US20210060114A1 - Method of increasing omega-3 content in poultry - Google Patents

Method of increasing omega-3 content in poultry Download PDF

Info

Publication number
US20210060114A1
US20210060114A1 US17/098,788 US202017098788A US2021060114A1 US 20210060114 A1 US20210060114 A1 US 20210060114A1 US 202017098788 A US202017098788 A US 202017098788A US 2021060114 A1 US2021060114 A1 US 2021060114A1
Authority
US
United States
Prior art keywords
mixture
ddgs
poultry
oilseeds
omega
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US17/098,788
Inventor
Paul M. Kalmbach
Simon M. Shane
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kalmbach Feeds Inc
Original Assignee
Kalmbach Feeds Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kalmbach Feeds Inc filed Critical Kalmbach Feeds Inc
Priority to US17/098,788 priority Critical patent/US20210060114A1/en
Assigned to KALMBACH FEEDS, INC. reassignment KALMBACH FEEDS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SHANE, SIMON M., KALMBACH, PAUL
Publication of US20210060114A1 publication Critical patent/US20210060114A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/88Liliopsida (monocotyledons)
    • A61K36/899Poaceae or Gramineae (Grass family), e.g. bamboo, corn or sugar cane
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/185Magnoliopsida (dicotyledons)
    • A61K36/55Linaceae (Flax family), e.g. Linum

Definitions

  • Exemplary embodiments of the inventive concept relate to feed supplements and methods of increasing the amount of essential fatty acids in eggs and meat of poultry.
  • the present invention relates to a feed supplement comprised of co-extruded flaxseed and distillers dried grains with solubles (DDGS) that increases the content of omega-3 fatty acids in eggs and meat of poultry.
  • DDGS co-extruded flaxseed and distillers dried grains with solubles
  • EFAs Essential fatty acids
  • omega-3 fatty acids The omega-3 fatty acids
  • omega-6 fatty acids The omega-6 fatty acids.
  • a healthy human diet requires a balance of both omega-3 and omega-6 fatty acids, which play an important role in brain function, metabolism regulation, heart health, bone health, normal growth and development, and reproductive health.
  • humans cannot make their own EFAs, and therefore they must be acquired through the foods they eat.
  • Common sources for EFAs have historically included fish oils and plant oils such as flaxseed oil.
  • omega-3 there have also been efforts to increase the content of omega-3 in poultry products. This is desirable since a large segment of the population routinely eats poultry products, and many consumers seek to increase the amount of omega-3 in their diet through the foods that they eat. However, there is difficulty in providing a feed product for poultry that results in a high amount of omega-3 content in the poultry products, such as eggs. Many feeds and supplements do not result in poultry products that have omega-3 levels high enough to attract consumers.
  • a method for preparing a feed component for poultry which includes the steps of grinding a quantity of DDGS into a meal, mixing the ground DDGS with intact oilseeds, and co-extruding the mixture. During extrusion, the mixture may reach temperatures of about 220 F to about 320 F. After extrusion, the mixture may be further mixed with additives, which may include enzymes to aid in digestibility and stabilizers.
  • the oilseeds used may be selected from the group consisting of flax, sunflower, safflower, rapeseed, canola, soybean, or combinations thereof.
  • Also provided herein is a method of increasing the amount of omega-3 in a poultry product which is performed by identifying a bird fed a standard feed ration, and feeding the bird a modified feed ration where 1-15% of the standard feed ration contents are replaced by an extruded mixture of ground DDGS and intact oilseeds.
  • This method may also include the step of obtaining a poultry product from the bird that has an increased omega-3 fatty acid level when compared to the same poultry product obtained from a similar bird fed the standard feed ration.
  • the poultry product may be an egg.
  • Described herein is an improved feed supplement for poultry that is comprised of distillers dried grains and solubles (DDGS) and oilseeds such as flax.
  • DDGS distillers dried grains and solubles
  • oilseeds such as flax.
  • DDGS distillers dried grains and solubles
  • different types of corn and wheat derivatives may be used in combination with many different types of oilseeds.
  • omega-3 When fed to poultry over a period of time, higher levels of omega-3 are present in the poultry products, including eggs and meat.
  • the feed supplement may be prepared by grinding a predetermined amount of DDGS into a meal or flour.
  • the meal or flour is then mixed with flax oilseeds in order to form a homogenous mixture.
  • the oilseeds may be whole or ground.
  • the homogenous mixture is then subjected to a dry extrusion process. During the dry extrusion process, the mixture is subjected to a combination of heat and pressure.
  • the temperature in the extruder may be anywhere from 220-320 degrees while the extrusion process is underway.
  • the pressure may be anywhere from 200 psi to 800 psi.
  • the combination of heat and pressure ruptures the oilseeds, releasing oil into the mixture, and causing the ruptured oilseed to be coated by the ground DDGS.
  • the effect of heat and pressure on the mixture is to not only rupture the oilseeds, but to also gelatinize the starch, and increase the digestibility of the proteins, fats, and fibers in the mixture.
  • heat and pressure are relieved, and the mixture is allowed to cool.
  • additives such as enzymes and stabilizers may be added to aid in consumption by poultry.
  • other suitable feed shapes include feed pellets, feed crumbles, and any other shapes and/or textures that may be desired for feeding poultry.
  • the feed supplement has a minimum crude protein content of 18-28%, and a minimum crude fat content of 16-26%.
  • omega-3 fatty acid is 6-12% of the total supplement.
  • the feed supplement has a maximum crude fiber content of 12%.
  • the supplement also has the following minimum nutritional values: lysine: 0.6-1.2%; methionine: 0.3-0.6%; calcium: 0.05-1.5%; and phosphorus: 0.2-1%. In other embodiments, these nutrient profiles may vary.
  • the feed supplement is comprised of 49.625% DDGS, 50% flax, 0.125 dried Aspergillus niger fermentation product, and 0.25 ethoxyquin.
  • the dried Aspergillus niger fermentation product is an enzyme to aid in digestibility and the ethoxyquin is a stabilizer to maintain freshness.
  • the relative amounts of these ingredients may vary significantly. Flax may each comprise anywhere from 10-90% of the supplement; DDGS may also comprise anywhere from 10-90% of the supplement.
  • the dried Aspergillus niger fermentation product may comprise anywhere from 0-1% of the supplement, and ethoxyquin may also comprise anywhere from 0-1% of the supplement.
  • oilseeds are used instead of flax.
  • the oilseeds may be sunflower, safflower, rapeseed, canola, or soybean. In some embodiments mixtures of different oilseeds may be used.
  • different grain or processed grain by-products may be used instead of, or in addition to, DDGS.
  • Grain products that may be used include barley, corn, grain sorghums, mixed feed oats, oats, wheat, rice, rye, triticale, or any mixture thereof.
  • Grain by-products that may be used include aspirated grain fractions, brewers dried grains, buckwheat middlings, condensed distillers soluble, condensed fermented corn extractives, corn bran, corn flour, corn germ meal, corn gluten feed, corn gluten meal, corn grits, distillers dried grains, distillers dried soluble, grain sorghum germ cake, grain sorghum germ meal, grain sorghum grits, grain sorghum mill feed, hominy feed, malt sprouts, oat groats, oat meal, pearl barley by-products, peanut skins, rice bran, rice polishings, rye middlings, sorghum grain flour, wheat bran, wheat flour, wheat shorts, wheat germ meal, wheat middlings, wheat millrun, wheat red dog, or any mixture thereof.
  • enzymes and stabilizers used may vary as well, depending on the embodiment. In some embodiments, enzymes and stabilizers may not be added to the supplement, and in other embodiments the supplement may contain either an enzyme or a stabilizer, but not both. In some embodiments, Vitamins A, D, or E may be added to the supplement.
  • the supplement may be used to replace anywhere from 1-15% of a standard feeding ration for poultry. However, in some embodiments the supplement may comprise more than 15% of the feed ration for poultry.
  • poultry refers to any number of birds that may be kept for purposes of harvesting their eggs, meat, or other poultry products. These include, but are by no means limited to, chickens, turkeys, ducks, geese, quail, and ostrich.
  • Poultry products refers to any part of a bird that may be used for consumption or other purposes. Poultry products include, but are not limited to, eggs, meat, feet, livers, and hearts. When the poultry product is an “egg”, to “obtain” means to collect the egg or eggs from a bird. When the poultry product is meat or another body part of the bird, to “obtain” means to cut out that part of the bird.
  • poultry fed the feed supplement prepared according to the invention experience an increase in omega-3 levels.
  • a feed supplement (“SUPP1”) containing the following ingredients is prepared:
  • the flax seeds and DDGS are combined and extruded at a temperature around 260 degrees to create a meal. After the meal has cooled, the dried Aspergillus niger fermentation product and ethoxyquin are added.
  • T1 did not include the feed supplement
  • T3 and T4 contained the supplement as 6% and 10% of the total dietary treatment, respectively.
  • the ingredients of the dietary treatments T1, T3 and T4 is shown in Table 2 below:
  • the chickens used were Lohmann Selected Leghorn (LSL) laying hens that were in lay upon allotment to treatments.
  • the hens were fed the T1 control diet for four weeks prior to the start of the trial. Once the trial began, the laying hens were fed only one of the T1, T3 or T4 dietary treatments for the duration of the trial.
  • LSL Lohmann Selected Leghorn
  • a randomized complete block design was used, where the blocking factor was room location and cage level. 18 cages containing two compartments each were used, and each compartment contained 2-3 hens, for a total of 96 hens. Each compartment contained a bowl waterer and a self-feeder. The room contained a light timer/dimmer system that provided the hens with 16 hours of artificial daylight. Forced air ventilation was used in the room, and the room temperature was set at 68° F.
  • Example 2 the same type of hens and procedures were used as in Example 1, with the following differences: 100 total hens were used, the eggs were collected on Days 21, 28, 35, 49, and 63, and the collected eggs were sent to a specialty egg laboratory for assay.
  • T1 in this example is the same as T1 in the first example.
  • Supp1 is the same as Supp1 in the first example.
  • T5 is an specialty egg standard diet, with one difference between it and the T1 dietary treatment is that it contains flaxseed.
  • the baseline omega-3 concentrations of eggs prior to the trial were 63 mg.
  • Table 7, shown below, shows a comparison of the Omega-3 content in the hens fed T1, T5, T6, and T7.
  • the lysine content of the combination of flaxseed and DDGS on a dry matter basis is 0.905% compared to 0.950% for the extruded combination. This represents an increase of 4.9% in the extruded combination versus the dry combination.
  • the lysine content of the combination is 0.83% compared to 0.92% for the co-extruded product, or an uplift of 10.8%.
  • the methionine content for the combination of flaxseed and DDGS is 0.48% on a dry matter basis compared with 0.53% for the co-extruded product, providing an uplift of 10.4%.
  • the corresponding methionine value expresses “as fed” is 0.46% for the combination and 0.51% for the co-extruded product, providing an uplift of 17.6%.
  • the dry matter cystine content for the combination is 0.43% and 0.49% for the coextruded product, providing an uplift of 13.9%.
  • the corresponding “as fed” cystine values for the combination are 0.39% and 0.47% for the co-extruded product, contributing to a 20.5% uplift.
  • the total sulphur-containing amino acid content (methionine and cystine) for the combination on a dry matter basis was 0.91% compared to 1.03% for the extruded product for an uplift of 10.1%.
  • the corresponding value for the combination on an “as fed” basis was 0.826% for the co-extruded product was 0.99% providing an uplift of 19.9%.
  • the true metabolizable energy (tME) value of the theoretical mixture of 50% whole flax and DDGS is 2,926 k cal/kg (1,330 kcals/lb).
  • the equivalent value for the co-extruded product is 3,791 kcal/kg (1,723 kcals/lb). This represents a 29.6% improvement in tME.
  • the “as fed” value for the combination of whole flax and DDGS is 2,664 kcal/kg (1,211 kcals/lb) and for the co-extruded product 3,662 kcal/kg (1,664 kcals/kg), representing a 37% uplift on an “as fed” basis.

Abstract

A feed supplement for poultry consisting of distillers dried grains with solubles (DDGS) and flaxseed. The supplement is prepared using a dry extrusion process. Also described is a method of using the feed supplement to increase omega-3 fatty acids in poultry products, such as eggs. Also described is a method of obtaining a poultry egg using the feed supplement.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation of U.S. patent application Ser. No. 15/914,542, filed on Mar. 7, 2018, which is a divisional of U.S. patent application Ser. No. 13/905,284 filed on May 30, 2013, which claims priority to U.S. Provisional Application No. 61/653,678 filed on May 31, 2012. All of the above documents are herein incorporated by reference in their entireties.
  • TECHNICAL FIELD
  • Exemplary embodiments of the inventive concept relate to feed supplements and methods of increasing the amount of essential fatty acids in eggs and meat of poultry. In particular, the present invention relates to a feed supplement comprised of co-extruded flaxseed and distillers dried grains with solubles (DDGS) that increases the content of omega-3 fatty acids in eggs and meat of poultry.
  • BACKGROUND OF THE INVENTION
  • Essential fatty acids (EFAs) are necessary for proper human health. There are two groups of EFAs; the omega-3 fatty acids, and the omega-6 fatty acids. A healthy human diet requires a balance of both omega-3 and omega-6 fatty acids, which play an important role in brain function, metabolism regulation, heart health, bone health, normal growth and development, and reproductive health. However, humans cannot make their own EFAs, and therefore they must be acquired through the foods they eat. Common sources for EFAs have historically included fish oils and plant oils such as flaxseed oil.
  • There have also been efforts to increase the content of omega-3 in poultry products. This is desirable since a large segment of the population routinely eats poultry products, and many consumers seek to increase the amount of omega-3 in their diet through the foods that they eat. However, there is difficulty in providing a feed product for poultry that results in a high amount of omega-3 content in the poultry products, such as eggs. Many feeds and supplements do not result in poultry products that have omega-3 levels high enough to attract consumers.
  • SUMMARY OF THE INVENTION
  • Provided herein is a method for preparing a feed component for poultry, which includes the steps of grinding a quantity of DDGS into a meal, mixing the ground DDGS with intact oilseeds, and co-extruding the mixture. During extrusion, the mixture may reach temperatures of about 220 F to about 320 F. After extrusion, the mixture may be further mixed with additives, which may include enzymes to aid in digestibility and stabilizers. The oilseeds used may be selected from the group consisting of flax, sunflower, safflower, rapeseed, canola, soybean, or combinations thereof.
  • Also provided herein is a method of increasing the amount of omega-3 in a poultry product which is performed by identifying a bird fed a standard feed ration, and feeding the bird a modified feed ration where 1-15% of the standard feed ration contents are replaced by an extruded mixture of ground DDGS and intact oilseeds. This method may also include the step of obtaining a poultry product from the bird that has an increased omega-3 fatty acid level when compared to the same poultry product obtained from a similar bird fed the standard feed ration. The poultry product may be an egg.
  • Additional objects, advantages and novel features of the invention will be set forth in part in the description which follows, and in part will be apparent to those skilled in the art upon examination of the following, or may be learned from practice of the invention.
  • DETAILED DESCRIPTION
  • Described herein is an improved feed supplement for poultry that is comprised of distillers dried grains and solubles (DDGS) and oilseeds such as flax. As will be appreciated by one of ordinary skill in the art, different types of corn and wheat derivatives may be used in combination with many different types of oilseeds. When fed to poultry over a period of time, higher levels of omega-3 are present in the poultry products, including eggs and meat.
  • The feed supplement may be prepared by grinding a predetermined amount of DDGS into a meal or flour. The meal or flour is then mixed with flax oilseeds in order to form a homogenous mixture. The oilseeds may be whole or ground. The homogenous mixture is then subjected to a dry extrusion process. During the dry extrusion process, the mixture is subjected to a combination of heat and pressure. The temperature in the extruder may be anywhere from 220-320 degrees while the extrusion process is underway. The pressure may be anywhere from 200 psi to 800 psi. The combination of heat and pressure ruptures the oilseeds, releasing oil into the mixture, and causing the ruptured oilseed to be coated by the ground DDGS. The effect of heat and pressure on the mixture is to not only rupture the oilseeds, but to also gelatinize the starch, and increase the digestibility of the proteins, fats, and fibers in the mixture. As the mixture passes out of the extruder in meal form, heat and pressure are relieved, and the mixture is allowed to cool. Once cooled, additives such as enzymes and stabilizers may be added to aid in consumption by poultry. As will be appreciated by one of ordinary skill in the art, while the mixture may be left in meal form, other suitable feed shapes include feed pellets, feed crumbles, and any other shapes and/or textures that may be desired for feeding poultry.
  • Preferably, the feed supplement has a minimum crude protein content of 18-28%, and a minimum crude fat content of 16-26%. Preferably, omega-3 fatty acid is 6-12% of the total supplement. Preferably, the feed supplement has a maximum crude fiber content of 12%. Preferably, the supplement also has the following minimum nutritional values: lysine: 0.6-1.2%; methionine: 0.3-0.6%; calcium: 0.05-1.5%; and phosphorus: 0.2-1%. In other embodiments, these nutrient profiles may vary.
  • In one embodiment, the feed supplement is comprised of 49.625% DDGS, 50% flax, 0.125 dried Aspergillus niger fermentation product, and 0.25 ethoxyquin. The dried Aspergillus niger fermentation product is an enzyme to aid in digestibility and the ethoxyquin is a stabilizer to maintain freshness. In other embodiments, the relative amounts of these ingredients may vary significantly. Flax may each comprise anywhere from 10-90% of the supplement; DDGS may also comprise anywhere from 10-90% of the supplement. The dried Aspergillus niger fermentation product may comprise anywhere from 0-1% of the supplement, and ethoxyquin may also comprise anywhere from 0-1% of the supplement.
  • In another embodiment, different oilseeds are used instead of flax. The oilseeds may be sunflower, safflower, rapeseed, canola, or soybean. In some embodiments mixtures of different oilseeds may be used.
  • In some embodiments, different grain or processed grain by-products may be used instead of, or in addition to, DDGS. Grain products that may be used include barley, corn, grain sorghums, mixed feed oats, oats, wheat, rice, rye, triticale, or any mixture thereof. Grain by-products that may be used include aspirated grain fractions, brewers dried grains, buckwheat middlings, condensed distillers soluble, condensed fermented corn extractives, corn bran, corn flour, corn germ meal, corn gluten feed, corn gluten meal, corn grits, distillers dried grains, distillers dried soluble, grain sorghum germ cake, grain sorghum germ meal, grain sorghum grits, grain sorghum mill feed, hominy feed, malt sprouts, oat groats, oat meal, pearl barley by-products, peanut skins, rice bran, rice polishings, rye middlings, sorghum grain flour, wheat bran, wheat flour, wheat shorts, wheat germ meal, wheat middlings, wheat millrun, wheat red dog, or any mixture thereof.
  • The enzymes and stabilizers used may vary as well, depending on the embodiment. In some embodiments, enzymes and stabilizers may not be added to the supplement, and in other embodiments the supplement may contain either an enzyme or a stabilizer, but not both. In some embodiments, Vitamins A, D, or E may be added to the supplement.
  • As discussed herein, the supplement may be used to replace anywhere from 1-15% of a standard feeding ration for poultry. However, in some embodiments the supplement may comprise more than 15% of the feed ration for poultry.
  • As used herein, “poultry” refers to any number of birds that may be kept for purposes of harvesting their eggs, meat, or other poultry products. These include, but are by no means limited to, chickens, turkeys, ducks, geese, quail, and ostrich.
  • As used herein, “poultry products” refers to any part of a bird that may be used for consumption or other purposes. Poultry products include, but are not limited to, eggs, meat, feet, livers, and hearts. When the poultry product is an “egg”, to “obtain” means to collect the egg or eggs from a bird. When the poultry product is meat or another body part of the bird, to “obtain” means to cut out that part of the bird.
  • As shown in the examples, poultry fed the feed supplement prepared according to the invention experience an increase in omega-3 levels.
  • The invention is further illustrated by way of the following examples. However, one of ordinary skill in the art will recognize that the invention is in no way limited by the examples.
  • Example 1: Comparative Analysis of Supplement
  • In a first example, a feed supplement (“SUPP1”) containing the following ingredients is prepared:
  • 50% Flax seeds
  • 49.625% DDGS
  • 0.125% Dried Aspergillus Niger Fermentation Product
  • 0.25% Ethoxyquin
  • The flax seeds and DDGS are combined and extruded at a temperature around 260 degrees to create a meal. After the meal has cooled, the dried Aspergillus niger fermentation product and ethoxyquin are added.
  • Once prepared, the feed supplement exhibited the nutritional information shown in Table 1 below:
  • TABLE 1
    Nutritional Information of SUPP1
    Nutrient Name Units Value
    CR PROTEIN PCT 24.000
    CRUDE FAT PCT 21.500
    CRUDE FIBER PCT 7.500
    CALCIUM PCT .500
    PHOS-TOTAL PCT .670
    PHOS-AVAIL PCT 1.000
    M E POULTRY KCL/LB 1,870.000
    LYSINE PCT 1.000
    EQIV LYSINE PCT 1.000
    METHIONINE PCT .500
    METH & CYSTINE PCT 1.000
    TRYPTHOPHAN PCT .290
    ARGININE PCT 1.610
    THREONINE PCT .950
    LINOLEIC ACID % 3.000
    DRY MATTER PCT 92.000
    XANTHOPHYLL MG/LB 8.014
    SALT PCT .350
    ASH PCT 6.354
    VIT A (TOTAL) KIU/LB 1.550
    VITAMIN D-3 KIC/LB .175
    RIBOFLAVIN MG/LB 4.306
    CHOLINE MG/LB 968.397
    NIACIN MG/LB 41.184
    PANTOTHENTIC ACI MG/LB 8.095
    VITAMIN B-12 MCG/LB 6.564
    FOLIC ACID MG/LB .454
    BIOTIN MG/LB .349
    THIAMIN MG/LB 4.316
    PYRIDOXINE MG/LB 3.252
    VITAMIN E IU/LB 11.000
    SODIUM PCT .220
    POTASSIUM PCT .911
    MAGNESIUM PCT .291
    SULFUR PCT .473
    SELENIUM PPM .153
    CHLORIDE PCT .229
    MANGANESE MG/LB 23.178
    ZINC MG/LB 38.076
    IRON MG/LB 52.489
    COPPER MG/LB 3.950
    COBALT MG/LB .117
  • Three different groups of chickens were obtained and fed three different dietary treatments. One of the treatments, T1, did not include the feed supplement, while the other two treatments, T3 and T4, contained the supplement as 6% and 10% of the total dietary treatment, respectively. The ingredients of the dietary treatments T1, T3 and T4 is shown in Table 2 below:
  • TABLE 2
    Dietary Treatment Rations (as-fed basis)
    T1 T3 T4
    Ingredient, lb (No Supp1) (6% Supp1) (10% Supp1)
    Corn 1150 965 895
    Soybean Meal 370 290 280
    DDGs 200 200 200
    Wheat Midds 55 200 200
    Canola Oil 10 10
    Calcium Carbonate (Small) 116 119 119
    Calcium Carbonate (Large) 75 75 75
    SUPP1 120 200
    Salt 5.3 4.8 4.6
    Sodium Carbonate 2.0 2.0 2.0
    Monocalcium Phosphate 13.0
    Lysine 0.85 1.85 1.55
    DL Methionine 2.25 2.35 2.20
    Vitiamin/Trace Mineral 10 10 10
    Premix
    Choline Chloride 0.50 0.50 0.50
    Allzyme SSF 0.30 0.30 0.30
    Ronozyme P-CT 0.22 0.22 0.22
    Total 2,000.42 2,001.02 1,999.37
  • A table of comparative nutritional value of the different dietary treatments is shown in Table 3 below.
  • TABLE 3
    Nutritional Value of Dietary Treatments
    T1 T3 T4
    Nutrients (No Suppl) (6% Suppl) (10% Supp1)
    ME Poultry, kcal/lb 1300 1300 1308
    Crude Protein, % 16.5 16.5 17.0
    Crude Fat, % 3.6 5.2 5.9
    Crude Fiber, % 2.8 3.6 3.8
    Calcium, % 4.0 4.1 4.1
    Phosphorus, % 0.69 0.70 0.71
    Total Lysine, % 0.89 0.88 0.88
    Total Methionine, % 0.43 0.43 0.43
    Total Met + Cys, % .73 .74 .75
    Sodium, % 0.18 0.19 0.19
  • The chickens used were Lohmann Selected Leghorn (LSL) laying hens that were in lay upon allotment to treatments. The hens were fed the T1 control diet for four weeks prior to the start of the trial. Once the trial began, the laying hens were fed only one of the T1, T3 or T4 dietary treatments for the duration of the trial.
  • A randomized complete block design was used, where the blocking factor was room location and cage level. 18 cages containing two compartments each were used, and each compartment contained 2-3 hens, for a total of 96 hens. Each compartment contained a bowl waterer and a self-feeder. The room contained a light timer/dimmer system that provided the hens with 16 hours of artificial daylight. Forced air ventilation was used in the room, and the room temperature was set at 68° F.
  • Nine replications per treatment were used, and the trial was six weeks in length. Individual eggs were collected and weighed daily to determine the size category of each egg. The number of eggs per compartment was recorded daily by size category, which was done pursuant to American Egg Board classifications, which can be found at www.aeb.org. In order to perform nutrient profiling of the eggs, two eggs from each pen were collected on Day 0 (prior to the start of the trial), Day 14, Day 18, and Day 42. After each collection period, collected eggs were sent to Lipid Technologies, Austin, Minnesota, for analysis. The two eggs from each pen were pooled together for nutritional analysis. The Omega-3 content of the eggs of the laying hens fed the four different dietary treatments are shown in Table 4 below. These parameters are based on mg/50 g pooled egg sample (no shell).
  • TABLE 4
    Comparison of Omega-3 content in Eggs of Laying Hens
    Parameter
    Total Omega 3 FA, mg T1 T3 T4
    D 14 49.4 125.7 208.3
    D 28 59.2 150.6 210.1
    D 42 46.7 148.2 229.4
    Average D 14 & D 28 54.3 138.1 209.2
    Overall Average 51.8 141.5 215.9
  • As shown in Table 4, eggs laid by the hens that were fed the T4 dietary treatment that was comprised of 10% SUPP1, had the greatest concentration of Omega-3 fatty acids.
  • Example 2: Supplement Analyzed Against Specialty Egg Standard Diet
  • In this Example, the same type of hens and procedures were used as in Example 1, with the following differences: 100 total hens were used, the eggs were collected on Days 21, 28, 35, 49, and 63, and the collected eggs were sent to a specialty egg laboratory for assay.
  • The ingredients for the dietary treatments used are shown below in Table 5, and designated as T1, T5, T6, and T7. T1 in this example is the same as T1 in the first example. Supp1 is the same as Supp1 in the first example.
  • TABLE 5
    Dietary Treatment Rations (as-fed basis)
    T1 T5 T6 T7
    Ingredient, lb (No Supp1) (No Supp1) (3% Supp1) (6% Supp1)
    Corn 1150 1095 1040 965
    Soybean Meal 370 345 325 290
    DDGs 200 200 200 200
    Wheat Midds 55 110 150 200
    Canola Oil 10 10 10
    Calcium Carbonate (Small) 116 114 119 119
    Calcium Carbonate (Large) 75 75 75 75
    SUPP1 60 120
    Flaxseed 30
    Salt 5.3 4.6 5.3 4.8
    Sodium Carbonate 2.0 2.0 2.0 2.0
    Monocalcium Phosphate 13.0 2.0 1.0
    Lysine 0.85 1.05 1.35 1.85
    DL Methionine 2.25 2.35 2.35 2.35
    Vitamin/Trace Mineral 10 10 10 10
    Premix
    Choline Chloride 0.50 0.50 0.50 0.50
    Allzyme SSF 0.30 0.30 0.30 0.30
    Ronozyme P-CT 0.22 0.22 0.22 0.22
    Total 2,000.42 2,002.02 2,002.02 2,001.02
  • T5 is an specialty egg standard diet, with one difference between it and the T1 dietary treatment is that it contains flaxseed.
  • A table of comparative nutritional value of the different dietary treatments is shown in Table 6 below.
  • TABLE 6
    Nutritional Value of Dietary Treatments
    T1 T5 T6 T7
    Nutrients (No Supp1) (No Supp1) (3% Supp1) (6% Supp1)
    ME Poultry, kcal/lb 1300 1300 1300 1308
    Crude Protein, % 16.5 16.5 16.5 16.5
    Crude Fat, % 3.6 4.5 4.6 5.2
    Crude Fiber, % 2.8 3.1 3.3 3.6
    Calcium, % 4.0 4.0 4.1 4.1
    Phosphorus, % 0.69 0.70 0.69 0.70
    Total Lysine, % 0.89 0.89 0.89 0.88
    Total Methionine, % 0.43 0.43 0.43 0.43
    Total Met + Cys, % .73 .73 .73 .74
    Sodium, % 0.18 0.18 0.19 0.19
  • The baseline omega-3 concentrations of eggs prior to the trial were 63 mg. Table 7, shown below, shows a comparison of the Omega-3 content in the hens fed T1, T5, T6, and T7.
  • TABLE 7
    Comparison of Omega-3 content in Eggs of Laying Hens
    Parameter
    Total Omega 3 FA, mg T1 T5 T6 T7
    D 21 59.38 99.26 104.26 142.44
    D 28 50.78 95.56 104.11 136.44
    D 49 55.89 96.11 103.72 139.44
    Average D 21 & D 28 54.39 96.61 103.72 139.44
    Overall Average 54.96 96.39 101.91 137.41
  • After 49 days, all of the hens were placed on the control diet for 28 days. In Table 8 below is shown the resulting levels of Omega-3 in the eggs at day 63, 14 days after all hens were placed on the control diet.
  • TABLE 8
    Omega-3 content in eggs on Day 63
    Parameter
    Total Omega 3 FA, mg T1 T5 T6 T7
    D 63 68.44 71.44 71.67 73.00
  • The results from this trial showed that eggs from hens fed with the T7 dietary treatment (containing 6% Supp1) had the greatest omega-3 fatty acid concentrations when compared to the control diet (T1), and the T5 and T6 diets. The Omega-3 concentrations decreased to normal levels 14 days after the hens were removed from their dietary treatments and placed back on the control diet. The T6 and T7 dietary treatments did not impact egg size, laying rate, or ADFI of the hens during the test period, or the post-test period.
  • Example 2: Analysis of Amino Acid Digestibility and True Metabolizable Energy (TME)
  • The amino acid digestibility and true metabolizable energy (TME) of whole flax seed, ground flax seed, DDGS, and co-extruded flaxseed and DDGS (50% flaxseed, 50% DDGS) was tested. First, the amino acid concentrations in flax, DDGS, and extruded flax+DDGS were analyzed. The results are shown in Table 9 below:
  • TABLE 9
    Amino Acid Concentrations (%) in flax,
    DDGS, and extruded flax + DDGS
    Theoretical Extruded
    Amino of Flax + %
    Acid Flax DDGS 50/50% DDGS Improvement
    ASP 2.05 1.70 1.88 2.12 12.8
    THR 0.79 1.04 .92 1.06 15.2
    SER 0.88 1.20 1.04 1.29 24.0
    GLU 3.90 3.68 3.79 4.40 16.1
    PRO 0.76 2.08 1.42 1.68 18.3
    GLY 1.29 1.06 1.18 1.30 10.2
    ALA 0.99 1.86 1.43 1.65 15.4
    CYS 0.35 0.51 .43 0.49 14.0
    VAL 1.17 1.33 1.25 1.25 0
    MET 0.42 0.54 .48 0.53 10.4
    ILE 0.99 1.05 1.02 0.98 −4.0
    LEU 1.32 3.04 2.18 2.52 15.6
    TYR 0.56 0.99 .78 0.92 17.9
    PHE 1.08 1.28 1.18 1.29 9.3
    LYS 0.88 0.93 .9 0.95 5.6
    HIS 0.51 0.79 .65 0.71 9.2
    ARG 2.12 1.22 1.67 1.81 8.4
    TRP 0.27 0.21 .24 0.29 20.8
  • The lysine content of the combination of flaxseed and DDGS on a dry matter basis is 0.905% compared to 0.950% for the extruded combination. This represents an increase of 4.9% in the extruded combination versus the dry combination. In converting to an “as fed” basis, the lysine content of the combination is 0.83% compared to 0.92% for the co-extruded product, or an uplift of 10.8%.
  • The methionine content for the combination of flaxseed and DDGS is 0.48% on a dry matter basis compared with 0.53% for the co-extruded product, providing an uplift of 10.4%. The corresponding methionine value expresses “as fed” is 0.46% for the combination and 0.51% for the co-extruded product, providing an uplift of 17.6%.
  • The dry matter cystine content for the combination is 0.43% and 0.49% for the coextruded product, providing an uplift of 13.9%. The corresponding “as fed” cystine values for the combination are 0.39% and 0.47% for the co-extruded product, contributing to a 20.5% uplift.
  • The total sulphur-containing amino acid content (methionine and cystine) for the combination on a dry matter basis was 0.91% compared to 1.03% for the extruded product for an uplift of 10.1%. The corresponding value for the combination on an “as fed” basis was 0.826% for the co-extruded product was 0.99% providing an uplift of 19.9%.
  • The true metabolizable energy of whole flax, ground flax, DDGS, and extruded flax+DDGS was also compared, and the data is shown in Table 10 below.
  • TABLE 10
    True Metabolizable Energy Evaluation of whole flax,
    ground flax, DDGS, and Extruded Flax + DDGS
    Gross Energy Dry Matter Avg. TMEn
    Sample as-is(kcal/g) (%) (kcal/g DM)
    Whole Flax1 6.287 93.5 2.783
    DDGS 4.787 88.9 3.068
    Extruded Flax + DDGS 5.717 96.6 3.791
  • The true metabolizable energy (tME) value of the theoretical mixture of 50% whole flax and DDGS is 2,926 k cal/kg (1,330 kcals/lb). The equivalent value for the co-extruded product is 3,791 kcal/kg (1,723 kcals/lb). This represents a 29.6% improvement in tME. The “as fed” value for the combination of whole flax and DDGS is 2,664 kcal/kg (1,211 kcals/lb) and for the co-extruded product 3,662 kcal/kg (1,664 kcals/kg), representing a 37% uplift on an “as fed” basis.
  • It is noted that there is a significant (43%) increase in tME when whole flax is ground. Unfortunately, this process releases oil which is subject to rancidity. This in turn potentially affects both production and the flavor of eggs and poultry meat, especially when fed at high levels (up to 5%) in diets
  • While certain embodiments of the present invention are described in detail above, the scope of the invention is not to be considered limited by such disclosure, and modifications are possible without departing from the spirit of the invention as evidenced by the claims. One skilled in the art would recognize that such modifications are possible without departing from the scope of the claimed invention.

Claims (5)

1. A method of preparing a feed component, comprising:
grinding a quantity of DDGS into a DDGS meal;
selecting a quantity of intact oilseeds containing fatty acids;
mixing the quantity of intact oilseeds with a quantity of the DDGS meal that is at least equal to the quantity of intact oilseeds, thereby forming a mixture;
heating the mixture to a temperature between about 220 F to about 320 F;
extruding the mixture under a pressure between 200 psi and 800 psi;
cooling the mixture;
adding an enzyme for aiding digestability to the cooled mixture; and
adding a stabilizer to the cooled mixture.
2. The method of claim 1, wherein the oilseeds are selected from the group consisting of flax, sunflower, safflower, rapeseed, canola, soybean, and combinations thereof.
3. A poultry feed product comprising a poultry feed component, wherein the poultry feed component is formed by:
grinding a quantity of DDGS into a DDGS meal;
selecting a quantity of intact oilseeds containing fatty acids;
mixing the quantity of intact oilseeds with a quantity of the DDGS meal that is at least equal to the quantity of intact oilseeds, thereby forming a mixture;
heating the mixture to a temperature between about 220 F to about 320 F;
extruding the mixture under a pressure between 200 psi and 800 psi;
cooling the mixture;
adding an enzyme for aiding digestability to the cooled mixture; and
adding a stabilizer to the cooled mixture; and
wherein the poultry feed product is able to cause an egg-laying bird to produce a poultry egg having a fatty acid level of at least 200 mg per 50 g egg, when the poultry feed product is fed to the bird.
4. The poultry feed product of claim 3, wherein the oilseeds are selected from the group consisting of flax, sunflower, safflower, rapeseed, canola, soybean, and combinations thereof.
5. The poultry feed product of claim, 3, wherein the fatty acid is an omega-3 fatty acid.
US17/098,788 2012-05-31 2020-11-16 Method of increasing omega-3 content in poultry Abandoned US20210060114A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/098,788 US20210060114A1 (en) 2012-05-31 2020-11-16 Method of increasing omega-3 content in poultry

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201261653678P 2012-05-31 2012-05-31
US13/905,284 US20130323336A1 (en) 2012-05-31 2013-05-30 Method of increasing omega-3 content in poultry
US15/914,542 US10835571B2 (en) 2012-05-31 2018-03-07 Method of increasing omega-3 content in poultry
US17/098,788 US20210060114A1 (en) 2012-05-31 2020-11-16 Method of increasing omega-3 content in poultry

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US15/914,542 Continuation US10835571B2 (en) 2012-05-31 2018-03-07 Method of increasing omega-3 content in poultry

Publications (1)

Publication Number Publication Date
US20210060114A1 true US20210060114A1 (en) 2021-03-04

Family

ID=49670555

Family Applications (3)

Application Number Title Priority Date Filing Date
US13/905,284 Abandoned US20130323336A1 (en) 2012-05-31 2013-05-30 Method of increasing omega-3 content in poultry
US15/914,542 Active 2033-11-12 US10835571B2 (en) 2012-05-31 2018-03-07 Method of increasing omega-3 content in poultry
US17/098,788 Abandoned US20210060114A1 (en) 2012-05-31 2020-11-16 Method of increasing omega-3 content in poultry

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US13/905,284 Abandoned US20130323336A1 (en) 2012-05-31 2013-05-30 Method of increasing omega-3 content in poultry
US15/914,542 Active 2033-11-12 US10835571B2 (en) 2012-05-31 2018-03-07 Method of increasing omega-3 content in poultry

Country Status (1)

Country Link
US (3) US20130323336A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102644024B1 (en) * 2023-08-14 2024-03-06 농업회사법인 주식회사 늘푸른 Quail eggs containing omega-3 ingredients and process for producing them

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040185148A1 (en) * 2003-03-19 2004-09-23 Said Nabil W. Extrusion processing of distillers grains with solubles and the products thereof
NZ555756A (en) 2004-12-15 2008-07-31 O & T Farms Preparation and use of high omega-3 and omega-6 feed
US8323708B2 (en) * 2009-03-16 2012-12-04 Monsanto Technology Llc Poultry meat and eggs comprising beneficial fatty acids

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102644024B1 (en) * 2023-08-14 2024-03-06 농업회사법인 주식회사 늘푸른 Quail eggs containing omega-3 ingredients and process for producing them

Also Published As

Publication number Publication date
US20130323336A1 (en) 2013-12-05
US10835571B2 (en) 2020-11-17
US20180193402A1 (en) 2018-07-12

Similar Documents

Publication Publication Date Title
Samli Using rice bran in laying hen diets
Laining et al. Influence of dietary phytic acid on growth, feed intake, and nutrient utilization in juvenile Japanese flounder, Paralichthys olivaceus
Houndonougbo et al. Growth performance of rabbits fed palm-press fibres-based diets
KR20210074370A (en) Pet food composition for weight management of pets with adverse food reactions
Yadav et al. Macadamia nut cake as an alternative feedstuff for broilers: effect on growth performance
KR20170005832A (en) Selecting, producing, and feeding whole algae as a feed supplement for cattle and bison to produce meat high in omega 3's for human health
US10835571B2 (en) Method of increasing omega-3 content in poultry
Li et al. Feed ingredients and feeds for channel catfish
Ravindran Nutrition of meat animals. Poultry
Krawczyk et al. Performance and egg quality of hens from conservation flocks fed a diet containing maize distillers dried grains with solubles (DDGS)
De Souza et al. Influence of the gross dietary level of glycerin on performance, blood parameters, carcass yield, and quality of meat of broilers
Eagleson et al. Impact of meat and bone meal nutritional variability on broiler performance
Samsudin et al. Effects of feeding dietary palm kernel cake on egg production and egg quality of khaki Campbell duck
Omage et al. Evaluation of the nutritive value of quality protein maize on the growth performance and carcass characteristics of weaner rabbits
Keady et al. The effect of extrusion on the nutritive value of rapeseed meal for growing and finishing pigs
Esiegwu et al. Growth performance and blood indices of broiler finisher birds fed enzyme-fortified (maxi grain) rice milling waste
Idahor Alternative feedstuffs utilisation in Nigerian poultry industry: potentials, problems and prospects
Favero et al. Influence of feed form and corn particle size on the live performance and digestive tract development of turkeys
WO2008140736A1 (en) Corn-based feed product
Elliot New concepts in layer nutrition.
Rodríguez-Ríos et al. Amaranthus Cruentus L. Como Alternativa Alimentaria en Gallinas Ponedoras Para Disminuir el Colesterol en Huevos
Egbunu et al. Effects of Dietary Rice Offal Inclusion Level and Enzyme (Natuzyme) Supplementation on the Performance and Nutrient Digestibility of Finisher Broiler Chicken
Mikulski et al. Efficacy of free-choice feeding of ground wheat or whole grain wheat and protein concentrate to turkeys.
Darkwa et al. Responses of growing rats and pigs to diets containing varying levels of dried brewers’ spent grains supplemented with Bergazym-an exogenous enzyme complex
Malpotra et al. Effects of feed restriction and additional fat supplementation on growth performance and nutrient utilization in broilers

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: APPLICATION DISPATCHED FROM PREEXAM, NOT YET DOCKETED

AS Assignment

Owner name: KALMBACH FEEDS, INC., OHIO

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KALMBACH, PAUL;SHANE, SIMON M.;SIGNING DATES FROM 20151013 TO 20151017;REEL/FRAME:054498/0789

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION