US20210098528A1 - Thermoelectric Apparatus And Applications Thereof - Google Patents

Thermoelectric Apparatus And Applications Thereof Download PDF

Info

Publication number
US20210098528A1
US20210098528A1 US17/115,121 US202017115121A US2021098528A1 US 20210098528 A1 US20210098528 A1 US 20210098528A1 US 202017115121 A US202017115121 A US 202017115121A US 2021098528 A1 US2021098528 A1 US 2021098528A1
Authority
US
United States
Prior art keywords
layer
type
type layer
layers
thermoelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US17/115,121
Inventor
David L. Carroll
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wake Forest University
Original Assignee
Wake Forest University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wake Forest University filed Critical Wake Forest University
Priority to US17/115,121 priority Critical patent/US20210098528A1/en
Publication of US20210098528A1 publication Critical patent/US20210098528A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • H01L27/16
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N19/00Integrated devices, or assemblies of multiple devices, comprising at least one thermoelectric or thermomagnetic element covered by groups H10N10/00 - H10N15/00
    • H01L35/14
    • H01L35/22
    • H01L35/26
    • H01L35/32
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S10/00PV power plants; Combinations of PV energy systems with other systems for the generation of electric power
    • H02S10/10PV power plants; Combinations of PV energy systems with other systems for the generation of electric power including a supplementary source of electric power, e.g. hybrid diesel-PV energy systems
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/17Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the structure or configuration of the cell or thermocouple forming the device
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/857Thermoelectric active materials comprising compositions changing continuously or discontinuously inside the material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/02Single-walled nanotubes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/06Multi-walled nanotubes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to thermoelectric materials and, in particular, to apparatus incorporating thermoelectric materials.
  • Heat energy is widely used in the generation of electricity.
  • the efficiency of converting heat energy into electrical energy by current methods is low, ranging from about 30 to 40 percent.
  • a significant amount of heat energy escapes into the environment as waste. It is estimated that about 15 terawatts of power is lost to the environment in the annual global production of electricity.
  • Thermoelectric materials are operable to capture heat for additional electrical production.
  • Thermoelectric efficiency is quantified by the Figure of Merit, ZT.
  • thermoelectric materials demonstrating higher ZT values have higher thermoelectric efficiencies. Fabricating thermoelectric materials with reasonable ZT values is often difficult and/or expensive. Bismuth chalcogenides, for example, provide excellent thermoelectric properties with ZT values ranging from 0.7 to 1.0. These materials can be nanostructured to produce a superlattice structure of alternating Bi 2 Te 3 and Bi 2 Se 3 layers resulting in a material having acceptable electrical conductivity and poor thermal conductivity. Fabrication of these materials, nevertheless, can be time consuming and expensive.
  • thermoelectric materials do not lend themselves to facile incorporation into a wide variety of devices for heat collection and electrical generation.
  • thermoelectric apparatus are described herein which, in some embodiments, can overcome or mitigate one or more disadvantages of current thermoelectric materials.
  • a thermoelectric apparatus described herein comprises at least one p-type layer coupled to at least one n-type layer to provide a pn junction, and an insulating layer at least partially disposed between the p-type layer and the n-type layer, the p-type layer comprising a plurality of carbon nanoparticles and the n-type layer comprising a plurality of n-doped carbon nanoparticles.
  • carbon nanoparticles of the p-type layer are p-doped.
  • thermoelectric apparatus described herein comprises a plurality of p-type layers coupled to a plurality of n-type layers providing a plurality of pn junctions, and insulating layers at least partially disposed between the p-type layers and the n-type layers, wherein at least one p-type layer comprises a plurality of carbon nanoparticles and at least one n-type layer comprises a plurality of n-doped carbon nanoparticles.
  • a p-type layer of a thermoelectric apparatus described herein further comprises a polymer matrix in which the carbon nanoparticles are disposed.
  • an n-type layer further comprises a polymer matrix in which the n-doped carbon nanoparticles are disposed.
  • p-type layers and n-type layers of a thermoelectric apparatus described herein are in a stacked configuration.
  • carbon nanoparticles including p-doped and n-doped carbon nanotubes can be substituted with one or more inorganic semiconductor nanoparticles.
  • inorganic semiconductor nanoparticles comprise group IV materials, group materials or group III/V materials or combinations thereof.
  • inorganic semiconductor nanoparticles comprise quantum dots and/or nanowires.
  • inorganic semiconductor nanoparticles have dimensions consistent with any of the carbon nanoparticles described herein.
  • a photo-thermal apparatus comprising a photovoltaic component and a thermoelectric component, the thermoelectric component comprising at least one p-type layer coupled to at least one n-type layer to provide a pn junction, and an insulating layer at least partially disposed between the p-type layer and the n-type layer, the p-type layer comprising a plurality of carbon nanoparticles and the n-type layer comprises a plurality of n-doped carbon nanoparticles.
  • thermoelectric component comprises a plurality of p-type layers coupled to a plurality of n-type layers providing a plurality of pn junctions, and insulating layers at least partially disposed between the p-type layers and the n-type layers.
  • a photo-thermal apparatus further comprises a Stokes shift layer positioned between the photovoltaic component and the thermoelectric component.
  • the Stokes shift layer comprises one or more Stokes shift chemical species operable to create heat energy for transmission to the adjacent side of the thermoelectric component.
  • Stokes shift chemical species absorb electromagnetic radiation that has passed through the photovoltaic component.
  • radiation emitted by one or more Stokes shift chemical species is absorbed by the photovoltaic component.
  • a plurality of p-type layers and n-type layers are provided and coupled to one another resulting in the formation of a plurality of pn junctions.
  • insulating layers are positioned between the p-type layers and the n-type layers. Additionally, in some embodiments of methods of making a thermoelectric apparatus, the p-type layers and the n-type layers are arranged in a stacked configuration.
  • a method of making a photo-thermal apparatus comprises providing a photovoltaic component, providing a thermoelectric component and coupling the photovoltaic component and the thermoelectric component, the thermoelectric component comprising at least one p-type layer coupled to at least one n-type layer to provide a pn junction, and an insulating layer at least partially disposed between the p-type layer and the n-type layer, the p-type layer comprising a plurality of carbon nanoparticles and the n-type layer comprising a plurality of n-doped carbon nanoparticles.
  • the thermoelectric component comprises a plurality of p-type layers coupled to a plurality of n-type layers to provide a plurality of pn junctions as described herein.
  • a method of making a photo-thermal apparatus further comprises disposing a Stokes shift layer between the photovoltaic component and the thermoelectric component.
  • a method of converting electromagnetic energy into electrical energy comprises providing an apparatus comprising a photovoltaic component and a thermoelectric component coupled to the photovoltaic component, the thermoelectric component comprising at least one p-type layer coupled to at least one n-type layer to provide a pn junction, and an insulating layer at least partially disposed between the p-type layer and the n-type layer, the p-type layer comprising a plurality of carbon nanoparticles and the n-type layer comprising a plurality of n-doped carbon nanoparticles, absorbing electromagnetic radiation with the photovoltaic component to provide a photocurrent, and heating one side of the thermoelectric component inducing a voltage across the thermoelectric component.
  • heating one side of the thermoelectric component comprises transferring heat generated in the photovoltaic component to one side of the thermoelectric component. Additionally, in some embodiments, heating one side of the thermoelectric component comprises providing a Stokes shift layer between the photovoltaic component and the thermoelectric component, absorbing electromagnetic radiation with the Stokes shift layer to generate heat and electromagnetic radiation and transferring the generated heat to one side of the thermoelectric component. In some embodiments, the electromagnetic radiation generated by the Stokes shift layer is transmitted to the photovoltaic component for the generation of photocurrent.
  • FIG. 1 illustrates a side expanded view of a thermoelectric apparatus according to one embodiment described herein.
  • FIG. 2 illustrates a thermoelectric apparatus according to one embodiment described herein.
  • FIG. 3 illustrates Seebeck coefficient values for various carbon nanotube loadings in a polymeric matrix according to some embodiments described herein.
  • FIG. 4 illustrates a photo-thermal apparatus according to one embodiment described herein.
  • FIG. 5 illustrates a side expanded view of a thermoelectric apparatus according to one embodiment described herein.
  • thermoelectric apparatus comprising at least one p-type layer coupled to at least one n-type layer to provide a pn junction, and an insulating layer at least partially disposed between the p-type layer and the n-type layer, the p-type layer comprising a plurality of carbon nanoparticles and the n-type layer comprising a plurality of n-doped carbon nanoparticles.
  • carbon nanoparticles of the p-type layer are p-doped.
  • thermoelectric apparatus described herein comprises a plurality of p-type layers coupled to a plurality of n-type layers providing a plurality of pn junctions, and insulating layers at least partially disposed between the p-type layers and the n-type layers, wherein at least one p-type layer comprises a plurality of carbon nanoparticles and at least one n-type layer comprises a plurality of n-doped carbon nanoparticles.
  • metal contacts are provided between the p-type layers and the n-type layers at the sites of pn junctions.
  • a p-type layer is coupled to an n-type layer by a metal contact to provide a pn junction of the thermoelectric apparatus described herein.
  • a p-type layer of a thermoelectric apparatus described herein further comprises a polymer matrix in which the carbon nanoparticles are disposed.
  • an n-type layer further comprises a polymer matrix in which the n-doped carbon nanoparticles are disposed.
  • p-type layers and n-type layers of a thermoelectric apparatus described herein are in a stacked configuration.
  • FIG. 1 illustrates an expanded side view of a thermoelectric apparatus according to one embodiment described herein.
  • the thermoelectric apparatus illustrated in FIG. 1 comprises two p-type layers ( 1 ) coupled to an n-type layer ( 2 ) in an alternating fashion.
  • the alternating coupling of p-type ( 1 ) and n-type ( 2 ) layers provides the thermoelectric apparatus a z-type configuration having pn junctions ( 4 ) on opposite sides of the apparatus.
  • Insulating layers ( 3 ) are disposed between interfaces of the p-type layers ( 1 ) and the n-type layer ( 2 ) as the p-type ( 1 ) and n-type ( 2 ) layers are in a stacked configuration.
  • thermoelectric apparatus is in an expanded state to facilitate illustration and understanding of the various components of the apparatus. In some embodiments, however, the thermoelectric apparatus is not in an expanded state such that the insulating layers ( 3 ) are in contact with a p-type layer ( 1 ) and an n-type layer ( 2 ).
  • FIG. 1 additionally illustrates the current flow through the thermoelectric apparatus induced by exposing one side of the apparatus to a heat source. Electrical contacts (X) are provided to the thermoelectric apparatus for application of the thermally generated current to an external load.
  • FIG. 2 illustrates a thermoelectric apparatus ( 200 ) according to one embodiment described herein wherein the p-type layers ( 201 ) and the n-type layers ( 202 ) are in a stacked configuration.
  • the p-type layers ( 201 ) and the n-type layers ( 202 ) are separated by insulating layers ( 207 ) in the stacked configuration.
  • the thermoelectric apparatus ( 200 ) is connected to an external load by electrical contacts ( 204 , 205 ).
  • thermoelectric apparatus described herein comprises at least one p-type layer comprising a plurality of carbon nanoparticles.
  • Carbon nanoparticles of a p-type layer comprise fullerenes, carbon nanotubes, or mixtures thereof.
  • Fullerenes in some embodiments, comprise 1-(3-methoxycarbonyl)propyl-1-phenyl(6,6)C 61 (PCBM).
  • carbon nanotubes comprise single-walled carbon nanotubes (SWNT), multi-walled carbon nanotubes (MWNT), as well as p-doped single-walled carbon nanotubes, p-doped multi-walled carbon nanotubes or mixtures thereof.
  • p-doped single-walled carbon nanotubes and/or p-doped multi-walled carbon nanotubes comprise boron in an amount ranging from about 0.1 weight percent to about 30 weight percent. In some embodiments, p-doped single-walled carbon nanotubes and/or p-doped multi-walled carbon nanotubes comprise boron in an amount ranging from about 5 weight percent to about 25 weight percent or from about 10 weight percent to about 20 weight percent. In some embodiments, p-doped single-walled carbon nanotubes and/or p-doped multi-walled carbon nanotubes comprise boron in an amount less than about 0.1 weight percent. In some embodiments, p-doped single-walled carbon nanotubes and/or p-doped multi-walled carbon nanotubes comprise oxygen.
  • a p-type dopant is incorporated in the lattice of single-walled and/or multi-walled carbon nanotubes.
  • a p-type dopant is externally provided to carbon nanotubes by the environment surrounding the single walled and/or multi-walled carbon nanotubes.
  • carbon nanotubes of a p-type layer in some embodiments, are disposed in a polymeric matrix.
  • the polymeric matrix can provide p-dopant to surfaces of the carbon nanotubes.
  • the carbon nanotubes are not p-doped prior to incorporation into the polymeric matrix.
  • the carbon nanotubes comprise p-dopant prior to incorporation into the polymeric matrix.
  • chemical species also disposed in the polymeric matrix such as alkali metals, can serve as p-dopant for the carbon nanotubes.
  • carbon nanoparticles of a p-type layer have a high aspect ratio.
  • the term aspect ratio refers to a carbon nanoparticle's length divided by the carbon nanoparticle's diameter or width.
  • carbon nanoparticles of a p-type layer demonstrate an aspect ratio ranging from about 1 to about 10 6 .
  • carbon nanoparticles display an aspect ratio ranging from about 10 to about 100,000.
  • carbon nanoparticles have an aspect ratio ranging from about 10 to about 10,000 or from about 5 to about 1000.
  • Carbon nanoparticles of a p-type layer, including carbon nanotubes in some embodiments, have a length ranging from about 1 nm to about 5 mm or from about 10 nm to about 1 mm. In some embodiments, carbon nanoparticles have a length ranging from about 50 nm to about 500 ⁇ m, from about 100 nm to about 100 ⁇ m, or from about 500 nm to about 10 ⁇ m. In some embodiments, carbon nanoparticles have a length ranging from about 200 pm to about 500 ⁇ m.
  • Carbon nanoparticles of a p-type layer in some embodiments, have a diameter ranging from about 1 nm to about 100 nm. In some embodiments, carbon nanoparticles have a diameter ranging from about 10 nm to about 80 nm or from about 20 nm to about 60 nm. In some embodiments, carbon nanoparticles have a diameter greater than about 100 nm or less than about 1 nm.
  • carbon nanoparticles of a p-type layer including carbon nanotubes, are provided in a mat configuration.
  • a p-type layer in some embodiments, comprises one or more species of carbon nanoparticles described herein in an amount ranging from about 0.1 weight percent to about 100 weight percent. In some embodiments, a p-type layer comprises carbon nanoparticles in an amount of at least about 2 weight percent. In some embodiments, a p-type layer comprises carbon nanoparticles in an amount of at least about 5 weight percent or at least about 10 weight percent. In some embodiments, a p-type layer comprises carbon nanoparticles in an amount ranging from about 2 weight percent to about 50 weight percent. In some embodiments, a p-type layer comprises carbon nanoparticles in an amount ranging from about 5 weight percent to about 30 weight percent.
  • FIG. 3 illustrates Seebeck coefficient as a function of SWNT loading of a polyvinylidene fluoride (PVDF) matrix of p-type layers according to some embodiments described herein. As illustrated in FIG. 3 , SWNT loadings ranging from 5 weight percent to 100 weight percent provide a range of Seebeck coefficients for the p-type layers.
  • PVDF polyvinylidene fluoride
  • a p-type layer further comprises a polymeric matrix in which the carbon nanoparticles are disposed.
  • a polymeric matrix comprises a fluoropolymer including, but not limited to, polyvinyl fluoride (PVF), polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), or mixtures or copolymers thereof.
  • a polymer matrix comprises polyacrylic acid (PAA), polymethacrylate (PMA), polymethylmethacrylate (PMMA) or mixtures or copolymers thereof.
  • a polymer matrix comprises a polyolefin including, but not limited to polyethylene, polypropylene, polybutylene or mixtures or copolymers thereof.
  • a polymeric matrix comprises one or more conjugated polymers.
  • conjugated polymers comprise thiophenes including poly(3-hexylthiophene) (P3HT), poly(3-octylthiophene) (P3OT), and polythiophenc (PTh).
  • a polymeric matrix comprises one or more semiconducting polymers.
  • semiconducting polymers include phenylene vinylenes, such as poly(phenylene vinylene) and poly(p-phenylene vinylene) (PPV), and derivatives thereof.
  • semiconducting polymers can comprise poly fluorenes, naphthalenes, and derivatives thereof.
  • semiconducting polymers comprise poly(2-vinylpyridine) (P2VP), polyamides, poly(N-vinylcarbazole) (PVCZ), polypyrrole (PPy), and polyaniline (PAn).
  • a semiconducting polymer comprises poly[2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b′]dithiophene)-alt-4,7-(2,1,3-benzothiadiazole)] (PCPDTBT).
  • a p-type layer can have any desired thickness not inconsistent with the objectives of the present invention.
  • a p-type layer has a thickness of at least about 10 nm or at least about 100 nm.
  • a p-type layer in some embodiments, has a thickness of at least about 500 nm or at least about 1 ⁇ m.
  • a p-type layer has a thickness of at least about 5 ⁇ m or at least about 15 ⁇ m.
  • a p-type layer has a thickness ranging from about 5 nm to about 50 ⁇ m.
  • a p-type layer has a thickness ranging from about 50 nm to about 30 ⁇ m.
  • a p-type layer has a thickness ranging from about 100 nm to about 20 ⁇ m.
  • a p-type layer has a thickness ranging from about 10 nm to about 100 nm.
  • a p-type layer can have any desired length not inconsistent with the objectives of the present invention.
  • a p-type layer has a length of at least about 1 ⁇ m or at least about 10 ⁇ m. In some embodiments, a p-type layer has a length of at least about 100 ⁇ m or at least about 500 ⁇ m.
  • a p-type layer in some embodiments, has a length of at least about 1 mm or at least about 10 mm. In some embodiments, a p-type layer has a length ranging from about 1 ⁇ m to about 100 mm. In some embodiments, a p-type layer has a length ranging from about 10 ⁇ m to about 500 mm.
  • a p-type layer in some embodiments, has a Seebeck coefficient of at least about 5 ⁇ V/K at a temperature of 290° K. In some embodiments, a p-type layer has a Seebeck coefficient of at least about 10 ⁇ V/K at a temperature of 290° K. In some embodiments, a p-type layer has a Seebeck coefficient of at least about 15 ⁇ V/K or at least about 20 ⁇ V/K at a temperature of 290° K. In some embodiments, a p-type layer has a Seebeck coefficient of at least about 30 ⁇ V/K at a temperature of 290° K.
  • a p-type layer in some embodiments, has a Seebeck coefficient ranging from about 5 ⁇ V/K to about 35 ⁇ V/K at a temperature of 290° K. In some embodiments, a p-type layer has Seebeck coefficient ranging from about 10 ⁇ V/K to about 30 ⁇ V/K at a temperature of 290° K.
  • the Seebeck coefficient of a p-type layer can be varied according to carbon nanoparticle identity and loading.
  • the Seebeck coefficient of a p-type layer is inversely proportional to the single-walled carbon nanotube loading of the p-type layer.
  • thermoelectric apparatus in addition to at least one p-type layer, comprises at least one n-type layer comprising a plurality of n-doped carbon nanoparticles.
  • N-doped carbon nanoparticles in some embodiments, comprise fullerenes, carbon nanotubes, or mixtures thereof.
  • Fullerenes in some embodiments, comprise 1-(3-methoxycarbonyl)propyl-1-phenyl(6,6)C 61 (PCBM).
  • n-doped carbon nanotubes comprise single-walled carbon nanotubes, multi-walled carbon nanotubes or mixtures thereof.
  • carbon nanoparticles of a n-type layer including carbon nanotubes, are provided in a mat configuration.
  • n-doped single-walled carbon nanotubes and/or n-doped multi-walled carbon nanotubes comprise nitrogen in an amount ranging from about 0.1 weight percent to about 30 weight percent. In some embodiments, n-doped single-walled carbon nanotubes and/or n-doped multi-walled carbon nanotubes comprise nitrogen in an amount ranging from about 5 weight percent to about 25 weight percent or from about 10 weight percent to about 20 weight percent. In some embodiments, n-doped single-walled carbon nanotubes and/or n-doped multi-walled carbon nanotubes comprise nitrogen in an amount less than about 0.1 weight percent. In some embodiments, n-doped single-walled carbon nanotubes and/or n-doped multi-walled carbon nanotubes are deoxygenated nanotubes.
  • an n-type dopant is incorporated in the lattice of single-walled and/or multi-walled carbon nanotubes.
  • an n-type dopant is externally provided to carbon nanotubes by the environment surrounding the single walled and/or multi-walled carbon nanotubes.
  • carbon nanotubes of an n-type layer are disposed in a polymeric matrix.
  • the polymeric matrix can provide n-dopant to surfaces of the carbon nanotubes.
  • the polymeric matrix provides n-dopant to surfaces of the carbon nanotubes, the carbon nanotubes are not n-doped prior to incorporation into the matrix.
  • the polymeric matrix provides n-dopant to surfaces of the carbon nanotubes, the carbon nanotubes are n-doped prior to incorporation into the matrix.
  • n-doped carbon nanoparticles of an n-type layer have a high aspect ratio. In some embodiments, n-doped carbon nanoparticles of an n-type layer demonstrate an aspect ratio ranging from about 1 to about 10 6 . In some embodiments, n-doped carbon nanoparticles display an aspect ratio ranging from about 10 to about 100,000. In some embodiments, n-doped carbon nanoparticles have an aspect ratio ranging from about 10 to about 10,000 or from about 5 to about 1000.
  • Carbon nanoparticles of an n-type layer, including carbon nanotubes in some embodiments, have a length ranging from about 1 nm to about 5 mm or from about 10 nm to about 1 mm. In some embodiments, n-doped carbon nanoparticles have a length ranging from about 50 nm to about 500 ⁇ m, from about 100 nm to about 100 ⁇ m, or from about 500 nm to 10 ⁇ m. In some embodiments, n-doped carbon nanotubes have a length ranging from about 200 pm to about 500 ⁇ m.
  • Carbon nanoparticles of an n-type layer in some embodiments, have a diameter ranging from about 1 nm to about 100 nm. In some embodiments, n-doped carbon nanoparticles have a diameter ranging from about 10 nm to about 80 nm or from about 20 nm to about 60 nm. In some embodiments, n-doped carbon nanoparticles have a diameter greater than about 100 nm or less than about 1 nm.
  • a n-type layer in some embodiments, can comprise one or more species of n-doped carbon nanoparticles described herein in an amount ranging from about 0.1 weight percent to about 100 weight percent. In some embodiments, an n-type layer comprises n-doped carbon nanoparticles in an amount of at least about 2 weight percent. In some embodiments, an n-type layer comprises n-doped carbon nanoparticles in an amount of at least about 5 weight percent or at least about 10 weight percent. In some embodiments, an n-type layer comprises n-doped carbon nanoparticles in an amount ranging from about 2 weight percent to about 50 weight percent.
  • an n-type layer comprises n-doped carbon nanoparticles in an amount ranging from about 5 weight percent to about 30 weight percent.
  • nanoparticle loadings of an n-type layer can be determined with reference to the desired Seebeck coefficient of the layer.
  • an n-type layer further comprises a polymeric matrix in which the n-doped carbon nanoparticles are disposed.
  • a polymeric matrix comprises a fluoropolymer including, but not limited to, polyvinyl fluoride (PVF), polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), or mixtures or copolymers thereof.
  • a polymer matrix comprises polyacrylic acid (PAA), polymethacrylate (PMA), polymethylmethacrylate (PMMA) or mixtures or copolymers thereof.
  • a polymer matrix comprises a polyolefin including, but not limited to polyethylene, polypropylene, polybutylene or mixtures or copolymers thereof.
  • a polymeric matrix of an n-type layer comprises one or more conjugated polymers.
  • conjugated polymers comprise thiophenes including poly(3-hexylthiophene) (P3HT), poly(3-octylthiophene) (P3OT), and polythiophene (PTh).
  • a polymeric matrix of an n-type layer comprises one or more semiconducting polymers.
  • semiconducting polymers include phenylene vinylenes, such as poly(phenylene vinylene) and polyp-phenylene vinylene) (PPV), and derivatives thereof.
  • semiconducting polymers can comprise poly fluorenes, naphthalenes, and derivatives thereof.
  • semiconducting polymers comprise poly(2-vinylpyridine) (P2VP), polyamides, poly(N-vinylcarbazole) (PVCZ), polypyrrole (PPy), and polyaniline (PAn).
  • an n-type layer can have any desired thickness not inconsistent with the objectives of the present invention.
  • an n-type layer has a thickness of at least about 1 nm.
  • an n-type layer has a thickness of at least about 10 nm or at least about 100 nm.
  • An n-type layer in some embodiments, has a thickness of at least about 500 nm or at least about 1 ⁇ m.
  • an n-type layer has a thickness of at least about 5 ⁇ m or at least about 15 ⁇ m.
  • an n-type layer has a thickness ranging from about 5 nm to about 50 ⁇ m.
  • an n-type layer has a thickness ranging from about 50 nm to about 30 ⁇ m.
  • an n-type layer has a thickness ranging from about 100 nm to about 20 ⁇ m.
  • an n-type layer can have any desired length not inconsistent with the objectives of the present invention.
  • an n-type layer has a length of at least about 1 ⁇ m or at least about 10 ⁇ m. In some embodiments, an n-type layer has a length of at least about 100 ⁇ m or at least about 500 ⁇ m.
  • An n-type layer in some embodiments, has a length of at least about 1 mm or at least about 10 mm. In some embodiments, an n-type layer has a length ranging from about 1 ⁇ m to about 100 ⁇ m. In some embodiments, an n-type layer has a length ranging from about 10 ⁇ m to about 500 mm. In some embodiments, an n-type layer has a length coextensive or substantially coextensive with an adjacent p-type layer.
  • An n-type layer in some embodiments, has a Seebeck coefficient of at least about ⁇ 5 ⁇ V/K at a temperature of 290° K. In some embodiments, an n-type layer has a Seebeck coefficient at least about ⁇ 10 ⁇ V/K at a temperature of 290° K. In some embodiments, an n-type layer has a Seebeck coefficient of at least about ⁇ 15 ⁇ V/K or at least about ⁇ 20 ⁇ V/K at a temperature of 290° K. In some embodiments, an n-type layer has a Seebeck coefficient of at least about ⁇ 30 ⁇ V/K at a temperature of 290° K.
  • An n-type layer in some embodiments, has a Seebeck coefficient ranging from about ⁇ 5 ⁇ V/K to about ⁇ 35 ⁇ V/K at a temperature of 290° K. In some embodiments, an n-type layer has Seebeck coefficient ranging from about ⁇ 10 ⁇ V/K to about ⁇ 30 ⁇ V/K at a temperature of 290° K.
  • the Seebeck coefficient of an n-type layer can be varied according to n-doped carbon nanoparticle identity and loading. In some embodiments, for example, the Seebeck coefficient of an n-type layer is inversely proportional to the carbon nanoparticle loading of the n-type layer.
  • carbon nanoparticles including p-doped and n-doped carbon nanotubes can be substituted with one or more inorganic semiconductor nanoparticles.
  • inorganic semiconductor nanoparticles comprise group IV materials, group II/VI materials or group III/V materials or combinations thereof.
  • inorganic semiconductor nanoparticles comprise quantum dots and/or nanowires.
  • inorganic semiconductor materials are provided with p-dopant or n-dopant for use in respective p-layers and n-layers described herein.
  • thermoelectric apparatus described herein also comprises an insulating layer disposed between the at least one p-type layer and the at least one n-type layer.
  • an insulating layer is electrically insulating.
  • the insulating layer is electrically insulating and thermally insulating.
  • a thermoelectric apparatus comprises a plurality of insulating layers disposed between a plurality of p-type layers and n-type layers. Insulating layers, in some embodiments, permit p-type layers and n-type layers of a thermoelectric apparatus described herein to be arranged in a stacked configuration.
  • an insulating layer comprises one or more polymeric materials. Any polymeric material not inconsistent with the objectives of the present invention can be used in the production of an insulating layer.
  • an insulating layer comprises polyacrylic acid (PAA), polymethacrylate (PMA), polymethylmethacrylate (PMMA) or mixtures or copolymers thereof.
  • PAA polyacrylic acid
  • PMA polymethacrylate
  • PMMA polymethylmethacrylate
  • an insulating layer comprises a polyolefin including, but not limited to polyethylene, polypropylene, polybutylene or mixtures or copolymers thereof.
  • an insulating layer comprises PVDF.
  • an insulating layer can have any desired thickness not inconsistent with the objectives of the present invention.
  • an insulating layer has a thickness of at least about 50 nm. In some embodiments, an insulating layer has a thickness of at least about 75 nm or at least about 100 nm.
  • An insulating layer in some embodiments, has a thickness of at least about 500 nm or at least about 1 ⁇ m. In some embodiments, an insulating layer has a thickness of at least about 5 ⁇ m or at least about 15 ⁇ m. In some embodiments, an insulating layer has a thickness ranging from about 5 nm to about 50 ⁇ m. In some embodiments, an insulating layer has a thickness ranging from about 50 nm to about 30 ⁇ m. In some embodiments, an insulating layer has a thickness ranging from about 100 nm to about 20 ⁇ m.
  • An insulating layer can have any desired length not inconsistent with the objectives of the present invention.
  • an insulating layer has a length substantially consistent with the lengths of the p-type and n-type layers between which the insulating layer is disposed.
  • an insulating layer has a length of at least about 1 ⁇ m or at least about 10 ⁇ m.
  • an insulating layer has a length of at least about 100 ⁇ m or at least about 500 ⁇ m.
  • An insulating layer in some embodiments, has a length of at least about 1 mm or at least about 10 ⁇ m.
  • an insulating layer has a length ranging from about limn to about 100 ⁇ m.
  • an insulating layer has a length ranging from about 10 ⁇ m to about 500 mm.
  • thermoelectric apparatus described herein comprises a plurality of p-type layers and a plurality of n-type layers.
  • a thermoelectric apparatus can comprise any number of p-type layers and n-type layers not inconsistent with the objectives of the present invention.
  • the p-type layers and the n-type layers are ordered in alternating fashion and in a stacked configuration, being separated by insulating layers.
  • a thermoelectric apparatus comprises at least 3 p-type layers and at least 3 n-type layers.
  • a thermoelectric apparatus comprises at least 5 p-type layers and at least 5 n-type layers.
  • a thermoelectric apparatus comprises at least 10 p-type layers and at least 10 n-type layers. In some embodiments, a thermoelectric apparatus comprises at least 15 p-type layers and at least 15 n-type layers. In some embodiments, a thermoelectric apparatus comprises at least 100 p-type layers and at least 100 n-type layers. In some embodiments, a thermoelectric apparatus comprises at least 1000 p-type layers and at least 1000 n-type layers.
  • thermoelectric apparatus described herein comprising one or more p-type layers and one or more n-type layers has the form of a fabric.
  • the fabric is flexible permitting application of the thermoelectric apparatus to a variety of substrates having different surface shapes and/or morphologies.
  • a thermoelectric apparatus is applied to curved and/or other non-planar substrates.
  • a thermoelectric apparatus having a construction described herein has a Seebeck coefficient of at least about 25 ⁇ V/K at a temperature of 290° K. In some embodiments, a thermoelectric apparatus described herein has a Seebeck coefficient of at least about 30 ⁇ V/K or at least about 50 ⁇ V/K at a temperature of 290° K. In some embodiments, a thermoelectric apparatus described herein has a Seebeck coefficient of at least about 75 ⁇ V/K or at least about 100 ⁇ V/K at a temperature of 290° K. A thermoelectric apparatus described herein, in some embodiments, has a Seebeck coefficient of at least about 150 ⁇ V/K or at least about 175 ⁇ V/K at a temperature of 290° K.
  • a thermoelectric apparatus described herein has a Seebeck coefficient of at least about 200 ⁇ V/K at a temperature of 290° K. In some embodiments, a thermoelectric apparatus described herein has a Seebeck coefficient ranging from about 25 ⁇ V/K to about 250 ⁇ V/K at a temperature of 290° K. In some embodiments, a thermoelectric apparatus described herein has a Seebeck coefficient ranging from about 50 ⁇ V/K to about 150 ⁇ V/K at a temperature of 290° K.
  • a thermoelectric apparatus described herein has a ZT of at least 0.5.
  • a thermoelectric apparatus described herein, in some embodiments, has a ZT of at least about 0.7 or at least about 0.8.
  • a thermoelectric apparatus described herein has a ZT of at least about 1 or at least about 1.5.
  • a thermoelectric apparatus described herein has a ZT ranging from about 0.5 to about 2 or from about 0.8 to about 1.5.
  • a thermoelectric apparatus described herein has a ZT ranging from about 1 to about 1.3.
  • a thermoelectric apparatus described herein has a ZT ranging from about 1 to 10.
  • a photo-thermal apparatus comprising a photovoltaic component and a thermoelectric component, the thermoelectric component comprising at least one p-type layer coupled to at least one n-type layer to provide a pn junction, and an insulating layer at least partially disposed between the p-type layer and the n-type layer, the p-type layer comprising a plurality of carbon nanoparticles and the n-type layer comprising a plurality of n-doped carbon nanoparticles.
  • thermoelectric component comprises a plurality of p-type layers coupled to a plurality of n-type layers providing a plurality of pn junctions, and insulating layers at least partially disposed between the p-type layers and the n-type layers.
  • FIG. 4 illustrates a photo-thermal apparatus according to one embodiment described herein.
  • the photo-thermal apparatus ( 400 ) illustrated in FIG. 4 comprises a photovoltaic component ( 401 ) coupled to a thermoelectric component ( 402 ).
  • the thermoelectric component can comprise any construction described herein for a thermoelectric apparatus.
  • the photovoltaic component comprises a radiation transmissive first electrode ( 404 ), at least one photosensitive layer ( 405 ), an exciton blocking layer ( 406 ) and a second radiation transmissive electrode ( 407 ).
  • an electrode of the photovoltaic component adjacent to the thermoelectric component is non-radiation transmissive.
  • Radiation transmissive first electrode and second electrode comprise a radiation transmissive conducting oxide.
  • Radiation transmissive conducting oxides can comprise indium tin oxide (ITO), gallium indium tin oxide (GITO), and zinc indium tin oxide (ZITO).
  • radiation transmissive first and second electrodes can comprise a radiation transmissive polymeric material such as polyanaline (PANI) and its chemical relatives.
  • radiation transmissive first and second electrodes comprise ZnO:Al.
  • a radiation transmissive first and/or second electrode can comprise a carbon nanotube layer having a thickness operable to at least partially pass visible electromagnetic radiation.
  • a radiation transmissive first and/or second electrode can comprise a composite material, the composite material comprising a nanoparticle phase dispersed in a polymeric phase.
  • the nanoparticle phase in one embodiment, can comprise carbon nanotubes, fullerenes, or mixtures thereof.
  • a radiation transmissive first and/or second electrode can comprise a metal layer having a thickness operable to at least partially pass visible electromagnetic radiation.
  • a metal layer can comprise elementally pure metals or alloys.
  • Metals suitable for use as a radiation transmissive first electrode can comprise high work function metals.
  • radiation transmissive first and second electrodes can have a thickness ranging from about 10 nm to about 1 ⁇ m. In some embodiments, radiation transmissive first and second electrodes can have a thickness ranging from about 100 nm to about 900 nm. In another embodiment, radiation transmissive first and second electrodes can have a thickness ranging from about 200 nm to about 800 nm. In a further embodiment, radiation transmissive first and second electrodes can have a thickness greater than about 1 ⁇ m.
  • radiation transmissive first and second electrodes are constructed independently of one another. In some embodiments, radiation transmissive first and second electrodes are constructed with reference to one another.
  • the at least one photosensitive layer of a photovoltaic component comprises an organic composition.
  • a photosensitive organic layer has a thickness ranging from about 30 nm to about 1 ⁇ m. In other embodiments, a photosensitive organic layer has a thickness ranging from about 80 nm to about 800 nm. In a further embodiment, a photosensitive organic layer has a thickness ranging from about 100 nm to about 300 nm.
  • a photosensitive organic layer comprises at least one photoactive region in which electromagnetic radiation is absorbed to produce excitons which may subsequently dissociate into electrons and holes.
  • a photoactive region can comprise a polymer.
  • Polymers suitable for use in a photoactive region of a photosensitive organic layer in one embodiment, can comprise conjugated polymers such as thiophenes including poly(3-hexylthiophene) (P3HT), poly(3-octylthiophene) (P3OT), and polythiophene (PTh).
  • polymers suitable for use in a photoactive region of a photosensitive organic layer can comprise semiconducting polymers.
  • semiconducting polymers include phenylene vinylenes, such as poly(phenylene vinylene) and poly(p-phenylene vinylene) (PPV), and derivatives thereof.
  • semiconducting polymers can comprise poly fluorenes, naphthalenes, and derivatives thereof.
  • semiconducting polymers for use in a photoactive region of a photosensitive organic layer can comprise poly(2-vinylpyridine) (P2VP), polyamides, poly(N-vinylcarbazole) (PVCZ), polypyrrole (PPy), and polyaniline (PAn).
  • P2VP poly(2-vinylpyridine)
  • PVCZ poly(N-vinylcarbazole)
  • PPy polypyrrole
  • PAn polyaniline
  • a photoactive region can comprise small molecules.
  • small molecules suitable for use in a photoactive region of a photosensitive organic layer can comprise coumarin 6, coumarin 30, coumarin 102, coumarin 110, coumarin 153, and coumarin 480 D.
  • a small molecule can comprise merocyanine 540.
  • small molecules can comprise 9,10-dihydrobenzo[a]pyrene-7(8H)-one, 7-methylbenzo[a]pyrene, pyrene, benzo[e]pyrene, 3,4-dihydroxy-3-cyclobutene-1,2-dione, and 1,3-bis[4-(dimethylamino)phenyl-2,4-dihydroxycyclobutenediylium dihydroxide.
  • exciton dissociation is precipitated at heterojunctions in the organic layer formed between adjacent donor and acceptor materials.
  • Organic layers in some embodiments described herein, comprise at least one bulk heterojunction formed between donor and acceptor materials. In other embodiments, organic layers comprise a plurality of bulk heterojunctions formed between donor and acceptor materials.
  • donor and acceptor refer to the relative positions of the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy levels of two contacting but different organic materials. This is in contrast to the use of these terms in the inorganic context, where donor and acceptor may refer to types of dopants that may be used to create inorganic n- and p-type layers, respectively.
  • donor and acceptor may refer to types of dopants that may be used to create inorganic n- and p-type layers, respectively.
  • the LUMO energy level of one material in contact with another is lower, then that material is an acceptor. Otherwise it is a donor. It is energetically favorable, in the absence of an external bias, for electrons at a donor-acceptor junction to move into the acceptor material, and for holes to move into the donor material.
  • a photoactive region in a photosensitive organic layer comprises a polymeric composite material.
  • the polymeric composite material in one embodiment, can comprise a nanoparticle phase dispersed in a polymeric phase.
  • Polymers suitable for producing the polymeric phase of a photoactive region can comprise conjugated polymers such as thiophenes including poly(3-hexylthiophene) (P3HT) and poly(3-octylthiophene) (P3OT).
  • the nanoparticle phase dispersed in the polymeric phase of a polymeric composite material comprises at least one carbon nanoparticle.
  • Carbon nanoparticles can comprise fullerenes, carbon nanotubes, or mixtures thereof.
  • Fullerenes suitable for use in the nanoparticle phase in one embodiment, can comprise 1-(3-methoxycarbonyl)propyl-1-phenyl(6,6)C 61 (PCBM).
  • Carbon nanotubes for use in the nanoparticle phase can comprise single-walled nanotubes, multi-walled nanotubes, or mixtures thereof.
  • the polymer to nanoparticle ratio in polymeric composite materials ranges from about 1:10 to about 1:0.1. In some embodiments, the polymer to nanoparticle ratio in polymeric composite materials ranges from about 1:4 to about 1:0.4. In some embodiments, the polymer to nanoparticle ratio in polymeric composite materials ranges from about 1:2 to about 1:0.6. In one embodiment, for example, the ratio of poly(3-hexylthiophene) to PCBM ranges from about 1:1 to about 1:0.4.
  • the nanoparticle phase dispersed in the polymeric phase comprises at least one nanowhisker.
  • a nanowhisker refers to a crystalline carbon nanoparticle formed from a plurality of carbon nanoparticles.
  • Nanowhiskers in some embodiments, can be produced by annealing a photosensitive organic layer comprising the polymeric composite material.
  • Carbon nanoparticles operable to form nanowhiskers can comprise single-walled carbon nanotubes, multi-walled carbon nanotubes, and fullerenes.
  • nanowhiskers comprise crystalline PCBM. Annealing the photosensitive organic layer, in some embodiments, can further increase the dispersion of the nanoparticle phase in the polymeric phase.
  • the polymeric phase serves as a donor material and the nanoparticle phase serves as the acceptor material thereby forming a heterojunction for the separation of excitons into holes and electrons.
  • the photoactive region of the organic layer comprises a plurality of bulk heterojunctions.
  • donor materials in a photoactive region of a photosensitive organic layer can comprise organometallic compounds including porphyrins, phthalocyanines, and derivatives thereof.
  • acceptor materials in a photoactive region of a photosensitive organic layer can comprise perylenes, naphthalenes, and mixtures thereof.
  • the at least one photosensitive layer of a photovoltaic component comprises an inorganic composition.
  • Photosensitive inorganic layers described herein can have various compositions.
  • a photosensitive inorganic layer of a photovoltaic component described herein comprises an inorganic composition comprising a group IV semiconductor material, a group II/VI semiconductor material (such as CdTe), a group III/V semiconductor material, or combinations or mixtures thereof.
  • a photosensitive inorganic layer comprises a group IV, group or group III/V binary, ternary or quaternary system.
  • a photosensitive inorganic layer comprises a I/III/VI material, such as copper indium gallium selenide (CIGS).
  • a photosensitive inorganic layer comprises polycrystalline silicon (Si).
  • a photosensitive inorganic layer comprises microcrystalline, nanocrystalline, and/or protocrystalline silicon.
  • a photosensitive inorganic layer comprises polycrystalline copper zinc tin sulfide (CZTS).
  • CZTS copper zinc tin sulfide
  • a photosensitive inorganic layer comprises microcrystalline, nanocrystalline, and/or protocrystalline CZTS.
  • the CZTS comprises Cu 2 ZnSnS 4 .
  • the CZTS further comprises selenium (Se).
  • the CZTS further comprises gallium (Ga).
  • a photosensitive inorganic layer of a photovoltaic component described herein comprises an amorphous material.
  • at least one photosensitive inorganic layer comprises amorphous silicon (a-Si).
  • amorphous silicon of a photosensitive inorganic layer is unpassivated or substantially unpassivated.
  • amorphous silicon of a photosensitive inorganic layer is passivated with hydrogen (a-Si:H).
  • amorphous silicon of a photosensitive inorganic layer is not passivated with a halogen or is non-halogen passivated.
  • amorphous silicon of a photosensitive inorganic layer comprises no or substantially no Si:F.
  • amorphous silicon of a photosensitive inorganic layer is fluorine passivated (a-Si:F).
  • one or more heterojunctions can be established in a photosensitive inorganic layer described herein by doping.
  • one region of a photosensitive inorganic layer is doped with a p-dopant and another region of the photosensitive inorganic layer is doped with an n-dopant to provide a heterojunction.
  • a region of the photosensitive inorganic layer can be doped with an n-dopant to provide a heterojunction.
  • a region of the photosensitive inorganic layer can be doped with a p-dopant to provide a heterojunction.
  • any of the inorganic materials described herein for a photosensitive layer suitable for doping are doped to establish one or more heterojunctions in the photosensitive layer.
  • hydrogen passivated amorphous silicon is doped with p-type and/or n-type dopant to establish one or more heterojunctions.
  • group IV, group III/V and/or group II/VI semiconductor materials of inorganic photosensitive layers described herein can be doped with p-type and/or n-type dopant to provide one or more heterojunctions.
  • a photovoltaic component described herein comprises at least one photosensitive inorganic layer comprising an n-type region, an intrinsic region, and a p-type region.
  • an n-type region is composed of an n-doped inorganic semiconductor.
  • a p-type region is composed of a p-doped inorganic semiconductor.
  • an intrinsic region is composed of an undoped inorganic semiconductor.
  • a photovoltaic component described herein comprises a multi-junction construction.
  • a photovoltaic component comprises a plurality of photosensitive inorganic layers, each layer comprising an n-type region, an intrinsic region, and a p-type region.
  • a photovoltaic component comprises two photosensitive inorganic layers, each layer comprising an n-type region, an intrinsic region, and a p-type region, thereby providing a double junction device.
  • a photovoltaic component comprises three photosensitive inorganic layers, each layer comprising an n-type region, an intrinsic region, and a p-type region, thereby providing a triple junction device.
  • the plurality of inorganic layers are adjacent to one another, such that one or more heterojunctions are formed between the inorganic layers.
  • a photovoltaic component comprises a first photosensitive inorganic layer comprising a first n-type region, a first intrinsic region, and a first p-type region; and a second photosensitive inorganic layer comprising a second n-type region, a second intrinsic region, and a second p-type region, wherein the first p-type region is adjacent to the second n-type region or the first n-type region is adjacent to the second p-type region.
  • an optoelectronic device described herein comprises a single junction device. As known to one of skill in the art, tunneling junctions, in some embodiments, can be disposed between first, second and/or third photosensitive inorganic layers in the construction of a multi-junction device described herein.
  • a photovoltaic component comprises a plurality of photosensitive organic layers.
  • a plurality of photosensitive layers is present in a photovoltaic component
  • the absorption profiles of the photosensitive layers do not overlap or do not substantially overlap.
  • the absorption profiles of the photosensitive layers at least partially overlap.
  • a plurality of photosensitive layers can be used in a photovoltaic component to capture one or more regions of the solar spectrum.
  • an exciton blocking layer (EBL) of a photovoltaic component can act to confine photo generated excitons to the region near the dissociating interface and prevent parasitic exciton quenching at a photosensitive layer/electrode interface.
  • an EBL can additionally act as a diffusion barrier to substances introduced during deposition of the electrodes.
  • an EBL can have a sufficient thickness to fill pin holes or shorting defects which could otherwise render a photovoltaic apparatus inoperable.
  • an EBL can comprise a polymeric composite material.
  • an EBL comprises carbon nanoparticles dispersed in 3,4-polyethylenedioxythiophene:polystyrenesulfonate (PEDOT:PSS).
  • an EBL comprises carbon nanoparticles dispersed in poly(vinylidene chloride) and copolymers thereof.
  • Carbon nanoparticles dispersed in the polymeric phases including PEDOT:PSS and poly(vinylidene chloride) can comprise single-walled nanotubes, multi-walled nanotubes, fullerenes, or mixtures thereof.
  • EBLs can comprise any polymer having a work function energy operable to permit the transport of holes while impeding the passage of electrons.
  • an EBL may be disposed between the radiation transmissive first electrode and an organic photosensitive layer of a photoactive assembly.
  • the optoelectronic device comprises a plurality of photosensitive organic layers, for example, EBLs can be disposed between the photosensitive organic layers.
  • a photovoltaic component comprises one or more upconverters and/or downconverters.
  • an upconverter is a material operable to emit electromagnetic radiation having energy greater than that of the electromagnetic radiation absorbed by the material to create the excited state.
  • Upconverters suitable for use in some embodiments can absorb infrared radiation and emit visible radiation at wavelengths operable to be absorbed by photosensitive organic layers of photovoltaic components described herein.
  • Upconverters can include materials comprising at least one Lanthanide series element.
  • upconveter materials can comprise nanoparticles comprising at least one Lanthanide series element.
  • Lanthanide series elements suitable for use in upconverter materials according to some embodiments described herein comprise erbium, ytterbium, dysprosium, holmium, or mixtures thereof.
  • upconverter materials comprise metal oxides and metal sulfides doped with ions of erbium, ytterbium, dysprosium, holmium, or mixtures thereof.
  • optical fibers may be doped directly with ions of erbium, ytterbium, dysprosium, holmium, or mixtures thereof.
  • upconverter materials can comprise organic chemical species.
  • Organic upconverter materials can comprise H 2 C 6 N and 4-dialkylamino-1,8-naphthalimides as well as 1,8-naphthalimide derivatives and compounds, such as multibranched naphthalimide derivatives TPA-NA1, TPA-NA2, and TPA-NA3.
  • Organic upconverter materials can also comprise 4-(dimethylamino)cinnamonitrile (cis and trans), trans-4-[4-(dimethylamino)styryl]-1-methylpyridinium iodide, 4-[4-(dimethylamino)styryl]pyridine, 4-(diethylamino)benzaldehyde diphenylhydrazone, trans-4-[4-(dimethylamino)styryl]-1-methylpyridinium p-toluenesulfonate, 2-[ethyl[4-[2-(4-nitrophenyl)ethenyl]phenyl]amino]ethanol, 4-dimethylamino-4′-nitrostilbene, Disperse Orange 25, Disperse Orange 3, and Disperse Red 1.
  • upconverter materials can comprise quantum dots.
  • Quantum dots can comprise III/V and II/VI semiconductor materials, such as cadmium selenide (CdSe), cadmium telluride (CdTe), and zinc selenide (ZnSe).
  • Upconverter materials can also comprise core-shell architectures of quantum dots.
  • upconverter materials comprising transition metals, such as chromium.
  • a photovoltaic component has a construction consistent with that described in U.S. patent application Ser. Nos. 12/298,942 and 12/298,936, each of which is incorporated herein by reference in its entirety.
  • the photo-thermal apparatus ( 400 ) further comprises a Stokes shift layer ( 403 ) disposed between the photovoltaic component ( 401 ) and the thermoelectric component ( 402 ).
  • the Stokes shift layer comprises one or more Stokes shift chemical species operable to create heat energy for transmission to the adjacent side of the thermoelectric component.
  • Stokes shift chemical species absorb electromagnetic radiation that has passed through the photovoltaic component ( 401 ).
  • radiation emitted by one or more Stokes shift chemical species is absorbed by the photovoltaic component ( 401 ).
  • any Stokes shift material not inconsistent with the objectives of the present invention can be used for incorporation into the Stokes shift layer.
  • suitable Stokes shift materials are selected according to absorption and emission profiles.
  • the absorption profile of a Stokes shift material does not overlap with the absorption profile of a photosensitive layer of the photovoltaic component.
  • the absorption profile of a Stokes shift material at least partially overlaps with the absorption profile of a photosensitive layer of the photovoltaic component.
  • a Stokes shift material has an emission profile that at least partially overlaps with the absorption profile of a photosensitive layer of the photovoltaic component.
  • a Stokes shift material is operable to absorb radiation in the near ultraviolet region of the electromagnetic spectrum.
  • a Stokes shift material absorbs radiation having a wavelength ranging from about 300 nm to about 400 nm.
  • a Stokes shift material comprises a dye. Any dye not inconsistent with the objectives of the present invention may be used.
  • a dye comprises one or more of coumarins, coumarin derivatives, pyrenes, and pyrene derivatives.
  • a Stokes shift material comprises an ultraviolet light-excitable fluorophore.
  • Non-limiting examples of dyes suitable for use in some embodiments described herein include methoxycoumarin, dansyl dyes, pyrene, Alexa Fluor 350, aminomethylcoumarin acetate (AMCA), Marina Blue dye, Dapoxyl dyes, dialkylaminocoumarin, bimane dyes, hydroxycoumarin, Cascade Blue dye, Pacific Orange dye, Alexa Fluor 405, Cascade Yellow dye, Pacific Blue dye, PyMPO, and Alexa Fluor 430.
  • a Stokes shift material comprises a phosphor. Any phosphor not inconsistent with the objectives of the present invention may be used.
  • a phosphor comprises one or more of halophosphate phosphors and triphosphors.
  • Non-limiting examples of phosphors suitable for use in some embodiments described herein include Ca 5 (PO 4 ) 3 (F, Cl):Sb 3+ , Mn 2+ ; Eu:Y 2 O 3 ; and Tb 3+ , Ce 3+ :LaPO 4 .
  • a phosphor comprises a phosphor particle. Phosphor particles, in some embodiments, can be suspended in a fluid.
  • a plurality of p-type layers and n-type layers are provided and coupled to one another resulting in the formation of a plurality of pn junctions.
  • insulating layers are positioned between the p-type layers and the n-type layers. Additionally, in some embodiments of methods of making a thermoelectric apparatus, the p-type layers and the n-type layers are arranged in a stacked configuration. In some embodiments, the p-layers and the n-layers are coupled by metal contacts to provide the pn junctions. In some embodiments, for example, a p-layer is coupled to an n-layer by a metal contact to provide a pn junction of a thermoelectric apparatus described herein.
  • a method of making a photo-thermal apparatus comprises providing a photovoltaic component, providing a thermoelectric component and coupling the photovoltaic component and the thermoelectric component, the thermoelectric component comprising at least one p-type layer coupled to at least one n-type layer to provide a pn junction, and an insulating layer at least partially disposed between the p-type layer and the n-type layer, the p-type layer comprising a plurality of carbon nanoparticles and the n-type layer comprising a plurality of n-doped carbon nanoparticles.
  • the thermoelectric component comprises a plurality of p-type layers coupled to a plurality of n-type layers to provide a plurality of pn junctions as described herein.
  • a method of making a photo-thermal apparatus further comprises disposing a Stokes shift layer between the photovoltaic component and the thermoelectric component.
  • a method of converting electromagnetic energy into electrical energy comprises providing an apparatus comprising a photovoltaic component and a thermoelectric component coupled to the photovoltaic component, the thermoelectric component comprising at least one p type layer coupled to at least one n-type layer to provide a pn junction, and an insulating layer at least partially disposed between the p-type layer and the n-type layer, the p-type layer comprising a plurality of carbon nanoparticles and the n-type layer comprising a plurality of n-doped carbon nanoparticles, absorbing electromagnetic radiation with the photovoltaic component to provide a photocurrent, and heating one side of the thermoelectric component inducing a voltage across the thermoelectric component.
  • heating one side of the thermoelectric component comprises transferring heat generated in the photovoltaic component to one side of the thermoelectric component. Additionally, in some embodiments, heating one side of the thermoelectric component comprises providing a Stokes shift layer between the photovoltaic component and the thermoelectric component, absorbing electromagnetic radiation with the Stokes shift layer to generate heat and electromagnetic radiation and transferring the generated heat to one side of the thermoelectric component. In some embodiments, the electromagnetic radiation generated by the Stokes shift layer is transmitted to the photovoltaic component for the generation of photocurrent.
  • a first p-type layer was fabricated by providing 35 mg of single-walled carbon nanotubes (SWNT) to which was added 17.5 ml of dimethylacrylamide (DMA). The resulting mixture was high energy sonicated for a period of one hour. Polyvinylidene fluoride (PVDF) was added to the mixture in an amount to render the SWNT 20 weight percent of the mixture on a total solids basis. The resulting SWNT/PVDF/DMA mixture was high energy sonicated for one hour.
  • SWNT single-walled carbon nanotubes
  • DMA dimethylacrylamide
  • a glass slide having dimensions of 75 mm ⁇ 45 mm was cleaned in methanol and placed on a hot plate at 90° C.
  • the SWNT/PVDF/DMA mixture was poured evenly onto the slide and the DMA was allowed to evaporate.
  • the dried SWNT/PVDF film was placed into an oven at 100° C. for 12 hours to anneal.
  • the slide was subsequently removed from the oven and methanol was poured over the SWNT/PVDF film.
  • the SWNT/PVDF film was carefully removed from the glass slide, washed in deionized water and dried.
  • a second p-type layer was prepared according to the foregoing procedure. Moreover, an n-type layer was prepared according to the foregoing procedure, the difference being n-doped carbon nanotubes were combined with the DMA and PVDF.
  • Two insulating layers were prepared according to the following procedure. 600 mg of polypropylene (PP) were added to DMA in a ratio of 0.025 ml DMA to 1 mg of polypropylene powder. The resulting mixture was sonicated until the PP powder was dissolved in the DMA. A glass slide having dimensions of 75 mm ⁇ 45 mm was cleaned in methanol and placed on a hot plate at 90° C. The PP/DMA mixture was poured evenly onto the slide, and the DMA was allowed to evaporate. Methanol was poured over the resulting PP film, and the PP film was carefully removed from the glass slide.
  • PP polypropylene
  • thermoelectric apparatus as illustrated in FIG. 5 .
  • the resulting thermoelectric apparatus was expanded in FIG. 5 for illustration of the various components of the apparatus.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

In some embodiments, thermoelectric apparatus and various applications of thermoelectric apparatus are described herein. In some embodiments, a thermoelectric apparatus described herein comprises at least one p-type layer coupled to at least one n-type layer to provide a pn junction, and an insulating layer at least partially disposed between the p-type layer and the n-type layer, the p-type layer comprising a plurality of carbon nanoparticles and the n-type layer comprising a plurality of n-doped carbon nanoparticles.

Description

    RELATED APPLICATION DATA
  • This application claims priority under 35 U.S.C. § 119(e) from U.S. Provisional Patent Application Ser. No. 61/394,293, filed on Oct. 18, 2010, the entirety of which is hereby incorporated by reference.
  • FIELD
  • The present invention relates to thermoelectric materials and, in particular, to apparatus incorporating thermoelectric materials.
  • BACKGROUND OF THE INVENTION
  • Heat energy is widely used in the generation of electricity. However, the efficiency of converting heat energy into electrical energy by current methods is low, ranging from about 30 to 40 percent. As a result, a significant amount of heat energy escapes into the environment as waste. It is estimated that about 15 terawatts of power is lost to the environment in the annual global production of electricity.
  • Thermoelectric materials are operable to capture heat for additional electrical production. Thermoelectric efficiency is quantified by the Figure of Merit, ZT.
  • Thermoelectric materials demonstrating higher ZT values have higher thermoelectric efficiencies. Fabricating thermoelectric materials with reasonable ZT values is often difficult and/or expensive. Bismuth chalcogenides, for example, provide excellent thermoelectric properties with ZT values ranging from 0.7 to 1.0. These materials can be nanostructured to produce a superlattice structure of alternating Bi2Te3 and Bi2Se3 layers resulting in a material having acceptable electrical conductivity and poor thermal conductivity. Fabrication of these materials, nevertheless, can be time consuming and expensive.
  • Moreover, as a result of fabrication requirements and other material tolerances, many thermoelectric materials do not lend themselves to facile incorporation into a wide variety of devices for heat collection and electrical generation.
  • SUMMARY
  • In one aspect, thermoelectric apparatus are described herein which, in some embodiments, can overcome or mitigate one or more disadvantages of current thermoelectric materials. In some embodiments, a thermoelectric apparatus described herein comprises at least one p-type layer coupled to at least one n-type layer to provide a pn junction, and an insulating layer at least partially disposed between the p-type layer and the n-type layer, the p-type layer comprising a plurality of carbon nanoparticles and the n-type layer comprising a plurality of n-doped carbon nanoparticles. In some embodiments, carbon nanoparticles of the p-type layer are p-doped.
  • In some embodiments, a thermoelectric apparatus described herein comprises a plurality of p-type layers coupled to a plurality of n-type layers providing a plurality of pn junctions, and insulating layers at least partially disposed between the p-type layers and the n-type layers, wherein at least one p-type layer comprises a plurality of carbon nanoparticles and at least one n-type layer comprises a plurality of n-doped carbon nanoparticles.
  • In some embodiments, a p-type layer of a thermoelectric apparatus described herein further comprises a polymer matrix in which the carbon nanoparticles are disposed. In some embodiments, an n-type layer further comprises a polymer matrix in which the n-doped carbon nanoparticles are disposed. In some embodiments, p-type layers and n-type layers of a thermoelectric apparatus described herein are in a stacked configuration.
  • In some embodiments of a thermoelectric apparatus described herein, carbon nanoparticles including p-doped and n-doped carbon nanotubes can be substituted with one or more inorganic semiconductor nanoparticles. In some embodiments, inorganic semiconductor nanoparticles comprise group IV materials, group materials or group III/V materials or combinations thereof. In some embodiments, inorganic semiconductor nanoparticles comprise quantum dots and/or nanowires. In some embodiments, inorganic semiconductor nanoparticles have dimensions consistent with any of the carbon nanoparticles described herein.
  • In another aspect, a photo-thermal apparatus is described herein comprising a photovoltaic component and a thermoelectric component, the thermoelectric component comprising at least one p-type layer coupled to at least one n-type layer to provide a pn junction, and an insulating layer at least partially disposed between the p-type layer and the n-type layer, the p-type layer comprising a plurality of carbon nanoparticles and the n-type layer comprises a plurality of n-doped carbon nanoparticles. In some embodiments, the thermoelectric component comprises a plurality of p-type layers coupled to a plurality of n-type layers providing a plurality of pn junctions, and insulating layers at least partially disposed between the p-type layers and the n-type layers.
  • In some embodiments, a photo-thermal apparatus further comprises a Stokes shift layer positioned between the photovoltaic component and the thermoelectric component. In some embodiments, the Stokes shift layer comprises one or more Stokes shift chemical species operable to create heat energy for transmission to the adjacent side of the thermoelectric component. In some embodiments, Stokes shift chemical species absorb electromagnetic radiation that has passed through the photovoltaic component.
  • Moreover, in some embodiments, radiation emitted by one or more Stokes shift chemical species is absorbed by the photovoltaic component.
  • In another aspect, methods of making a thermoelectric apparatus are described herein. In some embodiments, a method of making a thermoelectric apparatus comprises providing at least one p-type layer comprising a plurality of carbon nanoparticles, providing at least one n-type layer comprising a plurality of n-doped carbon nanoparticles, positioning an insulating layer between the p-type layer and the n-type layer, and coupling the p-type layer and the n-type layer to provide a pn junction. In some embodiments, a plurality of p-type layers and n-type layers are provided and coupled to one another resulting in the formation of a plurality of pn junctions. In some embodiments insulating layers are positioned between the p-type layers and the n-type layers. Additionally, in some embodiments of methods of making a thermoelectric apparatus, the p-type layers and the n-type layers are arranged in a stacked configuration.
  • In another aspect, methods of making a photo-thermal apparatus are described herein. In some embodiments, a method of making a photo-thermal apparatus comprises providing a photovoltaic component, providing a thermoelectric component and coupling the photovoltaic component and the thermoelectric component, the thermoelectric component comprising at least one p-type layer coupled to at least one n-type layer to provide a pn junction, and an insulating layer at least partially disposed between the p-type layer and the n-type layer, the p-type layer comprising a plurality of carbon nanoparticles and the n-type layer comprising a plurality of n-doped carbon nanoparticles. In some embodiments, the thermoelectric component comprises a plurality of p-type layers coupled to a plurality of n-type layers to provide a plurality of pn junctions as described herein.
  • In some embodiments, a method of making a photo-thermal apparatus further comprises disposing a Stokes shift layer between the photovoltaic component and the thermoelectric component.
  • In another aspect, a method of converting electromagnetic energy into electrical energy is described herein. In some embodiments, a method of converting electromagnetic energy into electrical energy comprises providing an apparatus comprising a photovoltaic component and a thermoelectric component coupled to the photovoltaic component, the thermoelectric component comprising at least one p-type layer coupled to at least one n-type layer to provide a pn junction, and an insulating layer at least partially disposed between the p-type layer and the n-type layer, the p-type layer comprising a plurality of carbon nanoparticles and the n-type layer comprising a plurality of n-doped carbon nanoparticles, absorbing electromagnetic radiation with the photovoltaic component to provide a photocurrent, and heating one side of the thermoelectric component inducing a voltage across the thermoelectric component.
  • In some embodiments, heating one side of the thermoelectric component comprises transferring heat generated in the photovoltaic component to one side of the thermoelectric component. Additionally, in some embodiments, heating one side of the thermoelectric component comprises providing a Stokes shift layer between the photovoltaic component and the thermoelectric component, absorbing electromagnetic radiation with the Stokes shift layer to generate heat and electromagnetic radiation and transferring the generated heat to one side of the thermoelectric component. In some embodiments, the electromagnetic radiation generated by the Stokes shift layer is transmitted to the photovoltaic component for the generation of photocurrent.
  • These and other embodiments are described in greater detail in the detailed description which follows.
  • BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 illustrates a side expanded view of a thermoelectric apparatus according to one embodiment described herein.
  • FIG. 2 illustrates a thermoelectric apparatus according to one embodiment described herein.
  • FIG. 3 illustrates Seebeck coefficient values for various carbon nanotube loadings in a polymeric matrix according to some embodiments described herein.
  • FIG. 4 illustrates a photo-thermal apparatus according to one embodiment described herein.
  • FIG. 5 illustrates a side expanded view of a thermoelectric apparatus according to one embodiment described herein.
  • DETAILED DESCRIPTION
  • Embodiments described herein can be understood more readily by reference to the following detailed description, example, and drawings. Elements, apparatus, and methods described herein, however, are not limited to the specific embodiments presented in the detailed description, example, and drawings. It should be recognized that these embodiments are merely illustrative of the principles of the present invention. Numerous modifications and adaptations will be readily apparent to those of skill in the art without departing from the spirit and scope of the invention.
  • In addition, all ranges disclosed herein are to be understood to encompass any and all subranges subsumed therein. For example, a stated range of “1.0 to 10.0” should be considered to include any and all subranges beginning with a minimum value of 1.0 or more and ending with a maximum value of 10.0 or less, e.g., 1.0 to 5.3, or 4.7 to 10.0, or 3.6 to 7.9.
  • In some embodiments, a thermoelectric apparatus is described herein, the thermoelectric apparatus comprising at least one p-type layer coupled to at least one n-type layer to provide a pn junction, and an insulating layer at least partially disposed between the p-type layer and the n-type layer, the p-type layer comprising a plurality of carbon nanoparticles and the n-type layer comprising a plurality of n-doped carbon nanoparticles. In some embodiments, carbon nanoparticles of the p-type layer are p-doped.
  • In some embodiments, a thermoelectric apparatus described herein comprises a plurality of p-type layers coupled to a plurality of n-type layers providing a plurality of pn junctions, and insulating layers at least partially disposed between the p-type layers and the n-type layers, wherein at least one p-type layer comprises a plurality of carbon nanoparticles and at least one n-type layer comprises a plurality of n-doped carbon nanoparticles. In some embodiments, metal contacts are provided between the p-type layers and the n-type layers at the sites of pn junctions. In some embodiments, for example, a p-type layer is coupled to an n-type layer by a metal contact to provide a pn junction of the thermoelectric apparatus described herein.
  • In some embodiments, a p-type layer of a thermoelectric apparatus described herein further comprises a polymer matrix in which the carbon nanoparticles are disposed. In some embodiments, an n-type layer further comprises a polymer matrix in which the n-doped carbon nanoparticles are disposed. In some embodiments, p-type layers and n-type layers of a thermoelectric apparatus described herein are in a stacked configuration.
  • FIG. 1 illustrates an expanded side view of a thermoelectric apparatus according to one embodiment described herein. The thermoelectric apparatus illustrated in FIG. 1 comprises two p-type layers (1) coupled to an n-type layer (2) in an alternating fashion. The alternating coupling of p-type (1) and n-type (2) layers provides the thermoelectric apparatus a z-type configuration having pn junctions (4) on opposite sides of the apparatus. Insulating layers (3) are disposed between interfaces of the p-type layers (1) and the n-type layer (2) as the p-type (1) and n-type (2) layers are in a stacked configuration. As described herein, the thermoelectric apparatus provided in FIG. 1 is in an expanded state to facilitate illustration and understanding of the various components of the apparatus. In some embodiments, however, the thermoelectric apparatus is not in an expanded state such that the insulating layers (3) are in contact with a p-type layer (1) and an n-type layer (2).
  • FIG. 1 additionally illustrates the current flow through the thermoelectric apparatus induced by exposing one side of the apparatus to a heat source. Electrical contacts (X) are provided to the thermoelectric apparatus for application of the thermally generated current to an external load.
  • FIG. 2 illustrates a thermoelectric apparatus (200) according to one embodiment described herein wherein the p-type layers (201) and the n-type layers (202) are in a stacked configuration. The p-type layers (201) and the n-type layers (202) are separated by insulating layers (207) in the stacked configuration. The thermoelectric apparatus (200) is connected to an external load by electrical contacts (204, 205).
  • Turning now to components that can be included in the various embodiments of a thermoelectric apparatus described herein, a thermoelectric apparatus described herein comprises at least one p-type layer comprising a plurality of carbon nanoparticles.
  • Carbon nanoparticles of a p-type layer, in some embodiments, comprise fullerenes, carbon nanotubes, or mixtures thereof. Fullerenes, in some embodiments, comprise 1-(3-methoxycarbonyl)propyl-1-phenyl(6,6)C61 (PCBM). In some embodiments, carbon nanotubes comprise single-walled carbon nanotubes (SWNT), multi-walled carbon nanotubes (MWNT), as well as p-doped single-walled carbon nanotubes, p-doped multi-walled carbon nanotubes or mixtures thereof.
  • In some embodiments, p-doped single-walled carbon nanotubes and/or p-doped multi-walled carbon nanotubes comprise boron in an amount ranging from about 0.1 weight percent to about 30 weight percent. In some embodiments, p-doped single-walled carbon nanotubes and/or p-doped multi-walled carbon nanotubes comprise boron in an amount ranging from about 5 weight percent to about 25 weight percent or from about 10 weight percent to about 20 weight percent. In some embodiments, p-doped single-walled carbon nanotubes and/or p-doped multi-walled carbon nanotubes comprise boron in an amount less than about 0.1 weight percent. In some embodiments, p-doped single-walled carbon nanotubes and/or p-doped multi-walled carbon nanotubes comprise oxygen.
  • In some embodiments, a p-type dopant is incorporated in the lattice of single-walled and/or multi-walled carbon nanotubes. In some embodiments, a p-type dopant is externally provided to carbon nanotubes by the environment surrounding the single walled and/or multi-walled carbon nanotubes. As described further herein, carbon nanotubes of a p-type layer, in some embodiments, are disposed in a polymeric matrix. In some embodiments, the polymeric matrix can provide p-dopant to surfaces of the carbon nanotubes. In some embodiments, wherein the polymeric matrix provides p-dopant to surfaces of the carbon nanotubes, the carbon nanotubes are not p-doped prior to incorporation into the polymeric matrix. Alternatively, in some embodiments wherein the polymeric matrix provides p-dopant to surfaces of the carbon nanotubes, the carbon nanotubes comprise p-dopant prior to incorporation into the polymeric matrix. Moreover, in some embodiments, chemical species also disposed in the polymeric matrix, such as alkali metals, can serve as p-dopant for the carbon nanotubes.
  • In some embodiments, carbon nanoparticles of a p-type layer have a high aspect ratio. The term aspect ratio, as used herein, refers to a carbon nanoparticle's length divided by the carbon nanoparticle's diameter or width. In some embodiments, carbon nanoparticles of a p-type layer demonstrate an aspect ratio ranging from about 1 to about 106. In some embodiments, carbon nanoparticles display an aspect ratio ranging from about 10 to about 100,000. In some embodiments, carbon nanoparticles have an aspect ratio ranging from about 10 to about 10,000 or from about 5 to about 1000.
  • Carbon nanoparticles of a p-type layer, including carbon nanotubes, in some embodiments, have a length ranging from about 1 nm to about 5 mm or from about 10 nm to about 1 mm. In some embodiments, carbon nanoparticles have a length ranging from about 50 nm to about 500 μm, from about 100 nm to about 100 μm, or from about 500 nm to about 10 μm. In some embodiments, carbon nanoparticles have a length ranging from about 200 pm to about 500 μm.
  • Carbon nanoparticles of a p-type layer, in some embodiments, have a diameter ranging from about 1 nm to about 100 nm. In some embodiments, carbon nanoparticles have a diameter ranging from about 10 nm to about 80 nm or from about 20 nm to about 60 nm. In some embodiments, carbon nanoparticles have a diameter greater than about 100 nm or less than about 1 nm.
  • In some embodiments, carbon nanoparticles of a p-type layer, including carbon nanotubes, are provided in a mat configuration.
  • A p-type layer, in some embodiments, comprises one or more species of carbon nanoparticles described herein in an amount ranging from about 0.1 weight percent to about 100 weight percent. In some embodiments, a p-type layer comprises carbon nanoparticles in an amount of at least about 2 weight percent. In some embodiments, a p-type layer comprises carbon nanoparticles in an amount of at least about 5 weight percent or at least about 10 weight percent. In some embodiments, a p-type layer comprises carbon nanoparticles in an amount ranging from about 2 weight percent to about 50 weight percent. In some embodiments, a p-type layer comprises carbon nanoparticles in an amount ranging from about 5 weight percent to about 30 weight percent.
  • Carbon nanoparticle loadings of p-type layers descried herein, in some embodiments, can be chosen with reference to the desired Seebeck coefficient of the layer. FIG. 3 illustrates Seebeck coefficient as a function of SWNT loading of a polyvinylidene fluoride (PVDF) matrix of p-type layers according to some embodiments described herein. As illustrated in FIG. 3, SWNT loadings ranging from 5 weight percent to 100 weight percent provide a range of Seebeck coefficients for the p-type layers.
  • As described herein, in some embodiments, a p-type layer further comprises a polymeric matrix in which the carbon nanoparticles are disposed. Any polymeric material not inconsistent with the objectives of the present invention can be used in the production of a polymeric matrix. In some embodiments, a polymeric matrix comprises a fluoropolymer including, but not limited to, polyvinyl fluoride (PVF), polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), or mixtures or copolymers thereof. In some embodiments, a polymer matrix comprises polyacrylic acid (PAA), polymethacrylate (PMA), polymethylmethacrylate (PMMA) or mixtures or copolymers thereof. In some embodiments, a polymer matrix comprises a polyolefin including, but not limited to polyethylene, polypropylene, polybutylene or mixtures or copolymers thereof.
  • In some embodiments, a polymeric matrix comprises one or more conjugated polymers. In some embodiments, conjugated polymers comprise thiophenes including poly(3-hexylthiophene) (P3HT), poly(3-octylthiophene) (P3OT), and polythiophenc (PTh).
  • In some embodiments, a polymeric matrix comprises one or more semiconducting polymers. In some embodiments, semiconducting polymers include phenylene vinylenes, such as poly(phenylene vinylene) and poly(p-phenylene vinylene) (PPV), and derivatives thereof. In some embodiments, semiconducting polymers can comprise poly fluorenes, naphthalenes, and derivatives thereof. In some embodiments, semiconducting polymers comprise poly(2-vinylpyridine) (P2VP), polyamides, poly(N-vinylcarbazole) (PVCZ), polypyrrole (PPy), and polyaniline (PAn). In some embodiments, a semiconducting polymer comprises poly[2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b′]dithiophene)-alt-4,7-(2,1,3-benzothiadiazole)] (PCPDTBT).
  • In some embodiments, a p-type layer can have any desired thickness not inconsistent with the objectives of the present invention. In some embodiments, a p-type layer has a thickness of at least about 10 nm or at least about 100 nm. A p-type layer, in some embodiments, has a thickness of at least about 500 nm or at least about 1 μm. In some embodiments a p-type layer has a thickness of at least about 5 μm or at least about 15 μm. In some embodiments, a p-type layer has a thickness ranging from about 5 nm to about 50 μm. In some embodiments, a p-type layer has a thickness ranging from about 50 nm to about 30 μm. In some embodiments, a p-type layer has a thickness ranging from about 100 nm to about 20 μm. In some embodiments, a p-type layer has a thickness ranging from about 10 nm to about 100 nm.
  • In some embodiments, a p-type layer can have any desired length not inconsistent with the objectives of the present invention. In some embodiments, a p-type layer has a length of at least about 1 μm or at least about 10 μm. In some embodiments, a p-type layer has a length of at least about 100 μm or at least about 500 μm. A p-type layer, in some embodiments, has a length of at least about 1 mm or at least about 10 mm. In some embodiments, a p-type layer has a length ranging from about 1 μm to about 100 mm. In some embodiments, a p-type layer has a length ranging from about 10 μm to about 500 mm.
  • A p-type layer, in some embodiments, has a Seebeck coefficient of at least about 5 μV/K at a temperature of 290° K. In some embodiments, a p-type layer has a Seebeck coefficient of at least about 10 μV/K at a temperature of 290° K. In some embodiments, a p-type layer has a Seebeck coefficient of at least about 15 μV/K or at least about 20 μV/K at a temperature of 290° K. In some embodiments, a p-type layer has a Seebeck coefficient of at least about 30 μV/K at a temperature of 290° K. A p-type layer, in some embodiments, has a Seebeck coefficient ranging from about 5 μV/K to about 35 μV/K at a temperature of 290° K. In some embodiments, a p-type layer has Seebeck coefficient ranging from about 10 μV/K to about 30 μV/K at a temperature of 290° K.
  • As described herein, in some embodiments, the Seebeck coefficient of a p-type layer can be varied according to carbon nanoparticle identity and loading. In some embodiments, for example, the Seebeck coefficient of a p-type layer is inversely proportional to the single-walled carbon nanotube loading of the p-type layer.
  • In addition to at least one p-type layer, a thermoelectric apparatus described herein comprises at least one n-type layer comprising a plurality of n-doped carbon nanoparticles.
  • N-doped carbon nanoparticles, in some embodiments, comprise fullerenes, carbon nanotubes, or mixtures thereof. Fullerenes, in some embodiments, comprise 1-(3-methoxycarbonyl)propyl-1-phenyl(6,6)C61 (PCBM). In some embodiments, n-doped carbon nanotubes comprise single-walled carbon nanotubes, multi-walled carbon nanotubes or mixtures thereof.
  • In some embodiments, carbon nanoparticles of a n-type layer, including carbon nanotubes, are provided in a mat configuration.
  • In some embodiments, n-doped single-walled carbon nanotubes and/or n-doped multi-walled carbon nanotubes comprise nitrogen in an amount ranging from about 0.1 weight percent to about 30 weight percent. In some embodiments, n-doped single-walled carbon nanotubes and/or n-doped multi-walled carbon nanotubes comprise nitrogen in an amount ranging from about 5 weight percent to about 25 weight percent or from about 10 weight percent to about 20 weight percent. In some embodiments, n-doped single-walled carbon nanotubes and/or n-doped multi-walled carbon nanotubes comprise nitrogen in an amount less than about 0.1 weight percent. In some embodiments, n-doped single-walled carbon nanotubes and/or n-doped multi-walled carbon nanotubes are deoxygenated nanotubes.
  • In some embodiments, an n-type dopant is incorporated in the lattice of single-walled and/or multi-walled carbon nanotubes. In some embodiments, an n-type dopant is externally provided to carbon nanotubes by the environment surrounding the single walled and/or multi-walled carbon nanotubes. As described further herein, carbon nanotubes of an n-type layer, in some embodiments, are disposed in a polymeric matrix. In some embodiments, the polymeric matrix can provide n-dopant to surfaces of the carbon nanotubes. In some embodiments wherein the polymeric matrix provides n-dopant to surfaces of the carbon nanotubes, the carbon nanotubes are not n-doped prior to incorporation into the matrix. In some embodiments wherein the polymeric matrix provides n-dopant to surfaces of the carbon nanotubes, the carbon nanotubes are n-doped prior to incorporation into the matrix.
  • In some embodiments, n-doped carbon nanoparticles of an n-type layer have a high aspect ratio. In some embodiments, n-doped carbon nanoparticles of an n-type layer demonstrate an aspect ratio ranging from about 1 to about 106. In some embodiments, n-doped carbon nanoparticles display an aspect ratio ranging from about 10 to about 100,000. In some embodiments, n-doped carbon nanoparticles have an aspect ratio ranging from about 10 to about 10,000 or from about 5 to about 1000.
  • Carbon nanoparticles of an n-type layer, including carbon nanotubes, in some embodiments, have a length ranging from about 1 nm to about 5 mm or from about 10 nm to about 1 mm. In some embodiments, n-doped carbon nanoparticles have a length ranging from about 50 nm to about 500 μm, from about 100 nm to about 100 μm, or from about 500 nm to 10 μm. In some embodiments, n-doped carbon nanotubes have a length ranging from about 200 pm to about 500 μm.
  • Carbon nanoparticles of an n-type layer, in some embodiments, have a diameter ranging from about 1 nm to about 100 nm. In some embodiments, n-doped carbon nanoparticles have a diameter ranging from about 10 nm to about 80 nm or from about 20 nm to about 60 nm. In some embodiments, n-doped carbon nanoparticles have a diameter greater than about 100 nm or less than about 1 nm.
  • A n-type layer, in some embodiments, can comprise one or more species of n-doped carbon nanoparticles described herein in an amount ranging from about 0.1 weight percent to about 100 weight percent. In some embodiments, an n-type layer comprises n-doped carbon nanoparticles in an amount of at least about 2 weight percent. In some embodiments, an n-type layer comprises n-doped carbon nanoparticles in an amount of at least about 5 weight percent or at least about 10 weight percent. In some embodiments, an n-type layer comprises n-doped carbon nanoparticles in an amount ranging from about 2 weight percent to about 50 weight percent. In some embodiments, an n-type layer comprises n-doped carbon nanoparticles in an amount ranging from about 5 weight percent to about 30 weight percent. As with the p-type layer, nanoparticle loadings of an n-type layer, in some embodiments, can be determined with reference to the desired Seebeck coefficient of the layer.
  • As described herein, in some embodiments, an n-type layer further comprises a polymeric matrix in which the n-doped carbon nanoparticles are disposed. Any polymeric material not inconsistent with the objectives of the present invention can be used in the production of a polymeric matrix for receiving n-doped carbon nanoparticles. In some embodiments, a polymeric matrix comprises a fluoropolymer including, but not limited to, polyvinyl fluoride (PVF), polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), or mixtures or copolymers thereof. In some embodiments, a polymer matrix comprises polyacrylic acid (PAA), polymethacrylate (PMA), polymethylmethacrylate (PMMA) or mixtures or copolymers thereof. In some embodiments, a polymer matrix comprises a polyolefin including, but not limited to polyethylene, polypropylene, polybutylene or mixtures or copolymers thereof.
  • In some embodiments, a polymeric matrix of an n-type layer comprises one or more conjugated polymers. In some embodiments, conjugated polymers comprise thiophenes including poly(3-hexylthiophene) (P3HT), poly(3-octylthiophene) (P3OT), and polythiophene (PTh).
  • In some embodiments, a polymeric matrix of an n-type layer comprises one or more semiconducting polymers. In some embodiments, semiconducting polymers include phenylene vinylenes, such as poly(phenylene vinylene) and polyp-phenylene vinylene) (PPV), and derivatives thereof. In other embodiments, semiconducting polymers can comprise poly fluorenes, naphthalenes, and derivatives thereof. In some embodiments, semiconducting polymers comprise poly(2-vinylpyridine) (P2VP), polyamides, poly(N-vinylcarbazole) (PVCZ), polypyrrole (PPy), and polyaniline (PAn).
  • In some embodiments, an n-type layer can have any desired thickness not inconsistent with the objectives of the present invention. In some embodiments, an n-type layer has a thickness of at least about 1 nm. In some embodiments, an n-type layer has a thickness of at least about 10 nm or at least about 100 nm. An n-type layer, in some embodiments, has a thickness of at least about 500 nm or at least about 1 μm. In some embodiments an n-type layer has a thickness of at least about 5 μm or at least about 15 μm. In some embodiments, an n-type layer has a thickness ranging from about 5 nm to about 50 μm. In some embodiments, an n-type layer has a thickness ranging from about 50 nm to about 30 μm. In some embodiments, an n-type layer has a thickness ranging from about 100 nm to about 20 μm.
  • In some embodiments, an n-type layer can have any desired length not inconsistent with the objectives of the present invention. In some embodiments, an n-type layer has a length of at least about 1 μm or at least about 10 μm. In some embodiments, an n-type layer has a length of at least about 100 μm or at least about 500 μm. An n-type layer, in some embodiments, has a length of at least about 1 mm or at least about 10 mm. In some embodiments, an n-type layer has a length ranging from about 1 μm to about 100 μm. In some embodiments, an n-type layer has a length ranging from about 10 μm to about 500 mm. In some embodiments, an n-type layer has a length coextensive or substantially coextensive with an adjacent p-type layer.
  • An n-type layer, in some embodiments, has a Seebeck coefficient of at least about −5 μV/K at a temperature of 290° K. In some embodiments, an n-type layer has a Seebeck coefficient at least about −10 μV/K at a temperature of 290° K. In some embodiments, an n-type layer has a Seebeck coefficient of at least about −15 μV/K or at least about −20 μV/K at a temperature of 290° K. In some embodiments, an n-type layer has a Seebeck coefficient of at least about −30 μV/K at a temperature of 290° K. An n-type layer, in some embodiments, has a Seebeck coefficient ranging from about −5 μV/K to about −35 μV/K at a temperature of 290° K. In some embodiments, an n-type layer has Seebeck coefficient ranging from about −10 μV/K to about −30 μV/K at a temperature of 290° K.
  • In some embodiments, the Seebeck coefficient of an n-type layer can be varied according to n-doped carbon nanoparticle identity and loading. In some embodiments, for example, the Seebeck coefficient of an n-type layer is inversely proportional to the carbon nanoparticle loading of the n-type layer.
  • In some embodiments of a thermoelectric apparatus described herein, carbon nanoparticles including p-doped and n-doped carbon nanotubes can be substituted with one or more inorganic semiconductor nanoparticles. In some embodiments, inorganic semiconductor nanoparticles comprise group IV materials, group II/VI materials or group III/V materials or combinations thereof. In some embodiments, inorganic semiconductor nanoparticles comprise quantum dots and/or nanowires. In some embodiments, inorganic semiconductor materials are provided with p-dopant or n-dopant for use in respective p-layers and n-layers described herein.
  • A thermoelectric apparatus described herein, in some embodiments, also comprises an insulating layer disposed between the at least one p-type layer and the at least one n-type layer. In some embodiments, an insulating layer is electrically insulating. In some embodiments, the insulating layer is electrically insulating and thermally insulating. In some embodiments, a thermoelectric apparatus comprises a plurality of insulating layers disposed between a plurality of p-type layers and n-type layers. Insulating layers, in some embodiments, permit p-type layers and n-type layers of a thermoelectric apparatus described herein to be arranged in a stacked configuration.
  • In some embodiments, an insulating layer comprises one or more polymeric materials. Any polymeric material not inconsistent with the objectives of the present invention can be used in the production of an insulating layer. In some embodiments, an insulating layer comprises polyacrylic acid (PAA), polymethacrylate (PMA), polymethylmethacrylate (PMMA) or mixtures or copolymers thereof. In some embodiments, an insulating layer comprises a polyolefin including, but not limited to polyethylene, polypropylene, polybutylene or mixtures or copolymers thereof. In some embodiments, an insulating layer comprises PVDF.
  • An insulating layer can have any desired thickness not inconsistent with the objectives of the present invention. In some embodiments, an insulating layer has a thickness of at least about 50 nm. In some embodiments, an insulating layer has a thickness of at least about 75 nm or at least about 100 nm. An insulating layer, in some embodiments, has a thickness of at least about 500 nm or at least about 1 μm. In some embodiments, an insulating layer has a thickness of at least about 5 μm or at least about 15 μm. In some embodiments, an insulating layer has a thickness ranging from about 5 nm to about 50 μm. In some embodiments, an insulating layer has a thickness ranging from about 50 nm to about 30 μm. In some embodiments, an insulating layer has a thickness ranging from about 100 nm to about 20 μm.
  • An insulating layer can have any desired length not inconsistent with the objectives of the present invention. In some embodiments, an insulating layer has a length substantially consistent with the lengths of the p-type and n-type layers between which the insulating layer is disposed. In some embodiments, an insulating layer has a length of at least about 1 μm or at least about 10 μm. In some embodiments, an insulating layer has a length of at least about 100 μm or at least about 500 μm. An insulating layer, in some embodiments, has a length of at least about 1 mm or at least about 10 μm. In some embodiments, an insulating layer has a length ranging from about limn to about 100 μm. In some embodiments, an insulating layer has a length ranging from about 10 μm to about 500 mm.
  • A thermoelectric apparatus described herein, in some embodiments, comprises a plurality of p-type layers and a plurality of n-type layers. In some embodiments, a thermoelectric apparatus can comprise any number of p-type layers and n-type layers not inconsistent with the objectives of the present invention. In some embodiments, the p-type layers and the n-type layers are ordered in alternating fashion and in a stacked configuration, being separated by insulating layers. In some embodiments, a thermoelectric apparatus comprises at least 3 p-type layers and at least 3 n-type layers. In some embodiments, a thermoelectric apparatus comprises at least 5 p-type layers and at least 5 n-type layers. In some embodiments, a thermoelectric apparatus comprises at least 10 p-type layers and at least 10 n-type layers. In some embodiments, a thermoelectric apparatus comprises at least 15 p-type layers and at least 15 n-type layers. In some embodiments, a thermoelectric apparatus comprises at least 100 p-type layers and at least 100 n-type layers. In some embodiments, a thermoelectric apparatus comprises at least 1000 p-type layers and at least 1000 n-type layers.
  • In some embodiments, a thermoelectric apparatus described herein comprising one or more p-type layers and one or more n-type layers has the form of a fabric. In some embodiments, the fabric is flexible permitting application of the thermoelectric apparatus to a variety of substrates having different surface shapes and/or morphologies. In some embodiments, for example, a thermoelectric apparatus is applied to curved and/or other non-planar substrates.
  • In some embodiments, a thermoelectric apparatus having a construction described herein has a Seebeck coefficient of at least about 25 μV/K at a temperature of 290° K. In some embodiments, a thermoelectric apparatus described herein has a Seebeck coefficient of at least about 30 μV/K or at least about 50 μV/K at a temperature of 290° K. In some embodiments, a thermoelectric apparatus described herein has a Seebeck coefficient of at least about 75 μV/K or at least about 100 μV/K at a temperature of 290° K. A thermoelectric apparatus described herein, in some embodiments, has a Seebeck coefficient of at least about 150 μV/K or at least about 175 μV/K at a temperature of 290° K. In some embodiments, a thermoelectric apparatus described herein has a Seebeck coefficient of at least about 200 μV/K at a temperature of 290° K. In some embodiments, a thermoelectric apparatus described herein has a Seebeck coefficient ranging from about 25 μV/K to about 250 μV/K at a temperature of 290° K. In some embodiments, a thermoelectric apparatus described herein has a Seebeck coefficient ranging from about 50 μV/K to about 150 μV/K at a temperature of 290° K.
  • In some embodiments, a thermoelectric apparatus described herein has a ZT of at least 0.5. A thermoelectric apparatus described herein, in some embodiments, has a ZT of at least about 0.7 or at least about 0.8. In some embodiments, a thermoelectric apparatus described herein has a ZT of at least about 1 or at least about 1.5. In some embodiments, a thermoelectric apparatus described herein has a ZT ranging from about 0.5 to about 2 or from about 0.8 to about 1.5. In some embodiments, a thermoelectric apparatus described herein has a ZT ranging from about 1 to about 1.3. In some embodiments, a thermoelectric apparatus described herein has a ZT ranging from about 1 to 10.
  • In another aspect, a photo-thermal apparatus is described herein comprising a photovoltaic component and a thermoelectric component, the thermoelectric component comprising at least one p-type layer coupled to at least one n-type layer to provide a pn junction, and an insulating layer at least partially disposed between the p-type layer and the n-type layer, the p-type layer comprising a plurality of carbon nanoparticles and the n-type layer comprising a plurality of n-doped carbon nanoparticles. In some embodiments, the thermoelectric component comprises a plurality of p-type layers coupled to a plurality of n-type layers providing a plurality of pn junctions, and insulating layers at least partially disposed between the p-type layers and the n-type layers.
  • FIG. 4 illustrates a photo-thermal apparatus according to one embodiment described herein. The photo-thermal apparatus (400) illustrated in FIG. 4 comprises a photovoltaic component (401) coupled to a thermoelectric component (402). The thermoelectric component can comprise any construction described herein for a thermoelectric apparatus.
  • Moreover, the photovoltaic component comprises a radiation transmissive first electrode (404), at least one photosensitive layer (405), an exciton blocking layer (406) and a second radiation transmissive electrode (407). In some embodiments of a photo thermal apparatus, an electrode of the photovoltaic component adjacent to the thermoelectric component is non-radiation transmissive.
  • Radiation transmissive first electrode and second electrode, according to some embodiments described herein, comprise a radiation transmissive conducting oxide.
  • Radiation transmissive conducting oxides, in some embodiments, can comprise indium tin oxide (ITO), gallium indium tin oxide (GITO), and zinc indium tin oxide (ZITO). In some embodiments, radiation transmissive first and second electrodes can comprise a radiation transmissive polymeric material such as polyanaline (PANI) and its chemical relatives. In some embodiments, radiation transmissive first and second electrodes comprise ZnO:Al.
  • In some embodiments, 3,4-polyethylenedioxythiophene (PEDOT) can be a suitable radiation transmissive polymeric material for the first and/or second electrode. In some embodiments, a radiation transmissive first and/or second electrode can comprise a carbon nanotube layer having a thickness operable to at least partially pass visible electromagnetic radiation.
  • In another embodiment, a radiation transmissive first and/or second electrode can comprise a composite material, the composite material comprising a nanoparticle phase dispersed in a polymeric phase. The nanoparticle phase, in one embodiment, can comprise carbon nanotubes, fullerenes, or mixtures thereof. In a further embodiment, a radiation transmissive first and/or second electrode can comprise a metal layer having a thickness operable to at least partially pass visible electromagnetic radiation. In some embodiments, a metal layer can comprise elementally pure metals or alloys. Metals suitable for use as a radiation transmissive first electrode can comprise high work function metals.
  • In some embodiments, radiation transmissive first and second electrodes can have a thickness ranging from about 10 nm to about 1 μm. In some embodiments, radiation transmissive first and second electrodes can have a thickness ranging from about 100 nm to about 900 nm. In another embodiment, radiation transmissive first and second electrodes can have a thickness ranging from about 200 nm to about 800 nm. In a further embodiment, radiation transmissive first and second electrodes can have a thickness greater than about 1 μm.
  • In some embodiments, radiation transmissive first and second electrodes are constructed independently of one another. In some embodiments, radiation transmissive first and second electrodes are constructed with reference to one another.
  • In some embodiments, the at least one photosensitive layer of a photovoltaic component comprises an organic composition. In some embodiments, a photosensitive organic layer has a thickness ranging from about 30 nm to about 1 μm. In other embodiments, a photosensitive organic layer has a thickness ranging from about 80 nm to about 800 nm. In a further embodiment, a photosensitive organic layer has a thickness ranging from about 100 nm to about 300 nm.
  • A photosensitive organic layer, according to embodiments described herein, comprises at least one photoactive region in which electromagnetic radiation is absorbed to produce excitons which may subsequently dissociate into electrons and holes. In some embodiments, a photoactive region can comprise a polymer. Polymers suitable for use in a photoactive region of a photosensitive organic layer, in one embodiment, can comprise conjugated polymers such as thiophenes including poly(3-hexylthiophene) (P3HT), poly(3-octylthiophene) (P3OT), and polythiophene (PTh).
  • In some embodiments, polymers suitable for use in a photoactive region of a photosensitive organic layer can comprise semiconducting polymers. In one embodiment, semiconducting polymers include phenylene vinylenes, such as poly(phenylene vinylene) and poly(p-phenylene vinylene) (PPV), and derivatives thereof. In other embodiments, semiconducting polymers can comprise poly fluorenes, naphthalenes, and derivatives thereof. In a further embodiment, semiconducting polymers for use in a photoactive region of a photosensitive organic layer can comprise poly(2-vinylpyridine) (P2VP), polyamides, poly(N-vinylcarbazole) (PVCZ), polypyrrole (PPy), and polyaniline (PAn).
  • A photoactive region, according to some embodiments, can comprise small molecules. In one embodiment, small molecules suitable for use in a photoactive region of a photosensitive organic layer can comprise coumarin 6, coumarin 30, coumarin 102, coumarin 110, coumarin 153, and coumarin 480 D. In another embodiment, a small molecule can comprise merocyanine 540. In a further embodiment, small molecules can comprise 9,10-dihydrobenzo[a]pyrene-7(8H)-one, 7-methylbenzo[a]pyrene, pyrene, benzo[e]pyrene, 3,4-dihydroxy-3-cyclobutene-1,2-dione, and 1,3-bis[4-(dimethylamino)phenyl-2,4-dihydroxycyclobutenediylium dihydroxide.
  • In some embodiments, exciton dissociation is precipitated at heterojunctions in the organic layer formed between adjacent donor and acceptor materials. Organic layers, in some embodiments described herein, comprise at least one bulk heterojunction formed between donor and acceptor materials. In other embodiments, organic layers comprise a plurality of bulk heterojunctions formed between donor and acceptor materials.
  • In the context of organic materials, the terms donor and acceptor refer to the relative positions of the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy levels of two contacting but different organic materials. This is in contrast to the use of these terms in the inorganic context, where donor and acceptor may refer to types of dopants that may be used to create inorganic n- and p-type layers, respectively. In the organic context, if the LUMO energy level of one material in contact with another is lower, then that material is an acceptor. Otherwise it is a donor. It is energetically favorable, in the absence of an external bias, for electrons at a donor-acceptor junction to move into the acceptor material, and for holes to move into the donor material.
  • A photoactive region in a photosensitive organic layer, according to some embodiments described herein, comprises a polymeric composite material. The polymeric composite material, in one embodiment, can comprise a nanoparticle phase dispersed in a polymeric phase. Polymers suitable for producing the polymeric phase of a photoactive region can comprise conjugated polymers such as thiophenes including poly(3-hexylthiophene) (P3HT) and poly(3-octylthiophene) (P3OT).
  • In some embodiments, the nanoparticle phase dispersed in the polymeric phase of a polymeric composite material comprises at least one carbon nanoparticle. Carbon nanoparticles can comprise fullerenes, carbon nanotubes, or mixtures thereof. Fullerenes suitable for use in the nanoparticle phase, in one embodiment, can comprise 1-(3-methoxycarbonyl)propyl-1-phenyl(6,6)C61 (PCBM). Carbon nanotubes for use in the nanoparticle phase, according to some embodiments, can comprise single-walled nanotubes, multi-walled nanotubes, or mixtures thereof.
  • In some embodiments described herein, the polymer to nanoparticle ratio in polymeric composite materials ranges from about 1:10 to about 1:0.1. In some embodiments, the polymer to nanoparticle ratio in polymeric composite materials ranges from about 1:4 to about 1:0.4. In some embodiments, the polymer to nanoparticle ratio in polymeric composite materials ranges from about 1:2 to about 1:0.6. In one embodiment, for example, the ratio of poly(3-hexylthiophene) to PCBM ranges from about 1:1 to about 1:0.4.
  • In a further embodiment, the nanoparticle phase dispersed in the polymeric phase comprises at least one nanowhisker. A nanowhisker, as used herein, refers to a crystalline carbon nanoparticle formed from a plurality of carbon nanoparticles. Nanowhiskers, in some embodiments, can be produced by annealing a photosensitive organic layer comprising the polymeric composite material. Carbon nanoparticles operable to form nanowhiskers, according to some embodiments, can comprise single-walled carbon nanotubes, multi-walled carbon nanotubes, and fullerenes. In one embodiment, nanowhiskers comprise crystalline PCBM. Annealing the photosensitive organic layer, in some embodiments, can further increase the dispersion of the nanoparticle phase in the polymeric phase.
  • In embodiments of photoactive regions comprising a polymeric phase and a nanoparticle phase, the polymeric phase serves as a donor material and the nanoparticle phase serves as the acceptor material thereby forming a heterojunction for the separation of excitons into holes and electrons. In embodiments wherein nanoparticles are dispersed throughout the polymeric phase, the photoactive region of the organic layer comprises a plurality of bulk heterojunctions. In some embodiments, donor materials in a photoactive region of a photosensitive organic layer can comprise organometallic compounds including porphyrins, phthalocyanines, and derivatives thereof. In further embodiments, acceptor materials in a photoactive region of a photosensitive organic layer can comprise perylenes, naphthalenes, and mixtures thereof.
  • In some embodiments, the at least one photosensitive layer of a photovoltaic component comprises an inorganic composition. Photosensitive inorganic layers described herein, in some embodiments, can have various compositions. In some embodiments, a photosensitive inorganic layer of a photovoltaic component described herein comprises an inorganic composition comprising a group IV semiconductor material, a group II/VI semiconductor material (such as CdTe), a group III/V semiconductor material, or combinations or mixtures thereof. In some embodiments, a photosensitive inorganic layer comprises a group IV, group or group III/V binary, ternary or quaternary system. In some embodiments, a photosensitive inorganic layer comprises a I/III/VI material, such as copper indium gallium selenide (CIGS). In some embodiments, a photosensitive inorganic layer comprises polycrystalline silicon (Si). In some embodiments, a photosensitive inorganic layer comprises microcrystalline, nanocrystalline, and/or protocrystalline silicon. In some embodiments, a photosensitive inorganic layer comprises polycrystalline copper zinc tin sulfide (CZTS). In some embodiments, a photosensitive inorganic layer comprises microcrystalline, nanocrystalline, and/or protocrystalline CZTS. In some embodiments, the CZTS comprises Cu2ZnSnS4. In some embodiments, the CZTS further comprises selenium (Se). In some embodiments, the CZTS further comprises gallium (Ga).
  • In some embodiments, a photosensitive inorganic layer of a photovoltaic component described herein comprises an amorphous material. In some embodiments, at least one photosensitive inorganic layer comprises amorphous silicon (a-Si). In some embodiments, amorphous silicon of a photosensitive inorganic layer is unpassivated or substantially unpassivated. In some embodiments, amorphous silicon of a photosensitive inorganic layer is passivated with hydrogen (a-Si:H). In some embodiments, amorphous silicon of a photosensitive inorganic layer is not passivated with a halogen or is non-halogen passivated. In some embodiments, for example, amorphous silicon of a photosensitive inorganic layer comprises no or substantially no Si:F. Alternatively, in some embodiments, amorphous silicon of a photosensitive inorganic layer is fluorine passivated (a-Si:F).
  • In some embodiments, one or more heterojunctions can be established in a photosensitive inorganic layer described herein by doping. In some embodiments, for example, one region of a photosensitive inorganic layer is doped with a p-dopant and another region of the photosensitive inorganic layer is doped with an n-dopant to provide a heterojunction. In some embodiments wherein a material of the photosensitive inorganic layer is intrinsically p-type, a region of the photosensitive inorganic layer can be doped with an n-dopant to provide a heterojunction. In some embodiments, wherein a material of the photosensitive inorganic layer is intrinsically n-type, a region of the photosensitive inorganic layer can be doped with a p-dopant to provide a heterojunction.
  • In some embodiments, any of the inorganic materials described herein for a photosensitive layer suitable for doping are doped to establish one or more heterojunctions in the photosensitive layer. In some embodiments, for example, hydrogen passivated amorphous silicon is doped with p-type and/or n-type dopant to establish one or more heterojunctions. Moreover, in some embodiments, group IV, group III/V and/or group II/VI semiconductor materials of inorganic photosensitive layers described herein can be doped with p-type and/or n-type dopant to provide one or more heterojunctions.
  • In some embodiments, a photovoltaic component described herein comprises at least one photosensitive inorganic layer comprising an n-type region, an intrinsic region, and a p-type region. In some embodiments, an n-type region is composed of an n-doped inorganic semiconductor. In some embodiments, a p-type region is composed of a p-doped inorganic semiconductor. In some embodiments, an intrinsic region is composed of an undoped inorganic semiconductor.
  • In some embodiments, a photovoltaic component described herein comprises a multi-junction construction. In some embodiments, a photovoltaic component comprises a plurality of photosensitive inorganic layers, each layer comprising an n-type region, an intrinsic region, and a p-type region. In some embodiments, a photovoltaic component comprises two photosensitive inorganic layers, each layer comprising an n-type region, an intrinsic region, and a p-type region, thereby providing a double junction device. In some embodiments, a photovoltaic component comprises three photosensitive inorganic layers, each layer comprising an n-type region, an intrinsic region, and a p-type region, thereby providing a triple junction device. In some embodiments comprising a plurality of photosensitive inorganic layers each comprising an n-type region, an intrinsic region, and a p-type region, the plurality of inorganic layers are adjacent to one another, such that one or more heterojunctions are formed between the inorganic layers. In some embodiments, for example, a photovoltaic component comprises a first photosensitive inorganic layer comprising a first n-type region, a first intrinsic region, and a first p-type region; and a second photosensitive inorganic layer comprising a second n-type region, a second intrinsic region, and a second p-type region, wherein the first p-type region is adjacent to the second n-type region or the first n-type region is adjacent to the second p-type region. In some embodiments, an optoelectronic device described herein comprises a single junction device. As known to one of skill in the art, tunneling junctions, in some embodiments, can be disposed between first, second and/or third photosensitive inorganic layers in the construction of a multi-junction device described herein.
  • In some embodiments, a photovoltaic component comprises a plurality of photosensitive organic layers.
  • In some embodiments wherein a plurality of photosensitive layers is present in a photovoltaic component, the absorption profiles of the photosensitive layers do not overlap or do not substantially overlap. In some embodiments wherein a plurality of photosensitive layers is present in a photovoltaic component, the absorption profiles of the photosensitive layers at least partially overlap. In some embodiments, a plurality of photosensitive layers can be used in a photovoltaic component to capture one or more regions of the solar spectrum.
  • In some embodiments, an exciton blocking layer (EBL) of a photovoltaic component can act to confine photo generated excitons to the region near the dissociating interface and prevent parasitic exciton quenching at a photosensitive layer/electrode interface. In addition to limiting the path over which excitons may diffuse, an EBL can additionally act as a diffusion barrier to substances introduced during deposition of the electrodes. In some embodiments, an EBL can have a sufficient thickness to fill pin holes or shorting defects which could otherwise render a photovoltaic apparatus inoperable.
  • An EBL, according to some embodiments described herein, can comprise a polymeric composite material. In one embodiment, an EBL comprises carbon nanoparticles dispersed in 3,4-polyethylenedioxythiophene:polystyrenesulfonate (PEDOT:PSS). In another embodiment, an EBL comprises carbon nanoparticles dispersed in poly(vinylidene chloride) and copolymers thereof. Carbon nanoparticles dispersed in the polymeric phases including PEDOT:PSS and poly(vinylidene chloride) can comprise single-walled nanotubes, multi-walled nanotubes, fullerenes, or mixtures thereof. In further embodiments, EBLs can comprise any polymer having a work function energy operable to permit the transport of holes while impeding the passage of electrons.
  • In some embodiments, an EBL may be disposed between the radiation transmissive first electrode and an organic photosensitive layer of a photoactive assembly. In some embodiments wherein the optoelectronic device comprises a plurality of photosensitive organic layers, for example, EBLs can be disposed between the photosensitive organic layers.
  • In some embodiments, a photovoltaic component comprises one or more upconverters and/or downconverters. As understood by one of skill in the art, an upconverter is a material operable to emit electromagnetic radiation having energy greater than that of the electromagnetic radiation absorbed by the material to create the excited state. Upconverters suitable for use in some embodiments, can absorb infrared radiation and emit visible radiation at wavelengths operable to be absorbed by photosensitive organic layers of photovoltaic components described herein.
  • Upconverters, in some embodiments, can include materials comprising at least one Lanthanide series element. In some embodiments, upconveter materials can comprise nanoparticles comprising at least one Lanthanide series element. Lanthanide series elements suitable for use in upconverter materials according to some embodiments described herein comprise erbium, ytterbium, dysprosium, holmium, or mixtures thereof. In some embodiments, upconverter materials comprise metal oxides and metal sulfides doped with ions of erbium, ytterbium, dysprosium, holmium, or mixtures thereof. In other embodiments, optical fibers may be doped directly with ions of erbium, ytterbium, dysprosium, holmium, or mixtures thereof.
  • In other embodiments, upconverter materials can comprise organic chemical species. Organic upconverter materials can comprise H2C6N and 4-dialkylamino-1,8-naphthalimides as well as 1,8-naphthalimide derivatives and compounds, such as multibranched naphthalimide derivatives TPA-NA1, TPA-NA2, and TPA-NA3. Organic upconverter materials can also comprise 4-(dimethylamino)cinnamonitrile (cis and trans), trans-4-[4-(dimethylamino)styryl]-1-methylpyridinium iodide, 4-[4-(dimethylamino)styryl]pyridine, 4-(diethylamino)benzaldehyde diphenylhydrazone, trans-4-[4-(dimethylamino)styryl]-1-methylpyridinium p-toluenesulfonate, 2-[ethyl[4-[2-(4-nitrophenyl)ethenyl]phenyl]amino]ethanol, 4-dimethylamino-4′-nitrostilbene, Disperse Orange 25, Disperse Orange 3, and Disperse Red 1.
  • In a further embodiment, upconverter materials can comprise quantum dots. Quantum dots, according to some embodiments, can comprise III/V and II/VI semiconductor materials, such as cadmium selenide (CdSe), cadmium telluride (CdTe), and zinc selenide (ZnSe). Upconverter materials can also comprise core-shell architectures of quantum dots.
  • In addition to those provided herein, some embodiments described herein contemplate additional upconverter materials comprising transition metals, such as chromium.
  • In some embodiments, a photovoltaic component has a construction consistent with that described in U.S. patent application Ser. Nos. 12/298,942 and 12/298,936, each of which is incorporated herein by reference in its entirety.
  • Referring once again to FIG. 4, the photo-thermal apparatus (400) further comprises a Stokes shift layer (403) disposed between the photovoltaic component (401) and the thermoelectric component (402). In some embodiments, the Stokes shift layer comprises one or more Stokes shift chemical species operable to create heat energy for transmission to the adjacent side of the thermoelectric component. In some embodiments, Stokes shift chemical species absorb electromagnetic radiation that has passed through the photovoltaic component (401). Moreover, in some embodiments, radiation emitted by one or more Stokes shift chemical species is absorbed by the photovoltaic component (401).
  • Any Stokes shift material not inconsistent with the objectives of the present invention can be used for incorporation into the Stokes shift layer. In some embodiments, suitable Stokes shift materials are selected according to absorption and emission profiles. In some embodiments, the absorption profile of a Stokes shift material does not overlap with the absorption profile of a photosensitive layer of the photovoltaic component. In some embodiments, the absorption profile of a Stokes shift material at least partially overlaps with the absorption profile of a photosensitive layer of the photovoltaic component. Additionally, in some embodiments, a Stokes shift material has an emission profile that at least partially overlaps with the absorption profile of a photosensitive layer of the photovoltaic component.
  • In some embodiments, a Stokes shift material is operable to absorb radiation in the near ultraviolet region of the electromagnetic spectrum. In some embodiments, for example, a Stokes shift material absorbs radiation having a wavelength ranging from about 300 nm to about 400 nm.
  • In some embodiments, a Stokes shift material comprises a dye. Any dye not inconsistent with the objectives of the present invention may be used. In some embodiments, for example, a dye comprises one or more of coumarins, coumarin derivatives, pyrenes, and pyrene derivatives. In some embodiments, a Stokes shift material comprises an ultraviolet light-excitable fluorophore. Non-limiting examples of dyes suitable for use in some embodiments described herein include methoxycoumarin, dansyl dyes, pyrene, Alexa Fluor 350, aminomethylcoumarin acetate (AMCA), Marina Blue dye, Dapoxyl dyes, dialkylaminocoumarin, bimane dyes, hydroxycoumarin, Cascade Blue dye, Pacific Orange dye, Alexa Fluor 405, Cascade Yellow dye, Pacific Blue dye, PyMPO, and Alexa Fluor 430.
  • In some embodiments, a Stokes shift material comprises a phosphor. Any phosphor not inconsistent with the objectives of the present invention may be used. In some embodiments, for example, a phosphor comprises one or more of halophosphate phosphors and triphosphors. Non-limiting examples of phosphors suitable for use in some embodiments described herein include Ca5(PO4)3(F, Cl):Sb3+, Mn2+; Eu:Y2O3; and Tb3+, Ce3+:LaPO4. In some embodiments, a phosphor comprises a phosphor particle. Phosphor particles, in some embodiments, can be suspended in a fluid.
  • In another aspect, methods of making a thermoelectric apparatus are described herein. In some embodiments, a method of making a thermoelectric apparatus comprises providing at least one p-type layer comprising a plurality of carbon nanoparticles, providing at least one n-type layer comprising a plurality of n-doped carbon nanoparticles, positioning an insulating layer between the p-type layer and the n type layer, and coupling the p-type layer and the n-type layer to provide a pn junction. In some embodiments, a plurality of p-type layers and n-type layers are provided and coupled to one another resulting in the formation of a plurality of pn junctions. In some embodiments insulating layers are positioned between the p-type layers and the n-type layers. Additionally, in some embodiments of methods of making a thermoelectric apparatus, the p-type layers and the n-type layers are arranged in a stacked configuration. In some embodiments, the p-layers and the n-layers are coupled by metal contacts to provide the pn junctions. In some embodiments, for example, a p-layer is coupled to an n-layer by a metal contact to provide a pn junction of a thermoelectric apparatus described herein.
  • In another aspect, methods of making a photo-thermal apparatus are described herein. In some embodiments, a method of making a photo-thermal apparatus comprises providing a photovoltaic component, providing a thermoelectric component and coupling the photovoltaic component and the thermoelectric component, the thermoelectric component comprising at least one p-type layer coupled to at least one n-type layer to provide a pn junction, and an insulating layer at least partially disposed between the p-type layer and the n-type layer, the p-type layer comprising a plurality of carbon nanoparticles and the n-type layer comprising a plurality of n-doped carbon nanoparticles. In some embodiments, the thermoelectric component comprises a plurality of p-type layers coupled to a plurality of n-type layers to provide a plurality of pn junctions as described herein.
  • In some embodiments, a method of making a photo-thermal apparatus further comprises disposing a Stokes shift layer between the photovoltaic component and the thermoelectric component.
  • In another aspect, methods of converting electromagnetic energy into electrical energy are described herein. In some embodiments, a method of converting electromagnetic energy into electrical energy comprises providing an apparatus comprising a photovoltaic component and a thermoelectric component coupled to the photovoltaic component, the thermoelectric component comprising at least one p type layer coupled to at least one n-type layer to provide a pn junction, and an insulating layer at least partially disposed between the p-type layer and the n-type layer, the p-type layer comprising a plurality of carbon nanoparticles and the n-type layer comprising a plurality of n-doped carbon nanoparticles, absorbing electromagnetic radiation with the photovoltaic component to provide a photocurrent, and heating one side of the thermoelectric component inducing a voltage across the thermoelectric component.
  • In some embodiments, heating one side of the thermoelectric component comprises transferring heat generated in the photovoltaic component to one side of the thermoelectric component. Additionally, in some embodiments, heating one side of the thermoelectric component comprises providing a Stokes shift layer between the photovoltaic component and the thermoelectric component, absorbing electromagnetic radiation with the Stokes shift layer to generate heat and electromagnetic radiation and transferring the generated heat to one side of the thermoelectric component. In some embodiments, the electromagnetic radiation generated by the Stokes shift layer is transmitted to the photovoltaic component for the generation of photocurrent.
  • These and other embodiments are further illustrated by the following non-limiting example.
  • Example 1 Thermoelectric Apparatus
  • A first p-type layer was fabricated by providing 35 mg of single-walled carbon nanotubes (SWNT) to which was added 17.5 ml of dimethylacrylamide (DMA). The resulting mixture was high energy sonicated for a period of one hour. Polyvinylidene fluoride (PVDF) was added to the mixture in an amount to render the SWNT 20 weight percent of the mixture on a total solids basis. The resulting SWNT/PVDF/DMA mixture was high energy sonicated for one hour.
  • A glass slide having dimensions of 75 mm×45 mm was cleaned in methanol and placed on a hot plate at 90° C. The SWNT/PVDF/DMA mixture was poured evenly onto the slide and the DMA was allowed to evaporate. The dried SWNT/PVDF film was placed into an oven at 100° C. for 12 hours to anneal. The slide was subsequently removed from the oven and methanol was poured over the SWNT/PVDF film. The SWNT/PVDF film was carefully removed from the glass slide, washed in deionized water and dried.
  • A second p-type layer was prepared according to the foregoing procedure. Moreover, an n-type layer was prepared according to the foregoing procedure, the difference being n-doped carbon nanotubes were combined with the DMA and PVDF.
  • Two insulating layers were prepared according to the following procedure. 600 mg of polypropylene (PP) were added to DMA in a ratio of 0.025 ml DMA to 1 mg of polypropylene powder. The resulting mixture was sonicated until the PP powder was dissolved in the DMA. A glass slide having dimensions of 75 mm×45 mm was cleaned in methanol and placed on a hot plate at 90° C. The PP/DMA mixture was poured evenly onto the slide, and the DMA was allowed to evaporate. Methanol was poured over the resulting PP film, and the PP film was carefully removed from the glass slide.
  • The two p-type layers, n-type layer and the two insulating layers were subsequently coupled to provide the thermoelectric apparatus as illustrated in FIG. 5. The resulting thermoelectric apparatus was expanded in FIG. 5 for illustration of the various components of the apparatus.
  • Various embodiments of the invention have been described in fulfillment of the various objectives of the invention. It should be recognized that these embodiments are merely illustrative of the principles of the present invention. Numerous modifications and adaptations thereof will be readily apparent to those skilled in the art without departing from the spirit and scope of the invention.

Claims (12)

That which is claimed is:
1-27. (canceled)
28. A photo-thermal apparatus comprising:
a photovoltaic component and a thermoelectric component, the thermoelectric component comprising:
at least one p-type layer coupled to at least one n-type layer to provide a pn junction; and
an insulating layer at least partially disposed between the p-type layer and then-type layer, the p-type layer comprising a plurality of carbon nanoparticles and the n-type layer comprising a plurality of n-doped carbon nanoparticles.
29. The photo-thermal apparatus of claim 28, wherein the thermoelectric apparatus comprises a plurality of p-type layers coupled to a plurality of n-type layers providing a plurality of pn junctions and insulating layers at least partially disposed between the p-type layers and the n-type layers.
30. The photo-thermal apparatus of claim 28, where carbon nanoparticles of the p-type layer comprise single-walled carbon nanotubes, multi-walled carbon nanotubes, fullerenes or mixtures thereof.
31. The photo-thermal apparatus of claim 30, wherein then-doped carbon nanoparticles of then-type layer comprise single-walled carbon nanotubes, multi-walled carbon nanotubes, fullerenes or mixtures thereof.
32. The photo-thermal apparatus of claim 28, wherein the carbon nanoparticles of the p-type layer are disposed in a polymeric matrix and the n-doped carbon nanoparticles of the n-type layer are disposed in a polymeric matrix.
33. The photo-thermal apparatus of claim 28, wherein the photovoltaic component comprises a radiation transmissive first electrode and a radiation transmissive second electrode and at least one photosensitive layer disposed between the radiation transmissive first electrode and the radiation transmissive second electrode.
34. The photo-thermal apparatus of claim 33, wherein the at least one photosensitive layer comprises a photosensitive organic material, a photosensitive inorganic material or combinations thereof.
35. The photo-thermal apparatus of claim 33 further comprising a Stokes shift layer disposed between the photovoltaic component and the thermoelectric component, the Stokes shift layer comprises one or more Stokes shift chemical species.
36. The photo-thermal apparatus of claim 35, wherein the one or more Stokes shift chemical species are operable to absorb electromagnetic radiation passing through the photovoltaic component.
37. The photo-thermal apparatus of claim 35, wherein the one or more Stokes shift chemical species comprises a dye.
38. The photo-thermal apparatus of claim 35, wherein the one or more Stokes shift chemical species comprises a phosphor.
US17/115,121 2010-10-18 2020-12-08 Thermoelectric Apparatus And Applications Thereof Abandoned US20210098528A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/115,121 US20210098528A1 (en) 2010-10-18 2020-12-08 Thermoelectric Apparatus And Applications Thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US39429310P 2010-10-18 2010-10-18
PCT/US2011/056740 WO2012054504A2 (en) 2010-10-18 2011-10-18 Thermoelectric apparatus and applications thereof
US201313880268A 2013-08-07 2013-08-07
US17/115,121 US20210098528A1 (en) 2010-10-18 2020-12-08 Thermoelectric Apparatus And Applications Thereof

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
PCT/US2011/056740 Continuation WO2012054504A2 (en) 2010-10-18 2011-10-18 Thermoelectric apparatus and applications thereof
US13/880,268 Continuation US10868077B2 (en) 2010-10-18 2011-10-18 Thermoelectric apparatus and applications thereof

Publications (1)

Publication Number Publication Date
US20210098528A1 true US20210098528A1 (en) 2021-04-01

Family

ID=44883425

Family Applications (2)

Application Number Title Priority Date Filing Date
US13/880,268 Active US10868077B2 (en) 2010-10-18 2011-10-18 Thermoelectric apparatus and applications thereof
US17/115,121 Abandoned US20210098528A1 (en) 2010-10-18 2020-12-08 Thermoelectric Apparatus And Applications Thereof

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US13/880,268 Active US10868077B2 (en) 2010-10-18 2011-10-18 Thermoelectric apparatus and applications thereof

Country Status (11)

Country Link
US (2) US10868077B2 (en)
EP (2) EP3041057A3 (en)
JP (2) JP2013546175A (en)
KR (1) KR20140040067A (en)
CN (2) CN106848049A (en)
AU (1) AU2011317206B2 (en)
CA (1) CA2814993C (en)
DK (1) DK2630670T3 (en)
ES (1) ES2547089T3 (en)
IL (1) IL225787B (en)
WO (1) WO2012054504A2 (en)

Families Citing this family (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3041057A3 (en) 2010-10-18 2016-09-28 Wake Forest University Thermoelectric apparatus and applications thereof
JP5789580B2 (en) * 2011-10-31 2015-10-07 富士フイルム株式会社 Thermoelectric conversion material and thermoelectric conversion element
US9063165B2 (en) 2012-06-01 2015-06-23 Landauer, Inc. System for motion and activity correlation with dose for occupational and environmental dosimetry
JP2015531052A (en) 2012-06-01 2015-10-29 ランダウアー インコーポレイテッド Wireless, motion and position sensing integrated radiation sensor for occupational and environmental dosimetry
US9417331B2 (en) 2012-06-01 2016-08-16 Landauer, Inc. System for wireless, motion and position-sensing, integrating radiation sensor and energy harvester for occupational and environmental dosimetry
JP5931807B2 (en) * 2012-07-11 2016-06-08 富士フイルム株式会社 Thermoelectric conversion material, thermoelectric conversion element and article for thermoelectric power generation using the same, and method for manufacturing thermoelectric conversion element
JP5848284B2 (en) * 2012-07-11 2016-01-27 富士フイルム株式会社 Thermoelectric conversion element and thermoelectric conversion material using the same
WO2014019560A1 (en) * 2012-08-02 2014-02-06 Dynamic Solar Systems Inc. Improved layered solar cell
EP2898552B1 (en) * 2012-09-24 2016-03-23 Wake Forest University Organic thin film transistors and methods of making the same
US9913546B2 (en) * 2012-10-18 2018-03-13 Tempur-Pedic Management, Llc Support cushion and method for converting a temperature difference within the same into an electric voltage
KR102046099B1 (en) * 2012-12-31 2019-11-19 삼성전자주식회사 Thermoelectric material and thermoelectric device including the same
JP5931763B2 (en) * 2013-01-29 2016-06-08 富士フイルム株式会社 Thermoelectric conversion material, thermoelectric conversion element, article for thermoelectric power generation using the same, and power supply for sensor
JP5931762B2 (en) * 2013-01-29 2016-06-08 富士フイルム株式会社 Thermoelectric conversion material, thermoelectric conversion element, article for thermoelectric power generation using the same, and power supply for sensor
JP5931764B2 (en) * 2013-01-29 2016-06-08 富士フイルム株式会社 Thermoelectric conversion material, thermoelectric conversion element, article for thermoelectric power generation using the same, and power supply for sensor
JP2014146681A (en) * 2013-01-29 2014-08-14 Fujifilm Corp Thermoelectric conversion material, thermoelectric conversion device and article for thermoelectric power generation and power source for sensor using the same
WO2014152570A2 (en) * 2013-03-14 2014-09-25 Wake Forest University Thermoelectric apparatus and articles and applications thereof
US9496475B2 (en) * 2013-03-28 2016-11-15 The Texas A&M University System High performance thermoelectric materials
EP3004933B1 (en) 2013-05-31 2020-07-15 Landauer, Inc. System for wireless, motion and position-sensing, integrating radiation sensor and energy harvester for occupational and environmental dosimetry
JP6009423B2 (en) * 2013-10-01 2016-10-19 富士フイルム株式会社 Thermoelectric conversion material and thermoelectric conversion element
JP6205326B2 (en) * 2013-10-01 2017-09-27 富士フイルム株式会社 Thermoelectric conversion element, thermoelectric conversion material
US20160315583A1 (en) * 2014-01-30 2016-10-27 Farouk Dakhil Solar water-collecting, air-conditioning, light-transmitting and power generating house
KR101636908B1 (en) * 2014-05-30 2016-07-06 삼성전자주식회사 Stretchable thermoelectric material and thermoelectric device including the same
US20170148970A1 (en) * 2014-06-12 2017-05-25 The Texas A&M University System Organic thermoelectric composites and their uses
WO2016073055A2 (en) * 2014-08-18 2016-05-12 Stc.Unm Ultra wide spectrum photovoltaic-thermoelectric solar cell
CN104518078A (en) * 2014-11-26 2015-04-15 辽宁师范大学 Electroconductive polymer composite thermoelectric material
CN104538541A (en) * 2014-11-26 2015-04-22 辽宁师范大学 Novel carbon nanotube based organic composite thermoelectric material
CA2978336A1 (en) 2015-03-17 2016-09-22 Dreamwell, Ltd. Temperature control mattress with thermoelectric fabric
WO2016149476A1 (en) 2015-03-17 2016-09-22 Dreamwell, Ltd. Energy harvesting mattress with thermoelectric fabric
JP6592268B2 (en) * 2015-04-01 2019-10-16 株式会社日本触媒 Conductive material, thermoelectric conversion element and thermoelectric conversion device using the same
US11796488B2 (en) 2015-07-13 2023-10-24 Alliance For Sustainable Energy, Llc Methods of preparing single-walled carbon nanotube networks
WO2017011551A1 (en) 2015-07-13 2017-01-19 Alliance For Sustainable Energy, Llc Methods of preparing single-walled carbon nanotube networks
KR101786183B1 (en) 2015-07-14 2017-10-17 현대자동차주식회사 Integrated flexible thermoelectric device and manufacturing method of the same
DE102015012405A1 (en) 2015-09-24 2017-03-30 Roland Hammer Nanotube thermogenerator phase change storage NRTHGPWS
KR101846650B1 (en) * 2016-03-18 2018-04-06 현대자동차주식회사 Flexible thermoelement and manufacturing method thereof
WO2018012377A1 (en) * 2016-07-11 2018-01-18 富士フイルム株式会社 Thermoelectric conversion element
CN106058034B (en) * 2016-07-12 2023-04-28 北京服装学院 Preparation method of (1, 3-disulfide-2-carbonyl) fused naphthalimide/carbon nano tube composite thermoelectric material
JP6781982B2 (en) * 2016-07-14 2020-11-11 国立研究開発法人産業技術総合研究所 Thermoelectric conversion module and its manufacturing method
US10842205B2 (en) 2016-10-20 2020-11-24 Nike, Inc. Apparel thermo-regulatory system
CN106816523A (en) * 2017-01-23 2017-06-09 辽宁师范大学 The composite thermoelectric material being made up of conducting polymer
EP3373347A1 (en) * 2017-03-09 2018-09-12 Riccardo Raccis Conversion material
GB2560725A (en) * 2017-03-21 2018-09-26 Sumitomo Chemical Co Ink formulation
JP7290915B2 (en) * 2018-02-28 2023-06-14 株式会社日本触媒 Sulfides, thermoelectric conversion materials, and thermoelectric conversion elements
CN110574977A (en) * 2018-06-11 2019-12-17 智能纺织科技股份有限公司 temperature control fabric and wearable object made of same
CN108831947A (en) * 2018-06-14 2018-11-16 东华大学 A kind of flexible photovoltaic thermoelectric integral compound power-generating device
JP2020155760A (en) * 2018-09-12 2020-09-24 株式会社日本触媒 Thermoelectric conversion material, thermoelectric conversion element, and sulfide
CN110176421B (en) * 2018-11-07 2021-07-02 北京市塑料研究所 Hydrophobic quick-drying silicon wafer carrier and preparation method thereof
US20200187670A1 (en) * 2018-12-18 2020-06-18 Dreamwell, Ltd. Active comfort controlled bedding systems
CN109599455A (en) * 2018-12-18 2019-04-09 北京汉能光伏投资有限公司 Solar power generation component
CN110635019B (en) * 2019-09-20 2021-04-27 西南大学 Photo-thermal-electric conversion device for improving light utilization efficiency
GB202101922D0 (en) * 2021-02-11 2021-03-31 Univ Oxford Innovation Ltd Thermoelectric generator device
CN113299818A (en) * 2021-04-14 2021-08-24 江西理工大学 W-shaped foldable thin film flexible thermoelectric power generation device
KR102536107B1 (en) * 2021-07-02 2023-05-26 고려대학교 산학협력단 Energy harvesting system using a solar cell and thermoelectric device
DE102021130255A1 (en) 2021-11-19 2023-05-25 Bayerische Motoren Werke Aktiengesellschaft Thermoelectric conversion device and vehicle

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0793277A2 (en) * 1996-02-27 1997-09-03 Canon Kabushiki Kaisha Photovoltaic device provided with an opaque substrate having a specific irregular surface structure
EP0969526A1 (en) * 1997-12-27 2000-01-05 Sumitomo Special Metals Company Limited Thermoelectric element
WO2011160676A1 (en) * 2010-06-22 2011-12-29 Osram Ag Phosphor device and lighting apparatus comprising the same

Family Cites Families (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4149025A (en) * 1977-11-16 1979-04-10 Vasile Niculescu Method of fabricating thermoelectric power generator modules
JPS60260166A (en) * 1984-06-06 1985-12-23 Fuji Electric Corp Res & Dev Ltd Photoelectricity-thermoelectricity energy converting device
JPH0280927A (en) * 1988-09-16 1990-03-22 Murata Mfg Co Ltd Laminated thermoelectric element and preparation thereof
JPH04199755A (en) 1990-11-29 1992-07-20 Murata Mfg Co Ltd Laminated thermoelectric element
JPH11346009A (en) * 1998-06-02 1999-12-14 Seiko Instruments Inc Thermoelement
JP2002094131A (en) * 2000-09-13 2002-03-29 Sumitomo Special Metals Co Ltd Thermoelectric conversion element
JP2002136160A (en) * 2000-10-27 2002-05-10 Seiko Epson Corp Thermoelectric generator
KR100878281B1 (en) * 2001-03-14 2009-01-12 유니버시티 오브 매사츄세츠 Nanofabrication
US6914343B2 (en) * 2001-12-12 2005-07-05 Hi-Z Technology, Inc. Thermoelectric power from environmental temperature cycles
JP2003282970A (en) * 2002-03-20 2003-10-03 Sony Corp Thermoelectric converter and thermoelectric conversion element and their manufacturing method
WO2005098981A1 (en) * 2004-03-08 2005-10-20 The Regents Of The University Of Califonria Thermoelectric applications of composites of ceramics and carbon nanotubes
US7397169B2 (en) 2004-03-19 2008-07-08 Lawrence Livermore National Security, Llc Energy harvesting using a thermoelectric material
US20050231893A1 (en) * 2004-04-19 2005-10-20 Harvey Troy A Electric double layer capacitor enclosed in polymer housing
JP4507759B2 (en) 2004-08-18 2010-07-21 株式会社リコー Pattern formation method for organic materials
US20060048809A1 (en) * 2004-09-09 2006-03-09 Onvural O R Thermoelectric devices with controlled current flow and related methods
US7465871B2 (en) 2004-10-29 2008-12-16 Massachusetts Institute Of Technology Nanocomposites with high thermoelectric figures of merit
US7309830B2 (en) * 2005-05-03 2007-12-18 Toyota Motor Engineering & Manufacturing North America, Inc. Nanostructured bulk thermoelectric material
JP4785476B2 (en) 2005-09-20 2011-10-05 大阪瓦斯株式会社 Thermoelectric power generation structure and heat exchanger with power generation function
US7947897B2 (en) 2005-11-02 2011-05-24 The Trustees Of Princeton University Organic photovoltaic cells utilizing ultrathin sensitizing layer
EP2374754B1 (en) * 2006-03-09 2018-01-10 Battelle Memorial Institute Multi-layer structure comprising carbon nanotubes
JP2008130801A (en) 2006-11-21 2008-06-05 Masataka Murahara Solar photovoltaic/thermal power generation system
KR101452795B1 (en) * 2006-12-01 2014-10-21 메사추세츠 인스티튜트 오브 테크놀로지 Methods for high figure-of-merit in nanostructured thermoelectric materials
DE102008009477A1 (en) * 2007-02-16 2008-08-21 Siemens Aktiengesellschaft Solar-thermal, thermoelectric power generation device for building i.e. house, has solar cells attached on surface of absorber, and flow controller control unit formed so that ratio of electric current and thermal energy is controlled
EP2144845A2 (en) 2007-03-07 2010-01-20 Carbolex, INC. Boron-doped single-walled nanotubes (swcnt)
WO2009001691A1 (en) * 2007-06-22 2008-12-31 Murata Manufacturing Co., Ltd. Thermoelectric conversion element, thermoelectric conversion module, and process for producing thermoelectric conversion element
US20090044848A1 (en) * 2007-08-14 2009-02-19 Nanocomp Technologies, Inc. Nanostructured Material-Based Thermoelectric Generators
JP5098589B2 (en) * 2007-11-16 2012-12-12 株式会社村田製作所 Thermoelectric conversion module
ITSA20080014A1 (en) * 2008-06-13 2009-12-14 Univ Degli Studi Salerno POLYMER-BASED COMPOSITES AND CARBON NANOTUBES TO BE APPLIED AS LOW COST TEMPERATURE SENSORS
WO2010058464A1 (en) * 2008-11-20 2010-05-27 株式会社村田製作所 Thermoelectric conversion module
US8173337B2 (en) * 2009-01-28 2012-05-08 Xerox Corporation Fuser material composition comprising of a polymer matrix with the addition of graphene-containing particles
JP2010199276A (en) * 2009-02-25 2010-09-09 Konica Minolta Holdings Inc Thermoelectric conversion element and manufacturing method of same
US8080901B2 (en) 2009-03-16 2011-12-20 Doraisamy Loganathan Multi-source integrated electricity generation from novel smart roads and pavements
JP2010251485A (en) * 2009-04-15 2010-11-04 Sony Corp Thermoelectric device, method for manufacturing the thermoelectric device, control system of the thermoelectric device, and electronic apparatus
CN101931043B (en) * 2009-06-19 2013-03-20 清华大学 Thermoelectric conversion material
EP2400574A1 (en) 2010-06-22 2011-12-28 Universität Potsdam Polymer sheet material with piezoelectric properties and a method for manufacturing
EP3041057A3 (en) 2010-10-18 2016-09-28 Wake Forest University Thermoelectric apparatus and applications thereof
KR20120059037A (en) 2010-11-30 2012-06-08 한국전자통신연구원 Hybrid Energy Harvester and Portable Device Having the Same
US8803406B2 (en) 2010-11-30 2014-08-12 KAIST (Korea Advanced Institute of Science and Technology) Flexible nanocomposite generator and method for manufacturing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0793277A2 (en) * 1996-02-27 1997-09-03 Canon Kabushiki Kaisha Photovoltaic device provided with an opaque substrate having a specific irregular surface structure
EP0969526A1 (en) * 1997-12-27 2000-01-05 Sumitomo Special Metals Company Limited Thermoelectric element
WO2011160676A1 (en) * 2010-06-22 2011-12-29 Osram Ag Phosphor device and lighting apparatus comprising the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Definition of "layer" retrieved from https://www.dictionary.com/browse/layer on 2/18/2020. *

Also Published As

Publication number Publication date
WO2012054504A3 (en) 2013-01-10
CN103283049B (en) 2017-03-15
EP3041057A3 (en) 2016-09-28
WO2012054504A2 (en) 2012-04-26
EP2630670A2 (en) 2013-08-28
CN103283049A (en) 2013-09-04
US10868077B2 (en) 2020-12-15
CA2814993A1 (en) 2012-04-26
DK2630670T3 (en) 2015-10-05
JP2013546175A (en) 2013-12-26
EP3041057A2 (en) 2016-07-06
CN106848049A (en) 2017-06-13
AU2011317206A1 (en) 2013-05-23
IL225787B (en) 2018-10-31
US20130312806A1 (en) 2013-11-28
KR20140040067A (en) 2014-04-02
CA2814993C (en) 2017-02-14
IL225787A0 (en) 2013-07-31
ES2547089T3 (en) 2015-10-01
AU2011317206B2 (en) 2015-06-18
EP2630670B1 (en) 2015-07-01
JP2017152682A (en) 2017-08-31
JP6236554B2 (en) 2017-11-22

Similar Documents

Publication Publication Date Title
US20210098528A1 (en) Thermoelectric Apparatus And Applications Thereof
US10840426B2 (en) Thermoelectric apparatus and articles and applications thereof
JP2013546175A5 (en)
US9105848B2 (en) Composite organic materials and applications thereof
US20080149178A1 (en) Composite organic materials and applications thereof
AU2006343396A1 (en) Organic optoelectronic devices and applications thereof
Li et al. Improved photovoltaic performance of heterostructured tetrapod‐shaped CdSe/CdTe nanocrystals using C60 interlayer
US8861921B2 (en) Photovoltaic device with frequency conversion region
JP6791249B2 (en) Photovoltaic device
US20130312801A1 (en) Hybrid Photovoltaic Devices And Applications Thereof
AU2015227519B2 (en) Thermoelectric apparatus and applications thereof

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION