TTRNATFKNT GTYRCTELED PMAGSTTIHL YVKDPAHSWN LLAQEVTVVE
    GQEAVLPCLI TDPALKDSVS LMREGGRQVL RKTVYFFSPW RGFIIRKAKV
    LDSNTYVCKT MVNGRESTST GIWLKVNRVH PEPPQIKLEP SKLVRIRGEA
    AQIVCSATNA EVGFNVILKR GDTKLEIPLN SDFQDNYYKK VRALSLNAVD
    FQDAGIYSCV ASNDVGTRTA TMNFQVVESA YLNLTSEQSL LQEVSVGDSL
    ILTVHADAYP SIQHYNWTYL GPFFEDQRKL EFITQRAIYR YTFKLFLNRV
    KASEAGQYFL MAQNKAGWNN LTFELTLRYP PEVSVTWMPV NGSDVLFCDV
    SGYPQPSVTW MECRGHTDRC DEAQALQVWN DTHPEVLSQK PFDKVIIQSQ
    LPIGTLKHNM TYFCKTHNSV GNSSQYFRAV SLGQSKQEPK SSDKTHTCPP
    CPAPELLGGP SVFLFPPKPK DTLMISRTPE VTCVVVDVSH EDPEVKFNWY
    VDGVEVHNAK TKPREEQYNS TYRVVSVLTV LHQDWLNGKE YKCKVSNKAL
    PAPIEKTISK AKGQPREPQV YTLPPSRDEL TKNQVSLTCL VKGFYPSDIA
    VEWESNGQPE NNYKTTPPVL DSDGSFFLYS KLTVDKSRWQ QGNVFSCSVM
    HEALHNHYTQ KSLSLSPGK
    94 Human ASTKGPSVFP LAPCSRSTSE STAALGCLVK DYFPEPVTVS WNSGALTSGV
    IgG4 S241P HTFPAVLQSS GLYSLSSVVT VPSSSLGTKT YTCNVDHKPS NTKVDKRVES
    KYGPPCPPCP APEFLGGPSV FLFPPKPKDT LMISRTPEVT CVVVDVSQED
    PEVQFNWYVD GVEVHNAKTK PREEQFNSTY RVVSVLTVLH QDWLNGKEYK
    CKVSNKGLPS SIEKTISKAK GQPREPQVYT LPPSQEEMTK NQVSLTCLVK
    GFYPSDIAVE WESNGQPENN YKTTPPVLDS DGSFFLYSRL TVDKSRWQEG
    NVFSCSVMHE ALHNHYTQKS LSLSLGK
    95 Human Igκ RTVAAPSVFI FPPSDEQLKS GTASVVCLLN NFYPREAKVQ WKVDNALQSG
    NSQESVTEQD SKDSTYSLSS TLTLSKADYE KHKVYACEVT HQGLSSPVTK
    SFNRGEC

Claims (21)

1.-38. (canceled)
39. A method of reducing the number of CD16+ monocytes in a subject with a CD16+ disorder, comprising (a) determining the number of CD16+ monocytes in a peripheral blood sample obtained from the subject, and (b) administering to the subject an antibody that binds human colony stimulating factor 1 receptor (CSF1R) such that the number of CD16+ monocytes is reduced by at least 30%; wherein the antibody (i) blocks binding of human colony stimulating factor 1 (CSF1) to human CSF1R and blocks binding of human IL-34 to human CSF1R, and (ii) comprises a heavy chain comprising a heavy chain (HC) CDR1 having the sequence of SEQ ID NO: 15, an HC CDR2 having the sequence of SEQ ID NO: 16, and an HC CDR3 having the sequence of SEQ ID NO: 17, and a light chain comprising a light chain (LC) CDR1 having the sequence of SEQ ID NO: 18, a LC CDR2 having the sequence of SEQ ID NO: 19, and a LC CDR3 having the sequence of SEQ ID NO: 20.
40. The method of claim 39, further comprising determining the number of CD16-monocytes in the sample, wherein the antibody is administered such that the number of CD16− monocytes is not reduced or is reduced by less than 20%.
41. The method of claim 39, further comprising (c) determining the number of CD16+ monocytes in a further peripheral blood sample from the subject after administration of the antibody.
42. The method of claim 41, further comprising determining the number of CD16-monocytes in the samples of (a) and (c).
43. The method of claim 39, wherein the method further comprises administering at least one additional therapeutic agent selected from an anti-CD-20 antibody, an anti-CD19 antibody, an anti-GM-CSF antibody, a CTLA-4 antagonist, and an anti-GM-CSF-R antibody.
44. The method of claim 39, comprising administering to the subject the antibody that binds CSF1R such that the number of CD16+ monocytes is reduced by at least 50%.
45. The method of claim 39, wherein the antibody comprises a heavy chain comprising the sequence of SEQ ID NO: 39 and a light chain comprising the sequence of SEQ ID NO: 46.
46. The method of claim 39, wherein the antibody is a humanized antibody.
47. The method of claim 39, wherein the antibody is a Fab, an Fv, an scFv, a Fab′, or a (Fab′)2.
48. A method of reducing the number of CD16+ monocytes in a subject with a CD16+ disorder, comprising (a) administering to the subject an antibody that binds human colony stimulating factor 1 receptor (CSF1R), (b) determining the number of CD16+ monocytes in a peripheral blood sample obtained from the subject following administration of the antibody, (c) determining whether administration of the antibody reduces the number of CD16+ monocytes in the sample by at least 30% by comparing the number of CD16+ monocytes in the sample of (b) with the number of CD16+ monocytes determined in a peripheral blood sample obtained from the subject prior to administration, and optionally (d) adjusting the dose or frequency of the administration of the antibody such that the number of CD16+ monocytes remains reduced; wherein the antibody (i) blocks binding of human colony stimulating factor 1 (CSF1) to human CSF1R and blocks binding of human IL-34 to human CSF1R and (ii) comprises a heavy chain comprising a heavy chain (HC) CDR1 having the sequence of SEQ ID NO: 15, an HC CDR2 having the sequence of SEQ ID NO: 16, and an HC CDR3 having the sequence of SEQ ID NO: 17, and a light chain comprising a light chain (LC) CDR1 having the sequence of SEQ ID NO: 18, a LC CDR2 having the sequence of SEQ ID NO: 19, and a LC CDR3 having the sequence of SEQ ID NO: 20.
49. The method of claim 48, comprising adjusting the dose or frequency of the administration of the antibody such that the number of CD16+ monocytes remains reduced by at least 30%.
50. The method of claim 48, further comprising determining the number of CD16-monocytes in the sample after administration, wherein the antibody is administered such that the number of CD16− monocytes is not reduced or is reduced by less than 20%.
51. The method of claim 48, wherein the method further comprises administering at least one additional therapeutic agent selected from an anti-CD-20 antibody, an anti-CD19 antibody, an anti-GM-CSF antibody, a CTLA-4 antagonist, and an anti-GM-CSF-R antibody.
52. The method of claim 48, comprising determining whether administration of the antibody reduces the number of CD16+ monocytes in the sample by at least 50%, and optionally adjusting the dose or frequency of the administration of the antibody such that the number of CD16+ monocytes remains reduced by at least 50%.
53. The method of claim 48, wherein the antibody comprises a heavy chain comprising the sequence of SEQ ID NO: 39 and a light chain comprising the sequence of SEQ ID NO: 46.
54. The method of claim 48, wherein the antibody is a humanized antibody.
55. The method of claim 48, wherein the antibody is a Fab, an Fv, an scFv, a Fab′, or a (Fab′)2.
56. A method of treating neoplasia in a subject, comprising (a) determining the number of CD16+ monocytes in a peripheral blood sample obtained from the subject, and (b) administering to the subject an antibody that binds human colony stimulating factor 1 receptor (CSF1R) such that the number of CD16+ monocytes is reduced by at least 30%; wherein the antibody (i) blocks binding of human colony stimulating factor 1 (CSF1) to human CSF1R and blocks binding of human IL-34 to human CSF1R, and (ii) comprises a heavy chain comprising a heavy chain (HC) CDR1 having the sequence of SEQ ID NO: 15, an HC CDR2 having the sequence of SEQ ID NO: 16, and an HC CDR3 having the sequence of SEQ ID NO: 17, and a light chain comprising a light chain (LC) CDR1 having the sequence of SEQ ID NO: 18, a LC CDR2 having the sequence of SEQ ID NO: 19, and a LC CDR3 having the sequence of SEQ ID NO: 20.
57. The method of claim 56, wherein the antibody comprises a heavy chain comprising the sequence of SEQ ID NO: 39 and a light chain comprising the sequence of SEQ ID NO: 46.
58. The method of claim 56, further comprising (c) determining the number of CD16+ monocytes in a further peripheral blood sample from the subject after administration of the antibody.
US17/173,886 2012-05-11 2021-02-11 Methods of Treating Conditions with Antibodies that Bind Colony Stimulating Factor 1 Receptor (CSF1R) Pending US20210277130A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/173,886 US20210277130A1 (en) 2012-05-11 2021-02-11 Methods of Treating Conditions with Antibodies that Bind Colony Stimulating Factor 1 Receptor (CSF1R)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201261645901P 2012-05-11 2012-05-11
US13/891,455 US20130302322A1 (en) 2012-05-11 2013-05-10 Methods of treating conditions with antibodies that bind colony stimulating factor 1 receptor (csf1r)
US15/152,161 US10982001B2 (en) 2012-05-11 2016-05-11 Methods of treating conditions with antibodies that bind colony stimulating factor 1 receptor (CSF1R)
US17/173,886 US20210277130A1 (en) 2012-05-11 2021-02-11 Methods of Treating Conditions with Antibodies that Bind Colony Stimulating Factor 1 Receptor (CSF1R)

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US15/152,161 Division US10982001B2 (en) 2012-05-11 2016-05-11 Methods of treating conditions with antibodies that bind colony stimulating factor 1 receptor (CSF1R)

Publications (1)

Publication Number Publication Date
US20210277130A1 true US20210277130A1 (en) 2021-09-09

Family

ID=49548778

Family Applications (3)

Application Number Title Priority Date Filing Date
US13/891,455 Abandoned US20130302322A1 (en) 2012-05-11 2013-05-10 Methods of treating conditions with antibodies that bind colony stimulating factor 1 receptor (csf1r)
US15/152,161 Active US10982001B2 (en) 2012-05-11 2016-05-11 Methods of treating conditions with antibodies that bind colony stimulating factor 1 receptor (CSF1R)
US17/173,886 Pending US20210277130A1 (en) 2012-05-11 2021-02-11 Methods of Treating Conditions with Antibodies that Bind Colony Stimulating Factor 1 Receptor (CSF1R)

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US13/891,455 Abandoned US20130302322A1 (en) 2012-05-11 2013-05-10 Methods of treating conditions with antibodies that bind colony stimulating factor 1 receptor (csf1r)
US15/152,161 Active US10982001B2 (en) 2012-05-11 2016-05-11 Methods of treating conditions with antibodies that bind colony stimulating factor 1 receptor (CSF1R)

Country Status (1)

Country Link
US (3) US20130302322A1 (en)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102791738B (en) 2009-12-10 2015-10-07 霍夫曼-拉罗奇有限公司 Preferentially in conjunction with the antibody and uses thereof of people CSF1R extracellular domain 4
WO2017120461A1 (en) 2016-01-08 2017-07-13 The Board Of Trustees Of The Leland Stanford Junior University Ccr3 modulation in the treatment of aging-associated impairments, and compositions for practicing the same
US20160208011A1 (en) 2010-01-28 2016-07-21 The Board Of Trustees Of The Leland Stanford Junior University Ccr3 modulation in the treatment of aging-associated impairments, and compositions for practicing the same
US10487148B2 (en) 2010-01-28 2019-11-26 The Board Of Trustees Of The Leland Stanford Junior University Methods and compositions for treating aging-associated impairments
TWI595008B (en) 2010-05-04 2017-08-11 戊瑞治療有限公司 Antibodies that bind csf1r
US9161968B2 (en) * 2011-04-08 2015-10-20 The Board Of Trustees Of The Leland Stanford Junior University Methods of neuroprotection involving macrophage colony stimulating factor receptor agonists
KR20140113683A (en) 2011-12-15 2014-09-24 에프. 호프만-라 로슈 아게 Antibodies against human csf-1r and uses thereof
US20130302322A1 (en) * 2012-05-11 2013-11-14 Five Prime Therapeutics, Inc. Methods of treating conditions with antibodies that bind colony stimulating factor 1 receptor (csf1r)
SG11201501413YA (en) 2012-08-31 2015-03-30 Five Prime Therapeutics Inc Methods of treating conditions with antibodies that bind colony stimulating factor 1 receptor (csf1r)
AR095882A1 (en) 2013-04-22 2015-11-18 Hoffmann La Roche ANTIBODY COMBINATION THERAPY AGAINST HUMAN CSF-1R WITH A TLR9 AGONIST
AR097584A1 (en) 2013-09-12 2016-03-23 Hoffmann La Roche ANTIBODY COMBINATION THERAPY AGAINST HUMAN CSF-1R AND ANTIBODIES AGAINST HUMAN PD-L1
US10905779B2 (en) 2013-12-09 2021-02-02 The Board Of Trustees Of The Leland Stanford Junior University Methods for screening human blood products comprising plasma using immunocompromised rodent models
KR102155857B1 (en) 2013-12-09 2020-09-15 더 보드 어브 트러스티스 어브 더 리랜드 스탠포드 주니어 유니버시티 Methods and compositions for treating aging-associated conditions
ES2851390T3 (en) 2014-10-29 2021-09-06 Five Prime Therapeutics Inc Combination therapy for cancer
KR20170096187A (en) 2014-12-22 2017-08-23 파이브 프라임 테라퓨틱스, 인크. Anti-csf1r antibodies for treating pvns
RS61531B1 (en) 2015-04-13 2021-04-29 Five Prime Therapeutics Inc Combination therapy for cancer
DK3307296T3 (en) 2015-06-15 2021-12-13 Univ Leland Stanford Junior TIMP2 FOR USE IN THE TREATMENT OF AGING ASSOCIATED CONDITIONS
WO2017189919A2 (en) 2016-04-28 2017-11-02 Alkahest, Inc. Blood plasma and plasma fractions as therapy for tumor growth and progression
US10525107B2 (en) 2016-08-18 2020-01-07 Alkahest, Inc. Blood plasma fractions as a treatment for aging-associated cognitive disorders
JP7138094B2 (en) 2016-08-25 2022-09-15 エフ・ホフマン-ラ・ロシュ・アクチェンゲゼルシャフト Intermittent administration of anti-CSF-1R antibody in combination with macrophage activator
JP7304287B2 (en) 2016-12-22 2023-07-06 エフ・ホフマン-ラ・ロシュ・アクチェンゲゼルシャフト Treatment of tumors with anti-CSF-1R antibodies in combination with anti-PD-L1 antibodies after unsuccessful anti-PD-L1/PD1 therapy
US11040068B2 (en) 2017-04-26 2021-06-22 Alkahest, Inc. Dosing regimen for treatment of cognitive and motor impairments with blood plasma and blood plasma products
MA48480A (en) 2017-04-26 2020-03-04 Alkahest Inc DOSAGE SCHEDULE FOR THE TREATMENT OF COGNITIVE AND MOTOR DEFICIENCIES WITH BLOOD PLASMA AND BLOOD PLASMA PRODUCTS
JP2020535119A (en) 2017-09-13 2020-12-03 ファイヴ プライム セラピューティクス インク Combination therapy of anti-CSF1R and anti-PD-1 antibody for pancreatic cancer
CN108467871B (en) * 2018-02-09 2021-08-20 武汉麦考津生物科技有限公司 Method for constructing kidney persistent intrinsic macrophage infiltration mouse model
CN108948198B (en) * 2018-07-18 2020-09-01 博奥信生物技术(南京)有限公司 Anti-human CSF-1R monoclonal antibody and application thereof
EP3870190A4 (en) 2018-10-26 2022-09-07 Alkahest, Inc. Use of plasma and plasma fractions for improvement of pain, wound healing, and postoperative recovery
CN116236579A (en) * 2023-03-20 2023-06-09 中山大学 Application of IL-34 antibody in preparation of medicament for treating psoriasis

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110274683A1 (en) * 2010-05-04 2011-11-10 Five Prime Therapeutics, Inc. Antibodies That Bind CSF1R
US10975153B2 (en) * 2014-06-23 2021-04-13 Five Prime Therapeutics, Inc. Methods of treating conditions with antibodies that bind colony stimulating factor 1 receptor (CSF1R)
US10982001B2 (en) * 2012-05-11 2021-04-20 Five Prime Therapeutics, Inc. Methods of treating conditions with antibodies that bind colony stimulating factor 1 receptor (CSF1R)

Family Cites Families (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0382781B1 (en) 1987-10-23 1993-09-29 Genetics Institute, Inc. Composition for treating cancers characterized by over-expression of the c-fms proto-oncogene
DE69329247T2 (en) 1992-06-09 2001-05-31 Chiron Corp CRYSTALIZATION OF M-CSF
US20020193575A1 (en) 1993-09-07 2002-12-19 Smithkline Beecham P.L.C. Recombinant IL4 antibodies useful in treatment of IL4 mediated disorders
JPH10218791A (en) 1997-01-31 1998-08-18 Toagosei Co Ltd Therapeutic agent of chronic rheumatoid arthritis
US6972323B1 (en) 1997-04-01 2005-12-06 Sankyo Company, Limited Anti-Fas antibodies
WO1999029345A1 (en) 1997-12-05 1999-06-17 La Jolla Institute For Experimental Medicine Inhibition of tumor growth by macrophage intervention
FR2793257B1 (en) 1999-05-06 2001-07-27 Gervais Danone Sa LACTIC BACTERIA WITH ANXIOLYTIC PROPERTIES, AND USES THEREOF
WO2001030381A2 (en) 1999-10-28 2001-05-03 Hofbauer, Reinhold Use of csf-1 inhibitors
AU1759501A (en) 1999-11-08 2001-06-06 Government of The United States of America, as represented by The Secretary Department of Health & Human Services, The National Institutes of Health, The Method of treating a viral infection using antagonists of macrophage colony stimulating factor
US7108852B2 (en) 2000-03-20 2006-09-19 Warner-Lambert Company Llc Methods of treating inflammation using antibodies to M-CSF
US7455836B2 (en) 2000-05-08 2008-11-25 The University Of Melbourne Method of treatment and agents useful for same
US6773895B2 (en) 2000-09-01 2004-08-10 Boehringer Ingelheim Pharma Kg Method for identifying substances which positively influence inflammatory conditions of chronic inflammatory airway diseases
US7247618B2 (en) 2001-04-30 2007-07-24 Tripathi Rajavashisth Methods for inhibiting macrophage colony stimulating factor and c-FMS-dependent cell signaling
IL159177A0 (en) 2001-06-20 2004-06-01 Prochon Biotech Ltd Antibodies that block receptor protein tyrosine kinase activation, methods of screening for and uses thereof
ATE466885T1 (en) 2002-11-15 2010-05-15 Novartis Vaccines & Diagnostic METHODS OF PREVENTING AND TREATING CANCER METASTISATION AND BONE LOSS ASSOCIATED WITH CANCER METASTISATION
AR045563A1 (en) 2003-09-10 2005-11-02 Warner Lambert Co ANTIBODIES DIRECTED TO M-CSF
GB0325836D0 (en) 2003-11-05 2003-12-10 Celltech R&D Ltd Biological products
EP1706137A2 (en) 2004-01-21 2006-10-04 Chiron Corporation M-csf muteins and uses thereof
EP1745073A2 (en) 2004-05-14 2007-01-24 Receptor Biologix, Inc. Cell surface receptor isoforms and methods of identifying and using the same
WO2006012451A2 (en) 2004-07-22 2006-02-02 Five Prime Therapeutics, Inc. Compositions and methods of use for mgd-csf in disease treatment
US8003108B2 (en) 2005-05-03 2011-08-23 Amgen Inc. Sclerostin epitopes
CN101384621A (en) 2005-11-10 2009-03-11 受体生物公司 Methods for production of receptor and ligand isoforms
WO2007075933A2 (en) 2005-12-21 2007-07-05 Cell Signaling Technology, Inc. Translocation and mutant csf1r kinase in human leukemia
AU2006342119B8 (en) 2005-12-22 2013-05-09 Novartis Ag Soluble human M-CSF receptor and uses thereof
EP2705854A1 (en) 2006-01-05 2014-03-12 Novartis AG Methods for preventing and treating cancer metastasis and bone loss associated with cancer metastasis
WO2007130646A2 (en) 2006-05-04 2007-11-15 The Rockefeller University Hcv coreceptor and methods of use thereof
US7833789B2 (en) 2006-08-01 2010-11-16 Fondazione Centro San Raffaele Del Monte Tabor Monocyte cell
WO2008060610A2 (en) 2006-11-17 2008-05-22 Biogen Idec Ma Inc. Systemic administration of colony stimulating factors to treat amyloid associated disorders
WO2008100995A1 (en) 2007-02-14 2008-08-21 Vaccinex, Inc. Humanized anti-cd100 antibodies
WO2008124858A2 (en) 2007-04-11 2008-10-23 F-Star Biotechnologische Forschungs- Und Entwicklungsges. M.B.H. Targeted receptor
WO2008150383A1 (en) 2007-05-30 2008-12-11 Albert Einstein College Of Medicine Of Yeshiva University Csf-1r mutants
ES2650224T3 (en) 2007-08-21 2018-01-17 Amgen, Inc. Human C-FMS antigen binding proteins
EP2215482A2 (en) 2007-10-31 2010-08-11 Janssen Pharmaceutica N.V. Biomarker for assessing response to fms treatment
EP2241333A1 (en) 2007-12-12 2010-10-20 National Cancer Center Therapeutic agent for mll leukemia and moz leukemia of which molecular target is m-csf receptor, and use thereof
US8470977B2 (en) 2008-03-14 2013-06-25 Transgene S.A. Antibody against the CSF-1R
AU2009224955B2 (en) 2008-03-14 2012-08-09 Transgene S.A. Antibody against the CSF-1 R
US8080246B2 (en) 2008-11-26 2011-12-20 Five Prime Therapeutics, Inc. Colony stimulating factor 1 receptor (CSF1R) extracellular domain fusion molecules
WO2010062401A2 (en) 2008-11-26 2010-06-03 Five Prime Therapeutics, Inc. Treatment of osteolytic disorders and cancer using csf1r extracellular domain fusion molecules
CN102791738B (en) 2009-12-10 2015-10-07 霍夫曼-拉罗奇有限公司 Preferentially in conjunction with the antibody and uses thereof of people CSF1R extracellular domain 4
CN102918061B (en) 2010-03-05 2016-06-08 霍夫曼-拉罗奇有限公司 For antibody of people CSF-1R and uses thereof
US9169323B2 (en) 2010-03-05 2015-10-27 Hoffmann-La Roche Inc. Antibodies against human CSF-1R
AR080698A1 (en) 2010-04-01 2012-05-02 Imclone Llc ANTIBODY OR FRAGMENT OF THE SAME THAT SPECIFICALLY LINKS THE VARIOUS OF HUMAN CSF -1R, PHARMACEUTICAL COMPOSITION THAT INCLUDES IT, ITS USE FOR THE MANUFACTURE OF A USEFUL MEDICINAL PRODUCT FOR THE TREATMENT OF CANCER AND METHOD TO DETERMINE IF A BASED SUBJECT MATTER AND
AR084234A1 (en) 2010-12-13 2013-05-02 Novartis Ag PREDICTIVE METHODS AND METHODS TO TREAT ARTHRITIS USING INTERLEUQUINE ANTAGONISTS 17 (IL-17)
SG11201401639QA (en) 2011-10-21 2014-05-29 Transgene Sa Modulation of macrophage activation
EP2768861A1 (en) 2011-10-21 2014-08-27 Institut National de la Sante et de la Recherche Medicale (INSERM) A m-dc8+ monocyte depleting agent for the prevention or the treatment of a condition associated with a chronic hyperactivation of the immune system
EP3539984A1 (en) 2012-05-11 2019-09-18 Five Prime Therapeutics, Inc. Methods of treating conditions with antibodies that bind colony stimulating factor 1 receptor (csf1r)
SG11201501413YA (en) 2012-08-31 2015-03-30 Five Prime Therapeutics Inc Methods of treating conditions with antibodies that bind colony stimulating factor 1 receptor (csf1r)
ES2851390T3 (en) * 2014-10-29 2021-09-06 Five Prime Therapeutics Inc Combination therapy for cancer

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110274683A1 (en) * 2010-05-04 2011-11-10 Five Prime Therapeutics, Inc. Antibodies That Bind CSF1R
US8206715B2 (en) * 2010-05-04 2012-06-26 Five Prime Therapeutics, Inc. Antibodies that bind colony stimulating factor 1 receptor (CSF1R)
US8747845B2 (en) * 2010-05-04 2014-06-10 Five Prime Therapeutics, Inc. Methods of treatment by administering antibodies that bind colony stimulating factor 1 receptor (CSF1R)
US9957327B2 (en) * 2010-05-04 2018-05-01 Five Prime Therapeutics, Inc. Antibodies that bind colony stimulating factor 1 receptor (CSF1R)
US10982001B2 (en) * 2012-05-11 2021-04-20 Five Prime Therapeutics, Inc. Methods of treating conditions with antibodies that bind colony stimulating factor 1 receptor (CSF1R)
US10975153B2 (en) * 2014-06-23 2021-04-13 Five Prime Therapeutics, Inc. Methods of treating conditions with antibodies that bind colony stimulating factor 1 receptor (CSF1R)

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
Angal et al., Mol Immunol. 1993 Jan; 30(1): Abstract only (Year: 1993) *
Cohen et al., ARTHRITIS & RHEUMATISM Vol. 54, No. 9, September 2006, pp 2793–2806 (Year: 2006) *
Feng et al., Clinical and Experimental Immunology, 164: 57–65 (2010) (Year: 2010) *
Kawanaka et al., ARTHRITIS & RHEUMATISM Vol. 46, No. 10, October 2002, pp 2578–2586 (Year: 2002) *
Lenzo et al., Immunology and Cell Biology (2012) 90, 429–440; published online: 07/05/2011 (Year: 2011) *
Sanchez-Torres et al., Int. Immunol. 2001, 13(12): 1571–1581 (pages 1-30) (Year: 2001) *
Serbina et al., Annu. Rev. Immunol. 2008. 26:421–52 (Year: 2008) *
Trinchieri, Nature Reviews Immunol. (2003), Vol. 3: 133-146 (Year: 2003) *
Ziegler-Heitbrock et al., BLOOD, 21 OCTOBER 2010 VOLUME 116, NUMBER 16 (Year: 2010) *

Also Published As

Publication number Publication date
US10982001B2 (en) 2021-04-20
US20130302322A1 (en) 2013-11-14
US20160319028A1 (en) 2016-11-03

Similar Documents

Publication Publication Date Title
US20210277130A1 (en) Methods of Treating Conditions with Antibodies that Bind Colony Stimulating Factor 1 Receptor (CSF1R)
US10822421B2 (en) Methods of treating conditions with antibodies that bind colony stimulating factor 1 receptor (CSF1R)
CA2871445C (en) Methods of treating conditions with antibodies that bind colony stimulating factor 1 receptor (csf1r)
US20210317219A1 (en) Methods of Treating Conditions with Antibodies that Bind Colony Stimulating Factor 1 Receptor (CSF1R)
AU2019204985B2 (en) Method of treating conditions with antibodies that bind colony stimulating factor 1 receptor (CSF1R)
JP2019089840A (en) Methods for treating conditions using antibodies that bind colony stimulating factor 1 receptor (csf1r)
JP2017125040A (en) Methods for treating conditions using antibodies that bind colony stimulating factor 1 receptor (csf1r)
NZ745504A (en) Methods of treating conditions with antibodies that bind colony stimulating factor 1 receptor (csf1r)
NZ745504B2 (en) Methods of treating conditions with antibodies that bind colony stimulating factor 1 receptor (csf1r)

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

AS Assignment

Owner name: FIVE PRIME THERAPEUTICS, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:WONG, BRIAN;MASTELLER, EMMA;WONG, JUSTIN;AND OTHERS;SIGNING DATES FROM 20130612 TO 20130618;REEL/FRAME:057830/0688

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED