US20210234661A1 - Method for transmitting uplink signals - Google Patents

Method for transmitting uplink signals Download PDF

Info

Publication number
US20210234661A1
US20210234661A1 US17/230,593 US202117230593A US2021234661A1 US 20210234661 A1 US20210234661 A1 US 20210234661A1 US 202117230593 A US202117230593 A US 202117230593A US 2021234661 A1 US2021234661 A1 US 2021234661A1
Authority
US
United States
Prior art keywords
control information
type
signals
ack
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US17/230,593
Inventor
Dae Won Lee
Bong Hoe Kim
Young Woo Yun
Ki Jun Kim
Dong Wook Roh
Hak Seong Kim
Hyun Wook Park
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Optis Cellular Technology LLC
Original Assignee
Optis Cellular Technology LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=39926781&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20210234661(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Optis Cellular Technology LLC filed Critical Optis Cellular Technology LLC
Priority to US17/230,593 priority Critical patent/US20210234661A1/en
Assigned to OPTIS CELLULAR TECHNOLOGY, LLC reassignment OPTIS CELLULAR TECHNOLOGY, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: LG ELECTRONICS, INC.
Assigned to LG ELECTRONICS INC. reassignment LG ELECTRONICS INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KIM, BONG HOE, KIM, HAK SEONG, KIM, KI JUN, LEE, DAE WON, YUN, YOUNG WOO, PARK, HYUN WOOK, ROH, DONG WOOK
Publication of US20210234661A1 publication Critical patent/US20210234661A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1861Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0078Avoidance of errors by organising the transmitted data in a format specifically designed to deal with errors, e.g. location
    • H04L1/0079Formats for control data
    • H04L1/0081Formats specially adapted to avoid errors in the feedback channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1664Details of the supervisory signal the supervisory signal being transmitted together with payload signals; piggybacking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1671Details of the supervisory signal the supervisory signal being transmitted together with control information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1803Stop-and-wait protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0057Physical resource allocation for CQI

Definitions

  • the present invention relates to mobile communication technology, and more particularly, to technology of transmitting uplink signals including ACK/NACK signals, control signals other than the ACK/NACK signals, and data signals.
  • a user equipment (UE) of a mobile communication system transmits various signals through an uplink.
  • Uplink signals transmitted by the user equipment can be segmented into data signals and control signals.
  • examples of the control signals transmitted to the uplink include uplink ACK/NACK signals for HARQ communication, channel quality indicator (CQI) information, and precoding matrix index (PMI).
  • CQI channel quality indicator
  • PMI precoding matrix index
  • 3GPP LTE system uses a single carrier frequency division multiplexing access (SC-FDMA) scheme for uplink signal transmission. Also, the 3GPP LTE system prescribes that data signals and control signals among the uplink signals are first multiplexed and ACK/NACK signals are transmitted to the multiplexed signals by puncturing the data or control signals when uplink ACK/NACK signal transmission is required for downlink data.
  • SC-FDMA single carrier frequency division multiplexing access
  • Athens conference (# 50 ) for 3GPP LTE has decided that data information is rate matched together with control information when the control information is multiplexed with the data information, wherein the control information is transmitted near a reference signal. This is to improve channel estimation performance by approximating all the control signals to the reference signal as the control signals generally require higher reliability than the data signals.
  • control signals transmitted to the uplink include various signals as described above, and the ACK/NACK signals require higher reliability than the other control signals.
  • the ACK/NACK signals require higher reliability than the other control signals.
  • problems occur in that the ACK/NACK signals can neither be transmitted by puncturing the control signals arranged near the reference signal nor be transmitted near the reference signal.
  • the present invention is directed to a method for transmitting uplink signals, which substantially obviates one or more problems due to limitations and disadvantages of the related art.
  • An object of the present invention is to provide a method for transmitting uplink signals by efficiently arranging ACK/NACK signals and other control signals in a resource region considering priority among them.
  • Another object of the present invention is to provide transmitting uplink signals using the aforementioned signal arrangement.
  • the present invention provides a method for transmitting uplink signals, which include ACK/NACK signals, control signals other than the ACK/NACK signals, and data signals.
  • the method comprises serially multiplexing the control signals and the data signals; sequentially mapping the multiplexed signals within a specific resource region in accordance with a time-first mapping method, the specific resource region including a plurality of symbols and a plurality of virtual subcarriers; and arranging the ACK/NACK signals at both symbols near to symbols through which a reference signal is transmitted.
  • the ACK/NACK signals are overwritten on a part of the multiplexed signals.
  • the part of the multiplexed signals, on which the ACK/NACK signals are overwritten includes one or more of the control signals and the data signals.
  • the method further comprises performing a discrete fourier transform (DFT) for the signals mapped on the specific resource region in a unit of each symbols of the plurality of symbols in accordance with each index of the plurality of virtual subcarriers; performing an inverse fast fourier transform (IFFT) for the DFT symbol unit signals and attaching a cyclic prefix (CP) the signals; and transmitting the symbol unit signals attached with the CP as single carrier frequency division multiplexing access (SC-FDMA) symbols.
  • DFT discrete fourier transform
  • IFFT inverse fast fourier transform
  • CP cyclic prefix
  • the method further comprises transmitting the signals mapped on the specific resource region through a physical uplink sharing channel (PUSCH)
  • PUSCH physical uplink sharing channel
  • the present invention provides a method for transmitting uplink signals, which include ACK/NACK signals, control signals other than the ACK/NACK signals, and data signals.
  • the method comprises performing channel coding for each of the data signals, the control signals, and the ACK/NACK signals; serially multiplexing the channel coded data and control signals; sequentially mapping the multiplexed signals in accordance with a time-first mapping method within a specific resource region in accordance with a time-first mapping method, the specific resource region including a plurality of symbols and a plurality of virtual subcarriers; and arranging the ACK/NACK signals at both symbols near to the symbols through which a reference signal is transmitted.
  • the step of performing channel coding for the data signals includes attaching a CRC for a transport block (TB) to a transport block for transmission of the data signals; segmenting the transport block attached with the CRC for the transport block in a code block unit and attaching a CRC for a code block to the segmented code block; performing channel coding for the data attached with the CRC for a code block; and performing rate matching and code block concatenation for the channel coded data.
  • TB transport block
  • the ACK/NACK signals having high priority can be set in such a manner that they acquire more channel estimation effect.
  • FIG. 1 is a block diagram illustrating a transmitter to describe a method for transmitting signals in accordance with a single carrier frequency division multiplexing access (SC-FDMA) scheme;
  • SC-FDMA single carrier frequency division multiplexing access
  • FIG. 2 is a diagram illustrating a procedure of multiplexing data information, control information and ACK/NACK signals for uplink signal transmission;
  • FIG. 3 is a diagram illustrating an example of mapping information sequences according to one embodiment of the present invention in accordance with a time-first mapping method
  • FIG. 4 and FIG. 5 are diagrams illustrating a method for transmitting information, which is mapped in accordance with the time-first mapping method as illustrated in FIG. 3 , in accordance with the SC-FDMA scheme;
  • FIG. 6 is a diagram illustrating a method for transmitting uplink signals in accordance with one embodiment of the present invention.
  • FIG. 7 and FIG. 8 are diagrams illustrating a method for processing a number of ACK/NACK information data to be transmitted in accordance with one embodiment of the present invention.
  • FIG. 9 is a diagram illustrating that ACK/NACK signals are inserted by puncturing the control signals as well as the data signals in accordance with another embodiment of the present invention.
  • the embodiment of the present invention is intended to provide a method for transmitting uplink signals by efficiently arranging ACK/NACK signals and other control signals in a resource region considering priority among them. To this end, a detailed method for transmitting uplink signals in a 3GPP LTE system will be described.
  • FIG. 1 is a block diagram illustrating a transmitter to describe a method for transmitting signals in accordance with a single carrier frequency division multiplexing access (SC-FDMA) scheme.
  • SC-FDMA single carrier frequency division multiplexing access
  • a 3GPP LTE system transmits uplink signals in accordance with a single carrier frequency division multiplexing access (SC-FDMA) scheme.
  • SC-FDMA single carrier frequency division multiplexing access
  • direct-to-parallel conversion is performed for information sequences to be transmitted, to perform a discrete fourier transform (DFT) ( 101 ).
  • the DFT is performed for the signals converted to the parallel sequences ( 102 ), and then inverse fast fourier transform (IFFY) can be performed to obtain a single carrier feature ( 103 ).
  • IFFY inverse fast fourier transform
  • a length of information inserted to an IFFY module 103 may not be equal to a size of the IFFY module 103 .
  • it is required that the DFT result performed by the DFT module 102 should be mapped with continuous IFFY input indexes.
  • Values undergone IFFY are again converted to serial signals by a parallel-to-serial conversion module 104 . Afterwards, the signals are changed to a format of OFDM symbols by a cyclic prefix (CP) ( 105 ) and then transmitted to a real time space.
  • CP cyclic prefix
  • the aforementioned SC-FDMA scheme has advantages in that it has low peak power-to-average power ratio (PAPR) and/or cubic metric (CM) while maintaining a single carrier feature.
  • PAPR peak power-to-average power ratio
  • CM cubic metric
  • information undergone DFT precoding should be input to the IFFT module 103 in an OFDM format by mapping with continuous indexes.
  • DFT precoded information should be inserted to continuous subcarriers of OFDM.
  • information data for example, control information and data information
  • information data having different features are multiplexed together when they are transmitted to an uplink so that they undergo DFT precoding together and then are transmitted in an OFDM format.
  • FIG. 2 is a diagram illustrating a procedure of multiplexing data information, control information and ACK/NACK signals for uplink signal transmission.
  • Data information multiplexed with control information is segmented into several code blocks (CB) in accordance with a size of a transport block (TB) to be transmitted to the uplink after CRC for TB is attached to the TB (S 201 and S 202 ).
  • CRC for CB is attached to several CBs (S 203 ), and channel coding is performed for the result value obtained by attaching the CRC for CB to several CBs (S 204 ).
  • S 205 channel coded data undergo rate matching
  • concatenation among CBs is performed (S 206 ).
  • the CBs are then multiplexed with control information (S 230 ). Meanwhile, the aforementioned steps may be subject to channel coding chain for a data transport block.
  • Channel coding can be performed for the control information separately from the data information (S 211 ).
  • the channel coded control information can later be multiplexed with the data information by a data and control channel rate mapping multiplexer (S 230 ).
  • Channel coding can be performed for the ACK/NAM signals separately from the data and control signals (S 221 ). Some of the uplink signals in which the data and control signals are multiplexed (S 230 ) may be transmitted to the uplink through puncturing (S 240 ).
  • control information that can be transmitted together with the data information is segmented into two types, i.e., uplink (UL) ACK/NACK signals for downlink data and other control information.
  • the uplink ACK/NACK signals for downlink data are transmitted only when downlink data exist.
  • a user equipment may not know whether to receive downlink data even though it should transmit the UL ACK/NACK signals. Accordingly, the user equipment segments the two types of control information from each other and transmits them to the uplink together with the data information.
  • control signals will mean those other than the ACK/NACK signals.
  • control signals may mean those other than a rank indicator as well as the ACK/NACK signals.
  • control signals may include CQI and PMI.
  • the control signals since the following description relates to efficient arrangement among the control signals, the data signals and the ACK/NACK signals, if the control signals are those other than the ACK/NACK signals, their detailed type will not be suggested.
  • the data information can be transmitted together with the control information.
  • ACK/NACK information can be transmitted together with the data information and the control information.
  • only the data information and the ACK/NACK information can be transmitted to the uplink.
  • Transmission information sequences obtained to transmit the data information multiplexed with the control information or the ACK/NACK information can be transmitted in accordance with the SC-FDMA scheme. At this time, the transmission information sequences can be mapped in a resource region in accordance with a time-first mapping method.
  • the information sequences are transmitted using one resource block, i.e., twelve (12) OFDM subcarriers and information is transmitted through one sub-frame.
  • one sub-frame includes fourteen (14) SC-FDMA symbols and two of the fourteen SC-FDMS symbols are used as references signals that are pilot signals.
  • information sequence symbols can be transmitted through 12 virtual subcarriers and 12 SC-FDMA symbols. This can be represented by a matrix structure of 12*12 called a time-frequency mapper.
  • the information sequences to be transmitted to the uplink are mapped one by one based on the SC-FDMA symbols. This is called time-first mapping because the SC-FDMA symbols are segmented temporally.
  • FIG. 3 is a diagram illustrating an example of mapping information sequences according to one embodiment of the present invention in accordance with a time-first mapping method
  • FIG. 4 and FIG. 5 are diagrams illustrating a method for transmitting information, which is mapped in accordance with the time-first mapping method as illustrated in FIG. 3 , in accordance with the SC-FDMA scheme.
  • the information sequences to be transmitted to the uplink can be arranged temporally in the time-frequency mapper as illustrated in FIG. 3 .
  • 12 information data are mapped temporally in a first virtual subcarrier region, and then subsequent 12 information data are mapped temporally in a second virtual subcarrier region.
  • FIG. 4 and FIG. 5 illustrate a procedure of generating and transmitting the SC-FDMA symbols.
  • FIG. 4 illustrates a case where a normal CP is used
  • FIG. 5 illustrates a case where an extended CP is used.
  • the control information can also be transmitted thereto.
  • the control information and the data information are multiplexed through rate matching.
  • the ACK/NACK information can be transmitted in such a manner that it is overwritten in bit streams of the data information or symbols where data information and control information are multiplexed.
  • “overwritten” means that specific information mapped in the resource region is skipped and the corresponding region is mapped.
  • “overwritten” means that the length of the entire information is maintained equally even after specific information is inserted. This overwriting procedure may be represented by puncturing.
  • control information requires higher reliability than the data information.
  • control information should be multiplexed or inserted near the reference signal. In this case, it is possible to obtain the effect of channel estimation performance, thereby expecting improvement of performance.
  • control information is multiplexed serially with the data information, and is mapped with a multiplexing region in accordance with the aforementioned time-first mapping method.
  • multiplexed serially means that the data information is mapped with a sequence corresponding to the multiplexed result directly after the control information is mapped with the sequence, or vice versa.
  • the ACK/NACK signals are arranged to be transmitted through both symbols near a symbol through which the reference signal is transmitted.
  • FIG. 6 is a diagram illustrating a method for transmitting uplink signals in accordance with one embodiment of the present invention.
  • control information and the data information are multiplexed, they are serially connected with each other so that they are mapped with SC-FRMS symbols in accordance with the time-first mapping method and then are transmitted to the uplink. If the ACK/NACK information should also be transmitted, among the serially multiplexed data, modulation symbols located near the reference signal are punctured so that the ACK/NACK signals are inserted thereto.
  • a reference numeral 601 illustrates that the data and control signals are multiplexed serially if the ACK/NACK signals are not transmitted.
  • a reference numeral 602 illustrates that the ACK/NACK signals are arranged by puncturing the multiplexed data if the ACK/NACK signals should be transmitted to the uplink.
  • a reference numeral 603 illustrates that information sequences such as the reference numeral 602 are mapped in the time-frequency region in accordance with the time-first mapping method. In the reference numeral 603 of FIG. 6 , it is supposed that the reference signal is transmitted through a part between symbol indexes 43 and 44 and a part between symbol indexes # 9 and # 10 .
  • control signals are serially connected with data and then multiplexed, they are mapped in the time-frequency region in accordance with the time-first mapping method.
  • the ACK/NACK signals can be set in such a manner that they are overwritten in the data signals multiplexed with two symbols (symbols 43 , 4 , 9 and 10 in FIG. 6 ) at both sides of the SC-FDMA symbols to which the reference signal is transmitted.
  • FIG. 7 and FIG. 8 are diagrams illustrating a method for processing a number of ACK/NACK information data to be transmitted in accordance with one embodiment of the present invention.
  • the ACK/NACK information can be transmitted through additional SC-FDMA symbols in addition to both symbols nearest to the reference signal.
  • the ACK/NACK information is transmitted through additional symbols in the order of the symbols near reference symbols in addition to both symbols near the reference symbols.
  • the SC-FDMA symbols existing based on the reference signal may not be arranged symmetrically depending on a structure of the SC-FDMA sub-frame of the uplink as illustrated in FIG. 8 . Accordingly, considering this, the ACK/NACK information should be inserted by puncturing.
  • control information and the data information are arranged in due order so that they are mapped in the resource region. Also, if the ACK/NACK information is arranged near the reference signal, the ACK/NACK information can be overwritten in the control information as well as the data information.
  • control information and the data information are arranged in due order so that they are mapped in the resource region. Also, if the ACK/NACK information is arranged near the reference signal, the ACK/NACK information can be overwritten in the control information as well as the data information.
  • FIG. 9 is a diagram illustrating that the ACK/NACK signals are inserted by puncturing the control signals as well as the data signals in accordance with another embodiment of the present invention.
  • the ACK/NACK information is substantially control information, priority is given to control information channels, so that the control information channel having the highest priority is arranged near the reference signal for protection of channel estimation while the control information channels having relatively low priority are sequentially mapped on the time axis and then transmitted.
  • the ACK/NACK information has higher priority than the control information.
  • the control information and the data information are sequentially arranged on the time axis in accordance with the time-first mapping method and then multiplexed.
  • the ACK/NACK information punctures the data/control information located near the reference signal.
  • a reference numeral 901 of FIG. 9 illustrates that the data and control signals are multiplexed if the ACK/NACK signals need not to be transmitted.
  • a reference numeral 902 of FIG. 9 illustrates that data, control signals and ACK/NACK signals are multiplexed if the ACK/NACK signals should be transmitted.
  • a reference numeral 903 of FIG. 9 illustrates that the multiplexed uplink signals are mapped in the time-frequency region as illustrated in the reference numeral 902 .
  • the ACK/NACK signals can puncture the control signals as well as the data matched near the reference signal. In this way, if resource mapping is performed by giving priority to the control signals, good channel estimation effect can be obtained as the ACK/NACK information is located near the reference signal. On the other hand, since a small number of control signals are punctured by the ACK/NACK signals, it may not affect performance. In one embodiment shown in FIG. 9 , the ACK/NACK signals may puncture the control signals/data equally distributed in the virtual frequency axis.
  • the ACK/NACK signals may puncture the control signals/data equally distributed having the interval of “N/m” or equivalent.
  • control information and the data information are multiplexed simply, a multiplexing block can be formed simply.
  • the transmitter performs channel coding for each of data signals, control signals, and ACK/NACK signals.
  • Channel coding for each of the uplink signals can be performed independently as illustrated in FIG. 2 .
  • the procedure of performing channel coding for the data signals can include steps of segmenting a TB attached with CRC for TB in a unit of CB (S 202 ), attaching a CRC for CB to the segmented CBs (S 203 ), performing channel coding for the data attached with the CRC for CB (S 204 ), performing rate matching for the channel coded data (S 206 ), and performing CB concatenation (S 207 ).
  • the one embodiment of the present invention suggests that the channel coded data and control signals are multiplexed serially.
  • Serial multiplexing means that the control signals are mapped with sequential indexes directly after the data signals are mapped with them, or vice versa.
  • the multiplexed signals can sequentially be mapped within a specific resource region in accordance with the time-first mapping method, wherein the specific resource region includes a plurality of symbols (for example, 12 SC-FDMA symbols) and a plurality of virtual subcarriers.
  • the ACK/NACK signals are preferably arranged near the symbols to which the reference signal is transmitted, among the plurality of symbols.
  • the embodiments of the present invention can be applied to various systems, which require data signal transmission, control signal transmission, and ACK/NACK signal transmission through the uplink, in addition to the 3GPP system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)
  • Communication Control (AREA)
  • Radio Transmission System (AREA)
  • Reduction Or Emphasis Of Bandwidth Of Signals (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

A method for transmitting uplink signals comprises multiplexing data and first type control information to output multiplexed signals; mapping the multiplexed signals to a resource region matrix; mapping second type control information to the resource region matrix to overwrite some of the multiplexed signals mapped to specific positions of the resource region matrix corresponding to symbols which are near symbols used for reference signals; and transmitting an output sequence of the resource region matrix to the base station. The second type control information comprises at least one of an ACK/NACK information and a rank indicator (RI), and the first type control information comprises control information other than the rank indicator (RI) and the ACK/NACK information.

Description

  • This application is a continuation of U.S. patent application Ser. No. 16/453,069 filed Jun. 26, 2019 (pending), which is a continuation of U.S. patent application Ser. No. 14/631,315 filed Feb. 25, 2015, granted as U.S. Pat. No. 10,374,775 on Aug. 6, 2019, which is a continuation of U.S. patent application Ser. No. 13/316,315 filed Dec. 9, 2011, granted as U.S. Pat. No. 9,001,814 on Apr. 7, 2015, which is a continuation of U.S. patent application Ser. 12/209,136 filed Sep. 11, 2008, granted as U.S. Pat. No. 8,102,833 on Jan. 24, 2012, which claims the benefit of Korean Patent Application No. 10-2008-0068634, filed Jul. 15, 2008, which claims benefit of U.S. Provisional Application 60/972,244 filed Sep. 13, 2007, U.S. Provisional Application 60/987,427 filed Nov. 13, 2007, and U.S. Provisional Application 60/988,433 filed Nov. 16, 2007, the contents of all of which are incorporated by reference herein in their entirety.
  • BACKGROUND OF THE INVENTION Field of the Invention
  • The present invention relates to mobile communication technology, and more particularly, to technology of transmitting uplink signals including ACK/NACK signals, control signals other than the ACK/NACK signals, and data signals.
  • Discussion of the Related Art
  • A user equipment (UE) of a mobile communication system transmits various signals through an uplink. Uplink signals transmitted by the user equipment can be segmented into data signals and control signals. Also, examples of the control signals transmitted to the uplink include uplink ACK/NACK signals for HARQ communication, channel quality indicator (CQI) information, and precoding matrix index (PMI).
  • 3GPP LTE system uses a single carrier frequency division multiplexing access (SC-FDMA) scheme for uplink signal transmission. Also, the 3GPP LTE system prescribes that data signals and control signals among the uplink signals are first multiplexed and ACK/NACK signals are transmitted to the multiplexed signals by puncturing the data or control signals when uplink ACK/NACK signal transmission is required for downlink data. Hereinafter, in order that the ACK/NACK signals are divided from control signals other than the ACK/NACK signals, the control signals will mean those except for the ACK/NACK signals.
  • Meanwhile, Athens conference (#50) for 3GPP LTE has decided that data information is rate matched together with control information when the control information is multiplexed with the data information, wherein the control information is transmitted near a reference signal. This is to improve channel estimation performance by approximating all the control signals to the reference signal as the control signals generally require higher reliability than the data signals.
  • However, the control signals transmitted to the uplink include various signals as described above, and the ACK/NACK signals require higher reliability than the other control signals. In this case, when uplink ACK/NACK signal transmission is required while all the control signals are transmitted by approximating to the reference signal, problems occur in that the ACK/NACK signals can neither be transmitted by puncturing the control signals arranged near the reference signal nor be transmitted near the reference signal.
  • In this respect, a technology of transmitting uplink signals by efficiently arranging ACK/NACK signals and other control signals in a resource region considering priority among them is required.
  • SUMMARY OF THE INVENTION
  • Accordingly, the present invention is directed to a method for transmitting uplink signals, which substantially obviates one or more problems due to limitations and disadvantages of the related art.
  • An object of the present invention is to provide a method for transmitting uplink signals by efficiently arranging ACK/NACK signals and other control signals in a resource region considering priority among them.
  • Another object of the present invention is to provide transmitting uplink signals using the aforementioned signal arrangement.
  • To achieve these objects and other advantages and in accordance with the purpose of the invention, as embodied and broadly described herein, the present invention provides a method for transmitting uplink signals, which include ACK/NACK signals, control signals other than the ACK/NACK signals, and data signals. The method comprises serially multiplexing the control signals and the data signals; sequentially mapping the multiplexed signals within a specific resource region in accordance with a time-first mapping method, the specific resource region including a plurality of symbols and a plurality of virtual subcarriers; and arranging the ACK/NACK signals at both symbols near to symbols through which a reference signal is transmitted.
  • At this time, the ACK/NACK signals are overwritten on a part of the multiplexed signals. And, the part of the multiplexed signals, on which the ACK/NACK signals are overwritten, includes one or more of the control signals and the data signals.
  • Also, the method further comprises performing a discrete fourier transform (DFT) for the signals mapped on the specific resource region in a unit of each symbols of the plurality of symbols in accordance with each index of the plurality of virtual subcarriers; performing an inverse fast fourier transform (IFFT) for the DFT symbol unit signals and attaching a cyclic prefix (CP) the signals; and transmitting the symbol unit signals attached with the CP as single carrier frequency division multiplexing access (SC-FDMA) symbols.
  • Also, the method further comprises transmitting the signals mapped on the specific resource region through a physical uplink sharing channel (PUSCH)
  • In another aspect of the present invention, the present invention provides a method for transmitting uplink signals, which include ACK/NACK signals, control signals other than the ACK/NACK signals, and data signals. The method comprises performing channel coding for each of the data signals, the control signals, and the ACK/NACK signals; serially multiplexing the channel coded data and control signals; sequentially mapping the multiplexed signals in accordance with a time-first mapping method within a specific resource region in accordance with a time-first mapping method, the specific resource region including a plurality of symbols and a plurality of virtual subcarriers; and arranging the ACK/NACK signals at both symbols near to the symbols through which a reference signal is transmitted.
  • At this time, the step of performing channel coding for the data signals includes attaching a CRC for a transport block (TB) to a transport block for transmission of the data signals; segmenting the transport block attached with the CRC for the transport block in a code block unit and attaching a CRC for a code block to the segmented code block; performing channel coding for the data attached with the CRC for a code block; and performing rate matching and code block concatenation for the channel coded data.
  • According to the aforementioned embodiments of the present invention, it is possible to transmit uplink signals by efficiently arranging ACK/NACK signals and other control signals in a resource region in accordance with priority among them.
  • In addition, the ACK/NACK signals having high priority can be set in such a manner that they acquire more channel estimation effect.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The accompanying drawings, which are included to provide a further understanding of the invention and are incorporated in and constitute a part of this specification, illustrate embodiments of the invention and together with the description serve to explain the principles of the invention.
  • In the drawings:
  • FIG. 1 is a block diagram illustrating a transmitter to describe a method for transmitting signals in accordance with a single carrier frequency division multiplexing access (SC-FDMA) scheme;
  • FIG. 2 is a diagram illustrating a procedure of multiplexing data information, control information and ACK/NACK signals for uplink signal transmission;
  • FIG. 3 is a diagram illustrating an example of mapping information sequences according to one embodiment of the present invention in accordance with a time-first mapping method;
  • FIG. 4 and FIG. 5 are diagrams illustrating a method for transmitting information, which is mapped in accordance with the time-first mapping method as illustrated in FIG. 3, in accordance with the SC-FDMA scheme;
  • FIG. 6 is a diagram illustrating a method for transmitting uplink signals in accordance with one embodiment of the present invention;
  • FIG. 7 and FIG. 8 are diagrams illustrating a method for processing a number of ACK/NACK information data to be transmitted in accordance with one embodiment of the present invention; and
  • FIG. 9 is a diagram illustrating that ACK/NACK signals are inserted by puncturing the control signals as well as the data signals in accordance with another embodiment of the present invention.
  • DETAILED DESCRIPTION OF THE INVENTION
  • Hereinafter, the preferred embodiments of the present invention will be described with reference to the accompanying drawings. It is to be understood that the detailed description, which will be disclosed along with the accompanying drawings, is intended to describe the exemplary embodiments of the present invention, and is not intended to describe a unique embodiment with which the present invention can be carried out. Hereinafter, the following detailed description includes detailed matters to provide full understanding of the present invention. However, it will be apparent to those skilled in the art that the present invention can be carried out without the detailed matters.
  • Meanwhile, in some cases, to prevent the concept of the present invention from being ambiguous, structures and apparatuses of the known art will be omitted, or will be shown in the form of a block diagram based on main functions of each structure and apparatus. Also, wherever possible, the same reference numbers will be used throughout the drawings and the specification to refer to the same or like parts.
  • As described above, the embodiment of the present invention is intended to provide a method for transmitting uplink signals by efficiently arranging ACK/NACK signals and other control signals in a resource region considering priority among them. To this end, a detailed method for transmitting uplink signals in a 3GPP LTE system will be described.
  • FIG. 1 is a block diagram illustrating a transmitter to describe a method for transmitting signals in accordance with a single carrier frequency division multiplexing access (SC-FDMA) scheme.
  • As described above, a 3GPP LTE system transmits uplink signals in accordance with a single carrier frequency division multiplexing access (SC-FDMA) scheme. In detail, direct-to-parallel conversion is performed for information sequences to be transmitted, to perform a discrete fourier transform (DFT) (101). The DFT is performed for the signals converted to the parallel sequences (102), and then inverse fast fourier transform (IFFY) can be performed to obtain a single carrier feature (103). At this time, a length of information inserted to an IFFY module 103 may not be equal to a size of the IFFY module 103. However, it is required that the DFT result performed by the DFT module 102 should be mapped with continuous IFFY input indexes.
  • Values undergone IFFY are again converted to serial signals by a parallel-to-serial conversion module 104. Afterwards, the signals are changed to a format of OFDM symbols by a cyclic prefix (CP) (105) and then transmitted to a real time space.
  • The aforementioned SC-FDMA scheme has advantages in that it has low peak power-to-average power ratio (PAPR) and/or cubic metric (CM) while maintaining a single carrier feature. However, in order to satisfy low PAPR/CM condition while maintaining a single carrier feature, it is required that information undergone DFT precoding should be input to the IFFT module 103 in an OFDM format by mapping with continuous indexes. In other words, it is required that DFT precoded information should be inserted to continuous subcarriers of OFDM. Accordingly, it is preferable that information data (for example, control information and data information) having different features are multiplexed together when they are transmitted to an uplink so that they undergo DFT precoding together and then are transmitted in an OFDM format.
  • Hereinafter, a procedure of multiplexing data information and control information will be described.
  • FIG. 2 is a diagram illustrating a procedure of multiplexing data information, control information and ACK/NACK signals for uplink signal transmission.
  • Data information multiplexed with control information is segmented into several code blocks (CB) in accordance with a size of a transport block (TB) to be transmitted to the uplink after CRC for TB is attached to the TB (S201 and S202). Afterwards, the CRC for CB is attached to several CBs (S203), and channel coding is performed for the result value obtained by attaching the CRC for CB to several CBs (S204). Also, after the channel coded data undergo rate matching (S205), concatenation among CBs is performed (S206). The CBs are then multiplexed with control information (S230). Meanwhile, the aforementioned steps may be subject to channel coding chain for a data transport block.
  • Channel coding can be performed for the control information separately from the data information (S211). The channel coded control information can later be multiplexed with the data information by a data and control channel rate mapping multiplexer (S230).
  • Channel coding can be performed for the ACK/NAM signals separately from the data and control signals (S221). Some of the uplink signals in which the data and control signals are multiplexed (S230) may be transmitted to the uplink through puncturing (S240).
  • As described above, the control information that can be transmitted together with the data information is segmented into two types, i.e., uplink (UL) ACK/NACK signals for downlink data and other control information. The uplink ACK/NACK signals for downlink data are transmitted only when downlink data exist. A user equipment may not know whether to receive downlink data even though it should transmit the UL ACK/NACK signals. Accordingly, the user equipment segments the two types of control information from each other and transmits them to the uplink together with the data information. Hereinafter, in order to segment the ACK/NACK signals from the control signals transmitted separately from the ACK/NACK signals, “control signals” will mean those other than the ACK/NACK signals. In more detailed embodiment, the control signals may mean those other than a rank indicator as well as the ACK/NACK signals. In other words, in a specific embodiment, the control signals may include CQI and PMI. However, since the following description relates to efficient arrangement among the control signals, the data signals and the ACK/NACK signals, if the control signals are those other than the ACK/NACK signals, their detailed type will not be suggested.
  • When the data information is transmitted to the uplink, the data information can be transmitted together with the control information. Also, ACK/NACK information can be transmitted together with the data information and the control information. Moreover, only the data information and the ACK/NACK information can be transmitted to the uplink.
  • Transmission information sequences obtained to transmit the data information multiplexed with the control information or the ACK/NACK information can be transmitted in accordance with the SC-FDMA scheme. At this time, the transmission information sequences can be mapped in a resource region in accordance with a time-first mapping method.
  • For example, it is supposed that the information sequences are transmitted using one resource block, i.e., twelve (12) OFDM subcarriers and information is transmitted through one sub-frame. Also, it is supposed that one sub-frame includes fourteen (14) SC-FDMA symbols and two of the fourteen SC-FDMS symbols are used as references signals that are pilot signals. At this time, the number of modulation symbols of the information that can be transmitted to the uplink becomes 12*12=144.
  • 144 information sequence symbols can be transmitted through 12 virtual subcarriers and 12 SC-FDMA symbols. This can be represented by a matrix structure of 12*12 called a time-frequency mapper. The information sequences to be transmitted to the uplink are mapped one by one based on the SC-FDMA symbols. This is called time-first mapping because the SC-FDMA symbols are segmented temporally.
  • FIG. 3 is a diagram illustrating an example of mapping information sequences according to one embodiment of the present invention in accordance with a time-first mapping method, and FIG. 4 and FIG. 5 are diagrams illustrating a method for transmitting information, which is mapped in accordance with the time-first mapping method as illustrated in FIG. 3, in accordance with the SC-FDMA scheme.
  • The information sequences to be transmitted to the uplink can be arranged temporally in the time-frequency mapper as illustrated in FIG. 3. In other words, 12 information data are mapped temporally in a first virtual subcarrier region, and then subsequent 12 information data are mapped temporally in a second virtual subcarrier region.
  • After time-frequency mapping is performed as above, the sequences arranged on a frequency axis as illustrated in HG. 4 and FIG. 5 undergo DFT and then are inserted to a desired frequency band. Afterwards, IFFT and CP insertion are performed for each frequency region information, which can be transmitted as SC-FDMA symbols. FIG. 4 and FIG. 5 illustrate a procedure of generating and transmitting the SC-FDMA symbols. FIG. 4 illustrates a case where a normal CP is used, and FIG. 5 illustrates a case where an extended CP is used.
  • When data are transmitted to the uplink, the control information can also be transmitted thereto. At this time, the control information and the data information are multiplexed through rate matching. However, the ACK/NACK information can be transmitted in such a manner that it is overwritten in bit streams of the data information or symbols where data information and control information are multiplexed. In this case, “overwritten” means that specific information mapped in the resource region is skipped and the corresponding region is mapped. Also, “overwritten” means that the length of the entire information is maintained equally even after specific information is inserted. This overwriting procedure may be represented by puncturing.
  • Generally, the control information requires higher reliability than the data information. To this end, the control information should be multiplexed or inserted near the reference signal. In this case, it is possible to obtain the effect of channel estimation performance, thereby expecting improvement of performance.
  • However, since the ACK/NACK information also requires high reliability in a receiver, if the general control information is arranged near the reference signal, priority between the control information and the ACK/NACK signals should be considered.
  • Accordingly, methods for multiplexing data information bit streams, control information bit streams, and ACK/NACK information sequences at different priorities will be described as various embodiments of the present invention.
  • According to one embodiment of the present invention, the control information is multiplexed serially with the data information, and is mapped with a multiplexing region in accordance with the aforementioned time-first mapping method. In this case, “multiplexed serially” means that the data information is mapped with a sequence corresponding to the multiplexed result directly after the control information is mapped with the sequence, or vice versa. Also, according to one embodiment of the present invention, the ACK/NACK signals are arranged to be transmitted through both symbols near a symbol through which the reference signal is transmitted.
  • FIG. 6 is a diagram illustrating a method for transmitting uplink signals in accordance with one embodiment of the present invention.
  • According to this embodiment, when the control information and the data information are multiplexed, they are serially connected with each other so that they are mapped with SC-FRMS symbols in accordance with the time-first mapping method and then are transmitted to the uplink. If the ACK/NACK information should also be transmitted, among the serially multiplexed data, modulation symbols located near the reference signal are punctured so that the ACK/NACK signals are inserted thereto. In FIG. 6, a reference numeral 601 illustrates that the data and control signals are multiplexed serially if the ACK/NACK signals are not transmitted. A reference numeral 602 illustrates that the ACK/NACK signals are arranged by puncturing the multiplexed data if the ACK/NACK signals should be transmitted to the uplink. Also, a reference numeral 603 illustrates that information sequences such as the reference numeral 602 are mapped in the time-frequency region in accordance with the time-first mapping method. In the reference numeral 603 of FIG. 6, it is supposed that the reference signal is transmitted through a part between symbol indexes 43 and 44 and a part between symbol indexes # 9 and #10.
  • As can be aware of it from the mapping type illustrated in the reference numeral 603 of FIG. 6, after the control signals are serially connected with data and then multiplexed, they are mapped in the time-frequency region in accordance with the time-first mapping method. Also, the ACK/NACK signals can be set in such a manner that they are overwritten in the data signals multiplexed with two symbols ( symbols 43, 4, 9 and 10 in FIG. 6) at both sides of the SC-FDMA symbols to which the reference signal is transmitted.
  • FIG. 7 and FIG. 8 are diagrams illustrating a method for processing a number of ACK/NACK information data to be transmitted in accordance with one embodiment of the present invention.
  • In detail, when the number of ACK/NACK information data to be transmitted is more than the number of subcarriers (of a virtual frequency region) to which data are transmitted before and after the reference signal, the ACK/NACK information can be transmitted through additional SC-FDMA symbols in addition to both symbols nearest to the reference signal. In FIG. 7 and FIG. 8, the ACK/NACK information is transmitted through additional symbols in the order of the symbols near reference symbols in addition to both symbols near the reference symbols.
  • At this time, the SC-FDMA symbols existing based on the reference signal may not be arranged symmetrically depending on a structure of the SC-FDMA sub-frame of the uplink as illustrated in FIG. 8. Accordingly, considering this, the ACK/NACK information should be inserted by puncturing.
  • When the control information is arranged on the time-axis in accordance with the aforementioned embodiment of the present invention, the control information and the data information are arranged in due order so that they are mapped in the resource region. Also, if the ACK/NACK information is arranged near the reference signal, the ACK/NACK information can be overwritten in the control information as well as the data information.
  • When the control information is arranged on the time-axis in accordance with the aforementioned embodiment of the present invention, the control information and the data information are arranged in due order so that they are mapped in the resource region. Also, if the ACK/NACK information is arranged near the reference signal, the ACK/NACK information can be overwritten in the control information as well as the data information.
  • FIG. 9 is a diagram illustrating that the ACK/NACK signals are inserted by puncturing the control signals as well as the data signals in accordance with another embodiment of the present invention.
  • According to this embodiment, since the ACK/NACK information is substantially control information, priority is given to control information channels, so that the control information channel having the highest priority is arranged near the reference signal for protection of channel estimation while the control information channels having relatively low priority are sequentially mapped on the time axis and then transmitted. Particularly, in this embodiment, it is supposed that the ACK/NACK information has higher priority than the control information. At this time, the control information and the data information are sequentially arranged on the time axis in accordance with the time-first mapping method and then multiplexed. The ACK/NACK information punctures the data/control information located near the reference signal.
  • In detail, a reference numeral 901 of FIG. 9 illustrates that the data and control signals are multiplexed if the ACK/NACK signals need not to be transmitted. A reference numeral 902 of FIG. 9 illustrates that data, control signals and ACK/NACK signals are multiplexed if the ACK/NACK signals should be transmitted. Also, a reference numeral 903 of FIG. 9 illustrates that the multiplexed uplink signals are mapped in the time-frequency region as illustrated in the reference numeral 902.
  • As illustrated in the reference numeral 903 of FIG. 9, it is noted from this embodiment that the ACK/NACK signals can puncture the control signals as well as the data matched near the reference signal. In this way, if resource mapping is performed by giving priority to the control signals, good channel estimation effect can be obtained as the ACK/NACK information is located near the reference signal. On the other hand, since a small number of control signals are punctured by the ACK/NACK signals, it may not affect performance. In one embodiment shown in FIG. 9, the ACK/NACK signals may puncture the control signals/data equally distributed in the virtual frequency axis. That is, if the number of virtual subcarriers available for the above puncturing by the ACK/NACK signals is “N” and the number of ACK/NACK to be transmitted per SC-FDMA symbol is “m”, the ACK/NACK signals may puncture the control signals/data equally distributed having the interval of “N/m” or equivalent.
  • Also, since the control information and the data information are multiplexed simply, a multiplexing block can be formed simply.
  • Hereinafter, a whole procedure of transmitting uplink signals in accordance with the aforementioned embodiments of the present invention will be described. For convenience of description, this procedure will be described with reference to FIG. 2.
  • In order to transmit the uplink signals in accordance with each of the embodiments of the present invention, the transmitter performs channel coding for each of data signals, control signals, and ACK/NACK signals. Channel coding for each of the uplink signals can be performed independently as illustrated in FIG. 2.
  • At this time, as illustrated in FIG. 2, the procedure of performing channel coding for the data signals can include steps of segmenting a TB attached with CRC for TB in a unit of CB (S202), attaching a CRC for CB to the segmented CBs (S203), performing channel coding for the data attached with the CRC for CB (S204), performing rate matching for the channel coded data (S206), and performing CB concatenation (S207).
  • The one embodiment of the present invention suggests that the channel coded data and control signals are multiplexed serially. Serial multiplexing means that the control signals are mapped with sequential indexes directly after the data signals are mapped with them, or vice versa. Meanwhile, the multiplexed signals can sequentially be mapped within a specific resource region in accordance with the time-first mapping method, wherein the specific resource region includes a plurality of symbols (for example, 12 SC-FDMA symbols) and a plurality of virtual subcarriers.
  • In addition, in this embodiment of the present invention, the ACK/NACK signals are preferably arranged near the symbols to which the reference signal is transmitted, among the plurality of symbols.
  • It will be apparent to those skilled in the art that the present invention can be embodied in other specific forms without departing from the spirit and essential characteristics of the invention. Thus, the above embodiments are to be considered in all respects as illustrative and not restrictive. The scope of the invention should be determined by reasonable interpretation of the appended claims and all change which comes within the equivalent scope of the invention are included in the scope of the invention.
  • The embodiments of the present invention can be applied to various systems, which require data signal transmission, control signal transmission, and ACK/NACK signal transmission through the uplink, in addition to the 3GPP system.

Claims (18)

What is claimed is:
1. A method for a user equipment (UE) to transmit signals to a base station, the method comprising:
multiplexing data and first type control information to output multiplexed signals to be transmitted via a Physical Uplink Shared Channel (PUSCH) when the UE is to transmit the data and the first type control information simultaneously;
mapping the multiplexed signals to a resource region matrix comprising a plurality of single carrier frequency division multiplexing access (SC-FDMA) symbols and a plurality of subcarriers;
mapping second type control information to the resource region matrix to overwrite some of the multiplexed signals mapped to specific positions of the resource region matrix corresponding to SC-FD MA symbols which are near SC-FDMA symbols used for reference signals; and
transmitting an output sequence of the resource region matrix to the base station,
wherein the second type control information comprises at least one of an ACK/NACK information and a rank indicator (RI), and the first type control information comprises control information other than the rank indicator (RI) and the ACK/NACK information.
2. The method of claim 1, wherein the second type of control information has a higher priority than the first type of control information.
3. The method of claim 1, wherein the second type of control information comprises ACK/NACK signals.
4. The method of claim 1, wherein the second type of control information comprises a rank indicator (RI).
5. The method of claim 1, wherein said multiplexing is performed such that said first type of control information is placed first in said multiplexed signals, then said data is placed following the first type of control information in said multiplexed signals.
6. The method of claim 1, wherein said multiplexed signals are mapped to the resource region matrix in a first direction in a frequency domain on each of the plurality of SC-FDMA symbols, and wherein the second type of control information is mapped to said specific positions in a second direction in the frequency domain, the second ti direction is opposite to the first direction.
7. The method of claim 1, wherein the part of said multiplexed signals overwritten by the second type of control information includes one or more of the first conic of information and said data.
8. The method of claim 1, wherein the first type of control information comprises a channel quality indicator (CCI) and a precoding matrix index (PMI)
9. The method of claim 1, wherein the resource region matrix is a. dimensional matrix.
10. A user equipment (DE) for transmitting signals to a base station, the UE comprising:
a multiplexer configured for multiplexing data and first type control information to output multiplexed signals to be transmitted via a Physical Uplink Shared Channel (PUSCH) when the UE is to transmit the data and the first type control information simultaneously;
a mapper configured for:
mapping the multiplexed signals to a resource region matrix comprising a plurality of single carrier frequency division multiplexing access (SC-FDMA) symbols and a plurality of subcarriers, and
mapping second type control information to the resource region matrix to overwrite some of the multiplexed signals mapped to specific positions of the resource region matrix corresponding to SC-FDMA symbols which are near SC-FDMA symbols used for reference signals; and
a transmitter configured for transmitting an output sequence of the resource region matrix to the base station,
wherein the second type control information comprises at least one of an ACK/NACK information and a rank indicator (RI), and the first type control information comprises control information other than the rank indicator (RI) and the ACK/NACK information.
11. The apparatus of claim 10, wherein the second type of control information has a higher priority than the first type of control information.
12. The apparatus of claim 10, wherein the second type of control information comprises ACK/NACK signals.
13. The apparatus of claim 10, wherein the second type of control information comprises a rank indicator (RI).
14. The apparatus of claim 10, wherein the multiplexer is configure to place the first type of control information first in said multiplexed signals, then to place said data following the first type of control information in the multiplexed signals.
15. The apparatus of claim 10, wherein the mapper is configured to map the multiplexed signals to the resource region matrix in a first direction in a frequency domain on each of the plurality of SC-FDMA symbols, and to map the second type of control information to the specific positions m a second direction in the frequency domain, the second direction being opposite to the first direction.
16. The apparatus of claim 10, wherein the part of said multiplexed signals overwritten by the second type of control information includes one or more of the first type of control information and said data.
17. The apparatus of claim 10, wherein the first type of control information comprises a channel quality indicator (CQI) and a precoding matrix index (PMI).
18. The equipment of claim 10, wherein the resource region matrix is a two-dimensional matrix.
US17/230,593 2007-09-13 2021-04-14 Method for transmitting uplink signals Abandoned US20210234661A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/230,593 US20210234661A1 (en) 2007-09-13 2021-04-14 Method for transmitting uplink signals

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
US97224407P 2007-09-13 2007-09-13
US98742707P 2007-11-13 2007-11-13
US98843307P 2007-11-16 2007-11-16
KR1020080068634A KR101531416B1 (en) 2007-09-13 2008-07-15 Method For Transmitting Uplink Signals
KR10-2008-0068634 2008-07-15
US12/209,136 US8102833B2 (en) 2007-09-13 2008-09-11 Method for transmitting uplink signals
US13/316,315 US9001814B2 (en) 2007-09-13 2011-12-09 Method for transmitting uplink signals
US14/631,315 US10374775B2 (en) 2007-09-13 2015-02-25 Method for transmitting uplink signals
US16/453,069 US11012222B2 (en) 2007-09-13 2019-06-26 Method for transmitting uplink signals
US17/230,593 US20210234661A1 (en) 2007-09-13 2021-04-14 Method for transmitting uplink signals

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US16/453,069 Continuation US11012222B2 (en) 2007-09-13 2019-06-26 Method for transmitting uplink signals

Publications (1)

Publication Number Publication Date
US20210234661A1 true US20210234661A1 (en) 2021-07-29

Family

ID=39926781

Family Applications (5)

Application Number Title Priority Date Filing Date
US12/209,136 Active 2030-09-06 US8102833B2 (en) 2007-09-13 2008-09-11 Method for transmitting uplink signals
US13/316,315 Active 2030-01-17 US9001814B2 (en) 2007-09-13 2011-12-09 Method for transmitting uplink signals
US14/631,315 Active US10374775B2 (en) 2007-09-13 2015-02-25 Method for transmitting uplink signals
US16/453,069 Active US11012222B2 (en) 2007-09-13 2019-06-26 Method for transmitting uplink signals
US17/230,593 Abandoned US20210234661A1 (en) 2007-09-13 2021-04-14 Method for transmitting uplink signals

Family Applications Before (4)

Application Number Title Priority Date Filing Date
US12/209,136 Active 2030-09-06 US8102833B2 (en) 2007-09-13 2008-09-11 Method for transmitting uplink signals
US13/316,315 Active 2030-01-17 US9001814B2 (en) 2007-09-13 2011-12-09 Method for transmitting uplink signals
US14/631,315 Active US10374775B2 (en) 2007-09-13 2015-02-25 Method for transmitting uplink signals
US16/453,069 Active US11012222B2 (en) 2007-09-13 2019-06-26 Method for transmitting uplink signals

Country Status (12)

Country Link
US (5) US8102833B2 (en)
EP (4) EP3739786B1 (en)
JP (7) JP5183743B2 (en)
KR (11) KR101531416B1 (en)
CN (2) CN101828353B (en)
ES (3) ES2546462T3 (en)
FI (1) FI3739786T3 (en)
HK (1) HK1197118A1 (en)
HU (2) HUE061327T2 (en)
PL (1) PL3739786T3 (en)
TW (1) TWI387252B (en)
WO (1) WO2009035233A1 (en)

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
HUE025654T2 (en) 2007-07-06 2016-04-28 Huawei Tech Co Ltd HARQ communication method, system, base station apparatus, and mobile station apparatus thereof
KR101531416B1 (en) * 2007-09-13 2015-06-24 옵티스 셀룰러 테크놀로지, 엘엘씨 Method For Transmitting Uplink Signals
US20090185475A1 (en) * 2008-01-23 2009-07-23 Myung Hyung G Non-orthogonal subcarrier mapping method and system
MY192672A (en) * 2008-02-04 2022-08-30 Samsung Electronics Co Ltd Control and data multiplexing in communication systems
KR100943908B1 (en) 2008-02-19 2010-02-24 엘지전자 주식회사 Method For Transmitting and Receiving Control Information Through PDCCH
US8154983B2 (en) * 2008-03-25 2012-04-10 Samsung Electronics Co., Ltd. System and method for the placement of rank information in a physical uplink shared channel
US8619901B2 (en) * 2008-04-25 2013-12-31 Sharp Laboratories Of America, Inc. Systems and methods for providing unequal message protection
KR100925444B1 (en) 2008-05-27 2009-11-06 엘지전자 주식회사 A method for transmitting uplink siganl including data and control inforamtion via uplink channel
KR100987458B1 (en) * 2008-06-24 2010-10-13 엘지전자 주식회사 Method for transmitting uplink signal
US8625554B2 (en) * 2009-01-30 2014-01-07 Samsung Electronics Co., Ltd. System and method for uplink data and control signal transmission in MIMO wireless systems
US8532015B2 (en) 2009-02-20 2013-09-10 Nokia Siemens Networks Oy Methods and apparatuses for transmitting downlink control signaling on wireless relay link
JP5212539B2 (en) * 2009-03-25 2013-06-19 富士通株式会社 Radio communication system, mobile station apparatus, base station apparatus, and radio communication method in radio communication system
WO2010133031A1 (en) * 2009-05-21 2010-11-25 华为技术有限公司 Method, device and system for allocating an ack channel under carrier aggregation
KR101607336B1 (en) * 2009-06-07 2016-03-30 엘지전자 주식회사 Apparatus and method of setting up radio bearer in wireless communication system
WO2011005040A2 (en) * 2009-07-10 2011-01-13 엘지전자 주식회사 Method for sending an uplink control signal on a wireless communications system and a device therefor
KR20110009025A (en) 2009-07-20 2011-01-27 엘지전자 주식회사 Method and apparatus for transmitting uplink control information
KR101684969B1 (en) * 2009-07-27 2016-12-09 엘지전자 주식회사 Method and appratus of transmitting control information
EP2306667A3 (en) * 2009-10-01 2012-11-21 Electronics and Telecommunications Research Institute Method of transmitting control information using physical uplink shared channel region in MIMO antenna system
KR101148727B1 (en) * 2009-12-15 2012-05-21 한국전자통신연구원 Data transmission system for transmitting control information to basestation
US9654265B2 (en) * 2010-04-08 2017-05-16 Qualcomm Incorporated Systems, apparatus and methods to facilitate transmission of acknowledgement signals in wireless communication systems
US8923179B2 (en) * 2010-05-07 2014-12-30 Lg Electronics Inc. Terminal for controlling uplink transmission power and an uplink transmission power control method in a wireless communication system
US8989156B2 (en) 2010-06-18 2015-03-24 Sharp Kabushiki Kaisha Selecting a codeword and determining a symbol length for uplink control information
US8634345B2 (en) 2010-06-18 2014-01-21 Sharp Laboratories Of America, Inc. Uplink control information (UCI) multiplexing on the physical uplink shared channel (PUSCH)
WO2012096465A2 (en) * 2011-01-13 2012-07-19 엘지전자 주식회사 Method for a terminal to transmit channel state information to a base station in a radio communication system, and device for same
US8914052B2 (en) 2011-01-20 2014-12-16 Telefonaktiebolaget Lm Ericsson (Publ) Backhaul signal compression through spatial-temporal linear prediction
DK2966797T3 (en) * 2011-03-15 2018-08-13 Ericsson Telefon Ab L M Methods and devices for determining the timing of feedback information
US9380135B2 (en) * 2011-06-08 2016-06-28 Lg Electronics Inc. Method and device for information transmission in wireless communication system
CN103348645B (en) * 2011-09-30 2017-03-29 华为技术有限公司 Uplink baseband compression method, decompression method, device and system
US9215058B2 (en) 2012-03-06 2015-12-15 Blackberry Limited Enhanced PHICH transmission for LTE-advanced
US9198181B2 (en) 2012-03-19 2015-11-24 Blackberry Limited Enhanced common downlink control channels
JP5883403B2 (en) * 2013-01-31 2016-03-15 株式会社Nttドコモ User terminal, radio base station, and radio communication method
EP2975783B1 (en) 2013-03-13 2017-10-11 LG Electronics Inc. Method for acknowledging uplink transmissions and device thereof
WO2016143411A1 (en) * 2015-03-09 2016-09-15 三菱電機株式会社 Transmission device
US10014998B2 (en) 2015-03-09 2018-07-03 Mitsubishi Electric Corporation Receiving apparatus and transmitting-receiving apparatus
US10015201B2 (en) 2015-06-30 2018-07-03 At&T Intellectual Property I, L.P. Implementing application level multimedia services as a switching function
KR102603814B1 (en) 2017-01-06 2023-11-17 한국전자통신연구원 Method for transmitting uplink control information and apparatus for the same
CN110768760B (en) * 2018-07-26 2024-02-02 华为技术有限公司 Data transmission method and device
US10715273B2 (en) * 2018-09-26 2020-07-14 At&T Intellectual Property I, L.P. Joint channel estimation and data detection technique to decode 5G uplink control channel
US11563617B2 (en) * 2020-04-23 2023-01-24 Spectral DSP Corp. Systems and methods for shaped single carrier orthogonal frequency division multiplexing with low peak to average power ratio
US11805542B2 (en) * 2020-09-15 2023-10-31 Acer Incorporated Method used by UE to multiplex uplink transmissions and UE using the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080304467A1 (en) * 2007-06-08 2008-12-11 Samsung Electronics Co., Ltd. Control and data signaling in sc-fdma communication systems
US20090010240A1 (en) * 2007-06-11 2009-01-08 Samsung Electronics Co., Ltd. Partitioning of frequency resources for transmission of control signals and data signals in sc-fdma communication systems
US20090046805A1 (en) * 2007-08-15 2009-02-19 Qualcomm Incorported Uplink control channel format
US20100254331A1 (en) * 2007-11-05 2010-10-07 Ki Hwan Kim Method for multiplexing data and control information

Family Cites Families (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5008853A (en) 1987-12-02 1991-04-16 Xerox Corporation Representation of collaborative multi-user activities relative to shared structured data objects in a networked workstation environment
US5347295A (en) 1990-10-31 1994-09-13 Go Corporation Control of a computer through a position-sensed stylus
JP3256994B2 (en) 1991-10-30 2002-02-18 富士通株式会社 Display target movement method by touch input
US5760773A (en) 1995-01-06 1998-06-02 Microsoft Corporation Methods and apparatus for interacting with data objects using action handles
JPH08286807A (en) 1995-04-18 1996-11-01 Canon Inc Data processing unit and method for recognizing gesture
US6331840B1 (en) 1998-03-27 2001-12-18 Kevin W. Nielson Object-drag continuity between discontinuous touch screens of a single virtual desktop
US6421527B1 (en) 1998-05-21 2002-07-16 Texas Instruments Incorporated System for dynamic adaptation of data/channel coding in wireless communications
US20020018051A1 (en) 1998-09-15 2002-02-14 Mona Singh Apparatus and method for moving objects on a touchscreen display
US6871303B2 (en) 1998-12-04 2005-03-22 Qualcomm Incorporated Random-access multi-directional CDMA2000 turbo code interleaver
GB2347200B (en) 1999-02-24 2002-06-19 Ibm Intuitive cursor moving method and device
CA2266283C (en) 1999-03-19 2006-07-11 Wen Tong Data interleaver and method of interleaving data
US7423983B1 (en) 1999-09-20 2008-09-09 Broadcom Corporation Voice and data exchange over a packet based network
WO2001029815A1 (en) 1999-10-21 2001-04-26 Cirque Corporation Improved kiosk touchpad
JP2002041197A (en) 2000-07-24 2002-02-08 Matsushita Electric Ind Co Ltd Electronic display method and its device
US6885654B2 (en) * 2001-02-06 2005-04-26 Interdigital Technology Corporation Low complexity data detection using fast fourier transform of channel correlation matrix
US7248559B2 (en) 2001-10-17 2007-07-24 Nortel Networks Limited Scattered pilot pattern and channel estimation method for MIMO-OFDM systems
KR100630128B1 (en) * 2002-03-23 2006-09-27 삼성전자주식회사 Apparatus and method for signalling pilot offset for uplink power control in communication system using high speed downlink packet access scheme
KR100456477B1 (en) * 2002-12-24 2004-11-09 한국전자통신연구원 System for channel information determining of OFDM and method thereof, its program stored recording medium
US7142548B2 (en) 2003-03-06 2006-11-28 Nortel Networks Limited Communicating in a reverse wireless link information relating to buffer status and data rate of a mobile station
US7412238B2 (en) 2003-06-25 2008-08-12 Texas Instruments Incorporated Blind detection of packet data control channel
KR100689543B1 (en) 2003-08-26 2007-03-02 삼성전자주식회사 Method and apparatus for requesting scheduling of uplink packet transmission in a mobile telecommunication system
KR100640516B1 (en) * 2004-02-27 2006-10-30 삼성전자주식회사 Method and apparatus for transmitting channel quality information in orthogonal frequency division multiple communication system
JP4041087B2 (en) 2004-03-31 2008-01-30 株式会社東芝 Communication apparatus and communication method
KR100689379B1 (en) * 2004-04-14 2007-03-02 삼성전자주식회사 Method and Apparatus for Uplink Control Information Transmission in Orthogonal Frequency Division Multiple Access communication systems
KR100800795B1 (en) * 2004-05-31 2008-02-04 삼성전자주식회사 Method and apparatus for transmitting/receiving up link acknowledgement information in a communication system
KR100651509B1 (en) * 2004-06-01 2006-11-29 삼성전자주식회사 Method and apparatus for uplink fast feedback information transmission in orthogonal frequency division multiple access communication systems
US8014377B2 (en) 2004-06-24 2011-09-06 Nortel Networks Limited Efficient location updates, paging and short bursts
US20070081484A1 (en) 2004-07-29 2007-04-12 Wang Michael M Methods and apparatus for transmitting a frame structure in a wireless communication system
GB2419788B (en) 2004-11-01 2007-10-31 Toshiba Res Europ Ltd Interleaver and de-interleaver systems
KR100909539B1 (en) * 2004-11-09 2009-07-27 삼성전자주식회사 Apparatus and method for supporting various multi-antenna technologies in a broadband wireless access system using multiple antennas
US8693383B2 (en) 2005-03-29 2014-04-08 Qualcomm Incorporated Method and apparatus for high rate data transmission in wireless communication
KR100724949B1 (en) 2005-05-03 2007-06-04 삼성전자주식회사 Method and Apparatus for multiplexing data and control information in wireless communication systems based on frequency division multiple access
SG162735A1 (en) * 2005-05-31 2010-07-29 Qualcomm Inc Assignment acknowledgement for a wireless communication system
US8565194B2 (en) 2005-10-27 2013-10-22 Qualcomm Incorporated Puncturing signaling channel for a wireless communication system
US7970069B2 (en) 2005-07-29 2011-06-28 Panasonic Corporation Wireless communication apparatus and wireless communication method
JP2007135021A (en) * 2005-11-11 2007-05-31 Hitachi Communication Technologies Ltd Method for arranging encoded signal in multicarrier communication and communication device
EP1793639B1 (en) 2005-11-30 2012-01-11 NTT DoCoMo, Inc. Call admission control device and call admission control method
SE529454C2 (en) 2005-12-30 2007-08-14 Abb Ab Process and apparatus for trimming and controlling
US7509588B2 (en) 2005-12-30 2009-03-24 Apple Inc. Portable electronic device with interface reconfiguration mode
WO2007078146A1 (en) * 2006-01-06 2007-07-12 Samsung Electronics Co., Ltd. Method and apparatus for transmitting/receiving uplink signaling information in a single carrier fdma system
EP1806867A2 (en) * 2006-01-09 2007-07-11 Samsung Electronics Co.,Ltd. Method and apparatus for time multiplexing uplink data and uplink signaling information in a SC-FDMA system
PT3169016T (en) 2006-02-03 2018-12-03 Guangdong Oppo Mobile Telecommunications Corp Ltd Uplink resource allocation in a mobile communication system
WO2007100547A2 (en) 2006-02-24 2007-09-07 Interdigital Technology Corporation Wireless communication method and apparatus for selecting between transmission of short-version and full-version uplink scheduling requests
TWI307855B (en) 2006-03-08 2009-03-21 Htc Corp Item selection method, and machine readable medium thereof
KR100833862B1 (en) 2006-03-30 2008-06-02 엘지전자 주식회사 Mobile terminal and Method for displaying object therein
US8243660B2 (en) 2006-06-22 2012-08-14 Samsung Electronics Co., Ltd Method of transmitting scheduling request in mobile communication system and terminal apparatus for the same
US8374161B2 (en) 2006-07-07 2013-02-12 Qualcomm Incorporated Method and apparatus for sending data and control information in a wireless communication system
US8363606B2 (en) 2006-09-05 2013-01-29 Qualcomm Incorporated Method and apparatus for data and control multiplexing
WO2008041110A2 (en) 2006-10-04 2008-04-10 Nokia Corporation Method for symbol multiplexing control and data channel
US8223854B2 (en) 2007-01-10 2012-07-17 Motorola Mobility, Inc. Method and apparatus for transmission of uplink control signaling and user data in a single carrier orthogonal frequency division multiplexing communication system
US20080200196A1 (en) 2007-02-19 2008-08-21 Tarik Muharemovic Transmission of prioritized information in the proximity of reference signals
WO2008120925A1 (en) 2007-03-29 2008-10-09 Lg Electronics Inc. Method of transmitting sounding reference signal in wireless communication system
US7885176B2 (en) 2007-06-01 2011-02-08 Samsung Electronics Co., Ltd. Methods and apparatus for mapping modulation symbols to resources in OFDM systems
ES2718801T3 (en) 2007-06-19 2019-07-04 Optis Cellular Tech Llc Procedures and systems for planning resources in a telecommunications system
US8467367B2 (en) * 2007-08-06 2013-06-18 Qualcomm Incorporated Multiplexing and transmission of traffic data and control information in a wireless communication system
KR101531416B1 (en) 2007-09-13 2015-06-24 옵티스 셀룰러 테크놀로지, 엘엘씨 Method For Transmitting Uplink Signals
US8238475B2 (en) 2007-10-30 2012-08-07 Qualcomm Incorporated Methods and systems for PDCCH blind decoding in mobile communications
US9893859B2 (en) 2007-10-30 2018-02-13 Texas Instruments Incorporated Transmission of sounding reference signal and scheduling request in single carrier systems
PT2208384E (en) 2007-12-20 2011-03-16 Ericsson Telefon Ab L M Method and arrangement in a telecommunication system
RU2490829C2 (en) 2008-02-04 2013-08-20 Нокиа Сименс Нетуоркс Ой Mapping cyclic shift to channel index for ack/nack resource allocation
KR100943908B1 (en) 2008-02-19 2010-02-24 엘지전자 주식회사 Method For Transmitting and Receiving Control Information Through PDCCH
WO2009128285A1 (en) 2008-04-17 2009-10-22 シャープ株式会社 Mobile station device and communication system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080304467A1 (en) * 2007-06-08 2008-12-11 Samsung Electronics Co., Ltd. Control and data signaling in sc-fdma communication systems
US20090010240A1 (en) * 2007-06-11 2009-01-08 Samsung Electronics Co., Ltd. Partitioning of frequency resources for transmission of control signals and data signals in sc-fdma communication systems
US20090046805A1 (en) * 2007-08-15 2009-02-19 Qualcomm Incorported Uplink control channel format
US20100254331A1 (en) * 2007-11-05 2010-10-07 Ki Hwan Kim Method for multiplexing data and control information

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
3GPP TSG RAN WG1 #51bis, R1-080267, 01/14-16/2008 (From Applicant’s IDS) (Year: 2008) *
Motorola, "Uplink channel interleaving", R1-073361, 08/20-24/2007 (From Applicant’s IDS) (Year: 2007) *
Qualcomm, "Rate matching details for control and data multiplexing", R1-073269, 08/20-24/2007 (From Applicant’s IDS) (Year: 2007) *

Also Published As

Publication number Publication date
JP2013102505A (en) 2013-05-23
JP2016021750A (en) 2016-02-04
CN103916218A (en) 2014-07-09
EP2037616B1 (en) 2015-06-17
ES2834320T3 (en) 2021-06-17
KR20210113133A (en) 2021-09-15
JP5788914B2 (en) 2015-10-07
KR20090028401A (en) 2009-03-18
HK1197118A1 (en) 2015-01-02
KR101700179B1 (en) 2017-01-31
HUE061327T2 (en) 2023-06-28
KR101581631B1 (en) 2016-01-04
CN101828353A (en) 2010-09-08
KR20190065220A (en) 2019-06-11
US20090097466A1 (en) 2009-04-16
WO2009035233A1 (en) 2009-03-19
EP4156576B1 (en) 2024-04-17
EP2723011A2 (en) 2014-04-23
KR102095956B1 (en) 2020-04-02
US8102833B2 (en) 2012-01-24
ES2937398T3 (en) 2023-03-28
TW200917722A (en) 2009-04-16
EP4156576A1 (en) 2023-03-29
TWI387252B (en) 2013-02-21
JP2023041067A (en) 2023-03-23
KR20170013367A (en) 2017-02-06
US10374775B2 (en) 2019-08-06
CN103916218B (en) 2018-05-01
KR20150030688A (en) 2015-03-20
KR20170071459A (en) 2017-06-23
PL3739786T3 (en) 2023-04-03
FI3739786T3 (en) 2023-01-31
KR102301694B1 (en) 2021-09-14
EP3739786B1 (en) 2022-11-16
KR20200034994A (en) 2020-04-01
KR20200105646A (en) 2020-09-08
EP2037616A2 (en) 2009-03-18
JP6313487B2 (en) 2018-04-18
JP2010539778A (en) 2010-12-16
US20120082117A1 (en) 2012-04-05
EP2037616A3 (en) 2011-04-13
KR101987140B1 (en) 2019-06-10
US20190319769A1 (en) 2019-10-17
KR101747842B1 (en) 2017-06-15
EP2723011A3 (en) 2017-11-01
HUE052403T2 (en) 2021-04-28
EP2723011B1 (en) 2020-09-02
JP6082066B2 (en) 2017-02-15
US11012222B2 (en) 2021-05-18
JP6568254B2 (en) 2019-08-28
JP2018107827A (en) 2018-07-05
CN101828353B (en) 2014-05-07
US20150180638A1 (en) 2015-06-25
KR20160004246A (en) 2016-01-12
KR20210025572A (en) 2021-03-09
JP5183743B2 (en) 2013-04-17
KR101531416B1 (en) 2015-06-24
KR101876921B1 (en) 2018-07-11
KR102223664B1 (en) 2021-03-05
KR102152203B1 (en) 2020-09-04
EP3739786A1 (en) 2020-11-18
US9001814B2 (en) 2015-04-07
JP2020005269A (en) 2020-01-09
KR20180081688A (en) 2018-07-17
JP2017112623A (en) 2017-06-22
ES2546462T3 (en) 2015-09-23

Similar Documents

Publication Publication Date Title
US20210234661A1 (en) Method for transmitting uplink signals

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: APPLICATION DISPATCHED FROM PREEXAM, NOT YET DOCKETED

AS Assignment

Owner name: OPTIS CELLULAR TECHNOLOGY, LLC, TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:LG ELECTRONICS, INC.;REEL/FRAME:055985/0620

Effective date: 20131219

Owner name: LG ELECTRONICS INC., KOREA, REPUBLIC OF

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LEE, DAE WON;KIM, BONG HOE;YUN, YOUNG WOO;AND OTHERS;SIGNING DATES FROM 20081120 TO 20081121;REEL/FRAME:055983/0739

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION