US20210117901A1 - Systems and methods for worker resource management - Google Patents

Systems and methods for worker resource management Download PDF

Info

Publication number
US20210117901A1
US20210117901A1 US17/111,164 US202017111164A US2021117901A1 US 20210117901 A1 US20210117901 A1 US 20210117901A1 US 202017111164 A US202017111164 A US 202017111164A US 2021117901 A1 US2021117901 A1 US 2021117901A1
Authority
US
United States
Prior art keywords
user
patent application
voice
worker
mobile terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
US17/111,164
Inventor
Mohit Raj
Saurabh Mittal
Kaushik Hazra
Krishna Udupi
Neeraj Singh
Amal Vaish
Amit Kumar
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vocollect Inc
Original Assignee
Vocollect Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=55792271&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20210117901(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Vocollect Inc filed Critical Vocollect Inc
Priority to US17/111,164 priority Critical patent/US20210117901A1/en
Assigned to VOCOLLECT, INC. reassignment VOCOLLECT, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HAZRA, Kaushik, KUMAR, AMIT, MITTAL, Saurabh, RAJ, Mohit, SINGH, NEERAJ, UDUPI, Krishna, VAISH, Amal
Publication of US20210117901A1 publication Critical patent/US20210117901A1/en
Priority to US18/327,673 priority patent/US20230306353A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0639Performance analysis of employees; Performance analysis of enterprise or organisation operations
    • G06Q10/06398Performance of employee with respect to a job function

Definitions

  • Embodiments of the present invention relate to the field of worker resource management and, more specifically, to worker resource management in a warehouse environment.
  • Wearable, mobile, and/or portable computer terminals are used for a wide variety of tasks. Such terminals allow workers to maintain mobility, while providing the user with desirable computing, data gathering, and data-processing functions. Furthermore, such terminals often provide a communication link to a larger, more centralized computer system.
  • WMS warehouse management system
  • a WMS generally involves product distribution and inventory management.
  • VOCOLLECT VOICE SOLUTIONSTM from Honeywell International, Inc.
  • An overall integrated management system may utilize a central computer system that runs a program for product tracking/management and for order-filling via shipping.
  • a plurality of mobile terminals may be employed within the system so that workers may communicate with the central system in relation to product handling and other related tasks.
  • One particularly efficient system is a voice-directed system that utilizes a voice-directed workflow. More specifically, to provide an interface between the central computer system and the workers or other users, such wearable terminals and the central systems to which they are connected are often voice-driven or speech-driven (e.g., operated or controlled at least in part using human speech).
  • a bi-directional communication stream of information i.e., a dialog
  • Information received by each wireless wearable terminal from the central system may be translated from text into voice instructions or commands for the corresponding worker.
  • the mobile terminals and voice-directed work provide a significant efficiency in the performance of the workers' tasks. Specifically, using such terminals, the data-processing work is done virtually hands-free without cumbersome equipment to juggle or paperwork to carry around.
  • the worker wears a headset which is communicatively coupled to a wearable or portable terminal.
  • the headset has a microphone for voice data entry and an ear speaker for playing instructions (e.g., voice instructions).
  • voice instructions e.g., voice instructions
  • the workers are able to receive voice instructions regarding assigned tasks, ask questions, report the progress of tasks, and report working conditions such as inventory shortages.
  • an overall integrated management system generally involves a combination of a central computer system for tracking and management, mobile devices (e.g., wearable terminals), and the users who use and interface with the computer system.
  • mobile devices e.g., wearable terminals
  • Such users may be in the form of workers/operators such as order fillers and pickers (e.g., selection operators picking and placing items), or supervisors that access and monitor the system information.
  • the workers handle the manual aspects of the integrated management system under the command and control of information transmitted from the central computer system to the wireless wearable terminal.
  • An illustrative example of a set of tasks suitable for a wireless wearable terminal with voice capabilities may involve initially welcoming the worker to the computerized inventory management system and defining a particular task or order, for example, filling a load for a particular delivery vehicle scheduled to depart from a warehouse at a certain specified time.
  • the worker may then answer with a particular area (e.g., “working in freezer area”) that he will be working in order to fill that given order.
  • the worker may then be directed to pick items to fill a pallet or bin used for the order.
  • the system may vocally direct the worker to a particular aisle and bin to pick a particular quantity of an item.
  • the worker may vocally confirm the locations visited, the number of picked items, and/or various other information relating to worker activities.
  • the system may then direct the worker to a loading dock or bay for a particular truck or other delivery vehicle that will receive that order.
  • the specific communications between the wireless wearable terminal and the central computer system for such voice-directed work can be task-specific and highly variable.
  • the terminals may also allow the workers to interface with the computer system for other activities such as when they are starting/ending a shift (i.e., logging in or out of the system), and when starting/ending a break activity.
  • a shift i.e., logging in or out of the system
  • the worker may report to the computer system through the headset using standard break vocabulary such as “take a break” followed by the type of break the worker wishes to take (e.g., lunch break, coffee break, etc.).
  • workers may be checked and monitored by management based upon their performance with regard to multiple parameters. These parameters car include, but are not limited to, the workers' work rate (i.e., the pace at which the worker is performing their assigned tasks) and the workers' break durations. It is difficult in existing systems, however, to ascertain the workers' idle duration around reported break activities (i.e., before and after breaks). Determining worker idle duration around reported break activities is useful information for a supervisor because workers may generally cease or slow work activity before reporting break activities and/or after reporting returning from break activities. Although such worker idleness around break activities may affect the workers' overall work rate, in some cases workers may be able to achieve an acceptable work rate without having attracted attention from the supervisor.
  • the workers' work rate i.e., the pace at which the worker is performing their assigned tasks
  • the workers' break durations It is difficult in existing systems, however, to ascertain the workers' idle duration around reported break activities (i.e., before and after breaks). Determining worker idle duration around reported break activities is useful information for a supervisor
  • the management system would not be providing potentially useful information to the supervisor regarding whether the work assigned to the worker is less than his or her capability, or if the workload in general can be increased for all the workers. This adversely affects the warehouse performance in terms of completing the work in a stipulated time period, and can result in problems for warehouse supervisors such as delayed assignments, required overtime, and related expenses causing cost overruns.
  • a worker may be working in an assigned team of workers for a given task relating to, for example, preparing an order for delivery to a customer.
  • One worker in the group may be trying to slow the pace of the teams' work, and it is difficult to identify or flag this worker in real time. Identification may be possible based upon a periodic work rate report, but by the time the report issues harm has already been done to the warehouse operations (e.g., to the delivery schedules).
  • Existing management systems and methods do not provide an effective way to determine, in real-time, which worker is causing delay.
  • delays may only become visible only towards a shifts' end, or at a periodic situational evaluation by supervisor. It might be too late at this point to take any remedial measures based upon the delay, and even if measures are taken there may be cost overruns in worker overtime or customer dissatisfaction (or both).
  • a warehouse could be divided among teams working in different regions or there could be an allocation of groups of workers per truck route. While one team may be struggling to finish assigned work towards the end of shift, the other team may have become idle an hour before. In such cases, there is a need for a system which can forewarn the onset of a problematic situation relating to resource management.
  • the present invention embraces a worker resource management system including a voice-directed mobile terminal for facilitating a dialog between a user and the voice-directed mobile terminal.
  • the system may include a computer in communication with the voice-directed mobile terminal, the computer including a worker resource analysis module.
  • the worker resource analysis module may be configured to receive user activity information from the voice-directed mobile terminal, and identify user productivity patterns based at least in part upon the user activity information.
  • the system includes a visual display in communication with the computer.
  • the visual display provides reports corresponding to user productivity patterns.
  • the visual display provides alerts corresponding to user productivity patterns.
  • the worker resource analysis module is configured to classify user activity information into groups including user workflow tasks, user sign-in activity, user sign-out activity, user break activity, and/or user region changes.
  • the user productivity patterns include user break duration, user idle time after sign-in, user idle time before sign-off, user idle time before beginning break activity, and/or user idle time after returning from break activity.
  • the user productivity patterns are identified at fixed interval time periods immediately preceding the current identification time.
  • the user productivity patterns identified are flagged based upon the most recent interval period immediately preceding a current identification time.
  • the present invention embraces a worker resource management system including a voice-directed mobile terminal for facilitating a dialog between a user and the voice-directed mobile terminal.
  • the system may also include a computer in communication with the voice-directed mobile terminal, the computer including a worker resource analysis module.
  • the worker resource analysis module may be configured to receive user activity information from the voice-directed mobile terminal, and provide work assessment predictions based at least in part upon user activity information received.
  • the system includes a visual display in communication with the computer.
  • the visual display provides reports or alerts corresponding to the work assessment predictions.
  • the work assessment predictions include information that more workers are needed in a region.
  • the work assessment predictions include information that a delivery vehicle will be delayed beyond scheduled departure time.
  • the work assessment predictions are based upon the number of work units remaining in a warehouse region, the number of workers present in a warehouse region's workforce, and/or the rate at which work is being completed in a warehouse region.
  • the present invention embraces a method for managing worker resources including transmitting task data from a server computer to a voice-directed mobile terminal in communication with the server. Speech-based instructions associated with the task data may be provided to a user using the voice-directed mobile terminal. User activity information may be received from the voice-directed mobile terminal. The user activity information may be analyzed to identify user productivity patterns or provide work assessment predictions. Worker resource management decisions may be implemented by management in response to the user activity information analysis.
  • the user productivity patterns include user break duration, user idle time after sign-in, user idle time after sign-off, user idle time before beginning break activity, and/or user idle time after returning from break activity.
  • the worker resource decisions include providing a productivity compliance alert to a worker based upon break duration compliance.
  • the worker resource decisions include transferring a worker to a second work region from a first work region.
  • FIG. 1 is a perspective view of a worker using an exemplary voice-directed mobile terminal in accordance with one embodiment of a worker resource management system of the present disclosure.
  • FIG. 2 is a block diagram illustrating certain components of an exemplary worker resource management system according to the present disclosure.
  • FIG. 3 is a graphical illustration depicting an exemplary warehouse region divided into time interval segments.
  • FIG. 4 is a graphical illustration depicting time interval segments for an exemplary warehouse region in line format.
  • Embodiments of the present invention embrace systems and methods for worker resource management.
  • the exemplary worker resource systems track and provide supervisors or other management with timely updates, analysis, and predictions relating to workforce management so that problems can be identified and addressed in real-time.
  • at least a portion of the analyzed data is generated by, or used in connection with, a voice-directed mobile terminal.
  • FIG. 1 depicts an exemplary voice-directed mobile terminal 10 that may be used with embodiments of the worker resource management system according to the present invention.
  • the voice-directed mobile terminal 10 may be a wearable device, which may be worn by a worker 11 (e.g., on a belt 14 as shown), or by some other user or operator. This allows for hands-free operation.
  • the voice-directed mobile terminal 10 might also be manually carried or otherwise mounted on a piece of equipment such as an industrial vehicle (e.g., a forklift).
  • the worker 11 is shown in FIG. 1 operating a pallet jack 13 , which is a piece of transportation equipment that may be utilized by a worker in a warehouse environment.
  • terminal is not limiting and may include any similar computer, device, machine, smartphone, smartwatch, indicia reader, combination, or system.
  • the voice-directed mobile terminal may include multiple pieces with separate housings or may be contained in a single housing similar to the embodiment shown in FIG. 1 . Therefore, the terminal may also include multiple wearable pieces.
  • some or all of the terminal functionality may be incorporated into the headset, which may include all the features required to communicate with a server or external computer. Therefore, the exact form of the voice-directed mobile terminal utilized to practice the present systems and methods is not limited to only the embodiments shown in the drawings.
  • the descriptive term “worker” or “operator” as set forth herein may be more specifically used in reference to workers/operators that perform work on the floor in a manufacturing environment or work on the floor of a warehouse (e.g., fillers, pickers, etc.). Such workers/operators would typically be the users of mobile terminal 10 in connection with the exemplary system.
  • other “users” that interface with the exemplary systems may be described using the descriptive term “supervisor.”
  • “supervisor” is generally in reference to a supervisor of workers/operators. The supervisors would generally have access to the graphical interface or display of the exemplary system as described below.
  • the use of the descriptive terms “worker/operator” and “supervisor” in relation to users of the exemplary systems are not limiting and may include any similar member of an organization (staff member, manager, etc.).
  • the voice-directed mobile terminal 10 is typically a voice-driver device in that it includes speech interfaces to permit a worker 11 to communicate, using speech or voice, with an external computer such as server computer 20 as illustrated in FIG. 2 .
  • the voice-generated mobile terminal's speech interfaces are configured to be capable of permitting multiple different workers to communicate with the server computer as illustrated at FIG. 2 (e.g., using speech-recognition technology that recognizes different English dialects, different languages, etc.).
  • the server computer 20 may be one or, more typically, a plurality of computers having software stored thereon.
  • the server computer 20 may run one or more system software packages for handling/executing a particular task or set of tasks, such as inventory and warehouse management systems (which are available in various commercial forms), or any other systems where multiple tasks are handled by multiple workers.
  • the server computer 20 may be any of a variety of different computers, including both client and server computers working together, and/or databases, and/or systems necessary to interface with multiple voice-directed mobile terminals 10 and associated with multiple different workers, to provide the work tasks that may be related to the products or other items handled in the voice-directed work environment.
  • the server computer 20 may include a Warehouse Management System (WMS), a database, and a Web application (not explicitly shown).
  • WMS Warehouse Management System
  • the server computer 20 might also include a computer for programming and managing the individual voice-directed mobile terminals 10 .
  • the server computer 20 may be located at one facility or be distributed at geographically distinct facilities.
  • the server computer 20 may include a proxy server. Therefore, the server computer 20 is not limited in scope to a specific configuration.
  • the voice-directed mobile terminals 10 may be stand-alone devices which interface directly with a worker 11 without a server computer. Therefore, various aspects of the present disclosure might be handled with voice-directed mobile terminals only. Usually, however, to have sufficient database capability to handle large amounts of information, a server computer is desirable.
  • the voice-directed mobile terminal 10 communicates with the server computer 20 using a wireless communication link 22 ( FIG. 2 ).
  • the wireless link may be established through an appropriate wireless communication format (e.g., 802.11b/g/n) and may use one or more wireless access points that are coupled to the server computer 20 and accessed by the voice-directed mobile terminal 10 .
  • an appropriate wireless communication format e.g., 802.11b/g/n
  • one or more peripheral devices including a headset 16 (e.g., earpiece, earbuds, etc.), are coupled to the voice-directed mobile terminal 10 .
  • the headset 16 may be coupled to the voice-directed mobile terminal 10 through a wired connection such as cord 18 or by a wireless headset connection illustrated in FIG. 1 as reference numeral 19 (e.g., using the BLUETOOTH wireless protocol).
  • the headset 16 may be worn on the head of the user/worker 11 and may use a microphone 21 for directing voice responses and activity reports to the voice-directed mobile terminal 10 .
  • a headset speaker 17 provides (e.g., plays) voice commands to the worker 11 .
  • the voice-directed mobile terminal 10 thus carries on a speech dialog with a worker 11 and provides hands-free operation and voice-directed movement throughout a warehouse or other facility.
  • the present disclosure is not limited to speech-directed terminals.
  • the present disclosure embraces any terminal that carries on a dialog via speech, text (e.g., through a keyboard), gestures, or other communicative activity, with a worker/operator (or other user).
  • the server computer 20 includes a tasking module 25 for transmitting specific task data (e.g., picking instructions, training information, scheduling information, or other information associated with a request for a worker to perform some task or provide some information) to the voice-directed mobile terminal 10 .
  • specific task data e.g., picking instructions, training information, scheduling information, or other information associated with a request for a worker to perform some task or provide some information
  • the tasking module 25 is a software module stored on the server computer 20 .
  • the tasking module 25 may be a hardware module, or a combination of hardware and software.
  • the voice-directed mobile terminal 10 may use the task data received from the tasking module 25 to generate audio outputs at the headsets and speakers.
  • text data may be converted using a text-to-speech (TTS) interface to provide voice direction to a worker.
  • TTS text-to-speech
  • Speech input or feedback from a worker is generated at the headset microphone 21 and transmitted to the voice-directed mobile terminal 10 where it is processed by speech recognition circuitry or other speech processing circuitry (e.g., speech recognition software). Any data that is obtained from the voice dialog (e.g., worker speech data) may then be relayed to the server computer 20 .
  • the voice-directed mobile terminal 10 receives instructions (e.g., task data) from the tasking module 25 and converts those instructions into an audio transmission (e.g., audio file) to be heard by a worker/operator 11 via a speaker 17 .
  • the worker executes the audio instructions and, for example, goes to a designated location and picks a designated product or performs some other task communicated by the audio instructions.
  • the worker 11 replies into the microphone 21 , in a spoken language, such as with a verification of a location and/or a product, and the audio reply is converted to a useable data format (e.g., worker speech data) to be sent back and processed by the server computer 20 . That is, in the voice-directed or speech directed work context, the worker 11 maintains a speech dialog (e.g., workflow dialog) with the voice-directed mobile terminal 10 and/or server computer 20 to execute and complete a variety of tasks.
  • a speech dialog e.g., workflow dialog
  • all worker 11 dialog interactions through the system 100 may be recorded with a timestamp and maintained by the server computer 10 by a worker resource analysis module 30 .
  • the server computer 20 maintains information or data relating the user/worker 11 activity or inactivity. For example, when the operator 11 begins his or her shift, starting from that point until the operator 11 logs out of the system 100 at end of the shift the activities of the worker 11 are recorded.
  • Activities of the worker 11 that are recorded may be classified by worker resource analysis module 30 .
  • Classification types can include, for example, the particular workflow on which worker was working (e.g., selection, replenishment, etc.), sign in, sign out, break, region changes, etc.
  • the worker resource analysis module 30 is a software module stored on the server computer 20 .
  • the worker resource analysis module 30 may be a hardware module, or a combination of hardware and software.
  • the worker resource analysis module 30 generates, based at least in part upon an analysis of the worker activity dialog between the voice-directed mobile terminal 10 and the worker 11 , productivity data.
  • the productivity data relates to the analysis of information relating to user/worker 11 activity or inactivity.
  • the productivity information provided by the worker resource analysis module 30 includes determinations relating to idle time around worker sign on/off and worker breaks.
  • the worker resource analysis module 30 may calculate the time that elapses between the tasking module 25 assigning work and the information relating to user 11 activities such as sign on, break, and sign off events. All such calculations, except for sign on data, may be based on the 24-hour period preceding the current time that an analysis occurs.
  • the above noted reports or alerts can be evaluated by the module 30 at fixed time intervals; i.e., running every “X” minutes. Each run could consider the system 100 activity based upon the current time period minus “X” number of minutes. This would ensure that no stale data or past activity creeps into the current productivity report or alert that is provided to the supervisor for addressing a problem.
  • a worker 11 may enter a “take a break” activity at 11:00 am.
  • the worker's break activity may extend beyond ten minutes, while the acceptable break duration for evaluation purposes may only be five minutes.
  • System evaluation by the worker resource module 30 may be scheduled to occur at five minute intervals.
  • the worker 11 would be flagged by the system 100 (e.g., the supervisor would be alerted).
  • the system 100 would assume normalcy and no further action would be assumed. This is possible because only a delta of system activity between 11:06 am-11:11 am was considered by the system (i.e., the current time minus “X” number of minutes where X is equal to five minutes in this example).
  • Exemplary implementation scenarios where workers productivity/idleness patterns can be monitored by the worker resource analysis module 30 are:
  • the frequency of evaluation period could be set proportional to how critical the monitored situation activity is.
  • the productivity data generated by the worker resource analysis module 30 may be viewed by a workforce supervisor overseeing, for example, the performance of picking operators on a warehouse floor, on a display device 40 (e.g., LCD monitor) that is in communication with the server computer 20 .
  • the communication will typically be wireless communication using a wireless method of communication method (e.g., SMS or text messaging, electronic mail, etc.).
  • the workflow management system 100 may display the productivity data in raw form or in a compiled form (e.g., a summary report).
  • a supervisor may be provided with information regarding the productivity of the workforce (e.g., selection operators working a warehouse floor), a selected subgroup of the workforce, or an individual member of the workforce. In this way, the exemplary worker resource management system 100 according to the present disclosure can provide timely information relating to worker productivity.
  • the worker resource management system 100 is configured to receive and display at least a portion of the productivity data in real time, thereby allowing the workforce manager to take immediate corrective action to remedy the reported problem.
  • a supervisor may utilize the relevant productivity information to, for example, manage operator downtime and break compliance with productivity alerts; use these alerts and various charted data to determine the cause of missed goal rates or work schedules; and/or to make informed management decisions and personnel actions at the right time instead of waiting for shift end reports to identify anomalies in work patterns.
  • worker resource management system 100 can track and compare worker task and activity progress across multiple warehouse regions at given points or intervals of time.
  • worker resource analysis module 30 of system 100 can provide information relating to whether an assigned group/team of workers 11 (e.g., Team 1 ) assigned work in one warehouse region (e.g., Region 1 ) is performing at a faster rate than a team of workers 11 (e.g., Team 2 ) in another region (e.g., Region 2 ) such that the workers 11 of Team 1 will be completing their selected tasks a certain time period (e.g., “X” number of minutes) before the workers 11 of Team 2 will complete their assigned tasks.
  • a certain time period e.g., “X” number of minutes
  • the worker resource analysis module 30 of system 100 can forewarn supervisors regarding the onset of problematic situations with worker resource management reporting and allow the supervisor to take appropriate corrective action.
  • the system 100 can report (e.g., via display device 40 ) if the team of workers 11 working in an exemplary Region 1 is performing better/faster than the workers 11 in Region 2 such that Region 1 work will be completed at a certain time (i.e., “X” minutes) before Region 2 work, which would therefore yield an excess of workers 11 in Region 1 .
  • Some features of the exemplary system 100 include the capability to predict workforce shortages as well as surplus, real-time alerts/reports in response to changes, the ability to integrate with third-party applications, and the ability to monitor/manage the whole of warehouse operations.
  • the worker resource analysis module 30 of the exemplary system 100 may generally use the following information in generating reports/alerts; the work units remaining in a given warehouse region, the current number of workers present in a region's workforce, the current time for assigned work completion in a region, and/or the rate at which work is being completed in a given region (e.g., in units/hour).
  • the exemplary system 100 can observe the described metrics in real-time and provide timely updates to supervisors relating to workload.
  • the system 100 can analyze worker 11 activities/tasks in order to predict when workers 11 will finish picking tasks in a warehouse for items relating to a given delivery route such that the route then can depart for delivery.
  • the worker's loading activities and time may be taken into account for more accurate predictions relating to delivery vehicle loading completion and subsequent delivery vehicle departure.
  • warehouse operational hours can be divided into finite intervals or periods of time (i.e., chunks of time).
  • FIG. 3 illustrates an exemplary warehouse region as a 24-hour time period 50 , and then further divides the region into segments of equal, two-hour time intervals 55 .
  • FIG. 4 illustrates the time intervals 60 in line format stretching into the future from present time, which is designated as “Now.” For example, if the current time (i.e., Now) is 1:00 pm, the next two-hour interval 62 runs to 3:00 pm; the next four-hour interval 64 runs to 5:00 pm; the next six-hour interval 66 runs to 7:00 pm; and the next eight-hour interval 68 runs to 9:00 pm. With intervals 60 established, worker resource analysis requiring a time window may then be considered.
  • workload for a given workforce region/route can be identified based upon the tasking module 25 assignment of the quantity of items to be picked by a worker 11 for the assignments that have a route delivery/departure falling within the given time intervals 60 .
  • the workload calculation for a subsequent interval (e.g., subsequent interval 64 ) will be inclusive of the workload of the previous interval (e.g., interval 62 ). For example, if interval 62 has workload of ten work units, interval 64 will have a workload of ten units plus the additional workload units that are included beyond the duration of interval 62 .
  • the operators/workers 11 that are needed for a given region/route can be determined from the worker 11 activity recorded by the server computer 20 based upon factors including the quantity of items to be picked for the respective interval period, the actual rate at which items are being picked by workers 11 , and the number of currently active/signed in operators 11 .
  • Table 1 (below) is an exemplary operator requirement table noting the operators required for a given workload per exemplary regions (1-3) based upon departure intervals falling within the given intervals. For example, in the “Next” columns for Region 1 worker excess or shortage is listed respectively as ⁇ 8, ⁇ 8, 2, 11, and 24. This reveals an excess of eight operators until the “Next 06-hrs” interval when, due to the number of vehicles scheduled for departure, the work to be completed rises such that in addition to the eight operators, Region 1 now requires two additional workers to fulfill the Region's workload requirements.
  • a number of factors are taken into account by the worker productivity analysis module 30 . This includes the amount of work remaining (e.g., reported in workload units), the current number of workers 11 in the workforce (e.g., the number of users currently signed-in), the current projected time of work completion, and the current rate of work being accomplished (e.g., calculated in work-units/hour). These factors provide a basis for calculating the current demand for resources (e.g., time, workers, etc.). Certain exemplary factors/calculations that may be determined/reported through the worker resource analysis module 30 are set forth as follows:
  • the worker resource analysis module 30 can provide useful reports or alerts to supervisors. For example, reports/alerts may be provided to a supervisor indicating that “X” number of additional workers are needed in a region, that “X” number of workers are surplus in a region, that delivery departure in a region would be delayed by “X” minutes/hours beyond current scheduled departure time, that delivery departure time for a region would be ready “X” minutes/hours before the current scheduled departure time, and/or that the work assigned in a given region would be complete after “X” hours.
  • steps could be taken including transferring “X” number of workers to a region where workers are currently needed from a region where there is a surplus, transferring “X” number of workers from a region where there is a surplus to region where workers are needed, transferring “X” number of workers to the trucks/routes which are most recently scheduled for departures followed by a transfer to the trucks/routes scheduled to depart next, etc.
  • the worker resource analysis module 30 of the exemplary system 100 therefore provides reports/alerts that improve warehouse management as respective regions/routes can be managed for completion at almost the same time.
  • the exemplary system 100 also provides for less disparity in work completion percentage, allows delivery vehicles to depart at a known/scheduled time, allows workforce and other resources to be more effectively utilized, and allows for greater work progress given that worker re-allocation car be monitored in real time.
  • exemplary embodiments of the present disclosure relate to a warehouse setting
  • the present disclosure embraces systems and methods that may be used in connection with other environments.
  • the systems and methods according to the present disclosure may be used in a retail store setting, a pharmacy setting, or a transport vehicle.
  • the term warehouse therefore, is used in its broadest sense and is not intended to limit the application of the disclosure to a particular physical environment.

Landscapes

  • Business, Economics & Management (AREA)
  • Human Resources & Organizations (AREA)
  • Engineering & Computer Science (AREA)
  • Development Economics (AREA)
  • Educational Administration (AREA)
  • Economics (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Strategic Management (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Tourism & Hospitality (AREA)
  • Quality & Reliability (AREA)
  • Operations Research (AREA)
  • General Business, Economics & Management (AREA)
  • Marketing (AREA)
  • Game Theory and Decision Science (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Multimedia (AREA)
  • Health & Medical Sciences (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Human Computer Interaction (AREA)
  • General Engineering & Computer Science (AREA)

Abstract

A worker resource management system may include a voice-directed mobile terminal that enables a dialog between a user and the voice-directed mobile terminal. At least one computer may be in communication with the mobile terminal. The computer can include a worker resource management module that receives and records user activity from the voice-directed mobile terminal. The worker resource management module can identify user productivity patterns and provide work assessment predictions based at least in part upon the user activity that is received and recorded. Management can make worker resource decisions in response to the user productivity patterns identified or the work assessment predictions provided by the worker resource management module.

Description

    CROSS-REFERENCE TO RELATED APPLICATION
  • The present application claims the benefit of Indian Patent Application No. 2944/DEL/2014 for SYSTEMS AND METHODS FOR WORKER RESOURCE MANAGEMENT filed Oct. 15, 2014. The foregoing patent application is hereby incorporated by reference in its entirety.
  • FIELD
  • Embodiments of the present invention relate to the field of worker resource management and, more specifically, to worker resource management in a warehouse environment.
  • BACKGROUND
  • Wearable, mobile, and/or portable computer terminals are used for a wide variety of tasks. Such terminals allow workers to maintain mobility, while providing the user with desirable computing, data gathering, and data-processing functions. Furthermore, such terminals often provide a communication link to a larger, more centralized computer system.
  • One example of a particular use environment for a wearable terminal is in connection with a warehouse management system (WMS). A WMS generally involves product distribution and inventory management. One example of a commercial management system is VOCOLLECT VOICE SOLUTIONS™ from Honeywell International, Inc.
  • An overall integrated management system may utilize a central computer system that runs a program for product tracking/management and for order-filling via shipping. A plurality of mobile terminals may be employed within the system so that workers may communicate with the central system in relation to product handling and other related tasks.
  • One particularly efficient system is a voice-directed system that utilizes a voice-directed workflow. More specifically, to provide an interface between the central computer system and the workers or other users, such wearable terminals and the central systems to which they are connected are often voice-driven or speech-driven (e.g., operated or controlled at least in part using human speech). A bi-directional communication stream of information (i.e., a dialog) may be exchanged, typically over a wireless network, between the wireless wearable terminals and the central computer system. Information received by each wireless wearable terminal from the central system may be translated from text into voice instructions or commands for the corresponding worker. The mobile terminals and voice-directed work provide a significant efficiency in the performance of the workers' tasks. Specifically, using such terminals, the data-processing work is done virtually hands-free without cumbersome equipment to juggle or paperwork to carry around.
  • Typically, in order to communicate in a voice-driven system, the worker wears a headset which is communicatively coupled to a wearable or portable terminal. The headset has a microphone for voice data entry and an ear speaker for playing instructions (e.g., voice instructions). Through the headset, the workers are able to receive voice instructions regarding assigned tasks, ask questions, report the progress of tasks, and report working conditions such as inventory shortages.
  • Therefore, an overall integrated management system generally involves a combination of a central computer system for tracking and management, mobile devices (e.g., wearable terminals), and the users who use and interface with the computer system. Such users may be in the form of workers/operators such as order fillers and pickers (e.g., selection operators picking and placing items), or supervisors that access and monitor the system information. The workers handle the manual aspects of the integrated management system under the command and control of information transmitted from the central computer system to the wireless wearable terminal.
  • An illustrative example of a set of tasks suitable for a wireless wearable terminal with voice capabilities may involve initially welcoming the worker to the computerized inventory management system and defining a particular task or order, for example, filling a load for a particular delivery vehicle scheduled to depart from a warehouse at a certain specified time. The worker may then answer with a particular area (e.g., “working in freezer area”) that he will be working in order to fill that given order. The worker may then be directed to pick items to fill a pallet or bin used for the order.
  • The system may vocally direct the worker to a particular aisle and bin to pick a particular quantity of an item. The worker may vocally confirm the locations visited, the number of picked items, and/or various other information relating to worker activities. Once the bin or pallet is filled, the system may then direct the worker to a loading dock or bay for a particular truck or other delivery vehicle that will receive that order. As will be appreciated, the specific communications between the wireless wearable terminal and the central computer system for such voice-directed work can be task-specific and highly variable.
  • In addition to responding to inquiries or confirming the completion of certain tasks, the terminals may also allow the workers to interface with the computer system for other activities such as when they are starting/ending a shift (i.e., logging in or out of the system), and when starting/ending a break activity. For example, in order to indicate the beginning of a break activity the worker may report to the computer system through the headset using standard break vocabulary such as “take a break” followed by the type of break the worker wishes to take (e.g., lunch break, coffee break, etc.).
  • In existing management systems, workers may be checked and monitored by management based upon their performance with regard to multiple parameters. These parameters car include, but are not limited to, the workers' work rate (i.e., the pace at which the worker is performing their assigned tasks) and the workers' break durations. It is difficult in existing systems, however, to ascertain the workers' idle duration around reported break activities (i.e., before and after breaks). Determining worker idle duration around reported break activities is useful information for a supervisor because workers may generally cease or slow work activity before reporting break activities and/or after reporting returning from break activities. Although such worker idleness around break activities may affect the workers' overall work rate, in some cases workers may be able to achieve an acceptable work rate without having attracted attention from the supervisor.
  • In the described situation where the reported work rate remains at acceptable levels notwithstanding worker idle duration around reported break activities, the management system would not be providing potentially useful information to the supervisor regarding whether the work assigned to the worker is less than his or her capability, or if the workload in general can be increased for all the workers. This adversely affects the warehouse performance in terms of completing the work in a stipulated time period, and can result in problems for warehouse supervisors such as delayed assignments, required overtime, and related expenses causing cost overruns.
  • In other related situations, a worker may be working in an assigned team of workers for a given task relating to, for example, preparing an order for delivery to a customer. One worker in the group may be trying to slow the pace of the teams' work, and it is difficult to identify or flag this worker in real time. Identification may be possible based upon a periodic work rate report, but by the time the report issues harm has already been done to the warehouse operations (e.g., to the delivery schedules). Existing management systems and methods do not provide an effective way to determine, in real-time, which worker is causing delay.
  • Notwithstanding the benefits that a warehouse management system can provide, at times there are delays in completing work assignments. Problems in completing a given assignment can have ripple effects to a full shift, and even a whole day's work schedule (or beyond). This affects planning in terms of the resources needed, such as the workers that would be needed to complete the work in the remaining period of time. Also, with delays there may be a requirement for communicating a new estimated time of arrival (ETA) to a customer. Even if a calculation can be done to assess the delay, it becomes critical to monitor the situation going forward.
  • In some situations, delays may only become visible only towards a shifts' end, or at a periodic situational evaluation by supervisor. It might be too late at this point to take any remedial measures based upon the delay, and even if measures are taken there may be cost overruns in worker overtime or customer dissatisfaction (or both).
  • There could be other times when the opposite situation occurs in a warehouse environment; i.e., when given work assignments are completed too soon leaving some workers idle for a period of time (e.g., for a two hour period). This may be referred to as a problem of plenty. In this situation, there are resource management problems relating to work assessment, work allocation, work production, etc. In existing systems, however, these situations would not be identified until after the problem has occurred resulting in a lose of man hours which otherwise could have been put to better use.
  • Another situation which can arise is a combination of the two problems previously identified. A warehouse could be divided among teams working in different regions or there could be an allocation of groups of workers per truck route. While one team may be struggling to finish assigned work towards the end of shift, the other team may have become idle an hour before. In such cases, there is a need for a system which can forewarn the onset of a problematic situation relating to resource management.
  • As set forth above, while the utilization of voice-directed mobile terminals and management systems tends to improve worker efficiency, existing weaknesses in current systems remain in achieving maximized worker resource allocation. Accordingly, a need exists for management systems and methods that analyze worker productivity based at least in part on worker activity data retrieved from a voice-directed mobile terminal. A need also exists for systems and methods for work assessment predictions based at least in part on worker activity data retrieved from a voice-directed mobile terminal.
  • SUMMARY
  • Accordingly, in one aspect, the present invention embraces a worker resource management system including a voice-directed mobile terminal for facilitating a dialog between a user and the voice-directed mobile terminal. The system may include a computer in communication with the voice-directed mobile terminal, the computer including a worker resource analysis module. The worker resource analysis module may be configured to receive user activity information from the voice-directed mobile terminal, and identify user productivity patterns based at least in part upon the user activity information.
  • In one exemplary embodiment, the system includes a visual display in communication with the computer.
  • In another exemplary embodiment, the visual display provides reports corresponding to user productivity patterns.
  • In yet another exemplary embodiment, the visual display provides alerts corresponding to user productivity patterns.
  • In yet another exemplary embodiment, the worker resource analysis module is configured to classify user activity information into groups including user workflow tasks, user sign-in activity, user sign-out activity, user break activity, and/or user region changes.
  • In yet another exemplary embodiment, the user productivity patterns include user break duration, user idle time after sign-in, user idle time before sign-off, user idle time before beginning break activity, and/or user idle time after returning from break activity.
  • In yet another exemplary embodiment, the user productivity patterns are identified at fixed interval time periods immediately preceding the current identification time.
  • In yet another exemplary embodiment, the user productivity patterns identified are flagged based upon the most recent interval period immediately preceding a current identification time.
  • In another aspect, the present invention embraces a worker resource management system including a voice-directed mobile terminal for facilitating a dialog between a user and the voice-directed mobile terminal. The system may also include a computer in communication with the voice-directed mobile terminal, the computer including a worker resource analysis module. The worker resource analysis module may be configured to receive user activity information from the voice-directed mobile terminal, and provide work assessment predictions based at least in part upon user activity information received.
  • In one exemplary embodiment, the system includes a visual display in communication with the computer.
  • In another exemplary embodiment, the visual display provides reports or alerts corresponding to the work assessment predictions.
  • In yet another exemplary embodiment, the work assessment predictions include information that more workers are needed in a region.
  • In yet another exemplary embodiment, the work assessment predictions include information that a delivery vehicle will be delayed beyond scheduled departure time.
  • In yet another exemplary embodiment, the work assessment predictions are based upon the number of work units remaining in a warehouse region, the number of workers present in a warehouse region's workforce, and/or the rate at which work is being completed in a warehouse region.
  • In yet another aspect, the present invention embraces a method for managing worker resources including transmitting task data from a server computer to a voice-directed mobile terminal in communication with the server. Speech-based instructions associated with the task data may be provided to a user using the voice-directed mobile terminal. User activity information may be received from the voice-directed mobile terminal. The user activity information may be analyzed to identify user productivity patterns or provide work assessment predictions. Worker resource management decisions may be implemented by management in response to the user activity information analysis.
  • In one exemplary embodiment, the user productivity patterns include user break duration, user idle time after sign-in, user idle time after sign-off, user idle time before beginning break activity, and/or user idle time after returning from break activity.
  • In another exemplary embodiment, the worker resource decisions include providing a productivity compliance alert to a worker based upon break duration compliance.
  • In yet another exemplary embodiment, the worker resource decisions include transferring a worker to a second work region from a first work region.
  • The foregoing illustrative summary, as well as other exemplary objectives and/or advantages of the invention, and the manner in which the same are accomplished, are further explained within the following detailed description and its accompanying drawings.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a perspective view of a worker using an exemplary voice-directed mobile terminal in accordance with one embodiment of a worker resource management system of the present disclosure.
  • FIG. 2 is a block diagram illustrating certain components of an exemplary worker resource management system according to the present disclosure.
  • FIG. 3 is a graphical illustration depicting an exemplary warehouse region divided into time interval segments.
  • FIG. 4 is a graphical illustration depicting time interval segments for an exemplary warehouse region in line format.
  • DETAILED DESCRIPTION
  • Embodiments of the present invention embrace systems and methods for worker resource management. The exemplary worker resource systems track and provide supervisors or other management with timely updates, analysis, and predictions relating to workforce management so that problems can be identified and addressed in real-time. Typically, at least a portion of the analyzed data is generated by, or used in connection with, a voice-directed mobile terminal.
  • FIG. 1 depicts an exemplary voice-directed mobile terminal 10 that may be used with embodiments of the worker resource management system according to the present invention. The voice-directed mobile terminal 10 may be a wearable device, which may be worn by a worker 11 (e.g., on a belt 14 as shown), or by some other user or operator. This allows for hands-free operation. The voice-directed mobile terminal 10 might also be manually carried or otherwise mounted on a piece of equipment such as an industrial vehicle (e.g., a forklift). The worker 11 is shown in FIG. 1 operating a pallet jack 13, which is a piece of transportation equipment that may be utilized by a worker in a warehouse environment.
  • The use of the descriptive term “terminal” is not limiting and may include any similar computer, device, machine, smartphone, smartwatch, indicia reader, combination, or system. Furthermore, the voice-directed mobile terminal may include multiple pieces with separate housings or may be contained in a single housing similar to the embodiment shown in FIG. 1. Therefore, the terminal may also include multiple wearable pieces. Alternatively, some or all of the terminal functionality may be incorporated into the headset, which may include all the features required to communicate with a server or external computer. Therefore, the exact form of the voice-directed mobile terminal utilized to practice the present systems and methods is not limited to only the embodiments shown in the drawings.
  • Although the present application may generally reference “users” that interface with the exemplary systems of the present disclosure, the descriptive term “worker” or “operator” as set forth herein may be more specifically used in reference to workers/operators that perform work on the floor in a manufacturing environment or work on the floor of a warehouse (e.g., fillers, pickers, etc.). Such workers/operators would typically be the users of mobile terminal 10 in connection with the exemplary system. Similarly, other “users” that interface with the exemplary systems may be described using the descriptive term “supervisor.” As set forth herein, “supervisor” is generally in reference to a supervisor of workers/operators. The supervisors would generally have access to the graphical interface or display of the exemplary system as described below. The use of the descriptive terms “worker/operator” and “supervisor” in relation to users of the exemplary systems are not limiting and may include any similar member of an organization (staff member, manager, etc.).
  • The voice-directed mobile terminal 10 is typically a voice-driver device in that it includes speech interfaces to permit a worker 11 to communicate, using speech or voice, with an external computer such as server computer 20 as illustrated in FIG. 2. Typically, the voice-generated mobile terminal's speech interfaces are configured to be capable of permitting multiple different workers to communicate with the server computer as illustrated at FIG. 2 (e.g., using speech-recognition technology that recognizes different English dialects, different languages, etc.).
  • It will be appreciated by a person of ordinary skill in the art that the server computer 20 may be one or, more typically, a plurality of computers having software stored thereon. The server computer 20 may run one or more system software packages for handling/executing a particular task or set of tasks, such as inventory and warehouse management systems (which are available in various commercial forms), or any other systems where multiple tasks are handled by multiple workers. The server computer 20 may be any of a variety of different computers, including both client and server computers working together, and/or databases, and/or systems necessary to interface with multiple voice-directed mobile terminals 10 and associated with multiple different workers, to provide the work tasks that may be related to the products or other items handled in the voice-directed work environment.
  • The server computer 20 may include a Warehouse Management System (WMS), a database, and a Web application (not explicitly shown). The server computer 20 might also include a computer for programming and managing the individual voice-directed mobile terminals 10. The server computer 20 may be located at one facility or be distributed at geographically distinct facilities. Furthermore, the server computer 20 may include a proxy server. Therefore, the server computer 20 is not limited in scope to a specific configuration.
  • Alternatively, the voice-directed mobile terminals 10 may be stand-alone devices which interface directly with a worker 11 without a server computer. Therefore, various aspects of the present disclosure might be handled with voice-directed mobile terminals only. Usually, however, to have sufficient database capability to handle large amounts of information, a server computer is desirable.
  • In an exemplary embodiment, the voice-directed mobile terminal 10 communicates with the server computer 20 using a wireless communication link 22 (FIG. 2). The wireless link may be established through an appropriate wireless communication format (e.g., 802.11b/g/n) and may use one or more wireless access points that are coupled to the server computer 20 and accessed by the voice-directed mobile terminal 10. To allow the workers 11 to communicate with the system, one or more peripheral devices, including a headset 16 (e.g., earpiece, earbuds, etc.), are coupled to the voice-directed mobile terminal 10.
  • The headset 16 may be coupled to the voice-directed mobile terminal 10 through a wired connection such as cord 18 or by a wireless headset connection illustrated in FIG. 1 as reference numeral 19 (e.g., using the BLUETOOTH wireless protocol). The headset 16 may be worn on the head of the user/worker 11 and may use a microphone 21 for directing voice responses and activity reports to the voice-directed mobile terminal 10. A headset speaker 17 provides (e.g., plays) voice commands to the worker 11. The voice-directed mobile terminal 10 thus carries on a speech dialog with a worker 11 and provides hands-free operation and voice-directed movement throughout a warehouse or other facility.
  • It will be appreciated by a person of ordinary skill in the art that, although exemplary embodiments presented herein incorporate voice-direction techniques, the present disclosure is not limited to speech-directed terminals. The present disclosure embraces any terminal that carries on a dialog via speech, text (e.g., through a keyboard), gestures, or other communicative activity, with a worker/operator (or other user).
  • The server computer 20 includes a tasking module 25 for transmitting specific task data (e.g., picking instructions, training information, scheduling information, or other information associated with a request for a worker to perform some task or provide some information) to the voice-directed mobile terminal 10. Typically, the tasking module 25 is a software module stored on the server computer 20. Alternatively, the tasking module 25 may be a hardware module, or a combination of hardware and software.
  • The voice-directed mobile terminal 10 may use the task data received from the tasking module 25 to generate audio outputs at the headsets and speakers. For example, text data may be converted using a text-to-speech (TTS) interface to provide voice direction to a worker. Speech input or feedback from a worker is generated at the headset microphone 21 and transmitted to the voice-directed mobile terminal 10 where it is processed by speech recognition circuitry or other speech processing circuitry (e.g., speech recognition software). Any data that is obtained from the voice dialog (e.g., worker speech data) may then be relayed to the server computer 20.
  • For example, in a worker resource management system 100, the voice-directed mobile terminal 10 receives instructions (e.g., task data) from the tasking module 25 and converts those instructions into an audio transmission (e.g., audio file) to be heard by a worker/operator 11 via a speaker 17. The worker executes the audio instructions and, for example, goes to a designated location and picks a designated product or performs some other task communicated by the audio instructions. The worker 11 then replies into the microphone 21, in a spoken language, such as with a verification of a location and/or a product, and the audio reply is converted to a useable data format (e.g., worker speech data) to be sent back and processed by the server computer 20. That is, in the voice-directed or speech directed work context, the worker 11 maintains a speech dialog (e.g., workflow dialog) with the voice-directed mobile terminal 10 and/or server computer 20 to execute and complete a variety of tasks.
  • In order to identify worker productivity patterns, all worker 11 dialog interactions through the system 100 may be recorded with a timestamp and maintained by the server computer 10 by a worker resource analysis module 30. Accordingly, the server computer 20 maintains information or data relating the user/worker 11 activity or inactivity. For example, when the operator 11 begins his or her shift, starting from that point until the operator 11 logs out of the system 100 at end of the shift the activities of the worker 11 are recorded.
  • Activities of the worker 11 that are recorded may be classified by worker resource analysis module 30. Classification types can include, for example, the particular workflow on which worker was working (e.g., selection, replenishment, etc.), sign in, sign out, break, region changes, etc.
  • Typically, the worker resource analysis module 30 is a software module stored on the server computer 20. Alternatively, the worker resource analysis module 30 may be a hardware module, or a combination of hardware and software.
  • The worker resource analysis module 30 generates, based at least in part upon an analysis of the worker activity dialog between the voice-directed mobile terminal 10 and the worker 11, productivity data. The productivity data relates to the analysis of information relating to user/worker 11 activity or inactivity.
  • The productivity information provided by the worker resource analysis module 30 includes determinations relating to idle time around worker sign on/off and worker breaks. In this regard, the worker resource analysis module 30 may calculate the time that elapses between the tasking module 25 assigning work and the information relating to user 11 activities such as sign on, break, and sign off events. All such calculations, except for sign on data, may be based on the 24-hour period preceding the current time that an analysis occurs.
  • The following information, which could aid the supervisor to take action regarding resource issues, is calculated by the worker resource analysis module 30 from various activities of the worker 11:
      • Break duration: The time (e.g., in minutes) between an operator issuing the “take a break” command and returning from break.
      • Idle time after signing in: The time (e.g., in minutes) from the operator signing in with his or her password and the first operator activity on an assignment.
      • Idle time before signing off: The time (e.g., in minutes) from the last pick (if the assignment is still in progress) or other operator activity on an assignment and the operator issuing the “sign off” command.
      • Idle time before break: The time (e.g., in minutes) from the last pick (if the assignment is still in progress) or other operator activity on an assignment and the operator issuing the “take a break” command.
      • Idle time after taking break: The time (e.g., in minutes) from the operator issuing the “take a break” command and the first operator activity on an assignment or a pick if the assignment is in progress.
  • The above noted reports or alerts can be evaluated by the module 30 at fixed time intervals; i.e., running every “X” minutes. Each run could consider the system 100 activity based upon the current time period minus “X” number of minutes. This would ensure that no stale data or past activity creeps into the current productivity report or alert that is provided to the supervisor for addressing a problem.
  • By way of example, a worker 11 may enter a “take a break” activity at 11:00 am. The worker's break activity may extend beyond ten minutes, while the acceptable break duration for evaluation purposes may only be five minutes. System evaluation by the worker resource module 30 may be scheduled to occur at five minute intervals. Thus, when the subsequent evaluation occurs at 11:06 am, the worker 11 would be flagged by the system 100 (e.g., the supervisor would be alerted). At the next evaluation of 11:11 am, if the worker had not returned from break the worker would remain flagged by the system. Alternatively, if the worker 11 has returned at this time period, the system 100 would assume normalcy and no further action would be assumed. This is possible because only a delta of system activity between 11:06 am-11:11 am was considered by the system (i.e., the current time minus “X” number of minutes where X is equal to five minutes in this example).
  • Exemplary implementation scenarios where workers productivity/idleness patterns can be monitored by the worker resource analysis module 30 are:
      • Workers idle time before sign off: Condition—A worker's last activity is greater than “X” minutes before his or her sign oft time.
      • Workers taking longer breaks: Condition—Workers are taking breaks longer than “X” minutes.
      • Workers idle time before break: Condition—A worker's last activity is more than “X” minutes before the start of his or her break time.
      • Workers idle time after break: Condition—A worker's next activity is more than “X” minutes after the end of his or her break time.
      • Workers idle time after break: Condition—An operator's next activity is more than “X” minutes after the end of his or her break time.
  • With repeated evaluations, the most recent deflection can be flagged by the system. The frequency of evaluation period could be set proportional to how critical the monitored situation activity is.
  • The productivity data generated by the worker resource analysis module 30 may be viewed by a workforce supervisor overseeing, for example, the performance of picking operators on a warehouse floor, on a display device 40 (e.g., LCD monitor) that is in communication with the server computer 20. The communication will typically be wireless communication using a wireless method of communication method (e.g., SMS or text messaging, electronic mail, etc.). The workflow management system 100 may display the productivity data in raw form or in a compiled form (e.g., a summary report). In this regard, a supervisor may be provided with information regarding the productivity of the workforce (e.g., selection operators working a warehouse floor), a selected subgroup of the workforce, or an individual member of the workforce. In this way, the exemplary worker resource management system 100 according to the present disclosure can provide timely information relating to worker productivity.
  • Typically, the worker resource management system 100 is configured to receive and display at least a portion of the productivity data in real time, thereby allowing the workforce manager to take immediate corrective action to remedy the reported problem.
  • A supervisor may utilize the relevant productivity information to, for example, manage operator downtime and break compliance with productivity alerts; use these alerts and various charted data to determine the cause of missed goal rates or work schedules; and/or to make informed management decisions and personnel actions at the right time instead of waiting for shift end reports to identify anomalies in work patterns.
  • In another exemplary embodiment, worker resource management system 100 can track and compare worker task and activity progress across multiple warehouse regions at given points or intervals of time. For example, worker resource analysis module 30 of system 100 can provide information relating to whether an assigned group/team of workers 11 (e.g., Team 1) assigned work in one warehouse region (e.g., Region 1) is performing at a faster rate than a team of workers 11 (e.g., Team 2) in another region (e.g., Region 2) such that the workers 11 of Team 1 will be completing their selected tasks a certain time period (e.g., “X” number of minutes) before the workers 11 of Team 2 will complete their assigned tasks. In this regard, the worker resource analysis module 30 of system 100 can forewarn supervisors regarding the onset of problematic situations with worker resource management reporting and allow the supervisor to take appropriate corrective action. For example, the system 100 can report (e.g., via display device 40) if the team of workers 11 working in an exemplary Region 1 is performing better/faster than the workers 11 in Region 2 such that Region 1 work will be completed at a certain time (i.e., “X” minutes) before Region 2 work, which would therefore yield an excess of workers 11 in Region 1.
  • Some features of the exemplary system 100 include the capability to predict workforce shortages as well as surplus, real-time alerts/reports in response to changes, the ability to integrate with third-party applications, and the ability to monitor/manage the whole of warehouse operations.
  • The worker resource analysis module 30 of the exemplary system 100 may generally use the following information in generating reports/alerts; the work units remaining in a given warehouse region, the current number of workers present in a region's workforce, the current time for assigned work completion in a region, and/or the rate at which work is being completed in a given region (e.g., in units/hour). The exemplary system 100 can observe the described metrics in real-time and provide timely updates to supervisors relating to workload.
  • In one example for a specific use environment, the system 100 can analyze worker 11 activities/tasks in order to predict when workers 11 will finish picking tasks in a warehouse for items relating to a given delivery route such that the route then can depart for delivery. The worker's loading activities and time may be taken into account for more accurate predictions relating to delivery vehicle loading completion and subsequent delivery vehicle departure.
  • In order for the worker resource analysis module 30 of the system 100 to compare worker 11 task progress across multiple warehouse regions or across multiple vehicle loading projects at certain given points of time, warehouse operational hours can be divided into finite intervals or periods of time (i.e., chunks of time). For example, FIG. 3 illustrates an exemplary warehouse region as a 24-hour time period 50, and then further divides the region into segments of equal, two-hour time intervals 55.
  • FIG. 4 illustrates the time intervals 60 in line format stretching into the future from present time, which is designated as “Now.” For example, if the current time (i.e., Now) is 1:00 pm, the next two-hour interval 62 runs to 3:00 pm; the next four-hour interval 64 runs to 5:00 pm; the next six-hour interval 66 runs to 7:00 pm; and the next eight-hour interval 68 runs to 9:00 pm. With intervals 60 established, worker resource analysis requiring a time window may then be considered.
  • In the item/product loading context for a delivery vehicle, workload for a given workforce region/route can be identified based upon the tasking module 25 assignment of the quantity of items to be picked by a worker 11 for the assignments that have a route delivery/departure falling within the given time intervals 60. The workload calculation for a subsequent interval (e.g., subsequent interval 64) will be inclusive of the workload of the previous interval (e.g., interval 62). For example, if interval 62 has workload of ten work units, interval 64 will have a workload of ten units plus the additional workload units that are included beyond the duration of interval 62.
  • The operators/workers 11 that are needed for a given region/route can be determined from the worker 11 activity recorded by the server computer 20 based upon factors including the quantity of items to be picked for the respective interval period, the actual rate at which items are being picked by workers 11, and the number of currently active/signed in operators 11.
  • Table 1 (below) is an exemplary operator requirement table noting the operators required for a given workload per exemplary regions (1-3) based upon departure intervals falling within the given intervals. For example, in the “Next” columns for Region 1 worker excess or shortage is listed respectively as −8, −8, 2, 11, and 24. This reveals an excess of eight operators until the “Next 06-hrs” interval when, due to the number of vehicles scheduled for departure, the work to be completed rises such that in addition to the eight operators, Region 1 now requires two additional workers to fulfill the Region's workload requirements.
  • TABLE 1
    Region Operators Next Next Next Next Next
    Number Working 02-hrs 04-hrs 06-hrs 08-hrs 10-hrs
    1 8 −8 −8 2 11 24
    2 8 −8 −8 6 18 34
    3 9 −9 −9 3 13 27
  • In order for the worker resource management system 100 to issue advance reports or alerts regarding the onset of potentially problematic situations with worker resource management, a number of factors are taken into account by the worker productivity analysis module 30. This includes the amount of work remaining (e.g., reported in workload units), the current number of workers 11 in the workforce (e.g., the number of users currently signed-in), the current projected time of work completion, and the current rate of work being accomplished (e.g., calculated in work-units/hour). These factors provide a basis for calculating the current demand for resources (e.g., time, workers, etc.). Certain exemplary factors/calculations that may be determined/reported through the worker resource analysis module 30 are set forth as follows:
      • Projected departure date:

  • Calculation=(Work Remaining)+(Work Rate×Operators Required)+Current Time.
      • Projected departure delay: The time difference (e.g., in minutes) from expected departure date/time and the projected departure date/time of the delivery vehicle carrying the assignment or route items.

  • Calculation=Expected Departure−Projected Departure.
      • Operators required (REQ): The number of operators that are needed to work or a route or region to complete the route by the expected departure date and time.

  • Calculation: REQ=Workload÷(Work Rate).
      • Workload: The total number of items remaining to process during the chosen interval (e.g., expressed in items-per-minute for the items remaining for all assignments in the route).
      • Work Rate: number of items processed per minute (the average processing rate of active operators, or the region goal rate if there are no active operators).
  • Based on the given factors/calculations, the worker resource analysis module 30 can provide useful reports or alerts to supervisors. For example, reports/alerts may be provided to a supervisor indicating that “X” number of additional workers are needed in a region, that “X” number of workers are surplus in a region, that delivery departure in a region would be delayed by “X” minutes/hours beyond current scheduled departure time, that delivery departure time for a region would be ready “X” minutes/hours before the current scheduled departure time, and/or that the work assigned in a given region would be complete after “X” hours.
  • Providing the noted reports or alerts to supervisors well enough in advance would give supervisors time to make appropriate worker resource adjustments and avoid worker resource management problems. To counter adverse situations, steps could be taken including transferring “X” number of workers to a region where workers are currently needed from a region where there is a surplus, transferring “X” number of workers from a region where there is a surplus to region where workers are needed, transferring “X” number of workers to the trucks/routes which are most recently scheduled for departures followed by a transfer to the trucks/routes scheduled to depart next, etc.
  • The worker resource analysis module 30 of the exemplary system 100 therefore provides reports/alerts that improve warehouse management as respective regions/routes can be managed for completion at almost the same time. The exemplary system 100 also provides for less disparity in work completion percentage, allows delivery vehicles to depart at a known/scheduled time, allows workforce and other resources to be more effectively utilized, and allows for greater work progress given that worker re-allocation car be monitored in real time.
  • Although exemplary embodiments of the present disclosure relate to a warehouse setting, it will be appreciated by a person of ordinary skill in the art that the present disclosure embraces systems and methods that may be used in connection with other environments. For example, and without intending to limit the present disclosure, the systems and methods according to the present disclosure may be used in a retail store setting, a pharmacy setting, or a transport vehicle. The term warehouse, therefore, is used in its broadest sense and is not intended to limit the application of the disclosure to a particular physical environment.
  • It will be appreciated that the present disclosure additionally embraces methods associated with the embodiments of the systems according to the present disclosure.
  • To supplement the present disclosure, this application incorporates entirely by reference the following patents, patent application publications, and patent applications;
  • U.S. Pat. Nos. 6,832,725; 7,128,266; 7,159,783; 7,413,127; 7,726,575; 8,294,969; 8,317,105; 8,322,622; 8,366,005; 8,371,507; 8,376,233; 8,381,979; 8,390,909; 8,408,464; 8,408,468; 9,408,469; 8,424,768; 8,448,863; 8,457,013; 8,459,557; 8,469,272; 8,474,712; 8,479,992; 8,490,877; 8,517,271; 8,523,076; 8,528,818; 8,544,737; 8,548,242; 8,548,420; 8,550,335; 8,550,354; 8,550,357; 8,556,174; 8,556,176; 8,556,177; 8,559,767; 8,599,957; 8,561,895; 8,561,903; 8,561,905; 8,565,107; 8,571,307; 8,579,200; 8,583,924; 8,584,945; 8,587,595; 8,587,697; 8,588,869; 8,590,789; 8,596,539; 8,596,542; 8,596,543; 8,599,271; 8,599,957; 8,600,158; 8,600,167; 6,602,309; 8,608,053; 8,608,071; 8,611,309; 8,615,487; 8,616,454; 8,621,123; 8,622,303; 6,628,013; 8,628,015; 8,628,016; 8,629,926; 8,630,491; 8,635,309; 8,636,200; 8,636,212; 8,636,215; 8,636,224; 8,638,806; 8,640,958; 8,640,960; 8,643,717; 8,646,692; 8,646,694; 8,657,200; 8,659,397; 8,668,149; 8,678,285; 8,678,286; 8,682,077; 8,687,282; 8,692,927; 8,695,680; 8,698,949; 8,717,494; 8,717,494; 8,720,783; 8,723,804; 8,723,904; 8,727,223; 8,702,237; 8,740,082; 8,740,085; 8,746,563; 8,750,445; 8,752,766; 8,756,059; 8,757,495; 8,760,563; 8,763,909; 8,777,108; 8,777,109; 8,779,898; 8,781,520; 8,783,573; 8,789,757; 8,789,758; 8,789,759; 8,794,520; 8,794,522; 8,794,525; 6,794,526; 8,798,367; 8,807,431; 8,807,432; 8,820,630; 8,822,848; 8,824,692; 6,824,696; 8,842,649; 8,844,822; 8,844,823; 8,849,019; 8,851,383; 8,854,633; 8,866,963; 6,868,421; 8,868,519; 8,868,802; 8,868,803; 8,870,074; 8,879,639; 8,880,426; 8,881,983; 8,881,987; 8,903,172; 8,908,995; 8,910,870; 8,910,875; 8,914,290; 8,914,788; 8,915,439; 8,915,444; 8,916,789; 8,918,250; 8,918,564; 8,925,818; 8,939,374; 8,942,480; 8,944,313; 8,944,327; 8,944,332; 8,950,678; 8,967,468; 8,971,346; 8,976,030; 8,976,368; 8,978,981; 8,978,983; 8,978,984; 8,985,456; 8,985,457; 8,985,459; 8,985,461; 8,988,578; 8,988,590; 8,991,704; 8,996,194; 8,996,384; 9,002,641; 9,007,368; 9,010,641; 9,015,513; 9,016,576; 9,022,288; 9,030,964; 9,033,240; 9,033,242; 9,036,054; 9,037,344; 9,038,911; 9,034,915; 9,047,098; 9,047,359; 9,047,420; 9,047,525; 9,047,531; 9,053,055; 9,053,378; 9,053,380; 9,058,526; 9,064,165; 9,064,167; 9,064,168; 9,064,254; 9,066,032; 9,070,032;
    • U.S. Design Pat. No. D716,285;
    • U.S. Design Pat. No. D723,560;
    • U.S. Design Pat. No. D730,357;
    • U.S. Design Pat. No. D730,901;
    • U.S. Design Pat. No. D730,902;
    • U.S. Design Pat. No. D733,112;
    • U.S. Design Pat. No. D734,339;
    • International Publication No. 2013/163789;
    • International Publication No. 2013/173985;
    • International Publication No. 2014/019130;
    • International Publication No. 2014/110495;
    • U.S. Patent Application Publication No. 2008/0185432;
    • U.S. Patent Application Publication No. 2009/0134221;
    • U.S. Patent Application Publication No. 2010/0177080;
    • U.S. Patent Application Publication No. 2010/0177076;
    • U.S. Patent Application Publication No. 2010/0177707;
    • U.S. Patent Application Publication No. 2010/0177749;
    • U.S. Patent Application Publication No. 2010/0265880;
    • U.S. Patent Application Publication No. 2011/0202554;
    • U.S. Patent Application Publication No. 2012/0111946;
    • U.S. Patent Application Publication No. 2012/0168511;
    • U.S. Patent Application Publication No. 2012/0168512;
    • U.S. Patent Application Publication No. 2012/0193423;
    • U.S. Patent Application Publication No. 2012/0203647;
    • U.S. Patent Application Publication No. 2012/0223141;
    • U.S. Patent Application Publication No. 2012/0228382:
    • U.S. Patent Application Publication No. 2012/0248188;
    • U.S. Patent Application Publication No. 2013/0043312;
    • U.S. Patent Application Publication No. 2013/0082104;
    • U.S. Patent Application Publication No. 2013/0175341;
    • U.S. Patent Application Publication No. 2013/0175343;
    • U.S. Patent Application Publication No. 2013/0257744;
    • U.S. Patent Application Publication No. 2013/0257759;
    • U.S. Patent Application Publication No. 2013/0270346;
    • U.S. Patent Application Publication No. 2013/0287258;
    • U.S. Patent Application Publication No. 2013/0292475;
    • U.S. Patent Application Publication No. 2013/0292477;
    • U.S. Patent Application Publication No. 2013/0293539;
    • U.S. Patent Application Publication No. 2013/0293540;
    • U.S. Patent Application Publication No. 2013/0306728;
    • U.S. Patent Application Publication No. 2013/0306731;
    • U.S. Patent Application Publication No. 2013/0307964;
    • U.S. Patent Application Publication No. 2013/0308625;
    • U.S. Patent Application Publication No. 2013/0313324;
    • U.S. Patent Application Publication No. 2013/0313325;
    • U.S. Patent Application Publication No. 2013/0342717;
    • U.S. Patent Application Publication No. 2014/0001267;
    • U.S. Patent Application Publication No. 2014/0008439;
    • U.S. Patent Application Publication No. 2014/0025584;
    • U.S. Patent Application Publication No. 2014/0034734;
    • U.S. Patent Application Publication No. 2014/0036848;
    • U.S. Patent Application Publication No. 2014/0039693;
    • U.S. Patent Application Publication No. 2014/0042814;
    • U.S. Patent Application Publication No. 2014/0049120;
    • U.S. Patent Application Publication No. 2014/0049635;
    • U.S. Patent Application Publication No. 2014/0061306;
    • U.S. Patent Application Publication No. 2014/0063299;
    • U.S. Patent Application Publication No. 2014/0066136;
    • U.S. Patent Application Publication No. 2014/0067692;
    • U.S. Patent Application Publication No. 2014/0070005;
    • U.S. Patent Application Publication No. 2014/0071640;
    • U.S. Patent Application Publication No. 2014/0074746;
    • U.S. Patent Application Publication No. 2014/0076974;
    • U.S. Patent Application Publication No. 2014/0078341;
    • U.S. Patent Application Publication No. 2014/0078345;
    • U.S. Patent Application Publication No. 2014/0097249;
    • U.S. Patent Application Publication No. 2014/0090792;
    • U.S. Patent Application Publication No. 2014/0100613;
    • U.S. Patent Application Publication No. 2014/0103115;
    • U.S. Patent Application Publication No. 2014/0104413;
    • U.S. Patent Application Publication No. 2014/0104414;
    • U.S. Patent Application Publication No. 2014/0104416;
    • U.S. Patent Application Publication No. 2014/0104451;
    • U.S. Patent Application Publication No. 2014/0106594;
    • U.S. Patent Application Publication No. 2014/0106725;
    • U.S. Patent Application Publication No. 2014/0108010;
    • U.S. Patent Application Publication No. 2014/0108402;
    • U.S. Patent Application Publication No. 2014/0110485;
    • U.S. Patent Application Publication No. 2014/0114530;
    • U.S. Patent Application Publication No. 2014/0124577;
    • U.S. Patent Application Publication No. 2014/0124579;
    • U.S. Patent Application Publication No. 2014/0125642;
    • U.S. Patent Application Publication No. 2014/0125853;
    • U.S. Patent Application Publication No. 2014/0125999;
    • U.S. Patent Application Publication No. 2014/0129378;
    • U.S. Patent Application Publication No. 2014/0131438;
    • U.S. Patent Application Publication No. 2014/0131441;
    • U.S. Patent Application Publication No. 2014/0131443;
    • U.S. Patent Application Publication No. 2014/0131444;
    • U.S. Patent Application Publication No. 2014/0131445;
    • U.S. Patent Application Publication No. 2014/0131448;
    • U.S. Patent Application Publication No. 2014/0133379;
    • U.S. Patent Application Publication No. 2014/0136208;
    • U.S. Patent Application Publication No. 2014/0140585;
    • U.S. Patent Application Publication No. 2014/0151453;
    • U.S. Patent Application Publication No. 2014/0152882;
    • U.S. Patent Application Publication No. 2014/0158770;
    • U.S. Patent Application Publication No. 2014/0159869;
    • U.S. Patent Application Publication No. 2014/0166755;
    • U.S. Patent Application Publication No. 2014/0166759;
    • U.S. Patent Application Publication No. 2014/0168787;
    • U.S. Patent Application Publication No. 2014/0175165;
    • U.S. Patent Application Publication No. 2014/0175172;
    • U.S. Patent Application Publication No. 2014/0191644;
    • U.S. Patent Application Publication No. 2014/0191913;
    • U.S. Patent Application Publication No. 2014/0197239;
    • U.S. Patent Application Publication No. 2014/0197239;
    • U.S. Patent Application Publication No. 2014/0197304;
    • U.S. Patent Application Publication No. 2014/0214631;
    • U.S. Patent Application Publication No. 2014/0217166;
    • U.S. Patent Application Publication No. 2014/0217180;
    • U.S. Patent Application Publication No. 2014/0231500;
    • U.S. Patent Application Publication No. 2014/0232930;
    • U.S. Patent Application Publication No. 2014/0241315;
    • U.S. Patent Application Publication No. 2014/0263493;
    • U.S. Patent Application Publication No. 2014/0263645;
    • U.S. Patent Application Publication No. 2014/0267609;
    • U.S. Patent Application Publication No. 2014/0270196;
    • U.S. Patent Application Publication No. 2014/0270229;
    • U.S. Patent Application Publication No. 2014/0278387;
    • U.S. Patent Application Publication No. 2014/0278391;
    • U.S. Patent Application Publication No. 2014/0282210;
    • U.S. Patent Application Publication No. 2014/0264384;
    • U.S. Patent Application Publication No. 2014/0288933;
    • U.S. Patent Application Publication No. 2014/0297058;
    • U.S. Patent Application Publication No. 2014/0299665;
    • U.S. Patent Application Publication No. 2014/0312121;
    • U.S. Patent Application Publication No. 2014/0319220:
    • U.S. Patent Application Publication No. 2014/0319221;
    • U.S. Patent Application Publication No. 2014/0326787;
    • U.S. Patent Application Publication No. 2014/0332590;
    • U.S. Patent Application Publication No. 2014/0344943;
    • U.S. Patent Application Publication No. 2014/0346233;
    • U.S. Patent Application Publication No. 2014/0351317;
    • U.S. Patent Application Publication No. 2014/0353373;
    • U.S. Patent Application Publication No. 2014/0361073;
    • U.S. Patent Application Publication No. 2014/0361082;
    • U.S. Patent Application Publication No. 2014/0362184;
    • U.S. Patent Application Publication No. 2014/0363015;
    • U.S. Patent Application Publication No. 2014/0369511;
    • U.S. Patent Application Publication No. 2014/0374483;
    • U.S. Patent Application Publication No. 2014/0374485;
    • U.S. Patent Application Publication No. 2015/0001301;
    • U.S. Patent Application Publication No. 2015/0001304;
    • U.S. Patent Application Publication No. 2015/0003673;
    • U.S. Patent Application Publication No. 2015/0009338;
    • U.S. Patent Application Publication No. 2015/0009610;
    • U.S. Patent Application Publication No. 2015/0014416;
    • U.S. Patent Application Publication No. 2015/0021397;
    • U.S. Patent Application Publication No. 2015/0028102;
    • U.S. Patent Application Publication No. 2015/0028103;
    • U.S. Patent Application Publication No. 2015/0028104;
    • U.S. Patent Application Publication No. 2015/0029002;
    • U.S. Patent Application Publication No. 2015/0032709;
    • U.S. Patent Application Publication No. 2015/0039309;
    • U.S. Patent Application Publication No. 2015/0039878;
    • U.S. Patent Application Publication No. 2015/0040378;
    • U.S. Patent Application Publication No. 2015/0048168;
    • U.S. Patent Application Publication No. 2015/0049347;
    • U.S. Patent Application Publication No. 2015/0051992;
    • U.S. Patent Application Publication No. 2015/0053766;
    • U.S. Patent Application Publication No. 2015/005376;
    • U.S. Patent Application Publication No. 2015/0053769;
    • U.S. Patent Application Publication No. 2015/0060544;
    • U.S. Patent Application Publication No. 2015/0062366;
    • U.S. Patent Application Publication No. 2015/0063215;
    • U.S. Patent Application Publication No. 2015/0063676;
    • U.S. Patent Application Publication No. 2015/0069130;
    • U.S. Patent Application Publication No. 2015/0071619;
    • U.S. Patent Application Publication No. 2015/0083600;
    • U.S. Patent Application Publication No. 2015/0086114;
    • U.S. Patent Application Publication No. 2015/0088522;
    • U.S. Patent Application Publication No. 2015/0096672;
    • U.S. Patent Application Publication No. 2015/0099557;
    • U.S. Patent Application Publication No. 2015/0100196;
    • U.S. Patent Application Publication No. 2015/0102109;
    • U.S. Patent Application Publication No. 2015/0115035;
    • U.S. Patent Application Publication No. 2015/0127791;
    • U.S. Patent Application Publication No. 2015/0128116;
    • U.S. Patent Application Publication No. 2015/0129659;
    • U.S. Patent Application Publication No. 2015/0133047;
    • U.S. Patent Application Publication No. 2015/0134470;
    • U.S. Patent Application Publication No. 2015/0136651;
    • U.S. Patent Application Publication No. 2015/0136654;
    • U.S. Patent Application Publication No. 2015/0142492;
    • U.S. Patent Application Publication No. 2015/0144692;
    • U.S. Patent Application Publication No. 2015/0144698;
    • U.S. Patent Application Publication No. 2015/0144701;
    • U.S. Patent Application Publication No. 2015/0149946;
    • U.S. Patent Application Publication No. 2015/0161429;
    • U.S. Patent Application Publication No. 2015/0169925;
    • U.S. Patent Application Publication No. 2015/0169929;
    • U.S. Patent Application Publication No. 2015/0178523;
    • U.S. Patent Application Publication No. 2015/0178534;
    • U.S. Patent Application Publication No. 2015/0178535;
    • U.S. Patent Application Publication No. 2015/0178536;
    • U.S. Patent Application Publication No. 2015/0174537;
    • U.S. Patent Application Publication No. 2015/0181093;
    • U.S. Patent Application Publication No. 2015/0181109;
    • U.S. patent application Ser. No. 13/367,978 for a Laser Scanning Module Employing an Elastomeric V-Hinge Based Laser Scanning Assembly, filed Feb. 7, 2012 (Feng et al.);
    • U.S. patent application Ser. No. 29/458,405 for an Electronic Device, filed Jun. 19, 2013 (Fitch et al.);
    • U.S. patent application Ser. No. 29/459,620 for an Electronic Device Enclosure, filed Jul. 2, 2013 (London et al.);
    • U.S. patent application Ser. No. 29/468,118 for an Electronic Device Case, filed Sep. 26, 2013 (Oberpriller et al.);
    • U.S. patent application Ser. No. 14/150,393 for Indicia-reader Having Unitary Construction Scanner, filed Jan. 8, 2014 (Colavito et al.);
    • U.S. patent application Ser. No. 14/200,405 for Indicia Reader for Size-Limited Applications filed Mar. 7, 2014 (Feng et al.);
    • U.S. patent application Ser. No. 14/231,698 fox Hand-Mounted Indicia-Reading Device with Finger Motion Triggering filed Apr. 1, 2014 (Van Horn et al.);
    • U.S. patent application Ser. No. 29/486,759 for an Imaging Terminal, filed Apr. 2, 2014 (Oberpriller et al.);
    • U.S. patent application Ser. No. 14/257,364 for Docking System and Method Using Near Field Communication filed Apr. 21, 2014 (Showering);
    • U.S. patent application Ser. No. 14/264,173 for Autofocus Lens System for Indicia Readers filed Apr. 29, 2014 (Ackley et al.);
    • U.S. patent application Ser. No. 14/277,337 for MULTIPURPOSE OPTICAL READER, filed May 14, 2014 (Jovanovski et al.);
    • U.S. patent application Ser. No. 14/283,282 for TERMINAL HAVING ILLUMINATION AND FOCUS CONTROL filed May 21, 2014 (Liu et al.);
    • U.S. patent application Ser. No. 14/327,627 for a MOBILE-PHONE ADAPTER FOR ELECTRONIC TRANSACTIONS, filed Jul. 10, 2014 (Hejl);
    • U.S. patent application Ser. No. 14/334,934 for a SYSTEM AND METHOD FOR INDICIA VERIFICATION, filed Jul. 18, 2014 (Hejl);
    • U.S. patent application Ser. No. 14/339,708 for LASER SCANNING CODE SYMBOL READING SYSTEM, filed Jul. 24, 2014 (Xian et al.);
    • U.S. patent application Ser. No. 14/340,627 for an AXIALLY REINFORCED FLEXIBLE SCAN ELEMENT, filed Jul. 25, 2014 (Rueblinger et al.);
    • U.S. patent application Ser. No. 14/446,391 for MULTIFUNCTION POINT OF SALE APPARATUS WITH OPTICAL SIGNATURE CAPTURE filed Jul. 30, 2014 (Good et al.);
    • U.S. patent application Ser. No. 14/452,697 for INTERACTIVE INDICIA READER, filed Aug. 6, 2014 (Todeschini);
    • U.S. patent application Ser. No. 14/453,019 for DIMENSIONING SYSTEM WITH GUIDED ALIGNMENT, filed Aug. 6, 2014 (Li et al.);
    • U.S. patent application Ser. No. 14/462,601 for MOBILE COMPUTING DEVICE WITH DATA COGNITION SOFTWARE, filed on Aug. 19, 2014 (Todeschini et al.);
    • U.S. patent application Ser. No. 14/483,056 for VARIABLE DEPTH OF FIELD BARCODE SCANNER filed Sep. 10, 2014 (McCloskey et al.);
    • U.S. patent application Ser. No. 14/513,608 for IDENTIFYING INVENTORY ITEMS IN A STORAGE FACILITY filed Oct. 14, 2014 (Singel et al.);
    • U.S. patent application Ser. No. 14/519,195 for HANDHELD DIMENSIONING SYSTEM WITH FEEDBACK filed Oct. 21, 2014 (Laffarque et al.);
    • U.S. patent application Ser. No. 14/519,179 for DIMENSIONING SYSTEM WITH MULTIPATH INTERFERENCE MITIGATION filed Oct. 21, 2014 (Thuries et al.);
    • U.S. patent application Ser. No. 14/519,211 for SYSTEM AND METHOD FOR DIMENSIONING filed Oct. 21, 2014 (Ackley et al.);
    • U.S. patent application Ser. No. 14/519,233 for HANDHELD DIMENSIONER WITH DATA-QUALITY INDICATION filed Oct. 21, 2014 (Laffargue et al.);
    • U.S. patent application Ser. No. 14/519,249 fox HANDHELD DIMENSIONING SYSTEM WITH MEASUREMENT-CONFORMANCE FEEDBACK filed Oct. 21, 2014 (Ackley et al.);
    • U.S. patent application Ser. No. 14/527,191 for METHOD AND SYSTEM FOR RECOGNIZING SPEECH USING WILDCARDS IN AN EXPECTED RESPONSE filed Oct. 29, 2014 (Braho et al.);
    • U.S. patent application Ser. No. 14/529,563 for ADAPTABLE INTERFACE FOR A MOBILE COMPUTING DEVICE filed Oct. 31, 2014 (Schoon et al.);
    • U.S. patent application Ser. No. 14/529,657 for BARCODE READER WITH SECURITY FEATURES filed Oct. 31, 2014 (Todeschini et al.);
    • U.S. patent application Ser. No. 14/398,542 for PORTABLE ELECTRONIC DEVICES HAVING A SEPARATE LOCATION TRIGGER UNIT FOR USE IN CONTROLLING AN APPLICATION UNIT filed Nov. 3, 2014 (Bian et al.);
    • U.S. patent application Ser. No. 14/531,154 for DIRECTING AN INSPECTOR THROUGH AN INSPECTION filed Nov. 3, 2014 (Miller et al.);
    • U.S. patent application Ser. No. 14/533,319 for BARCODE SCANNING SYSTEM USING WEARABLE DEVICE WITH EMBEDDED CAMERA filed Nov. 5, 2014 (Todeschini);
    • U.S. patent application Ser. No. 14/535,764 for CONCATENATED EXPECTED RESPONSES POP SPEECH RECOGNITION filed Nov. 7, 2014 (Braho et al.);
    • U.S. patent application Ser. No. 14/568,305 for AUTO-CONTRAST VIEWFINDER FOR AN INDICIA READER filed Dec. 12, 2014 (Todeschini);
    • U.S. patent application Ser. No. 14/573,022 for DYNAMIC DIAGNOSTIC INDICATOR GENERATION filed Dec. 17, 2014 (Goldsmith);
    • U.S. patent application Ser. No. 14/578,627 for SAFETY SYSTEM AND METHOD filed Dec. 22, 2014 (Ackley et al.);
    • U.S. patent application Ser. No. 14/580,262 for MEDIA GATE FOR THERMAL TRANSFER PRINTERS filed Dec. 23, 2014 (Bowles);
    • U.S. patent application Ser. No. 14/590,024 for SHELVING AND PACKAGE LOCATING SYSTEMS FOR DELIVERY VEHICLES filed Jan. 6, 2015 (Payne);
    • U.S. patent application Ser. No. 14/596,757 for SYSTEM AND METHOD FOR DETECTING BARCODE PRINTING ERRORS filed Jan. 14, 2015 (Ackley);
    • U.S. patent application Ser. No. 14/416,147 for OPTICAL READING APPARATUS HAVING VARIABLE SETTINGS filed Jan. 21, 2015 (Chen et al.);
    • U.S. patent application Ser. No. 14/614,706 for DEVICE FOR SUPPORTING AN ELECTRONIC TOOL ON A USER'S HAND filed Feb. 5, 2015 (Oberpriller et al.);
    • U.S. patent application Ser. No. 14/614,796 for CARGO APPORTIONMENT TECHNIQUES filed Feb. 5, 2015 (Morton et al.);
    • U.S. patent application Ser. No. 29/516,692 for TABLE COMPUTER filed Feb. 6, 2015 (Bidwell et al.);
    • U.S. patent application Ser. No. 14/619,093 for METHODS FOR TRAINING A SPEECH RECOGNITION SYSTEM filed Feb. 11, 2015 (Pecorari);
    • U.S. patent application Ser. No. 14/628,706 for DEVICE, SYSTEM, AND METHOD FOR DETERMINING THE STATUS OF CHECKOUT LANES filed Feb. 23, 2015 (Todeschini);
    • U.S. patent application Ser. No. 14/630,841 for TERMINAL INCLUDING IMAGING ASSEMBLY filed Feb. 25, 2015 (Gomez et al.);
    • U.S. patent application Ser. No. 14/635,346 for SYSTEM AND METHOD FOR RELIABLE STORE-AND-FORWARD DATA HANDLING BY ENCODED INFORMATION READING TERMINALS filed Mar. 2, 2015 (Sevier);
    • U.S. patent application Ser. No. 29/519,017 for SCANNER filed Mar. 2, 2015 (Zhou et al.);
    • U.S. patent application Ser. No. 14/405,278 for DESIGN PATTERN FOR SECURE STORE filed Mar. 9, 2015 (Zhu et al.);
    • U.S. patent application Ser. No. 14/660,970 for DECODABLE INDICIA READING TERMINAL WITH COMBINED ILLUMINATION filed Mar. 18, 2015 (Kearney et al.);
    • U.S. patent application Ser. No. 14/661,013 for REPROGRAMMING SYSTEM AND METHOD FOR DEVICES INCLUDING PROGRAMMING SYMBOL filed Mar. 18, 2015 (Soule et al.);
    • U.S. patent application Ser. No. 14/662,922 for MULTIFUNCTION POINT OF SALE SYSTEM filed Mar. 19, 2015 (Van Horn et al.);
    • U.S. patent application Ser. No. 14/663,638 for VEHICLE MOUNT COMPUTER WITH CONFIGURABLE IGNITION SWITCH BEHAVIOR filed Mar. 20, 2015 (Davis et al.);
    • U.S. patent application Ser. No. 14/664,063 for METHOD AND APPLICATION FOR SCANNING A BARCODE WITH A SMART DEVICE WHILE CONTINUOUSLY RUNNING AND DISPLAYING AN APPLICATION ON THE SMART DEVICE DISPLAY filed Mar. 20, 2015 (Todeschini);
    • U.S. patent application Ser. No. 14/669,280 for TRANSFORMING COMPONENTS OF A WEB PAGE TO VOICE PROMPTS filed Mar. 26, 2015 (Funyak et al.);
    • U.S. patent application Ser. No. 14/674,329 for AIMER FOR BARCODE SCANNING filed Mar. 31, 2015 (Bidwell);
    • U.S. patent application Ser. No. 14/676,109 for INDICIA READER filed Apr. 1, 2015 (Huck);
    • U.S. patent application Ser. No. 14/676,327 for DEVICE MANAGEMENT PROXY FOR SECURE DEVICES filed Apr. 1, 2015 (Yeakley et al.);
    • U.S. patent application Ser. No. 14/676,898 for NAVIGATION SYSTEM CONFIGURED TO INTEGRATE MOTION SENSING DEVICE INPUTS filed Apr. 2, 2015 (Showering);
    • U.S. patent application Ser. No. 14/679,275 for DIMENSIONING SYSTEM CALIBRATION SYSTEMS AND METHODS filed Apr. 6, 2015 (Laffargue et al.);
    • U.S. patent application Ser. No. 29/523,098 for HANDLE FOR A TABLET COMPUTER filed Apr. 7, 2015 (Bidwell et al.);
    • U.S. patent application Ser. No. 14/682,615 for SYSTEM AND METHOD FOR POWER MANAGEMENT OF MOBILE DEVICES filed Apr. 9, 2015 (Murawski et al.);
    • U.S. patent application Ser. No. 14/686,822 fox MULTIPLE PLATFORM SUPPORT SYSTEM AND METHOD filed Apr. 15, 2015 (u et al.);
    • U.S. patent application Ser. No. 14/687,289 for SYSTEM FOR COMMUNICATION VIA A PERIPHERAL HUB filed Apr. 15, 2015 (Kohtz et al.);
    • U.S. patent application Ser. No. 29/524,186 for SCANNER filed Apr. 17, 2015 (Zhou et al.);
    • U.S. patent application Ser. No. 14/695,364 for MEDICATION MANAGEMENT SYSTEM filed Apr. 24, 2015 (Sewell et al.);
    • U.S. patent application Ser. No. 14/695,923 for SECURE UNATTENDED NETWORK AUTHENTICATION filed Apr. 24, 2015 (Kubler et al.);
    • U.S. patent application Ser. No. 29/525,068 for TABLET COMPUTER WITH REMOVABLE SCANNING DEVICE filed Apr. 27, 2015 (Schulte et al.);
    • U.S. patent application Ser. No. 14/699,436 fox SYMBOL READING SYSTEM HAVING PREDICTIVE DIAGNOSTICS filed Apr. 29, 2015 (Nahill et al.);
    • U.S. patent application Ser. No. 14/702,110 for SYSTEM AND METHOD FOR REGULATING BARCODE DATA INJECTION INTO A RUNNING APPLICATION ON A SMART DEVICE filed May 1, 2015 (Todeachini et al.);
    • U.S. patent application Ser. No. 14/702,979 for TRACKING BATTERY CONDITIONS filed May 4, 2015 (Young et al.);
    • U.S. patent application Ser. No. 14/704,050 for INTERMEDIATE LINEAR POSITIONING filed May 5, 2015 (Charpentier et al.);
    • U.S. patent application Ser. No. 14/705,012 for HANDS-FREE HUMAN MACHINE INTERFACE RESPONSIVE TO A DRIVER OF A VEHICLE filed May 6, 2015 (Fitch et al.);
    • U.S. patent application Ser. No. 14/705,407 for METHOD AND SYSTEM TO PROTECT SOFTWARE-BASED NETWORK-CONNECTED DEVICES FROM ADVANCED PERSISTENT THREAT filed May 6, 2015 (Hussey et al.);
    • U.S. patent application Ser. No. 14/707,037 for SYSTEM AND METHOD FOR DISPLAY OF INFORMATION USING A VEHICLE-MOUNT COMPUTER filed May 8, 2015 (Chamberlin);
    • U.S. patent application Ser. No. 14/707,123 fox APPLICATION INDEPENDENT DEX/UCS INTERFACE filed May 6, 2015 (Pape);
    • U.S. patent application Ser. No. 14/707,492 for METHOD AND APPARATUS FOP READING OPTICAL INDICIA USING A PLURALITY OF DATA SOURCES filed May 8, 2015 (Smith et al.);
    • U.S. patent application Ser. No. 14/710,666 for PRE-PAID USAGE SYSTEM FOR ENCODED INFORMATION READING TERMINALS filed May 13, 2015 (Smith);
    • U.S. patent application Ser. No. 29/526,918 for CHARGING BASE filed May 14, 2015 (Fitch et al.);
    • U.S. patent application Ser. No. 14/715,672 for AUGMENTED REALITY ENABLED HAZARD DISPLAY filed May 19, 2015 (Venkatesha et al.);
    • U.S. patent application Ser. No. 14/715,916 for EVALUATING IMAGE VALUES filed May 19, 2015 (Ackley);
    • U.S. patent application Ser. No. 14/722,608 for INTERACTIVE USER INTERFACE FOR CAPTURING A DOCUMENT IN AN IMAGE SIGNAL filed May 27, 2015 (Showering et al.);
    • U.S. patent application Ser. No. 29/528,165 for IN-COUNTER BARCODE SCANNER filed May 27, 2015 (Oberpriller et al.);
    • U.S. patent application Ser. No. 14/724,134 for ELECTRONIC DEVICE WITH WIRELESS PATH SELECTION CAPABILITY filed May 28, 2015 (Wang et al.);
    • U.S. patent application Ser. No. 14/724,849 for METHOD OF PROGRAMMING THE DEFAULT CABLE INTERFACE SOFTWARE IN AN INDICIA READING DEVICE filed May 29, 2015 (Barten);
    • U.S. patent application Ser. No. 14/724,908 for IMAGING APPARATUS HAVING IMAGING ASSEMBLY filed May 29, 2015 (Barber et al.);
    • U.S. patent application Ser. No. 14/725,352 for APPARATUS AND METHODS FOR MONITORING ONE OP MORE PORTABLE DATA TERMINALS (Caballero et al.);
    • U.S. patent application Ser. No. 29/528,590 for ELECTRONIC DEVICE filed May 29, 2015 (Fitch et al.);
    • U.S. patent application Ser. No. 29/528,890 for MOBILE COMPUTER HOUSING filed Jun. 2, 2015 (Fitch et al.);
    • U.S. patent application Ser. No. 14/728,397 for DEVICE MANAGEMENT USING VIRTUAL INTERFACES CROSS-REFERENCE TO RELATED APPLICATIONS filed Jun. 2, 2015 (Caballero);
    • U.S. patent application Ser. No. 14/732,670 for DATA COLLECTION MODULE AND SYSTEM filed Jun. 8, 2015 (Powilleit);
    • U.S. patent application Ser. No. 29/529,441 for INDICIA READING DEVICE filed Jun. 8, 2015 (Zhou et al.);
    • U.S. patent application Ser. No. 14/735,717 for INDICIA-READING SYSTEMS HAVING AN INTERFACE WITH A USER'S NERVOUS SYSTEM filed Jun. 10, 2015 (Todeschini);
    • U.S. patent application Ser. No. 14/738,038 for METHOD OF AND SYSTEM FOR DETECTING OBJECT WEIGHING INTERFERENCES filed Jun. 12, 2015 (Amundsen et al.);
    • U.S. patent application Ser. No. 14/740,320 for TACTILE SWITCH FOR A MOBILE ELECTRONIC DEVICE filed Jun. 16, 2015 (Bandringa);
    • U.S. patent application Ser. No. 14/740,373 for CALIBRATING A VOLUME DIMENSIONER filed Jun. 16, 2015 (Ackley et al.);
    • U.S. patent application Ser. No. 14/742,618 for INDICIA READING SYSTEM EMPLOYING DIGITAL GAIN CONTROL filed Jun. 18, 2015 (Xian et al.);
    • U.S. patent application Ser. No. 14/743,257 for WIRELESS MESH POINT PORTABLE DATA TERMINAL filed Jun. 18, 2015 (Wang et al.);
    • U.S. patent application Ser. No. 29/530,600 for CYCLONE filed Jun. 18, 2015 (Vargo et al);
    • U.S. patent application Ser. No. 14/744,633 for IMAGING APPARATUS COMPRISING IMAGE SENSOR ARRAY HAVING SHARED GLOBAL SHUTTER CIRCUITRY filed Jun. 19, 2015 (Wang);
    • U.S. patent application Ser. No. 14/744,836 for CLOUD-BASED SYSTEM FOR READING OF DECODABLE INDICIA filed Jun. 19, 2015 (Todeschini et al.);
    • U.S. patent application Ser. No. 14/745,006 for SELECTIVE OUTPUT OF DECODED MESSAGE DATA filed Jun. 19, 2015 (Todeschini et al.);
    • U.S. patent application Ser. No. 14/747,197 for OPTICAL PATTERN PROJECTOR filed Jun. 23, 2015 (Thuries et al.);
    • U.S. patent application Ser. No. 14/747,490 for DUAL-PROJECTOR THREE-DIMENSIONAL SCANNER filed Jun. 23, 2015 (Jovanovski et al.); and
    • U.S. patent application Ser. No. 14/748,446 for CORDLESS INDICIA READER WITH A MULTIFUNCTION COIL FOR WIRELESS CHARGING AND EAS DEACTIVATION, filed Jun. 24, 2015 (Xie et al.).
  • In the specification and/or figures, typical embodiments of the invention have been disclosed. The present invention is not limited to such exemplary embodiments. The use of the term “and/or” includes any and all combinations of one or more of the associated listed items. The figures are schematic representations and so are rot necessarily drawn to scale. Unless otherwise noted, specific terms have been used in a generic and descriptive sense and not for purposes of limitation.

Claims (20)

What is claimed is:
1. A worker resource management system, comprising:
a voice-directed mobile terminal for facilitating a voice communication between a user and the voice-directed mobile terminal, wherein the user is assigned a task in one of multiple warehouse regions; and
a computer in communication with the voice-directed mobile terminal, the computer including a worker resource analysis module and a tasking module for transmitting an instruction to the voice-directed mobile terminal, wherein the worker resource analysis module is configured to:
(i) record the voice communication between the user and the voice-directed mobile terminal with a corresponding timestamp that indicates when the voice communication occurred, based at least in part upon the voice communication received from the voice-directed mobile terminal over a communication link,
(ii) record user activity information from the voice-directed mobile terminal based on the recorded voice communication at the time the voice communication occurred,
(iii) identify user productivity patterns for the user based at least in part upon the user activity information,
(iv) provide an alert corresponding to the user productivity patterns at predefined intervals based on a break duration taken by the user and a break period predefined by the worker resource analysis module.
2. The system of claim 1, comprising a visual display in communication with the computer.
3. The system of claim 2, wherein the visual display provides reports corresponding to the user productivity patterns.
4. The system of claim 2, wherein the visual display provides alerts corresponding to the user productivity patterns.
5. The system of claim 1, wherein the worker resource analysis module is configured to classify user activity information into groups comprising user workflow tasks, user sign-in activity, user sign-out activity, user break activity, and/or user region changes.
6. The system of claim 1, wherein the worker resource analysis module is configured to provide a report of a projected departure time of a delivery vehicle from each of the multiple warehouse regions relative to a scheduled departure time based on a function of at least one of an amount of work remaining in the warehouse region, number of users operating in the warehouse region, current rate of work being accomplished, and current projected time of work completion.
7. The system of claim 1, wherein the user productivity patterns are pattern is identified at fixed interval time periods immediately preceding a current identification time.
8. The system of claim 1, wherein the user activity information comprises at least one of a break duration, a user idle time after sign-in, a user idle time before sign-off, a user idle time before beginning break activity, and a user idle time after returning from break activity.
9. The system of claim 7, wherein the user productivity patterns identified are based on five minute time periods immediately preceding the current identification time.
10. The system of claim 7, wherein the user productivity patterns identified is flagged based upon the most recent interval period immediately preceding the current identification time.
11. A worker resource management system, comprising:
a voice-directed mobile terminal for facilitating a voice communication between a user and the voice-directed mobile terminal, wherein the user is assigned a task in one of multiple warehouse regions and each warehouse region has a delivery vehicle with a scheduled departure time; and
a computer in communication with the voice-directed mobile terminal, the computer including a worker resource analysis module and a tasking module for transmitting an instruction to the voice-directed mobile terminal, wherein the worker resource analysis module is configured to:
(i) record the voice communication between the user and the voice-directed mobile terminal with a corresponding timestamp based at least in part upon the voice communication received from the voice-directed mobile terminal over a communication link,
(ii) record user activity information from the voice-directed mobile terminal based on recorded voice communication at the time the voice communication occurred,
(iii) provide work assessment predictions based at least in part upon user activity information received recorded,
(iv) provide a workforce prediction report for a predefined time interval based on a function of the user activity information, an amount of work remaining in the particular warehouse region, and number of delivery vehicles scheduled for departure from the warehouse region within the particular predefined time interval.
12. The system of claim 11, wherein the worker resource analysis module is configured to provide a report of a projected departure time of the delivery vehicle from each of the multiple warehouse regions relative to the scheduled departure time based on a function of at least one of an amount of work remaining in the warehouse region, number of users operating in the warehouse region, current rate of work being accomplished, and current projected time of work completion.
13. The system of claim 12, wherein a visual display provides reports corresponding to the work assessment predictions.
14. The system of claim 11, wherein the worker resource analysis module is configured to provide an alert corresponding to the work assessment predictions at predefined intervals based on a break duration taken by the user and a break period predefined by the worker resource analysis module.
15. The system of claim 11, wherein the work assessment predictions comprise information that the delivery vehicle from the warehouse region will be delayed beyond scheduled departure time.
16. The system of claim 11, wherein the work assessment predictions are based upon a number of work units remaining in the warehouse region, a number of users present in a warehouse region's workforce, and a rate at which work is being completed in the warehouse region.
17. A method for managing worker resources, comprising:
transmitting task data from a server computer to a voice-directed mobile terminal in communication with the server computer;
providing speech-based instructions associated with task data to a user using the voice-directed mobile terminal, wherein the user is assigned a task in one of multiple warehouse regions;
recording a voice communication between the user and the voice-directed mobile terminal with a corresponding timestamp based at least in part upon the voice communication received from the voice-directed mobile terminal over a communication link;
recording user activity information from the voice-directed mobile terminal based on recorded voice communication at the time the voice communication occurred;
analyzing user activity information to
(i) identify user productivity patterns,
(ii) provide work assessment predictions;
(iii) provide an alert corresponding to the work assessment predictions at predefined intervals based on a break duration taken by the user and a predefined break period.
18. The method of claim 17, further comprising implementing worker resource decisions in response to an analysis of the user activity information.
19. The method of claim 18, wherein the worker resource decisions comprise providing a productivity compliance alert to a worker related to break duration compliance based on the corresponding timestamps.
20. The method of claim 18, wherein the worker resource decisions are based upon a number of work units remaining in the warehouse region, a number of users present in a warehouse region's workforce, and a rate at which work is being completed in the warehouse region.
US17/111,164 2014-10-15 2020-12-03 Systems and methods for worker resource management Pending US20210117901A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/111,164 US20210117901A1 (en) 2014-10-15 2020-12-03 Systems and methods for worker resource management
US18/327,673 US20230306353A1 (en) 2014-10-15 2023-06-01 Systems and methods for worker resource management

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
IN2944DE2014 2014-10-15
IN2944/DEL/2014 2014-10-15
US14/880,482 US10909490B2 (en) 2014-10-15 2015-10-12 Systems and methods for worker resource management
US17/111,164 US20210117901A1 (en) 2014-10-15 2020-12-03 Systems and methods for worker resource management

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US14/880,482 Continuation US10909490B2 (en) 2014-10-15 2015-10-12 Systems and methods for worker resource management

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/327,673 Continuation US20230306353A1 (en) 2014-10-15 2023-06-01 Systems and methods for worker resource management

Publications (1)

Publication Number Publication Date
US20210117901A1 true US20210117901A1 (en) 2021-04-22

Family

ID=55792271

Family Applications (2)

Application Number Title Priority Date Filing Date
US14/880,482 Active 2038-05-12 US10909490B2 (en) 2014-10-15 2015-10-12 Systems and methods for worker resource management
US17/111,164 Pending US20210117901A1 (en) 2014-10-15 2020-12-03 Systems and methods for worker resource management

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US14/880,482 Active 2038-05-12 US10909490B2 (en) 2014-10-15 2015-10-12 Systems and methods for worker resource management

Country Status (1)

Country Link
US (2) US10909490B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11810545B2 (en) 2011-05-20 2023-11-07 Vocollect, Inc. Systems and methods for dynamically improving user intelligibility of synthesized speech in a work environment
US11837253B2 (en) 2016-07-27 2023-12-05 Vocollect, Inc. Distinguishing user speech from background speech in speech-dense environments

Families Citing this family (114)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9779546B2 (en) 2012-05-04 2017-10-03 Intermec Ip Corp. Volume dimensioning systems and methods
US10007858B2 (en) 2012-05-15 2018-06-26 Honeywell International Inc. Terminals and methods for dimensioning objects
US20140104413A1 (en) 2012-10-16 2014-04-17 Hand Held Products, Inc. Integrated dimensioning and weighing system
US9930142B2 (en) 2013-05-24 2018-03-27 Hand Held Products, Inc. System for providing a continuous communication link with a symbol reading device
US8918250B2 (en) 2013-05-24 2014-12-23 Hand Held Products, Inc. System and method for display of information using a vehicle-mount computer
US10228452B2 (en) 2013-06-07 2019-03-12 Hand Held Products, Inc. Method of error correction for 3D imaging device
US9224022B2 (en) 2014-04-29 2015-12-29 Hand Held Products, Inc. Autofocus lens system for indicia readers
US9823059B2 (en) 2014-08-06 2017-11-21 Hand Held Products, Inc. Dimensioning system with guided alignment
US10810715B2 (en) 2014-10-10 2020-10-20 Hand Held Products, Inc System and method for picking validation
US9779276B2 (en) 2014-10-10 2017-10-03 Hand Held Products, Inc. Depth sensor based auto-focus system for an indicia scanner
US10775165B2 (en) 2014-10-10 2020-09-15 Hand Held Products, Inc. Methods for improving the accuracy of dimensioning-system measurements
US10909490B2 (en) 2014-10-15 2021-02-02 Vocollect, Inc. Systems and methods for worker resource management
US9897434B2 (en) 2014-10-21 2018-02-20 Hand Held Products, Inc. Handheld dimensioning system with measurement-conformance feedback
US9761096B2 (en) 2014-12-18 2017-09-12 Hand Held Products, Inc. Active emergency exit systems for buildings
US9743731B2 (en) 2014-12-18 2017-08-29 Hand Held Products, Inc. Wearable sled system for a mobile computer device
US9734639B2 (en) 2014-12-31 2017-08-15 Hand Held Products, Inc. System and method for monitoring an industrial vehicle
CN204706037U (en) 2014-12-31 2015-10-14 手持产品公司 The reconfigurable slide plate of mobile device and mark reading system
US9997935B2 (en) 2015-01-08 2018-06-12 Hand Held Products, Inc. System and method for charging a barcode scanner
US9852102B2 (en) 2015-04-15 2017-12-26 Hand Held Products, Inc. System for exchanging information between wireless peripherals and back-end systems via a peripheral hub
US20160314294A1 (en) 2015-04-24 2016-10-27 Hand Held Products, Inc. Secure unattended network authentication
US9954871B2 (en) 2015-05-06 2018-04-24 Hand Held Products, Inc. Method and system to protect software-based network-connected devices from advanced persistent threat
US9978088B2 (en) 2015-05-08 2018-05-22 Hand Held Products, Inc. Application independent DEX/UCS interface
US9786101B2 (en) 2015-05-19 2017-10-10 Hand Held Products, Inc. Evaluating image values
US9892876B2 (en) 2015-06-16 2018-02-13 Hand Held Products, Inc. Tactile switch for a mobile electronic device
US20160377414A1 (en) 2015-06-23 2016-12-29 Hand Held Products, Inc. Optical pattern projector
US9835486B2 (en) 2015-07-07 2017-12-05 Hand Held Products, Inc. Mobile dimensioner apparatus for use in commerce
US9911023B2 (en) 2015-08-17 2018-03-06 Hand Held Products, Inc. Indicia reader having a filtered multifunction image sensor
US9781681B2 (en) 2015-08-26 2017-10-03 Hand Held Products, Inc. Fleet power management through information storage sharing
US9646191B2 (en) 2015-09-23 2017-05-09 Intermec Technologies Corporation Evaluating images
US9767337B2 (en) 2015-09-30 2017-09-19 Hand Held Products, Inc. Indicia reader safety
US9844956B2 (en) 2015-10-07 2017-12-19 Intermec Technologies Corporation Print position correction
US9656487B2 (en) 2015-10-13 2017-05-23 Intermec Technologies Corporation Magnetic media holder for printer
US9876923B2 (en) 2015-10-27 2018-01-23 Intermec Technologies Corporation Media width sensing
US10327095B2 (en) * 2015-11-18 2019-06-18 Interactive Intelligence Group, Inc. System and method for dynamically generated reports
US9935946B2 (en) 2015-12-16 2018-04-03 Hand Held Products, Inc. Method and system for tracking an electronic device at an electronic device docking station
US9805343B2 (en) 2016-01-05 2017-10-31 Intermec Technologies Corporation System and method for guided printer servicing
US11423348B2 (en) * 2016-01-11 2022-08-23 Hand Held Products, Inc. System and method for assessing worker performance
US10025314B2 (en) 2016-01-27 2018-07-17 Hand Held Products, Inc. Vehicle positioning and object avoidance
US9990524B2 (en) 2016-06-16 2018-06-05 Hand Held Products, Inc. Eye gaze detection controlled indicia scanning system and method
US10339497B2 (en) * 2016-07-21 2019-07-02 Ebay Inc. System and method for dynamic inventory management
US9902175B1 (en) 2016-08-02 2018-02-27 Datamax-O'neil Corporation Thermal printer having real-time force feedback on printhead pressure and method of using same
US9919547B2 (en) 2016-08-04 2018-03-20 Datamax-O'neil Corporation System and method for active printing consistency control and damage protection
US9881194B1 (en) 2016-09-19 2018-01-30 Hand Held Products, Inc. Dot peen mark image acquisition
US9785814B1 (en) 2016-09-23 2017-10-10 Hand Held Products, Inc. Three dimensional aimer for barcode scanning
US9936278B1 (en) 2016-10-03 2018-04-03 Vocollect, Inc. Communication headsets and systems for mobile application control and power savings
US9892356B1 (en) 2016-10-27 2018-02-13 Hand Held Products, Inc. Backlit display detection and radio signature recognition
CN108616148A (en) 2016-12-09 2018-10-02 手持产品公司 Intelligent battery balance system and method
CN117556839A (en) 2016-12-28 2024-02-13 手持产品公司 Illuminator for DPM scanner
CN108259702B (en) 2016-12-28 2022-03-11 手持产品公司 Method and system for synchronizing illumination timing in a multi-sensor imager
CN108304741B (en) 2017-01-12 2023-06-09 手持产品公司 Wakeup system in bar code scanner
US11042834B2 (en) 2017-01-12 2021-06-22 Vocollect, Inc. Voice-enabled substitutions with customer notification
US10468015B2 (en) 2017-01-12 2019-11-05 Vocollect, Inc. Automated TTS self correction system
US10263443B2 (en) 2017-01-13 2019-04-16 Hand Held Products, Inc. Power capacity indicator
DE202017100940U1 (en) * 2017-01-18 2017-03-06 Aeris Gmbh Job Analysis System
US9802427B1 (en) 2017-01-18 2017-10-31 Datamax-O'neil Corporation Printers and methods for detecting print media thickness therein
US10350905B2 (en) 2017-01-26 2019-07-16 Datamax-O'neil Corporation Detecting printing ribbon orientation
CN108363932B (en) 2017-01-26 2023-04-18 手持产品公司 Method for reading bar code and deactivating electronic anti-theft label of commodity
US10984374B2 (en) 2017-02-10 2021-04-20 Vocollect, Inc. Method and system for inputting products into an inventory system
US9908351B1 (en) 2017-02-27 2018-03-06 Datamax-O'neil Corporation Segmented enclosure
US10737911B2 (en) 2017-03-02 2020-08-11 Hand Held Products, Inc. Electromagnetic pallet and method for adjusting pallet position
CN108537077B (en) 2017-03-06 2023-07-14 手持产品公司 System and method for bar code verification
US11047672B2 (en) 2017-03-28 2021-06-29 Hand Held Products, Inc. System for optically dimensioning
US9937735B1 (en) 2017-04-20 2018-04-10 Datamax—O'Neil Corporation Self-strip media module
US10463140B2 (en) 2017-04-28 2019-11-05 Hand Held Products, Inc. Attachment apparatus for electronic device
CN108859447B (en) 2017-05-12 2021-11-23 大数据奥尼尔公司 Method for medium exchange process of thermal printer, medium adapter and printer
US9984366B1 (en) 2017-06-09 2018-05-29 Hand Held Products, Inc. Secure paper-free bills in workflow applications
US10867141B2 (en) 2017-07-12 2020-12-15 Hand Held Products, Inc. System and method for augmented reality configuration of indicia readers
US10733748B2 (en) 2017-07-24 2020-08-04 Hand Held Products, Inc. Dual-pattern optical 3D dimensioning
US10255469B2 (en) 2017-07-28 2019-04-09 Hand Held Products, Inc. Illumination apparatus for a barcode reader
US10650631B2 (en) 2017-07-28 2020-05-12 Hand Held Products, Inc. Systems and methods for processing a distorted image
CN109308430B (en) 2017-07-28 2023-08-15 手持产品公司 Decoding color bar codes
US10099485B1 (en) 2017-07-31 2018-10-16 Datamax-O'neil Corporation Thermal print heads and printers including the same
US10373032B2 (en) 2017-08-01 2019-08-06 Datamax-O'neil Corporation Cryptographic printhead
CN109388981B (en) 2017-08-04 2024-03-08 手持产品公司 Indicia reader acoustic enclosure for multiple mounting locations
CN109390994B (en) 2017-08-11 2023-08-11 手持产品公司 Soft power start solution based on POGO connector
JP7042573B2 (en) * 2017-08-18 2022-03-28 三菱重工業株式会社 Evaluation system, evaluation method and program
CN109424871B (en) 2017-08-18 2023-05-05 手持产品公司 Illuminator for bar code scanner
US10399359B2 (en) 2017-09-06 2019-09-03 Vocollect, Inc. Autocorrection for uneven print pressure on print media
CN111095317A (en) * 2017-09-08 2020-05-01 日铁系统集成株式会社 Information processing system, information processing device, information processing method, program, and storage medium
US10372389B2 (en) 2017-09-22 2019-08-06 Datamax-O'neil Corporation Systems and methods for printer maintenance operations
US10756900B2 (en) 2017-09-28 2020-08-25 Hand Held Products, Inc. Non-repudiation protocol using time-based one-time password (TOTP)
US10621470B2 (en) 2017-09-29 2020-04-14 Datamax-O'neil Corporation Methods for optical character recognition (OCR)
US10245861B1 (en) 2017-10-04 2019-04-02 Datamax-O'neil Corporation Printers, printer spindle assemblies, and methods for determining media width for controlling media tension
US10728445B2 (en) 2017-10-05 2020-07-28 Hand Held Products Inc. Methods for constructing a color composite image
US10884059B2 (en) 2017-10-18 2021-01-05 Hand Held Products, Inc. Determining the integrity of a computing device
US10818186B2 (en) * 2017-10-18 2020-10-27 Maplebear, Inc. Optimizing task assignments in a delivery system
US10654287B2 (en) 2017-10-19 2020-05-19 Datamax-O'neil Corporation Print quality setup using banks in parallel
US10084556B1 (en) 2017-10-20 2018-09-25 Hand Held Products, Inc. Identifying and transmitting invisible fence signals with a mobile data terminal
US10399369B2 (en) 2017-10-23 2019-09-03 Datamax-O'neil Corporation Smart media hanger with media width detection
US10293624B2 (en) 2017-10-23 2019-05-21 Datamax-O'neil Corporation Smart media hanger with media width detection
US10679101B2 (en) 2017-10-25 2020-06-09 Hand Held Products, Inc. Optical character recognition systems and methods
US10210364B1 (en) 2017-10-31 2019-02-19 Hand Held Products, Inc. Direct part marking scanners including dome diffusers with edge illumination assemblies
US10181896B1 (en) 2017-11-01 2019-01-15 Hand Held Products, Inc. Systems and methods for reducing power consumption in a satellite communication device
US10427424B2 (en) 2017-11-01 2019-10-01 Datamax-O'neil Corporation Estimating a remaining amount of a consumable resource based on a center of mass calculation
US10369823B2 (en) 2017-11-06 2019-08-06 Datamax-O'neil Corporation Print head pressure detection and adjustment
US10369804B2 (en) 2017-11-10 2019-08-06 Datamax-O'neil Corporation Secure thermal print head
US10399361B2 (en) 2017-11-21 2019-09-03 Datamax-O'neil Corporation Printer, system and method for programming RFID tags on media labels
US10654697B2 (en) 2017-12-01 2020-05-19 Hand Held Products, Inc. Gyroscopically stabilized vehicle system
US10232628B1 (en) 2017-12-08 2019-03-19 Datamax-O'neil Corporation Removably retaining a print head assembly on a printer
US10703112B2 (en) 2017-12-13 2020-07-07 Datamax-O'neil Corporation Image to script converter
US10756563B2 (en) 2017-12-15 2020-08-25 Datamax-O'neil Corporation Powering devices using low-current power sources
US10323929B1 (en) 2017-12-19 2019-06-18 Datamax-O'neil Corporation Width detecting media hanger
US10773537B2 (en) 2017-12-27 2020-09-15 Datamax-O'neil Corporation Method and apparatus for printing
US10795618B2 (en) 2018-01-05 2020-10-06 Datamax-O'neil Corporation Methods, apparatuses, and systems for verifying printed image and improving print quality
US10546160B2 (en) 2018-01-05 2020-01-28 Datamax-O'neil Corporation Methods, apparatuses, and systems for providing print quality feedback and controlling print quality of machine-readable indicia
US10834283B2 (en) 2018-01-05 2020-11-10 Datamax-O'neil Corporation Methods, apparatuses, and systems for detecting printing defects and contaminated components of a printer
US10803264B2 (en) 2018-01-05 2020-10-13 Datamax-O'neil Corporation Method, apparatus, and system for characterizing an optical system
US10731963B2 (en) 2018-01-09 2020-08-04 Datamax-O'neil Corporation Apparatus and method of measuring media thickness
US10897150B2 (en) 2018-01-12 2021-01-19 Hand Held Products, Inc. Indicating charge status
US10809949B2 (en) 2018-01-26 2020-10-20 Datamax-O'neil Corporation Removably couplable printer and verifier assembly
US10584962B2 (en) 2018-05-01 2020-03-10 Hand Held Products, Inc System and method for validating physical-item security
US10434800B1 (en) 2018-05-17 2019-10-08 Datamax-O'neil Corporation Printer roll feed mechanism
US11639846B2 (en) 2019-09-27 2023-05-02 Honeywell International Inc. Dual-pattern optical 3D dimensioning
US20230080923A1 (en) * 2021-09-14 2023-03-16 Vocollect, Inc. Systems and methods for providing real-time assistance

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020054101A1 (en) * 1998-05-29 2002-05-09 Robert A. Beatty Graphical user interface shop floor control system
US20020178074A1 (en) * 2001-05-24 2002-11-28 Gregg Bloom Method and apparatus for efficient package delivery and storage
US20040181461A1 (en) * 2003-03-14 2004-09-16 Samir Raiyani Multi-modal sales applications
US20050044129A1 (en) * 2003-08-21 2005-02-24 Mccormack Tony Management of queues in contact centres
US20070050228A1 (en) * 2005-08-24 2007-03-01 Aspect Communications Corporation Schedule management
US20070184881A1 (en) * 2006-02-06 2007-08-09 James Wahl Headset terminal with speech functionality
US20090089100A1 (en) * 2007-10-01 2009-04-02 Valeriy Nenov Clinical information system
US20130090089A1 (en) * 2011-10-11 2013-04-11 Mobiwork, Llc Method and system to record and visualize type, time and duration of moving and idle segments
US8644489B1 (en) * 2013-03-15 2014-02-04 Noble Systems Corporation Forced schedule adherence for contact center agents
US20150193268A1 (en) * 2014-01-09 2015-07-09 Red Hat, Inc. File lock and unlock mechanism
US9196260B1 (en) * 2008-10-01 2015-11-24 Avaya Inc. System and method for automating voice checklists
US10026506B1 (en) * 2015-02-06 2018-07-17 Brain Trust Innovations I, Llc System, RFID chip, server and method for capturing vehicle data
US20190250882A1 (en) * 2014-04-01 2019-08-15 TekWear, LLC Systems, methods, and apparatuses for agricultural data collection, analysis, and management via a mobile device
US20190370721A1 (en) * 2018-05-29 2019-12-05 Hand Held Products, Inc. Methods, systems, and apparatuses for monitoring and improving productivity of a material handling environment
US20200311650A1 (en) * 2017-12-15 2020-10-01 Beijing Didi Infinity Technology And Development Co., Ltd. Systems and methods for optimizing an online on-demand service
US11900202B2 (en) * 2009-04-22 2024-02-13 Metrc Llc Wearable RFID system

Family Cites Families (357)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7387253B1 (en) 1996-09-03 2008-06-17 Hand Held Products, Inc. Optical reader system comprising local host processor and optical reader
US7304670B1 (en) 1997-03-28 2007-12-04 Hand Held Products, Inc. Method and apparatus for compensating for fixed pattern noise in an imaging system
US7270274B2 (en) 1999-10-04 2007-09-18 Hand Held Products, Inc. Imaging module comprising support post for optical reader
US6832725B2 (en) 1999-10-04 2004-12-21 Hand Held Products, Inc. Optical reader comprising multiple color illumination
US20020129139A1 (en) * 2000-09-05 2002-09-12 Subramanyan Ramesh System and method for facilitating the activities of remote workers
US7128266B2 (en) 2003-11-13 2006-10-31 Metrologic Instruments. Inc. Hand-supportable digital imaging-based bar code symbol reader supporting narrow-area and wide-area modes of illumination and image capture
US7708205B2 (en) 2003-11-13 2010-05-04 Metrologic Instruments, Inc. Digital image capture and processing system employing multi-layer software-based system architecture permitting modification and/or extension of system features and functions by way of third party code plug-ins
US20090134221A1 (en) 2000-11-24 2009-05-28 Xiaoxun Zhu Tunnel-type digital imaging-based system for use in automated self-checkout and cashier-assisted checkout operations in retail store environments
US8682077B1 (en) 2000-11-28 2014-03-25 Hand Held Products, Inc. Method for omnidirectional processing of 2D images including recognizable characters
US7268924B2 (en) 2001-01-22 2007-09-11 Hand Held Products, Inc. Optical reader having reduced parameter determination delay
EP2249284B1 (en) 2001-01-22 2014-03-05 Hand Held Products, Inc. Optical reader having partial frame operating mode
US7111787B2 (en) 2001-05-15 2006-09-26 Hand Held Products, Inc. Multimode image capturing and decoding optical reader
US6834807B2 (en) 2001-07-13 2004-12-28 Hand Held Products, Inc. Optical reader having a color imager
US7748620B2 (en) 2002-01-11 2010-07-06 Hand Held Products, Inc. Transaction terminal including imaging module
US6959865B2 (en) 2002-03-28 2005-11-01 Hand Held Products, Inc. Customizable optical reader
US7086596B2 (en) 2003-01-09 2006-08-08 Hand Held Products, Inc. Decoder board for an optical reader utilizing a plurality of imaging formats
US8596542B2 (en) 2002-06-04 2013-12-03 Hand Held Products, Inc. Apparatus operative for capture of image data
US7637430B2 (en) 2003-05-12 2009-12-29 Hand Held Products, Inc. Picture taking optical reader
US7337317B2 (en) 2003-07-03 2008-02-26 Hand Held Products, Inc. Memory data copying system for devices
US7841533B2 (en) 2003-11-13 2010-11-30 Metrologic Instruments, Inc. Method of capturing and processing digital images of an object within the field of view (FOV) of a hand-supportable digitial image capture and processing system
US8615487B2 (en) 2004-01-23 2013-12-24 Garrison Gomez System and method to store and retrieve identifier associated information content
US8532282B2 (en) * 2004-06-14 2013-09-10 At&T Intellectual Property I, L.P. Tracking user operations
US7293712B2 (en) 2004-10-05 2007-11-13 Hand Held Products, Inc. System and method to automatically discriminate between a signature and a dataform
US7219841B2 (en) 2004-11-05 2007-05-22 Hand Held Products, Inc. Device and system for verifying quality of bar codes
US7865362B2 (en) 2005-02-04 2011-01-04 Vocollect, Inc. Method and system for considering information about an expected response when performing speech recognition
US7827032B2 (en) 2005-02-04 2010-11-02 Vocollect, Inc. Methods and systems for adapting a model for a speech recognition system
US8723804B2 (en) 2005-02-11 2014-05-13 Hand Held Products, Inc. Transaction terminal and adaptor therefor
WO2006119583A1 (en) 2005-05-13 2006-11-16 Dspace Pty Ltd Method and system for communicating information in a digital signal
US7849620B2 (en) 2005-05-31 2010-12-14 Hand Held Products, Inc. Bar coded wristband
US7717342B2 (en) 2005-08-26 2010-05-18 Hand Held Products, Inc. Data collection device having dynamic access to multiple wireless networks
US20070063048A1 (en) 2005-09-14 2007-03-22 Havens William H Data reader apparatus having an adaptive lens
US20070080930A1 (en) * 2005-10-11 2007-04-12 Logan James R Terminal device for voice-directed work and information exchange
US7934660B2 (en) 2006-01-05 2011-05-03 Hand Held Products, Inc. Data collection system having reconfigurable data collection terminal
FI20060045A0 (en) 2006-01-19 2006-01-19 Markku Matias Rautiola IP telephone network to constitute a service network in a mobile telephone system
US7784696B2 (en) 2006-06-09 2010-08-31 Hand Held Products, Inc. Indicia reading apparatus having image sensing and processing circuit
US8944332B2 (en) 2006-08-04 2015-02-03 Intermec Ip Corp. Testing automatic data collection devices, such as barcode, RFID and/or magnetic stripe readers
US7813047B2 (en) 2006-12-15 2010-10-12 Hand Held Products, Inc. Apparatus and method comprising deformable lens element
US8027096B2 (en) 2006-12-15 2011-09-27 Hand Held Products, Inc. Focus module and components with actuator polymer control
US9047359B2 (en) 2007-02-01 2015-06-02 Hand Held Products, Inc. Apparatus and methods for monitoring one or more portable data terminals
US8915444B2 (en) 2007-03-13 2014-12-23 Hand Held Products, Inc. Imaging module having lead frame supported light source or sources
US8971346B2 (en) 2007-04-30 2015-03-03 Hand Held Products, Inc. System and method for reliable store-and-forward data handling by encoded information reading terminals
US8630491B2 (en) 2007-05-03 2014-01-14 Andrew Longacre, Jr. System and method to manipulate an image
US8638806B2 (en) 2007-05-25 2014-01-28 Hand Held Products, Inc. Wireless mesh point portable data terminal
US8794526B2 (en) 2007-06-04 2014-08-05 Hand Held Products, Inc. Indicia reading terminal processing plurality of frames of image data responsively to trigger signal activation
US8496177B2 (en) 2007-06-28 2013-07-30 Hand Held Products, Inc. Bar code reading terminal with video capturing mode
US20090006164A1 (en) * 2007-06-29 2009-01-01 Caterpillar Inc. System and method for optimizing workforce engagement
US8635309B2 (en) 2007-08-09 2014-01-21 Hand Held Products, Inc. Methods and apparatus to change a feature set on data collection devices
US7726575B2 (en) 2007-08-10 2010-06-01 Hand Held Products, Inc. Indicia reading terminal having spatial measurement functionality
US7857222B2 (en) 2007-08-16 2010-12-28 Hand Held Products, Inc. Data collection system having EIR terminal interface node
US8548420B2 (en) 2007-10-05 2013-10-01 Hand Held Products, Inc. Panic button for data collection device
US8371507B2 (en) 2007-10-08 2013-02-12 Metrologic Instruments, Inc. Method of selectively projecting scan lines in a multiple-line barcode scanner
US7874483B2 (en) 2007-11-14 2011-01-25 Hand Held Products, Inc. Encoded information reading terminal with wireless path selection capability
US8179859B2 (en) 2008-02-21 2012-05-15 Wang Ynjiun P Roaming encoded information reading terminal
US8794520B2 (en) 2008-09-30 2014-08-05 Hand Held Products, Inc. Method and apparatus for operating indicia reading terminal including parameter determination
US8628015B2 (en) 2008-10-31 2014-01-14 Hand Held Products, Inc. Indicia reading terminal including frame quality evaluation processing
US8783573B2 (en) 2008-12-02 2014-07-22 Hand Held Products, Inc. Indicia reading terminal having plurality of optical assemblies
US8083148B2 (en) 2008-12-16 2011-12-27 Hand Held Products, Inc. Indicia reading terminal including frame processing
US8908995B2 (en) 2009-01-12 2014-12-09 Intermec Ip Corp. Semi-automatic dimensioning with imager on a portable device
US20100177707A1 (en) 2009-01-13 2010-07-15 Metrologic Instruments, Inc. Method and apparatus for increasing the SNR at the RF antennas of wireless end-devices on a wireless communication network, while minimizing the RF power transmitted by the wireless coordinator and routers
US20100177076A1 (en) 2009-01-13 2010-07-15 Metrologic Instruments, Inc. Edge-lit electronic-ink display device for use in indoor and outdoor environments
US20100177080A1 (en) 2009-01-13 2010-07-15 Metrologic Instruments, Inc. Electronic-ink signage device employing thermal packaging for outdoor weather applications
US8457013B2 (en) 2009-01-13 2013-06-04 Metrologic Instruments, Inc. Wireless dual-function network device dynamically switching and reconfiguring from a wireless network router state of operation into a wireless network coordinator state of operation in a wireless communication network
US20100177749A1 (en) 2009-01-13 2010-07-15 Metrologic Instruments, Inc. Methods of and apparatus for programming and managing diverse network components, including electronic-ink based display devices, in a mesh-type wireless communication network
US8643717B2 (en) 2009-03-04 2014-02-04 Hand Held Products, Inc. System and method for measuring irregular objects with a single camera
US8424768B2 (en) 2009-04-09 2013-04-23 Metrologic Instruments, Inc. Trigger mechanism for hand held devices
US8914788B2 (en) 2009-07-01 2014-12-16 Hand Held Products, Inc. Universal connectivity for non-universal devices
US8583924B2 (en) 2009-07-01 2013-11-12 Hand Held Products, Inc. Location-based feature enablement for mobile terminals
US8256678B2 (en) 2009-08-12 2012-09-04 Hand Held Products, Inc. Indicia reading terminal having image sensor and variable lens assembly
US8668149B2 (en) 2009-09-16 2014-03-11 Metrologic Instruments, Inc. Bar code reader terminal and methods for operating the same having misread detection apparatus
US8294969B2 (en) 2009-09-23 2012-10-23 Metrologic Instruments, Inc. Scan element for use in scanning light and method of making the same
US8390909B2 (en) 2009-09-23 2013-03-05 Metrologic Instruments, Inc. Molded elastomeric flexural elements for use in a laser scanning assemblies and scanners, and methods of manufacturing, tuning and adjusting the same
US8723904B2 (en) 2009-09-25 2014-05-13 Intermec Ip Corp. Mobile printer with optional battery accessory
US8587595B2 (en) 2009-10-01 2013-11-19 Hand Held Products, Inc. Low power multi-core decoder system and method
US8868802B2 (en) 2009-10-14 2014-10-21 Hand Held Products, Inc. Method of programming the default cable interface software in an indicia reading device
US8596543B2 (en) 2009-10-20 2013-12-03 Hand Held Products, Inc. Indicia reading terminal including focus element with expanded range of focus distances
US8996384B2 (en) 2009-10-30 2015-03-31 Vocollect, Inc. Transforming components of a web page to voice prompts
US8698949B2 (en) 2010-01-08 2014-04-15 Hand Held Products, Inc. Terminal having plurality of operating modes
US8302868B2 (en) 2010-01-15 2012-11-06 Metrologic Instruments, Inc. Parallel decoding scheme for an indicia reader
US8588869B2 (en) 2010-01-19 2013-11-19 Hand Held Products, Inc. Power management scheme for portable data collection devices utilizing location and position sensors
CN102203800B (en) 2010-01-21 2015-09-23 计量仪器公司 Comprise the tag reader terminal of optical filter
US8781520B2 (en) 2010-01-26 2014-07-15 Hand Held Products, Inc. Mobile device having hybrid keypad
US9058526B2 (en) 2010-02-11 2015-06-16 Hand Held Products, Inc. Data collection module and system
US20110202554A1 (en) 2010-02-18 2011-08-18 Hand Held Products, Inc. Remote device management system and method
US8504090B2 (en) * 2010-03-29 2013-08-06 Motorola Solutions, Inc. Enhanced public safety communication system
US8600167B2 (en) 2010-05-21 2013-12-03 Hand Held Products, Inc. System for capturing a document in an image signal
US9047531B2 (en) 2010-05-21 2015-06-02 Hand Held Products, Inc. Interactive user interface for capturing a document in an image signal
US20140058801A1 (en) * 2010-06-04 2014-02-27 Sapience Analytics Private Limited System And Method To Measure, Aggregate And Analyze Exact Effort And Time Productivity
US8659397B2 (en) 2010-07-22 2014-02-25 Vocollect, Inc. Method and system for correctly identifying specific RFID tags
US8910870B2 (en) 2010-08-06 2014-12-16 Hand Held Products, Inc. System and method for document processing
US8717494B2 (en) 2010-08-11 2014-05-06 Hand Held Products, Inc. Optical reading device with improved gasket
US8757495B2 (en) 2010-09-03 2014-06-24 Hand Held Products, Inc. Encoded information reading terminal with multi-band antenna
US8565107B2 (en) 2010-09-24 2013-10-22 Hand Held Products, Inc. Terminal configurable for use within an unknown regulatory domain
US8408469B2 (en) 2010-10-07 2013-04-02 Metrologic Instruments, Inc. Laser scanning assembly having an improved scan angle-multiplication factor
US8760563B2 (en) 2010-10-19 2014-06-24 Hand Held Products, Inc. Autofocusing optical imaging device
US8322622B2 (en) 2010-11-09 2012-12-04 Metrologic Instruments, Inc. Hand-supportable digital-imaging based code symbol reading system supporting motion blur reduction using an accelerometer sensor
US8490877B2 (en) 2010-11-09 2013-07-23 Metrologic Instruments, Inc. Digital-imaging based code symbol reading system having finger-pointing triggered mode of operation
US20120111946A1 (en) 2010-11-09 2012-05-10 Metrologic Instruments, Inc. Scanning assembly for laser based bar code scanners
US8517269B2 (en) 2010-11-09 2013-08-27 Hand Held Products, Inc. Using a user'S application to configure user scanner
US8571307B2 (en) 2010-11-16 2013-10-29 Hand Held Products, Inc. Method and system operative to process monochrome image data
US8600158B2 (en) 2010-11-16 2013-12-03 Hand Held Products, Inc. Method and system operative to process color image data
US8950678B2 (en) 2010-11-17 2015-02-10 Hand Held Products, Inc. Barcode reader with edge detection enhancement
US9010641B2 (en) 2010-12-07 2015-04-21 Hand Held Products, Inc. Multiple platform support system and method
US8550357B2 (en) 2010-12-08 2013-10-08 Metrologic Instruments, Inc. Open air indicia reader stand
GB2501404A (en) 2010-12-09 2013-10-23 Metrologic Instr Inc Indicia encoding system with integrated purchase and payment information
US8448863B2 (en) 2010-12-13 2013-05-28 Metrologic Instruments, Inc. Bar code symbol reading system supporting visual or/and audible display of product scan speed for throughput optimization in point of sale (POS) environments
US8408468B2 (en) 2010-12-13 2013-04-02 Metrologic Instruments, Inc. Method of and system for reading visible and/or invisible code symbols in a user-transparent manner using visible/invisible illumination source switching during data capture and processing operations
US8939374B2 (en) 2010-12-30 2015-01-27 Hand Held Products, Inc. Terminal having illumination and exposure control
US8996194B2 (en) 2011-01-03 2015-03-31 Ems Technologies, Inc. Vehicle mount computer with configurable ignition switch behavior
US8763909B2 (en) 2011-01-04 2014-07-01 Hand Held Products, Inc. Terminal comprising mount for supporting a mechanical component
US8692927B2 (en) 2011-01-19 2014-04-08 Hand Held Products, Inc. Imaging terminal having focus control
US20120193423A1 (en) 2011-01-31 2012-08-02 Metrologic Instruments Inc Code symbol reading system supporting operator-dependent system configuration parameters
US8879639B2 (en) 2011-01-31 2014-11-04 Hand Held Products, Inc. Adaptive video capture decode system
US8520080B2 (en) 2011-01-31 2013-08-27 Hand Held Products, Inc. Apparatus, system, and method of use of imaging assembly on mobile terminal
US8798367B2 (en) 2011-01-31 2014-08-05 Metrologic Instruments, Inc. Optical imager and method for correlating a medication package with a patient
US9038915B2 (en) 2011-01-31 2015-05-26 Metrologic Instruments, Inc. Pre-paid usage system for encoded information reading terminals
US8678286B2 (en) 2011-01-31 2014-03-25 Honeywell Scanning & Mobility Method and apparatus for reading optical indicia using a plurality of data sources
US8381979B2 (en) 2011-01-31 2013-02-26 Metrologic Instruments, Inc. Bar code symbol reading system employing EAS-enabling faceplate bezel
GB2501840A (en) 2011-01-31 2013-11-06 Giovani Pattoli R Indicia reading terminal operable for data input on two sides
US8561903B2 (en) 2011-01-31 2013-10-22 Hand Held Products, Inc. System operative to adaptively select an image sensor for decodable indicia reading
US20120197678A1 (en) * 2011-02-01 2012-08-02 Herbert Ristock Methods and Apparatus for Managing Interaction Processing
US8789757B2 (en) 2011-02-02 2014-07-29 Metrologic Instruments, Inc. POS-based code symbol reading system with integrated scale base and system housing having an improved produce weight capturing surface design
US8408464B2 (en) 2011-02-03 2013-04-02 Metrologic Instruments, Inc. Auto-exposure method using continuous video frames under controlled illumination
US8636200B2 (en) 2011-02-08 2014-01-28 Metrologic Instruments, Inc. MMS text messaging for hand held indicia reader
US20120203647A1 (en) 2011-02-09 2012-08-09 Metrologic Instruments, Inc. Method of and system for uniquely responding to code data captured from products so as to alert the product handler to carry out exception handling procedures
US8550354B2 (en) 2011-02-17 2013-10-08 Hand Held Products, Inc. Indicia reader system with wireless communication with a headset
US20120223141A1 (en) 2011-03-01 2012-09-06 Metrologic Instruments, Inc. Digital linear imaging system employing pixel processing techniques to composite single-column linear images on a 2d image detection array
US8459557B2 (en) 2011-03-10 2013-06-11 Metrologic Instruments, Inc. Dual laser scanning code symbol reading system employing automatic object presence detector for automatic laser source selection
US8988590B2 (en) 2011-03-28 2015-03-24 Intermec Ip Corp. Two-dimensional imager with solid-state auto-focus
US8469272B2 (en) 2011-03-29 2013-06-25 Metrologic Instruments, Inc. Hybrid-type bioptical laser scanning and imaging system supporting digital-imaging based bar code symbol reading at the surface of a laser scanning window
US9208626B2 (en) 2011-03-31 2015-12-08 United Parcel Service Of America, Inc. Systems and methods for segmenting operational data
US8824692B2 (en) 2011-04-20 2014-09-02 Vocollect, Inc. Self calibrating multi-element dipole microphone
US8914290B2 (en) 2011-05-20 2014-12-16 Vocollect, Inc. Systems and methods for dynamically improving user intelligibility of synthesized speech in a work environment
US8868519B2 (en) 2011-05-27 2014-10-21 Vocollect, Inc. System and method for generating and updating location check digits
US9208366B2 (en) 2011-06-08 2015-12-08 Metrologic Instruments, Inc. Indicia decoding device with security lock
US8824696B2 (en) 2011-06-14 2014-09-02 Vocollect, Inc. Headset signal multiplexing system and method
US8561905B2 (en) 2011-06-15 2013-10-22 Metrologic Instruments, Inc. Hybrid-type bioptical laser scanning and digital imaging system supporting automatic object motion detection at the edges of a 3D scanning volume
US8376233B2 (en) 2011-06-15 2013-02-19 Metrologic Instruments, Inc. Bar code symbol reading system employing an extremely elongated laser scanning beam capable of reading poor and damaged quality bar code symbols with improved levels of performance
US8998091B2 (en) 2011-06-15 2015-04-07 Metrologic Instruments, Inc. Hybrid-type bioptical laser scanning and digital imaging system supporting automatic object motion detection at the edges of a 3D scanning volume
US8794525B2 (en) 2011-09-28 2014-08-05 Metologic Insturments, Inc. Method of and system for detecting produce weighing interferences in a POS-based checkout/scale system
US8628016B2 (en) 2011-06-17 2014-01-14 Hand Held Products, Inc. Terminal operative for storing frame of image data
US8657200B2 (en) 2011-06-20 2014-02-25 Metrologic Instruments, Inc. Indicia reading terminal with color frame processing
US9129172B2 (en) 2011-06-20 2015-09-08 Metrologic Instruments, Inc. Indicia reading terminal with color frame processing
US8636215B2 (en) 2011-06-27 2014-01-28 Hand Held Products, Inc. Decodable indicia reading terminal with optical filter
US8640960B2 (en) 2011-06-27 2014-02-04 Honeywell International Inc. Optical filter for image and barcode scanning
US8985459B2 (en) 2011-06-30 2015-03-24 Metrologic Instruments, Inc. Decodable indicia reading terminal with combined illumination
US20130043312A1 (en) 2011-08-15 2013-02-21 Metrologic Instruments, Inc. Code symbol reading system employing dynamically-elongated laser scanning beams for improved levels of performance
US8779898B2 (en) 2011-08-17 2014-07-15 Hand Held Products, Inc. Encoded information reading terminal with micro-electromechanical radio frequency front end
US8636212B2 (en) 2011-08-24 2014-01-28 Metrologic Instruments, Inc. Decodable indicia reading terminal with indicia analysis functionality
US8822848B2 (en) 2011-09-02 2014-09-02 Metrologic Instruments, Inc. Bioptical point of sale (POS) checkout system employing a retractable weigh platter support subsystem
WO2013033867A1 (en) 2011-09-09 2013-03-14 Metrologic Instruments, Inc. Imaging based barcode scanner engine with multiple elements supported on a common printed circuit board
US9135483B2 (en) 2011-09-09 2015-09-15 Metrologic Instruments, Inc. Terminal having image data format conversion
US8590789B2 (en) 2011-09-14 2013-11-26 Metrologic Instruments, Inc. Scanner with wake-up mode
US8844823B2 (en) 2011-09-15 2014-09-30 Metrologic Instruments, Inc. Laser scanning system employing an optics module capable of forming a laser beam having an extended depth of focus (DOF) over the laser scanning field
US8976368B2 (en) 2011-09-15 2015-03-10 Intermec Ip Corp. Optical grid enhancement for improved motor location
US8678285B2 (en) 2011-09-20 2014-03-25 Metrologic Instruments, Inc. Method of and apparatus for multiplying raster scanning lines by modulating a multi-cavity laser diode
US8556176B2 (en) 2011-09-26 2013-10-15 Metrologic Instruments, Inc. Method of and apparatus for managing and redeeming bar-coded coupons displayed from the light emitting display surfaces of information display devices
WO2013044405A1 (en) 2011-09-26 2013-04-04 Metrologic Instruments, Inc. Optical indicia reading terminal with combined illumination
US8474712B2 (en) 2011-09-29 2013-07-02 Metrologic Instruments, Inc. Method of and system for displaying product related information at POS-based retail checkout systems
US8646692B2 (en) 2011-09-30 2014-02-11 Hand Held Products, Inc. Devices and methods employing dual target auto exposure
US8539123B2 (en) 2011-10-06 2013-09-17 Honeywell International, Inc. Device management using a dedicated management interface
US8621123B2 (en) 2011-10-06 2013-12-31 Honeywell International Inc. Device management using virtual interfaces
US8608071B2 (en) 2011-10-17 2013-12-17 Honeywell Scanning And Mobility Optical indicia reading terminal with two image sensors
US9015513B2 (en) 2011-11-03 2015-04-21 Vocollect, Inc. Receiving application specific individual battery adjusted battery use profile data upon loading of work application for managing remaining power of a mobile device
US8629926B2 (en) 2011-11-04 2014-01-14 Honeywell International, Inc. Imaging apparatus comprising image sensor array having shared global shutter circuitry
WO2013067671A1 (en) 2011-11-07 2013-05-16 Honeywell Scanning And Mobility Optical indicia reading terminal with color image sensor
US8526720B2 (en) 2011-11-17 2013-09-03 Honeywell International, Inc. Imaging terminal operative for decoding
US8485430B2 (en) 2011-12-06 2013-07-16 Honeywell International, Inc. Hand held bar code readers or mobile computers with cloud computing services
US8881983B2 (en) 2011-12-13 2014-11-11 Honeywell International Inc. Optical readers and methods employing polarization sensing of light from decodable indicia
US8628013B2 (en) 2011-12-13 2014-01-14 Honeywell International Inc. Apparatus comprising image sensor array and illumination control
US8991704B2 (en) 2011-12-14 2015-03-31 Intermec Ip Corp. Snap-on module for selectively installing receiving element(s) to a mobile device
US8695880B2 (en) 2011-12-22 2014-04-15 Honeywell International, Inc. Imaging devices and methods for inhibiting or removing captured aiming pattern
US8523076B2 (en) 2012-01-10 2013-09-03 Metrologic Instruments, Inc. Omnidirectional laser scanning bar code symbol reader generating a laser scanning pattern with a highly non-uniform scan density with respect to line orientation
US20130175341A1 (en) 2012-01-10 2013-07-11 Sean Philip Kearney Hybrid-type bioptical laser scanning and digital imaging system employing digital imager with field of view overlapping field of field of laser scanning subsystem
WO2013106991A1 (en) 2012-01-17 2013-07-25 Honeywell International Inc. Industrial design for consumer device based on scanning and mobility
WO2013106947A1 (en) 2012-01-18 2013-07-25 Metrologic Instruments, Inc. Web-based scan-task enabled system. and method of and apparatus for developing and deploying the same on a client-server network
US8880426B2 (en) 2012-01-30 2014-11-04 Honeywell International, Inc. Methods and systems employing time and/or location data for use in transactions
US8988578B2 (en) 2012-02-03 2015-03-24 Honeywell International Inc. Mobile computing device with improved image preview functionality
US8915439B2 (en) 2012-02-06 2014-12-23 Metrologic Instruments, Inc. Laser scanning modules embodying silicone scan element with torsional hinges
US8740085B2 (en) 2012-02-10 2014-06-03 Honeywell International Inc. System having imaging assembly for use in output of image data
WO2013120256A1 (en) 2012-02-15 2013-08-22 Honeywell International Inc Encoded information reading terminal including http server
US8740082B2 (en) 2012-02-21 2014-06-03 Metrologic Instruments, Inc. Laser scanning bar code symbol reading system having intelligent scan sweep angle adjustment capabilities over the working range of the system for optimized bar code symbol reading performance
US9378403B2 (en) 2012-03-01 2016-06-28 Honeywell International, Inc. Method of using camera sensor interface to transfer multiple channels of scan data using an image format
US8550335B2 (en) 2012-03-09 2013-10-08 Honeywell International, Inc. Encoded information reading terminal in communication with peripheral point-of-sale devices
US8777108B2 (en) 2012-03-23 2014-07-15 Honeywell International, Inc. Cell phone reading mode using image timer
US9064165B2 (en) 2012-03-28 2015-06-23 Metrologic Instruments, Inc. Laser scanning system using laser beam sources for producing long and short wavelengths in combination with beam-waist extending optics to extend the depth of field thereof while resolving high resolution bar code symbols having minimum code element widths
US20130257744A1 (en) 2012-03-29 2013-10-03 Intermec Technologies Corporation Piezoelectric tactile interface
US9383848B2 (en) 2012-03-29 2016-07-05 Intermec Technologies Corporation Interleaved piezoelectric tactile interface
US8976030B2 (en) 2012-04-24 2015-03-10 Metrologic Instruments, Inc. Point of sale (POS) based checkout system supporting a customer-transparent two-factor authentication process during product checkout operations
US20150062366A1 (en) 2012-04-27 2015-03-05 Honeywell International, Inc. Method of improving decoding speed based on off-the-shelf camera phone
WO2013163789A1 (en) 2012-04-30 2013-11-07 Honeywell International Inc. Hardware-based image data binarization in an indicia reading terminal
US8608053B2 (en) 2012-04-30 2013-12-17 Honeywell International Inc. Mobile communication terminal configured to display multi-symbol decodable indicia
US9779546B2 (en) 2012-05-04 2017-10-03 Intermec Ip Corp. Volume dimensioning systems and methods
US8752766B2 (en) 2012-05-07 2014-06-17 Metrologic Instruments, Inc. Indicia reading system employing digital gain control
US9007368B2 (en) 2012-05-07 2015-04-14 Intermec Ip Corp. Dimensioning system calibration systems and methods
WO2013166647A1 (en) 2012-05-08 2013-11-14 Honeywell International Inc. Encoded information reading terminal with replaceable imaging assembly
US9158954B2 (en) 2012-05-15 2015-10-13 Intermec Ip, Corp. Systems and methods to read machine-readable symbols
US10007858B2 (en) 2012-05-15 2018-06-26 Honeywell International Inc. Terminals and methods for dimensioning objects
KR101967169B1 (en) 2012-05-16 2019-04-09 삼성전자주식회사 Synchronization method and apparatus in device to device network
US9064254B2 (en) 2012-05-17 2015-06-23 Honeywell International Inc. Cloud-based system for reading of decodable indicia
US8789759B2 (en) 2012-05-18 2014-07-29 Metrologic Instruments, Inc. Laser scanning code symbol reading system employing multi-channel scan data signal processing with synchronized digital gain control (SDGC) for full range scanning
US9016576B2 (en) 2012-05-21 2015-04-28 Metrologic Instruments, Inc. Laser scanning code symbol reading system providing improved control over the length and intensity characteristics of a laser scan line projected therefrom using laser source blanking control
WO2013173985A1 (en) 2012-05-23 2013-11-28 Honeywell International Inc. Portable electronic devices having a separate location trigger unit for use in controlling an application unit
US9092682B2 (en) 2012-05-25 2015-07-28 Metrologic Instruments, Inc. Laser scanning code symbol reading system employing programmable decode time-window filtering
US9251484B2 (en) * 2012-06-01 2016-02-02 International Business Machines Corporation Predicting likelihood of on-time product delivery, diagnosing issues that threaten delivery, and exploration of likely outcome of different solutions
US9251392B2 (en) 2012-06-01 2016-02-02 Honeywell International, Inc. Indicia reading apparatus
US8978983B2 (en) 2012-06-01 2015-03-17 Honeywell International, Inc. Indicia reading apparatus having sequential row exposure termination times
US8746563B2 (en) 2012-06-10 2014-06-10 Metrologic Instruments, Inc. Laser scanning module with rotatably adjustable laser scanning assembly
WO2013189008A1 (en) 2012-06-18 2013-12-27 Honeywell International Inc. Design pattern for secure store
EP2864929A4 (en) 2012-06-20 2016-03-30 Metrologic Instr Inc Laser scanning code symbol reading system providing control over length of laser scan line projected onto a scanned object using dynamic range-dependent scan angle control
US9053380B2 (en) 2012-06-22 2015-06-09 Honeywell International, Inc. Removeable scanning module for mobile communication terminal
US9390304B2 (en) 2012-06-27 2016-07-12 Honeywell International Encoded information reading terminal with micro-projector
US8978981B2 (en) 2012-06-27 2015-03-17 Honeywell International Inc. Imaging apparatus having imaging lens
US8854633B2 (en) 2012-06-29 2014-10-07 Intermec Ip Corp. Volume dimensioning system and method employing time-of-flight camera
US20140001267A1 (en) 2012-06-29 2014-01-02 Honeywell International Inc. Doing Business As (D.B.A.) Honeywell Scanning & Mobility Indicia reading terminal with non-uniform magnification
US8944313B2 (en) 2012-06-29 2015-02-03 Honeywell International Inc. Computer configured to display multimedia content
WO2014019130A1 (en) 2012-07-31 2014-02-06 Honeywell International Inc. Optical reading apparatus having variable settings
US20140039693A1 (en) 2012-08-02 2014-02-06 Honeywell Scanning & Mobility Input/output connector contact cleaning
US9478983B2 (en) 2012-08-09 2016-10-25 Honeywell Scanning & Mobility Current-limiting battery usage within a corded electronic device
US9088281B2 (en) 2012-08-20 2015-07-21 Intermec Ip Corp. Trigger device for mobile computing device
US10321127B2 (en) 2012-08-20 2019-06-11 Intermec Ip Corp. Volume dimensioning system calibration systems and methods
CN109190427A (en) 2012-08-31 2019-01-11 手持产品公司 The method that wireless scanner is matched by RFID
CN103679406A (en) 2012-09-03 2014-03-26 手持产品公司 Method for authenticating parcel addressee by mark decoding device and decoding device
US9022288B2 (en) 2012-09-05 2015-05-05 Metrologic Instruments, Inc. Symbol reading system having predictive diagnostics
US20140074746A1 (en) 2012-09-07 2014-03-13 Hand Held Products Inc. doing business as (d.b.a) Honeywell Scanning & Mobility Package source verification
CN103679108B (en) 2012-09-10 2018-12-11 霍尼韦尔国际公司 Optical markings reading device with multiple images sensor
US20140071840A1 (en) 2012-09-11 2014-03-13 Hand Held Products, Inc., doing business as Honeywell Scanning & Mobility Mobile computer configured to select wireless communication network
US8916789B2 (en) 2012-09-14 2014-12-23 Intermec Ip Corp. Access door with integrated switch actuator
US9033242B2 (en) 2012-09-21 2015-05-19 Intermec Ip Corp. Multiple focusable fields of view, such as a universal bar code symbol scanner
CN103679107B (en) 2012-09-25 2017-12-01 霍尼韦尔国际公司 IC chip imager based on laminate packaging
CN103699861B (en) 2012-09-27 2018-09-28 霍尼韦尔国际公司 Coding information reading terminals with multiple image-forming assemblies
US8777109B2 (en) 2012-10-04 2014-07-15 Hand Held Products, Inc. Customer facing imaging systems and methods for obtaining images
US9939259B2 (en) 2012-10-04 2018-04-10 Hand Held Products, Inc. Measuring object dimensions using mobile computer
US9405011B2 (en) 2012-10-05 2016-08-02 Hand Held Products, Inc. Navigation system configured to integrate motion sensing device inputs
US9002641B2 (en) 2012-10-05 2015-04-07 Hand Held Products, Inc. Navigation system configured to integrate motion sensing device inputs
US20140108010A1 (en) 2012-10-11 2014-04-17 Intermec Ip Corp. Voice-enabled documents for facilitating operational procedures
US9313377B2 (en) 2012-10-16 2016-04-12 Hand Held Products, Inc. Android bound service camera initialization
US20140104416A1 (en) 2012-10-16 2014-04-17 Hand Held Products, Inc. Dimensioning system
US9148474B2 (en) 2012-10-16 2015-09-29 Hand Held Products, Inc. Replaceable connector
US20140106725A1 (en) 2012-10-16 2014-04-17 Hand Held Products, Inc. Distraction Avoidance System
US20140104413A1 (en) 2012-10-16 2014-04-17 Hand Held Products, Inc. Integrated dimensioning and weighing system
US9235553B2 (en) 2012-10-19 2016-01-12 Hand Held Products, Inc. Vehicle computer system with transparent display
CN103780847A (en) 2012-10-24 2014-05-07 霍尼韦尔国际公司 Chip on board-based highly-integrated imager
USD730902S1 (en) 2012-11-05 2015-06-02 Hand Held Products, Inc. Electronic device
US9741071B2 (en) 2012-11-07 2017-08-22 Hand Held Products, Inc. Computer-assisted shopping and product location
US9147096B2 (en) 2012-11-13 2015-09-29 Hand Held Products, Inc. Imaging apparatus having lens element
US20140136208A1 (en) 2012-11-14 2014-05-15 Intermec Ip Corp. Secure multi-mode communication between agents
US9465967B2 (en) 2012-11-14 2016-10-11 Hand Held Products, Inc. Apparatus comprising light sensing assemblies with range assisted gain control
US9208367B2 (en) 2012-11-15 2015-12-08 Hand Held Products Mobile computer configured to read multiple decodable indicia
US9064168B2 (en) 2012-12-14 2015-06-23 Hand Held Products, Inc. Selective output of decoded message data
US20140152882A1 (en) 2012-12-04 2014-06-05 Hand Held Products, Inc. Mobile device having object-identification interface
US9892289B2 (en) 2012-12-07 2018-02-13 Hand Held Products, Inc. Reading RFID tags in defined spatial locations
US20140175165A1 (en) 2012-12-21 2014-06-26 Honeywell Scanning And Mobility Bar code scanner with integrated surface authentication
US9107484B2 (en) 2013-01-08 2015-08-18 Hand Held Products, Inc. Electronic device enclosure
US20140191913A1 (en) 2013-01-09 2014-07-10 Intermec Ip Corp. Techniques for standardizing antenna architecture
USD702237S1 (en) 2013-01-11 2014-04-08 Hand Held Products, Inc. Imaging terminal
WO2014110495A2 (en) 2013-01-11 2014-07-17 Hand Held Products, Inc. System, method, and computer-readable medium for managing edge devices
US9092681B2 (en) 2013-01-14 2015-07-28 Hand Held Products, Inc. Laser scanning module employing a laser scanning assembly having elastomeric wheel hinges
US20140214631A1 (en) 2013-01-31 2014-07-31 Intermec Technologies Corporation Inventory assistance device and method
US9304376B2 (en) 2013-02-20 2016-04-05 Hand Held Products, Inc. Optical redirection adapter
US8978984B2 (en) 2013-02-28 2015-03-17 Hand Held Products, Inc. Indicia reading terminals and methods for decoding decodable indicia employing light field imaging
US9076459B2 (en) 2013-03-12 2015-07-07 Intermec Ip, Corp. Apparatus and method to classify sound to detect speech
US9080856B2 (en) 2013-03-13 2015-07-14 Intermec Ip Corp. Systems and methods for enhancing dimensioning, for example volume dimensioning
US9384374B2 (en) 2013-03-14 2016-07-05 Hand Held Products, Inc. User interface facilitating specification of a desired data format for an indicia reading apparatus
US9236050B2 (en) 2013-03-14 2016-01-12 Vocollect Inc. System and method for improving speech recognition accuracy in a work environment
US9301052B2 (en) 2013-03-15 2016-03-29 Vocollect, Inc. Headband variable stiffness
US9100743B2 (en) 2013-03-15 2015-08-04 Vocollect, Inc. Method and system for power delivery to a headset
US9978395B2 (en) 2013-03-15 2018-05-22 Vocollect, Inc. Method and system for mitigating delay in receiving audio stream during production of sound from audio stream
US20140297058A1 (en) 2013-03-28 2014-10-02 Hand Held Products, Inc. System and Method for Capturing and Preserving Vehicle Event Data
US9070032B2 (en) 2013-04-10 2015-06-30 Hand Held Products, Inc. Method of programming a symbol reading system
US9195844B2 (en) 2013-05-20 2015-11-24 Hand Held Products, Inc. System and method for securing sensitive data
US9930142B2 (en) 2013-05-24 2018-03-27 Hand Held Products, Inc. System for providing a continuous communication link with a symbol reading device
US9037344B2 (en) 2013-05-24 2015-05-19 Hand Held Products, Inc. System and method for display of information using a vehicle-mount computer
US8918250B2 (en) 2013-05-24 2014-12-23 Hand Held Products, Inc. System and method for display of information using a vehicle-mount computer
US10228452B2 (en) 2013-06-07 2019-03-12 Hand Held Products, Inc. Method of error correction for 3D imaging device
US9141839B2 (en) 2013-06-07 2015-09-22 Hand Held Products, Inc. System and method for reading code symbols at long range using source power control
USD762604S1 (en) 2013-06-19 2016-08-02 Hand Held Products, Inc. Electronic device
US20140374485A1 (en) 2013-06-20 2014-12-25 Hand Held Products, Inc. System and Method for Reading Code Symbols Using a Variable Field of View
US9104929B2 (en) 2013-06-26 2015-08-11 Hand Held Products, Inc. Code symbol reading system having adaptive autofocus
US8985461B2 (en) 2013-06-28 2015-03-24 Hand Held Products, Inc. Mobile device having an improved user interface for reading code symbols
US9239950B2 (en) 2013-07-01 2016-01-19 Hand Held Products, Inc. Dimensioning system
USD747321S1 (en) 2013-07-02 2016-01-12 Hand Held Products, Inc. Electronic device enclosure
US9250652B2 (en) 2013-07-02 2016-02-02 Hand Held Products, Inc. Electronic device case
USD730357S1 (en) 2013-07-03 2015-05-26 Hand Held Products, Inc. Scanner
USD723560S1 (en) 2013-07-03 2015-03-03 Hand Held Products, Inc. Scanner
US9773142B2 (en) 2013-07-22 2017-09-26 Hand Held Products, Inc. System and method for selectively reading code symbols
US9297900B2 (en) 2013-07-25 2016-03-29 Hand Held Products, Inc. Code symbol reading system having adjustable object detection
US20150040378A1 (en) 2013-08-07 2015-02-12 Hand Held Products, Inc. Method for manufacturing laser scanners
US9400906B2 (en) 2013-08-26 2016-07-26 Intermec Ip Corp. Automatic data collection apparatus and method
US9464885B2 (en) 2013-08-30 2016-10-11 Hand Held Products, Inc. System and method for package dimensioning
US9082023B2 (en) 2013-09-05 2015-07-14 Hand Held Products, Inc. Method for operating a laser scanner
US9572901B2 (en) 2013-09-06 2017-02-21 Hand Held Products, Inc. Device having light source to reduce surface pathogens
US8870074B1 (en) 2013-09-11 2014-10-28 Hand Held Products, Inc Handheld indicia reader having locking endcap
US9251411B2 (en) 2013-09-24 2016-02-02 Hand Held Products, Inc. Augmented-reality signature capture
USD785636S1 (en) 2013-09-26 2017-05-02 Hand Held Products, Inc. Electronic device case
US9165174B2 (en) 2013-10-14 2015-10-20 Hand Held Products, Inc. Indicia reader
US10275624B2 (en) 2013-10-29 2019-04-30 Hand Held Products, Inc. Hybrid system and method for reading indicia
US20150134470A1 (en) 2013-11-08 2015-05-14 Hand Held Products, Inc. Self-checkout shopping system
US9800293B2 (en) 2013-11-08 2017-10-24 Hand Held Products, Inc. System for configuring indicia readers using NFC technology
US20150142492A1 (en) 2013-11-19 2015-05-21 Hand Held Products, Inc. Voice-based health monitor including a vocal energy level monitor
US20150144692A1 (en) 2013-11-22 2015-05-28 Hand Held Products, Inc. System and method for indicia reading and verification
US9530038B2 (en) 2013-11-25 2016-12-27 Hand Held Products, Inc. Indicia-reading system
USD734339S1 (en) 2013-12-05 2015-07-14 Hand Held Products, Inc. Indicia scanner
US20150161429A1 (en) 2013-12-10 2015-06-11 Hand Held Products, Inc. High dynamic-range indicia reading system
CN204009928U (en) 2013-12-12 2014-12-10 手持产品公司 Laser scanner
US9373018B2 (en) 2014-01-08 2016-06-21 Hand Held Products, Inc. Indicia-reader having unitary-construction
US10139495B2 (en) 2014-01-24 2018-11-27 Hand Held Products, Inc. Shelving and package locating systems for delivery vehicles
US9665757B2 (en) 2014-03-07 2017-05-30 Hand Held Products, Inc. Indicia reader for size-limited applications
US9224027B2 (en) 2014-04-01 2015-12-29 Hand Held Products, Inc. Hand-mounted indicia-reading device with finger motion triggering
US9412242B2 (en) 2014-04-04 2016-08-09 Hand Held Products, Inc. Multifunction point of sale system
US9258033B2 (en) 2014-04-21 2016-02-09 Hand Held Products, Inc. Docking system and method using near field communication
US9224022B2 (en) 2014-04-29 2015-12-29 Hand Held Products, Inc. Autofocus lens system for indicia readers
USD730901S1 (en) 2014-06-24 2015-06-02 Hand Held Products, Inc. In-counter barcode scanner
US9478113B2 (en) 2014-06-27 2016-10-25 Hand Held Products, Inc. Cordless indicia reader with a multifunction coil for wireless charging and EAS deactivation
US9794392B2 (en) 2014-07-10 2017-10-17 Hand Held Products, Inc. Mobile-phone adapter for electronic transactions
US9443123B2 (en) 2014-07-18 2016-09-13 Hand Held Products, Inc. System and method for indicia verification
US9310609B2 (en) 2014-07-25 2016-04-12 Hand Held Products, Inc. Axially reinforced flexible scan element
US20160042241A1 (en) 2014-08-06 2016-02-11 Hand Held Products, Inc. Interactive indicia reader
US9823059B2 (en) 2014-08-06 2017-11-21 Hand Held Products, Inc. Dimensioning system with guided alignment
US11546428B2 (en) 2014-08-19 2023-01-03 Hand Held Products, Inc. Mobile computing device with data cognition software
US9342724B2 (en) 2014-09-10 2016-05-17 Honeywell International, Inc. Variable depth of field barcode scanner
US10810530B2 (en) * 2014-09-26 2020-10-20 Hand Held Products, Inc. System and method for workflow management
US9443222B2 (en) 2014-10-14 2016-09-13 Hand Held Products, Inc. Identifying inventory items in a storage facility
US10909490B2 (en) 2014-10-15 2021-02-02 Vocollect, Inc. Systems and methods for worker resource management
EP3009968A1 (en) 2014-10-15 2016-04-20 Vocollect, Inc. Systems and methods for worker resource management
USD760719S1 (en) 2014-10-20 2016-07-05 Hand Held Products, Inc. Scanner
US9897434B2 (en) 2014-10-21 2018-02-20 Hand Held Products, Inc. Handheld dimensioning system with measurement-conformance feedback
US9752864B2 (en) 2014-10-21 2017-09-05 Hand Held Products, Inc. Handheld dimensioning system with feedback
US9762793B2 (en) 2014-10-21 2017-09-12 Hand Held Products, Inc. System and method for dimensioning
US9557166B2 (en) 2014-10-21 2017-01-31 Hand Held Products, Inc. Dimensioning system with multipath interference mitigation
US10060729B2 (en) 2014-10-21 2018-08-28 Hand Held Products, Inc. Handheld dimensioner with data-quality indication
US10269342B2 (en) 2014-10-29 2019-04-23 Hand Held Products, Inc. Method and system for recognizing speech using wildcards in an expected response
US9262633B1 (en) 2014-10-31 2016-02-16 Hand Held Products, Inc. Barcode reader with security features
US9924006B2 (en) 2014-10-31 2018-03-20 Hand Held Products, Inc. Adaptable interface for a mobile computing device
US10810529B2 (en) 2014-11-03 2020-10-20 Hand Held Products, Inc. Directing an inspector through an inspection
US20160125217A1 (en) 2014-11-05 2016-05-05 Hand Held Products, Inc. Barcode scanning system using wearable device with embedded camera
US9984685B2 (en) 2014-11-07 2018-05-29 Hand Held Products, Inc. Concatenated expected responses for speech recognition using expected response boundaries to determine corresponding hypothesis boundaries
US9767581B2 (en) 2014-12-12 2017-09-19 Hand Held Products, Inc. Auto-contrast viewfinder for an indicia reader
US20160178479A1 (en) 2014-12-17 2016-06-23 Hand Held Products, Inc. Dynamic diagnostic indicator generation
US9564035B2 (en) 2014-12-22 2017-02-07 Hand Held Products, Inc. Safety system and method
US9375945B1 (en) 2014-12-23 2016-06-28 Hand Held Products, Inc. Media gate for thermal transfer printers
US20160189087A1 (en) 2014-12-30 2016-06-30 Hand Held Products, Inc,. Cargo Apportionment Techniques
US9230140B1 (en) 2014-12-30 2016-01-05 Hand Held Products, Inc. System and method for detecting barcode printing errors
US9861182B2 (en) 2015-02-05 2018-01-09 Hand Held Products, Inc. Device for supporting an electronic tool on a user's hand
US10121466B2 (en) 2015-02-11 2018-11-06 Hand Held Products, Inc. Methods for training a speech recognition system
US9390596B1 (en) 2015-02-23 2016-07-12 Hand Held Products, Inc. Device, system, and method for determining the status of checkout lanes
US9250712B1 (en) 2015-03-20 2016-02-02 Hand Held Products, Inc. Method and application for scanning a barcode with a smart device while continuously running and displaying an application on the smart device display
US20160292477A1 (en) 2015-03-31 2016-10-06 Hand Held Products, Inc. Aimer for barcode scanning
US9930050B2 (en) 2015-04-01 2018-03-27 Hand Held Products, Inc. Device management proxy for secure devices
US9852102B2 (en) 2015-04-15 2017-12-26 Hand Held Products, Inc. System for exchanging information between wireless peripherals and back-end systems via a peripheral hub
US20160314294A1 (en) 2015-04-24 2016-10-27 Hand Held Products, Inc. Secure unattended network authentication
US20160314276A1 (en) 2015-04-24 2016-10-27 Hand Held Products, Inc. Medication management system
US20160377414A1 (en) 2015-06-23 2016-12-29 Hand Held Products, Inc. Optical pattern projector
US11423348B2 (en) * 2016-01-11 2022-08-23 Hand Held Products, Inc. System and method for assessing worker performance
US9728188B1 (en) * 2016-06-28 2017-08-08 Amazon Technologies, Inc. Methods and devices for ignoring similar audio being received by a system
CA3039759C (en) * 2016-09-23 2022-06-21 Genesys Telecommunications Laboratories, Inc. System and method for automatic quality management in a contact center environment
US11645602B2 (en) * 2017-10-18 2023-05-09 Vocollect, Inc. System for analyzing workflow and detecting inactive operators and methods of using the same
US11445235B2 (en) * 2017-10-24 2022-09-13 Comcast Cable Communications, Llc Determining context to initiate interactivity

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020054101A1 (en) * 1998-05-29 2002-05-09 Robert A. Beatty Graphical user interface shop floor control system
US20020178074A1 (en) * 2001-05-24 2002-11-28 Gregg Bloom Method and apparatus for efficient package delivery and storage
US20040181461A1 (en) * 2003-03-14 2004-09-16 Samir Raiyani Multi-modal sales applications
US20050044129A1 (en) * 2003-08-21 2005-02-24 Mccormack Tony Management of queues in contact centres
US20070050228A1 (en) * 2005-08-24 2007-03-01 Aspect Communications Corporation Schedule management
US20070184881A1 (en) * 2006-02-06 2007-08-09 James Wahl Headset terminal with speech functionality
US20090089100A1 (en) * 2007-10-01 2009-04-02 Valeriy Nenov Clinical information system
US9196260B1 (en) * 2008-10-01 2015-11-24 Avaya Inc. System and method for automating voice checklists
US11900202B2 (en) * 2009-04-22 2024-02-13 Metrc Llc Wearable RFID system
US20130090089A1 (en) * 2011-10-11 2013-04-11 Mobiwork, Llc Method and system to record and visualize type, time and duration of moving and idle segments
US8644489B1 (en) * 2013-03-15 2014-02-04 Noble Systems Corporation Forced schedule adherence for contact center agents
US20150193268A1 (en) * 2014-01-09 2015-07-09 Red Hat, Inc. File lock and unlock mechanism
US20190250882A1 (en) * 2014-04-01 2019-08-15 TekWear, LLC Systems, methods, and apparatuses for agricultural data collection, analysis, and management via a mobile device
US10026506B1 (en) * 2015-02-06 2018-07-17 Brain Trust Innovations I, Llc System, RFID chip, server and method for capturing vehicle data
US20200311650A1 (en) * 2017-12-15 2020-10-01 Beijing Didi Infinity Technology And Development Co., Ltd. Systems and methods for optimizing an online on-demand service
US20190370721A1 (en) * 2018-05-29 2019-12-05 Hand Held Products, Inc. Methods, systems, and apparatuses for monitoring and improving productivity of a material handling environment

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11810545B2 (en) 2011-05-20 2023-11-07 Vocollect, Inc. Systems and methods for dynamically improving user intelligibility of synthesized speech in a work environment
US11817078B2 (en) 2011-05-20 2023-11-14 Vocollect, Inc. Systems and methods for dynamically improving user intelligibility of synthesized speech in a work environment
US11837253B2 (en) 2016-07-27 2023-12-05 Vocollect, Inc. Distinguishing user speech from background speech in speech-dense environments

Also Published As

Publication number Publication date
US10909490B2 (en) 2021-02-02
US20160117627A1 (en) 2016-04-28

Similar Documents

Publication Publication Date Title
US20210117901A1 (en) Systems and methods for worker resource management
US11449816B2 (en) System and method for workflow management
US20230306353A1 (en) Systems and methods for worker resource management
US11423348B2 (en) System and method for assessing worker performance
US11721195B2 (en) Augmented industrial management
US11244264B2 (en) Interleaving surprise activities in workflow
US10552786B2 (en) Product and location management via voice recognition
US20160203429A1 (en) Restocking workflow prioritization
CN107867613A (en) Use the forecast analysis of sensor and Internet of Things to elevator performance
US9621621B2 (en) System, apparatus and method for activity guidance and monitoring
US20220000405A1 (en) System That Measures Different States of a Subject
JPWO2021222384A5 (en)
EP3001368A1 (en) System and method for workflow management
US20200326377A1 (en) Methods for estimating a number of workflow cycles able to be completed from a remaining battery capacity
Aleksy et al. Utilizing hololens to support industrial service processes
JP2021131605A (en) Work management support method and work management support service providing method
KR20150036920A (en) Logistics management and order picking system for information visualization objects and method therefor
CN115730782A (en) Method for monitoring a working system and system comprising a working system
US20050055262A1 (en) System and a method for distributing assignments and receiving report data
US10896403B2 (en) Systems and methods for managing dated products
US20180285802A1 (en) Tracking associate interaction
KR20200012474A (en) Recording midium
KR102559430B1 (en) Device, system and method for business evaluation customized for each company focusing on business integrity
US20240104484A1 (en) Systems and methods for next generation connected-worker solutions for occupational safety, health, and productivity
KR20200012449A (en) Method for managing working assiduity using a worker device

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: APPLICATION DISPATCHED FROM PREEXAM, NOT YET DOCKETED

AS Assignment

Owner name: VOCOLLECT, INC., PENNSYLVANIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:RAJ, MOHIT;MITTAL, SAURABH;HAZRA, KAUSHIK;AND OTHERS;REEL/FRAME:054894/0237

Effective date: 20151012

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED