US20210161630A1 - System for the cleaning and disinfecting of gum surfaces surrounding implant structures that support dentures - Google Patents

System for the cleaning and disinfecting of gum surfaces surrounding implant structures that support dentures Download PDF

Info

Publication number
US20210161630A1
US20210161630A1 US17/174,867 US202117174867A US2021161630A1 US 20210161630 A1 US20210161630 A1 US 20210161630A1 US 202117174867 A US202117174867 A US 202117174867A US 2021161630 A1 US2021161630 A1 US 2021161630A1
Authority
US
United States
Prior art keywords
denture
disinfecting
gum
cleaning
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US17/174,867
Inventor
Summer FAWARSY
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US17/174,867 priority Critical patent/US20210161630A1/en
Publication of US20210161630A1 publication Critical patent/US20210161630A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C8/00Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C13/00Dental prostheses; Making same
    • A61C13/01Palates or other bases or supports for the artificial teeth; Making same
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C17/00Devices for cleaning, polishing, rinsing or drying teeth, teeth cavities or prostheses; Saliva removers; Dental appliances for receiving spittle
    • A61C17/02Rinsing or air-blowing devices, e.g. using fluid jets or comprising liquid medication
    • A61C17/0211Rinsing or air-blowing devices, e.g. using fluid jets or comprising liquid medication specially adapted for rinsing the teeth of at least one jaw simultaneously
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C19/00Dental auxiliary appliances
    • A61C19/06Implements for therapeutic treatment
    • A61C19/063Medicament applicators for teeth or gums, e.g. treatment with fluorides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C8/00Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools
    • A61C8/0093Features of implants not otherwise provided for
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C8/00Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools
    • A61C8/0093Features of implants not otherwise provided for
    • A61C8/0095Total denture implant

Definitions

  • the present invention relates to a system for the cleaning and disinfecting of gum surfaces surrounding implant structures that support dentures.
  • Denture an artificial replacement for one or more teeth; especially: a set of false teeth—also referred to as “dental plate” or “denture plate”.
  • dentures refers to “removable dentures” that can be readily placed and removed from the mouth of the user and to “fixated dentures” that requires the activities of a dentistry-professional to be placed and remove from the mouth of the user.
  • Alveolar relating to, or constituting the part of the jaws where the teeth arise.
  • Gum the alveolar portion of a jaw with its enveloping soft tissues.
  • Implant “to place (something) in a person's body by means of surgery”.
  • implant refers to a dental implant that is a surgical component that interfaces with the bone of the alveolar to support a dental prosthesis such as a crown, bridge or denture.
  • Dental implants typically connect dentures to the alveolar in a fixated configuration.
  • the dentures are positioned in place and removed from the mouth of the patient by a procedure carried out by a dentist or another dentistry-professional.
  • the fixated dentures are positioned in contact with the gums of the persons wearing dentures.
  • large size dentures typically, supporting more than one tooth
  • the contact with the gums is not continuous and homogeneous throughout the surfaces of the dentures facing the gums.
  • the physiological conditions encourage the development of microorganisms.
  • the development of microorganisms may cause bad-breath and/or infections.
  • the caused infections may be severe so as to damage the connection between the implant and the alveolar a well as to cause pain and deteriorate the general health of the person having the implants in his or her mouth.
  • “maintenance activities” are required.
  • Typical “maintenance activities”, referred to as “mechanical oral hygiene practices”, are usually done by mechanical means such as but not limited to, brushing and/or water squirting and/or disinfecting solution, and are limited in their effectiveness. The limited effectiveness is due to the enclosure of the surfaces to be treated, especially areas in close vicinity to implants, between the gums and the dentures.
  • the “maintenance activities” physically remove the microorganisms as well as disinfect the treated areas against remaining and new microorganisms.
  • the “maintenance activities” also include the removal of “entrapped” food particles that may serve as growth-media for microorganisms.
  • liquid refers to, but not limited to, water.
  • the used liquid can also be a water or an organic solvent solution of a disinfection medication or/and an dental-treatment medicinal-drug.
  • pressured gas refers to, but not limited to, air and may be any gas(es) used in dental treatments.
  • a classical method for the cleaning and disinfecting removable dentures, when worn as well as when not in use and for cleaning and disinfecting fixated dentures is the spraying of a jet of water or a jet of a mouth-wash solution on the surfaces and/or side of the dentures by a device commonly known as a “water flosser”.
  • a water flosser An example of water flosser devices is shown in the web sites of the Waterpik Company (http://getwaterpik.com/ and https://www.waterpik.com/oral-health/dental-needs/dental-work/implants/).
  • the present invention is an effective and easy to use, system for the cleaning and disinfecting gum surfaces of fixated dentures, especially of gum surfaces in the close proximity to implants that support the fixated dentures.
  • the system of the present invention removes and disinfects against microorganisms as well as washes out “entrapped” food and other particles from surfaces of the gums and especially surfaces immediately surrounding the dental implants supporting the dentures.
  • denture-plate In cases where more than a few teeth are missing, typically a relatively large denture is used, referred to in the text that follows as: “denture-plate”.
  • the denture plate has false teeth on one side and on the opposite side a gum-contacting surface that rests on the gum of the wearer.
  • the plate In a fixated-in-place denture plate, the plate is typically connected to the alveolar of the wearer by dental implants.
  • the preset invention is a system for easy and effective cleaning and disinfecting the gum-denture contact surfaces of a fixated-in-place denture plate, especially for cleaning and disinfecting the surfaces immediately surrounding the implants structures in the gum of the denture wearer that support the denture plate.
  • the system for the cleaning and disinfecting of gum surfaces surrounding implants that support dentures of the present invention is composed of: a denture plate having a smooth gum contact surface, at least one Denture-Alveolar-Implant Liquid Dispenser (DAILD) and a conduit liquid streaming system.
  • DAILD Denture-Alveolar-Implant Liquid Dispenser
  • Each DAIL is constructed of: a dental implant structure, a locking component, a basin-structure and fastening-component.
  • each DAIL and the conduit liquid streaming system are embedded in pre-defined “dug in” structure in the denture plate and form a smooth surface alignment configuration with the gum contact surface of the denture plate.
  • the term “dug in” structure refers to predefined channel (or channels) and cavities that penetrate into the surface of the denture plate ( 12 ) and are produced by (and not limited to): etching or/and drilling and/or pre-casting into plate ( 12 ).
  • the dental implant structure is implanted into the alveolar of the wearer of the denture plate and has a hollow tube structure.
  • the locking component is constructed of: a plate with a protruding bar that connects and fixates to the hollow tube in the dental implant on one side and a hollow tube that connects and fixates to the fastening component on its other side.
  • fixated connections of the locking component maintains the denture plate in a fixated contact with the gum of the denture wearer, leaving narrow gaps between the gum and the gum contact surface of the denture plate.
  • the basin structure is composed of a cylinder vessel with an opened side and a tube running through the center of the vessel,
  • the fastening-structure is composed of a bar with an expansion of the bar at one of the its ends.
  • the basin structure is embedded in the denture plate and is fixated in place in the denture plate by the fastening component that runs through the denture plate, through the tube in the basin structure and connects tightly with the locking component by inserting into hollow tube in the locking component.
  • the conduit liquid streaming system is constructed of a connected-assembly of tubular components having various structural configurations, that together construct a conduit.
  • the conduit liquid streaming system has a liquid entry port, optionally, having a tumble configuration.
  • the conduit liquid streaming system connects to the cylinder vessel of the basin structure.
  • the system for the cleaning and disinfecting of gum surfaces surrounding implants that support dentures of the present invention has in addition to at least one DAILD, at least one Denture Liquid Sieve-Dispensers (DLSD).
  • Each DLSD is constructed of: a hollow half-sphere vessel component connected in its open-side to a sieve plate component and perturbing tube from the bottom of the half-sphere vessel component.
  • Each DLSD is embedded into the denture plate so as to form a smooth alignment of the DLSD with the gum contact surface of the denture plate.
  • conduit liquid streaming system connects to the perturbing tube of the half-sphere vessel component.
  • each of the components: the DIALD, the DLSD and the conduit liquid streaming system in the system of the present invention is designed and manufactured by hand or/and designed and manufactured by a computerized controlled system.
  • An example of a computerized controlled designing system is the use of a computer-aided drafting (CAD)-designing software such as SolidWorks (website: http://www.solidworks.com).
  • CAD computer-aided drafting
  • An example of a computer controlled manufacturing system is the use of 3D printing machines such as produced by the 3D Company (website: http://www.3dcompanyinc.com/).
  • the DIALD, the DLSD and the conduit streaming system of the system of the invention stream, dispense and discharge a gas as an alternative to a liquid.
  • FIG. 1 is an illustration, as seen from above, of the cleaning and disinfecting system cleaning and disinfecting of surfaces around implants that support dentures of the present invention, fixated in an alveolar of a patient, with arrows indicating the streaming of a liquid (or gas).
  • FIG. 2 is an isometric illustration, seen from the side, of a Denture-Alveolar-Implant Liquid (or gas) Dispenser (abbreviated as: DAILD), shown in an assembled configuration.
  • DAILD Denture-Alveolar-Implant Liquid (or gas) Dispenser
  • FIG. 3 is an isometric illustration, seen from the side, of the DAILD shown in FIG. 2 , in a disassembled configuration.
  • FIG. 4 is an illustration, seen from above, of a DAILD, shown in FIG. 2 .
  • FIG. 5 is an isometric illustration, seen from above and side, of DAILDs shown positioned in a denture-plate.
  • FIG. 6A is an isometric illustration, seen from the side, of a Denture Liquid (or gas) Sieve-Dispenser (abbreviated as: DLSD).
  • DLSD Denture Liquid (or gas) Sieve-Dispenser
  • FIG. 6B is an isometric illustration, crosscut view, of the DLSD illustrated in FIG. 6A .
  • FIG. 7 is an illustration, seen from above, of a DLSD, shown in FIG. 6 .
  • FIG. 8A is an isometric illustration, seen from the side, of an inlet funnel for liquid (or gas).
  • FIG. 8B is an isometric illustration, crosscut view, of the inlet funnel for liquid (or gas) illustrated in FIG. 8A .
  • FIG. 9A is an isometric illustration, seen from the side of a liquid (or gas) stopper.
  • FIG. 9B is an isometric illustration, crosscut view a liquid (or gas) stopper illustrated in FIG. 9A .
  • FIG. 10A presents isometric illustrations of four different components that when assembled in various connection-configurations construct a conduit for liquid (or gas) flow in the system for cleaning and disinfecting of gum surfaces around implants that support dentures in the system of the present invention.
  • FIG. 10B presents isometric illustrations of the four different components of FIG. 10A in a crosscut view.
  • the present invention is a system ( 10 ) for cleaning and disinfecting of gum surfaces around implants that support dentures ( 12 ) that is easy to operate and is efficient in its performance.
  • a fixated-in-place denture plate ( 12 ) typically has false teeth ( 24 ) on one side and on the opposite side a gum-contact surface plate that is fixated over the gum of the wearer, leaving as little gaps as possible between the denture plate ( 12 ) and the gum.
  • the term “gap” in the context of the present text refers to continuously existing spaces between the denture plate ( 12 ) and the gum as well as to “temporary spaces” that form when a pressure is applied on the denture plate ( 12 ).
  • the denture-plate ( 12 ) connects to dental implant structures ( 30 ) that are embedded in the alveolar of the wearer (referred to interchangeably as the “patient”).
  • a denture wearer discharges at will a liquid, typically, but not limited to, water or a disinfecting solution, from dispensing elements embedded in the denture plate, into the gap(s) between the denture plate ( 12 ) and the gum denture-contact surface.
  • a liquid typically, but not limited to, water or a disinfecting solution
  • dispensing elements embedded in the denture plate into the gap(s) between the denture plate ( 12 ) and the gum denture-contact surface.
  • the term “discharging” is used interchangeably in the text with the term “dispensing”.
  • the denture plate embedded dispensing elements are connected and surround the gum protruding portions of the dental implants embedded in the alveolar of the wearer of the plate denture.
  • the discharged liquid from the dispensing elements initiates its flow from the gum surface areas immediately surrounding the dental implants and proceeds towards the more distant gum surface areas, thus, the maximal cleaning and disinfecting effects are obtained in the areas surrounding the dental implants.
  • the dispensing elements discharge a gas, typically but not limited to, pressured air.
  • a gas typically but not limited to, pressured air.
  • the system ( 10 ) of the present invention is constructed of a denture plate ( 12 ), at least one liquid dispensing element, each element is referred to as a Denture-Alveolar-Implant Liquid (or gas) Dispenser, abbreviated as: DAILD ( 14 ).
  • the system also includes at least one of a second type of liquid dispensing element, where each second type element is referred to as a Denture-Liquid (or gas) Sieve-Dispenser, abbreviated as DLSD ( 16 ).
  • the system includes a conduit liquid (or gas) streaming system ( 61 ) constructed of an assembly of conduit elements.
  • the conduit streaming system ( 61 ) starts at an entry port ( 20 ) and connects to each of the DAILDs ( 14 ) (and DLSD ( 16 )).
  • a schematic illustration of the system for the cleaning and disinfecting of gum surfaces around implants that support dentures ( 10 ) is given in FIG. 1 .
  • the denture plate ( 12 ) used in the system ( 10 ) of the present invention is made of standard dentally-used materials and is constructed as a standard fixed-in-place denture with the addition of the components of the system ( 10 ) listed above and described below in the text.
  • FIG. 1 is an illustration of the system for the cleaning and disinfecting of gum surfaces around implants that support dentures ( 10 ) positioned in the gum contact surface side of the denture plate ( 12 ), as seen from above.
  • the DAILDs ( 14 ) and DLSDs ( 16 ) are shown discharging liquid to the areas around their circumference.
  • the streaming liquid is indicated by arrows ( 22 ).
  • the liquid enters the system ( 10 ) via entry port ( 20 ), flows through the conduit ( 18 ) and is discharged by the DAILDs ( 14 ) and DLSDs ( 16 ).
  • a liquid-tight stopper ( 26 ) reversibly connects to entry port ( 20 ).
  • stopper ( 26 ) In order to inject liquid into the system, stopper ( 26 ) is removed from entry port ( 20 ) and the liquid is pressured/injected into the conduit ( 18 ), typically but not limited to, by a syringe. The empting of the syringe forces the liquid into the conduit ( 18 ). After the liquid injection, stopper ( 26 ) is re-connects to entry port ( 20 ). The liquid stream that enters the system ( 10 ) is designated by arrow ( 28 ).
  • FIG. 2 isometric illustration, seen from the side of a DAILD ( 14 ) shown in an assembled configuration.
  • FIG. 3 is an isometric illustration, seen from the side, of a DAILD ( 14 ) in a disassembled configuration.
  • FIG. 4 is an illustration, seen from above, of a DAILD ( 14 ), shown in FIG. 2 .
  • Each DAILD ( 14 ) is composed of: a hallow-tube dental implant structure ( 30 ), a locking component ( 32 ), a basin-structure ( 38 ) and fastening-component ( 40 ).
  • Dental implant structure ( 30 ) is made of a rigid material hollow-tube that is embedded and fixated in the alveolar of the wearer (the fixation in the alveolar not shown in the figures).
  • the locking-structure ( 32 ) is constructed of: 1) implant tube connection tube ( 34 ), 2) a dome structure ( 36 ) having a flat bottom-side 3) a tube ( 37 ) that connects and protrudes from the bottom-side of dome structure ( 36 ).
  • inside tube ( 37 ) is a protruding threaded screw (not shown) that fits into the inner-side screw thread of tube ( 39 ), as explained later in the text.
  • Basin-structure ( 38 ) is composed of a circular liquid container ( 42 ) with a hollow tube ( 44 ) that runs through it. Tube ( 44 ) protrudes from the bottom, closed-side, of the container ( 42 ). A gap is left between tube ( 44 ) and the wall of container ( 42 ), designated ( 41 ).
  • the wall of container ( 42 ) has an opening ( 46 ) that connects to the conduit ( 18 ) by a sub-element of the conduit, designated ( 48 ) in FIG. 3 (see in FIG. 10A element b).
  • Fastening-component ( 40 ) is constructed of a hollow tube ( 39 ) that has an expanded portion at one of its ends ( 39 a ) and on its other end, a hole (designated: 39 b ).
  • fastening-component ( 40 ) runs through hollow tube ( 44 ) of basin-structure ( 38 ) and inserts into tube ( 37 ) of locking-structure ( 32 ).
  • the screw (not shown) inside tube ( 37 ) inserts into hole ( 39 ( b ) in tube ( 39 ) in fastening-structure ( 40 ) and is interlocked in the screw thread inside tube ( 39 ) (not seen).
  • Dental implant structure ( 30 ) which is embedded in the alveolar of the denture wearer, interlocks and is fixated with implant tube connection tube ( 34 ).
  • each of the DAILDs ( 14 ) is rigidly fixated into the denture plate ( 12 ) structure.
  • implant tube connection tube ( 34 ) in dental implant structure ( 30 )
  • denture-plate ( 12 ) with system ( 10 ) is fixated in place in contact with the surfaces of the gums of the denture wearer.
  • FIG. 4 illustrates an DAIL as seen from above.
  • FIG. 5 is an isometric illustration, seen from above, of DAILDs ( 14 ) fixated into the denture plate ( 12 ).
  • DAIL-s ( 14 ) are shown in an assembled ( 12 a ) and disassembled ( 12 b ) configuration.
  • the rim of the walls of container ( 42 ) of the DAILDs ( 14 ) (shown in FIG. 2 , FIG. 3 and FIG. 4 ) are fixated into the denture plate ( 12 ) so as to be in a smooth alignment with the surface of the denture plate ( 12 ).
  • the alignment of the DAILDs ( 14 ) enables to minimize the gaps between the denture plate ( 12 ) and the gums.
  • the path of conduit ( 18 ) that streams the liquid from port ( 26 ) to the DAILDs ( 14 ) (and optionally, to the DLSD ( 16 )), as well as the cavities in which the DAILDs ( 14 ) and DLSDs ( 16 ) are imbedded in the denture plate ( 12 ) are illustrated in FIG. 1 .
  • the path and cavities are predefined structures that are “dug in” into the surface of the denture plate ( 12 ) in a manner that the conduit ( 18 ), the DAILDs ( 14 ) and the DLSDs ( 16 ) form a smooth alignment configuration with the with the gum-contact-surface of the denture plate ( 12 ).
  • the term “dug in” refers to a predefined channel(s) and cavities formed by etching or/and drilling and/or pre-casting into the surface of the denture plate ( 12 ).
  • the predefined “dug in” structures in the denture plate as well as the DLSDs ( 16 ), the DAILDs ( 14 ) and the conduit ( 18 ) are designed and manufactured by hand or/and designed and manufactured by a computerized system.
  • the liquid that exits from gaps ( 41 ) is dispensed in the area surrounding the DAILDs ( 14 ).
  • the dispensed liquid starts by cleaning and disinfecting the areas immediately surrounding the alveolar imbedded dental implant structures ( 30 ) and proceeds to clean and disinfect farther areas of the denture plate ( 14 ), as illustrated in FIG. 1 .
  • the DLSDs ( 16 ) are optional liquid (or gas) dispensers that complement the cleaning and disinfecting functions of the DAILDs ( 14 ) and do not have a gum-denture connection function.
  • the structure and function of the DLSDs ( 16 ) is clarified in: FIG. 1 and FIG. 6A , FIG. 6B .
  • FIG. 6A is an isometric illustration, seen from the side, of a DLSD ( 16 )
  • FIG. 6B is an isometric cross cut illustration of the DLSD ( 16 ), shown in FIG. 5A
  • FIG. 7 is an illustration, seen from above, of a DLSD ( 16 ), shown in FIG. 6A .
  • the DLSDs ( 16 ) are composed of a hollow half-sphere component ( 52 ) connected in its open-side to sieve plate ( 64 ).
  • Sieve plate ( 64 ) is constructed of a sieve ( 66 ) made of a rigid material, fixated in place by a rigid material rim-frame ( 65 ).
  • a tube ( 54 ) protrudes from the bottom of the half-sphere ( 52 ).
  • the tip of bar ( 54 ) is made of protruding rings ( 56 ), which enable the connection of the DLSDs ( 16 ) to conduit ( 18 ), as illustrated in FIG. 1 .
  • the DLSDs ( 16 ) are fixated into the denture plate ( 12 ) so that the sieve plates ( 64 ) are in smooth alignment with the surface of the denture plate ( 12 ).
  • Tubes ( 54 ) of the DLSDs ( 16 ) connect to conduit ( 18 ), which is in smooth alignment with the surface of the denture plate ( 12 ), as was previously explained.
  • Liquid injected into port ( 26 ) flows through conduit ( 18 ) and is dispensed simultaneously from the DAILDs ( 14 ) and the DLSDs ( 16 ), as illustrated in FIG. 1 .
  • the primary objective of deploying the DAILDs ( 14 ) is the cleaning and disinfecting the immediate surrounding areas of the dental implant structures ( 30 ) in the gum of the denture wearer
  • the objective of deploying the DLSDs ( 16 ) is to complement the cleaning and disinfecting of the areas of the gum cleaned by the DAILDs ( 14 ) beyond the immediate surrounding areas of the dental implants structures ( 30 ).
  • the conduit streaming system ( 61 ) is composed of the connection of:
  • the assembly of the components ( 47 ), ( 48 ), ( 49 ) and ( 50 ) is referred to as the conduit ( 18 ) of the system ( 10 ) of the present invention and is the main the main structure in the conduit streaming system ( 61 ).
  • FIG. 8A is an isometric illustration, seen from the side, of a liquid inlet funnel ( 20 ) that streams liquid into the conduit ( 18 )
  • FIG. 8B is a crosscut isometric illustration, seen from the side, of the liquid inlet funnel ( 20 ) shown in FIG. 8A
  • the funnel is constructed of a connection-element ( 58 ), to which a tube, a syringe or other means of injecting a liquid into conduit ( 18 ) connects and a hollow bar ( 54 ) that protrudes from connection-element ( 58 ).
  • the tip of bar ( 54 ) is made of protruding rings ( 56 ) which enable the connection of the hollow bar ( 54 ) to conduit ( 18 ).
  • Liquid inlet funnel ( 20 ) is inserted through a predefined hole in the denture-plate ( 12 ), thus, connecting the connection-element ( 58 ) via hollow bar ( 54 ) to the conduit ( 18 ) in the denture plate ( 12 ), as illustrated in FIG. 1 .
  • FIG. 9A is an isometric illustration, seen from the side, of a liquid stopper ( 26 ) in the shape of a thimble.
  • FIG. 9B is a crosscut isometric illustration of the liquid stopper ( 26 ) shown in FIG. 9A .
  • Stopper ( 26 ) is inserted and removed into and from connection-element ( 58 ) of the liquid inlet funnel ( 20 ) at will and is utilized for preventing liquid from flowing from the conduit ( 18 ) or for (when removed) to inject liquid into the conduit, respectively.
  • the use of liquid stopper ( 26 ) s illustrated in FIG. 1 .
  • FIG. 10A and FIG. 10B illustrate four types of hollow components, that, when assembled in connected-configurations, construct conduit ( 18 ).
  • Component ( 49 ) has a “cross configuration”
  • component ( 48 ) has a “T” configuration
  • component ( 49 ) has an “L” configuration
  • component ( 50 ) has a straight-tube configuration. All four components are constructed of hollow-tubes made of semi-rigid material.
  • the designing, manufacturing and assembling of the components that construct the DLSF ( 14 ) and DLSD) ( 16 ) requires elaborate designing (tailored-made components, in some cases) and delicate manufacturing-precision.
  • DAIL ( 14 ), the a conduit liquid streaming system and the DLSD ( 16 ) can be hand-designed and manufactured but typically the System ( 10 ) is designed and manufactured by a computerized controlled system.

Abstract

The preset invention is a system for easy and effective cleaning and disinfecting the gum-denture contact surfaces of a fixated-in-place denture plate, especially for cleaning and disinfecting the surfaces immediately surrounding the implants structures in the gum of the denture wearer that support the denture plate. The system is composed of: a denture plate having a smooth gum contact surface, at least one Denture-Alveolar-Implant Liquid Dispenser (DAILD) and a conduit liquid (or gas) streaming system. Optionally, the system also includes at least one Denture Liquid Sieve-Dispensers (DLSD). Each DAIL is constructed of: a dental implant structure, a locking component, a basin-structure and fastening-component. When liquid (or gas) is injected into the basin structure it flows from DAIL and cleans and disinfects the surrounding area of the DAILD in the denture plate.

Description

  • The present invention relates to a system for the cleaning and disinfecting of gum surfaces surrounding implant structures that support dentures.
  • BACKGROUND OF THE INVENTION
  • The Merriam Webster (website: www.merriam-webster.com) gives the following definitions:
  • Denture: an artificial replacement for one or more teeth; especially: a set of false teeth—also referred to as “dental plate” or “denture plate”. In context of the present invention, the term “dentures” refers to “removable dentures” that can be readily placed and removed from the mouth of the user and to “fixated dentures” that requires the activities of a dentistry-professional to be placed and remove from the mouth of the user.
  • Alveolar: relating to, or constituting the part of the jaws where the teeth arise.
  • Gum: the alveolar portion of a jaw with its enveloping soft tissues.
  • Implant: “to place (something) in a person's body by means of surgery”. In the context of the present text the term “implant” refers to a dental implant that is a surgical component that interfaces with the bone of the alveolar to support a dental prosthesis such as a crown, bridge or denture.
  • Dental implants typically connect dentures to the alveolar in a fixated configuration. Typically, the dentures are positioned in place and removed from the mouth of the patient by a procedure carried out by a dentist or another dentistry-professional. The fixated dentures are positioned in contact with the gums of the persons wearing dentures. In large size dentures (typically, supporting more than one tooth), the contact with the gums is not continuous and homogeneous throughout the surfaces of the dentures facing the gums.
  • In fixated dentures, on the surfaces of the gums and especially in areas in close vicinity to dental implants placed in the alveolar, the physiological conditions encourage the development of microorganisms. The development of microorganisms may cause bad-breath and/or infections. The caused infections may be severe so as to damage the connection between the implant and the alveolar a well as to cause pain and deteriorate the general health of the person having the implants in his or her mouth. To prevent the development of the microorganisms that thrive on the gums of patients wearing dentures, “maintenance activities” are required. Typical “maintenance activities”, referred to as “mechanical oral hygiene practices”, are usually done by mechanical means such as but not limited to, brushing and/or water squirting and/or disinfecting solution, and are limited in their effectiveness. The limited effectiveness is due to the enclosure of the surfaces to be treated, especially areas in close vicinity to implants, between the gums and the dentures. The “maintenance activities” physically remove the microorganisms as well as disinfect the treated areas against remaining and new microorganisms. The “maintenance activities” also include the removal of “entrapped” food particles that may serve as growth-media for microorganisms.
  • In the described “cleaning and disinfecting of gum surfaces surrounding implant structures that support dentures” in the present invention, the term “liquid” refers to, but not limited to, water. The used liquid can also be a water or an organic solvent solution of a disinfection medication or/and an dental-treatment medicinal-drug.
  • Alternatively to using a liquid for the cleaning and disinfecting of gum surfaces surrounding implant structures that support dentures” in the present invention, pressured gas be used. The term “gas” refers to, but not limited to, air and may be any gas(es) used in dental treatments.
  • In general, mechanical oral hygiene practices include the removal of dentures not fixated by implants.
  • A classical method for the cleaning and disinfecting removable dentures, when worn as well as when not in use and for cleaning and disinfecting fixated dentures, is the spraying of a jet of water or a jet of a mouth-wash solution on the surfaces and/or side of the dentures by a device commonly known as a “water flosser”. An example of water flosser devices is shown in the web sites of the Waterpik Company (http://getwaterpik.com/ and https://www.waterpik.com/oral-health/dental-needs/dental-work/implants/).
  • An example of a device for the cleaning and disinfecting removable dentures by injecting a controlled amount of mouth-wash at a predetermined temperature and pressure is given in WO2007/132275 (Xanthopoulos), in which is mounted on the exposed (mouth side) surfaces of the upper and lower dentures.
  • Additional examples of mechanical devices for washing and disinfecting of removed-from-gums dentures are given in: WO99/23974 (Williams) and U.S. Pat. No. 6,390,104 (Gagon).
  • The present invention is an effective and easy to use, system for the cleaning and disinfecting gum surfaces of fixated dentures, especially of gum surfaces in the close proximity to implants that support the fixated dentures. The system of the present invention removes and disinfects against microorganisms as well as washes out “entrapped” food and other particles from surfaces of the gums and especially surfaces immediately surrounding the dental implants supporting the dentures.
  • SUMMARY OF THE INVENTION
  • In cases where more than a few teeth are missing, typically a relatively large denture is used, referred to in the text that follows as: “denture-plate”. The denture plate has false teeth on one side and on the opposite side a gum-contacting surface that rests on the gum of the wearer. In a fixated-in-place denture plate, the plate is typically connected to the alveolar of the wearer by dental implants.
  • The preset invention is a system for easy and effective cleaning and disinfecting the gum-denture contact surfaces of a fixated-in-place denture plate, especially for cleaning and disinfecting the surfaces immediately surrounding the implants structures in the gum of the denture wearer that support the denture plate. The longer the time elapse between cleaning episodes of the denture while the denture is in place in the mouth of the wearer, the greater the risk of microbiological infections as well as bad-breath incidences.
  • The system for the cleaning and disinfecting of gum surfaces surrounding implants that support dentures of the present invention is composed of: a denture plate having a smooth gum contact surface, at least one Denture-Alveolar-Implant Liquid Dispenser (DAILD) and a conduit liquid streaming system.
  • Each DAIL is constructed of: a dental implant structure, a locking component, a basin-structure and fastening-component.
  • The locking component, basin-structure and fastening-component of each DAIL and the conduit liquid streaming system are embedded in pre-defined “dug in” structure in the denture plate and form a smooth surface alignment configuration with the gum contact surface of the denture plate. The term “dug in” structure refers to predefined channel (or channels) and cavities that penetrate into the surface of the denture plate (12) and are produced by (and not limited to): etching or/and drilling and/or pre-casting into plate (12).
  • The dental implant structure is implanted into the alveolar of the wearer of the denture plate and has a hollow tube structure.
  • The locking component is constructed of: a plate with a protruding bar that connects and fixates to the hollow tube in the dental implant on one side and a hollow tube that connects and fixates to the fastening component on its other side.
  • The fixated connections of the locking component maintains the denture plate in a fixated contact with the gum of the denture wearer, leaving narrow gaps between the gum and the gum contact surface of the denture plate.
  • The basin structure is composed of a cylinder vessel with an opened side and a tube running through the center of the vessel,
  • The fastening-structure is composed of a bar with an expansion of the bar at one of the its ends.
  • The basin structure is embedded in the denture plate and is fixated in place in the denture plate by the fastening component that runs through the denture plate, through the tube in the basin structure and connects tightly with the locking component by inserting into hollow tube in the locking component.
  • The conduit liquid streaming system is constructed of a connected-assembly of tubular components having various structural configurations, that together construct a conduit. The conduit liquid streaming system has a liquid entry port, optionally, having a tumble configuration. The conduit liquid streaming system connects to the cylinder vessel of the basin structure.
  • When liquid injected into the conduit liquid streaming system reaches the cylinder vessel of the basin structure and flows from the rim of the cylinder vessel, the water flow cleans and disinfects the gum area immediately surrounding the DAILD in the denture plate as well as the gum area more distant that surrounds the dental implant structure.
  • Optionally, the system for the cleaning and disinfecting of gum surfaces surrounding implants that support dentures of the present invention has in addition to at least one DAILD, at least one Denture Liquid Sieve-Dispensers (DLSD). Each DLSD is constructed of: a hollow half-sphere vessel component connected in its open-side to a sieve plate component and perturbing tube from the bottom of the half-sphere vessel component. Each DLSD is embedded into the denture plate so as to form a smooth alignment of the DLSD with the gum contact surface of the denture plate.
  • In each DLSD the conduit liquid streaming system connects to the perturbing tube of the half-sphere vessel component.
  • In each DLSD, when liquid injected into the conduit liquid streaming system reaches the half-sphere vessel component and flows through sieve plate component to the surrounding area, it cleans and disinfects the area surrounding the DLSD.
  • Furthermore, the design and manufacturing of the “dug in” structures in which the DIALD, DLSD and conduit liquid streaming system are embedded, are hand made or/and designed and by a computerized controlled system.
  • Furthermore, each of the components: the DIALD, the DLSD and the conduit liquid streaming system in the system of the present invention is designed and manufactured by hand or/and designed and manufactured by a computerized controlled system.
  • An example of a computerized controlled designing system is the use of a computer-aided drafting (CAD)-designing software such as SolidWorks (website: http://www.solidworks.com). An example of a computer controlled manufacturing system is the use of 3D printing machines such as produced by the 3D Company (website: http://www.3dcompanyinc.com/).
  • Furthermore, in system of the present invention the DIALD, the DLSD and the conduit streaming system of the system of the invention stream, dispense and discharge a gas as an alternative to a liquid.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • In order to better understand the present invention, and appreciate its practical applications, the following Figures are provided and referenced hereafter.
  • It should be noted that the Figures are given as examples only and in no way limit the scope of the invention. Like components are denoted by like reference numerals.
  • FIG. 1 is an illustration, as seen from above, of the cleaning and disinfecting system cleaning and disinfecting of surfaces around implants that support dentures of the present invention, fixated in an alveolar of a patient, with arrows indicating the streaming of a liquid (or gas).
  • FIG. 2 is an isometric illustration, seen from the side, of a Denture-Alveolar-Implant Liquid (or gas) Dispenser (abbreviated as: DAILD), shown in an assembled configuration.
  • FIG. 3 is an isometric illustration, seen from the side, of the DAILD shown in FIG. 2, in a disassembled configuration.
  • FIG. 4 is an illustration, seen from above, of a DAILD, shown in FIG. 2.
  • FIG. 5 is an isometric illustration, seen from above and side, of DAILDs shown positioned in a denture-plate.
  • FIG. 6A is an isometric illustration, seen from the side, of a Denture Liquid (or gas) Sieve-Dispenser (abbreviated as: DLSD).
  • FIG. 6B is an isometric illustration, crosscut view, of the DLSD illustrated in FIG. 6A.
  • FIG. 7 is an illustration, seen from above, of a DLSD, shown in FIG. 6.
  • FIG. 8A is an isometric illustration, seen from the side, of an inlet funnel for liquid (or gas).
  • FIG. 8B is an isometric illustration, crosscut view, of the inlet funnel for liquid (or gas) illustrated in FIG. 8A.
  • FIG. 9A is an isometric illustration, seen from the side of a liquid (or gas) stopper.
  • FIG. 9B, is an isometric illustration, crosscut view a liquid (or gas) stopper illustrated in FIG. 9A.
  • FIG. 10A presents isometric illustrations of four different components that when assembled in various connection-configurations construct a conduit for liquid (or gas) flow in the system for cleaning and disinfecting of gum surfaces around implants that support dentures in the system of the present invention.
  • FIG. 10B presents isometric illustrations of the four different components of FIG. 10A in a crosscut view.
  • DETAILED DESCRIPTION OF A PREFERRED EMBODIMENT
  • The present invention is a system (10) for cleaning and disinfecting of gum surfaces around implants that support dentures (12) that is easy to operate and is efficient in its performance.
  • A fixated-in-place denture plate (12) typically has false teeth (24) on one side and on the opposite side a gum-contact surface plate that is fixated over the gum of the wearer, leaving as little gaps as possible between the denture plate (12) and the gum. The term “gap” in the context of the present text refers to continuously existing spaces between the denture plate (12) and the gum as well as to “temporary spaces” that form when a pressure is applied on the denture plate (12). In order to maintain the denture plate fixed in place over the gum of the wearer, the denture-plate (12) connects to dental implant structures (30) that are embedded in the alveolar of the wearer (referred to interchangeably as the “patient”).
  • In using the system (10) of the present invention a denture wearer discharges at will a liquid, typically, but not limited to, water or a disinfecting solution, from dispensing elements embedded in the denture plate, into the gap(s) between the denture plate (12) and the gum denture-contact surface. The term “discharging” is used interchangeably in the text with the term “dispensing”. The denture plate embedded dispensing elements are connected and surround the gum protruding portions of the dental implants embedded in the alveolar of the wearer of the plate denture. The discharged liquid from the dispensing elements initiates its flow from the gum surface areas immediately surrounding the dental implants and proceeds towards the more distant gum surface areas, thus, the maximal cleaning and disinfecting effects are obtained in the areas surrounding the dental implants.
  • Alternatively to dispensing a liquid, the dispensing elements discharge a gas, typically but not limited to, pressured air. References in the text and in the figures that describe the flow (streaming) and discharge of a liquid(s) refers interchangeably also to the use of gas in system (10).
  • The system (10) of the present invention is constructed of a denture plate (12), at least one liquid dispensing element, each element is referred to as a Denture-Alveolar-Implant Liquid (or gas) Dispenser, abbreviated as: DAILD (14). Optionally, the system also includes at least one of a second type of liquid dispensing element, where each second type element is referred to as a Denture-Liquid (or gas) Sieve-Dispenser, abbreviated as DLSD (16). In addition, the system includes a conduit liquid (or gas) streaming system (61) constructed of an assembly of conduit elements. The conduit streaming system (61) starts at an entry port (20) and connects to each of the DAILDs (14) (and DLSD (16)). A schematic illustration of the system for the cleaning and disinfecting of gum surfaces around implants that support dentures (10) is given in FIG. 1.
  • The denture plate (12) used in the system (10) of the present invention is made of standard dentally-used materials and is constructed as a standard fixed-in-place denture with the addition of the components of the system (10) listed above and described below in the text.
  • Focus is presently turned to the figures:
  • FIG. 1 is an illustration of the system for the cleaning and disinfecting of gum surfaces around implants that support dentures (10) positioned in the gum contact surface side of the denture plate (12), as seen from above. The DAILDs (14) and DLSDs (16) are shown discharging liquid to the areas around their circumference. The streaming liquid is indicated by arrows (22). The liquid enters the system (10) via entry port (20), flows through the conduit (18) and is discharged by the DAILDs (14) and DLSDs (16). Optionally, a liquid-tight stopper (26) reversibly connects to entry port (20). In order to inject liquid into the system, stopper (26) is removed from entry port (20) and the liquid is pressured/injected into the conduit (18), typically but not limited to, by a syringe. The empting of the syringe forces the liquid into the conduit (18). After the liquid injection, stopper (26) is re-connects to entry port (20). The liquid stream that enters the system (10) is designated by arrow (28).
  • The structure of the DAILDs (14) and their fixation in a denture plate (12) is presently explained, utilizing FIG. 2, FIG. 3 and FIG. 4.
  • FIG. 2 isometric illustration, seen from the side of a DAILD (14) shown in an assembled configuration. FIG. 3 is an isometric illustration, seen from the side, of a DAILD (14) in a disassembled configuration. FIG. 4 is an illustration, seen from above, of a DAILD (14), shown in FIG. 2.
  • Each DAILD (14) is composed of: a hallow-tube dental implant structure (30), a locking component (32), a basin-structure (38) and fastening-component (40).
  • Dental implant structure (30) is made of a rigid material hollow-tube that is embedded and fixated in the alveolar of the wearer (the fixation in the alveolar not shown in the figures).
  • The locking-structure (32) is constructed of: 1) implant tube connection tube (34), 2) a dome structure (36) having a flat bottom-side 3) a tube (37) that connects and protrudes from the bottom-side of dome structure (36). Typically, inside tube (37) is a protruding threaded screw (not shown) that fits into the inner-side screw thread of tube (39), as explained later in the text.
  • Basin-structure (38) is composed of a circular liquid container (42) with a hollow tube (44) that runs through it. Tube (44) protrudes from the bottom, closed-side, of the container (42). A gap is left between tube (44) and the wall of container (42), designated (41). The wall of container (42) has an opening (46) that connects to the conduit (18) by a sub-element of the conduit, designated (48) in FIG. 3 (see in FIG. 10A element b).
  • Fastening-component (40) is constructed of a hollow tube (39) that has an expanded portion at one of its ends (39 a) and on its other end, a hole (designated: 39 b). The inner side of component (40), from opening 39 b towards expanded-portion (39 a), has a screw thread (not seen) that matches the screw inside tube (37).
  • In an assembled configuration, illustrated in FIG. 3, fastening-component (40) runs through hollow tube (44) of basin-structure (38) and inserts into tube (37) of locking-structure (32). The screw (not shown) inside tube (37) inserts into hole (39(b) in tube (39) in fastening-structure (40) and is interlocked in the screw thread inside tube (39) (not seen). Dental implant structure (30) which is embedded in the alveolar of the denture wearer, interlocks and is fixated with implant tube connection tube (34).
  • In fixating in place of each of the DAILDs (14) in a denture plate (12), a hole is drilled through the denture plate for each DAILDs (14). Fastening-component (40) is inserted through the hole in the denture plate (12), expanded portion (39 a) of tube (39) prevents tube (39) from “escaping” from the hole. Tube (39) that was inserted into the hole in denture plate (12) is inserted through tube (44) of basin-structure (38) and into tube (37) of locking-structure (32). The screw inside tube (37) interlocks with the screw threads inside tube 39. By tightening the screw inside tube (37) each of the DAILDs (14) is rigidly fixated into the denture plate (12) structure. By inserting and fixating implant tube connection tube (34) in dental implant structure (30), denture-plate (12), with system (10) is fixated in place in contact with the surfaces of the gums of the denture wearer.
  • In order to further clarify the construction of a DAIL (14), FIG. 4 illustrates an DAIL as seen from above.
  • FIG. 5 is an isometric illustration, seen from above, of DAILDs (14) fixated into the denture plate (12). DAIL-s (14) are shown in an assembled (12 a) and disassembled (12 b) configuration. The rim of the walls of container (42) of the DAILDs (14) (shown in FIG. 2, FIG. 3 and FIG. 4) are fixated into the denture plate (12) so as to be in a smooth alignment with the surface of the denture plate (12). The alignment of the DAILDs (14) enables to minimize the gaps between the denture plate (12) and the gums. The path of conduit (18) that streams the liquid from port (26) to the DAILDs (14) (and optionally, to the DLSD (16)), as well as the cavities in which the DAILDs (14) and DLSDs (16) are imbedded in the denture plate (12) are illustrated in FIG. 1. The path and cavities are predefined structures that are “dug in” into the surface of the denture plate (12) in a manner that the conduit (18), the DAILDs (14) and the DLSDs (16) form a smooth alignment configuration with the with the gum-contact-surface of the denture plate (12). The term “dug in” refers to a predefined channel(s) and cavities formed by etching or/and drilling and/or pre-casting into the surface of the denture plate (12).
  • The predefined “dug in” structures in the denture plate as well as the DLSDs (16), the DAILDs (14) and the conduit (18) are designed and manufactured by hand or/and designed and manufactured by a computerized system.
  • Liquid injected into port (20), flows through conduit (18) and exits DAILDs (14) through gaps (41) in basin-structures (38), shown in FIG. 3 and FIG. 4. The liquid that exits from gaps (41) is dispensed in the area surrounding the DAILDs (14). The dispensed liquid starts by cleaning and disinfecting the areas immediately surrounding the alveolar imbedded dental implant structures (30) and proceeds to clean and disinfect farther areas of the denture plate (14), as illustrated in FIG. 1.
  • The structure of the DLSDs (16) is presently explained:
  • The DLSDs (16) are optional liquid (or gas) dispensers that complement the cleaning and disinfecting functions of the DAILDs (14) and do not have a gum-denture connection function. The structure and function of the DLSDs (16) is clarified in: FIG. 1 and FIG. 6A, FIG. 6B.
  • FIG. 6A is an isometric illustration, seen from the side, of a DLSD (16), FIG. 6B is an isometric cross cut illustration of the DLSD (16), shown in FIG. 5A. FIG. 7 is an illustration, seen from above, of a DLSD (16), shown in FIG. 6A.
  • The DLSDs (16) are composed of a hollow half-sphere component (52) connected in its open-side to sieve plate (64). Sieve plate (64) is constructed of a sieve (66) made of a rigid material, fixated in place by a rigid material rim-frame (65). A tube (54) protrudes from the bottom of the half-sphere (52). The tip of bar (54) is made of protruding rings (56), which enable the connection of the DLSDs (16) to conduit (18), as illustrated in FIG. 1.
  • The DLSDs (16) are fixated into the denture plate (12) so that the sieve plates (64) are in smooth alignment with the surface of the denture plate (12). Tubes (54) of the DLSDs (16) connect to conduit (18), which is in smooth alignment with the surface of the denture plate (12), as was previously explained.
  • Liquid entering the half-sphere component (52) of the DLSDs (16) from conduit (18) fills the component (52) and overflows. The overflown liquid exits through sieve plate (64) and is dispensed in the area surrounding the DLSDs (16), as illustrated in FIG. 1.
  • Liquid injected into port (26) flows through conduit (18) and is dispensed simultaneously from the DAILDs (14) and the DLSDs (16), as illustrated in FIG. 1. While the primary objective of deploying the DAILDs (14) is the cleaning and disinfecting the immediate surrounding areas of the dental implant structures (30) in the gum of the denture wearer, the objective of deploying the DLSDs (16) is to complement the cleaning and disinfecting of the areas of the gum cleaned by the DAILDs (14) beyond the immediate surrounding areas of the dental implants structures (30).
  • The structure of the conduit streaming system (61) in the system of the present invention (10) is presently explained:
  • The conduit streaming system (61) is composed of the connection of:
  • a liquid inlet funnel (20), illustrated in FIG. 8A and FIG. 8B,
    a liquid-stopper (26), illustrated in FIG. 9A and FIG. 9B and
    four types of components, illustrated in FIG. 10A and FIG. 10B, designated (47) to and including (50).
    The assembly of the components (47), (48), (49) and (50) is referred to as the conduit (18) of the system (10) of the present invention and is the main the main structure in the conduit streaming system (61).
  • FIG. 8A is an isometric illustration, seen from the side, of a liquid inlet funnel (20) that streams liquid into the conduit (18), FIG. 8B is a crosscut isometric illustration, seen from the side, of the liquid inlet funnel (20) shown in FIG. 8A. The funnel is constructed of a connection-element (58), to which a tube, a syringe or other means of injecting a liquid into conduit (18) connects and a hollow bar (54) that protrudes from connection-element (58). The tip of bar (54) is made of protruding rings (56) which enable the connection of the hollow bar (54) to conduit (18).
  • Liquid inlet funnel (20) is inserted through a predefined hole in the denture-plate (12), thus, connecting the connection-element (58) via hollow bar (54) to the conduit (18) in the denture plate (12), as illustrated in FIG. 1.
  • FIG. 9A is an isometric illustration, seen from the side, of a liquid stopper (26) in the shape of a thimble. FIG. 9B is a crosscut isometric illustration of the liquid stopper (26) shown in FIG. 9A. Stopper (26) is inserted and removed into and from connection-element (58) of the liquid inlet funnel (20) at will and is utilized for preventing liquid from flowing from the conduit (18) or for (when removed) to inject liquid into the conduit, respectively. The use of liquid stopper (26) s illustrated in FIG. 1.
  • FIG. 10A and FIG. 10B illustrate four types of hollow components, that, when assembled in connected-configurations, construct conduit (18).
  • Component (49) has a “cross configuration”, component (48) has a “T” configuration, component (49) has an “L” configuration and component (50) has a straight-tube configuration. All four components are constructed of hollow-tubes made of semi-rigid material.
  • The Denture-Alveolar-Implant Liquid Dispenser (DAIL) (14), the a conduit liquid streaming system and the Denture Liquid Sieve-Dispensers (DLSD) (16) of system of the present invention (10), all have to be positioned in precise locations in the denture plate so as to be optimally effective while minimizing the discomfort of the wearer. In addition, the designing, manufacturing and assembling of the components that construct the DLSF (14) and DLSD) (16) requires elaborate designing (tailored-made components, in some cases) and delicate manufacturing-precision. Thus, DAIL (14), the a conduit liquid streaming system and the DLSD (16) can be hand-designed and manufactured but typically the System (10) is designed and manufactured by a computerized controlled system.
  • It should be clear that the description of the embodiments and attached Figures set forth in this specification serves only for a better understanding of the invention, without limiting its scope.
  • It should also be clear that a person skilled in the art, after reading the present specification could make adjustments or amendments to the attached Figures and above described embodiments that would still be covered by the present invention.

Claims (12)

I claim:
1. A system for the cleaning and disinfecting of gum surfaces surrounding implants that support dentures, said system comprises:
a denture plate having a smooth gum contact surface,
at least one Denture-Alveolar-Implant Liquid Dispenser (DAILD) and
a conduit liquid streaming system,
each said DAILD comprises:
a dental implant structure,
a locking component,
a basin-structure and
fastening-component,
said conduit liquid streaming system comprises a connected assembly of tubular component that construct a conduit, said components have various structural configurations,
said locking component, basin-structure and fastening-component of said DAILD and said conduit liquid streaming system are embedded into said denture plate, and said dental implant structure is implanted into the alveolar of the wearer of said denture plate wearer,
said dental implant structure comprises a hollow tube,
said locking component comprises a plate with a protruding bar that connects and fixates to said hollow tube in said dental implant on one side and a hollow tube that connects and fixates to said fastening component on its other side,
said fixated connections of said locking component maintains said denture plate in a fixated contact with the gum of said denture wearer, leaving narrow gaps between the gum and gum contact surface of said denture plate,
said basin structure is composed of a cylinder vessel with an opened side and a tube running through the center of the vessel,
said fastening-structure is composed of a bar with an expansion of the bar at one of the ends of the said bar,
said basin structure is embedded in said denture plate and is fixated in place in said denture plate by said fastening component that runs through said denture plate, through said tube in said basin structure and connects tightly with said locking component by inserting into hollow tube in said locking component,
said conduit liquid streaming system connects to said cylinder vessel of said basin structure,
wherein, liquid injected into said conduit liquid streaming system reaches said cylinder vessel of basin structure and flows from the rim of said cylinder vessel,
said liquid flow cleans and disinfects the immediate surrounding area of said DAILD in said denture plate and in the immediate surrounding area of said dental implant structure.
2) The embedded into a denture plate of locking component, basin-structure and fastening-component of the DAILD and the conduit liquid streaming system of claim 1, wherein, said embedment forms a smooth alignment configuration of the DAILD and the conduit liquid streaming system with the gum contact surface of the denture plate.
3) The conduit liquid streaming system of claim 1, wherein the conduit liquid streaming system has a liquid entry port having a tumble configuration.
4) The system for the cleaning and disinfecting of gum surfaces surrounding implants that support dentures of claim 1, wherein said system also comprises in addition to at least one DAILD, at least one Denture Liquid Sieve-Dispensers (DLSD),
said DLSD comprises:
a hollow half-sphere vessel component connected in its open-side to a sieve plate component and perturbing tube from the bottom of said half-sphere vessel component,
said DLSD is embedded into said denture plate so as to form a smooth alignment configuration of the DLSD with the gum contact surface of said denture plate.
said conduit liquid streaming system connects of claim 1 connects to perturbing tube of said half-sphere vessel component,
wherein, liquid injected into said conduit liquid streaming system reaches said half-sphere vessel component and flows through sieve plate component to the surrounding area, thus cleaning and disinfecting the area surrounding the DLSD.
5) The cleaning and disinfecting of gum surfaces surrounding implants that support dentures of claims 1 and 4, wherein, said conduit streaming system, said DIALD and said DLSD of said system for the cleaning and disinfecting of gum surfaces surrounding implants that support dentures, the cleaning and disinfecting is done by the streaming of a gas.
6) The denture plate of the system for the cleaning and disinfecting of gum surfaces surrounding implants that support dentures of claim 1, wherein, the denture plate is designed by a computerized controlled system.
7) The denture plate of the system for the cleaning and disinfecting of gum surfaces surrounding implants that support dentures of claim 1, wherein the denture plate is manufactured by a computerized controlled system.
8) The DIALD of a system for the cleaning and disinfecting of gum surfaces surrounding implants that support dentures of claim 1, wherein, the DIALD is designed by a computerized controlled system.
9) The DIALD of a system for the cleaning and disinfecting of gum surfaces surrounding implants that support dentures of claim 1, wherein, the DIALD is manufactured by a computerized controlled system.
10) The denture, the DIALD and the conduit liquid streaming system of a system for the cleaning and disinfecting of gum surfaces surrounding implants that support dentures of claim 1 and claim 4, wherein, the DIALD and DLSD are designed and manufactured by hand.
11) The DLSD of a system for the cleaning and disinfecting of gum surfaces surrounding implants that support dentures of claim 4, wherein, the DLSD is designed by a computerized controlled system.
12) The DLSD of a system for the cleaning and disinfecting of gum surfaces surrounding implants that support dentures of claim 4, wherein, the DLSD is manufactured by a computerized controlled system.
US17/174,867 2016-07-07 2021-02-12 System for the cleaning and disinfecting of gum surfaces surrounding implant structures that support dentures Abandoned US20210161630A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/174,867 US20210161630A1 (en) 2016-07-07 2021-02-12 System for the cleaning and disinfecting of gum surfaces surrounding implant structures that support dentures

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201662359212P 2016-07-07 2016-07-07
PCT/IL2017/000004 WO2018008011A1 (en) 2016-07-07 2017-07-02 A system for the cleaning and disinfecting of gum surfaces surrounding implant structures that support dentures
US201816314451A 2018-12-31 2018-12-31
US17/174,867 US20210161630A1 (en) 2016-07-07 2021-02-12 System for the cleaning and disinfecting of gum surfaces surrounding implant structures that support dentures

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
PCT/IL2017/000004 Continuation WO2018008011A1 (en) 2016-07-07 2017-07-02 A system for the cleaning and disinfecting of gum surfaces surrounding implant structures that support dentures
US16/314,451 Continuation US10918468B2 (en) 2016-07-07 2017-07-02 System for the cleaning and disinfecting of gum surfaces surrounding implant structures that support dentures

Publications (1)

Publication Number Publication Date
US20210161630A1 true US20210161630A1 (en) 2021-06-03

Family

ID=60912469

Family Applications (2)

Application Number Title Priority Date Filing Date
US16/314,451 Active 2037-09-07 US10918468B2 (en) 2016-07-07 2017-07-02 System for the cleaning and disinfecting of gum surfaces surrounding implant structures that support dentures
US17/174,867 Abandoned US20210161630A1 (en) 2016-07-07 2021-02-12 System for the cleaning and disinfecting of gum surfaces surrounding implant structures that support dentures

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US16/314,451 Active 2037-09-07 US10918468B2 (en) 2016-07-07 2017-07-02 System for the cleaning and disinfecting of gum surfaces surrounding implant structures that support dentures

Country Status (5)

Country Link
US (2) US10918468B2 (en)
EP (1) EP3481329B1 (en)
CN (1) CN109789003B (en)
IL (1) IL263666B (en)
WO (1) WO2018008011A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017119189B4 (en) * 2017-08-22 2020-06-18 Kulzer Gmbh Superstructure and prosthetic restoration with an integrated cleaning system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6893259B1 (en) * 2004-03-08 2005-05-17 Igor Reizenson Oral hygiene device and method of use therefor

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3379192A (en) * 1965-05-10 1968-04-23 Lamar G. Warren Jr. Dental treatment device
GB9723826D0 (en) 1997-11-11 1998-01-07 Procter & Gamble A denture cleaning apparatus
US6390104B1 (en) 2000-05-19 2002-05-21 Steven P. Gagnon Denture wash
CA2447834C (en) * 2001-06-12 2010-09-14 Stick Tech Oy A prepreg, a composite and their uses
GR1005447B (en) 2006-05-15 2007-02-20 Λαζαρος Ξανθοπουλος Electronically programmed device for the clenaing, disinfection and care of dentures
US20080272153A1 (en) 2007-05-03 2008-11-06 Bruce Hochstadter System and method for delivering liquid to a mouth of a user
US8202090B2 (en) 2008-02-29 2012-06-19 Pharmaco-Kinesis Corporation Artificial tooth medicating apparatus for controlling, regulating, sensing, and releasing medical agents into the body
DE102008029086B4 (en) * 2008-06-20 2012-01-19 Group Vander Kerken Van Der Veken N.V. Stabilizer for dentures
GB201113041D0 (en) * 2011-07-28 2011-09-14 King S College London Mouth guard
WO2013030835A1 (en) * 2011-08-29 2013-03-07 David Regev Dental implant system and methods for accessing intra cavity areas therethrough
WO2013060563A1 (en) * 2011-10-25 2013-05-02 Universität Bern Device for treating gingiva/ mucosa at teeth or implants
GB2502767B (en) 2012-03-21 2017-12-06 Knight Martin Cannula
CN104902843B (en) * 2012-11-14 2020-01-14 赛福马有限责任公司 Treatment member and treatment system for a dental implant assembly
WO2014195955A1 (en) * 2013-06-06 2014-12-11 Honig Iulian Dental implant device, system and method of use
US9801700B1 (en) * 2014-11-17 2017-10-31 Janusz Liberkowski Dental prosthesis with sealed attachment interface and cleaning fluid access thereto
CN204446160U (en) * 2015-02-09 2015-07-08 耿汝杰 Oral Repair cleaning sterilizing device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6893259B1 (en) * 2004-03-08 2005-05-17 Igor Reizenson Oral hygiene device and method of use therefor

Also Published As

Publication number Publication date
CN109789003A (en) 2019-05-21
EP3481329B1 (en) 2021-05-26
US10918468B2 (en) 2021-02-16
IL263666B (en) 2022-04-01
EP3481329A4 (en) 2020-02-26
CN109789003B (en) 2021-08-27
WO2018008011A1 (en) 2018-01-11
US20190247171A1 (en) 2019-08-15
IL263666A (en) 2019-01-31
EP3481329A1 (en) 2019-05-15

Similar Documents

Publication Publication Date Title
US20200253706A1 (en) Periodontal interdental delivery tray and periodontal medicament tray syringe
EP1633272B1 (en) Periodontal medicament delivery tray
US6669475B2 (en) Personal interproximal dental surface cleaning and drug delivery device
JP2022528978A (en) Systems and methods for personalized oral care
US20030013064A1 (en) Rinsing cannula for rinsing a root canal of a tooth
KR101959774B1 (en) Surgical guide system for dental implant having external irrigation device
JPH03261469A (en) Oral hygiene device
JP2019509071A (en) Multi-cannula negative pressure cleaning system
US20140295373A1 (en) Device for treating gingiva/ mucosa at teeth or implants
US20130081217A1 (en) Motorized mouthpiece
US20210161630A1 (en) System for the cleaning and disinfecting of gum surfaces surrounding implant structures that support dentures
Dawood et al. Peri-implantitis and the prosthodontist
KR101803847B1 (en) Implant fixture cleaning device
DE4340598A1 (en) Ultrasonic toothbrush
CN102048589B (en) A kind of composite dental implant member
JPH0654867A (en) Affusion probe with flexible end part
CN216933530U (en) Appliance, appliance set and appliance system capable of draining and spraying
WO2015122788A1 (en) An applicator mounted in a dental implant seat
DE10259579A1 (en) Device for removal of tooth films with use of a cleaning medium comprises a carrier element with top and bottom seals and interior membranes allowing chambers with variable pressure to be formed
WO2024052894A2 (en) A dental implant assembly
RU2200503C1 (en) Tooth bridge prosthesis for substituting small inclusion defects of dental row
KR20130039182A (en) Multi-functional hollow type implant
WO2002038068A2 (en) Periodontal medicament delivery tray
Amza et al. Contributions regarding FEM for an ultrasonic endodontic device and his appliance in the root canal treatments
WO2018042420A1 (en) Dental implant cover

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: APPLICATION DISPATCHED FROM PREEXAM, NOT YET DOCKETED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION