US20210126573A1 - Solar Collection Device and Method - Google Patents

Solar Collection Device and Method Download PDF

Info

Publication number
US20210126573A1
US20210126573A1 US16/988,588 US202016988588A US2021126573A1 US 20210126573 A1 US20210126573 A1 US 20210126573A1 US 202016988588 A US202016988588 A US 202016988588A US 2021126573 A1 US2021126573 A1 US 2021126573A1
Authority
US
United States
Prior art keywords
collecting device
solar collecting
solar
controller
adjustable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US16/988,588
Inventor
Christopher Robin Jakobsen
Christopher David Burns
Raymond Lee Dickens
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US16/988,588 priority Critical patent/US20210126573A1/en
Priority to US17/026,169 priority patent/US10978989B1/en
Publication of US20210126573A1 publication Critical patent/US20210126573A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/08Mouthpieces; Microphones; Attachments therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L55/00Arrangements for supplying energy stored within a vehicle to a power network, i.e. vehicle-to-grid [V2G] arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M11/00Stands or trestles as supports for apparatus or articles placed thereon ; Stands for scientific apparatus such as gravitational force meters
    • F16M11/02Heads
    • F16M11/04Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand
    • F16M11/06Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand allowing pivoting
    • F16M11/10Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand allowing pivoting around a horizontal axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M11/00Stands or trestles as supports for apparatus or articles placed thereon ; Stands for scientific apparatus such as gravitational force meters
    • F16M11/02Heads
    • F16M11/18Heads with mechanism for moving the apparatus relatively to the stand
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M11/00Stands or trestles as supports for apparatus or articles placed thereon ; Stands for scientific apparatus such as gravitational force meters
    • F16M11/20Undercarriages with or without wheels
    • F16M11/2007Undercarriages with or without wheels comprising means allowing pivoting adjustment
    • F16M11/2021Undercarriages with or without wheels comprising means allowing pivoting adjustment around a horizontal axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M11/00Stands or trestles as supports for apparatus or articles placed thereon ; Stands for scientific apparatus such as gravitational force meters
    • F16M11/20Undercarriages with or without wheels
    • F16M11/2007Undercarriages with or without wheels comprising means allowing pivoting adjustment
    • F16M11/2021Undercarriages with or without wheels comprising means allowing pivoting adjustment around a horizontal axis
    • F16M11/2028Undercarriages with or without wheels comprising means allowing pivoting adjustment around a horizontal axis for rolling, i.e. for creating a landscape-portrait rotation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M11/00Stands or trestles as supports for apparatus or articles placed thereon ; Stands for scientific apparatus such as gravitational force meters
    • F16M11/20Undercarriages with or without wheels
    • F16M11/24Undercarriages with or without wheels changeable in height or length of legs, also for transport only, e.g. by means of tubes screwed into each other
    • F16M11/26Undercarriages with or without wheels changeable in height or length of legs, also for transport only, e.g. by means of tubes screwed into each other by telescoping, with or without folding
    • F16M11/28Undercarriages for supports with one single telescoping pillar
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M11/00Stands or trestles as supports for apparatus or articles placed thereon ; Stands for scientific apparatus such as gravitational force meters
    • F16M11/20Undercarriages with or without wheels
    • F16M11/24Undercarriages with or without wheels changeable in height or length of legs, also for transport only, e.g. by means of tubes screwed into each other
    • F16M11/38Undercarriages with or without wheels changeable in height or length of legs, also for transport only, e.g. by means of tubes screwed into each other by folding, e.g. pivoting or scissors tong mechanisms
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/0094Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots involving pointing a payload, e.g. camera, weapon, sensor, towards a fixed or moving target
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D3/00Control of position or direction
    • G05D3/10Control of position or direction without using feedback
    • G05D3/105Solar tracker
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S10/00PV power plants; Combinations of PV energy systems with other systems for the generation of electric power
    • H02S10/40Mobile PV generator systems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • H02S20/30Supporting structures being movable or adjustable, e.g. for angle adjustment
    • H02S20/32Supporting structures being movable or adjustable, e.g. for angle adjustment specially adapted for solar tracking
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/30Electrical components
    • H02S40/34Electrical components comprising specially adapted electrical connection means to be structurally associated with the PV module, e.g. junction boxes
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/30Electrical components
    • H02S40/38Energy storage means, e.g. batteries, structurally associated with PV modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D55/00Endless track vehicles
    • B62D55/06Endless track vehicles with tracks without ground wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D63/00Motor vehicles or trailers not otherwise provided for
    • B62D63/02Motor vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M2200/00Details of stands or supports
    • F16M2200/02Locking means
    • F16M2200/021Locking means for rotational movement
    • F16M2200/024Locking means for rotational movement by positive interaction, e.g. male-female connections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M2200/00Details of stands or supports
    • F16M2200/06Arms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M2200/00Details of stands or supports
    • F16M2200/06Arms
    • F16M2200/066Arms being part of the head
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M2200/00Details of stands or supports
    • F16M2200/06Arms
    • F16M2200/068Arms being part of the undercarriage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M2200/00Details of stands or supports
    • F16M2200/08Foot or support base
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Definitions

  • This application relates to a system and method for collecting and storing solar energy.
  • Stationary solar energy collection systems are typically mounted to a fixed structure and grounded in a single place. These systems are limited in exposure to only the exposure to the direct path sunlight. Consequently, a stationary solar energy collection system may not generate its full potential due to shade from trees or other structures blocking out sun light during the course of a day.
  • the disclosed system is mobile, modular, and may seek out the sun by constantly repositioning to gain maximum sun exposure based on the dynamic changes in the environment, seasonal sunlight changes, topography changes and other obstacles.
  • the system can position one or more mobile modules based on a packet structure to deploy and organize themselves but still work as a collective.
  • the solar system can operate less obtrusively then traditional mounted systems. It can harvest and transport electricity and then redistribute newly generate electricity to other systems.
  • the solar system may run a machine learning algorithm that maps and gathers data Intelligence to set and achieve goals to improve productivity in collecting solar energy.
  • a mobile solar collecting device includes an adjustable solar collecting device and an electronic storage unit that stores electric energy collected by the mobile solar collecting device.
  • a first power connecter of the mobile solar collecting device electrically engages with a second power connector affixed to a structure to feed electricity to an electric power grid.
  • a transport unit moves the adjustable solar collecting device, and a controller directs the transport unit to move the adjustable solar collecting device to one or more optimum solar collecting locations adjusts an orientation of the adjustable solar collecting device to obtain maximum energy from a sun to store in the electronic storage unit, and directs the transport unit to move the adjustable solar collecting device to a location where the first power connector electrically engages with the second power connector to off load energy in the electronic storage unit to the power grid.
  • a method for collecting and storing solar energy with a mobile solar collection device that includes an adjustable solar collecting device, an electronic storage unit, a power connecter, a transport unit, and a controller.
  • the method includes collecting energy provided by a sun with an adjustable solar collecting device, and storing electric energy collected by the mobile solar collecting device with the electronic storage unit.
  • the first power connecter is electrically engaged with a second power connector affixed to a structure to feed electricity to a power grid within a building.
  • the transport unit is directed with the controller to move the adjustable solar collecting device to one or more predetermined optimum solar collecting locations.
  • An orientation of the adjustable solar collecting device is adjusted to obtain maximum energy from a sun to store in the electronic storage unit.
  • the transport unit is directed to move the mobile solar collecting device to a location where the first power connector electrically engages with the second power connector affixed to a structure to off load energy in the electronic storage unit to the power grid.
  • a system for collecting and storing solar energy includes a building with an internal power grid.
  • a building power connector is affixed to a structure to feed electricity to the internal power grid.
  • a first mobile solar collecting device is provided that includes an adjustable solar panel, an electronic storage unit to store electric energy collected by the mobile solar collecting device, a power connecter to electrically engage with the building power connector to feed electricity to the power grid, a motorized transport unit to move the mobile solar collecting device, and a controller.
  • the controller directs the transport unit to move the first mobile solar collecting device away from the structure to one of a plurality of predetermined optimum solar collecting locations free from obstructions between the solar collecting device and the sun. Further the controller adjust an orientation of the adjustable solar panels to direct the transport unit to move the first mobile solar collecting device to a location where the power connector electrically engages with the power connector to off load energy in the electronic storage unit to the power grid.
  • inventions of this aspect include corresponding computer systems, apparatus, and computer programs recorded on one or more computer storage devices, each configured to perform the actions of the methods.
  • FIG. 1 is a simplified schematic diagram of a mobile solar collecting device:
  • FIG. 2 is a system diagram of a mobile solar collection device in operation
  • FIG. 3 is a simplified schematic diagram of an exemplary computing device in a controller for of the mobile solar collection device
  • FIG. 4 illustrates a flow diagram of a process for collecting and discharging solar energy
  • FIG. 5 illustrates a flow diagram of a first run process for collecting and discharging solar energy
  • FIG. 6 illustrates a flow diagram of a charge/collection process for collecting and discharging solar energy
  • FIG. 7 illustrates a flow diagram of a process for collecting and discharging solar energy
  • FIG. 8A-8C are front, side, and top perspective view of the device for collecting and discharging solar energy
  • FIG. 9 is a top perspective view with a solar panel removed of the device for collecting and discharging solar energy
  • FIGS. 10A and 10B are side and perspective view of the solar panel power connector
  • FIG. 10C is a side view of the building power connector that receives the solar panel power connector
  • FIG. 11 is a simplified schematic diagram of the solar panel power connector coupling with the building electrical system.
  • the device 100 includes a control unit (also referred to herein as a controller) 102 coupled to a system sensor 104 , a motor drive controller 106 , a solar panel controller 108 , a communications device 110 , a battery controller 112 , a Global Positioning Sensor detector 114 , a camera/light sensor 116 and a backup battery 118 .
  • a control unit also referred to herein as a controller
  • the device 100 includes a control unit (also referred to herein as a controller) 102 coupled to a system sensor 104 , a motor drive controller 106 , a solar panel controller 108 , a communications device 110 , a battery controller 112 , a Global Positioning Sensor detector 114 , a camera/light sensor 116 and a backup battery 118 .
  • System sensor 104 is coupled to light sensor 120 , temperature sensor 122 , distance sensor 124 , other sensors (not shown) and one or more motors 126 that moves mobile solar collecting device 100 .
  • Motor drive controller 106 is also coupled to motor 126 (collectively referred to herein as a “transport unit 127 ”).
  • the transport unit 127 has motorized wheels or a half track (see FIG. 8 ).
  • Other sensors may include surface/ground heat sensors, panel prefect pitch sensor, boundary sensor, incline decline sensors, motion sensors and charge sensors.
  • Battery controller 112 is coupled to solar panel 128 , battery 130 (also referred to herein as a “electronic storage unit”) and discharge port 132 (also referred to herein as a “power connector”).
  • Control Unit 102 via motor drive controller 106 directs the transport unit to move the mobile solar collecting device 100 to one or more optimum solar collecting locations.
  • controller 102 is operable to provide an indication to the transport unit 127 to move the mobile solar collecting device 100 away from the structure to one of many predetermined optimum solar collecting locations that are free from obstructions between the solar panel 128 of the solar collecting device 100 and a sun in a yard of a home or an office.
  • Control Unit 102 adjusts via solar panel controller 108 an orientation of solar panel 128 (also referred to herein as an adjustable solar collecting device 128 ) by changing an angular orientation of the solar collection device with respect to a horizon to obtain maximum energy from the sun to store in the electronic storage unit or battery.
  • an orientation of solar panel 128 also referred to herein as an adjustable solar collecting device 128
  • Control unit 102 directs the transport unit 127 to move the mobile solar collecting device 100 to a location where the power connector 132 of the collecting device 100 electrically engages with the power connector 132 coupled to a structure or building to off load energy in the electronic storage unit 130 to an electric power grid (see FIG. 11 ) within the structure.
  • the controller 102 directs the transport unit 127 to move the mobile solar collecting device 100 to the location where the power connector 132 electrically engages with the power connector of the structure (See FIG. 11 ) to off load energy in the electronic storage unit 130 to the power grid in response to controller 102 determining the electrical storage unit 130 has collected a predetermined amount of energy.
  • the electric power grid is disposed within a building.
  • light sensor 120 detects one or more shadows on or adjacent to the mobile solar collecting device 100 , and feed a signal to the controller 102 via system sensor 104 to direct the transport unit 127 to move the mobile solar collecting device 100 to another of a plurality of optimum solar collecting locations (See FIG. 2 ) in response to light sensor 120 detecting the one or more shadows.
  • FIG. 2 there is shown a diagram of a mobile solar collection device 200 a (device 100 in FIG. 1 ) in operation.
  • collection device 200 a preferably is docked by plugging a connector on device 100 into another connector adjacent structure 202 (as further described herein).
  • a controller 102 in collection device 200 a directs a transport system of collection device 200 a to move to one of a plurality of predetermined optimum solar collecting locations (see collection device 200 b ) in the yard away from the structure 202 to collect energy provided by a sun with the adjustable solar collecting device, e.g. solar panel 128 .
  • An orientation of the adjustable solar collecting device 128 is adjusted to obtain maximum energy from a sun to store in the electronic storage unit 130 .
  • an angular orientation of the solar collection device 128 is changed with respect to a horizon. Electric energy collected by the mobile solar collecting device 200 a is stored with the electronic storage unit 130 .
  • the light sensor within device 200 a detects one or more shadows on or adjacent to the mobile solar collecting device 128 and provides the light indication to controller 102 .
  • controller 102 directs the transport unit to move the mobile solar collecting device 200 a to another of many optimum solar collecting locations 200 b that are free from obstructions between the solar collecting device 200 b and the sun.
  • a sensor on collection device 200 a determines the battery 130 in solar collection device 200 a has collected a predetermined amount of energy.
  • controller 102 directs the transport unit 127 to move the mobile solar collecting device 200 b to a location where the power connector electrically engages with the power connector affixed to a structure to off load energy in the electronic storage unit to the power grid.
  • the power connector of collection device 200 b electrically engages with a power connector affixed to a structure to feed electricity to a power grid within the building.
  • Controller 300 includes a processing device 304 , memory 312 , and display/input device 322 .
  • Processing device or processor 304 may include a microprocessor, microcontroller or any such device for accessing memory 312 , and display/input device 3228 .
  • Processing device 304 has processing capabilities and memory suitable to store and execute computer-executable instructions.
  • processor 304 includes one or more processors.
  • Sensors controllers and devices shown in FIG. 1 connect to I/O device 322 directly via a wire or wirelessly.
  • Processing device 304 executes instructions stored in memory 312 , and in response thereto, processes signals from display/input device 322 .
  • Display/Input device 322 receives wireless inputs from a user of server/mobile device (not shown) or another solar collection device (not shown).
  • Display device 208 may include an LED (Light emitting diode), LCD (Liquid crystal display), CRT (cathode ray tube) or any type of display device.
  • Memory 312 may include volatile and nonvolatile memory, removable and non-removable media implemented in any method or technology for storage of information, such as computer readable instructions, data structures, program modules or other data.
  • Such memory includes, but is not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disks (DVD) or other optical storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, RAID storage systems, or any other medium (including a non-transitory computer readable storage medium) which can be used to store the desired information and which can be accessed by a computer system.
  • Modules stored in memory 312 of the controller device 200 may include an operating system 314 , a library database 316 , a controller application 320 and a graphical user interface 323 .
  • Operating system 314 may be used by application 320 to operate device 300 .
  • Library 318 may include preconfigured parameters (or set by the user before or after initial operation) such as the controller operating parameters and configurations.
  • Application 320 may include a Gather Solar information module 330 , a go home module 332 , a diagnostic module 334 , and a communication module 336 . Details of these modules are described herein.
  • FIG. 3 there are illustrated selected modules in controller device 300 (Solar panel controller 108 of FIG. 1 ) using process 400 shown in FIG. 4 .
  • Hosting device 300 includes a processing device 304 , memory 312 , and hardware 314 .
  • Processing device 304 may include one or more microprocessors, microcontrollers or any such devices for accessing memory 312 or hardware 314 .
  • Processing device 304 has processing capabilities and memory 312 suitable to store and execute computer-executable instructions.
  • Processing device 304 executes instruction stored in memory 312 , and in response thereto, processes signals (e.g. binary logic levels) from hardware 322 .
  • Hardware 322 may include a display 334 , and input device 336 and an I/O device 338 .
  • I/O device 338 may include a network and communication circuitry for communicating with sensors and controllers.
  • Input device 336 receives inputs from a user of the host computing device or mobile device display device 334 may include an LED, LCD, CRT, or any type of display device.
  • Application 320 includes a Gather Solar information module 330 , a go home module 332 , a diagnostic module 334 , and a communication module 336 module that are described in FIGS. 4-7 in process 400 for collecting and depositing solar energy.
  • the exemplary process in FIGS. 4-7 are illustrated as a collection of blocks in a logical flow diagram, which represents a sequence of operations that can be implemented in hardware, software, and a combination thereof.
  • the blocks represent computer-executable instructions that, when executed by one or more processors, perform the recited operations.
  • computer-executable instructions include routines, programs, objects, components, data structures, and the like that perform particular functions or implement particular abstract data types.
  • Process 400 includes blocks 402 - 410 .
  • application 320 When application 320 is executed on the controller 300 , it uses the processor 304 and instructions in modules 330 - 336 that are shown in FIG. 3 .
  • the controller device 300 ( FIG. 3 ) in block 402 performs a system check to determine that all sensors and controllers (previously described) are operational.
  • System check may check a battery charge level, monitor communications, check sensor working condition, and load maps.
  • controller device 300 (also referred to herein as controller 300 ) performs a control loop to determine if the controller 300 will conduct a first run, a charge operation, or a discharge operation. Such determination is based on the current or previous operating state of the controller. If controller 300 is in its initial operation, it performs the first run learn operation in block 404 . If controller has performed its first run/learn operation it performs the charge operation by directing the solar collector 200 to an optimum location and collect energy from the sun. If the controller 300 has determined that the battery has charged to a predetermined level, or that charging is no longer an option (due to weather, user preference or nighttime), controller 300 performs a discharge/return operation. Control loop may also include determining map completeness, time, weather, battery level, location, and system health.
  • the controller device 300 does a first run/learn operation. Further details of this operation are described in FIG. 5 .
  • controller device 300 performs a charge operation. Further details of this operation are described in FIG. 6 .
  • controller device performs a discharge return operation. Further details of this operation are described in FIG. 7 .
  • FIG. 5 a flowchart of process 500 performed by processor 304 when executing the software instructions in application 320 is shown. Referring to FIG. 5 , there is shown the start initial run operation 500 .
  • controller 300 determines it location by obtaining information from the GPS device. Controller 300 may also perform a weather check and a calendar check.
  • controller 300 directs the transport unit 127 of the mobile solar collecting device 100 to map the terrain of the yard/area.
  • the boundary of the yard may be pre-entered into the mobile solar collecting device from an external source.
  • the controller 300 avoids objects during the mapping process using a camera or vision sensor.
  • the controller 300 creates and stores a map of the terrain.
  • the controller 300 creates a map of solar conditions detected during the mapping.
  • the controller 300 uploads to the map and solar condition data to a backup storage device.
  • FIG. 6 a flowchart of process 600 performed by processor 304 when executing the software instructions in application 320 is shown. Referring to FIG. 6 , there is shown the charge operation 600 .
  • a criterion is used by controller 300 to undock the mobile solar collecting device 100 from a connector at the structure.
  • Such criteria may be set based on time of day and/or time of year, weather, a command from a user, a signal from a server, or a signal from a controller on another solar collecting device.
  • controller 300 determines the ideal/optimal location to obtain sun.
  • the controller 300 may use one or more of the prior stored maps, longitudinal/latitudinal GPS information, solar map, whether reports, time of year and time of day information to obtain this optimum location.
  • the controller 300 direct the transport system to the optimal location, sets up the solar panel with the correct angle and starts to charge the battery using solar energy collected from the solar panel.
  • the controller 300 determines the health, rate and change of conditions of the battery charging. If the health/battery charging rate is good (but not best), the angle of the panel can be adjusted by controller in block 612 to receive a maximum charge from the sun. If the controller 300 determines health/battery charging rate is weak, the controller will note that the location may need to be changes and then the controller executes block 606 to determine an optimum location.
  • the controller 300 in block 614 determines that the battery is full or that conditions are not ideal for charging (based on a predetermined criteria—time of day, bad weather)
  • the controller 300 in block 616 navigates the solar collecting device 100 home (See FIG. 7 ) or to a predetermined safe location.
  • FIG. 7 a flowchart of process 700 performed by processor 304 when executing the software instructions in application 320 is shown. Referring to FIG. 7 , there is shown the discharge return operation 700 .
  • controller 300 determines if the mobile solar collecting device should move home or if not move to a safe location. If the collecting device 100 should move to a safe location then in block 704 , controller 300 directs the collecting device to move to the closest predetermined safe location.
  • controller 300 uses by monitoring sensors (see FIG. 1 ) determines if the collecting device 100 is closer to the safe location. If it is not the controller directs the collecting device 100 to move in block 704 . If the collecting device 100 has reached the safe location, in block 708 the controller 300 directs the collecting device 300 to park and transmits its location to a remote device.
  • controller 300 determines that the collecting device should move home, in block 710 , controller 300 directs the transport unit to move collecting device 100 toward home.
  • controller 300 uses by monitoring sensors (see FIG. 1 ) determines if the collecting device 100 is closer to the home location. If the collecting device is not closer, the controller 300 directs the collecting device 100 to move in block 710 .
  • the controller 300 directs the power connector to align with the power connector on the home structure using the camera.
  • the controller 300 directs the collecting device power connector to plug into the power connector on the home structure using the camera.
  • the controller 300 runs a diagnostic to ensure a proper connection and all discharge circuitry of the collecting device 100 is operating within correct limits.
  • the controller 300 directs the battery controller to discharge the battery to a predetermined level by offloading energy in the battery to the power grid/home battery.
  • Collecting device 800 includes a sensor array 802 (camera, distance sensor, solar sensor, mapping array and GPS detector).
  • Collecting device 800 also includes a solar panel 804 , track assembly 806 (also referred to as transport assembly), and chassis 808 .
  • track assembly 806 also referred to as transport assembly
  • chassis 808 Connected to chassis 808 is lift arm 810 , which controls the angular lean and angle with respect to the horizon of solar panel 804 .
  • collecting device 900 includes discharge port 902 coupled with battery 904 and control unit 906 .
  • Receptacle 1002 may be mounted to a home, dwelling, or building for transfer of electrical power discharged from battery 904 to a grid in the building.
  • Grid 1104 includes a discharge receive and battery storage circuitry 1106 coupled to a Direct Current (DC) to Alternating Current (AC) converter circuit 1108 coupled with the electrical system wiring/grid/line 1110 of a building (such as a home or an office building).
  • DC Direct Current
  • AC Alternating Current
  • the plug 1100 of the collecting device couples with receptacle 1102 .
  • Electrical power is discharged from collecting device through receptacle 1102 to discharge and storage circuitry 1104 where the electrical energy may be stored.
  • the electrical energy may then be converted from DC to AC using converter circuit 1108 and then fed to grid/line 1110 .

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Power Engineering (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Transportation (AREA)
  • Details Of Audible-Bandwidth Transducers (AREA)
  • Photovoltaic Devices (AREA)

Abstract

A mobile solar collecting device, system and method is disclosed. The system includes an adjustable solar collecting device, an electronic storage unit to store electric energy collected by the mobile solar collecting device, a first power connecter to electrically engage with a second power connector affixed to a structure to feed electricity to an electric power grid, a transport unit to move the mobile solar collecting device, a controller. The controller directs the transport unit to move the adjustable solar collecting device to optimum solar collecting locations, to adjust an orientation of the adjustable solar collecting device to obtain maximum energy from a sun to store in the electronic storage unit, and to direct the transport unit to move the mobile solar collecting device to a location where the first power connector electrically engages with the second power connector to off load energy in the electronic storage unit to the power grid.

Description

    BACKGROUND
  • This application relates to a system and method for collecting and storing solar energy. Stationary solar energy collection systems are typically mounted to a fixed structure and grounded in a single place. These systems are limited in exposure to only the exposure to the direct path sunlight. Consequently, a stationary solar energy collection system may not generate its full potential due to shade from trees or other structures blocking out sun light during the course of a day.
  • SUMMARY OF THE INVENTION
  • The disclosed system is mobile, modular, and may seek out the sun by constantly repositioning to gain maximum sun exposure based on the dynamic changes in the environment, seasonal sunlight changes, topography changes and other obstacles. The system can position one or more mobile modules based on a packet structure to deploy and organize themselves but still work as a collective. The solar system can operate less obtrusively then traditional mounted systems. It can harvest and transport electricity and then redistribute newly generate electricity to other systems. The solar system may run a machine learning algorithm that maps and gathers data Intelligence to set and achieve goals to improve productivity in collecting solar energy.
  • In one embodiment, a mobile solar collecting device includes an adjustable solar collecting device and an electronic storage unit that stores electric energy collected by the mobile solar collecting device. A first power connecter of the mobile solar collecting device electrically engages with a second power connector affixed to a structure to feed electricity to an electric power grid. A transport unit moves the adjustable solar collecting device, and a controller directs the transport unit to move the adjustable solar collecting device to one or more optimum solar collecting locations adjusts an orientation of the adjustable solar collecting device to obtain maximum energy from a sun to store in the electronic storage unit, and directs the transport unit to move the adjustable solar collecting device to a location where the first power connector electrically engages with the second power connector to off load energy in the electronic storage unit to the power grid.
  • In another embodiment, a method for collecting and storing solar energy with a mobile solar collection device that includes an adjustable solar collecting device, an electronic storage unit, a power connecter, a transport unit, and a controller is disclosed. The method includes collecting energy provided by a sun with an adjustable solar collecting device, and storing electric energy collected by the mobile solar collecting device with the electronic storage unit. The first power connecter is electrically engaged with a second power connector affixed to a structure to feed electricity to a power grid within a building. The transport unit is directed with the controller to move the adjustable solar collecting device to one or more predetermined optimum solar collecting locations. An orientation of the adjustable solar collecting device is adjusted to obtain maximum energy from a sun to store in the electronic storage unit. The transport unit is directed to move the mobile solar collecting device to a location where the first power connector electrically engages with the second power connector affixed to a structure to off load energy in the electronic storage unit to the power grid.
  • In a further aspect, a system for collecting and storing solar energy includes a building with an internal power grid. A building power connector is affixed to a structure to feed electricity to the internal power grid. A first mobile solar collecting device is provided that includes an adjustable solar panel, an electronic storage unit to store electric energy collected by the mobile solar collecting device, a power connecter to electrically engage with the building power connector to feed electricity to the power grid, a motorized transport unit to move the mobile solar collecting device, and a controller. The controller directs the transport unit to move the first mobile solar collecting device away from the structure to one of a plurality of predetermined optimum solar collecting locations free from obstructions between the solar collecting device and the sun. Further the controller adjust an orientation of the adjustable solar panels to direct the transport unit to move the first mobile solar collecting device to a location where the power connector electrically engages with the power connector to off load energy in the electronic storage unit to the power grid.
  • Other embodiments of this aspect include corresponding computer systems, apparatus, and computer programs recorded on one or more computer storage devices, each configured to perform the actions of the methods.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a simplified schematic diagram of a mobile solar collecting device:
  • FIG. 2 is a system diagram of a mobile solar collection device in operation;
  • FIG. 3 is a simplified schematic diagram of an exemplary computing device in a controller for of the mobile solar collection device;
  • FIG. 4 illustrates a flow diagram of a process for collecting and discharging solar energy;
  • FIG. 5 illustrates a flow diagram of a first run process for collecting and discharging solar energy;
  • FIG. 6 illustrates a flow diagram of a charge/collection process for collecting and discharging solar energy;
  • FIG. 7 illustrates a flow diagram of a process for collecting and discharging solar energy;
  • FIG. 8A-8C are front, side, and top perspective view of the device for collecting and discharging solar energy;
  • FIG. 9 is a top perspective view with a solar panel removed of the device for collecting and discharging solar energy;
  • FIGS. 10A and 10B are side and perspective view of the solar panel power connector, and FIG. 10C is a side view of the building power connector that receives the solar panel power connector; and
  • FIG. 11 is a simplified schematic diagram of the solar panel power connector coupling with the building electrical system.
  • DETAILED DESCRIPTION
  • Referring to FIG. 1 there is shown a mobile solar collecting device 100 for collecting and discharging solar energy. In one implementation, the device 100 includes a control unit (also referred to herein as a controller) 102 coupled to a system sensor 104, a motor drive controller 106, a solar panel controller 108, a communications device 110, a battery controller 112, a Global Positioning Sensor detector 114, a camera/light sensor 116 and a backup battery 118.
  • System sensor 104 is coupled to light sensor 120, temperature sensor 122, distance sensor 124, other sensors (not shown) and one or more motors 126 that moves mobile solar collecting device 100. Motor drive controller 106 is also coupled to motor 126 (collectively referred to herein as a “transport unit 127”). In one implementation the transport unit 127 has motorized wheels or a half track (see FIG. 8). Other sensors may include surface/ground heat sensors, panel prefect pitch sensor, boundary sensor, incline decline sensors, motion sensors and charge sensors.
  • Battery controller 112 is coupled to solar panel 128, battery 130 (also referred to herein as a “electronic storage unit”) and discharge port 132 (also referred to herein as a “power connector”).
  • Control Unit 102 via motor drive controller 106 directs the transport unit to move the mobile solar collecting device 100 to one or more optimum solar collecting locations. Preferably controller 102 is operable to provide an indication to the transport unit 127 to move the mobile solar collecting device 100 away from the structure to one of many predetermined optimum solar collecting locations that are free from obstructions between the solar panel 128 of the solar collecting device 100 and a sun in a yard of a home or an office.
  • Control Unit 102 adjusts via solar panel controller 108 an orientation of solar panel 128 (also referred to herein as an adjustable solar collecting device 128) by changing an angular orientation of the solar collection device with respect to a horizon to obtain maximum energy from the sun to store in the electronic storage unit or battery.
  • Control unit 102 directs the transport unit 127 to move the mobile solar collecting device 100 to a location where the power connector 132 of the collecting device 100 electrically engages with the power connector 132 coupled to a structure or building to off load energy in the electronic storage unit 130 to an electric power grid (see FIG. 11) within the structure. Preferably, the controller 102 directs the transport unit 127 to move the mobile solar collecting device 100 to the location where the power connector 132 electrically engages with the power connector of the structure (See FIG. 11) to off load energy in the electronic storage unit 130 to the power grid in response to controller 102 determining the electrical storage unit 130 has collected a predetermined amount of energy. In one implementation, the electric power grid is disposed within a building.
  • In one implementation, light sensor 120 detects one or more shadows on or adjacent to the mobile solar collecting device 100, and feed a signal to the controller 102 via system sensor 104 to direct the transport unit 127 to move the mobile solar collecting device 100 to another of a plurality of optimum solar collecting locations (See FIG. 2) in response to light sensor 120 detecting the one or more shadows.
  • Referring to FIG. 2, there is shown a diagram of a mobile solar collection device 200 a (device 100 in FIG. 1) in operation. During operation collection device 200 a preferably is docked by plugging a connector on device 100 into another connector adjacent structure 202 (as further described herein). A controller 102 in collection device 200 a directs a transport system of collection device 200 a to move to one of a plurality of predetermined optimum solar collecting locations (see collection device 200 b) in the yard away from the structure 202 to collect energy provided by a sun with the adjustable solar collecting device, e.g. solar panel 128. An orientation of the adjustable solar collecting device 128 is adjusted to obtain maximum energy from a sun to store in the electronic storage unit 130. In one implementation, an angular orientation of the solar collection device 128 is changed with respect to a horizon. Electric energy collected by the mobile solar collecting device 200 a is stored with the electronic storage unit 130.
  • The light sensor within device 200 a detects one or more shadows on or adjacent to the mobile solar collecting device 128 and provides the light indication to controller 102. In response, controller 102 directs the transport unit to move the mobile solar collecting device 200 a to another of many optimum solar collecting locations 200 b that are free from obstructions between the solar collecting device 200 b and the sun.
  • A sensor on collection device 200 a determines the battery 130 in solar collection device 200 a has collected a predetermined amount of energy. In response, controller 102 directs the transport unit 127 to move the mobile solar collecting device 200 b to a location where the power connector electrically engages with the power connector affixed to a structure to off load energy in the electronic storage unit to the power grid. The power connector of collection device 200 b electrically engages with a power connector affixed to a structure to feed electricity to a power grid within the building.
  • Example Controller Architecture
  • In FIG. 3 there are illustrated selected modules in controller 300 (computing devices 102 of FIG. 1). Controller 300 includes a processing device 304, memory 312, and display/input device 322. Processing device or processor 304 may include a microprocessor, microcontroller or any such device for accessing memory 312, and display/input device 3228. Processing device 304 has processing capabilities and memory suitable to store and execute computer-executable instructions. In one example, processor 304 includes one or more processors.
  • Sensors controllers and devices shown in FIG. 1 connect to I/O device 322 directly via a wire or wirelessly.
  • Processing device 304 executes instructions stored in memory 312, and in response thereto, processes signals from display/input device 322. Display/Input device 322 receives wireless inputs from a user of server/mobile device (not shown) or another solar collection device (not shown). Display device 208 may include an LED (Light emitting diode), LCD (Liquid crystal display), CRT (cathode ray tube) or any type of display device.
  • Memory 312 may include volatile and nonvolatile memory, removable and non-removable media implemented in any method or technology for storage of information, such as computer readable instructions, data structures, program modules or other data. Such memory includes, but is not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disks (DVD) or other optical storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, RAID storage systems, or any other medium (including a non-transitory computer readable storage medium) which can be used to store the desired information and which can be accessed by a computer system.
  • Modules stored in memory 312 of the controller device 200 may include an operating system 314, a library database 316, a controller application 320 and a graphical user interface 323. Operating system 314 may be used by application 320 to operate device 300. Library 318 may include preconfigured parameters (or set by the user before or after initial operation) such as the controller operating parameters and configurations. Application 320 may include a Gather Solar information module 330, a go home module 332, a diagnostic module 334, and a communication module 336. Details of these modules are described herein.
  • In FIG. 3 there are illustrated selected modules in controller device 300 (Solar panel controller 108 of FIG. 1) using process 400 shown in FIG. 4. Hosting device 300 includes a processing device 304, memory 312, and hardware 314. Processing device 304 may include one or more microprocessors, microcontrollers or any such devices for accessing memory 312 or hardware 314. Processing device 304 has processing capabilities and memory 312 suitable to store and execute computer-executable instructions.
  • Processing device 304 executes instruction stored in memory 312, and in response thereto, processes signals (e.g. binary logic levels) from hardware 322. Hardware 322 may include a display 334, and input device 336 and an I/O device 338. I/O device 338 may include a network and communication circuitry for communicating with sensors and controllers. Input device 336 receives inputs from a user of the host computing device or mobile device display device 334 may include an LED, LCD, CRT, or any type of display device.
  • Application 320 includes a Gather Solar information module 330, a go home module 332, a diagnostic module 334, and a communication module 336 module that are described in FIGS. 4-7 in process 400 for collecting and depositing solar energy. The exemplary process in FIGS. 4-7 are illustrated as a collection of blocks in a logical flow diagram, which represents a sequence of operations that can be implemented in hardware, software, and a combination thereof. In the context of software, the blocks represent computer-executable instructions that, when executed by one or more processors, perform the recited operations. Generally, computer-executable instructions include routines, programs, objects, components, data structures, and the like that perform particular functions or implement particular abstract data types. The order in which the operations are described is not intended to be construed as a limitation, and any number of the described blocks can be combined in any order and/or in parallel to implement the process. For discussion purposes, the processes are described with reference to FIG. 4-7, although it may be implemented in other system architectures.
  • Referring to FIG. 4, a flowchart of process 400 performed by processor 304 when executing the software instructions in application 320 is shown. Process 400 includes blocks 402-410. When application 320 is executed on the controller 300, it uses the processor 304 and instructions in modules 330-336 that are shown in FIG. 3.
  • In the process 400, the controller device 300 (FIG. 3) in block 402 performs a system check to determine that all sensors and controllers (previously described) are operational. System check may check a battery charge level, monitor communications, check sensor working condition, and load maps.
  • In block 402, controller device 300 (also referred to herein as controller 300) performs a control loop to determine if the controller 300 will conduct a first run, a charge operation, or a discharge operation. Such determination is based on the current or previous operating state of the controller. If controller 300 is in its initial operation, it performs the first run learn operation in block 404. If controller has performed its first run/learn operation it performs the charge operation by directing the solar collector 200 to an optimum location and collect energy from the sun. If the controller 300 has determined that the battery has charged to a predetermined level, or that charging is no longer an option (due to weather, user preference or nighttime), controller 300 performs a discharge/return operation. Control loop may also include determining map completeness, time, weather, battery level, location, and system health.
  • In block 404, the controller device 300 does a first run/learn operation. Further details of this operation are described in FIG. 5.
  • In block 406, controller device 300 performs a charge operation. Further details of this operation are described in FIG. 6.
  • In block 408, controller device performs a discharge return operation. Further details of this operation are described in FIG. 7.
  • Referring to FIG. 5, a flowchart of process 500 performed by processor 304 when executing the software instructions in application 320 is shown. Referring to FIG. 5, there is shown the start initial run operation 500.
  • In block 502, controller 300 determines it location by obtaining information from the GPS device. Controller 300 may also perform a weather check and a calendar check.
  • In block 504, controller 300 directs the transport unit 127 of the mobile solar collecting device 100 to map the terrain of the yard/area. The boundary of the yard may be pre-entered into the mobile solar collecting device from an external source.
  • In block 506, the controller 300 avoids objects during the mapping process using a camera or vision sensor.
  • In block 508, the controller 300 creates and stores a map of the terrain.
  • In block 510, the controller 300 creates a map of solar conditions detected during the mapping.
  • In block 512, the controller 300 uploads to the map and solar condition data to a backup storage device.
  • Referring to FIG. 6, a flowchart of process 600 performed by processor 304 when executing the software instructions in application 320 is shown. Referring to FIG. 6, there is shown the charge operation 600.
  • In block 602, a determination is made by the controller 300 if it is time to charge the battery with solar energy. Such a determination may be made based on whether, time of day and user preference.
  • In block 604, a criterion is used by controller 300 to undock the mobile solar collecting device 100 from a connector at the structure. Such criteria may be set based on time of day and/or time of year, weather, a command from a user, a signal from a server, or a signal from a controller on another solar collecting device.
  • In block 606, controller 300 determines the ideal/optimal location to obtain sun. The controller 300 may use one or more of the prior stored maps, longitudinal/latitudinal GPS information, solar map, whether reports, time of year and time of day information to obtain this optimum location.
  • In block 608, the controller 300 direct the transport system to the optimal location, sets up the solar panel with the correct angle and starts to charge the battery using solar energy collected from the solar panel.
  • In block 610, the controller 300 determines the health, rate and change of conditions of the battery charging. If the health/battery charging rate is good (but not best), the angle of the panel can be adjusted by controller in block 612 to receive a maximum charge from the sun. If the controller 300 determines health/battery charging rate is weak, the controller will note that the location may need to be changes and then the controller executes block 606 to determine an optimum location.
  • If the controller 300 in block 614 determines that the battery is full or that conditions are not ideal for charging (based on a predetermined criteria—time of day, bad weather), the controller 300 in block 616 navigates the solar collecting device 100 home (See FIG. 7) or to a predetermined safe location.
  • Referring to FIG. 7, a flowchart of process 700 performed by processor 304 when executing the software instructions in application 320 is shown. Referring to FIG. 7, there is shown the discharge return operation 700.
  • In block 702, controller 300 determines if the mobile solar collecting device should move home or if not move to a safe location. If the collecting device 100 should move to a safe location then in block 704, controller 300 directs the collecting device to move to the closest predetermined safe location.
  • In block 706 controller 300 using by monitoring sensors (see FIG. 1) determines if the collecting device 100 is closer to the safe location. If it is not the controller directs the collecting device 100 to move in block 704. If the collecting device 100 has reached the safe location, in block 708 the controller 300 directs the collecting device 300 to park and transmits its location to a remote device.
  • If controller determines that the collecting device should move home, in block 710, controller 300 directs the transport unit to move collecting device 100 toward home.
  • In block 712 controller 300 using by monitoring sensors (see FIG. 1) determines if the collecting device 100 is closer to the home location. If the collecting device is not closer, the controller 300 directs the collecting device 100 to move in block 710.
  • In block 714, the controller 300 directs the power connector to align with the power connector on the home structure using the camera.
  • In block 716, the controller 300 directs the collecting device power connector to plug into the power connector on the home structure using the camera.
  • In block 718, the controller 300 runs a diagnostic to ensure a proper connection and all discharge circuitry of the collecting device 100 is operating within correct limits.
  • In block 720, the controller 300 directs the battery controller to discharge the battery to a predetermined level by offloading energy in the battery to the power grid/home battery.
  • Referring to FIG. 8A-C and FIG. 9 there is shown a front side view, right side view, top side view, and top view without the solar panel attached of the collecting device 800 (device 900 in FIG. 9) respectively. Collecting device 800 includes a sensor array 802 (camera, distance sensor, solar sensor, mapping array and GPS detector). Collecting device 800 also includes a solar panel 804, track assembly 806 (also referred to as transport assembly), and chassis 808. Connected to chassis 808 is lift arm 810, which controls the angular lean and angle with respect to the horizon of solar panel 804.
  • Referring to FIG. 9, collecting device 900 includes discharge port 902 coupled with battery 904 and control unit 906.
  • Referring to FIG. 10, there is shown an exemplary connector 1000 of discharge port 902 (FIG. 9) that mates with an exemplary receptacle 1002. Receptacle 1002 may be mounted to a home, dwelling, or building for transfer of electrical power discharged from battery 904 to a grid in the building.
  • Referring to FIG. 11, there is shown an exemplary solar panel power connector 1100 (also referred to herein as a plug) coupled with a receptacle 1102 of a building electrical grid 1104. Grid 1104 includes a discharge receive and battery storage circuitry 1106 coupled to a Direct Current (DC) to Alternating Current (AC) converter circuit 1108 coupled with the electrical system wiring/grid/line 1110 of a building (such as a home or an office building).
  • During a discharge operation, the plug 1100 of the collecting device (e.g. device 100 in FIG. 1) couples with receptacle 1102. Electrical power is discharged from collecting device through receptacle 1102 to discharge and storage circuitry 1104 where the electrical energy may be stored. The electrical energy may then be converted from DC to AC using converter circuit 1108 and then fed to grid/line 1110.
  • While the above detailed description has shown, described and identified several novel features of the invention as applied to a preferred embodiment, it will be understood that various omissions, substitutions and changes in the form and details of the described embodiments may be made by those skilled in the art without departing from the spirit of the invention. Accordingly, the scope of the invention should not be limited to the foregoing discussion, but should be defined by the appended claims.

Claims (19)

What is claimed is:
1. A mobile solar collecting device comprising:
an adjustable solar collecting device;
an electronic storage unit to store electric energy collected by the adjustable solar collecting device;
a first power connecter to electrically engage with a second power connector affixed to a structure to feed electricity to an electric power grid;
a transport unit to move the adjustable solar collecting device; and
a controller to direct the transport unit to move the adjustable solar collecting device to one of a plurality of optimum solar collecting locations, to adjust an orientation of the adjustable solar collecting device to obtain maximum energy from a sun to store in the electronic storage unit, and to direct the transport unit to move the adjustable solar collecting device to a location where the first power connector electrically engages with the second power connector to off load energy in the electronic storage unit to the electric power grid,
2. The mobile solar collecting device as recited in claim 1, wherein the electric power grid is disposed within a building,
3. The mobile solar collecting device as recited in claim 1, wherein the transport unit has motorized wheels or a half track.
4. The mobile solar collecting device as recited in claim 1, wherein the controller is operable to provide an indication to the transport unit to move the adjustable solar collecting device away from the structure to one of a plurality of predetermined optimum solar collecting locations in a yard of a home or an office.
5. The mobile solar collecting device as recited in claim 1, wherein controller directs the transport unit to move the adjustable solar collecting device to the optimum solar collecting locations that are free from obstructions between the adjustable solar collecting device and a sun.
6. The mobile solar collecting device as recited in claim 1 further comprising a light sensor to detect one or more shadows on or adjacent to the adjustable solar collecting device, and to feed a signal to the controller to direct the transport unit to move the adjustable solar collecting device to another of the plurality of optimum solar collecting locations in response to detecting the one or more shadows.
7. The mobile solar collecting device as recited in claim 1, wherein the controller is operative to adjust the orientation of the adjustable solar collecting device by changing an angular orientation of the adjustable solar collection device with respect to a horizon.
8. The mobile solar collecting device as recited in claim 1, wherein the controller directs the transport unit to move the adjustable solar collecting device to a location where the first power connector electrically engages with the second power connector to off load energy in the electronic storage unit to the power grid in response to determining the electrical storage unit has collected a predetermined amount of energy. A method for collecting and storing solar energy with a mobile solar collection device that includes an adjustable solar collecting device, an electronic storage unit, a first power connecter, a transport unit, and a controller, the method comprising:
collecting energy provided by a sun with the adjustable solar collecting device;
storing electric energy collected by the mobile solar collecting device with the electronic storage unit;
directing the transport unit with the controller to move the adjustable solar collecting device to one of a plurality of predetermined optimum solar collecting locations;
adjusting an orientation of the adjustable solar collecting device to obtain maximum energy from a sun to store in the electronic storage unit;
directing the transport unit to move the mobile solar collecting device to a location where the power connector electrically engages with a power connector affixed to a structure to off load energy in the electronic storage unit to the power grid; and
electrically engaging the first power connecter to with a second power connector affixed to a structure to feed electricity to a power grid within a building.
10. The method for collecting and storing solar energy as recited in claim 9, wherein directing the transport unit with the controller to move the adjustable solar collecting device to one of a plurality of optimum solar collecting locations includes directing the transport unit with the controller to move the adjustable solar collecting device away from the structure to one of a plurality of predetermined optimum solar collecting locations in a yard of a home or office.
11. The method for collecting and storing solar energy as recited in claim 9, wherein directing the transport unit with the controller to move the adjustable solar collecting device to one of a plurality of predetermined optimum solar collecting locations includes:
directing the transport unit with the controller to move the adjustable solar collecting device to one of a plurality of predetermined optimum solar collecting locations that are free from obstructions between the solar collecting device and a sun.
12. The method for collecting and storing solar energy as recited in claim 9, further comprising detecting with a light sensor one or more shadows on or adjacent to the adjustable solar collecting device, and directing the transport unit to move the mobile adjustable collecting device to another of a plurality of optimum solar collecting locations in response to detecting the one or more shadows.
13. The method for collecting and storing solar energy as recited in claim 9, wherein adjusting an orientation of the adjustable solar collecting device includes changing an angular orientation of the adjustable solar collection device with respect to a horizon.
14. The method for collecting and storing solar energy as recited in claim 9, wherein directing the transport unit to move the adjustable solar collecting device to a location where the first power connector electrically engages with the second power connector affixed to a structure to off load energy in the electronic storage unit to the power grid includes:
directing the transport unit to move the adjustable solar collecting device to a location where the first power connector electrically engages with the second power connector affixed to a structure to off load energy in the electronic storage unit to the power grid in response to the controller determining the solar collection device has collected predetermined amount of energy.
15. The method for collecting and storing solar energy as recited in claim 9 further comprising electrically engaging the first power connector with the second power connector to off load energy in the electronic storage unit to the power grid.
16. A system for collecting and storing solar energy comprising:
a building including an in internal power grid;
a building power connector affixed to a structure to feed electricity to the internal power grid;
a first mobile solar collecting device including:
an adjustable solar panel;
an electronic storage unit to store electric energy collected by the adjustable solar panel;
a first power connecter to electrically engage with the building power connector to feed electricity to the power grid;
a motorized transport unit to move the adjustable solar panel; and
a controller to direct the transport unit to move the first mobile solar collecting device away from the structure to one of a plurality of predetermined optimum solar collecting locations free from obstructions between the adjustable solar panel and the sun, to adjust an orientation of the adjustable solar panel to direct the transport unit to move the first mobile solar collecting device to a location where the first power connector electrically engages with the second power connector to off load energy in the electronic storage unit to the power grid.
17. The system as recited in claim 16 wherein the controller adjusts the angular orientation of the adjustable solar pan& with respect to the horizon to obtain maximum energy from a sun to store in the electronic storage unit in response to the controller determining the electronic storage unit has stored a predetermined amount of energy.
18. The system as recited in claim 16 wherein the controller changes the angular orientation of the adjustable solar panel with respect to the horizon to obtain maximum energy from a sun to store in the electronic storage unit, in response to at least one of command from operator, weather, sunlight or time of day.
19. The system as recited in claim 16 further comprising a light sensor to detect one or more shadows on or adjacent to the adjustable solar panel, and to provide an indication signal to the controller to direct the transport unit to move the adjustable solar pan& to another of a plurality of optimum solar collecting locations in response to the light sensor detecting the one or more shadows.
20. The system as recited in claim 16 further comprising a second mobile solar collecting device having a second adjustable solar panel, an electronic storage unit, a power connecter, a transport unit, and a second controller, the second controller in electronic communication with the controller of the first mobile solar collecting device to direct the transport unit of the second mobile solar collecting device to move the second mobile solar collecting device away from the first mobile solar collecting device to another one of the plurality of predetermined optimum solar collecting locations free from obstructions between an adjustable solar panel of the second mobile solar collection device and the sun.
US16/988,588 2019-07-02 2020-08-07 Solar Collection Device and Method Abandoned US20210126573A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/988,588 US20210126573A1 (en) 2019-07-02 2020-08-07 Solar Collection Device and Method
US17/026,169 US10978989B1 (en) 2020-08-07 2020-09-19 Solar collection device and method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201962870041P 2019-07-02 2019-07-02
US16/988,588 US20210126573A1 (en) 2019-07-02 2020-08-07 Solar Collection Device and Method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/026,169 Continuation-In-Part US10978989B1 (en) 2020-08-07 2020-09-19 Solar collection device and method

Publications (1)

Publication Number Publication Date
US20210126573A1 true US20210126573A1 (en) 2021-04-29

Family

ID=74065876

Family Applications (2)

Application Number Title Priority Date Filing Date
US16/919,496 Active 2040-12-14 US11330352B2 (en) 2019-07-02 2020-07-02 Audio microphone stand
US16/988,588 Abandoned US20210126573A1 (en) 2019-07-02 2020-08-07 Solar Collection Device and Method

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US16/919,496 Active 2040-12-14 US11330352B2 (en) 2019-07-02 2020-07-02 Audio microphone stand

Country Status (1)

Country Link
US (2) US11330352B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220325860A1 (en) * 2021-04-12 2022-10-13 Gary Thomas Osborne Apparatus for a solar light

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD970483S1 (en) * 2022-02-27 2022-11-22 Shenzhen Xunweijia Technology Development Co., Ltd. Microphone stand

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011138900A (en) * 2009-12-28 2011-07-14 Sanyo Electric Co Ltd Apparatus for control of solar cell panel

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4178624A (en) * 1975-09-11 1979-12-11 Westinghouse Electric Corp. Control center with insulated bus bars
US4691886A (en) * 1985-04-18 1987-09-08 Texas Instruments Incorporated Adjustable display stand
GB2189210B (en) * 1986-04-19 1990-03-21 Ibm Counterbalanced support
US4844387A (en) * 1986-12-31 1989-07-04 Hunt Holdings, Inc. Monitor arm apparatus
RU2656553C2 (en) * 2012-12-19 2018-06-05 Конинклейке Филипс Н.В. Ultrasound system control panel and display lift
CN214198015U (en) * 2021-01-09 2021-09-14 潘世才 Computer folding support capable of adjusting height and angle

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011138900A (en) * 2009-12-28 2011-07-14 Sanyo Electric Co Ltd Apparatus for control of solar cell panel

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JP2011138900 English translation (Year: 2011) *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220325860A1 (en) * 2021-04-12 2022-10-13 Gary Thomas Osborne Apparatus for a solar light
US11754239B2 (en) * 2021-04-12 2023-09-12 Gary Thomas Osborne Apparatus for a solar light

Also Published As

Publication number Publication date
US20210006882A1 (en) 2021-01-07
US11330352B2 (en) 2022-05-10

Similar Documents

Publication Publication Date Title
US10978989B1 (en) Solar collection device and method
US20210126573A1 (en) Solar Collection Device and Method
US20240297613A1 (en) Methods and systems for detecting shading for solar trackers
EP3940950B1 (en) Photovoltaic system
KR101253338B1 (en) Backtacking method and system of solar tracker system
CN105589506A (en) Power tracking method and device and photovoltaic power generation system
KR20190057974A (en) System of monitoring photovoltaic power generation
KR101114240B1 (en) Multi zone-inverter photovoltaic power generation system
US11962267B2 (en) Systems and methods for providing active shade mitigation for a solar module
US11894802B2 (en) Solar module racking system
CN105094156A (en) Cup-type distribution photovoltaic power generation self-tracking system and control method
CN104881076A (en) Selective multi-phase maximum power point tracking
CN103941754A (en) Variable time interval start-stop sun light tracking system for photovoltaic power generation and method
US20230231518A1 (en) Method and apparatus for performing fault detection, and photovoltaic power generation system
CN109682356B (en) Automatic measuring device based on laser reference plane
KR20090121063A (en) Robot for applying solar battery and method thereof
CN114679133A (en) Photovoltaic array abnormity judgment method, medium and equipment based on power generation prediction
CN111113443B (en) Intelligent accompanying robot with multiple energy supply modes
KR101918153B1 (en) Solar power generator
US20200244215A1 (en) Photovoltaic system
CN103105157B (en) Sunlight irradiation position coordinate monitor
EP4356432A1 (en) Solar module racking system
CN111487961A (en) Method and system for controlling working range of walking device, intelligent terminal and storage medium
CN108514389A (en) A kind of control method of intelligent cleaning equipment
KR101113047B1 (en) Multizone single inverter photovoltaic power generation system

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: APPLICATION DISPATCHED FROM PREEXAM, NOT YET DOCKETED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION