US20210137696A1 - Interbody fusion devices, systems and methods - Google Patents

Interbody fusion devices, systems and methods Download PDF

Info

Publication number
US20210137696A1
US20210137696A1 US16/907,992 US202016907992A US2021137696A1 US 20210137696 A1 US20210137696 A1 US 20210137696A1 US 202016907992 A US202016907992 A US 202016907992A US 2021137696 A1 US2021137696 A1 US 2021137696A1
Authority
US
United States
Prior art keywords
implant
plates
members
endplate
intervertebral space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
US16/907,992
Inventor
Raed Ali
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RAED M ALI M D Inc
Original Assignee
RAED M ALI M D Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/US2014/025035 external-priority patent/WO2014159762A1/en
Application filed by RAED M ALI M D Inc filed Critical RAED M ALI M D Inc
Priority to US16/907,992 priority Critical patent/US20210137696A1/en
Publication of US20210137696A1 publication Critical patent/US20210137696A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/44Joints for the spine, e.g. vertebrae, spinal discs
    • A61F2/4455Joints for the spine, e.g. vertebrae, spinal discs for the fusion of spinal bodies, e.g. intervertebral fusion of adjacent spinal bodies, e.g. fusion cages
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/44Joints for the spine, e.g. vertebrae, spinal discs
    • A61F2/4455Joints for the spine, e.g. vertebrae, spinal discs for the fusion of spinal bodies, e.g. intervertebral fusion of adjacent spinal bodies, e.g. fusion cages
    • A61F2/447Joints for the spine, e.g. vertebrae, spinal discs for the fusion of spinal bodies, e.g. intervertebral fusion of adjacent spinal bodies, e.g. fusion cages substantially parallelepipedal, e.g. having a rectangular or trapezoidal cross-section
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/46Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor
    • A61F2/4603Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor for insertion or extraction of endoprosthetic joints or of accessories thereof
    • A61F2/4611Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor for insertion or extraction of endoprosthetic joints or of accessories thereof of spinal prostheses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30329Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • A61F2002/30383Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements made by laterally inserting a protrusion, e.g. a rib into a complementarily-shaped groove
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30329Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • A61F2002/30476Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements locked by an additional locking mechanism
    • A61F2002/30477Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements locked by an additional locking mechanism using sharp protrusions, e.g. spikes, for anchoring into connecting prosthetic part
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30535Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30576Special structural features of bone or joint prostheses not otherwise provided for with extending fixation tabs
    • A61F2002/30578Special structural features of bone or joint prostheses not otherwise provided for with extending fixation tabs having apertures, e.g. for receiving fixation screws
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30535Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30579Special structural features of bone or joint prostheses not otherwise provided for with mechanically expandable devices, e.g. fixation devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30535Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30593Special structural features of bone or joint prostheses not otherwise provided for hollow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30535Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30604Special structural features of bone or joint prostheses not otherwise provided for modular
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30621Features concerning the anatomical functioning or articulation of the prosthetic joint
    • A61F2002/30622Implant for fusing a joint or bone material
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2/30771Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves
    • A61F2002/30772Apertures or holes, e.g. of circular cross section
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2/30771Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves
    • A61F2002/30841Sharp anchoring protrusions for impaction into the bone, e.g. sharp pins, spikes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/46Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor
    • A61F2/4603Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor for insertion or extraction of endoprosthetic joints or of accessories thereof
    • A61F2002/4615Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor for insertion or extraction of endoprosthetic joints or of accessories thereof of spacers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/46Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor
    • A61F2/4603Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor for insertion or extraction of endoprosthetic joints or of accessories thereof
    • A61F2002/4625Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor for insertion or extraction of endoprosthetic joints or of accessories thereof with relative movement between parts of the instrument during use
    • A61F2002/4627Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor for insertion or extraction of endoprosthetic joints or of accessories thereof with relative movement between parts of the instrument during use with linear motion along or rotating motion about the instrument axis or the implantation direction, e.g. telescopic, along a guiding rod, screwing inside the instrument
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/46Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor
    • A61F2002/4688Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor having operating or control means
    • A61F2002/4692Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor having operating or control means fluid
    • A61F2002/4693Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor having operating or control means fluid hydraulic
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/46Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor
    • A61F2002/4688Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor having operating or control means
    • A61F2002/4692Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor having operating or control means fluid
    • A61F2002/4694Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor having operating or control means fluid pneumatic
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2220/00Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2220/0008Fixation appliances for connecting prostheses to the body
    • A61F2220/0016Fixation appliances for connecting prostheses to the body with sharp anchoring protrusions, e.g. barbs, pins, spikes

Definitions

  • This application relates generally to devices, systems and methods for the treatment of the spine, and more specifically, to spinal implants and related tools, systems and methods.
  • Surgical approaches to the intervertebral space are utilized for a variety of indications and purposes, such as, for example, biopsy (e.g., for evaluation of possible infection, other pathology, etc.), discectomy (e.g., for decompression of nerve roots, to prepare for subsequent fusion procedures, etc.), disc height restoration or deformity correction, disc replacement or repair (e.g., annular repair), discogram, gene therapy and/or other procedures or treatments.
  • biopsy e.g., for evaluation of possible infection, other pathology, etc.
  • discectomy e.g., for decompression of nerve roots, to prepare for subsequent fusion procedures, etc.
  • disc height restoration or deformity correction e.g., disc replacement or repair
  • discogram e.g., gene therapy and/or other procedures or treatments.
  • Various approaches are currently used to access the interbody or intervertebral space of a patient's thoracic, lumbar and sacral spine. These include anterior approaches (ALIF) (e.g., open, mini-open retroperitoneal, etc.), lateral approaches (e.g., costotranversectomy, extreme lateral, LLIF, etc.), posterolateral approaches (e.g., posterior lumbar interbody fusion (PLIF), transforaminal lumbar interbody fusion (TLIF), etc.) and axial approaches (e.g., axial lumbar interbody fusion).
  • ALIF anterior approaches
  • lateral approaches e.g., costotranversectomy, extreme lateral, LLIF, etc.
  • posterolateral approaches e.g., posterior lumbar interbody fusion (PLIF), transforaminal lumbar interbody fusion (TLIF), etc.
  • axial approaches e.g., axial lumbar interbody fusion.
  • PLIF posterior lumbar
  • Fusion surgery of the thoracic, lumbar and sacral spine is often performed for a variety of indications, including degenerative joint disease, deformity, instability and/or the like.
  • traditional fusion approaches involve relatively large, open incisions performed under direct vision.
  • Minimally invasive surgical techniques and corresponding surgical implants have become more popular in an attempt to reduce morbidity and generally improve outcomes.
  • Multiple variations of percutaneous systems e.g., pedicle screw and rod systems, facet screw systems, etc.
  • fluoroscopic guidance e.g., using radiographically recognizable body landmarks
  • Current fusion techniques including those that utilize open and minimally invasive approaches, often require direct visualization.
  • neural elements typically involve traversing spaces that are occupied by neural elements.
  • these neural elements need to be retracted or otherwise moved during the execution of spinal procedures that precede implantation (e.g., annulotomy, discectomy, disc space and/or vertebral endplate preparation, etc.). Retraction of sensitive neural elements can also be required during the delivery of an implant to the spine.
  • a method of inserting an implant within an intervertebral space defined between an upper vertebral member and a lower vertebral member comprises positioning an upper endplate and a lower endplate within the intervertebral space, securing an alignment member of a guiding assembly to each of the upper endplate and the lower endplate, wherein the alignment member is configured to extend from the endplates to an anatomical location away from the endplates, and advancing an implant between the alignment members and between the upper and lower endplates so that the implant is urged into the intervertebral space.
  • advancing an implant between the upper and lower endplates comprises using a device (e.g., a mechanical device or a pneumatic device that helps to move the implant between the alignment members and the endplates).
  • a device e.g., a mechanical device or a pneumatic device that helps to move the implant between the alignment members and the endplates.
  • the alignment members are configured to removably engage corresponding portions of the upper and lower endplates while the implant is advanced into the intervertebral space.
  • the alignment members are configured to release from the endplates when the implant has been properly secured between the endplates.
  • advancing the implant between the upper and lower endplates deploys at least one engagement member or feature of at least one of the upper endplate or the lower endplate, wherein the at least one engagement member or feature is configured to engage at least a portion of the an adjacent vertebral member.
  • the at least one engagement member or feature comprises a tooth, spike or similar member (e.g., bendable metallic member or other rigid, semi-rigid and/or flexible member).
  • the implant is configured to be advanced between the alignment members and the upper and lower endplates using a rail system.
  • the rail system comprises grooves or recesses within the alignment members and the endplates, wherein the rail system comprises protruding members or features along upper and/or lower surfaces of the implant, wherein the protruding members or features are sized, shaped and configured to engage the grooves or recesses of the alignment members and the endplates.
  • the grooves or recesses of the alignment members are generally aligned with the grooves or recesses of the endplates to permit the protruding members or features of the implant to be continuously engaged with the grooves and recesses during delivery between the upper and lower endplates.
  • the implant comprises a generally smooth outer surface. In other embodiments, the implant does not comprise any teeth or other engagement features. In some embodiments, the implant comprises PEEK, titanium, other thermoplastic, other metal or alloy and/or the like. In some arrangements, the upper and lower plates comprise at least one metal or alloy (e.g., titanium, stainless steel, etc.).
  • the method further includes securing at least one screw through an opening of the implant after the implant has been properly secured within the intervertebral space.
  • the at least one screw passes through at least a portion (e.g., openings) of the upper or lower plate.
  • the at least one screw passes through at least a portion of the upper or lower vertebral member.
  • the method further comprises creating a lateral passage through a subject in order to provide minimally invasive access to the intervertebral space.
  • the method additionally includes clearing out native tissue of the subject within and/or near the intervertebral space.
  • the at least one engagement member or feature of the endplates is configured to extend through at least one opening along an upper surface of the upper endplate and/or at least one opening along a lower surface of the lower endplate.
  • the upper and/or lower endplate comprises a textured or porous surface adjacent the native anatomical tissue of a subject after implantation.
  • the implant is configured to lockingly engage the upper and lower endplates when the implant has been properly advanced relative to the endplates.
  • the locking engagement between the implant the endplates is configured to be selectively released if the implant needs to be removed or repositioned.
  • securing the alignment member to each of an upper or lower endplate comprises moving a distal portion of the alignment member within a central portion of the upper or lower endplate.
  • the alignment member comprises at least one flange or other protruding portion that is configured to engage and slide relative to at least one recess or groove of the upper or lower endplate.
  • the method further includes securing an engagement member or feature of the alignment member to a corresponding receiving member or feature of the upper or lower endplate.
  • the engagement member or features comprises a resilient tab.
  • the resilient tab comprises a sloped surface that is configured to be contacted and moved inwardly.
  • a spinal fusion system comprises an endplate system configured for placement within an intervertebral space of a subject, wherein the endplate system comprises an upper endplate and a lower endplate, and an implant configured to be advanced and positioned between the upper endplate and the lower endplate to secure the implant within the intervertebral space, wherein, when the implant is advanced between the upper endplate and the lower endplate, the upper endplates engage the upper vertebral member, and the lower endplate engages the lower vertebral member, and wherein, upon advancement of the implant between the upper and lower endplates, the upper vertebral member is distracted relative to the lower vertebral member.
  • the system further comprises a guiding assembly comprising upper and lower alignment members, wherein the upper alignment member is configured to removably couple to the upper endplate, and wherein the lower alignment member is configured to removably couple to the lower endplate.
  • at least one of the upper endplate and the lower endplate comprises at least one engagement member configured to engage a portion of the adjacent vertebral member when the implant has been advanced between the upper and lower endplates.
  • the at least one engagement member comprises a tooth, spike or barb.
  • the implant is configured to be advanced between the upper and lower endplates using a rail system.
  • the rail system comprises at least one protruding member or feature on the implant and at least one corresponding groove or recess on the upper endplate or lower endplate, wherein the at least one protruding member or feature is configured to slidably move within the at least one corresponding groove or recess on the upper endplate or lower endplate.
  • the rail system comprises at least one groove or recess on the implant and at least one corresponding protruding member or feature on the upper endplate or lower endplate, wherein the at least one protruding member or feature is configured to slidably move within the at least one corresponding groove or recess.
  • the implant comprises a generally smooth outer surface. In other embodiments, the implant does not comprise any teeth or other engagement features. In some embodiments, the implant comprises PEEK, titanium, other thermoplastic, other metal or alloy and/or the like. In some arrangements, the upper and lower plates comprise at least one metal or alloy (e.g., titanium, stainless steel, etc.).
  • the system further comprises at least one screw through an opening of the implant after the implant has been properly secured within the intervertebral space.
  • the at least one screw passes through at least a portion (e.g., one or more openings) of the upper or lower endplate.
  • the system further comprises a plate positioned adjacent the implant and the endplates, wherein the screw is configured to pass through an opening of the plate.
  • the at least one screw passes through at least a portion of the upper or lower vertebral member.
  • a method of inserting an implant within an intervertebral space defined between an upper vertebral member and a lower vertebral member comprises positioning a plate system within the intervertebral space, wherein the plate system comprises an upper plate and a lower plate, and advancing an implant between the upper plate and the lower plate so that the implant is urged into the intervertebral space, the upper plate engages the upper vertebral member, and the lower plate engages the lower vertebral member, wherein upon advancement of the implant between the upper and lower plates, the upper vertebral member is distracted relative to the lower vertebral member.
  • advancing an implant between the upper and lower base plates comprises using a device or tool (e.g., mechanical tool, pneumatic tool, etc.).
  • advancing the implant between the upper plate and the lower plate comprises advancing the implant at least partially through a guiding assembly (e.g., between upper and lower members of the assembly).
  • the guiding assembly is removably secured and/or aligned with the upper and lower plates.
  • the guiding assembly comprises upper and lower guiding members or plates, wherein the upper and lower guiding members or plates are configured to removably engage corresponding portions of the upper and lower plates when the implant is advanced into the intervertebral space.
  • advancing the implant between the upper and lower plates deploys at least one engagement member or feature of at least one of the upper plate or the lower plate, wherein the at least one engagement member or feature is configured to engage at least a portion of the an adjacent vertebral member.
  • the at least one engagement member or feature comprises a tooth, spike, barb and/or the like.
  • the implant is configured to be advanced between the upper and lower plates using a rail system.
  • the rail system comprises at least one protruding member or feature on the implant and at least one corresponding groove or recess on the upper plate or lower plate, wherein the at least one protruding member or feature is configured to (e.g., slidably or otherwise) move within the at least one corresponding groove or recess on the upper plate or lower plate.
  • the rail system comprises at least one groove or recess on the implant and at least one corresponding protruding member or feature on the upper plate or lower plate, wherein the at least one protruding member or feature is configured to (e.g., slidably or otherwise) move within the at least one corresponding groove or recess.
  • the implant comprises a generally smooth outer surface. In some embodiments, the implant does not comprise any teeth or other engagement features. In some embodiments, the implant comprises PEEK, stainless steel, titanium, other metals or alloys, other polymeric materials and/or the like.
  • the upper and lower plates comprise at least one metal or alloy and/or a polymeric material (e.g., PEEK).
  • the at least one metal or alloy comprises titanium, stainless steel and/or any other medical grade metal or alloy.
  • the lower plate and/or the upper plate is bead-blasted or is otherwise at least partially roughened (e.g., along one or more surfaces that are configured to contact and engage native vertebral tissue of the subject).
  • the lower plate and/or the upper plate comprises an ingrowth surface (e.g., along one or more surfaces that are configured to contact and engage native vertebral tissue of the subject).
  • the method further comprises securing at least one screw or other fastener through an opening of the implant (and/or an adjacent plate, washer or other member) after the implant has been properly secured within the intervertebral space.
  • the at least one screw passes through at least a portion of the upper or lower plate.
  • the at least one screw passes through at least a portion of the upper or lower vertebral member (and/or an adjacent plate, washer or other member).
  • the method further comprises creating a passage (e.g., lateral passage) through a subject in order to provide minimally invasive access to the intervertebral space.
  • the method further comprises clearing out native tissue of the subject within and/or near the intervertebral space (e.g., using one or more rasps and/or other native tissue removal tools or methods).
  • a spinal fusion system comprises a plate system configured for placement within an intervertebral space of a subject, wherein the plate system comprises an upper plate and a lower plate, an implant configured to be advanced and positioned between the upper plate and the lower plate to secure the implant within the intervertebral space, wherein, when the implant is advanced between the upper plate and the lower plate, the upper plates engages the upper vertebral member, and the lower plate engages the lower vertebral member, and wherein, upon advancement of the implant between the upper and lower plates, the upper vertebral member is distracted relative to the lower vertebral member.
  • the system additionally comprises a guiding assembly having upper and lower slides, wherein the upper slide is configured to removably couple to the upper plate, and wherein the lower slide is configured to removably couple to the lower plate.
  • the upper plate and/or the lower plate comprises at least one engagement member (e.g., tooth, spike, barb, etc.) configured to engage a portion of the adjacent vertebral member when the implant has been advanced between the upper and lower plates.
  • the implant is configured to be advanced between the upper and lower plates using a rail system.
  • the rail system comprises at least one protruding member or feature on the implant and at least one corresponding groove or recess on the upper plate or lower plate, wherein the at least one protruding member or feature is configured to slidably move within the at least one corresponding groove or recess on the upper plate or lower plate.
  • the rail system comprises at least one groove or recess on the implant and at least one corresponding protruding member or feature on the upper plate or lower plate, wherein the at least one protruding member or feature is configured to slidably move within the at least one corresponding groove or recess.
  • the implant comprises a generally smooth outer surface. In one embodiment, the implant does not comprise any teeth or other engagement features. In some embodiments, the implant comprises PEEK, titanium and/or any other metal, alloy and/or polymeric material. In one embodiment, the upper and lower plates comprise at least one metal (e.g., titanium, stainless steel, etc.), alloy and or polymeric material (e.g., PEEK).
  • the system further comprises at least one screw or other fastener, the screw or fastener being configured to be secured through an opening of the implant after the implant has been properly secured within the intervertebral space.
  • the at least one screw passes through at least a portion of the upper or lower plate. In some embodiments, the screw passes through at least a portion of the upper or lower vertebral member.
  • a method of inserting a lateral implant within an intervertebral space defined between an upper vertebral member and a lower vertebral member includes creating a lateral passage through a subject in order to provide minimally invasive access to the intervertebral space, at least partially clearing out native tissue of the subject within and/or near the intervertebral space, positioning a base plate within the intervertebral space, wherein the base plate comprise an upper base plate and a lower base plate and advancing an implant between the upper base plate and the lower base plate so that the implant is urged into the intervertebral space and the upper vertebral member is distracted relative to the lower vertebral member.
  • advancing an implant between the upper and lower base plates comprises using a mechanical device (e.g., a threaded-system using a rotatable handle to advance a rod or other actuator, manual or mechanically-assisted device, etc.).
  • the implant comprises at least one groove and at least one of the upper base plate member and the lower base plate member comprises at least one protruding feature, the at least one groove being configured to align and move relative to the at least one protruding feature.
  • the implant is delivered through the base plate using a rail or other alignment system.
  • the implant comprises at least one of PEEK, titanium and/or the like.
  • the base plate comprises titanium, stainless steel or another medically-acceptable metal or alloy.
  • the method further includes securing at least one screw (e.g., 1, 2, 3, 4, more than 4, etc.) through an opening of the implant after the implant has been properly secured within the intervertebral space.
  • the screw also passes through at least a portion of the upper or lower base plate member and/or the upper or lower vertebra.
  • actions taken by a practitioner; however, it should be understood that they can also include the instruction of those actions by another party.
  • actions such as “advancing an implant” include “instructing advancing an implant.”
  • FIG. 1 schematically illustrates one embodiment of a spinal implant system with the implant not positioned within the target intervertebral space;
  • FIG. 2 illustrates the system of FIG. 1 with the implant positioned between the base plate members and implanted within the intervertebral space;
  • FIGS. 3A and 3B illustrate various views of a base plate of an implant system according to one embodiment
  • FIG. 4 illustrates a side view of a spinal implant system according to one embodiment
  • FIGS. 5A-5C illustrate various views of one embodiment of a base plate for use in a spinal implant system
  • FIGS. 6A and 6B illustrate various views of one embodiment of an implant configured for use in a spinal implant system
  • FIG. 7A illustrates one embodiment of a base plate configured for use in a spinal implant system
  • FIG. 7B illustrates one embodiment of an implant configured to be used together with the base plate of FIG. 7A ;
  • FIGS. 8A-8C illustrate various time-sequential side views during a spinal implant procedure according to one embodiment
  • FIGS. 9A-9D illustrate different views of a fusion system according to one embodiment
  • FIGS. 10A and 10B illustrate different views of one embodiment of an implant configured for use with a spinal fusion system
  • FIG. 11 illustrates a partial cross-sectional view of an implant positioned within a guiding assembly and upper and lower plates, according to one embodiment
  • FIG. 12 illustrates a perspective view of one embodiment of an implant secured between upper and lower plates of a fusion system
  • FIG. 13 illustrates a perspective view of one embodiment of an implant secured between upper and lower plates of a fusion system reinforced by two screws;
  • FIG. 14 illustrates a schematic top view of a portion of a guiding assembly and a corresponding plate configured for use with a spinal fusion system according to one embodiment
  • FIG. 15 schematically illustrates top views of different types of implants that can be used with the fusion system embodiments disclosed herein;
  • FIG. 16 illustrates a perspective view of one embodiment of a spinal fusion system comprising an implant positioned between adjacent plates;
  • FIG. 17 illustrates the spinal fusion system of FIG. 16 with a guiding assembly used to position the system within a targeted intervertebral space being withdrawn from the system, according to one embodiment
  • FIG. 18 illustrates a cross-sectional view of the spinal fusion system of FIGS. 16 and 17 after positioning and deployment within a subject's intervertebral space;
  • FIG. 19 illustrates a top view of the system of FIGS. 16 and 17 ;
  • FIG. 20 illustrates a side view of the system of FIGS. 16 and 17 with the spinal implant being advanced between the adjacent plates to deploy the teeth or other engagement members, according to one embodiment
  • FIG. 21 illustrates a side view of the system of FIG. 20 , wherein the implant has been fully advanced between the adjacent plates, according to one embodiment
  • FIG. 22 schematically illustrates a side view of an implant system comprising one or more keels or other extension members, according to one embodiment
  • FIG. 23 schematically illustrates an orthopedic rod having a plurality of deployable members according to one embodiment
  • FIG. 24A illustrates a top perspective view of an implant and adjacent plates according to one embodiment
  • FIG. 24B illustrates a bottom perspective view of the implant and plates of FIG. 24A ;
  • FIGS. 25A-25F illustrate different views of the implant and plates of FIGS. 24A and 24B ;
  • FIG. 26 illustrates an exploded perspective view of the implant and plates of FIGS. 24A and 24B ;
  • FIGS. 27A and 27B illustrates different perspective views of another embodiment of an implant and adjacent plates
  • FIG. 28 illustrates a perspective view of an implant and adjacent endplates secured to a guiding assembly according to one embodiment
  • FIG. 29 illustrates a perspective view of an alignment component of a guiding assembly according to one embodiment
  • FIG. 30 illustrates a perspective view of a bottom plate (e.g., a bottom endplate) according to one embodiment
  • FIG. 31A illustrates a top view of the alignment component of FIG. 29 ;
  • FIG. 31B illustrates a side view of the alignment component of FIG. 29 .
  • FIG. 32 illustrates a perspective view of one embodiment of an implant secured between upper and lower plates of a fusion system and comprising a plate and screws.
  • the present application discloses various devices, systems and methods for accessing the intervertebral or interbody space of a patient's spine and/or performing certain procedures related to spinal fusion using minimally invasive surgery (MIS) techniques.
  • MIS minimally invasive surgery
  • the intervertebral or interbody space of the targeted portion of the patient's spine is accessed and/or treated minimally invasively using, at least in some embodiments, a lateral approach.
  • MIS minimally invasive surgery
  • the intervertebral space 14 between adjacent vertebrae 10 , 12 can be accessed using one or more lateral openings or passages created laterally through the subject's anatomy (e.g., using one or more access device, such as, retractors, dilators, etc.).
  • openings or passages are created, accessed and/or otherwise use using MIS techniques or procedures.
  • a lateral interbody fusion implant including, but not limited to, a transforaminal lumbar interbody fusion (TLIF) implant, an oblique TLIF implant, a posterior lumbar interbody fusion (PLIF) implant, an anterior lumbar interbody fusion (ALIF) implant and/or the like.
  • TLIF transforaminal lumbar interbody fusion
  • PLIF posterior lumbar interbody fusion
  • ALIF anterior lumbar interbody fusion
  • the various embodiments disclosed herein can be in a variety of MIS or non-MIS approaches, including, without limitation, lateral, TLIF, posterior, ALIF and/or the like.
  • any of the embodiments disclosed herein can be modified or otherwise designed to be used along any portion of the spine.
  • the implants, plates (e.g., endplates), guiding assembly and/or any other component or feature can be adapted for use for a thoracic, cervical, lumbar or sacral implant, approach or treatment, as desired or required.
  • any of the embodiments disclosed herein can be modified for use as vertebral body replacement (corpectomy or other procedure involving the removing of all or a part of a vertebral body) and/or any similar or related spinal fusion technique, procedure or technology.
  • FIG. 1 schematically illustrates one embodiment of a spinal fusion or stabilization system 50 .
  • the system 50 can include upper and lower plates (e.g., endplate members) 300 or other members that are positioned along the endplates of the upper and lower vertebral members 10 , 12 .
  • the plates 300 generally extend across the entire or substantially the entire width of the vertebrae 10 , 12 .
  • the plates 300 are the same length or substantially the same length as the spinal implant 200 that will be delivered between the plates 300 and into the intervertebral space 14 .
  • the plates 300 and/or the implant 200 can be approximately 40 to 60 mm long (e.g., 40, 45, 50, 55, 60 mm, lengths between the foregoing ranges, etc.). In other embodiments, however, the length of the implant is greater than 60 mm or less than 40 mm, as desired or required.
  • the upper and lower plates comprise at least one metal or alloy and/or a polymeric material (e.g., PEEK).
  • the at least one metal or alloy comprises titanium, stainless steel and/or any other medical grade metal or alloy.
  • the lower plate and/or the upper plate is bead-blasted or is otherwise at least partially roughened (e.g., along one or more surfaces that are configured to contact and engage native vertebral tissue of the subject).
  • the lower plate and/or the upper plate comprises an ingrowth surface (e.g., along one or more surfaces that are configured to contact and engage native vertebral tissue of the subject). In some arrangements, such a configuration can assist to prevent movement between the plate and the vertebral body.
  • each of the upper and lower plates 300 comprises at least one central opening O that can at least partially align with and provide access to (e.g., from a space generally between the upper and lower plates) to native tissue of the adjacent vertebral members V 1 , V 2 of the subject.
  • the implant 200 can be delivered (e.g., laterally) between the upper and lower plates or other members 300 .
  • the delivery of the implant 200 between the plates 300 can be performed with or without the use of a mechanical delivery tool (e.g., by using a threaded delivery device or other device providing for mechanical advantage, etc.).
  • the upper and lower plates 300 can provide one or more advantages or benefits.
  • the use of the plates 300 can help distribute forces and moments along a larger surface area.
  • the likelihood of potentially damaging localized forces, moments and/or other stresses on a particular portion or area of the adjacent vertebrae 10 , 12 can be reduced or eliminated.
  • the risk of damage to bone and/or other native tissues to the subject during a fusion procedure can be further reduced by advancing the implant 200 , and thus separating the upper and lower plates 300 in a more predictable, gentler manner (e.g., as opposed to traditional methods of using great force to position an implant within a target intervertebral space).
  • the use of the upper and lower plates 300 can facilitate the delivery of the implant 200 within the target interbody space with greater ease and less resistance.
  • the endplates and other portions of the adjacent vertebrae 10 , 12 can be protected against shearing, fractures and/or other damage. This can be especially important when the implant 100 causes distraction (e.g., separation or opening) of a collapsed or partially collapsed interbody space 14 , as represented by the arrows 16 in FIG. 2 .
  • one or both sides of the upper and/or lower plates can include spikes, teeth, other protruding members and/or other engagement features.
  • the engagement features can be advanced into the adjacent endplate(s) as the implant 200 is moved between the plates 300 . This can help secure the plates to the adjacent vertebrae 10 , 12 .
  • engagement features can be positioned along the opposite surfaces of the plates (e.g., along the bottom of the upper plate and/or along the top of the lower plate). Such engagement features can help prevent or reduce the likelihood of relative movement between the implant 200 and the plates 300 following implantation.
  • the implant 200 and the adjacent surfaces of the upper and lower plates 300 can include recesses, protrusions, other components of a “rail” system and/or any other feature to help maintain a particular orientation between the plates and the implant during use and/or after implantation, to help prevent or reduce the likelihood of any undesirable relative movement between the plates and the implant during use and/or after implantation and/or the like.
  • the plates and/or the implant can include one or more other features, such as, for example, rails or guiding members (e.g., to assist in moving the implant more easily and more predictably between the plates), tabs or other portions configured to receive one or more screws or other fasteners (e.g., to further secure the system 100 to the spine after delivery into the intervertebral space) and/or the like.
  • rails or guiding members e.g., to assist in moving the implant more easily and more predictably between the plates
  • tabs or other portions configured to receive one or more screws or other fasteners (e.g., to further secure the system 100 to the spine after delivery into the intervertebral space) and/or the like.
  • FIGS. 3A and 3B illustrate different views of one embodiment of upper and lower plates (e.g., base plates or endplate members) 300 configured for use in a spinal fusion system.
  • the base plates 300 can include upper and lower plates 310 , 314 .
  • the base plates 300 can be shaped, sized and configured to span across an entire width of the subject's vertebrae 10 , 12 .
  • the upper and/or lower plates can include one or more openings to provide access to the adjacent native vertebral surfaces of the subject after implantation.
  • the base plates 300 extend beyond one or more side of the vertebral periphery or do not extend to the lateral edge of the vertebrae (e.g., are short by a certain clearance distance from one or more lateral edges of the vertebrae).
  • a portion of the plate 300 can be configured to be removed or manipulated after implantation.
  • a protruding portion of the plate can be folded or bent (e.g., either upwardly or downwardly) to move the folded or bent portion either toward or away from the intervertebral space.
  • such a bent or folded portion can include one or more openings or other holes that can be used to place a bone screw of other fastener therethrough (e.g., to secure that portion of the plate to an adjacent vertebral member, to another bent or folded plate used in a fusion system, to a separate washer or other plate member and/or the like.
  • the plate members 310 , 314 can include one or more protruding members (e.g., teeth, rails, other engagement members or features, etc.) 320 that extend toward each other (e.g., toward the intervertebral space).
  • protruding members can be fixed or movable.
  • the protruding members 320 are deployable (e.g., before, during or after advancement of an implant between the base plates 300 ).
  • plate members 300 can include teeth, protruding members or other engagement features or devices along their opposite surfaces (e.g., along the top of the upper plate, along the bottom of the lower plate, etc.), either in lieu of or in addition to having inwardly-directed protruding members.
  • outwardly-projecting protruding members 320 on the plates can help secure the plates to the adjacent surfaces of the upper and lower vertebral members of the subject being treated. This can advantageously provide one or more clinical benefits, such as, for example, the preservation of long-term implantation (e.g., reducing the likelihood of dislodgement or movements of the implant system within the target intervertebral space following implantation).
  • a system can include a guiding assembly 500 that can be strategically positioned along one of the lateral ends of the targeted intervertebral space.
  • the guiding assembly 500 can include an alignment device 510 that may comprise one or more alignment components 514 , 516 . Regardless of its exact configuration and design, the alignment device 510 can advantageously permit a surgeon or other practitioner to accurately position the guiding assembly 500 for the subsequent delivery of an implant therethrough and between the base plates 300 .
  • the guiding assembly 500 can include upper and lower alignment members or slide members 514 , 516 , which are generally aligned with the upper and lower plates 300 .
  • each alignment member 514 , 516 can be configured to removably attach to the corresponding plate 300 to help advance and position the plates 300 within the targeted intervertebral space (e.g., minimally invasively).
  • the distal ends of the alignment members or slides 514 , 516 can be configured to be slidably received within slots, recesses or other portions of the plates 300 .
  • the guiding assembly 500 can be temporarily coupled to the plates when the plates are being advanced into the intervertebral space and when the implant is subsequently delivered between the plates (e.g., as discussed in greater detail below).
  • the alignment members or slides 514 , 516 can be easily retracted (e.g., rearwardly or proximally) relative to the plates and implant for removal from the subject's anatomy and completion of the fusion procedure.
  • the alignment members or components 514 , 516 and/or one or more other portions or components of the assembly can include a flange or other abutment or securement portion 518 .
  • a flange 518 can be fixedly or movable positioned along the adjacent vertebrae 10 , 12 of the subject to ensure proper alignment into the targeted intervertebral space.
  • the alignment members and other components of the guiding assembly are configured to completely decouple from the plates and the implant after implant has been properly delivered into the target intervertebral space.
  • an implant 200 can be delivered between the plates 300 and into the intervertebral space using a mechanical advancement device. Therefore, in some embodiments, the guiding assembly 500 can advantageously comprise a mechanical advancement device or feature.
  • the guiding assembly comprises a threaded delivery portion that is configured to advance an implant 200 between the base plate members 310 , 314 by turning a rotatable handle or other advancement tool. As a user rotates the handle 520 , a rod 522 or other actuator is moved forwardly (e.g., distally) in the direction of the implant 200 .
  • the implant 200 can be directly or indirectly coupled to the actuator 522 via one or more coupling or other detachable connections 526 , as desired or required.
  • the implant e.g., lateral cage
  • the implant can be guided between the base plate members 310 , 314 and into the intervertebral space. Consequently, the base plate members 310 , 314 separate and are urged toward the adjacent endplates of the vertebrae.
  • the implant can include a taper (e.g., bullet design) along its distal end to facilitate initial entry and subsequent distraction and separation of the base plate 300 .
  • one or more other devices can be used to help advance the implant between the plates.
  • a pneumatic tool e.g., air or liquid driven tool
  • Any other type of user-assisting device or system can be used to help advance the implant between the plates, such as, for example, other types of mechanical devices, electromechanical devices, motorized devices, pumps and/or the like.
  • the guiding assembly 500 can include one or more structures 510 that help ensure that the implant stays within the guiding assembly 500 and maintains its alignment with the intervertebral space during advancement between the plates.
  • Such structure 510 can, for example, help reduce any deflection or misdirection of the implant's leading end during distal delivery to the intervertebral space, especially when relatively high forces are being exerted on the implant (e.g., that may otherwise cause the implant to move out of alignment with the base plates).
  • the implant 200 , the base plates 300 and/or any other portion of the system can include rails or other alignment features that further help maintain a proper alignment of the implant during advancement between a subject's vertebrae.
  • the guiding assembly can include alignment members (e.g., slides) 514 , 516 that removably secure to the plates 300 and provide a reliable and predictable path for advancement of the implant within the intervertebral space.
  • alignment members e.g., slides
  • slides 514 , 516 can be subsequently removed and decoupled or separated (e.g., slidably, mechanically, etc.) from the plates 300 .
  • FIGS. 5A-5C illustrate various views of a different embodiment of a system comprising base plates 300 for receiving a spinal implant.
  • an alignment device 510 ′ can be positioned relative to one or more of the adjacent vertebrae 10 , 12 and subsequently secured thereto using additional fasteners or other connection devices or methods.
  • additional fasteners or other connection devices or methods For example, one or more screws S or other fasteners can be used to secure one or more portions of the alignment device to the upper and/or lower vertebral members of the subject.
  • the alignment devices 510 ′ comprise one or more flanges or plates P through which the screws S or other fasteners can be placed.
  • the alignment device 510 ′, base plate 300 and/or other portions of the system can be left in place after the implant has been secured between the subject's vertebrae.
  • one or more components of the system e.g., base plate 300 , screws, etc.
  • the implant 200 can include one or more open regions or chambers 210 for holding a grafting material.
  • the implant can include one or more grooves 220 or other recesses along its anterior and/or posterior walls.
  • such grooves 220 or other features can align and mate with corresponding rails, protrusions or features of the base plate 300 . Accordingly, the grooves, rails and/or other features can help safely, accurately and predictably move the implant 200 into the target intervertebral space (e.g., between adjacent base plate members).
  • the rail system between the implant 200 and the adjacent plates 300 can be reversed.
  • the implant can include one or more protruding or raised portions that generally align and correspond to grooves or recesses along the adjacent surfaces of the plates 300 . Regardless of the exact orientation and design of the rail system, such a system can help ensure that an implant is accurately and safely delivered to a target intervertebral space.
  • the implants disclosed herein comprise PEEK, titanium or other acceptable materials.
  • the implant 200 comprises a metal edge plate or other surface or feature 226 through which one or more screws (not shown in FIGS. 6A and 6B ) can be subsequently delivered to secure the implant 200 to one or more of the subject's vertebrae.
  • the plate 226 which can be positioned along the proximal end of the implant 200 , comprises titanium or other acceptable metal or alloy and/or other rigid or semi-rigid material.
  • FIG. 7A illustrates a side view of one embodiment of a base plate 300 comprising upper and lower plate members 310 , 314 .
  • the base plate members 310 , 314 can include one or more protruding members 320 .
  • Such protruding members 320 can include tabs, bumps, spikes, teeth, grasping members, engagement members, other sharp, smooth and/or rounded features or members and/or the like.
  • the protruding members 310 , 314 can be fixed (e.g., non-movable, non-deployable, etc.) and/or movable (e.g., selectively retractable, deployable, etc.).
  • the protruding members 320 of the upper and/or lower plate members 310 , 314 are deployable using a mechanical connection, a temperature change and/or using some other mechanism of action, device or method.
  • such protruding members 320 can help engage the plates 300 to the implant 200 .
  • the protruding members 320 can be configured to reverse their orientation (e.g., in a direction away from the interior of the intervertebral space or toward the adjacent vertebral member) when the implant is advanced over the protruding members during implantation.
  • the protruding members 320 can deform or otherwise change orientation so as to engage the upper and lower vertebral members. This can provide positive engagement of the plates into the adjacent vertebrae, which may, in some circumstances, result in a more secure implantation of the system within the subject.
  • FIG. 7B illustrates a top view of one embodiment of an implant 200 that is configured to be used with the base plate 300 of FIG. 7A .
  • the implant 200 can include one or more grooves, holes, recesses or other openings 240 that are shaped, sized and otherwise configured to receive corresponding protruding members 320 of the base plate 300 .
  • an implant 200 can include one or more protruding members or features that are sized, shaped and otherwise configured to engage and move within grooves or corresponding recesses of the adjacent plates 300 .
  • the protruding members 320 ′ of the base plate 300 can include a curved leading edge to permit the groove 240 of the implant 200 to only temporarily engage the member 320 ′ as the implant is advanced into the target intervertebral space.
  • the protruding members can sequentially engage and disengage a groove on the implant (e.g., in a ratcheting manner).
  • the implant can only be permitted to be advanced in one direction (e.g., distally). Such an embodiment can be helpful when using base plates 300 that have fixed protruding members 320 .
  • the need for such ratcheting system may not be needed, as the protruding members 320 can be selectively deployed only when the implant is properly positioned between the base plate members.
  • the use of protruding members and corresponding grooves or other recesses can help with guiding an implant 200 between adjacent base plate members (e.g. during delivery). Such embodiments can also assist in securely maintaining the implant in its implanted position following the delivery of the implant in the target intervertebral space.
  • a lateral implant device in accordance with the various embodiments disclosed herein, can be delivered to the target intervertebral space minimally invasively (e.g., through one or more tissue dilators, cannulas or other openings).
  • a guiding assembly 500 can be positioned through a dilator or other access device and in general alignment with the targeted intervertebral space.
  • the implant can be advanced using a mechanical device (as illustrated in FIG. 8A ), manually and/or using some other method or device.
  • the implant and base plate can include one or more features or members (e.g., rails, grooves, etc.) to assist in accurately moving the implant in the desired anatomical location of the subject's spine.
  • a screwdriver or other mechanical device 600 can be delivered through a dilator, cannula or other access device C to engage and advance one or more screws S or other fasteners through corresponding openings along the proximal end of the implant 200 .
  • the use of such fasteners can assist with maintaining the position of the implant 200 relative to the subject's spine following implantation, as shown in FIG. 8C .
  • the screws S can be routed through the implant, the base plate and/or the vertebra, as desired or required. However, in other embodiments, the use of screws S or other fasteners is not needed or required to maintain the implanted implant between the base plate members and the adjacent vertebrae.
  • a total of four fixation screws are positioned through the proximal end of the implanted implant (e.g., two above and two below).
  • the screws or other fasteners can be passed through openings of one or more plates or washers that at least partially cover or otherwise shield the intervertebral space, provide additional structural support and/or provide one or more other benefits or advantages.
  • more or fewer screws or other fasteners can be used, as desired or required.
  • FIGS. 9A-9D illustrate different views of another embodiment of a spinal fusion system 100 .
  • the system 100 can include upper and lower plates 300 that are sized, shaped and otherwise configured to be positioned between the adjacent vertebral members V 1 , V 2 where fusion is targeted.
  • the system 100 further comprises a guiding assembly 500 .
  • the alignment members (e.g., slides) 514 , 516 of the guiding assembly 500 are configured to releasably secure or otherwise temporarily engage to or with the plates 300 . Accordingly, the plate-slide assembly can be placed within the subject and advanced to the target intervertebral space.
  • one or more distal portions of the alignment members or slides 514 , 516 can releasably attach to and/or slide within adjacent portion(s) of the plates 300 .
  • one or both of the slides 514 A, 516 A comprise an extension portion 518 A that extends into the targeted intervertebral space and provides a surface over which the implant can move when the implant is advanced in the vicinity of the vertebral members.
  • the use of such extension portion 518 A can help maintain the graft material within the interior chambers of the implant during advancement to the intervertebral space. Accordingly, the use of extension portions 518 A or similar members or features can be advantageously incorporated into any implant system embodiments disclosed herein or equivalents thereof.
  • the system 100 can comprise a delivery device or feature 520 that can facilitate the surgeon or other practitioner with the advancement of the implant 200 through the guiding assembly and into the intervertebral space (e.g., between the plates 300 ).
  • the implant 200 is initially inserted at or near the proximal end of the guiding assembly 500 , generally between the alignment members or slides 514 , 516 . Then, once the surgeon has advanced the guiding assembly 500 , and in some configurations, the plates 300 and the implant 200 to which the assembly 500 is engaged, through the subject's anatomy (e.g., through an access device), the surgeon can begin to move the implant distally by manipulating the handle or other portion of the guiding assembly.
  • the threaded rod 526 can move relative to a housing 528 .
  • Such manipulation of the handle 522 can result in moving the distal end 524 of the rod 526 forwardly (e.g., distally) so as to engage the implant 200 positioned between the slides 514 , 516 and exert a force on the implant 200 .
  • the distal end 524 of the rod comprises a coupling or other blunt member or feature that can help avoid damage to the adjacent portion of the implant 200 during the advancement process.
  • the distal end of the implant 200 will reach the proximal end of the plates 300 that have been positioned within the intervertebral space.
  • the implant 200 will move between the upper and lower plates 300 , causing the plates 300 to separate apart from each other, in certain arrangements.
  • the implant 200 is moved far enough distally between plates 200 so that is spans across an entire length or substantially an entire length of the plates 300 .
  • FIGS. 10A and 10B illustrate one embodiment of an implant 200 that is configured to be used with one or more of the fusion systems disclosed herein, including the system 100 of FIGS. 9A-9D .
  • the implant 200 can include one or more internal chambers 210 .
  • Such chambers 210 can be sized, shaped and otherwise configured to be at least partially filled with graft material (not shown) before the implant 200 is advanced between the plates 300 .
  • the implant 200 can comprise one or more materials, such as, for example, PEEK, titanium, other metals or alloys, other polymeric materials and/or the like.
  • the implant 200 can include one or more protrusions, ridges or similar members or features 220 that extend at least partially along one or more surfaces of the implant 200 .
  • such protrusions 220 can be sized, shaped and otherwise configured to be moved relative to corresponding grooves or recesses of the upper and lower plates 300 and/or the upper and lower slides or alignment members 514 , 516 of the guiding assembly 500 .
  • FIG. 10 As shown in the embodiment of FIG.
  • the upper plate and/or the lower plate 300 can include one or more grooves or recesses 320 that are configured to receive the protrusions 220 of the implant 200 when the implant is properly positioned within the guiding assembly 500 and between the plates 300 .
  • the grooves or recesses 320 can extend proximal to the plates 300 and be present, either continuously or intermittently along at least a portion of the slides 514 , 516 of the guiding assembly 500 .
  • the implant 200 can be predictably moved between the slides 514 , 516 and the plates 300 to properly, safely and securely position the implant 200 within a targeted intervertebral space.
  • the guiding assembly 500 and the plates 300 are generally straight, and the path that the implant follows through the guiding assembly 500 is generally linear.
  • the grooves or recesses of the guiding assembly and/or the plates (and thus, the corresponding protruding members or features of the implant 200 ), or vice versa can be at least partially curved, so that the implant is moved along a non-linear pathway.
  • the non-linear pathway can comprise a continuous curve (e.g., with a constant or variable diameter along the length of the curve).
  • the curve or turn is more abrupt (e.g., piecemeal turn or short radius turn) so as to avoid a longer, sweeping turning radius.
  • Such embodiments can be helpful with certain MIS approaches where an implant needs to be maneuvered more carefully and precisely around sensitive nerve structures, such as, for example, in a TLIF procedure.
  • the implant comprises generally smooth outer surfaces (e.g., does not comprises teeth or other engagement features). Since the implant will not directly contact or engage the adjacent surfaces of the vertebral members, the need for teeth, other protruding members and/or other roughened surface features may not be necessary. This can advantageously simplify the design, manufacturability, cost and other aspects of the implant.
  • the implant includes generally rounded protruding members or features 220 along both of its lateral ends and along both its upper and lower surfaces. Further, the protruding features 220 are generally continuous along an entire length of the implant 200 . However, in other embodiments, the implant 200 can include more or fewer protruding features 220 .
  • the protruding features 220 can include any desired cross-sectional shape or configuration (e.g., rounded, circular, oval, rectangular, triangular, other polygonal, irregular, etc.), as desired or required. Further, the protruding features 220 can extend only partially or intermittently along one or both surfaces of the implant 200 .
  • the total number of protruding members 220 (e.g., and thus, corresponding grooves or recesses in the plates 300 and guiding assembly 500 ) can be less or more than four (e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, more than 10, etc.), as desired or required.
  • the protruding members 220 are included only the top or the bottom of the implant 200 .
  • the grooves or recesses 320 of the plates 300 can include one or more deployable teeth, spikes or other engagement features 322 .
  • the teeth or other features 322 are configured to be pushed through the bottom of the corresponding groove or recess 320 , at least partially, when the protruding member or feature 220 of the implant 200 is moved over such teeth or features 322 .
  • the teeth, spikes or other engagement features 322 can be sequentially deployed away from the implant and toward the adjacent vertebral member.
  • the teeth or other engagement features 322 are deployed within the native tissue of the vertebral member to help secure the plates within the target intervertebral space during and after implantation.
  • FIG. 12 One schematic embodiment of an implant 200 that has passed within upper and lower plates 300 and has caused a number of teeth, spikes or other engagement features 322 to deploy away from the implant 200 is illustrated in FIG. 12 .
  • one or more screws or other fasteners can be used to further strengthen and reinforce the system.
  • upper and lower screws S can be positioned through one or both of the plates 300 and/or the implant 200 .
  • Such screws can be advanced through one or more cortical structures of the adjacent vertebral members of the subject to provide additional strength and support to the fusion system.
  • one or more washers, plates or other rigid or semi-rigid members P can also be used in conjunction with the screws or other fasteners S.
  • the plate or other member P can include one or more holes or other openings that are sized, shaped, oriented and/or otherwise configured to secure a screw or other fastener therethrough, as desired or required.
  • the plate P is sized, shaped and configured to be flush or substantially flush with adjacent surfaces of the upper and lower vertebrae.
  • the spinal fusion system can include components that have a closed or open structure.
  • the implant 200 a can include a closed structure, such as, e.g., a closed circular, oval, rectangular and/or other shape.
  • the implant 200 b can include at least a partially open structure (e.g., wherein one or more or ends or portions of the implant, plates and/or other components of the system) are open or otherwise do not form a closed loop or structure.
  • the adjacent plates that are configured to be positioned on either side of the implant can either include an open or closed structure, as desired or required.
  • a closed configuration can be used to help maintain graft material that is provided within an interior chamber or space of the implant.
  • Such configurations can assist with fusion between adjacent endplates of vertebral members, as graft material is contained within an interior portion of the corresponding implant, irrespective of the type of implant that is used (e.g., LLIF or other lateral, TLIF, anterior, posterior, etc.).
  • the deployable protruding members 1320 e.g., spikes, teeth, nubs, anchors, etc.
  • the deployable protruding members 1320 positioned on the upper and lower plates 1300 can be placed in on two or more rows on either lateral end of the implant 1200 and/or are staggered (e.g., longitudinally and/or laterally), as desired or required. As shown, such deployable protruding members 1320 can be placed on the top and/or the bottom of the implant.
  • each lateral end of the plate 1300 can include two rows of protruding members 1320 .
  • Such protruding members 1320 in adjacent rows can be aligned or not aligned relative to each other.
  • the depicted arrangements show a total of two rows of protruding members 1320 on each lateral end of the system, fewer rows (e.g., a single row) or additional rows (e.g., 3, 4, 5 rows, more than 5 rows, etc.) can be included on one or both sides of the plates 1300 , as desired or required.
  • the protruding members e.g., spikes, teeth, nubs, anchors, etc.
  • the protruding members 1320 are positioned in one or more additional or different rows than illustrated herein.
  • such protruding members along one or more rows or portions located or oriented along or near a longitudinal centerline of the plates 1320 and/or implant 1200 .
  • the system can be delivered to the desired intervertebral space (e.g., between two adjacent vertebrae of a subject) with the assistance of a guiding assembly 500 .
  • the guiding assembly 500 comprises one or more alignment components 514 , 516 (e.g. upper and lower alignment components or members).
  • the alignment members 514 , 516 are configured to engage, at least partially, corresponding upper and/or lower plates or other members or components 1300 of the spinal fusion system.
  • the distal ends 515 , 517 (e.g., insertion or guiding members) of the alignment members 514 , 516 can be sized, shaped and/or otherwise designed and configured to slide or otherwise be positioned within corresponding features (e.g., openings, recesses, grooves, etc.) of the upper and/or lower plates 1300 .
  • corresponding features e.g., openings, recesses, grooves, etc.
  • the distal portions or ends 515 , 517 of the alignment members 515 , 517 are sized, shaped and/or otherwise configured to slide or otherwise be positioned within corresponding portions or features (e.g., grooves, slots, etc.) of the corresponding plate members 1300 of the system.
  • the guiding assembly and its components can be properly and predictably positioned relative to the plates and/or other components or portions of the spinal implant system.
  • the implant 1200 comprises features 1202 that are sized, shaped and otherwise configured to engage and mate with corresponding features (e.g., recesses) of the upper and lower plates 1300 of the fusion system.
  • the implant 1200 can be advanced relative to the upper and lower plates 1300 to create the desired expansion or distraction between the subject's vertebral members located on either side of the plates 1300 .
  • the protruding features (e.g., prongs, teeth, anchors, etc.) 1322 a, 1322 b on the plates 1300 can be deployed to advantageously extend and engage at a portion of the adjacent vertebral tissue of the subject (e.g., endplate of the adjacent vertebral member).
  • the protruding members 1322 in the illustrated embodiment are in two different planes on each side of the system, as discussed herein, each side of the system can include fewer rows (e.g., a single row) or more rows (e.g., 3, 4, 5 rows, more than 5 rows, etc.), as desired or required.
  • the use of the upper and lower plates 1300 and a central implant 1200 can help provide for a more predictable, safe and consistent delivery, and thus implantation of a system and distraction of adjacent vertebral members.
  • upper and/or lower portions of the implant 1202 can be shaped, sized and/or otherwise configured to slide within corresponding portions of the upper and/or lower plates 1300 .
  • a locking mechanism or feature is created to prevent or reduce the likelihood of vertical movement between the implant 1200 and the adjacent plates 1300 once the implant has properly been positioned relative to the plate(s) 1300 .
  • the distal end(s) or portion(s) of the implant 1200 is/are configured to positively engage corresponding features of the upper and/or lower plates 1300 of the implant system.
  • the implant comprises a protruding and/or recessed portion that clicks or otherwise positively (e.g., lockingly) engages corresponding portions of the adjacent lower and/or upper plates 1300 .
  • the engagement between the implant 1200 and the adjacent plate(s) 1300 includes a tactical and/or audible confirmation (e.g., click or other confirmation of engagement and proper advancement of the implant).
  • the implant 1200 can urge one or more protruding member 1322 of the adjacent plates 1300 outwardly (e.g., upwardly or downwardly, toward and/or at least partially through the endplates of the adjacent vertebral members of the subject) to engage the protruding members (e.g., prongs, teeth, anchors, etc.) of the plates 1300 to the native tissue (e.g., endplate tissue) of the subject, thereby fixating the implant system to the subject and promoting fusion (e.g., over an extended time period by virtue of the bone graft material of the implant).
  • the native tissue e.g., endplate tissue
  • FIGS. 20 and 21 illustrate one embodiment of an implant being advanced between adjacent (e.g., upper and lower) plates 1300 of a spinal fusion system. As shown, as the implant 1200 is advanced further between the plates 1300 , the protruding members 1322 of the plates 1300 are deployed and extended toward the adjacent endplates of the subject's vertebral members.
  • the upper and/or lower surfaces of the plates 300 , 1300 can be textured to promote fusion.
  • such surfaces can include a porous, roughened, undulating and/or other features or texture, as desired or required.
  • such plate surfaces can attract bone cells and/or tissue and help further secure and/or otherwise fuse the system to the adjacent native tissue (e.g., vertebral endplate tissue) of the subject.
  • such surfaces can be bead-blasted or otherwise textured after formation.
  • the surfaces can be initially formed with a desired texture or other pattern.
  • the surfaces of the plates 1300 can be formed using plasma pour (e.g., Titanium plasma pour) or other molding or forming technique and/or any other manufacturing method.
  • the system can include one or more keels and/or other positive engagement features that help secure the system to the anatomy of the subject, irrespective of any engagement features 1322 used on the upper and/or lower plates 1300 ).
  • the upper and/or lower plates 1300 of the fusion system can include one or more keels or other extension members 1350 that are configured to at least partially cut into and/or otherwise extend into the adjacent vertebral members upon implantation.
  • Such features can help (e.g., in addition to and/or in lieu of the protruding members of the plates 1300 ) to secure the fusion system within a subject, as desired or required.
  • the ends and/or other portions of the keels and/or other extension members 1350 can be at least partially sharp and/or otherwise configured for easier penetration and/or engagement with the subject's native tissue.
  • additional members 1350 can be included on either or both of the plates of the system, as desired or required for a particular application or use.
  • the protruding members and/or the keels or other extension members 1350 of the plates can include a fish-hook design so at to positively engage the endplates and/or other native tissue of the subject and to prevent or reduce the likelihood of pull-out, pull-through or release after tissue engagement.
  • the protruding members and/or other extension members of the plates 1300 comprise one or more barbed portions with an angled design.
  • such engagement features or members comprise a fish-hook design, one or more reverse tapered or ratcheting surfaces and/or the like.
  • the protruding members, other extension members and/or other members/features of the system comprise anchors (e.g., Mitek-type anchors, other bone and/or tissue anchors, other tissue fixation members, suture-based systems, other locking members, etc.).
  • anchors e.g., Mitek-type anchors, other bone and/or tissue anchors, other tissue fixation members, suture-based systems, other locking members, etc.
  • FIGS. 24A and 24B illustrate different perspective views of a spinal fusion system similar to other embodiments disclosed herein.
  • the system can include an implant 2200 and adjacent upper and lower plates (e.g., endplates) 2300 .
  • the upper and lower plates 2300 are configured to contact and securely engage upper and lower surfaces of the implant 2200 after implantation (e.g., within a targeted intervertebral space of a subject).
  • the implant can comprise PEEK, any other thermoplastic, one or more metals or alloys (e.g., titanium, stainless steel, etc.) and/or any other material, as desired or required.
  • any of the plate (e.g., endplate) embodiments disclosed herein can comprise PEEK, any other thermoplastic, one or more metals or alloys (e.g., titanium, stainless steel, etc.) and/or any other material.
  • the implant 2200 can be shaped, sized and otherwise configured to be predictably, securely and/or non-intrusively moved relative to the adjacent plates (e.g., endplates) 2300 . As discussed in greater detail herein, this can be accomplished with the assistance of a guiding assembly (see, e.g., FIGS. 28, 29 and 31A-31B ). Such as guiding assembly 500 can provide a predictable pathway and guiding mechanism for moving the implant to the target intervertebral space and eventually between the adjacent plates 2300 .
  • the implant and adjacent plates for any of the spinal fusion systems disclosed herein, or equivalents thereof can include certain features, components, design elements and/or the like to facilitate engagement of the various fusion system components to one another and/or the adjacent anatomy of the subject into which the system is being used.
  • the implant 2200 and/or the plates 2300 can be configured to lockingly (e.g., releasably or non-releasably) engage one another when the implant is positioned between the plates.
  • alignment components of a guiding assembly can be configured to secure to and/or release from a plate (e.g., an endplate) prior to and/or following delivery of the implant within the targeted anatomical space.
  • a plate e.g., an endplate
  • the various spinal fusion systems and the various components and subcomponents thereof can be sized, shaped and/or otherwise configured for use with any approach or implant type, including, without limitation, anterior (ALIF) (e.g., open, mini-open retroperitoneal, etc.), lateral (e.g., costotranversectomy, extreme lateral, LLIF, etc.), posterolateral (e.g., posterior lumbar interbody fusion (PLIF), transforaminal lumbar interbody fusion (TLIF), etc.), axial (e.g., axial lumbar interbody fusion), expandable and/or the like.
  • anterior anterior
  • lateral e.g., costotranversectomy, extreme lateral, LLIF, etc.
  • posterolateral e.g., posterior lumbar interbody fusion (PLIF), transforaminal lumbar interbody fusion (TLIF), etc.
  • axial e.g., axial lumbar interbody fusion
  • expandable and/or the like
  • FIG. 28 illustrates one embodiment, in perspective view, of a fusion system that include an implant 2200 , adjacent plates (e.g., endplates) 2300 and a guiding assembly 500 .
  • the guiding assembly 500 can comprise upper and lower alignment members 514 , 516 .
  • Each alignment member 514 , 516 can include a distal end 515 that is sized, shaped and configured to slide within a corresponding portion of an adjacent plate (e.g., endplate) 2300 .
  • at least a portion of one or more alignment members 514 , 516 is adapted to releasably secure to the plate 2300 .
  • Such a configuration can help ensure that the guiding assembly 500 remain properly aligned with the plates 2300 to reliably and securely deliver the implant 2200 between the plates 2300 .
  • the alignment members 514 , 516 can be configured to automatically release from the plates 2300 for removal from the subject's anatomy. Additional details regarding the manner in which the alignment members 514 , 516 can secure to and/or release from the endplates 2300 is provided below.
  • FIGS. 29 and 30 illustrate an alignment member (e.g., lower alignment member) 516 and a plate (e.g., bottom endplate) 2300 , respectively, that are designed to releasably secure to one another.
  • the features included in the depicted embodiments can be incorporated into any of the guiding assemblies, endplates, implants and/or other components of a fusion system discussed herein.
  • the guiding assembly 500 can comprise an alignment member 516 a proximal portion 519 and a distal portion 517 extending therefrom.
  • the distal portion 517 of the alignment member 516 can be tapered. In some arrangements, this can permit the distal portion 517 of the alignment member 516 to be positioned between a corresponding recess of the endplate 2300 . Further, in some embodiments, the proximal portion 519 can be shaped, sized and configured to match and/or align with the adjacent endplate 2300 (e.g., with respect to cross-sectional shape) once the alignment member has been positioned relative to the endplate.
  • the distal portion 517 of the alignment member 516 can include an engagement member or feature 530 that is configured to secure to a corresponding receiving member or feature 2350 of the endplate 2300 into which the alignment member 516 is advanced.
  • an engagement member or feature 530 of the distal portion 517 of the alignment member 516 is shown in greater detail in FIG. 31A below.
  • the distal portion 517 of the alignment member 516 comprises one or more flanges or protrusions 520 (e.g., along one or both ends of the distal portion 517 ) that are sized, shaped and configured to slide into and be received within corresponding grooves or recesses 2340 of the plate 2300 (e.g., along one or more both interior surfaces of the plate).
  • flanges or protrusions 520 e.g., along one or both ends of the distal portion 517
  • corresponding grooves or recesses 2340 of the plate 2300 (e.g., along one or more both interior surfaces of the plate).
  • the engagement member 530 of the alignment member 516 can comprise a tab or finger 532 that is positioned along a proximal end of the distal member 517 .
  • the engagement member 530 is resiliently biased such that it can flex inwardly (e.g., toward an interior space or cavity 531 ) when a force is directed to the outside of the tab 532 .
  • the tab 532 can include a sloped exterior surface 533 that is configured to be contacted by the endplate 2300 when the distal portion 517 of the alignment member 516 is advanced sufficiently far within the central opening of the endplate.
  • an adjacent surface of the endplate 2300 can contact the sloped surface 533 of the tab 532 and urge the tab 532 inwardly (e.g., toward the interior space 531 of the engagement member 530 ).
  • the exterior surface of the tab 532 can move from its normal location (e.g., along dashed line 536 ) to an interior location (e.g., along dashed line 534 ).
  • the receiving member 2350 includes a ridge 2351 that helps prevent retraction (e.g., in the lateral direction) of the alignment member 516 relative to the endplate 2300 .
  • an upper alignment member 514 is secured or coupled to an upper plate (e.g., endplate) 2300
  • a lower alignment member 516 is secured or coupled to a lower plate (e.g., endplate) 2300 .
  • the two coupled assemblies can be placed adjacent to one another and advanced within the subject's anatomy so that the plates are positioned within the targeted intervertebral space.
  • the implant can then be delivered between the alignment members 514 , 516 of the guiding assembly 500 until it is finally moved between the endplates and implanted within the targeted intervertebral space to promote fusion.
  • the size of the final assembly can be selected based, at least in part, on the desired vertical spacing that is desired or required within a specific intervertebral space into which the assembly will be inserted.
  • the implant and endplates can be selected to create and/or maintain a certain distraction or clearance between the adjacent vertebrae.
  • delivering the implant within an intervertebral space provides certain benefits and advantages over prior fusion systems and methods. For example, the need to forcibly advance into the subject is eliminated (e.g., thereby preventing or reducing the likelihood of damage to the subject's vertebral members and other native tissues). Further, the embodiments disclosed herein allow for the implant to be delivered into the targeted location in a more precise, accurate and predictable manner.
  • the predicable and non-abrupt manner in which the implant is delivered between adjacent plates (e.g., endplates) within the target intervertebral space can help ensure that any grafting material that is originally positioned within an interior portion (e.g., the central cavity) of the implant does not unintentionally escape before final implantation.
  • the structural configuration of the alignment members of the guiding assembly and the endplates helps ensure that the graft materials remains within the interior of the implant during and after delivery to the target portion of the subject's anatomy.
  • the non-abrupt manner e.g., moving the implant along rails or recesses of the adjacent alignment members and/or the endplates
  • an impacting force or jolt e.g., as caused by a slap hammer
  • any grafting material placed within one or more interior cavities of the implant prior to implantation will essentially remain within such interior cavities after advancement of the implant to the desired intervertebral space or other anatomical location.
  • the implant can be moved within the guiding assembly 500 (e.g., between upper and lower alignment members 514 , 516 ) and the endplates 2300 for delivery and final implantation within a subject's intervertebral space.
  • the alignment members 514 , 516 and the adjacent endplates 2300 comprises grooves, recesses, rails and/or other guiding members or features 540 , 2310 .
  • such features 540 , 2310 of the alignment members and the endplates are aligned to be continuous or generally continuous when the alignments members are coupled to the endplates.
  • the implant 2200 can include upper and lower protruding members or features 2202 that are shaped, sized and otherwise configured to fit within and move adjacent to the grooves, recesses, rails and/or other guiding members or features 540 , 2310 of the alignment members 514 , 516 and the endplates 2300 .
  • This can help ensure that the implant will maintain proper alignment with the guiding assembly 500 and the endplates, which have been positioned at the targeted intervertebral space, during delivery.
  • undesirable or inadvertent lateral movement of the implant to a location within the subject's anatomy can be eliminated.
  • the implant includes two protruding members or features 2202 along both its top and bottom surfaces.
  • any of the embodiments disclosed herein can be modified to include such members or features 2202 only along the top or bottom of the implant, as desired or required.
  • the number, shape, spacing, orientation and/or other properties or details of the protruding members or features 2202 can be different than disclosed herein.
  • the members or features 2202 along the implant can be recessed relative to adjacent exterior surfaces of the implant.
  • the alignment members of the guiding assembly and the endplates can be differently designed so that they include protruding members or features that are shaped, sized and otherwise configured to engage the recessed members or features 2202 of the implant.
  • the implant 2200 , 2200 ′ and the adjacent endplates 2300 , 2300 ′ can comprise corresponding locking members or features that help ensure that the implant is lockingly (e.g., at least releasably lockingly) secured to the endplates when advanced sufficiently far between the endplates.
  • the endplate 2300 can include a locking feature or member 2308 along one of its lateral sides. Complimentary, as best shown in FIG.
  • the implant 2200 can include a corresponding locking feature or member 2208 that is sized, shaped and otherwise configured to engage and at least temporarily or releasably lock or secure to the feature or member 2308 of the endplate 2300 .
  • the implant 2200 comprises a cavity below or adjacent the locking feature or member 2208 to permit the locking feature or member 2208 to at least partially flex or otherwise move in order to engage with and secure to the corresponding feature or member 2308 of the adjacent endplate 2300 .
  • Such a configuration can help ensure that, once the implant 2200 has been advanced sufficiently far relative to the guiding assembly 500 and the endplates 2300 , the position of the implant can be securely maintained relative to the endplates and the targeted intervertebral space.
  • a tool can be used to disengage the locking member or feature 2208 of the implant 2200 relative to the locking member or feature 2308 of corresponding endplates in order to remove and/or reposition the implant, as desired or required.
  • a tool can be used to move the locking member or feature 2208 of the implant 2200 away (e.g., downwardly or upwardly) from the adjacent endplate 2300 to disengage the corresponding locking members or features, thereby permitted the implant to be retracted relative to the endplate.
  • the upper and lower endplates 2300 that are positioned adjacent the implant 2200 can include an identical design.
  • each endplate 2300 can comprise both a locking member or feature 2208 (e.g., along one side, to engage a corresponding feature or member of the endplate, as discussed above) and a receiving member or feature 2350 (e.g., along the other side, to engage a corresponding feature or member of the implant 2200 ).
  • the locking members or features 2208 and the receiving members or features 2350 can be on opposite lateral ends for the upper and lower endplates 2300 .
  • the endplates can be designed such that the upper and lower endplates 2300 are not identical, and instead, have a mirrored configuration. This can result in having the locking members or features 2208 of the endplates 2300 both along one lateral side of the implant 2200 and the receiving member or features 2350 both on the opposite side of the implant 2200 , as desired or required.
  • any of the disclosed embodiments can include one or more deployable protruding members 2322 (e.g., spikes, teeth, nubs, anchors, etc.) positioned on the upper and lower plates (e.g., endplates) 2300 can be placed along one or more rows on either lateral end of the implant 2200 .
  • deployable protruding members 2322 can be configured to be deployed or expanded away from the adjacent exterior surface of the endplate 2300 . Deployment of such members 2320 can help engage the endplate, and thus the entire implant-endplate assembly, to the adjacent native tissue (e.g., endplates or the portion of the vertebrae). As shown in FIGS.
  • the protruding members 2320 can be adapted to move through corresponding openings 2320 of the endplates 2320 .
  • the protruding members 2320 can comprise one or more rigid or semi-rigid materials, such as, for example, metal or alloy (e.g., nitinol or other shape memory material, titanium, stainless steel, etc.), thermoplastic (e.g., PEEK) and/or the like.
  • metal or alloy e.g., nitinol or other shape memory material, titanium, stainless steel, etc.
  • thermoplastic e.g., PEEK
  • any of the embodiments disclosed herein or equivalents thereof can include one or more (e.g., 2, 3, 4, more than 4, etc.) rows of openings 2320 (e.g., and protruding members 2320 configured to extend therethrough), as desired or required.
  • the tab 532 of the engagement member or feature 530 of the distal end 517 of the alignment member 516 can be raised relative to the adjacent surface of the alignment member (see, e.g., the difference in vertical prominence of the upper surface of the tab (e.g., generally aligned with dashed line 538 ) and the adjacent upper surface of the distal end 517 of the alignment member).
  • the tab 532 can be configured to be downwardly and inwardly (e.g., toward the interior cavity 531 ) of the engagement member or feature 530 when the implant 2200 can be properly and securely positioned relative to the adjacent endplates 2300 .
  • the implant 2200 can move the tab 532 into disengaging contact with the corresponding receiving member or feature 2350 of the endplate 2300 .
  • This can, in some arrangements, permit the alignment members 514 , 516 to automatically (e.g., simultaneously) disengage from the adjacent endplates 2300 , thereby allowing for the alignment members 514 , 516 , and thus the entire guiding assembly 500 , to be separated from the endplates and removed from the subject's anatomy.
  • the endplates 2300 and the implant 2200 can remain within the targeted intervertebral space to facilitate with the fusion of the adjacent vertebrae.
  • the protruding features (e.g., prongs, teeth, anchors, etc.) 2322 on the endplates 2300 can be deployed to advantageously extend and engage at a portion of the adjacent vertebral tissue of the subject (e.g., endplate of the adjacent vertebral member).
  • the protruding members 2322 in the illustrated embodiment are in a single plane or axis on each side of the system, as discussed herein, each side of the system can include additional rows (e.g., 2, 3, 4, 5 rows, more than 5 rows, etc.), as desired or required.
  • the use of the upper and lower endplates 2300 and an implant 2200 can help provide for a more predictable, safe and consistent delivery, and thus implantation of a system and distraction of adjacent vertebral members.
  • one or more screws or other fasteners can be used to further strengthen and reinforce the system.
  • upper and lower screws S can be positioned through openings O of one or both of the plates 300 , 1300 , 2300 and/or the implant 200 , 1200 , 2200 .
  • Such screws can be advanced through one or more cortical structures of the adjacent vertebral members of the subject to provide additional strength and support to the fusion system.
  • one or more washers, plates or other rigid or semi-rigid members P can also be used in conjunction with the screws or other fasteners S.
  • the plate or other member P can include one or more holes or other openings that are sized, shaped, oriented and/or otherwise configured to secure a screw or other fastener therethrough, as desired or required.
  • the plate P is sized, shaped and configured to be flush or substantially flush with adjacent surfaces of the upper and lower vertebrae.
  • any of the embodiments disclosed herein can be modified or otherwise designed to be used along any portion of the spine.
  • the implants, plates (e.g., endplates), guiding assembly and/or any other component or feature can be adapted for use for a thoracic, cervical, lumbar or sacral implant, approach or treatment, as desired or required.
  • any of the embodiments disclosed herein can be modified for use as vertebral body replacement (corpectomy or other procedure involving the removing of all or a part of a vertebral body) and/or any similar or related spinal fusion technique, procedure or technology.
  • the height of the protruding members (e.g., barbs, anchors, tabs, etc.) 322 , 1322 , 2322 and/or other keels or extension members or features of the plates 300 , 1300 , 2300 can comprise a height of about 1 to 5 mm (e.g., 1-1.1, 1.1-1.2, 1.2-1.3, 1.3-1.4, 1.4-1.5, 1.5-1.6, 1.6-1.7, 1.7-.1.8, 1.8-1.9, 1.9-2, 2-2.5, 2.5-3, 3-4, 4-5 mm, heights between the foregoing, etc.).
  • the height of such members or features can be less than 1 mm (e.g., 0-0.1.
  • the protruding members 322 , 1322 , 2322 can comprise Mitek-type anchors and/or similar members or features.
  • the implant 200 , 1200 , 2200 can be rigid or movable.
  • the implant portion 200 , 1200 , 2200 of the system can include a mechanical portion that is configured to articulate, bend and/or otherwise move, as desired or required.
  • the deployment and/or engagement features described herein with respect to the plates and/or implants of spinal fusion systems can be adapted for use with other orthopedic systems and/or applications.
  • one or more protruding members e.g., barbs, anchors, keels, etc.
  • IM rods intramedullary rods
  • IM nails intramedullary nails
  • TKA total knee arthroplasty
  • TKA total knee arthroplasty
  • the portion of the system or device that is configured to engage and/or fuse with native bone or other tissue of a subject can include one or more protruding portions or features to help fixate the device to the subject.
  • One embodiment of an IM rod 2000 having a plurality of such deployable members or features 2010 is schematically illustrated in FIG. 23 .
  • the rod 2000 and/or other orthopedic implant can include an opening through which a member can be placed to selectively expand or otherwise deploy the protruding members 2010 (e.g., through corresponding openings or slots 2004 ).

Abstract

According to some embodiments, a method of inserting a lateral implant within an intervertebral space defined between an upper vertebral member and a lower vertebral member includes creating a lateral passage through a subject in order to provide minimally invasive access to the intervertebral space, at least partially clearing out native tissue of the subject within and/or near the intervertebral space, positioning a base plate within the intervertebral space, wherein the base plate comprise an upper base plate and a lower base plate and advancing an implant between the upper base plate and the lower base plate so that the implant is urged into the intervertebral space and the upper vertebral member is distracted relative to the lower vertebral member.

Description

    PRIORITY AND CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation of U.S. patent application Ser. No. 15/006,009 filed on Jan. 25, 2016, which is a continuation-in-part (CIP) of U.S. patent application Ser. No. 14/774,640 filed on Sep. 10, 2015 and issued on Jan. 9, 2018 as U.S. Pat. No. 9,861,495, which is a U.S. National Phase application of PCT Application No. PCT/US2014/025035 filed on Mar. 12, 2014 and published as PCT Publication No. WO 2014/159762 on Oct. 2, 2014, which claims the priority benefit of U.S. Provisional Patent Application No. 61/786,160, filed on Mar. 14, 2103. U.S. patent application Ser. No. 15/006,009 also claims the priority benefit of U.S. Provisional Patent Application No. 62/107,260, filed on Jan. 23, 2015. The entireties of all of the foregoing applications are incorporated herein and made part of the present application.
  • BACKGROUND Field
  • This application relates generally to devices, systems and methods for the treatment of the spine, and more specifically, to spinal implants and related tools, systems and methods.
  • Description of the Related Art
  • Surgical approaches to the intervertebral space are utilized for a variety of indications and purposes, such as, for example, biopsy (e.g., for evaluation of possible infection, other pathology, etc.), discectomy (e.g., for decompression of nerve roots, to prepare for subsequent fusion procedures, etc.), disc height restoration or deformity correction, disc replacement or repair (e.g., annular repair), discogram, gene therapy and/or other procedures or treatments.
  • Various approaches are currently used to access the interbody or intervertebral space of a patient's thoracic, lumbar and sacral spine. These include anterior approaches (ALIF) (e.g., open, mini-open retroperitoneal, etc.), lateral approaches (e.g., costotranversectomy, extreme lateral, LLIF, etc.), posterolateral approaches (e.g., posterior lumbar interbody fusion (PLIF), transforaminal lumbar interbody fusion (TLIF), etc.) and axial approaches (e.g., axial lumbar interbody fusion). Further, many minimally invasive and percutaneous approaches rely on radiographic landmarks with or without direct view to access a targeted interbody space. In addition, many, if not all, of these currently used approaches require violation of the disc annulus to access the disc space.
  • Fusion surgery of the thoracic, lumbar and sacral spine is often performed for a variety of indications, including degenerative joint disease, deformity, instability and/or the like. Typically, traditional fusion approaches involve relatively large, open incisions performed under direct vision. Minimally invasive surgical techniques and corresponding surgical implants have become more popular in an attempt to reduce morbidity and generally improve outcomes. Multiple variations of percutaneous systems (e.g., pedicle screw and rod systems, facet screw systems, etc.) have been developed. Such systems can allow for instrumentation placement with fluoroscopic guidance (e.g., using radiographically recognizable body landmarks) and/or other imaging technologies. Current fusion techniques, including those that utilize open and minimally invasive approaches, often require direct visualization. However, such techniques typically involve traversing spaces that are occupied by neural elements. Thus, these neural elements need to be retracted or otherwise moved during the execution of spinal procedures that precede implantation (e.g., annulotomy, discectomy, disc space and/or vertebral endplate preparation, etc.). Retraction of sensitive neural elements can also be required during the delivery of an implant to the spine.
  • These approaches typically require contact and retraction of nerve roots and/or sensitive visceral organs, blood vessels and/or other sensitive portions of the anatomy. Contact and retraction of these structures can place them at risk, thereby increasing the likelihood of complications and damage to a patient. Accordingly, a need exists for improved approaches for spinal fusion and/or access to intervertebral spaces.
  • SUMMARY
  • According to some embodiments, a method of inserting an implant within an intervertebral space defined between an upper vertebral member and a lower vertebral member comprises positioning an upper endplate and a lower endplate within the intervertebral space, securing an alignment member of a guiding assembly to each of the upper endplate and the lower endplate, wherein the alignment member is configured to extend from the endplates to an anatomical location away from the endplates, and advancing an implant between the alignment members and between the upper and lower endplates so that the implant is urged into the intervertebral space.
  • According to some embodiments, wherein advancing an implant between the upper and lower endplates comprises using a device (e.g., a mechanical device or a pneumatic device that helps to move the implant between the alignment members and the endplates). In some embodiments, the alignment members are configured to removably engage corresponding portions of the upper and lower endplates while the implant is advanced into the intervertebral space. In one embodiment, the alignment members are configured to release from the endplates when the implant has been properly secured between the endplates.
  • According to some embodiments, advancing the implant between the upper and lower endplates deploys at least one engagement member or feature of at least one of the upper endplate or the lower endplate, wherein the at least one engagement member or feature is configured to engage at least a portion of the an adjacent vertebral member. In some embodiments, the at least one engagement member or feature comprises a tooth, spike or similar member (e.g., bendable metallic member or other rigid, semi-rigid and/or flexible member).
  • According to some embodiments, the implant is configured to be advanced between the alignment members and the upper and lower endplates using a rail system. In some embodiments, the rail system comprises grooves or recesses within the alignment members and the endplates, wherein the rail system comprises protruding members or features along upper and/or lower surfaces of the implant, wherein the protruding members or features are sized, shaped and configured to engage the grooves or recesses of the alignment members and the endplates. In one embodiment, the grooves or recesses of the alignment members are generally aligned with the grooves or recesses of the endplates to permit the protruding members or features of the implant to be continuously engaged with the grooves and recesses during delivery between the upper and lower endplates.
  • According to some embodiments, the implant comprises a generally smooth outer surface. In other embodiments, the implant does not comprise any teeth or other engagement features. In some embodiments, the implant comprises PEEK, titanium, other thermoplastic, other metal or alloy and/or the like. In some arrangements, the upper and lower plates comprise at least one metal or alloy (e.g., titanium, stainless steel, etc.).
  • According to some embodiments, the method further includes securing at least one screw through an opening of the implant after the implant has been properly secured within the intervertebral space. In some embodiments, the at least one screw passes through at least a portion (e.g., openings) of the upper or lower plate. In some embodiments, the at least one screw passes through at least a portion of the upper or lower vertebral member.
  • According to some embodiments, the method further comprises creating a lateral passage through a subject in order to provide minimally invasive access to the intervertebral space. In some embodiments, the method additionally includes clearing out native tissue of the subject within and/or near the intervertebral space.
  • According to some arrangements, the at least one engagement member or feature of the endplates is configured to extend through at least one opening along an upper surface of the upper endplate and/or at least one opening along a lower surface of the lower endplate. According to some embodiments, the upper and/or lower endplate comprises a textured or porous surface adjacent the native anatomical tissue of a subject after implantation.
  • According to some embodiments, the implant is configured to lockingly engage the upper and lower endplates when the implant has been properly advanced relative to the endplates. In some embodiments, the locking engagement between the implant the endplates is configured to be selectively released if the implant needs to be removed or repositioned.
  • According to some embodiments, securing the alignment member to each of an upper or lower endplate comprises moving a distal portion of the alignment member within a central portion of the upper or lower endplate. In one embodiment, the alignment member comprises at least one flange or other protruding portion that is configured to engage and slide relative to at least one recess or groove of the upper or lower endplate. In some embodiments, the method further includes securing an engagement member or feature of the alignment member to a corresponding receiving member or feature of the upper or lower endplate. In some embodiments, the engagement member or features comprises a resilient tab. In one embodiment, the resilient tab comprises a sloped surface that is configured to be contacted and moved inwardly.
  • According to some embodiments, a spinal fusion system comprises an endplate system configured for placement within an intervertebral space of a subject, wherein the endplate system comprises an upper endplate and a lower endplate, and an implant configured to be advanced and positioned between the upper endplate and the lower endplate to secure the implant within the intervertebral space, wherein, when the implant is advanced between the upper endplate and the lower endplate, the upper endplates engage the upper vertebral member, and the lower endplate engages the lower vertebral member, and wherein, upon advancement of the implant between the upper and lower endplates, the upper vertebral member is distracted relative to the lower vertebral member.
  • According to some embodiments, the system further comprises a guiding assembly comprising upper and lower alignment members, wherein the upper alignment member is configured to removably couple to the upper endplate, and wherein the lower alignment member is configured to removably couple to the lower endplate. In some embodiments, at least one of the upper endplate and the lower endplate comprises at least one engagement member configured to engage a portion of the adjacent vertebral member when the implant has been advanced between the upper and lower endplates. In one embodiment, the at least one engagement member comprises a tooth, spike or barb.
  • According to some embodiments, the implant is configured to be advanced between the upper and lower endplates using a rail system. In one embodiment, the rail system comprises at least one protruding member or feature on the implant and at least one corresponding groove or recess on the upper endplate or lower endplate, wherein the at least one protruding member or feature is configured to slidably move within the at least one corresponding groove or recess on the upper endplate or lower endplate. In some embodiments, the rail system comprises at least one groove or recess on the implant and at least one corresponding protruding member or feature on the upper endplate or lower endplate, wherein the at least one protruding member or feature is configured to slidably move within the at least one corresponding groove or recess.
  • According to some embodiments, the implant comprises a generally smooth outer surface. In other embodiments, the implant does not comprise any teeth or other engagement features. In some embodiments, the implant comprises PEEK, titanium, other thermoplastic, other metal or alloy and/or the like. In some arrangements, the upper and lower plates comprise at least one metal or alloy (e.g., titanium, stainless steel, etc.).
  • According to some embodiments, the system further comprises at least one screw through an opening of the implant after the implant has been properly secured within the intervertebral space. In some embodiments, the at least one screw passes through at least a portion (e.g., one or more openings) of the upper or lower endplate. In some embodiments, the system further comprises a plate positioned adjacent the implant and the endplates, wherein the screw is configured to pass through an opening of the plate. In some embodiments, the at least one screw passes through at least a portion of the upper or lower vertebral member.
  • According to some embodiments, a method of inserting an implant within an intervertebral space defined between an upper vertebral member and a lower vertebral member comprises positioning a plate system within the intervertebral space, wherein the plate system comprises an upper plate and a lower plate, and advancing an implant between the upper plate and the lower plate so that the implant is urged into the intervertebral space, the upper plate engages the upper vertebral member, and the lower plate engages the lower vertebral member, wherein upon advancement of the implant between the upper and lower plates, the upper vertebral member is distracted relative to the lower vertebral member.
  • According to some embodiments, advancing an implant between the upper and lower base plates comprises using a device or tool (e.g., mechanical tool, pneumatic tool, etc.). In one embodiment, advancing the implant between the upper plate and the lower plate comprises advancing the implant at least partially through a guiding assembly (e.g., between upper and lower members of the assembly). In one embodiment, the guiding assembly is removably secured and/or aligned with the upper and lower plates.
  • According to some embodiments, the guiding assembly comprises upper and lower guiding members or plates, wherein the upper and lower guiding members or plates are configured to removably engage corresponding portions of the upper and lower plates when the implant is advanced into the intervertebral space. In some embodiments, advancing the implant between the upper and lower plates deploys at least one engagement member or feature of at least one of the upper plate or the lower plate, wherein the at least one engagement member or feature is configured to engage at least a portion of the an adjacent vertebral member. In some embodiments, the at least one engagement member or feature comprises a tooth, spike, barb and/or the like.
  • According to some embodiments, the implant is configured to be advanced between the upper and lower plates using a rail system. In one embodiment, the rail system comprises at least one protruding member or feature on the implant and at least one corresponding groove or recess on the upper plate or lower plate, wherein the at least one protruding member or feature is configured to (e.g., slidably or otherwise) move within the at least one corresponding groove or recess on the upper plate or lower plate. In some embodiments, the rail system comprises at least one groove or recess on the implant and at least one corresponding protruding member or feature on the upper plate or lower plate, wherein the at least one protruding member or feature is configured to (e.g., slidably or otherwise) move within the at least one corresponding groove or recess.
  • According to some embodiments, the implant comprises a generally smooth outer surface. In some embodiments, the implant does not comprise any teeth or other engagement features. In some embodiments, the implant comprises PEEK, stainless steel, titanium, other metals or alloys, other polymeric materials and/or the like.
  • According to some embodiments, the upper and lower plates comprise at least one metal or alloy and/or a polymeric material (e.g., PEEK). In some embodiments, the at least one metal or alloy comprises titanium, stainless steel and/or any other medical grade metal or alloy. In some embodiments, the lower plate and/or the upper plate is bead-blasted or is otherwise at least partially roughened (e.g., along one or more surfaces that are configured to contact and engage native vertebral tissue of the subject). In some embodiments, the lower plate and/or the upper plate comprises an ingrowth surface (e.g., along one or more surfaces that are configured to contact and engage native vertebral tissue of the subject).
  • According to some embodiments, the method further comprises securing at least one screw or other fastener through an opening of the implant (and/or an adjacent plate, washer or other member) after the implant has been properly secured within the intervertebral space. In some embodiments, the at least one screw passes through at least a portion of the upper or lower plate. In some embodiments, the at least one screw passes through at least a portion of the upper or lower vertebral member (and/or an adjacent plate, washer or other member).
  • According to some embodiments, the method further comprises creating a passage (e.g., lateral passage) through a subject in order to provide minimally invasive access to the intervertebral space. In one embodiment, the method further comprises clearing out native tissue of the subject within and/or near the intervertebral space (e.g., using one or more rasps and/or other native tissue removal tools or methods).
  • According to some embodiments, a spinal fusion system comprises a plate system configured for placement within an intervertebral space of a subject, wherein the plate system comprises an upper plate and a lower plate, an implant configured to be advanced and positioned between the upper plate and the lower plate to secure the implant within the intervertebral space, wherein, when the implant is advanced between the upper plate and the lower plate, the upper plates engages the upper vertebral member, and the lower plate engages the lower vertebral member, and wherein, upon advancement of the implant between the upper and lower plates, the upper vertebral member is distracted relative to the lower vertebral member.
  • According to some embodiments, the system additionally comprises a guiding assembly having upper and lower slides, wherein the upper slide is configured to removably couple to the upper plate, and wherein the lower slide is configured to removably couple to the lower plate. In one embodiment, the upper plate and/or the lower plate comprises at least one engagement member (e.g., tooth, spike, barb, etc.) configured to engage a portion of the adjacent vertebral member when the implant has been advanced between the upper and lower plates.
  • According to some embodiments, the implant is configured to be advanced between the upper and lower plates using a rail system. In one embodiment, the rail system comprises at least one protruding member or feature on the implant and at least one corresponding groove or recess on the upper plate or lower plate, wherein the at least one protruding member or feature is configured to slidably move within the at least one corresponding groove or recess on the upper plate or lower plate. In some embodiments, the rail system comprises at least one groove or recess on the implant and at least one corresponding protruding member or feature on the upper plate or lower plate, wherein the at least one protruding member or feature is configured to slidably move within the at least one corresponding groove or recess.
  • According to some embodiments, the implant comprises a generally smooth outer surface. In one embodiment, the implant does not comprise any teeth or other engagement features. In some embodiments, the implant comprises PEEK, titanium and/or any other metal, alloy and/or polymeric material. In one embodiment, the upper and lower plates comprise at least one metal (e.g., titanium, stainless steel, etc.), alloy and or polymeric material (e.g., PEEK).
  • According to some embodiments, the system further comprises at least one screw or other fastener, the screw or fastener being configured to be secured through an opening of the implant after the implant has been properly secured within the intervertebral space. In one embodiment, the at least one screw passes through at least a portion of the upper or lower plate. In some embodiments, the screw passes through at least a portion of the upper or lower vertebral member.
  • According to some embodiments, a method of inserting a lateral implant within an intervertebral space defined between an upper vertebral member and a lower vertebral member includes creating a lateral passage through a subject in order to provide minimally invasive access to the intervertebral space, at least partially clearing out native tissue of the subject within and/or near the intervertebral space, positioning a base plate within the intervertebral space, wherein the base plate comprise an upper base plate and a lower base plate and advancing an implant between the upper base plate and the lower base plate so that the implant is urged into the intervertebral space and the upper vertebral member is distracted relative to the lower vertebral member.
  • According to some embodiments, advancing an implant between the upper and lower base plates comprises using a mechanical device (e.g., a threaded-system using a rotatable handle to advance a rod or other actuator, manual or mechanically-assisted device, etc.). In some embodiments, the implant comprises at least one groove and at least one of the upper base plate member and the lower base plate member comprises at least one protruding feature, the at least one groove being configured to align and move relative to the at least one protruding feature. In some embodiments, the implant is delivered through the base plate using a rail or other alignment system. In some embodiments, the implant comprises at least one of PEEK, titanium and/or the like. In some embodiments, the base plate comprises titanium, stainless steel or another medically-acceptable metal or alloy.
  • According to some embodiments, the method further includes securing at least one screw (e.g., 1, 2, 3, 4, more than 4, etc.) through an opening of the implant after the implant has been properly secured within the intervertebral space. In one embodiment, the screw also passes through at least a portion of the upper or lower base plate member and/or the upper or lower vertebra.
  • The methods summarized above and set forth in further detail below describe certain actions taken by a practitioner; however, it should be understood that they can also include the instruction of those actions by another party. Thus, actions such as “advancing an implant” include “instructing advancing an implant.”
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • These and other features, aspects and advantages of the present application are described with reference to drawings of certain embodiments, which are intended to illustrate, but not to limit, the present inventions. It is to be understood that these drawings are for the purpose of illustrating the various concepts disclosed herein and may not be to scale.
  • FIG. 1 schematically illustrates one embodiment of a spinal implant system with the implant not positioned within the target intervertebral space;
  • FIG. 2 illustrates the system of FIG. 1 with the implant positioned between the base plate members and implanted within the intervertebral space;
  • FIGS. 3A and 3B illustrate various views of a base plate of an implant system according to one embodiment;
  • FIG. 4 illustrates a side view of a spinal implant system according to one embodiment;
  • FIGS. 5A-5C illustrate various views of one embodiment of a base plate for use in a spinal implant system;
  • FIGS. 6A and 6B illustrate various views of one embodiment of an implant configured for use in a spinal implant system;
  • FIG. 7A illustrates one embodiment of a base plate configured for use in a spinal implant system;
  • FIG. 7B illustrates one embodiment of an implant configured to be used together with the base plate of FIG. 7A;
  • FIGS. 8A-8C illustrate various time-sequential side views during a spinal implant procedure according to one embodiment;
  • FIGS. 9A-9D illustrate different views of a fusion system according to one embodiment;
  • FIGS. 10A and 10B illustrate different views of one embodiment of an implant configured for use with a spinal fusion system;
  • FIG. 11 illustrates a partial cross-sectional view of an implant positioned within a guiding assembly and upper and lower plates, according to one embodiment;
  • FIG. 12 illustrates a perspective view of one embodiment of an implant secured between upper and lower plates of a fusion system;
  • FIG. 13 illustrates a perspective view of one embodiment of an implant secured between upper and lower plates of a fusion system reinforced by two screws;
  • FIG. 14 illustrates a schematic top view of a portion of a guiding assembly and a corresponding plate configured for use with a spinal fusion system according to one embodiment;
  • FIG. 15 schematically illustrates top views of different types of implants that can be used with the fusion system embodiments disclosed herein;
  • FIG. 16 illustrates a perspective view of one embodiment of a spinal fusion system comprising an implant positioned between adjacent plates;
  • FIG. 17 illustrates the spinal fusion system of FIG. 16 with a guiding assembly used to position the system within a targeted intervertebral space being withdrawn from the system, according to one embodiment;
  • FIG. 18 illustrates a cross-sectional view of the spinal fusion system of FIGS. 16 and 17 after positioning and deployment within a subject's intervertebral space;
  • FIG. 19 illustrates a top view of the system of FIGS. 16 and 17;
  • FIG. 20 illustrates a side view of the system of FIGS. 16 and 17 with the spinal implant being advanced between the adjacent plates to deploy the teeth or other engagement members, according to one embodiment;
  • FIG. 21 illustrates a side view of the system of FIG. 20, wherein the implant has been fully advanced between the adjacent plates, according to one embodiment;
  • FIG. 22 schematically illustrates a side view of an implant system comprising one or more keels or other extension members, according to one embodiment;
  • FIG. 23 schematically illustrates an orthopedic rod having a plurality of deployable members according to one embodiment;
  • FIG. 24A illustrates a top perspective view of an implant and adjacent plates according to one embodiment;
  • FIG. 24B illustrates a bottom perspective view of the implant and plates of FIG. 24A;
  • FIGS. 25A-25F illustrate different views of the implant and plates of FIGS. 24A and 24B;
  • FIG. 26 illustrates an exploded perspective view of the implant and plates of FIGS. 24A and 24B;
  • FIGS. 27A and 27B illustrates different perspective views of another embodiment of an implant and adjacent plates;
  • FIG. 28 illustrates a perspective view of an implant and adjacent endplates secured to a guiding assembly according to one embodiment;
  • FIG. 29 illustrates a perspective view of an alignment component of a guiding assembly according to one embodiment;
  • FIG. 30 illustrates a perspective view of a bottom plate (e.g., a bottom endplate) according to one embodiment;
  • FIG. 31A illustrates a top view of the alignment component of FIG. 29;
  • FIG. 31B illustrates a side view of the alignment component of FIG. 29; and
  • FIG. 32 illustrates a perspective view of one embodiment of an implant secured between upper and lower plates of a fusion system and comprising a plate and screws.
  • DETAILED DESCRIPTION
  • A variety of examples described below illustrate various configurations that may be employed to achieve desired improvements. The particular embodiments and examples are only illustrative and not intended in any way to restrict the general concepts presented herein and the various aspects and features of such concepts.
  • According to some embodiments, the present application discloses various devices, systems and methods for accessing the intervertebral or interbody space of a patient's spine and/or performing certain procedures related to spinal fusion using minimally invasive surgery (MIS) techniques. As discussed in greater detail herein, the intervertebral or interbody space of the targeted portion of the patient's spine is accessed and/or treated minimally invasively using, at least in some embodiments, a lateral approach. The terms “intervertebral space” and “interbody space” are used interchangeably herein, and generally refer to the space, gap or region between adjacent vertebral members. By way of example, as illustrated in FIG. 1, the intervertebral space 14 between adjacent vertebrae 10, 12 can be accessed using one or more lateral openings or passages created laterally through the subject's anatomy (e.g., using one or more access device, such as, retractors, dilators, etc.). In some embodiments, such openings or passages are created, accessed and/or otherwise use using MIS techniques or procedures. The various devices, systems and methods disclosed herein, and variations thereof can be applied to any type of spinal implant, including, but not limited to, a lateral interbody fusion implant, a transforaminal lumbar interbody fusion (TLIF) implant, an oblique TLIF implant, a posterior lumbar interbody fusion (PLIF) implant, an anterior lumbar interbody fusion (ALIF) implant and/or the like. Accordingly, the various embodiments disclosed herein can be in a variety of MIS or non-MIS approaches, including, without limitation, lateral, TLIF, posterior, ALIF and/or the like.
  • Further, any of the embodiments disclosed herein can be modified or otherwise designed to be used along any portion of the spine. For example, the implants, plates (e.g., endplates), guiding assembly and/or any other component or feature can be adapted for use for a thoracic, cervical, lumbar or sacral implant, approach or treatment, as desired or required. Further, any of the embodiments disclosed herein can be modified for use as vertebral body replacement (corpectomy or other procedure involving the removing of all or a part of a vertebral body) and/or any similar or related spinal fusion technique, procedure or technology. Further, although the various devices, systems and/or methods described herein have specific applicability to the spine and spinal fusion procedures, such embodiments can be used (e.g., in the disclosed form or a modified form) for the delivery of any other member between adjacent plates, either within a subject or in another context, as desired or required.
  • FIG. 1 schematically illustrates one embodiment of a spinal fusion or stabilization system 50. As shown, the system 50 can include upper and lower plates (e.g., endplate members) 300 or other members that are positioned along the endplates of the upper and lower vertebral members 10, 12. In some embodiments, the plates 300 generally extend across the entire or substantially the entire width of the vertebrae 10, 12. In some embodiments, the plates 300 are the same length or substantially the same length as the spinal implant 200 that will be delivered between the plates 300 and into the intervertebral space 14. For example, the plates 300 and/or the implant 200 can be approximately 40 to 60 mm long (e.g., 40, 45, 50, 55, 60 mm, lengths between the foregoing ranges, etc.). In other embodiments, however, the length of the implant is greater than 60 mm or less than 40 mm, as desired or required.
  • According to some embodiments, the upper and lower plates comprise at least one metal or alloy and/or a polymeric material (e.g., PEEK). In some embodiments, the at least one metal or alloy comprises titanium, stainless steel and/or any other medical grade metal or alloy. In some embodiments, the lower plate and/or the upper plate is bead-blasted or is otherwise at least partially roughened (e.g., along one or more surfaces that are configured to contact and engage native vertebral tissue of the subject). In some embodiments, the lower plate and/or the upper plate comprises an ingrowth surface (e.g., along one or more surfaces that are configured to contact and engage native vertebral tissue of the subject). In some arrangements, such a configuration can assist to prevent movement between the plate and the vertebral body.
  • In some embodiments, as illustrated in FIG. 9A, each of the upper and lower plates 300 comprises at least one central opening O that can at least partially align with and provide access to (e.g., from a space generally between the upper and lower plates) to native tissue of the adjacent vertebral members V1, V2 of the subject.
  • In some embodiments, once the plates (e.g., endplate members) 300 have been properly positioned within the target intervertebral space 14, the implant 200 can be delivered (e.g., laterally) between the upper and lower plates or other members 300. The delivery of the implant 200 between the plates 300 can be performed with or without the use of a mechanical delivery tool (e.g., by using a threaded delivery device or other device providing for mechanical advantage, etc.). Regardless of the exact manner in which the implant 200 is advanced into the intervertebral space 14 between the upper and lower plates 300, the upper and lower plates 300 can provide one or more advantages or benefits. For example, the use of the plates 300 can help distribute forces and moments along a larger surface area. This is generally illustrated by the schematic force distribution diagram F in FIG. 2. Accordingly, the likelihood of potentially damaging localized forces, moments and/or other stresses on a particular portion or area of the adjacent vertebrae 10, 12 can be reduced or eliminated. The risk of damage to bone and/or other native tissues to the subject during a fusion procedure can be further reduced by advancing the implant 200, and thus separating the upper and lower plates 300 in a more predictable, gentler manner (e.g., as opposed to traditional methods of using great force to position an implant within a target intervertebral space).
  • Further, in some embodiments, the use of the upper and lower plates 300 can facilitate the delivery of the implant 200 within the target interbody space with greater ease and less resistance. As a result, the endplates and other portions of the adjacent vertebrae 10, 12 can be protected against shearing, fractures and/or other damage. This can be especially important when the implant 100 causes distraction (e.g., separation or opening) of a collapsed or partially collapsed interbody space 14, as represented by the arrows 16 in FIG. 2.
  • As discussed herein, one or both sides of the upper and/or lower plates can include spikes, teeth, other protruding members and/or other engagement features. For example, if such engagement features are positioned along the top of the upper plate or the bottom of the lower plate, the engagement features can be advanced into the adjacent endplate(s) as the implant 200 is moved between the plates 300. This can help secure the plates to the adjacent vertebrae 10, 12. In some embodiments, engagement features can be positioned along the opposite surfaces of the plates (e.g., along the bottom of the upper plate and/or along the top of the lower plate). Such engagement features can help prevent or reduce the likelihood of relative movement between the implant 200 and the plates 300 following implantation. In other embodiments, as discussed in greater detail herein with reference to, e.g., FIGS. 9A to 12, the implant 200 and the adjacent surfaces of the upper and lower plates 300 can include recesses, protrusions, other components of a “rail” system and/or any other feature to help maintain a particular orientation between the plates and the implant during use and/or after implantation, to help prevent or reduce the likelihood of any undesirable relative movement between the plates and the implant during use and/or after implantation and/or the like. Thus, the plates and/or the implant can include one or more other features, such as, for example, rails or guiding members (e.g., to assist in moving the implant more easily and more predictably between the plates), tabs or other portions configured to receive one or more screws or other fasteners (e.g., to further secure the system 100 to the spine after delivery into the intervertebral space) and/or the like.
  • FIGS. 3A and 3B illustrate different views of one embodiment of upper and lower plates (e.g., base plates or endplate members) 300 configured for use in a spinal fusion system. As shown, the base plates 300 can include upper and lower plates 310, 314. The base plates 300 can be shaped, sized and configured to span across an entire width of the subject's vertebrae 10, 12. As discussed herein, the upper and/or lower plates can include one or more openings to provide access to the adjacent native vertebral surfaces of the subject after implantation. In some embodiments, the base plates 300 extend beyond one or more side of the vertebral periphery or do not extend to the lateral edge of the vertebrae (e.g., are short by a certain clearance distance from one or more lateral edges of the vertebrae). In some embodiments, where the plates 300 extend beyond a perimeter of the upper and/or lower vertebrae, a portion of the plate 300 can be configured to be removed or manipulated after implantation. For example, in some embodiments, in such a configuration, a protruding portion of the plate can be folded or bent (e.g., either upwardly or downwardly) to move the folded or bent portion either toward or away from the intervertebral space. In some embodiments, such a bent or folded portion can include one or more openings or other holes that can be used to place a bone screw of other fastener therethrough (e.g., to secure that portion of the plate to an adjacent vertebral member, to another bent or folded plate used in a fusion system, to a separate washer or other plate member and/or the like.
  • As shown in FIG. 3A, the plate members 310, 314 can include one or more protruding members (e.g., teeth, rails, other engagement members or features, etc.) 320 that extend toward each other (e.g., toward the intervertebral space). Such protruding members can be fixed or movable. For example, in some embodiments, the protruding members 320 are deployable (e.g., before, during or after advancement of an implant between the base plates 300). In other embodiments, plate members 300 can include teeth, protruding members or other engagement features or devices along their opposite surfaces (e.g., along the top of the upper plate, along the bottom of the lower plate, etc.), either in lieu of or in addition to having inwardly-directed protruding members. As discussed in greater detail herein, outwardly-projecting protruding members 320 on the plates (e.g., FIG. 9A) can help secure the plates to the adjacent surfaces of the upper and lower vertebral members of the subject being treated. This can advantageously provide one or more clinical benefits, such as, for example, the preservation of long-term implantation (e.g., reducing the likelihood of dislodgement or movements of the implant system within the target intervertebral space following implantation).
  • With continued reference to FIG. 3A, a system can include a guiding assembly 500 that can be strategically positioned along one of the lateral ends of the targeted intervertebral space. The guiding assembly 500 can include an alignment device 510 that may comprise one or more alignment components 514, 516. Regardless of its exact configuration and design, the alignment device 510 can advantageously permit a surgeon or other practitioner to accurately position the guiding assembly 500 for the subsequent delivery of an implant therethrough and between the base plates 300. As discussed in greater detail herein, the guiding assembly 500 can include upper and lower alignment members or slide members 514, 516, which are generally aligned with the upper and lower plates 300. In some embodiments, each alignment member 514, 516 can be configured to removably attach to the corresponding plate 300 to help advance and position the plates 300 within the targeted intervertebral space (e.g., minimally invasively). In some embodiments, the distal ends of the alignment members or slides 514, 516 can be configured to be slidably received within slots, recesses or other portions of the plates 300. Thus, the guiding assembly 500 can be temporarily coupled to the plates when the plates are being advanced into the intervertebral space and when the implant is subsequently delivered between the plates (e.g., as discussed in greater detail below). However, in some embodiments, once the implant 200 has been properly advanced between the plates and the implant system has been adequately secured between the adjacent vertebrae, the alignment members or slides 514, 516 can be easily retracted (e.g., rearwardly or proximally) relative to the plates and implant for removal from the subject's anatomy and completion of the fusion procedure.
  • With continued reference to FIG. 3A, the alignment members or components 514, 516 and/or one or more other portions or components of the assembly can include a flange or other abutment or securement portion 518. Such a flange 518 can be fixedly or movable positioned along the adjacent vertebrae 10, 12 of the subject to ensure proper alignment into the targeted intervertebral space. In other arrangements, as noted herein, the alignment members and other components of the guiding assembly are configured to completely decouple from the plates and the implant after implant has been properly delivered into the target intervertebral space.
  • As illustrated in FIG. 4, an implant 200 can be delivered between the plates 300 and into the intervertebral space using a mechanical advancement device. Therefore, in some embodiments, the guiding assembly 500 can advantageously comprise a mechanical advancement device or feature. For example, in FIG. 4, the guiding assembly comprises a threaded delivery portion that is configured to advance an implant 200 between the base plate members 310, 314 by turning a rotatable handle or other advancement tool. As a user rotates the handle 520, a rod 522 or other actuator is moved forwardly (e.g., distally) in the direction of the implant 200. The implant 200 can be directly or indirectly coupled to the actuator 522 via one or more coupling or other detachable connections 526, as desired or required. As the rod is advanced distally, the implant (e.g., lateral cage) can be guided between the base plate members 310, 314 and into the intervertebral space. Consequently, the base plate members 310, 314 separate and are urged toward the adjacent endplates of the vertebrae. In some embodiments, as illustrated schematically in FIG. 4, the implant can include a taper (e.g., bullet design) along its distal end to facilitate initial entry and subsequent distraction and separation of the base plate 300.
  • In other embodiments, one or more other devices can be used to help advance the implant between the plates. For example, a pneumatic tool (e.g., air or liquid driven tool) can be used to apply the required force on the implant to move it into position. Any other type of user-assisting device or system can be used to help advance the implant between the plates, such as, for example, other types of mechanical devices, electromechanical devices, motorized devices, pumps and/or the like.
  • With continued reference to FIG. 4, the guiding assembly 500 can include one or more structures 510 that help ensure that the implant stays within the guiding assembly 500 and maintains its alignment with the intervertebral space during advancement between the plates. Such structure 510 can, for example, help reduce any deflection or misdirection of the implant's leading end during distal delivery to the intervertebral space, especially when relatively high forces are being exerted on the implant (e.g., that may otherwise cause the implant to move out of alignment with the base plates). In some embodiments, the implant 200, the base plates 300 and/or any other portion of the system can include rails or other alignment features that further help maintain a proper alignment of the implant during advancement between a subject's vertebrae. As discussed in greater detail herein, the guiding assembly can include alignment members (e.g., slides) 514, 516 that removably secure to the plates 300 and provide a reliable and predictable path for advancement of the implant within the intervertebral space. In some embodiments, such slides 514, 516 can be subsequently removed and decoupled or separated (e.g., slidably, mechanically, etc.) from the plates 300.
  • FIGS. 5A-5C illustrate various views of a different embodiment of a system comprising base plates 300 for receiving a spinal implant. As shown, an alignment device 510′ can be positioned relative to one or more of the adjacent vertebrae 10, 12 and subsequently secured thereto using additional fasteners or other connection devices or methods. For example, one or more screws S or other fasteners can be used to secure one or more portions of the alignment device to the upper and/or lower vertebral members of the subject. In some embodiments, the alignment devices 510′ comprise one or more flanges or plates P through which the screws S or other fasteners can be placed. Once the alignment device 510′ has been secured to the subject, the implant can be delivered between the base plate members 310, 314. The alignment device 510′, base plate 300 and/or other portions of the system can be left in place after the implant has been secured between the subject's vertebrae. In other embodiments, however, one or more components of the system (e.g., base plate 300, screws, etc.) can be left in place after implantation, and in some instances, may help reinforce or otherwise benefit the treated area.
  • One embodiment of an implant 200 that can be used with the spinal fusion systems disclosed herein is illustrated in FIGS. 6A and 6B. As best shown in the top view of FIG. 6B, the implant 200 can include one or more open regions or chambers 210 for holding a grafting material. In addition, the implant can include one or more grooves 220 or other recesses along its anterior and/or posterior walls. In some embodiments, such grooves 220 or other features can align and mate with corresponding rails, protrusions or features of the base plate 300. Accordingly, the grooves, rails and/or other features can help safely, accurately and predictably move the implant 200 into the target intervertebral space (e.g., between adjacent base plate members). In other embodiments, however, the rail system between the implant 200 and the adjacent plates 300 can be reversed. For example, as illustrated in the embodiments of FIGS. 9A to 16, the implant can include one or more protruding or raised portions that generally align and correspond to grooves or recesses along the adjacent surfaces of the plates 300. Regardless of the exact orientation and design of the rail system, such a system can help ensure that an implant is accurately and safely delivered to a target intervertebral space.
  • In some embodiments, the implants disclosed herein comprise PEEK, titanium or other acceptable materials. For example, in some embodiments, the implant 200 comprises a metal edge plate or other surface or feature 226 through which one or more screws (not shown in FIGS. 6A and 6B) can be subsequently delivered to secure the implant 200 to one or more of the subject's vertebrae. In some arrangements, the plate 226, which can be positioned along the proximal end of the implant 200, comprises titanium or other acceptable metal or alloy and/or other rigid or semi-rigid material.
  • FIG. 7A illustrates a side view of one embodiment of a base plate 300 comprising upper and lower plate members 310, 314. As shown, the base plate members 310, 314 can include one or more protruding members 320. Such protruding members 320 can include tabs, bumps, spikes, teeth, grasping members, engagement members, other sharp, smooth and/or rounded features or members and/or the like. In some embodiments, the protruding members 310, 314 can be fixed (e.g., non-movable, non-deployable, etc.) and/or movable (e.g., selectively retractable, deployable, etc.). For example, in some embodiments, the protruding members 320 of the upper and/or lower plate members 310, 314 are deployable using a mechanical connection, a temperature change and/or using some other mechanism of action, device or method. In some embodiments, such protruding members 320 can help engage the plates 300 to the implant 200. In other embodiments, however, the protruding members 320 can be configured to reverse their orientation (e.g., in a direction away from the interior of the intervertebral space or toward the adjacent vertebral member) when the implant is advanced over the protruding members during implantation. Therefore, in some embodiments, as the implant is advanced between the plates 300, the protruding members 320 can deform or otherwise change orientation so as to engage the upper and lower vertebral members. This can provide positive engagement of the plates into the adjacent vertebrae, which may, in some circumstances, result in a more secure implantation of the system within the subject.
  • FIG. 7B illustrates a top view of one embodiment of an implant 200 that is configured to be used with the base plate 300 of FIG. 7A. Specifically, as shown, the implant 200 can include one or more grooves, holes, recesses or other openings 240 that are shaped, sized and otherwise configured to receive corresponding protruding members 320 of the base plate 300. As discussed in greater detail herein, in other arrangements (e.g., FIG. 9A), an implant 200 can include one or more protruding members or features that are sized, shaped and otherwise configured to engage and move within grooves or corresponding recesses of the adjacent plates 300.
  • With continued reference to FIG. 7B, the protruding members 320′ of the base plate 300 can include a curved leading edge to permit the groove 240 of the implant 200 to only temporarily engage the member 320′ as the implant is advanced into the target intervertebral space. Thus, the protruding members can sequentially engage and disengage a groove on the implant (e.g., in a ratcheting manner). In some embodiments, the implant can only be permitted to be advanced in one direction (e.g., distally). Such an embodiment can be helpful when using base plates 300 that have fixed protruding members 320. In embodiments comprising deployable protruding members, the need for such ratcheting system (e.g., that permits movement in at least one direction) may not be needed, as the protruding members 320 can be selectively deployed only when the implant is properly positioned between the base plate members.
  • In some embodiments, the use of protruding members and corresponding grooves or other recesses can help with guiding an implant 200 between adjacent base plate members (e.g. during delivery). Such embodiments can also assist in securely maintaining the implant in its implanted position following the delivery of the implant in the target intervertebral space.
  • As illustrated schematically in FIGS. 8A-8C, a lateral implant device in accordance with the various embodiments disclosed herein, can be delivered to the target intervertebral space minimally invasively (e.g., through one or more tissue dilators, cannulas or other openings). As discussed in greater detail herein, once the plates 300 have been properly positioned between the subject's vertebrae 10, 12, a guiding assembly 500 can be positioned through a dilator or other access device and in general alignment with the targeted intervertebral space. The implant can be advanced using a mechanical device (as illustrated in FIG. 8A), manually and/or using some other method or device. Further, the implant and base plate can include one or more features or members (e.g., rails, grooves, etc.) to assist in accurately moving the implant in the desired anatomical location of the subject's spine. Once the implant has been advanced between the base plate members 310, 314 and properly within the intervertebral space, the guiding assembly 500 can be removed.
  • With reference to FIG. 8B, in some embodiments, a screwdriver or other mechanical device 600 can be delivered through a dilator, cannula or other access device C to engage and advance one or more screws S or other fasteners through corresponding openings along the proximal end of the implant 200. In some embodiments, the use of such fasteners can assist with maintaining the position of the implant 200 relative to the subject's spine following implantation, as shown in FIG. 8C. The screws S can be routed through the implant, the base plate and/or the vertebra, as desired or required. However, in other embodiments, the use of screws S or other fasteners is not needed or required to maintain the implanted implant between the base plate members and the adjacent vertebrae. In some embodiments, a total of four fixation screws are positioned through the proximal end of the implanted implant (e.g., two above and two below). In some embodiments, the screws or other fasteners can be passed through openings of one or more plates or washers that at least partially cover or otherwise shield the intervertebral space, provide additional structural support and/or provide one or more other benefits or advantages. In other embodiments, more or fewer screws or other fasteners can be used, as desired or required.
  • In order to remove disk material, cartilage, endplate or other vertebral tissue and/or native tissue of a subject during an implantation procedure, a surgeon or other practitioner can use any of the rasping or other tissue cutting devices and methods disclosed in U.S. patent application Ser. No. 13/422,816, titled TRANSPEDICULAR ACCESS TO INTERVERTEBRAL SPACES AND RELATED SPINAL FUSION SYSTEMS AND METHODS, filed Mar. 16, 2012 and published as U.S. Publ. No. 2012/0265250 on Oct. 18, 2012, and U.S. Provisional Patent Application No. 61/783,839, titled DEVICES AND METHODS FOR TRANSPEDICULAR STABILIZATION OF THE SPINE and filed on Mar. 14, 2013, the entireties of both of which are hereby incorporated by reference herein and made a part of the present application.
  • FIGS. 9A-9D illustrate different views of another embodiment of a spinal fusion system 100. As discussed above with reference to other arrangements, the system 100 can include upper and lower plates 300 that are sized, shaped and otherwise configured to be positioned between the adjacent vertebral members V1, V2 where fusion is targeted. The system 100 further comprises a guiding assembly 500. In some embodiments, as discussed above, the alignment members (e.g., slides) 514, 516 of the guiding assembly 500 are configured to releasably secure or otherwise temporarily engage to or with the plates 300. Accordingly, the plate-slide assembly can be placed within the subject and advanced to the target intervertebral space. For example, in some embodiments, one or more distal portions of the alignment members or slides 514, 516 can releasably attach to and/or slide within adjacent portion(s) of the plates 300. In other embodiments, such as the system 100A illustrated in FIG. 14, one or both of the slides 514A, 516A comprise an extension portion 518A that extends into the targeted intervertebral space and provides a surface over which the implant can move when the implant is advanced in the vicinity of the vertebral members. The use of such extension portion 518A can help maintain the graft material within the interior chambers of the implant during advancement to the intervertebral space. Accordingly, the use of extension portions 518A or similar members or features can be advantageously incorporated into any implant system embodiments disclosed herein or equivalents thereof.
  • With continued reference to FIGS. 9A-9D, the system 100 can comprise a delivery device or feature 520 that can facilitate the surgeon or other practitioner with the advancement of the implant 200 through the guiding assembly and into the intervertebral space (e.g., between the plates 300). In some embodiments, the implant 200 is initially inserted at or near the proximal end of the guiding assembly 500, generally between the alignment members or slides 514, 516. Then, once the surgeon has advanced the guiding assembly 500, and in some configurations, the plates 300 and the implant 200 to which the assembly 500 is engaged, through the subject's anatomy (e.g., through an access device), the surgeon can begin to move the implant distally by manipulating the handle or other portion of the guiding assembly.
  • For example, with reference to the side view of FIG. 9B, by turning the handle 522 of the guiding assembly 500, the threaded rod 526 can move relative to a housing 528. Such manipulation of the handle 522 can result in moving the distal end 524 of the rod 526 forwardly (e.g., distally) so as to engage the implant 200 positioned between the slides 514, 516 and exert a force on the implant 200. In some embodiments, the distal end 524 of the rod comprises a coupling or other blunt member or feature that can help avoid damage to the adjacent portion of the implant 200 during the advancement process.
  • As illustrated in FIG. 9A, as the implant is advanced distally within the interior of the guiding assembly 500 (e.g., between the upper and lower slides or alignment members 514, 516), the distal end of the implant 200 will reach the proximal end of the plates 300 that have been positioned within the intervertebral space. With continued advancement of the implant 200 in the distal direction (e.g., as schematically represented by arrow 50 in FIG. 9C), the implant 200 will move between the upper and lower plates 300, causing the plates 300 to separate apart from each other, in certain arrangements. In some configurations, the implant 200 is moved far enough distally between plates 200 so that is spans across an entire length or substantially an entire length of the plates 300.
  • FIGS. 10A and 10B illustrate one embodiment of an implant 200 that is configured to be used with one or more of the fusion systems disclosed herein, including the system 100 of FIGS. 9A-9D. As shown, the implant 200 can include one or more internal chambers 210. Such chambers 210 can be sized, shaped and otherwise configured to be at least partially filled with graft material (not shown) before the implant 200 is advanced between the plates 300. As noted above, the implant 200 can comprise one or more materials, such as, for example, PEEK, titanium, other metals or alloys, other polymeric materials and/or the like.
  • With continued reference to FIGS. 10A and 10B, the implant 200 can include one or more protrusions, ridges or similar members or features 220 that extend at least partially along one or more surfaces of the implant 200. In some embodiments, such protrusions 220 can be sized, shaped and otherwise configured to be moved relative to corresponding grooves or recesses of the upper and lower plates 300 and/or the upper and lower slides or alignment members 514, 516 of the guiding assembly 500. For example, as shown in the embodiment of FIG. 11, the upper plate and/or the lower plate 300 can include one or more grooves or recesses 320 that are configured to receive the protrusions 220 of the implant 200 when the implant is properly positioned within the guiding assembly 500 and between the plates 300. Although not illustrated in the view of FIG. 11, the grooves or recesses 320 can extend proximal to the plates 300 and be present, either continuously or intermittently along at least a portion of the slides 514, 516 of the guiding assembly 500. Thus, the implant 200 can be predictably moved between the slides 514, 516 and the plates 300 to properly, safely and securely position the implant 200 within a targeted intervertebral space.
  • In the embodiments illustrated herein, the guiding assembly 500 and the plates 300 are generally straight, and the path that the implant follows through the guiding assembly 500 is generally linear. However, in other embodiments, the grooves or recesses of the guiding assembly and/or the plates (and thus, the corresponding protruding members or features of the implant 200), or vice versa, can be at least partially curved, so that the implant is moved along a non-linear pathway. In some embodiments, the non-linear pathway can comprise a continuous curve (e.g., with a constant or variable diameter along the length of the curve). However, in other arrangements, the curve or turn is more abrupt (e.g., piecemeal turn or short radius turn) so as to avoid a longer, sweeping turning radius. Such embodiments can be helpful with certain MIS approaches where an implant needs to be maneuvered more carefully and precisely around sensitive nerve structures, such as, for example, in a TLIF procedure.
  • In the embodiments of a “rail” system illustrated in FIGS. 10A, 10B and 11 herein, and discussed in greater detail above, the implant comprises generally smooth outer surfaces (e.g., does not comprises teeth or other engagement features). Since the implant will not directly contact or engage the adjacent surfaces of the vertebral members, the need for teeth, other protruding members and/or other roughened surface features may not be necessary. This can advantageously simplify the design, manufacturability, cost and other aspects of the implant.
  • In the illustrated embodiments, the implant includes generally rounded protruding members or features 220 along both of its lateral ends and along both its upper and lower surfaces. Further, the protruding features 220 are generally continuous along an entire length of the implant 200. However, in other embodiments, the implant 200 can include more or fewer protruding features 220. The protruding features 220 can include any desired cross-sectional shape or configuration (e.g., rounded, circular, oval, rectangular, triangular, other polygonal, irregular, etc.), as desired or required. Further, the protruding features 220 can extend only partially or intermittently along one or both surfaces of the implant 200. Thus, the total number of protruding members 220 (e.g., and thus, corresponding grooves or recesses in the plates 300 and guiding assembly 500) can be less or more than four (e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, more than 10, etc.), as desired or required. For example, in some arrangements, the protruding members 220 are included only the top or the bottom of the implant 200.
  • According to some embodiments, as illustrated in FIG. 11, the grooves or recesses 320 of the plates 300 can include one or more deployable teeth, spikes or other engagement features 322. For example, in one embodiment, the teeth or other features 322 are configured to be pushed through the bottom of the corresponding groove or recess 320, at least partially, when the protruding member or feature 220 of the implant 200 is moved over such teeth or features 322. Thus, the teeth, spikes or other engagement features 322 can be sequentially deployed away from the implant and toward the adjacent vertebral member. In some embodiments, the teeth or other engagement features 322 are deployed within the native tissue of the vertebral member to help secure the plates within the target intervertebral space during and after implantation. One schematic embodiment of an implant 200 that has passed within upper and lower plates 300 and has caused a number of teeth, spikes or other engagement features 322 to deploy away from the implant 200 is illustrated in FIG. 12.
  • As discussed in greater detail herein, after the implant 200 has been properly positioned between the plates 300 of the system, one or more screws or other fasteners can be used to further strengthen and reinforce the system. For example, as illustrated in FIG. 13, upper and lower screws S can be positioned through one or both of the plates 300 and/or the implant 200. Such screws can be advanced through one or more cortical structures of the adjacent vertebral members of the subject to provide additional strength and support to the fusion system. In some embodiments, one or more washers, plates or other rigid or semi-rigid members P can also be used in conjunction with the screws or other fasteners S. For example, the plate or other member P can include one or more holes or other openings that are sized, shaped, oriented and/or otherwise configured to secure a screw or other fastener therethrough, as desired or required. In some embodiments, the plate P is sized, shaped and configured to be flush or substantially flush with adjacent surfaces of the upper and lower vertebrae.
  • As illustrated schematically in FIG. 15, for any of the embodiments disclosed herein, the spinal fusion system can include components that have a closed or open structure. For example, as depicted in FIG. 15, the implant 200 a can include a closed structure, such as, e.g., a closed circular, oval, rectangular and/or other shape. In alternative embodiments, however, the implant 200 b, can include at least a partially open structure (e.g., wherein one or more or ends or portions of the implant, plates and/or other components of the system) are open or otherwise do not form a closed loop or structure. Likewise, as noted above, the adjacent plates that are configured to be positioned on either side of the implant (e.g., top and bottom plates) can either include an open or closed structure, as desired or required. Thus, in some embodiments, a closed configuration can be used to help maintain graft material that is provided within an interior chamber or space of the implant. Such configurations can assist with fusion between adjacent endplates of vertebral members, as graft material is contained within an interior portion of the corresponding implant, irrespective of the type of implant that is used (e.g., LLIF or other lateral, TLIF, anterior, posterior, etc.).
  • According to some embodiments, as illustrated, for example, in FIGS. 16 to 19, the deployable protruding members 1320 (e.g., spikes, teeth, nubs, anchors, etc.) positioned on the upper and lower plates 1300 can be placed in on two or more rows on either lateral end of the implant 1200 and/or are staggered (e.g., longitudinally and/or laterally), as desired or required. As shown, such deployable protruding members 1320 can be placed on the top and/or the bottom of the implant. For example, as depicted in the illustrated embodiments, each lateral end of the plate 1300 (e.g., along one or more both ends of the implant, i.e., the upper end and/or the lower end) can include two rows of protruding members 1320. Such protruding members 1320 in adjacent rows can be aligned or not aligned relative to each other. Although the depicted arrangements show a total of two rows of protruding members 1320 on each lateral end of the system, fewer rows (e.g., a single row) or additional rows (e.g., 3, 4, 5 rows, more than 5 rows, etc.) can be included on one or both sides of the plates 1300, as desired or required. Further, in some embodiments, the protruding members (e.g., spikes, teeth, nubs, anchors, etc.) 1320 are positioned in one or more additional or different rows than illustrated herein. For example, such protruding members along one or more rows or portions located or oriented along or near a longitudinal centerline of the plates 1320 and/or implant 1200.
  • As discussed with respect to several embodiments disclosed herein, and as illustrated in, e.g., FIG. 17, the system can be delivered to the desired intervertebral space (e.g., between two adjacent vertebrae of a subject) with the assistance of a guiding assembly 500. In some embodiments, the guiding assembly 500 comprises one or more alignment components 514, 516 (e.g. upper and lower alignment components or members). In some arrangements, as depicted in FIG. 17, the alignment members 514, 516 are configured to engage, at least partially, corresponding upper and/or lower plates or other members or components 1300 of the spinal fusion system. For example, the distal ends 515, 517 (e.g., insertion or guiding members) of the alignment members 514, 516 can be sized, shaped and/or otherwise designed and configured to slide or otherwise be positioned within corresponding features (e.g., openings, recesses, grooves, etc.) of the upper and/or lower plates 1300. After the implant 1200 has been properly positioned within (e.g., between) the adjacent plates or other members 1300, such alignment members 514, 516 can be retracted or otherwise removed relative to the alignment members to leave the spinal fusion system within the desired intervertebral space, as desired or required by a particular application or use. In some embodiments, the distal portions or ends 515, 517 of the alignment members 515, 517 are sized, shaped and/or otherwise configured to slide or otherwise be positioned within corresponding portions or features (e.g., grooves, slots, etc.) of the corresponding plate members 1300 of the system. Thus, in some embodiments, the guiding assembly and its components can be properly and predictably positioned relative to the plates and/or other components or portions of the spinal implant system.
  • With reference to FIG. 18, as discussed in greater detail with respect to several embodiments herein, the implant 1200 comprises features 1202 that are sized, shaped and otherwise configured to engage and mate with corresponding features (e.g., recesses) of the upper and lower plates 1300 of the fusion system. Thus, the implant 1200 can be advanced relative to the upper and lower plates 1300 to create the desired expansion or distraction between the subject's vertebral members located on either side of the plates 1300. In addition, in accordance with the various embodiments disclosed herein, the protruding features (e.g., prongs, teeth, anchors, etc.) 1322 a, 1322 b on the plates 1300 can be deployed to advantageously extend and engage at a portion of the adjacent vertebral tissue of the subject (e.g., endplate of the adjacent vertebral member). Although the protruding members 1322 in the illustrated embodiment are in two different planes on each side of the system, as discussed herein, each side of the system can include fewer rows (e.g., a single row) or more rows (e.g., 3, 4, 5 rows, more than 5 rows, etc.), as desired or required. As discussed herein, the use of the upper and lower plates 1300 and a central implant 1200 can help provide for a more predictable, safe and consistent delivery, and thus implantation of a system and distraction of adjacent vertebral members.
  • In some embodiments, as illustrated in FIG. 18, upper and/or lower portions of the implant 1202 can be shaped, sized and/or otherwise configured to slide within corresponding portions of the upper and/or lower plates 1300. In such arrangements, a locking mechanism or feature is created to prevent or reduce the likelihood of vertical movement between the implant 1200 and the adjacent plates 1300 once the implant has properly been positioned relative to the plate(s) 1300.
  • According to some embodiments, the distal end(s) or portion(s) of the implant 1200 is/are configured to positively engage corresponding features of the upper and/or lower plates 1300 of the implant system. For example, in some embodiments, the implant comprises a protruding and/or recessed portion that clicks or otherwise positively (e.g., lockingly) engages corresponding portions of the adjacent lower and/or upper plates 1300. Thus, a surgeon or other user of the system can know with the necessary or desired degree of certainty that the implant 1200 has been properly and adequately advanced relative to the plates. In some embodiments, the engagement between the implant 1200 and the adjacent plate(s) 1300 includes a tactical and/or audible confirmation (e.g., click or other confirmation of engagement and proper advancement of the implant). Thus, the surgeon or other use can know with a requisite degree of certainty when the implant has been properly moved relative to the plates and/or other members or components of the fusion system. As shown, as discussed with reference to other arrangements herein, the implant 1200 can urge one or more protruding member 1322 of the adjacent plates 1300 outwardly (e.g., upwardly or downwardly, toward and/or at least partially through the endplates of the adjacent vertebral members of the subject) to engage the protruding members (e.g., prongs, teeth, anchors, etc.) of the plates 1300 to the native tissue (e.g., endplate tissue) of the subject, thereby fixating the implant system to the subject and promoting fusion (e.g., over an extended time period by virtue of the bone graft material of the implant).
  • FIGS. 20 and 21 illustrate one embodiment of an implant being advanced between adjacent (e.g., upper and lower) plates 1300 of a spinal fusion system. As shown, as the implant 1200 is advanced further between the plates 1300, the protruding members 1322 of the plates 1300 are deployed and extended toward the adjacent endplates of the subject's vertebral members.
  • For any of the embodiments disclosed herein, the upper and/or lower surfaces of the plates 300, 1300 (e.g., the surfaces that are at least in partial contact with the vertebral endplate surfaces of the subject) can be textured to promote fusion. For example, such surfaces can include a porous, roughened, undulating and/or other features or texture, as desired or required. As a result, according to some arrangements, such plate surfaces can attract bone cells and/or tissue and help further secure and/or otherwise fuse the system to the adjacent native tissue (e.g., vertebral endplate tissue) of the subject. In some embodiments, such surfaces can be bead-blasted or otherwise textured after formation. In alternative embodiments, the surfaces can be initially formed with a desired texture or other pattern. For example, the surfaces of the plates 1300 can be formed using plasma pour (e.g., Titanium plasma pour) or other molding or forming technique and/or any other manufacturing method.
  • Further, in some embodiments, the system (e.g., the plates 1300, the implant 1200 and/or any other component) can include one or more keels and/or other positive engagement features that help secure the system to the anatomy of the subject, irrespective of any engagement features 1322 used on the upper and/or lower plates 1300). For example, as illustrated in FIG. 22, the upper and/or lower plates 1300 of the fusion system can include one or more keels or other extension members 1350 that are configured to at least partially cut into and/or otherwise extend into the adjacent vertebral members upon implantation. Such features can help (e.g., in addition to and/or in lieu of the protruding members of the plates 1300) to secure the fusion system within a subject, as desired or required. In some embodiments, the ends and/or other portions of the keels and/or other extension members 1350 can be at least partially sharp and/or otherwise configured for easier penetration and/or engagement with the subject's native tissue. Although the illustrated embodiment illustrated only a single such keel or other extension members 1350 per plate, additional members 1350 can be included on either or both of the plates of the system, as desired or required for a particular application or use.
  • According to some embodiments, the protruding members (e.g., teeth, prongs, anchors, etc.) and/or the keels or other extension members 1350 of the plates can include a fish-hook design so at to positively engage the endplates and/or other native tissue of the subject and to prevent or reduce the likelihood of pull-out, pull-through or release after tissue engagement. Thus, in some embodiments, the protruding members and/or other extension members of the plates 1300 comprise one or more barbed portions with an angled design. For example, in some arrangements, such engagement features or members comprise a fish-hook design, one or more reverse tapered or ratcheting surfaces and/or the like. In other embodiments, the protruding members, other extension members and/or other members/features of the system comprise anchors (e.g., Mitek-type anchors, other bone and/or tissue anchors, other tissue fixation members, suture-based systems, other locking members, etc.).
  • FIGS. 24A and 24B illustrate different perspective views of a spinal fusion system similar to other embodiments disclosed herein. As shown, the system can include an implant 2200 and adjacent upper and lower plates (e.g., endplates) 2300. As noted herein with respect to other arrangements, the upper and lower plates 2300 are configured to contact and securely engage upper and lower surfaces of the implant 2200 after implantation (e.g., within a targeted intervertebral space of a subject).
  • As with any other embodiments disclosed herein, the implant can comprise PEEK, any other thermoplastic, one or more metals or alloys (e.g., titanium, stainless steel, etc.) and/or any other material, as desired or required. Similarly, any of the plate (e.g., endplate) embodiments disclosed herein can comprise PEEK, any other thermoplastic, one or more metals or alloys (e.g., titanium, stainless steel, etc.) and/or any other material.
  • As with other embodiments disclosed herein, the implant 2200 can be shaped, sized and otherwise configured to be predictably, securely and/or non-intrusively moved relative to the adjacent plates (e.g., endplates) 2300. As discussed in greater detail herein, this can be accomplished with the assistance of a guiding assembly (see, e.g., FIGS. 28, 29 and 31A-31B). Such as guiding assembly 500 can provide a predictable pathway and guiding mechanism for moving the implant to the target intervertebral space and eventually between the adjacent plates 2300.
  • Accordingly, the implant and adjacent plates for any of the spinal fusion systems disclosed herein, or equivalents thereof, can include certain features, components, design elements and/or the like to facilitate engagement of the various fusion system components to one another and/or the adjacent anatomy of the subject into which the system is being used. For example, the implant 2200 and/or the plates 2300 can be configured to lockingly (e.g., releasably or non-releasably) engage one another when the implant is positioned between the plates. Further, alignment components of a guiding assembly can be configured to secure to and/or release from a plate (e.g., an endplate) prior to and/or following delivery of the implant within the targeted anatomical space. In view of the foregoing, reference will be made to certain features illustrated in the embodiment of FIGS. 24A-24B and 25A-25F.
  • As discussed herein, the various spinal fusion systems and the various components and subcomponents thereof (e.g., spinal implant, adjacent endplates, guiding assemblies used to deliver various components within subjects, etc.) can be sized, shaped and/or otherwise configured for use with any approach or implant type, including, without limitation, anterior (ALIF) (e.g., open, mini-open retroperitoneal, etc.), lateral (e.g., costotranversectomy, extreme lateral, LLIF, etc.), posterolateral (e.g., posterior lumbar interbody fusion (PLIF), transforaminal lumbar interbody fusion (TLIF), etc.), axial (e.g., axial lumbar interbody fusion), expandable and/or the like.
  • FIG. 28 illustrates one embodiment, in perspective view, of a fusion system that include an implant 2200, adjacent plates (e.g., endplates) 2300 and a guiding assembly 500. As shown in FIG. 28 and discussed in greater detail herein, the guiding assembly 500 can comprise upper and lower alignment members 514, 516. Each alignment member 514, 516 can include a distal end 515 that is sized, shaped and configured to slide within a corresponding portion of an adjacent plate (e.g., endplate) 2300. In some embodiments, at least a portion of one or more alignment members 514, 516 (e.g., the distal end 515 of the alignment member) is adapted to releasably secure to the plate 2300. Such a configuration can help ensure that the guiding assembly 500 remain properly aligned with the plates 2300 to reliably and securely deliver the implant 2200 between the plates 2300. Once the implant 2200 has been delivered between the adjacent plates (e.g., endplates) 2300, the alignment members 514, 516 can be configured to automatically release from the plates 2300 for removal from the subject's anatomy. Additional details regarding the manner in which the alignment members 514, 516 can secure to and/or release from the endplates 2300 is provided below.
  • FIGS. 29 and 30 illustrate an alignment member (e.g., lower alignment member) 516 and a plate (e.g., bottom endplate) 2300, respectively, that are designed to releasably secure to one another. The features included in the depicted embodiments can be incorporated into any of the guiding assemblies, endplates, implants and/or other components of a fusion system discussed herein. The guiding assembly 500 can comprise an alignment member 516 a proximal portion 519 and a distal portion 517 extending therefrom.
  • The distal portion 517 of the alignment member 516 can be tapered. In some arrangements, this can permit the distal portion 517 of the alignment member 516 to be positioned between a corresponding recess of the endplate 2300. Further, in some embodiments, the proximal portion 519 can be shaped, sized and configured to match and/or align with the adjacent endplate 2300 (e.g., with respect to cross-sectional shape) once the alignment member has been positioned relative to the endplate.
  • With continued reference to FIG. 29, the distal portion 517 of the alignment member 516 can include an engagement member or feature 530 that is configured to secure to a corresponding receiving member or feature 2350 of the endplate 2300 into which the alignment member 516 is advanced. One embodiment of an engagement member or feature 530 of the distal portion 517 of the alignment member 516 is shown in greater detail in FIG. 31A below. In some embodiments, the distal portion 517 of the alignment member 516 comprises one or more flanges or protrusions 520 (e.g., along one or both ends of the distal portion 517) that are sized, shaped and configured to slide into and be received within corresponding grooves or recesses 2340 of the plate 2300 (e.g., along one or more both interior surfaces of the plate). Thus, the use of such a sliding mechanism using protrusions 520 and corresponding recesses 2340 can help ensure that the distal portion 517 of the alignment member 516 is properly advanced within the central opening of the endplate 2300.
  • With reference to FIG. 31A, the engagement member 530 of the alignment member 516 can comprise a tab or finger 532 that is positioned along a proximal end of the distal member 517. In some embodiments, the engagement member 530 is resiliently biased such that it can flex inwardly (e.g., toward an interior space or cavity 531) when a force is directed to the outside of the tab 532. The tab 532 can include a sloped exterior surface 533 that is configured to be contacted by the endplate 2300 when the distal portion 517 of the alignment member 516 is advanced sufficiently far within the central opening of the endplate. Thus, an adjacent surface of the endplate 2300 (e.g., along an interior of the central opening) can contact the sloped surface 533 of the tab 532 and urge the tab 532 inwardly (e.g., toward the interior space 531 of the engagement member 530). In some embodiments, therefore, the exterior surface of the tab 532 can move from its normal location (e.g., along dashed line 536) to an interior location (e.g., along dashed line 534).
  • With continued reference to FIG. 30, once the distal end 517 of the alignment member 516 is moved within the central opening of the endplate 2300, the compressed tab 532 of the engagement member 530 is released outwardly within the receiving member or feature 2350 of the endplate 2300 and assumes its normal, extended orientation. As a result, the alignment member 516 engages the endplate 2300, thereby preventing the alignment member 516 to be separated from the adjacent endplate. As shown in FIG. 30, the receiving member 2350 includes a ridge 2351 that helps prevent retraction (e.g., in the lateral direction) of the alignment member 516 relative to the endplate 2300.
  • In some embodiments, an upper alignment member 514 is secured or coupled to an upper plate (e.g., endplate) 2300, and a lower alignment member 516 is secured or coupled to a lower plate (e.g., endplate) 2300. Once the alignment members 514, 516 are coupled to the endplates 2300, the two coupled assemblies can be placed adjacent to one another and advanced within the subject's anatomy so that the plates are positioned within the targeted intervertebral space. The implant can then be delivered between the alignment members 514, 516 of the guiding assembly 500 until it is finally moved between the endplates and implanted within the targeted intervertebral space to promote fusion. The size of the final assembly (e.g., an assembly that includes both the implant 2200 and the adjacent endplates 2300) can be selected based, at least in part, on the desired vertical spacing that is desired or required within a specific intervertebral space into which the assembly will be inserted. For example, as discussed in greater detail herein, the implant and endplates can be selected to create and/or maintain a certain distraction or clearance between the adjacent vertebrae. As noted herein, delivering the implant within an intervertebral space provides certain benefits and advantages over prior fusion systems and methods. For example, the need to forcibly advance into the subject is eliminated (e.g., thereby preventing or reducing the likelihood of damage to the subject's vertebral members and other native tissues). Further, the embodiments disclosed herein allow for the implant to be delivered into the targeted location in a more precise, accurate and predictable manner.
  • Relatedly, the predicable and non-abrupt manner in which the implant is delivered between adjacent plates (e.g., endplates) within the target intervertebral space can help ensure that any grafting material that is originally positioned within an interior portion (e.g., the central cavity) of the implant does not unintentionally escape before final implantation. For example, the structural configuration of the alignment members of the guiding assembly and the endplates helps ensure that the graft materials remains within the interior of the implant during and after delivery to the target portion of the subject's anatomy. Further, the non-abrupt manner (e.g., moving the implant along rails or recesses of the adjacent alignment members and/or the endplates) without the need to use an impacting force or jolt (e.g., as caused by a slap hammer) can further ensure that any grafting material placed within one or more interior cavities of the implant prior to implantation will essentially remain within such interior cavities after advancement of the implant to the desired intervertebral space or other anatomical location.
  • With continued reference to FIG. 29, and as discussed in greater detail in relation to other arrangements herein, the implant can be moved within the guiding assembly 500 (e.g., between upper and lower alignment members 514, 516) and the endplates 2300 for delivery and final implantation within a subject's intervertebral space. In some embodiments, the alignment members 514, 516 and the adjacent endplates 2300 (to which the alignment members can be releasably secured) comprises grooves, recesses, rails and/or other guiding members or features 540, 2310. In some configurations, such features 540, 2310 of the alignment members and the endplates are aligned to be continuous or generally continuous when the alignments members are coupled to the endplates.
  • As shown in FIGS. 24B and 26, the implant 2200 can include upper and lower protruding members or features 2202 that are shaped, sized and otherwise configured to fit within and move adjacent to the grooves, recesses, rails and/or other guiding members or features 540, 2310 of the alignment members 514, 516 and the endplates 2300. This can help ensure that the implant will maintain proper alignment with the guiding assembly 500 and the endplates, which have been positioned at the targeted intervertebral space, during delivery. As a result, undesirable or inadvertent lateral movement of the implant to a location within the subject's anatomy can be eliminated. In several illustrated embodiments, the implant includes two protruding members or features 2202 along both its top and bottom surfaces. However, in other configurations, any of the embodiments disclosed herein can be modified to include such members or features 2202 only along the top or bottom of the implant, as desired or required. Further, the number, shape, spacing, orientation and/or other properties or details of the protruding members or features 2202 can be different than disclosed herein. For example, in some embodiments, the members or features 2202 along the implant can be recessed relative to adjacent exterior surfaces of the implant. In such a configuration, the alignment members of the guiding assembly and the endplates can be differently designed so that they include protruding members or features that are shaped, sized and otherwise configured to engage the recessed members or features 2202 of the implant.
  • With continued reference to FIGS. 24A-24B, 25A-25F, 26 and 27A-27B, the implant 2200, 2200′ and the adjacent endplates 2300, 2300′ can comprise corresponding locking members or features that help ensure that the implant is lockingly (e.g., at least releasably lockingly) secured to the endplates when advanced sufficiently far between the endplates. For example, as shown in FIG. 30, the endplate 2300 can include a locking feature or member 2308 along one of its lateral sides. Complimentary, as best shown in FIG. 26, the implant 2200 can include a corresponding locking feature or member 2208 that is sized, shaped and otherwise configured to engage and at least temporarily or releasably lock or secure to the feature or member 2308 of the endplate 2300. In the illustrated arrangement, the implant 2200 comprises a cavity below or adjacent the locking feature or member 2208 to permit the locking feature or member 2208 to at least partially flex or otherwise move in order to engage with and secure to the corresponding feature or member 2308 of the adjacent endplate 2300. Such a configuration can help ensure that, once the implant 2200 has been advanced sufficiently far relative to the guiding assembly 500 and the endplates 2300, the position of the implant can be securely maintained relative to the endplates and the targeted intervertebral space. If needed, in some embodiments, a tool can be used to disengage the locking member or feature 2208 of the implant 2200 relative to the locking member or feature 2308 of corresponding endplates in order to remove and/or reposition the implant, as desired or required. For example, in some embodiments, a tool can be used to move the locking member or feature 2208 of the implant 2200 away (e.g., downwardly or upwardly) from the adjacent endplate 2300 to disengage the corresponding locking members or features, thereby permitted the implant to be retracted relative to the endplate.
  • In some embodiments, the upper and lower endplates 2300 that are positioned adjacent the implant 2200 can include an identical design. Thus, each endplate 2300 can comprise both a locking member or feature 2208 (e.g., along one side, to engage a corresponding feature or member of the endplate, as discussed above) and a receiving member or feature 2350 (e.g., along the other side, to engage a corresponding feature or member of the implant 2200). As a result, in some configurations, if identical plate designs are used for both the upper and lower endplates 2300, the locking members or features 2208 and the receiving members or features 2350 can be on opposite lateral ends for the upper and lower endplates 2300. Alternatively, the endplates can be designed such that the upper and lower endplates 2300 are not identical, and instead, have a mirrored configuration. This can result in having the locking members or features 2208 of the endplates 2300 both along one lateral side of the implant 2200 and the receiving member or features 2350 both on the opposite side of the implant 2200, as desired or required.
  • As shown and described herein, any of the disclosed embodiments can include one or more deployable protruding members 2322 (e.g., spikes, teeth, nubs, anchors, etc.) positioned on the upper and lower plates (e.g., endplates) 2300 can be placed along one or more rows on either lateral end of the implant 2200. Such deployable protruding members 2322 can be configured to be deployed or expanded away from the adjacent exterior surface of the endplate 2300. Deployment of such members 2320 can help engage the endplate, and thus the entire implant-endplate assembly, to the adjacent native tissue (e.g., endplates or the portion of the vertebrae). As shown in FIGS. 24A-24B, 25A-25F, 26 and 27, the protruding members 2320 can be adapted to move through corresponding openings 2320 of the endplates 2320. The protruding members 2320 can comprise one or more rigid or semi-rigid materials, such as, for example, metal or alloy (e.g., nitinol or other shape memory material, titanium, stainless steel, etc.), thermoplastic (e.g., PEEK) and/or the like. As noted, any of the embodiments disclosed herein or equivalents thereof can include one or more (e.g., 2, 3, 4, more than 4, etc.) rows of openings 2320 (e.g., and protruding members 2320 configured to extend therethrough), as desired or required.
  • As shown in FIG. 31B, at least a portion of the tab 532 of the engagement member or feature 530 of the distal end 517 of the alignment member 516 can be raised relative to the adjacent surface of the alignment member (see, e.g., the difference in vertical prominence of the upper surface of the tab (e.g., generally aligned with dashed line 538) and the adjacent upper surface of the distal end 517 of the alignment member). Accordingly, the tab 532 can be configured to be downwardly and inwardly (e.g., toward the interior cavity 531) of the engagement member or feature 530 when the implant 2200 can be properly and securely positioned relative to the adjacent endplates 2300. In some embodiments, as a result, the implant 2200 can move the tab 532 into disengaging contact with the corresponding receiving member or feature 2350 of the endplate 2300. This can, in some arrangements, permit the alignment members 514, 516 to automatically (e.g., simultaneously) disengage from the adjacent endplates 2300, thereby allowing for the alignment members 514, 516, and thus the entire guiding assembly 500, to be separated from the endplates and removed from the subject's anatomy. As a result, the endplates 2300 and the implant 2200 can remain within the targeted intervertebral space to facilitate with the fusion of the adjacent vertebrae.
  • In addition, in accordance with the various embodiments disclosed herein, the protruding features (e.g., prongs, teeth, anchors, etc.) 2322 on the endplates 2300 can be deployed to advantageously extend and engage at a portion of the adjacent vertebral tissue of the subject (e.g., endplate of the adjacent vertebral member). Although the protruding members 2322 in the illustrated embodiment are in a single plane or axis on each side of the system, as discussed herein, each side of the system can include additional rows (e.g., 2, 3, 4, 5 rows, more than 5 rows, etc.), as desired or required. As discussed herein, the use of the upper and lower endplates 2300 and an implant 2200 can help provide for a more predictable, safe and consistent delivery, and thus implantation of a system and distraction of adjacent vertebral members.
  • As discussed in greater detail herein, after the implant 200, 1200, 2200 has been properly positioned between the plates 300, 1300, 2300 (e.g., endplates) of the system, one or more screws or other fasteners can be used to further strengthen and reinforce the system. For example, as illustrated in FIG. 32, upper and lower screws S can be positioned through openings O of one or both of the plates 300, 1300, 2300 and/or the implant 200, 1200, 2200. Such screws can be advanced through one or more cortical structures of the adjacent vertebral members of the subject to provide additional strength and support to the fusion system. In some embodiments, one or more washers, plates or other rigid or semi-rigid members P can also be used in conjunction with the screws or other fasteners S. For example, the plate or other member P can include one or more holes or other openings that are sized, shaped, oriented and/or otherwise configured to secure a screw or other fastener therethrough, as desired or required. In some embodiments, the plate P is sized, shaped and configured to be flush or substantially flush with adjacent surfaces of the upper and lower vertebrae.
  • As discussed in greater detail herein, any of the embodiments disclosed herein can be modified or otherwise designed to be used along any portion of the spine. For example, the implants, plates (e.g., endplates), guiding assembly and/or any other component or feature can be adapted for use for a thoracic, cervical, lumbar or sacral implant, approach or treatment, as desired or required. Further, any of the embodiments disclosed herein can be modified for use as vertebral body replacement (corpectomy or other procedure involving the removing of all or a part of a vertebral body) and/or any similar or related spinal fusion technique, procedure or technology. Further, although the various devices, systems and/or methods described herein have specific applicability to the spine and spinal fusion procedures, such embodiments can be used (e.g., in the disclosed form or a modified form) for the delivery of any other member between adjacent plates, either within a subject or in another context, as desired or required.
  • According to some embodiments, the height of the protruding members (e.g., barbs, anchors, tabs, etc.) 322, 1322, 2322 and/or other keels or extension members or features of the plates 300, 1300, 2300 can comprise a height of about 1 to 5 mm (e.g., 1-1.1, 1.1-1.2, 1.2-1.3, 1.3-1.4, 1.4-1.5, 1.5-1.6, 1.6-1.7, 1.7-.1.8, 1.8-1.9, 1.9-2, 2-2.5, 2.5-3, 3-4, 4-5 mm, heights between the foregoing, etc.). In other embodiments, the height of such members or features can be less than 1 mm (e.g., 0-0.1. 0.1-0.2, 0.2-0.3, 0.3-0.4, 0.4-0.5, 0.5-0.6, 0.6-0.7, 0.7-0.8, 0.8-0.9, 0.9-1 mm, values between the foregoing, etc.) or greater than 5 mm (e.g., 5-6, 6-7, 7-8. 8-9. 9-10 mm, values between the foregoing, greater than 10 mm, etc.), as desired or required. In any of the embodiments disclosed herein, the protruding members 322, 1322, 2322 can comprise Mitek-type anchors and/or similar members or features.
  • For any of the fusion system arrangements disclosed herein, the implant 200, 1200, 2200 can be rigid or movable. For example, in some embodiments, the implant portion 200, 1200, 2200 of the system can include a mechanical portion that is configured to articulate, bend and/or otherwise move, as desired or required.
  • In some embodiments, the deployment and/or engagement features described herein with respect to the plates and/or implants of spinal fusion systems can be adapted for use with other orthopedic systems and/or applications. For example, one or more protruding members (e.g., barbs, anchors, keels, etc.) can be included in non-spinal systems and applications, such as intramedullary rods (IM rods), intramedullary nails (IM nails), inter-locking nails, total hip arthroplasty (THA), total knee arthroplasty (TKA) and/or the like. In such embodiments, the portion of the system or device that is configured to engage and/or fuse with native bone or other tissue of a subject can include one or more protruding portions or features to help fixate the device to the subject. One embodiment of an IM rod 2000 having a plurality of such deployable members or features 2010 is schematically illustrated in FIG. 23. In some embodiments, the rod 2000 and/or other orthopedic implant can include an opening through which a member can be placed to selectively expand or otherwise deploy the protruding members 2010 (e.g., through corresponding openings or slots 2004).
  • To assist in the description of the disclosed embodiments, words such as upward, upper, bottom, downward, lower, rear, front, vertical, horizontal, upstream, downstream have been used above to describe different embodiments and/or the accompanying figures. It will be appreciated, however, that the different embodiments, whether illustrated or not, can be located and oriented in a variety of desired positions.
  • Although several embodiments and examples are disclosed herein, the present application extends beyond the specifically disclosed embodiments to other alternative embodiments and/or uses of the inventions and modifications and equivalents thereof. It is also contemplated that various combinations or subcombinations of the specific features and aspects of the embodiments may be made and still fall within the scope of the inventions. Accordingly, it should be understood that various features and aspects of the disclosed embodiments can be combine with or substituted for one another in order to form varying modes of the disclosed inventions. Thus, it is intended that the scope of the present inventions herein disclosed should not be limited by the particular disclosed embodiments described above, but should be determined only by a fair reading of the claims that follow.
  • While the inventions are susceptible to various modifications, and alternative forms, specific examples thereof have been shown in the drawings and are herein described in detail. It should be understood, however, that the inventions are not to be limited to the particular forms or methods disclosed, but, to the contrary, the inventions are to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the various embodiments described and the appended claims. Any methods disclosed herein need not be performed in the order recited. The methods summarized above and set forth in further detail below describe certain actions taken by a practitioner; however, it should be understood that they can also include the instruction of those actions by another party. Thus, actions such as “advancing an implant” include “instructing advancing an implant.” The ranges disclosed herein also encompass any and all overlap, sub-ranges, and combinations thereof. Language such as “up to,” “at least,” “greater than,” “less than,” “between,” and the like includes the number recited. Numbers preceded by a term such as “about” or “approximately” include the recited numbers. For example, “about 10 mm” includes “10 mm.” Terms or phrases preceded by a term such as “substantially” include the recited term or phrase. For example, “substantially parallel” includes “parallel.”

Claims (2)

What is claimed is:
1. A method of inserting an implant within an intervertebral space defined between an upper vertebral member and a lower vertebral member, the method comprising:
positioning an upper endplate and a lower endplate within the intervertebral space;
securing an alignment member of a guiding assembly to each of the upper endplate and the lower endplate, wherein the alignment member is configured to extend from the endplates to an anatomical location away from the endplates; and
advancing an implant between the alignment members and between the upper and lower endplates so that the implant is urged into the intervertebral space.
2. A spinal fusion system comprising:
an endplate system configured for placement within an intervertebral space of a subject, wherein the endplate system comprises an upper endplate and a lower endplate; and
an implant configured to be advanced and positioned between the upper endplate and the lower endplate to secure the implant within the intervertebral space;
wherein, when the implant is advanced between the upper endplate and the lower endplate, the upper endplates engage the upper vertebral member, and the lower endplate engages the lower vertebral member; and
wherein, upon advancement of the implant between the upper and lower endplates, the upper vertebral member is distracted relative to the lower vertebral member.
US16/907,992 2013-03-14 2020-06-22 Interbody fusion devices, systems and methods Pending US20210137696A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/907,992 US20210137696A1 (en) 2013-03-14 2020-06-22 Interbody fusion devices, systems and methods

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US201361786160P 2013-03-14 2013-03-14
PCT/US2014/025035 WO2014159762A1 (en) 2013-03-14 2014-03-12 Lateral interbody fusion devices, systems and methods
US201562107260P 2015-01-23 2015-01-23
US201514774640A 2015-09-10 2015-09-10
US15/006,009 US10687962B2 (en) 2013-03-14 2016-01-25 Interbody fusion devices, systems and methods
US16/907,992 US20210137696A1 (en) 2013-03-14 2020-06-22 Interbody fusion devices, systems and methods

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US15/006,009 Continuation US10687962B2 (en) 2013-03-14 2016-01-25 Interbody fusion devices, systems and methods

Publications (1)

Publication Number Publication Date
US20210137696A1 true US20210137696A1 (en) 2021-05-13

Family

ID=57601610

Family Applications (2)

Application Number Title Priority Date Filing Date
US15/006,009 Active 2036-06-11 US10687962B2 (en) 2013-03-14 2016-01-25 Interbody fusion devices, systems and methods
US16/907,992 Pending US20210137696A1 (en) 2013-03-14 2020-06-22 Interbody fusion devices, systems and methods

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US15/006,009 Active 2036-06-11 US10687962B2 (en) 2013-03-14 2016-01-25 Interbody fusion devices, systems and methods

Country Status (1)

Country Link
US (2) US10687962B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11413162B2 (en) 2013-03-14 2022-08-16 Raed M. Ali, M.D., Inc. Spinal fusion devices, systems and methods

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8460388B2 (en) * 2011-10-28 2013-06-11 Incite Innovation Llc Spinal interbody device
US8545567B1 (en) * 2008-11-14 2013-10-01 David Krueger Spinal fusion device

Family Cites Families (323)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4653481A (en) 1985-07-24 1987-03-31 Howland Robert S Advanced spine fixation system and method
US4805602A (en) 1986-11-03 1989-02-21 Danninger Medical Technology Transpedicular screw and rod system
US4790303A (en) 1987-03-11 1988-12-13 Acromed Corporation Apparatus and method for securing bone graft
US4913134A (en) 1987-07-24 1990-04-03 Biotechnology, Inc. Spinal fixation system
US7491205B1 (en) 1988-06-13 2009-02-17 Warsaw Orthopedic, Inc. Instrumentation for the surgical correction of human thoracic and lumbar spinal disease from the lateral aspect of the spine
US4950269A (en) 1988-06-13 1990-08-21 Acromed Corporation Spinal column fixation device
WO1991016020A1 (en) 1990-04-26 1991-10-31 Danninger Medical Technology, Inc. Transpedicular screw system and method of use
US5127912A (en) 1990-10-05 1992-07-07 R. Charles Ray Sacral implant system
US5300073A (en) 1990-10-05 1994-04-05 Salut, Ltd. Sacral implant system
US5584831A (en) 1993-07-09 1996-12-17 September 28, Inc. Spinal fixation device and method
US5558674A (en) 1993-12-17 1996-09-24 Smith & Nephew Richards, Inc. Devices and methods for posterior spinal fixation
US5665122A (en) 1995-01-31 1997-09-09 Kambin; Parviz Expandable intervertebral cage and surgical method
US5683391A (en) 1995-06-07 1997-11-04 Danek Medical, Inc. Anterior spinal instrumentation and method for implantation and revision
DE19549426C2 (en) 1995-08-11 1997-10-09 Bernhard Zientek Intervertebral implant and instrument therefor
US6068630A (en) 1997-01-02 2000-05-30 St. Francis Medical Technologies, Inc. Spine distraction implant
US5836948A (en) 1997-01-02 1998-11-17 Saint Francis Medical Technologies, Llc Spine distraction implant and method
US6796983B1 (en) 1997-01-02 2004-09-28 St. Francis Medical Technologies, Inc. Spine distraction implant and method
IES970323A2 (en) 1997-04-30 1998-06-03 Eskina Developments Limited Spinal osteosynthesis device for mechanically interconnecting two adjacent vertebrae, in particular lumbar vertebrae
WO1999066867A1 (en) 1998-06-23 1999-12-29 Dimso (Distribution Medicale Du Sud-Ouest) Backbone intersomatic implant with anchoring elements
US6102950A (en) * 1999-01-19 2000-08-15 Vaccaro; Alex Intervertebral body fusion device
US6056749A (en) 1999-03-15 2000-05-02 Spineology, Inc. Method and device for fixing and correcting spondylolisthesis anteriorly
US6805697B1 (en) 1999-05-07 2004-10-19 University Of Virginia Patent Foundation Method and system for fusing a spinal region
US6607530B1 (en) 1999-05-10 2003-08-19 Highgate Orthopedics, Inc. Systems and methods for spinal fixation
US20040249461A1 (en) 1999-08-13 2004-12-09 Ferree Bret A. Coupled artificial disc replacements methods and apparatus
US8323341B2 (en) 2007-09-07 2012-12-04 Intrinsic Therapeutics, Inc. Impaction grafting for vertebral fusion
US6530929B1 (en) 1999-10-20 2003-03-11 Sdgi Holdings, Inc. Instruments for stabilization of bony structures
US6811567B2 (en) 1999-10-22 2004-11-02 Archus Orthopedics Inc. Facet arthroplasty devices and methods
DE1101448T1 (en) 1999-11-17 2002-02-07 Univ Hong Kong Hong Kong Anterior and transpedicular fixation system and method of securing the spine
TW447286U (en) 1999-12-10 2001-07-21 Lin Jr Yi Intervertebral restorer
US6485518B1 (en) 1999-12-10 2002-11-26 Nuvasive Facet screw and bone allograft intervertebral support and fusion system
US6814756B1 (en) 2000-02-04 2004-11-09 Gary K. Michelson Expandable threaded arcuate interbody spinal fusion implant with lordotic configuration during insertion
US6500205B1 (en) 2000-04-19 2002-12-31 Gary K. Michelson Expandable threaded arcuate interbody spinal fusion implant with cylindrical configuration during insertion
US6558390B2 (en) 2000-02-16 2003-05-06 Axiamed, Inc. Methods and apparatus for performing therapeutic procedures in the spine
US6565572B2 (en) 2000-04-10 2003-05-20 Sdgi Holdings, Inc. Fenestrated surgical screw and method
US6554830B1 (en) 2000-04-10 2003-04-29 Sdgi Holdings, Inc. Fenestrated surgical anchor and method
US6749595B1 (en) 2000-06-15 2004-06-15 Kieran P. J. Murphy Cement delivery needle
CA2419196A1 (en) 2000-08-11 2002-02-21 Sdgi Holdings, Inc. Surgical instrumentation and method for treatment of the spine
US7114501B2 (en) 2000-08-14 2006-10-03 Spine Wave, Inc. Transverse cavity device and method
US6358254B1 (en) 2000-09-11 2002-03-19 D. Greg Anderson Method and implant for expanding a spinal canal
US6443989B1 (en) 2000-12-04 2002-09-03 Roger P. Jackson Posterior expandable fusion cage
US20020169507A1 (en) 2000-12-14 2002-11-14 David Malone Interbody spine fusion cage
EP1222903B1 (en) 2001-01-12 2005-01-19 Link Spine Group, Inc. Surgical instrument for implanting an intervertebral prosthesis
US6595998B2 (en) 2001-03-08 2003-07-22 Spinewave, Inc. Tissue distraction device
US6368351B1 (en) 2001-03-27 2002-04-09 Bradley J. Glenn Intervertebral space implant for use in spinal fusion procedures
US6814734B2 (en) 2001-06-18 2004-11-09 Sdgi Holdings, Inc, Surgical instrumentation and method for forming a passage in bone having an enlarged cross-sectional portion
US7198627B2 (en) 2001-09-07 2007-04-03 Zimmer Spine, Inc. Spinal fixation device and method
US7799833B2 (en) 2001-11-01 2010-09-21 Spine Wave, Inc. System and method for the pretreatment of the endplates of an intervertebral disc
JP3993855B2 (en) 2001-11-01 2007-10-17 スパイン・ウェイブ・インコーポレーテッド Device for spinal disc recovery
JP4339698B2 (en) 2002-03-11 2009-10-07 ジンマー・スパイン・オースチン・インコーポレイテツド Instruments and methods for implanting spinal implant devices
AU2003234508A1 (en) 2002-05-06 2003-11-17 Warsaw Orthopedic, Inc. Instrumentation and methods for preparation of an intervertebral space
JP2003325536A (en) 2002-05-09 2003-11-18 Showa Ika Kohgyo Co Ltd Implant screw
ATE447894T1 (en) 2002-07-19 2009-11-15 Interventional Spine Inc DEVICE FOR SPINAL FIXATION
US8221463B2 (en) 2002-10-29 2012-07-17 Kyphon Sarl Interspinous process implants and methods of use
US20040143332A1 (en) 2002-10-31 2004-07-22 Krueger David J. Movable disc implant
EP1567069A4 (en) 2002-11-08 2008-11-12 Warsaw Orthopedic Inc Transpedicular intervertebral disk access methods and devices
US7828804B2 (en) 2002-11-08 2010-11-09 Warsaw Orthopedic, Inc. Transpedicular intervertebral disk access methods and devices
BR0215923B1 (en) 2002-11-13 2013-01-22 articular facet interference screw.
US7776042B2 (en) 2002-12-03 2010-08-17 Trans1 Inc. Methods and apparatus for provision of therapy to adjacent motion segments
EP1430858B1 (en) 2002-12-19 2012-11-14 coLigne AG A pair of lumbar interbody implants and method of fusing together adjoining vertebrae bodies
US7753912B2 (en) 2003-03-31 2010-07-13 Spine Wave, Inc. Tissue distraction device
US7354442B2 (en) 2003-05-05 2008-04-08 Warsaw Orthopedic, Inc. Bone anchor and methods of using the same
WO2004103152A2 (en) 2003-05-16 2004-12-02 Spine Wave, Inc. Tissue distraction device
CA2526507A1 (en) 2003-05-30 2004-12-16 George P. Teitelbaum Methods and devices for transpedicular discectomy
US9254137B2 (en) 2003-08-29 2016-02-09 Lanterna Medical Technologies Ltd Facet implant
US8496660B2 (en) 2003-10-17 2013-07-30 K2M, Inc. Systems, devices and apparatuses for bony fixation and disk repair and replacement and methods related thereto
US20050102027A1 (en) 2003-11-12 2005-05-12 Ferree Bret A. Shims, particularly for laterally placed artificial disc replacements (ADRS)
US20050125066A1 (en) 2003-12-08 2005-06-09 Innovative Spinal Technologies Nucleus replacement securing device and method
US7753937B2 (en) 2003-12-10 2010-07-13 Facet Solutions Inc. Linked bilateral spinal facet implants and methods of use
US20050143737A1 (en) 2003-12-31 2005-06-30 John Pafford Dynamic spinal stabilization system
US7806914B2 (en) 2003-12-31 2010-10-05 Spine Wave, Inc. Dynamic spinal stabilization system
WO2005070071A2 (en) 2004-01-08 2005-08-04 Spine Wave Inc. Apparatus and method for injecting fluent material at a distracted tissue site
US20050159746A1 (en) 2004-01-21 2005-07-21 Dieter Grob Cervical facet resurfacing implant
US20060015184A1 (en) 2004-01-30 2006-01-19 John Winterbottom Stacking implants for spinal fusion
EP1713408B1 (en) 2004-02-09 2010-09-15 DePuy Spine, Inc. Systems for spinal surgery
US8273129B2 (en) 2004-02-10 2012-09-25 Atlas Spine, Inc. PLIF opposing wedge ramp
US7850733B2 (en) 2004-02-10 2010-12-14 Atlas Spine, Inc. PLIF opposing wedge ramp
WO2005079711A1 (en) 2004-02-18 2005-09-01 Boehm Frank H Jr Facet joint prosthesis and method of replacing a facet joint
US20050187556A1 (en) 2004-02-25 2005-08-25 Synecor, Llc Universal percutaneous spinal access system
US7282065B2 (en) 2004-04-09 2007-10-16 X-Spine Systems, Inc. Disk augmentation system and method
US8292931B2 (en) 2004-04-23 2012-10-23 Leonard Edward Forrest Method and device for placing materials in the spine
US7749268B2 (en) 2004-05-26 2010-07-06 Warsaw Orthopedic, Inc. Methods for treating the spine
US9504583B2 (en) 2004-06-10 2016-11-29 Spinal Elements, Inc. Implant and method for facet immobilization
US20070265561A1 (en) 2004-06-22 2007-11-15 Yeung Jeffrey E Disc Shunt for Treating Back Pain
US7556650B2 (en) 2004-06-29 2009-07-07 Spine Wave, Inc. Methods for injecting a curable biomaterial into an intervertebral space
US20060036323A1 (en) 2004-08-03 2006-02-16 Carl Alan L Facet device and method
US8114158B2 (en) 2004-08-03 2012-02-14 Kspine, Inc. Facet device and method
WO2006017641A2 (en) 2004-08-03 2006-02-16 Vertech Innovations, L.L.C. Spinous process reinforcement device and method
US8470004B2 (en) 2004-08-09 2013-06-25 Si-Bone Inc. Apparatus, systems, and methods for stabilizing a spondylolisthesis
US8425570B2 (en) 2004-08-09 2013-04-23 Si-Bone Inc. Apparatus, systems, and methods for achieving anterior lumbar interbody fusion
US7846184B2 (en) 2004-08-13 2010-12-07 Sasso Ricardo C Replacement facet joint and method
US7875078B2 (en) 2004-08-25 2011-01-25 Spine Wave, Inc. Expandable interbody fusion device
US7547309B2 (en) 2004-09-23 2009-06-16 Spine Solutions, Inc. Distractor for lumbar insertion instrument
US7396360B2 (en) 2004-09-29 2008-07-08 The Cleveland Clinic Foundation Minimally invasive method and apparatus for fusing adjacent vertebrae
US7452369B2 (en) 2004-10-18 2008-11-18 Barry Richard J Spine microsurgery techniques, training aids and implants
US8535352B2 (en) 2004-10-20 2013-09-17 Exactech, Inc. Multi-level minimally invasive spinal stabilization system
US20070239159A1 (en) 2005-07-22 2007-10-11 Vertiflex, Inc. Systems and methods for stabilization of bone structures
US8025680B2 (en) 2004-10-20 2011-09-27 Exactech, Inc. Systems and methods for posterior dynamic stabilization of the spine
US8267969B2 (en) 2004-10-20 2012-09-18 Exactech, Inc. Screw systems and methods for use in stabilization of bone structures
US7935134B2 (en) 2004-10-20 2011-05-03 Exactech, Inc. Systems and methods for stabilization of bone structures
US20060095136A1 (en) 2004-11-03 2006-05-04 Mcluen Design, Inc. Bone fusion device
US7837713B2 (en) 2004-11-22 2010-11-23 Minsurg International, Inc. Methods and surgical kits for minimally-invasive facet joint fusion
US8021392B2 (en) 2004-11-22 2011-09-20 Minsurg International, Inc. Methods and surgical kits for minimally-invasive facet joint fusion
US20060122701A1 (en) 2004-11-23 2006-06-08 Kiester P D Posterior lumbar interbody fusion expandable cage with lordosis and method of deploying the same
MX2007006808A (en) 2004-12-13 2007-10-08 St Francis Medical Tech Inc Inter-facet implant.
US20070299450A1 (en) 2004-12-31 2007-12-27 Ji-Hoon Her Pedicle Screw and Device for Injecting Bone Cement into Bone
US20060190081A1 (en) 2005-02-09 2006-08-24 Gary Kraus Facet stabilization schemes
US20060195091A1 (en) 2005-02-15 2006-08-31 Mcgraw J K Percutaneous spinal stabilization device and method
US7722622B2 (en) 2005-02-25 2010-05-25 Synthes Usa, Llc Implant insertion apparatus and method of use
JP4976370B2 (en) 2005-03-07 2012-07-18 パチェコ,ヘクター,オー. Improved system and method for entering a vertebral body for posterior bay formation, vertebral formation, vertebral body biopsy, or screw placement
US8696707B2 (en) 2005-03-08 2014-04-15 Zyga Technology, Inc. Facet joint stabilization
US20060235388A1 (en) 2005-04-15 2006-10-19 Sdgi Holdings, Inc. Pedicular tunneling for decompression and support
US9237908B2 (en) 2005-04-21 2016-01-19 Spine Wave, Inc. Dynamic stabilization system for the spine
US7655043B2 (en) 2005-04-29 2010-02-02 Warsaw Orthopedic, Inc. Expandable spinal implant and associated instrumentation
US20060243287A1 (en) 2005-05-02 2006-11-02 Reuter Merrill W A Surgical Method for Implanting Anchored Intervertebral Disc Space Devic
US7938818B2 (en) 2005-05-03 2011-05-10 Yeung Jeffrey E Alleviate back pain by increasing pH of the disc
US20070055257A1 (en) 2005-06-30 2007-03-08 Alex Vaccaro Cannulated screw access system
ATE541528T1 (en) 2005-07-11 2012-02-15 Kyphon Sarl SYSTEM FOR INTRODUCING BIOCOMPATIBLE FILLING MATERIALS INTO INTERNAL BODY REGIONS
US8523865B2 (en) 2005-07-22 2013-09-03 Exactech, Inc. Tissue splitter
US7611537B2 (en) 2005-08-01 2009-11-03 Warsaw Orthopedic, Inc. System, device, and method for percutaneous interbody device and nucleus removal system
US8016834B2 (en) 2005-08-03 2011-09-13 Helmut Weber Process and device for treating vertebral bodies
WO2007024990A2 (en) 2005-08-23 2007-03-01 Kim Richard C Expandable implant device with interchangeable spacer
US20070055373A1 (en) 2005-09-08 2007-03-08 Zimmer Spine, Inc. Facet replacement/spacing and flexible spinal stabilization
US20070073290A1 (en) 2005-09-13 2007-03-29 Boehm Frank H Jr Insertion of artificial/prosthetic facet joints with ballotable/compressible joint space component
US7909871B2 (en) 2005-10-03 2011-03-22 Samy Abdou Devices and methods for inter-vertebral orthopedic device placement
US7686835B2 (en) 2005-10-04 2010-03-30 X-Spine Systems, Inc. Pedicle screw system with provisional locking aspects
CA2627345A1 (en) 2005-10-24 2007-05-03 Nexgen Spine, Inc. Intervertebral disc replacement and associated instrumentation
DE202005016761U1 (en) 2005-10-26 2006-11-30 Joimax Gmbh Surgical milling cutter in particular for removal of tissue from facet joint at spine, comprises handle to be attached with quick joining mechanism
DE202005016762U1 (en) 2005-10-26 2006-11-30 Joimax Gmbh Surgical milling cutter in particular for removal of tissue from facet joint at spine, comprises slightly widened front area
US8202320B2 (en) 2005-10-31 2012-06-19 Depuy Spine, Inc. Intervertebral disc prosthesis
US7744630B2 (en) 2005-11-15 2010-06-29 Zimmer Spine, Inc. Facet repair and stabilization
CA2628962C (en) 2005-11-23 2014-05-27 Trinity Orthopedics Percutaneous transpedicular access, fusion, discectomy, and stabilization system and method
CN101370465A (en) 2006-01-23 2009-02-18 奥赛恩治疗公司 Bone cement composite containing particles in a non-uniform spatial distribution and devices for implementation
EP1983938A4 (en) 2006-02-02 2012-07-25 Trinity Orthopedics Percutaneous facet joint fusion system and method
US8372126B2 (en) 2006-04-21 2013-02-12 Warsaw Orthopedic, Inc. Surgical fasteners with mechanical and osteogenic fixation means
US20070250166A1 (en) 2006-04-25 2007-10-25 Sdgi Holdings, Inc. Facet fusion implants and methods of use
US20070288014A1 (en) 2006-06-06 2007-12-13 Shadduck John H Spine treatment devices and methods
RU2345729C2 (en) 2006-06-09 2009-02-10 Федеральное государственное учреждение "Уральский научно-исследовательский институт травматологии и ортопедии имени В.Д. Чаклина Федерального агентства по высокотехнологичной медицинской помощи" Method of elimination of old spine deformations
EP2046207A4 (en) 2006-07-13 2017-08-23 K2M, Inc. Devices and methods for stabilizing a spinal region
WO2008021319A2 (en) 2006-08-11 2008-02-21 Abdou M Samy Spinal motion preservation devices and methods of use
US8057545B2 (en) 2006-08-25 2011-11-15 Warsaw Orthopedic, Inc. Revision spacer
US8092533B2 (en) 2006-10-03 2012-01-10 Warsaw Orthopedic, Inc. Dynamic devices and methods for stabilizing vertebral members
US8096996B2 (en) 2007-03-20 2012-01-17 Exactech, Inc. Rod reducer
US8162990B2 (en) 2006-11-16 2012-04-24 Spine Wave, Inc. Multi-axial spinal fixation system
WO2008070716A2 (en) 2006-12-05 2008-06-12 Spine Wave, Inc. Dynamic stabilization devices and methods
US20080262555A1 (en) 2007-01-05 2008-10-23 Trans1 Inc. Percutaneous delivery of facet screws using depth control indicator
US8992616B2 (en) 2007-03-19 2015-03-31 James L. Chappuis Modular lumbar interbody fixation systems and methods with reconstruction endplates
WO2008121421A1 (en) 2007-03-30 2008-10-09 Vertiflex, Inc. Retractor
US20080243249A1 (en) 2007-03-30 2008-10-02 Kohm Andrew C Devices for multipoint emplacement in a body part and methods of use of such devices
US8795374B2 (en) 2007-04-01 2014-08-05 Spinal Kinetics Inc. Prosthetic intervertebral discs that are implantable by minimally invasive surgical techniques and that have cores that are insertable in situ using end plate guideways
US8075601B2 (en) 2007-04-30 2011-12-13 Warsaw Orthopedic, Inc. Deformity correction using neural integrity monitoring
US7967867B2 (en) 2007-05-31 2011-06-28 Spine Wave, Inc. Expandable interbody fusion device
US8114092B2 (en) 2007-06-07 2012-02-14 Exactech, Inc. Inserter for a spinal implant
US9011497B2 (en) 2007-07-02 2015-04-21 Scorpion Surgical Technologies Ltd. Bone anchoring system
WO2009006622A2 (en) 2007-07-03 2009-01-08 Innovative Spinal Technologies, Inc. Facet fusion implant
US7905855B2 (en) 2007-07-05 2011-03-15 Baxter International Inc. Dialysis system having non-invasive temperature sensing
US8100950B2 (en) 2007-07-27 2012-01-24 The Cleveland Clinic Foundation Oblique lumbar interbody fusion
US20090062807A1 (en) 2007-08-27 2009-03-05 Vermillion Technologies, Llc Device and method for placement of interbody device
US8808380B2 (en) 2007-08-27 2014-08-19 William Casey Fox Method and apparatus for an osteotomy fixation or arthrodesis cage
US8540772B2 (en) 2007-09-20 2013-09-24 Said G. Osman Transpedicular, extrapedicular and transcorporeal partial disc replacement
US20090082822A1 (en) 2007-09-20 2009-03-26 Osman Said G Transpedicular, Extrapedicular and Transcorporeal Approaches to the Intervertebral Discs
JP5409642B2 (en) 2007-10-25 2014-02-05 ドゥッガル ニール System and method for intervertebral disc replacement
US8109971B2 (en) 2007-10-29 2012-02-07 Horace Winston Hale Orthopedic fixation mechanism
DE102007052042A1 (en) 2007-10-30 2009-05-14 Kilian Kraus Height-adjustable spine implant
KR20100105580A (en) 2007-11-16 2010-09-29 신세스 게엠바하 Low profile intervertebral implant
WO2009070607A1 (en) 2007-11-27 2009-06-04 Transcorp, Inc. Methods and systems for repairing an intervertebral disc using a transcorporal approach
US9005288B2 (en) 2008-01-09 2015-04-14 Providence Medical Techonlogy, Inc. Methods and apparatus for accessing and treating the facet joint
US8075579B2 (en) 2008-01-17 2011-12-13 Life Spine, Inc. Pedicle dart system
WO2009092102A1 (en) 2008-01-17 2009-07-23 Synthes Usa, Llc An expandable intervertebral implant and associated method of manufacturing the same
US8292961B2 (en) 2008-01-23 2012-10-23 Osman Said G Biologic vertebral reconstruction
US8088163B1 (en) 2008-02-06 2012-01-03 Kleiner Jeffrey B Tools and methods for spinal fusion
US8992620B2 (en) 2008-12-10 2015-03-31 Coalign Innovations, Inc. Adjustable distraction cage with linked locking mechanisms
US7857835B2 (en) 2008-02-22 2010-12-28 Depuy Spine, Inc. Method and system for trans-lamina spinal fixation
WO2009111480A2 (en) 2008-03-03 2009-09-11 Trinity Orthopedics, Llc Spool intervertebral distraction device and method
US8764833B2 (en) 2008-03-11 2014-07-01 Spinalmotion, Inc. Artificial intervertebral disc with lower height
EP2265200B1 (en) 2008-03-14 2020-05-27 Mazor Robotics Ltd. Segmented insert for intervertebral support
US8147555B2 (en) 2008-03-31 2012-04-03 Aflatoon Kamran Artificial disc prosthesis for replacing a damaged nucleus
FR2929502B1 (en) 2008-04-04 2011-04-08 Clariance NUCLEIC IMPLANT.
EP2262449B1 (en) 2008-04-05 2020-03-11 Synthes GmbH Expandable intervertebral implant
WO2009131955A1 (en) 2008-04-21 2009-10-29 Total Connect Spine, Llc Posterior spinal fastener and method for using same
US10159475B2 (en) 2008-05-07 2018-12-25 Mighty Oak Medical, Inc. Configurable intervertebral implant
WO2009143496A1 (en) 2008-05-22 2009-11-26 Trinity Orthopedics, Llc Devices and methods for spinal reduction, displacement and resection
US9381049B2 (en) 2008-06-06 2016-07-05 Providence Medical Technology, Inc. Composite spinal facet implant with textured surfaces
US8267966B2 (en) 2008-06-06 2012-09-18 Providence Medical Technology, Inc. Facet joint implants and delivery tools
EP2361046B1 (en) 2008-06-06 2019-04-24 Providence Medical Technology, Inc. Cervical distraction/implant delivery device
US8361152B2 (en) 2008-06-06 2013-01-29 Providence Medical Technology, Inc. Facet joint implants and delivery tools
US20090312764A1 (en) 2008-06-11 2009-12-17 Marino James F Intraosseous transpedicular methods and devices
US20100004651A1 (en) 2008-06-13 2010-01-07 The University Of Toledo Transpedicular access to the intervertebral disc space for discectomy, end plate preparation, and interbody fusion
RU2377961C1 (en) 2008-07-03 2010-01-10 Государственное учреждение Российский онкологический научный центр им. Н.Н. Блохина РАМН Transpedicular vertebral fixation technique
US8491639B2 (en) 2008-08-06 2013-07-23 Spine Wave, Inc. Multi-axial spinal fixation system
US20100036495A1 (en) 2008-08-07 2010-02-11 PX Spine Corporation Device and method for treating spine
US8409208B2 (en) 2008-10-04 2013-04-02 M. Samy Abdou Device and method to access the anterior column of the spine
US20100204795A1 (en) 2008-11-12 2010-08-12 Stout Medical Group, L.P. Fixation device and method
US8308804B2 (en) 2008-11-14 2012-11-13 David Krueger Spinal fusion device
EP2381858B1 (en) 2008-12-01 2018-11-07 Mazor Robotics Ltd. Robot guided oblique spinal stabilization
US8366748B2 (en) 2008-12-05 2013-02-05 Kleiner Jeffrey Apparatus and method of spinal implant and fusion
US9060808B2 (en) 2008-12-05 2015-06-23 DePuy Synthes Products, Inc. Anchor-in-anchor system for use in bone fixation
US20110276095A1 (en) 2008-12-09 2011-11-10 Yossef Bar Double Threaded Orthopedic Screw
US8133280B2 (en) 2008-12-19 2012-03-13 Depuy Spine, Inc. Methods and devices for expanding a spinal canal
US20100160921A1 (en) 2008-12-19 2010-06-24 Arthrocare Corporation Cancellous bone displacement system and methods of use
US20120035730A1 (en) 2008-12-26 2012-02-09 Scott Spann Minimally-invasive retroperitoneal lateral approach for spinal surgery
US20100168858A1 (en) 2008-12-30 2010-07-01 Mitchell Hardenbrook Expandable interbody implant and method
RU2391061C1 (en) 2009-02-12 2010-06-10 Государственное учреждение "Научно-исследовательский центр Татарстана "Восстановительная травматология и ортопедия" Method of transpedicular insertion of screws
US20100241231A1 (en) 2009-02-20 2010-09-23 Marino James F Intervertebral fixation device
PL215600B1 (en) 2009-03-20 2013-12-31 Univ T Przyrodniczy Im Jana I Jedrzeja Sniadeckich Spine's transpedicular stabilizer
US20100280554A1 (en) 2009-05-01 2010-11-04 Rahul Vaidya Novel V construct and method of spinal stabilization after transforminal lumbar interbody fusion using the construct
WO2010132841A1 (en) 2009-05-14 2010-11-18 Stout Medical Group, L.P. Expandable support device and method of use
US8430913B2 (en) 2009-06-10 2013-04-30 Spine Wave, Inc. Devices and methods for adding an additional level of fixation to an existing construct
US20100324680A1 (en) 2009-06-18 2010-12-23 Sean Suh Intradiscal motion limiting member and method of installation thereof
US8529627B2 (en) 2009-07-02 2013-09-10 Atlas Spine, Inc. Intervertebral spacer
US9642722B2 (en) 2009-07-02 2017-05-09 Atlas Spine, Inc. Intervertebral expandable spacer
BR112012005527A2 (en) 2009-09-10 2016-04-26 Blue Ortho alignment guide for use in computer aided orthopedic surgery to prepare a bone element for an implant
US8906028B2 (en) 2009-09-18 2014-12-09 Spinal Surgical Strategies, Llc Bone graft delivery device and method of using the same
US8906099B2 (en) 2009-10-13 2014-12-09 Nicholas Poulos Expandable interbody implant and method
US8709086B2 (en) 2009-10-15 2014-04-29 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US8556979B2 (en) 2009-10-15 2013-10-15 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US8062375B2 (en) 2009-10-15 2011-11-22 Globus Medical, Inc. Expandable fusion device and method of installation thereof
WO2011050140A1 (en) 2009-10-22 2011-04-28 Blue Fury Consulting, L.L.C. Posterior cervical fusion system and techniques
PL2498694T3 (en) 2009-11-09 2015-11-30 Spinewelding Ag Medical device, apparatus, and surgical method
US8226657B2 (en) 2009-11-10 2012-07-24 Carefusion 207, Inc. Systems and methods for vertebral or other bone structure height restoration and stabilization
US8454623B2 (en) 2009-11-11 2013-06-04 Alphatec Spine, Inc Instrument for insertion and deployment of features on an implant
CN102309361A (en) 2010-07-08 2012-01-11 北京市奥斯比利克新技术开发有限公司 Elastic support body and manufacturing method thereof
US8277509B2 (en) 2009-12-07 2012-10-02 Globus Medical, Inc. Transforaminal prosthetic spinal disc apparatus
US20110160772A1 (en) 2009-12-28 2011-06-30 Arcenio Gregory B Systems and methods for performing spinal fusion
US8894712B2 (en) 2010-01-11 2014-11-25 Innova Spinal Technologies, Llc Expandable intervertebral implant and associated surgical method
US8795366B2 (en) 2010-01-11 2014-08-05 Innova Spinal Technologies, Llc Expandable intervertebral implant and associated surgical method
CA3002234C (en) 2010-01-13 2020-07-28 Jcbd, Llc Sacroiliac joint fixation fusion system
US9381045B2 (en) 2010-01-13 2016-07-05 Jcbd, Llc Sacroiliac joint implant and sacroiliac joint instrument for fusing a sacroiliac joint
US8465547B2 (en) 2010-01-27 2013-06-18 Warsaw Orthopedic, Inc. Modular interbody devices and methods of use
US20110264098A1 (en) 2010-02-26 2011-10-27 Cobbs Charles S Minimally invasive systems, devices, and surgical methods for performing arthrodesis in the spine
US8540724B2 (en) 2010-04-30 2013-09-24 Lanx, Inc. Anterior distractor-inserter with linear countersink adjustment
US8690917B2 (en) 2010-05-12 2014-04-08 Globus Medical, Inc. Distraction screw
US20110288588A1 (en) 2010-05-20 2011-11-24 Spinefrontier Inc System and method for facet fixation and fusion
WO2011149557A1 (en) 2010-05-27 2011-12-01 Stout Medical Group, L.P. Support device and method for use
WO2011155931A1 (en) 2010-06-09 2011-12-15 Synthes Usa, Llc Anchor-in-anchor system for use in bone fixation
US20110313462A1 (en) 2010-06-16 2011-12-22 Neville Alleyne Control of innate systems to remodel spinal canal cross-sectional area
US8845640B2 (en) 2010-06-18 2014-09-30 Spine Wave, Inc. Pedicle screw extension for use in percutaneous spinal fixation
US8512383B2 (en) 2010-06-18 2013-08-20 Spine Wave, Inc. Method of percutaneously fixing a connecting rod to a spine
US8454664B2 (en) 2010-06-18 2013-06-04 Spine Wave, Inc. Method for fixing a connecting rod to a thoracic spine
EP3017793A3 (en) 2010-07-15 2016-08-17 Spine Wave, Inc. A plastically deformable inter-osseous device
US10842644B2 (en) 2010-09-03 2020-11-24 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US10779957B2 (en) 2010-09-03 2020-09-22 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US20120065734A1 (en) 2010-09-15 2012-03-15 Spinal USA LLC Intervertebral plate system
US8679160B2 (en) 2010-09-28 2014-03-25 Facet-Link Inc. Lamina implant set
US9585678B2 (en) 2010-10-05 2017-03-07 Seth L. Neubardt Implanting facet joint screws percutaneously
US9220535B2 (en) 2010-10-26 2015-12-29 Christian Röbling Process for introducing a stabilizing element into a vertebral column
US9549760B2 (en) 2010-10-29 2017-01-24 Kyphon Sarl Reduced extravasation of bone cement
US20120116459A1 (en) 2010-11-02 2012-05-10 Nottmeier Eric W Bone Fixation Device and Methods for Use Thereof
US8409257B2 (en) 2010-11-10 2013-04-02 Warsaw Othopedic, Inc. Systems and methods for facet joint stabilization
US20120123544A1 (en) 2010-11-16 2012-05-17 Sean Suh Intervertebral Spacer and Method of Installation Thereof
US9211153B2 (en) 2011-01-04 2015-12-15 DePuy Synthes Products, Inc. Expansion screw bone tamp
US20120184993A1 (en) 2011-01-14 2012-07-19 Alphatec Spine, Inc. Expandable facet screw
US9271765B2 (en) 2011-02-24 2016-03-01 Spinal Elements, Inc. Vertebral facet joint fusion implant and method for fusion
EP2683314B1 (en) 2011-03-08 2017-05-31 Synthes GmbH Flexible helical fixation device
EP2685921B1 (en) 2011-03-18 2019-03-13 Raed M. Ali, M.D., Inc. Transpedicular access to intervertebral spaces and related spinal fusion systems and methods
US9265620B2 (en) 2011-03-18 2016-02-23 Raed M. Ali, M.D., Inc. Devices and methods for transpedicular stabilization of the spine
JP6223958B2 (en) 2011-03-30 2017-11-01 トリニティ・オーソペディックス・リミテッド・ライアビリティ・カンパニーTrinity Orthopedics Llc Intervertebral device
US8562651B2 (en) 2011-03-30 2013-10-22 Warsaw Orthopedic, Inc. Sacroiliac terminal anchor device and method
US8870929B2 (en) 2011-04-13 2014-10-28 Polyvalor, Limited Partnership Valorisation HSJ, Limited Partnership Surgical devices for the correction of spinal deformities
US8998905B2 (en) 2011-04-29 2015-04-07 Warsaw Orthopedic, Inc. Methods and instruments for use in vertebral treatment
US20120283776A1 (en) 2011-05-04 2012-11-08 Kyphon Sarl Methods and instruments for use in vertebral treatment
US20130018467A1 (en) 2011-07-15 2013-01-17 Sean Suh Systems and Methods For Vertebral Body and Disc Height Restoration
US9393050B2 (en) 2011-07-28 2016-07-19 Awesome Dudes Making Tools, LLC Systems, methods, and apparatuses for spinal fixation
US20130041412A1 (en) 2011-08-09 2013-02-14 Depuy Spine, Inc. Flexible pedicle screws
US8940023B2 (en) 2011-08-31 2015-01-27 DePuy Synthes Products, LLC System and method for cervical midline fixation
US9381048B2 (en) 2011-08-31 2016-07-05 DePuy Synthes Products, Inc. Devices and methods for cervical lateral fixation
WO2013036707A1 (en) 2011-09-09 2013-03-14 Spine Wave, Inc. Lateral approach expandable spinal implant and method
US20130072984A1 (en) 2011-09-21 2013-03-21 James C. Robinson Fenestrated bone screws and methods of bone fastening and stabilization
US9241806B2 (en) 2011-09-26 2016-01-26 Globus Medical, Inc. Flexible anchoring and fusion devices and methods of using the same
US8864833B2 (en) 2011-09-30 2014-10-21 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US10799367B2 (en) 2011-10-05 2020-10-13 H. Lee Moffitt Cancer Center And Research Institute, Inc. Bone fusion system
CN104010594B (en) 2011-10-21 2017-04-12 创新外科器械设计有限公司 Surgical implants for percutaneous lengthening of spinal pedicles to correct spinal stenosis
US9119678B2 (en) 2011-11-01 2015-09-01 Synergy Disc Replacement Inc. Facet fixation systems
US9615856B2 (en) 2011-11-01 2017-04-11 Imds Llc Sacroiliac fusion cage
US9526627B2 (en) 2011-11-17 2016-12-27 Exactech, Inc. Expandable interbody device system and method
US8979861B2 (en) 2011-11-17 2015-03-17 NovApproach, Spine LLC Method and system for performing spinal surgical procedures using natural orifices
DK2787900T3 (en) 2011-12-06 2019-01-14 Bioarctic Ab Spinal cord devices to promote axon regeneration
US8740950B2 (en) 2011-12-08 2014-06-03 Spine Wave, Inc. Methods for percutaneously attaching a cross connector to contralateral spinal constructs
US8628578B2 (en) 2011-12-19 2014-01-14 Warsaw Orthopedic, Inc. Expandable interbody implant and methods of use
US20130172736A1 (en) 2012-01-03 2013-07-04 Samy Abdou Devices and methods for the diagnosis and treatment of sacro-iliac joint disease
US8617220B2 (en) 2012-01-04 2013-12-31 Warsaw Orthopedic, Inc. System and method for correction of a spinal disorder
US9254149B2 (en) 2012-01-18 2016-02-09 Neurosurj Research and Development, LLC Spinal fixation method and apparatus
US9572678B2 (en) 2012-02-07 2017-02-21 Medivest, Llc Tissue spacer implants, insertion and adjustment tools, and method of use
EP2849686B1 (en) 2012-05-18 2019-06-26 Trinity Orthopedics, LLC Articulating interbody cage
AU2013296548B2 (en) 2012-08-01 2017-08-10 Exactech, Inc. Prosthetic devices to improve joint mechanics in arthroplasty
US8715351B1 (en) 2012-11-29 2014-05-06 Spine Wave, Inc. Expandable interbody fusion device with graft chambers
US9585765B2 (en) 2013-02-14 2017-03-07 Globus Medical, Inc Devices and methods for correcting vertebral misalignment
US9492288B2 (en) 2013-02-20 2016-11-15 Flexuspine, Inc. Expandable fusion device for positioning between adjacent vertebral bodies
US8900312B2 (en) 2013-03-12 2014-12-02 Spine Wave, Inc. Expandable interbody fusion device with graft chambers
US8864830B2 (en) 2013-03-12 2014-10-21 Spine Wave, Inc. Apparatus and methods for inserting an interbody fusion device
US8828019B1 (en) 2013-03-13 2014-09-09 Spine Wave, Inc. Inserter for expanding an expandable interbody fusion device
US10327910B2 (en) 2013-03-14 2019-06-25 X-Spine Systems, Inc. Spinal implant and assembly
WO2014159762A1 (en) 2013-03-14 2014-10-02 Raed M. Ali, M.D., Inc. Lateral interbody fusion devices, systems and methods
US9186258B2 (en) 2013-03-15 2015-11-17 Globus Medical, Inc. Expandable intervertebral implant
US9795493B1 (en) 2013-03-15 2017-10-24 Nuvasive, Inc. Expandable intervertebral implant and methods of use thereof
US9421110B2 (en) 2013-05-10 2016-08-23 Sidewinder Medical Products Llc Expandable spinal fusion cage
US8727975B1 (en) 2013-05-10 2014-05-20 Spine Wave, Inc. Retractor for use in spinal surgery
FR3005569B1 (en) 2013-05-16 2021-09-03 Ldr Medical VERTEBRAL IMPLANT, VERTEBRAL IMPLANT FIXATION DEVICE AND IMPLANTATION INSTRUMENTATION
US9101489B2 (en) 2013-10-07 2015-08-11 Spine Wave, Inc. Expandable anterior lumbar interbody fusion device
US9295565B2 (en) 2013-10-18 2016-03-29 Spine Wave, Inc. Method of expanding an intradiscal space and providing an osteoconductive path during expansion
US9968464B2 (en) 2014-01-17 2018-05-15 Spine Wave, Inc. Spinal fusion system
US9445921B2 (en) 2014-03-06 2016-09-20 Spine Wave, Inc. Device for expanding and supporting body tissue
US9216094B2 (en) 2014-03-06 2015-12-22 Spine Wave, Inc. Expandable spinal interbody fusion device and inserter
US9265623B2 (en) 2014-03-06 2016-02-23 Spine Wave, Inc. Method of expanding a spinal interbody fusion device
US9439783B2 (en) 2014-03-06 2016-09-13 Spine Wave, Inc. Inserter for expanding body tissue
US10299935B2 (en) 2014-03-12 2019-05-28 Seaspine, Inc. Adjustable arcuate implant
US9517144B2 (en) 2014-04-24 2016-12-13 Exactech, Inc. Limited profile intervertebral implant with incorporated fastening mechanism
WO2015200032A1 (en) 2014-06-25 2015-12-30 Spine Wave, Inc. Minimally invasive posterolateral fusion
US9993352B2 (en) 2014-07-16 2018-06-12 Amedica Corporation Intervertebral spacers and related methods and instruments
US20170348464A1 (en) 2014-07-22 2017-12-07 Ceramtec Gmbh Components for fusing vertebral bodies
US10322009B2 (en) 2014-08-01 2019-06-18 H. Lee Moffitt Cancer Center And Research Institute, Inc. Expandable intervertebral cage
US9907669B2 (en) 2014-08-22 2018-03-06 Globus Medical, Inc. Vertebral implants and related methods of use
US9889018B2 (en) 2015-03-23 2018-02-13 Musc Foundation For Research Development Expandable vertebral body replacement device and method
US9439692B1 (en) 2015-10-09 2016-09-13 Spine Wave, Inc. Minimally invasive spinal fixation system and method therefor
US10188526B2 (en) 2015-10-26 2019-01-29 Warsaw Orthopedic, Inc. Spinal implant system and method
KR101795513B1 (en) 2015-11-09 2017-12-01 (주)메디쎄이 Cage device
CN112842636A (en) 2015-12-16 2021-05-28 纽文思公司 Porous spinal fusion implant
US10940018B2 (en) 2016-05-20 2021-03-09 Howmedica Osteonics Corp. Expandable interbody implant with lordosis correction
US10433978B2 (en) 2016-05-31 2019-10-08 Bullard Spine, Llc Systems and methods for adjacent vertebral fixation
EP3509514A4 (en) 2016-09-08 2020-05-13 Mayo Foundation for Medical Education and Research Spinal fixation system
KR101846828B1 (en) 2016-10-04 2018-04-09 (주)메디쎄이 Spinal complex cage
US10449060B2 (en) 2016-10-25 2019-10-22 Institute for Musculoskeletal Science and Education, Ltd. Spinal fusion implant
AU2017251734B2 (en) 2016-10-26 2022-10-20 Howmedica Osteonics Corp. Expandable interbody implant with lateral articulation
US11020239B2 (en) 2018-02-22 2021-06-01 Warsaw Orthopedic, Inc. Expandable spinal implant system and method of using same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8545567B1 (en) * 2008-11-14 2013-10-01 David Krueger Spinal fusion device
US8460388B2 (en) * 2011-10-28 2013-06-11 Incite Innovation Llc Spinal interbody device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11413162B2 (en) 2013-03-14 2022-08-16 Raed M. Ali, M.D., Inc. Spinal fusion devices, systems and methods

Also Published As

Publication number Publication date
US10687962B2 (en) 2020-06-23
US20160374822A1 (en) 2016-12-29

Similar Documents

Publication Publication Date Title
US11304824B2 (en) Interbody fusion devices, systems and methods
US20220125597A1 (en) Methods and apparatus for performing spine surgery
US11484419B2 (en) Method and apparatus for minimally invasive insertion of intervertebral implants
US20210128314A1 (en) Spinal Surgical Implant and Related Methods
US11446157B2 (en) Methods and apparatus of performing spine surgery
US20210137696A1 (en) Interbody fusion devices, systems and methods

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: APPLICATION DISPATCHED FROM PREEXAM, NOT YET DOCKETED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED