US20210042113A9 - Energy metering with temperature monitoring - Google Patents
Energy metering with temperature monitoring Download PDFInfo
- Publication number
- US20210042113A9 US20210042113A9 US16/613,234 US201816613234A US2021042113A9 US 20210042113 A9 US20210042113 A9 US 20210042113A9 US 201816613234 A US201816613234 A US 201816613234A US 2021042113 A9 US2021042113 A9 US 2021042113A9
- Authority
- US
- United States
- Prior art keywords
- current
- energy system
- temperature
- outputs
- sensors
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R21/00—Arrangements for measuring electric power or power factor
- G01R21/14—Compensating for temperature change
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D3/00—Indicating or recording apparatus with provision for the special purposes referred to in the subgroups
- G01D3/08—Indicating or recording apparatus with provision for the special purposes referred to in the subgroups with provision for safeguarding the apparatus, e.g. against abnormal operation, against breakdown
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D4/00—Tariff metering apparatus
- G01D4/002—Remote reading of utility meters
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D4/00—Tariff metering apparatus
- G01D4/002—Remote reading of utility meters
- G01D4/004—Remote reading of utility meters to a fixed location
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R19/00—Arrangements for measuring currents or voltages or for indicating presence or sign thereof
- G01R19/32—Compensating for temperature change
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R21/00—Arrangements for measuring electric power or power factor
- G01R21/06—Arrangements for measuring electric power or power factor by measuring current and voltage
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R21/00—Arrangements for measuring electric power or power factor
- G01R21/133—Arrangements for measuring electric power or power factor by using digital technique
- G01R21/1333—Arrangements for measuring electric power or power factor by using digital technique adapted for special tariff measuring
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R22/00—Arrangements for measuring time integral of electric power or current, e.g. electricity meters
- G01R22/06—Arrangements for measuring time integral of electric power or current, e.g. electricity meters by electronic methods
- G01R22/061—Details of electronic electricity meters
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R22/00—Arrangements for measuring time integral of electric power or current, e.g. electricity meters
- G01R22/06—Arrangements for measuring time integral of electric power or current, e.g. electricity meters by electronic methods
- G01R22/10—Arrangements for measuring time integral of electric power or current, e.g. electricity meters by electronic methods using digital techniques
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F12/00—Accessing, addressing or allocating within memory systems or architectures
- G06F12/02—Addressing or allocation; Relocation
- G06F12/08—Addressing or allocation; Relocation in hierarchically structured memory systems, e.g. virtual memory systems
- G06F12/0802—Addressing of a memory level in which the access to the desired data or data block requires associative addressing means, e.g. caches
- G06F12/0806—Multiuser, multiprocessor or multiprocessing cache systems
- G06F12/084—Multiuser, multiprocessor or multiprocessing cache systems with a shared cache
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F12/00—Accessing, addressing or allocating within memory systems or architectures
- G06F12/02—Addressing or allocation; Relocation
- G06F12/08—Addressing or allocation; Relocation in hierarchically structured memory systems, e.g. virtual memory systems
- G06F12/0802—Addressing of a memory level in which the access to the desired data or data block requires associative addressing means, e.g. caches
- G06F12/0875—Addressing of a memory level in which the access to the desired data or data block requires associative addressing means, e.g. caches with dedicated cache, e.g. instruction or stack
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F12/00—Accessing, addressing or allocating within memory systems or architectures
- G06F12/14—Protection against unauthorised use of memory or access to memory
- G06F12/1458—Protection against unauthorised use of memory or access to memory by checking the subject access rights
- G06F12/1483—Protection against unauthorised use of memory or access to memory by checking the subject access rights using an access-table, e.g. matrix or list
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for program control, e.g. control units
- G06F9/06—Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
- G06F9/30—Arrangements for executing machine instructions, e.g. instruction decode
- G06F9/30003—Arrangements for executing specific machine instructions
- G06F9/3004—Arrangements for executing specific machine instructions to perform operations on memory
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for program control, e.g. control units
- G06F9/06—Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
- G06F9/30—Arrangements for executing machine instructions, e.g. instruction decode
- G06F9/30003—Arrangements for executing specific machine instructions
- G06F9/3004—Arrangements for executing specific machine instructions to perform operations on memory
- G06F9/30047—Prefetch instructions; cache control instructions
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for program control, e.g. control units
- G06F9/06—Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
- G06F9/30—Arrangements for executing machine instructions, e.g. instruction decode
- G06F9/30003—Arrangements for executing specific machine instructions
- G06F9/30076—Arrangements for executing specific machine instructions to perform miscellaneous control operations, e.g. NOP
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for program control, e.g. control units
- G06F9/06—Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
- G06F9/44—Arrangements for executing specific programs
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02H—EMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
- H02H5/00—Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal non-electric working conditions with or without subsequent reconnection
- H02H5/04—Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal non-electric working conditions with or without subsequent reconnection responsive to abnormal temperature
- H02H5/041—Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal non-electric working conditions with or without subsequent reconnection responsive to abnormal temperature additionally responsive to excess current
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q9/00—Arrangements in telecontrol or telemetry systems for selectively calling a substation from a main station, in which substation desired apparatus is selected for applying a control signal thereto or for obtaining measured values therefrom
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2212/00—Indexing scheme relating to accessing, addressing or allocation within memory systems or architectures
- G06F2212/45—Caching of specific data in cache memory
- G06F2212/452—Instruction code
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q2209/00—Arrangements in telecontrol or telemetry systems
- H04Q2209/60—Arrangements in telecontrol or telemetry systems for transmitting utility meters data, i.e. transmission of data from the reader of the utility meter
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q2209/00—Arrangements in telecontrol or telemetry systems
- H04Q2209/80—Arrangements in the sub-station, i.e. sensing device
- H04Q2209/82—Arrangements in the sub-station, i.e. sensing device where the sensing device takes the initiative of sending data
- H04Q2209/823—Arrangements in the sub-station, i.e. sensing device where the sensing device takes the initiative of sending data where the data is sent when the measured values exceed a threshold, e.g. sending an alarm
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q2209/00—Arrangements in telecontrol or telemetry systems
- H04Q2209/80—Arrangements in the sub-station, i.e. sensing device
- H04Q2209/82—Arrangements in the sub-station, i.e. sensing device where the sensing device takes the initiative of sending data
- H04Q2209/826—Arrangements in the sub-station, i.e. sensing device where the sensing device takes the initiative of sending data where the data is sent periodically
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D10/00—Energy efficient computing, e.g. low power processors, power management or thermal management
Definitions
- the present invention relates to an energy metering system with temperature monitoring.
- the total power consumption of a building or other facility is monitored by the electric utility with a power meter located between the utility's distribution transformer and the facility's power distribution panel.
- a power meter located between the utility's distribution transformer and the facility's power distribution panel.
- loads or groups of loads such as motors, lighting, heating units, cooling units, machinery, etc.
- These single phase or multi-phase electrical loads are typically connected to one or more of the branch circuits that extend from the facility's power distribution panel.
- a power meter may be installed at any location between a load and the distribution panel, it is often advantageous to install a power meter capable of monitoring a plurality of circuits proximate the power distribution panel to provide centralized monitoring of the various loads powered from the panel.
- Digital branch current monitors may incorporate data processing systems that can monitor a plurality of circuits and determine a number of parameters related to electricity consumption by the individual branch circuits or groups of circuits.
- a branch current monitor for measuring electricity consumption by respective branch circuits comprises a plurality of voltage and current transducers that are periodically read by the monitor's data processing unit which, in a typical branch current monitor, comprises one or more microprocessors or digital signal processors (DSP).
- DSP digital signal processors
- a branch current monitor from Veris Industries, Inc. enables up to ninety circuits to be monitored with a single meter and utilizes the MODBUS® RTU network communication interface to enable remote monitoring as part of a building or facility management system.
- the data processing unit periodically reads and stores the outputs of the transducers quantifying the magnitudes of current and voltage samples and, using that data, calculates the current, voltage, power, and other electrical parameters, such as active power, apparent power and reactive power that quantify the distribution and consumption of electricity.
- the calculated parameters are typically output to a display for immediate viewing or transmitted from the meter's communication interface to another data processing system, such as a building management computer for remote display or further processing, for example formulating instructions to the facility's automated equipment.
- the voltage transducers of digital branch current monitors commonly comprise a voltage divider network that is connected to a conductor in which the voltage will be measured.
- the power distribution panel provides a convenient location for connecting the voltage transducers because typically each phase of the electricity is delivered to the power distribution panel on a separate bus bar and the voltage and phase is the same for all loads attached to the respective bus bar. Interconnection of a voltage transducer and the facility's wiring is facilitated by wiring connections in the power distribution panel, however, the voltage transducer(s) can be connected anywhere in the wiring that connects the supply and a load, including at the load's terminals.
- the current transducers of digital power meters typically comprise current transformers that encircle each of the power cables that connect each branch circuit to the bus bar(s) of the distribution panel.
- Bowman et al. U.S. Pat. No. 6,937,003 B2 discloses a branch current monitoring system that includes a plurality of current transformers mounted on a common support facilitating installation of a branch current monitor in a power distribution panel. Installation of current transformers in electrical distribution panels is simplified by including a plurality of current transformers on a single supporting strip which can be mounted adjacent to the lines of circuit breakers in the panel.
- the aforementioned branch current monitor from Veris Industries, Inc. is commonly used to monitor up to four strips of current sensors; each comprising 21 current transformers on a common support.
- the branch current monitor provides for eight auxiliary current transformer inputs for sensing the current flow in two 3-phase mains with two neutrals and six voltage connections enabling voltage sensing in six bus bars of two 3-phase mains.
- FIG. 1 is a block diagram of an exemplary branch current monitor.
- FIG. 2 is a perspective view of a current transformer strip for a branch current monitor.
- FIG. 3 is a top view of the current transformer strip of FIG. 2 .
- FIG. 4 is a front view of an exemplary electrical distribution panel and branch current monitor.
- FIG. 5 illustrates a perspective view of another current transformer strip for a branch current monitor.
- FIG. 6 illustrates a view of a connector board for a branch current monitor with a temperature sensor.
- FIG. 7 illustrates a current transformer strip for a branch current monitor with a temperature sensor.
- FIG. 8 illustrates a current transformer strip for a branch current monitor.
- FIG. 9 illustrates normal, warning, and alarm conditions based upon the temperature sensor.
- FIG. 10 illustrates temporal based normal, warning, and alarm conditions based upon the temperature sensor.
- FIG. 11 illustrates a current transformer strip for a branch current monitor with a set of temperature sensors.
- FIG. 12 illustrates a current transformer strip for a branch current monitor with a set of temperature sensors.
- FIG. 13 illustrates normal, warning, and alarm conditions based upon the temperature sensors.
- FIG. 14 illustrates temporal based normal, warning, and alarm conditions based upon the temperature sensors.
- FIG. 15 illustrates multi-phase based normal, warning, and alarm conditions based upon temperature sensors.
- FIG. 16 illustrates spatial based normal, warning, and alarm conditions based upon the temperature sensors.
- a branch current monitor 20 arranged to monitor the voltage and current in a plurality of branch circuits comprises, generally, a data processing module 22 , a current module 24 and a voltage module 26 .
- the branch current monitor 20 is preferably housed in a housing and/or the data processing module 22 is preferably housed in a housing and/or the current module 24 is preferably housed in a housing and/or the voltage module is preferably housed in a housing.
- the branch current monitor and/or the data processing module and/or the current module and/or the voltage module includes one or more connectors suitable to detachably connect a separate power meter to sense electrical properties of the branch current monitor and/or the data processing module and/or the current module and/or the voltage module.
- the data processing module 22 comprises a data processing unit 30 which, typically, comprises at least one microprocessor or digital signal processor (DSP).
- DSP digital signal processor
- the data processing unit 30 reads and stores data received periodically from the voltage module and the current module, and uses that data to calculate the current, voltage, power and other electrical parameters that are the meter's output.
- the resulting electrical parameters may be output to a display 32 for viewing at the meter or output to a communications interface 34 for transmission to another data processing system, such as a building management computer, for remote display or use in automating or managing facility functions.
- the data processing module may also include a memory 36 in which the programming instructions for the data processing unit and the data manipulated by the data processing unit may be stored.
- the branch current monitor typically includes a power supply 38 to provide power to the data processing unit and to the voltage and current modules.
- the voltage module 26 includes one or more voltage transducers 42 each typically comprising a resistor network, a voltage sampling unit 48 to sample the output of the voltage transducers and convert the analog measurements to digital data suitable for use by the data processing unit and a multiplexer 44 that periodically connects the voltage sampling unit to selected ones of the voltage transducers enabling periodic sampling of the magnitude of the voltage at each of the voltage transducers.
- each phase of the electricity supplied to a distribution panel is connected to a bus bar 23 to which are connected the circuit breakers 16 that provide a conductive interconnection to each of the respective loads, by way of examples, a single-phase load 21 A and a three-phase load 21 B.
- a meter for measuring three-phase power typically includes three voltage transducers 42 A, 42 B, 42 C each connected to a respective bus bar 23 A, 23 B, 23 C.
- a clock 40 which may be included in the data processing unit, provides periodic timing signals to trigger sampling of the outputs of the voltage transducers by the voltage sampling unit.
- the voltage module may also include a voltage sensor memory 46 in which voltage sensor characterization data, including relevant specifications and error correction data for the voltage transducers are stored. If a portion of the voltage module requires replacement, a new voltage module comprising a voltage sensor memory containing sensor characterization data for the transducers of the new module can be connected to the data processing unit.
- the data processing unit reads the data contained in the voltage sensor memory and applies the sensor characterization data when calculating the voltage from the transducer data output by the replacement voltage module.
- the current module 24 typically comprises a current sampling unit 50 , a multiplexer 52 and a plurality of current transducers 54 communicatively connected to respective sensor positions 55 of the current module.
- the multiplexer 52 sequentially connects the sampling unit to the respective sensor positions enabling the sampling unit to periodically sample the output of each of the current transducers 54 .
- the current sampling unit comprises an analog-to-digital converter to convert the analog sample at the output of a current transducer selected by the multiplexer, to a digital signal for acquisition by the data processing unit.
- the clock 40 also provides the periodic timing signal that triggers sampling of the current transducer outputs by the current sampling unit.
- the current module may also include a current sensor memory 56 in which are stored characterization data for the current transducers comprising the module.
- the characterization data may include transducer identities; relevant specifications, such as turns ratio; and error correction factors, for examples equations or tables enabling the phase and ratio errors to be related to a current permitting correction for magnetization induced errors.
- the characterization data may also include the type of transducers, the number of transducers, the arrangement of transducers and the order of the transducers' attachment to the respective sensor positions of the current module.
- the data processing unit queries the current sensor memory to obtain characterization data including error correction factors and relevant specifications that are used by the data processing unit in determining the monitor's output.
- monitoring current in a plurality of branch circuits requires a plurality of current transducers, each one encircling one of the branch power cable(s) 88 that connect the power distribution panel to the load(s) of the respective branch circuit.
- Current sensing may be performed by an individual current sensor, such as the current transformer 54 D, which is connected to the current module.
- a branch current monitor may comprise one or more sensor strips 80 each comprising a plurality of current sensors attached to a common support, such as sensors 54 A, 54 B, 54 C.
- the sensors 54 are preferably current transformers but other types of sensors may be used, inclusive of split-core transformers.
- Each current transformer comprises a coil of wire wound on the cross-section of a toroidal metallic or non-metallic core.
- the toroidal core is typically enclosed in a plastic housing that includes an aperture 82 enabling the power cable 88 to be extended through the central aperture of the core.
- the openings 82 defined by the toroidal cores of the transformers are preferably oriented substantially parallel to each other and oriented substantially perpendicular to the longitudinal axis 90 of the support 86 .
- the sensors 54 may be arranged in substantially parallel rows on the support and the housings of the sensors in adjacent rows may be arranged to partially overlap in the direction of the longitudinal axis of the support.
- the common support maintains the current transformers in a fixed spatial relationship that preferably aligns the apertures of the toroidal coils directly opposite the connections of the power cables 88 and their respective circuit breakers 16 when the strip is installed in a distribution panel 100 .
- a transient voltage suppressor 94 may be connected in parallel across the output terminals of each sensor to limit the voltage build up at the terminals when the terminals are open circuited.
- the transducer strip 80 may include the current sensor memory 56 containing characterization data for the current transformers mounted on the support 86 .
- the current sensor memory may also include characterization data for the transducer strip enabling the data processing unit to determine whether a transducer strip is compatible with the remainder of the meter and whether the strip is properly connected to the data processing module. Improper connection or installation of an incompatible transducer strip may cause illumination of signaling lights or a warning message on the meter's display.
- the transducer strip 80 may comprise a current module of the power meter with one or more current transformers 54 , the multiplexer 52 , the current sampling unit 50 and the current sensor memory all mounted on the support 86 .
- a connector 98 provides a terminus for a communication link 102 connecting the current transducer strip (current module) to the data processing module 22 .
- the branch current monitor may also include one or more errant current alarms to signal an operator or data processing system that manages the facility or one or more of its operations of an errant current flow in one of the monitored branch circuits.
- an alarm annunciator is activated to notify the operator or another data processing system of the errant current flow.
- An alarm condition may be announced in one or more ways, including, without limitation, periodic or steady illumination of a light 71 , sounding of an audible alarm 73 , display of a message on the meter's display 32 or transmission of a signal from the communications interface 34 to a remote computer or operator.
- an exemplary electrical distribution panel includes two three-phase mains 104 A, 104 B which respectively are connected to main circuit breakers 106 A, 106 B. Each of the phases of each main is connected to a bus bar 23 A, 23 B, 23 C.
- the three bus bars extend behind each of two rows of branch circuit breakers 16 that respectively conductively connect one of the bus bars to a conductor 54 that conducts current to the branch circuit's load(s).
- a single phase load is connected to single bus bar, a two-phase load is typically connected to two adjacent circuit breakers which are connected to respective bus bars and a three-phase load is typically connected to three adjacent circuit breakers which are each connected to one of the three bus bars.
- a two-phase load or three phase load is connected to the appropriate number of adjacent circuit breakers in the same row.
- the exemplary distribution panel has connections for 84 branch circuit conductors which can be monitored by a branch current monitor produced by Veris Industries, Inc. The branch current monitor monitors the current, voltage and energy consumption of each circuit of the distribution panel, including the mains. The accumulated information can be transmitted to a remote consumer through a communications interface or viewed locally on a local display. Data updates occur approximately every two seconds and as a circuit approaches user configured thresholds, alarms are triggered by the monitor.
- the main acquisition circuit board 108 of the branch current monitor 20 is connectable to as many as four current transformer strips or support units 80 A, 80 B, 80 C, 80 D each supporting 21 current transformers.
- the transformers of the support units are connectable to the data processing unit of the branch current monitor by communication links 102 comprising multi-conductor cables.
- the branch current monitor includes connections for six auxiliary current transformers 114 which are typically used to monitor the current in the mains. Since the voltage and phase are common for all loads connected to a bus bar, the branch current monitor also includes six voltage connections 116 .
- a data channel 120 connected to the communications interface enables transmission of data captured by the branch current monitor to other data processing devices that are part of a building management system or other network.
- the main acquisition circuit board 108 is preferably housed in a housing.
- the main acquisition circuit board 108 includes one or more connectors suitable to detachably connect a separate power meter to sense electrical properties of the current and/or voltage being sensed.
- the strips or support units may be housed in a housing, in whole or in part.
- the strips or support units includes one or more connectors suitable to detachably connect a separate power meter to sense electrical properties of the current and/or voltage being sensed.
- the branch current monitor is installed in the distribution panel by mounting the current transformer strips to the panel adjacent to the rows of circuit breakers and by passing each of the branch circuit conductors 88 through a central aperture in one of the toroidal current transformers and connecting the conductors to the respective circuit breakers.
- the main acquisition board 108 is attached to the electrical panel and the multi-conductor cables 102 are connected to the board.
- the main acquisition board 108 is preferably housed in a housing.
- the mains conductors are passed through the apertures in the auxiliary current transformers and the auxiliary current transformers are connected to the main acquisition board.
- the voltage taps are connected to respective bus bars and to the main acquisition board.
- the data channel 120 is connected and the branch current monitor is ready for configuration.
- the strip unit may include a set of connectors at each general location a current sensor is desired.
- a current transformer may be included with a flexible wire within a connector at the end thereof and a connector on the strip unit. The current transformer is then detachably connectable to the connector of the strip unit.
- the current transformer may include a solid core or a split core, which is more readily interconnected to existing installed wires.
- the strip unit may include one or more power calculation circuits supported thereon.
- the data from the current transformers may be provided to the one or more power calculation circuits supported thereon together with the sensed voltage being provided by a connector from a separate voltage sensor or otherwise voltage sensed by wires interconnected to the strip unit or signal provided thereto.
- the connector may provide voltage, current, power, and other parameters to the circuit board. All or a portion of the strip unit is preferably housed in a housing. The strips unit may be housed in a housing, in whole or in part. In some embodiments, the strip unit includes one or more connectors suitable to detachably connect a separate power meter to sense electrical properties of the strip unit.
- FIG. 6 another embodiment includes a set of one or more connector boards 400 in addition to or as an alternative to the strip units.
- Each of the connector boards may include a set of connectors 410 that may be used to interconnect a current transformer thereto.
- Each of the connector boards may include a connector 420 that interconnects the connector board to the circuit board 108 .
- Each of the connector boards may be labeled with numbering, such as 1 through 14 or 1 through 42 , and 15 through 28 or 42 through 84 . Often groups of three connectors are grouped together as a three phase circuit, thus connectors 1 through 42 may be 14 three phase circuits. For example, the connector board with the number of 1 through 14 may be intended to be connected to connector A.
- the connector board with the numbers of 15 through 28 may be intended to be connected to connector B. All or a portion of the connector board is preferably housed in a housing. In some embodiments, the connector board includes one or more connectors suitable to detachably connect a separate power meter to sense electrical properties of the connector board.
- the current sensor may be any suitable technique, including non-toroidal cores.
- One or more of the circuit breakers along the length of the power panel has a tendency to trip if the current levels and/or power levels are too high for the circuit breaker, thus protecting the respective loads from damage.
- the tripping of the circuit breakers occurs as a result of the load consuming more power than the rating of the corresponding circuit breaker(s).
- a signal is typically received by the monitoring system as a result of a change in the sensed current levels in the power cable indicating the occurrence of the tripped circuit breaker and/or failure of the load. When this occurs, a technician is dispatched to the circuit breaker and/or the load to reset the circuit and repair the load, as needed.
- the circuit breaker operates as a switch that protects the wiring and the load from overheating and shuts off the electricity to the load.
- Many circuit breakers include a heating element that heats a thermostat inside the breaker as an estimation of the power being provided to the load. While providing a sufficiently large amount of power to the load will trigger the circuit breaker, another source of heat that could trigger the circuit breaker is a loose wire connection to the circuit breaker. The loose wire connection builds up additional heat in the circuit breaker, generally as a result of small sparks that form between the surfaces of the loose wire connection.
- a loose wire connection to the circuit breaker can be sensed, as a result of the additional heat being generated by the loose connection, then a technician will be able to properly secure the wire to the circuit breaker so that the circuit breaker does not subsequently trip as a result of the loose connection, and otherwise power is not unnecessarily interrupted to the load, such as one or more servers of a data center.
- the set of current sensors arranged along the elongate support may further include a temperature sensor 700 supported by the elongate support or otherwise connected to the elongate support.
- the temperature sensor 700 may provide an output 710 , either digital or analog, that indicates the temperature in the vicinity of the current sensors.
- the temperature sensor may be supported by or enclosed within a housing of the current sensor.
- the temperature sensor output 710 may be provided to the data processing unit for further processing or other suitable location.
- a temperature sensor 800 is supported by or enclosed within a housing enclosing the current sensor, which is in turn connected to the elongate support.
- the temperature sensor 800 may provide an output 810 , either digital or analog, that indicates the temperature in the vicinity of the current sensors.
- the temperature sensor may be supported by or otherwise connected to the elongate support.
- the temperature sensor output 810 may be provided to the data processing unit for further processing or other suitable location.
- the temperature sensor may be associated with the current sensor(s) and/or the power cable(s), which are likewise in turn associated with the other of the current sensor(s) and/or the power cable(s) which are associated with one or more circuit breakers.
- a temperature threshold alarm level may be determined, which may be an absolute temperature threshold.
- the alarm condition may provide a signal to a control panel, or otherwise, so that the circuit breakers of the particular panel associated with the current sensors may be checked to ensure that all connections are sufficiently secure. In this manner, inadvertent tripping of the circuit breakers may be alleviated as a result of loose electrical connections.
- a warning condition is triggered. The warning condition may provide a signal to a control panel, or otherwise, so that the circuit breakers of the particular panel associated with the current sensors may be checked to ensure that all connections are sufficiently secure. In this manner, inadvertent tripping of the circuit breakers may be alleviated as a result of loose electrical connections.
- a temperature threshold alarm level may be determined, which may be a relative temperature based upon a historical average temperature.
- the temperature may be averaged over a period of 24 hours with a temperature sampling every 5 minutes, and when the current sensed temperature is 20 percent above the average temperature over the time period an alarm condition is triggered.
- the alarm condition may provide a signal to a control panel, or otherwise, so that the circuit breakers of the particular panel associated with the current sensors may be checked to ensure that all connections are sufficiently secure.
- a warning condition is triggered.
- the warning condition may provide a signal to a control panel, or otherwise, so that the circuit breakers of the particular panel associated with the current sensors may be checked to ensure that all connections are sufficiently secure. In this manner, inadvertent tripping of the circuit breakers may be alleviated as a result of loose electrical connections. In this manner, inadvertent tripping of the circuit breakers may be alleviated as a result of loose electrical connections.
- the set of current sensors arranged along the elongate support may further include a set of spaced apart temperature sensors 1100 supported by the elongate support or otherwise connected to the elongate support.
- the temperature sensors 1100 may provide a respective output 1110 , either digital or analog, that indicates the temperature in the vicinity of the respective current sensors.
- the temperature sensor may be supported by or enclosed within a housing of the current sensor.
- the temperature sensor output 1110 may be provided to the data processing unit for further processing or other suitable location.
- temperature sensors 1200 are supported by and/or enclosed within a respective housing enclosing the respective current sensor, which are in turn connected to the elongate support.
- the temperature sensors 1200 may provide an output 1210 , either digital or analog, that indicates the temperature in the vicinity of the respective current sensors.
- the temperature sensor may be supported by or otherwise connected to the elongate support.
- the temperature sensor output 1210 may be provided to the data processing unit for further processing of other suitable location.
- a temperature threshold alarm level may be determined for each temperature sensor, which may be an absolute temperature threshold of one or more of the temperature sensors.
- the alarm condition may provide a signal to a control panel, or otherwise, so that the circuit breakers of the particular panel associated with the current sensors may be checked to ensure that all connections are sufficiently secure.
- a warning condition may also be provided. In this manner, inadvertent tripping of the circuit breakers may be alleviated as a result of loose electrical connections.
- a temperature threshold alarm level may be determined for each temperature sensor, which may be a relative temperature based upon a historical average temperature of one or more of the temperature sensors.
- the temperature of all the current sensors may be averaged over a period of 24 hours with a temperature sampling every 5 minutes, and when the current sensed temperature is 20 percent above the average temperature over the time period an alarm condition is triggered.
- the alarm condition may provide a signal to a control panel, or otherwise, so that the circuit breakers of the particular panel associated with the current sensors may be checked to ensure that all connections are sufficiently secure.
- a aming condition may also be provided. In this manner, inadvertent tripping of the circuit breakers may be alleviated as a result of loose electrical connections.
- a temperature sensor may be associated with each phase of a multi-phase (e.g., two phase and/or three phase) circuit.
- a multi-phase circuit e.g., two phase and/or three phase
- the difference may be 20% or more.
- one or more of the temperature sensors may be associated with one or more of the current sensors.
- a two dimensional profile may be determined for the temperature sensors. It would be expected that the temperature associated with each of the temperature sensors are relatively consistent with one another. When the temperature associated with one or more of the temperature sensors is sufficiently different than the other current sensors, then those circuit breakers associated with the temperature sensors having sufficiently different values may be identified as being a potential loose connection. Also, the profile may be used to determine false negatives from the temperature sensors. If one temperature sensor indicates a heightened temperature level, but one or more other proximate temperature sensors do not indicate a heightened temperature level, the heightened temperature level sensor may be ignored as a false positive or otherwise a warning may be indicated which may have a lower severity level than an alarm.
- the alarm condition and/or the warning condition may further be based upon a combination of the output of one or more of the temperature sensors together with the output of one or more of the current sensors.
- the temperature variations may be based upon a change in the voltage levels being provided to a particular load.
- the loose connection between the power cable and the circuit breaker may result in undesirable variations in the voltage levels.
- a contact based voltage sensor may be provided for each of the power cables, it is preferable that one or more non-contact voltage sensors are supported by or connected to the elongate circuit board.
- a non-contact voltage sensor may be supported by or enclosed within a respective housing for a current sensor. The non-contact voltage sensor preferably senses a voltage level within a respective power conductor.
- the output of one or more of the temperature sensors may be associated with one or more of the outputs of the current sensors and/or one or more output of the non-contact voltage sensors to determine a warning condition and/or an alarm condition for one or more of the circuit breakers and/or loads.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Software Systems (AREA)
- General Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Mathematical Physics (AREA)
- Computer Security & Cryptography (AREA)
- Computer Networks & Wireless Communication (AREA)
- Distribution Board (AREA)
Abstract
Description
- This application claims the benefit of U.S. Provisional App. No. 62/508,732 filed May 19, 2017.
- The present invention relates to an energy metering system with temperature monitoring.
- The total power consumption of a building or other facility is monitored by the electric utility with a power meter located between the utility's distribution transformer and the facility's power distribution panel. However, in many instances it is desirable to sub-meter or attribute the facility's power usage and cost to different occupancies, buildings, departments, or cost centers within the facility or to monitor the power consumption of individual loads or groups of loads, such as motors, lighting, heating units, cooling units, machinery, etc. These single phase or multi-phase electrical loads are typically connected to one or more of the branch circuits that extend from the facility's power distribution panel. While a power meter may be installed at any location between a load and the distribution panel, it is often advantageous to install a power meter capable of monitoring a plurality of circuits proximate the power distribution panel to provide centralized monitoring of the various loads powered from the panel.
- Digital branch current monitors may incorporate data processing systems that can monitor a plurality of circuits and determine a number of parameters related to electricity consumption by the individual branch circuits or groups of circuits. A branch current monitor for measuring electricity consumption by respective branch circuits comprises a plurality of voltage and current transducers that are periodically read by the monitor's data processing unit which, in a typical branch current monitor, comprises one or more microprocessors or digital signal processors (DSP). For example, a branch current monitor from Veris Industries, Inc. enables up to ninety circuits to be monitored with a single meter and utilizes the MODBUS® RTU network communication interface to enable remote monitoring as part of a building or facility management system. The data processing unit periodically reads and stores the outputs of the transducers quantifying the magnitudes of current and voltage samples and, using that data, calculates the current, voltage, power, and other electrical parameters, such as active power, apparent power and reactive power that quantify the distribution and consumption of electricity. The calculated parameters are typically output to a display for immediate viewing or transmitted from the meter's communication interface to another data processing system, such as a building management computer for remote display or further processing, for example formulating instructions to the facility's automated equipment.
- The voltage transducers of digital branch current monitors commonly comprise a voltage divider network that is connected to a conductor in which the voltage will be measured. The power distribution panel provides a convenient location for connecting the voltage transducers because typically each phase of the electricity is delivered to the power distribution panel on a separate bus bar and the voltage and phase is the same for all loads attached to the respective bus bar. Interconnection of a voltage transducer and the facility's wiring is facilitated by wiring connections in the power distribution panel, however, the voltage transducer(s) can be connected anywhere in the wiring that connects the supply and a load, including at the load's terminals.
- The current transducers of digital power meters typically comprise current transformers that encircle each of the power cables that connect each branch circuit to the bus bar(s) of the distribution panel. Bowman et al., U.S. Pat. No. 6,937,003 B2, discloses a branch current monitoring system that includes a plurality of current transformers mounted on a common support facilitating installation of a branch current monitor in a power distribution panel. Installation of current transformers in electrical distribution panels is simplified by including a plurality of current transformers on a single supporting strip which can be mounted adjacent to the lines of circuit breakers in the panel. The aforementioned branch current monitor from Veris Industries, Inc. is commonly used to monitor up to four strips of current sensors; each comprising 21 current transformers on a common support. In addition, the branch current monitor provides for eight auxiliary current transformer inputs for sensing the current flow in two 3-phase mains with two neutrals and six voltage connections enabling voltage sensing in six bus bars of two 3-phase mains.
-
FIG. 1 is a block diagram of an exemplary branch current monitor. -
FIG. 2 is a perspective view of a current transformer strip for a branch current monitor. -
FIG. 3 is a top view of the current transformer strip ofFIG. 2 . -
FIG. 4 is a front view of an exemplary electrical distribution panel and branch current monitor. -
FIG. 5 illustrates a perspective view of another current transformer strip for a branch current monitor. -
FIG. 6 illustrates a view of a connector board for a branch current monitor with a temperature sensor. -
FIG. 7 illustrates a current transformer strip for a branch current monitor with a temperature sensor. -
FIG. 8 illustrates a current transformer strip for a branch current monitor. -
FIG. 9 illustrates normal, warning, and alarm conditions based upon the temperature sensor. -
FIG. 10 illustrates temporal based normal, warning, and alarm conditions based upon the temperature sensor. -
FIG. 11 illustrates a current transformer strip for a branch current monitor with a set of temperature sensors. -
FIG. 12 illustrates a current transformer strip for a branch current monitor with a set of temperature sensors. -
FIG. 13 illustrates normal, warning, and alarm conditions based upon the temperature sensors. -
FIG. 14 illustrates temporal based normal, warning, and alarm conditions based upon the temperature sensors. -
FIG. 15 illustrates multi-phase based normal, warning, and alarm conditions based upon temperature sensors. -
FIG. 16 illustrates spatial based normal, warning, and alarm conditions based upon the temperature sensors. - Referring in detail to the drawings where similar parts are identified by like reference numerals, and, more particularly to
FIG. 1 , a branchcurrent monitor 20 arranged to monitor the voltage and current in a plurality of branch circuits comprises, generally, adata processing module 22, acurrent module 24 and avoltage module 26. The branchcurrent monitor 20 is preferably housed in a housing and/or thedata processing module 22 is preferably housed in a housing and/or thecurrent module 24 is preferably housed in a housing and/or the voltage module is preferably housed in a housing. In some embodiments, the branch current monitor and/or the data processing module and/or the current module and/or the voltage module includes one or more connectors suitable to detachably connect a separate power meter to sense electrical properties of the branch current monitor and/or the data processing module and/or the current module and/or the voltage module. Thedata processing module 22 comprises adata processing unit 30 which, typically, comprises at least one microprocessor or digital signal processor (DSP). Thedata processing unit 30 reads and stores data received periodically from the voltage module and the current module, and uses that data to calculate the current, voltage, power and other electrical parameters that are the meter's output. The resulting electrical parameters may be output to adisplay 32 for viewing at the meter or output to acommunications interface 34 for transmission to another data processing system, such as a building management computer, for remote display or use in automating or managing facility functions. The data processing module may also include amemory 36 in which the programming instructions for the data processing unit and the data manipulated by the data processing unit may be stored. In addition, the branch current monitor typically includes apower supply 38 to provide power to the data processing unit and to the voltage and current modules. - The
voltage module 26 includes one or more voltage transducers 42 each typically comprising a resistor network, avoltage sampling unit 48 to sample the output of the voltage transducers and convert the analog measurements to digital data suitable for use by the data processing unit and amultiplexer 44 that periodically connects the voltage sampling unit to selected ones of the voltage transducers enabling periodic sampling of the magnitude of the voltage at each of the voltage transducers. Typically, each phase of the electricity supplied to a distribution panel is connected to a bus bar 23 to which are connected thecircuit breakers 16 that provide a conductive interconnection to each of the respective loads, by way of examples, a single-phase load 21A and a three-phase load 21B. Since the voltage and phase supplied to all commonly connected loads is the same, a meter for measuring three-phase power typically includes threevoltage transducers respective bus bar clock 40, which may be included in the data processing unit, provides periodic timing signals to trigger sampling of the outputs of the voltage transducers by the voltage sampling unit. The voltage module may also include avoltage sensor memory 46 in which voltage sensor characterization data, including relevant specifications and error correction data for the voltage transducers are stored. If a portion of the voltage module requires replacement, a new voltage module comprising a voltage sensor memory containing sensor characterization data for the transducers of the new module can be connected to the data processing unit. The data processing unit reads the data contained in the voltage sensor memory and applies the sensor characterization data when calculating the voltage from the transducer data output by the replacement voltage module. - The
current module 24 typically comprises acurrent sampling unit 50, amultiplexer 52 and a plurality ofcurrent transducers 54 communicatively connected torespective sensor positions 55 of the current module. Themultiplexer 52 sequentially connects the sampling unit to the respective sensor positions enabling the sampling unit to periodically sample the output of each of thecurrent transducers 54. The current sampling unit comprises an analog-to-digital converter to convert the analog sample at the output of a current transducer selected by the multiplexer, to a digital signal for acquisition by the data processing unit. Theclock 40 also provides the periodic timing signal that triggers sampling of the current transducer outputs by the current sampling unit. The current module may also include acurrent sensor memory 56 in which are stored characterization data for the current transducers comprising the module. The characterization data may include transducer identities; relevant specifications, such as turns ratio; and error correction factors, for examples equations or tables enabling the phase and ratio errors to be related to a current permitting correction for magnetization induced errors. The characterization data may also include the type of transducers, the number of transducers, the arrangement of transducers and the order of the transducers' attachment to the respective sensor positions of the current module. At start up, the data processing unit queries the current sensor memory to obtain characterization data including error correction factors and relevant specifications that are used by the data processing unit in determining the monitor's output. - Referring also to
FIGS. 2, 3, and 4 , monitoring current in a plurality of branch circuits requires a plurality of current transducers, each one encircling one of the branch power cable(s) 88 that connect the power distribution panel to the load(s) of the respective branch circuit. Current sensing may be performed by an individual current sensor, such as thecurrent transformer 54D, which is connected to the current module. On the other hand, a branch current monitor may comprise one or more sensor strips 80 each comprising a plurality of current sensors attached to a common support, such assensors sensors 54 are preferably current transformers but other types of sensors may be used, inclusive of split-core transformers. Each current transformer comprises a coil of wire wound on the cross-section of a toroidal metallic or non-metallic core. The toroidal core is typically enclosed in a plastic housing that includes anaperture 82 enabling thepower cable 88 to be extended through the central aperture of the core. Theopenings 82 defined by the toroidal cores of the transformers are preferably oriented substantially parallel to each other and oriented substantially perpendicular to thelongitudinal axis 90 of thesupport 86. To provide a more compact arrangement of sensors, thesensors 54 may be arranged in substantially parallel rows on the support and the housings of the sensors in adjacent rows may be arranged to partially overlap in the direction of the longitudinal axis of the support. To facilitate routing the power cables of the branch circuits through the cores of the current transformers, the common support maintains the current transformers in a fixed spatial relationship that preferably aligns the apertures of the toroidal coils directly opposite the connections of thepower cables 88 and theirrespective circuit breakers 16 when the strip is installed in adistribution panel 100. For protection from electrical shock, atransient voltage suppressor 94 may be connected in parallel across the output terminals of each sensor to limit the voltage build up at the terminals when the terminals are open circuited. - The
transducer strip 80 may include thecurrent sensor memory 56 containing characterization data for the current transformers mounted on thesupport 86. The current sensor memory may also include characterization data for the transducer strip enabling the data processing unit to determine whether a transducer strip is compatible with the remainder of the meter and whether the strip is properly connected to the data processing module. Improper connection or installation of an incompatible transducer strip may cause illumination of signaling lights or a warning message on the meter's display. In addition, thetransducer strip 80 may comprise a current module of the power meter with one or morecurrent transformers 54, themultiplexer 52, thecurrent sampling unit 50 and the current sensor memory all mounted on thesupport 86. Aconnector 98 provides a terminus for acommunication link 102 connecting the current transducer strip (current module) to thedata processing module 22. - The branch current monitor may also include one or more errant current alarms to signal an operator or data processing system that manages the facility or one or more of its operations of an errant current flow in one of the monitored branch circuits. When a current having a magnitude greater or lesser than a respective alarm current limit is detected in one of the branch circuits an alarm annunciator is activated to notify the operator or another data processing system of the errant current flow. An alarm condition may be announced in one or more ways, including, without limitation, periodic or steady illumination of a light 71, sounding of an
audible alarm 73, display of a message on the meter'sdisplay 32 or transmission of a signal from thecommunications interface 34 to a remote computer or operator. - A commercial power distribution panel commonly supplies a substantial number of branch circuits and a branch current monitor for a distribution panel typically includes at least an equal number of current transformers. Referring to
FIG. 4 , an exemplary electrical distribution panel includes two three-phase mains main circuit breakers bus bar branch circuit breakers 16 that respectively conductively connect one of the bus bars to aconductor 54 that conducts current to the branch circuit's load(s). A single phase load is connected to single bus bar, a two-phase load is typically connected to two adjacent circuit breakers which are connected to respective bus bars and a three-phase load is typically connected to three adjacent circuit breakers which are each connected to one of the three bus bars. Typically, a two-phase load or three phase load is connected to the appropriate number of adjacent circuit breakers in the same row. The exemplary distribution panel has connections for 84 branch circuit conductors which can be monitored by a branch current monitor produced by Veris Industries, Inc. The branch current monitor monitors the current, voltage and energy consumption of each circuit of the distribution panel, including the mains. The accumulated information can be transmitted to a remote consumer through a communications interface or viewed locally on a local display. Data updates occur approximately every two seconds and as a circuit approaches user configured thresholds, alarms are triggered by the monitor. - As illustrated in
FIG. 4 , the mainacquisition circuit board 108 of the branch current monitor 20 is connectable to as many as four current transformer strips orsupport units communication links 102 comprising multi-conductor cables. In addition, the branch current monitor includes connections for six auxiliarycurrent transformers 114 which are typically used to monitor the current in the mains. Since the voltage and phase are common for all loads connected to a bus bar, the branch current monitor also includes sixvoltage connections 116. Adata channel 120 connected to the communications interface enables transmission of data captured by the branch current monitor to other data processing devices that are part of a building management system or other network. The mainacquisition circuit board 108 is preferably housed in a housing. In some embodiments, the mainacquisition circuit board 108 includes one or more connectors suitable to detachably connect a separate power meter to sense electrical properties of the current and/or voltage being sensed. The strips or support units may be housed in a housing, in whole or in part. In some embodiments, the strips or support units includes one or more connectors suitable to detachably connect a separate power meter to sense electrical properties of the current and/or voltage being sensed. - The branch current monitor is installed in the distribution panel by mounting the current transformer strips to the panel adjacent to the rows of circuit breakers and by passing each of the
branch circuit conductors 88 through a central aperture in one of the toroidal current transformers and connecting the conductors to the respective circuit breakers. Themain acquisition board 108 is attached to the electrical panel and themulti-conductor cables 102 are connected to the board. Themain acquisition board 108 is preferably housed in a housing. The mains conductors are passed through the apertures in the auxiliary current transformers and the auxiliary current transformers are connected to the main acquisition board. The voltage taps are connected to respective bus bars and to the main acquisition board. Thedata channel 120 is connected and the branch current monitor is ready for configuration. - Referring to
FIG. 5 , in another embodiment, the strip unit may include a set of connectors at each general location a current sensor is desired. A current transformer may be included with a flexible wire within a connector at the end thereof and a connector on the strip unit. The current transformer is then detachably connectable to the connector of the strip unit. The current transformer may include a solid core or a split core, which is more readily interconnected to existing installed wires. If desired, the strip unit may include one or more power calculation circuits supported thereon. For example, the data from the current transformers may be provided to the one or more power calculation circuits supported thereon together with the sensed voltage being provided by a connector from a separate voltage sensor or otherwise voltage sensed by wires interconnected to the strip unit or signal provided thereto. As a result of this configuration, the connector may provide voltage, current, power, and other parameters to the circuit board. All or a portion of the strip unit is preferably housed in a housing. The strips unit may be housed in a housing, in whole or in part. In some embodiments, the strip unit includes one or more connectors suitable to detachably connect a separate power meter to sense electrical properties of the strip unit. - Referring to
FIG. 6 , another embodiment includes a set of one ormore connector boards 400 in addition to or as an alternative to the strip units. Each of the connector boards may include a set ofconnectors 410 that may be used to interconnect a current transformer thereto. Each of the connector boards may include aconnector 420 that interconnects the connector board to thecircuit board 108. Each of the connector boards may be labeled with numbering, such as 1 through 14 or 1 through 42, and 15 through 28 or 42 through 84. Often groups of three connectors are grouped together as a three phase circuit, thusconnectors 1 through 42 may be 14 three phase circuits. For example, the connector board with the number of 1 through 14 may be intended to be connected to connector A. For example, the connector board with the numbers of 15 through 28 may be intended to be connected to connector B. All or a portion of the connector board is preferably housed in a housing. In some embodiments, the connector board includes one or more connectors suitable to detachably connect a separate power meter to sense electrical properties of the connector board. - It is to be understood that the current sensor may be any suitable technique, including non-toroidal cores.
- One or more of the circuit breakers along the length of the power panel has a tendency to trip if the current levels and/or power levels are too high for the circuit breaker, thus protecting the respective loads from damage. Typically, the tripping of the circuit breakers occurs as a result of the load consuming more power than the rating of the corresponding circuit breaker(s). When the circuit breaker trips a signal is typically received by the monitoring system as a result of a change in the sensed current levels in the power cable indicating the occurrence of the tripped circuit breaker and/or failure of the load. When this occurs, a technician is dispatched to the circuit breaker and/or the load to reset the circuit and repair the load, as needed. However, during this time until the resetting of the circuit breaker and/or repair of the failed load, the operation of the load is compromised. In the case of computer servers in a data center, where continuous up time for the computer servers is of a paramount concern, it is desirable to predict if the circuit breaker is likely to trip so that preventive measures may be taken to avoid such an occurrence.
- In general, the circuit breaker operates as a switch that protects the wiring and the load from overheating and shuts off the electricity to the load. Many circuit breakers include a heating element that heats a thermostat inside the breaker as an estimation of the power being provided to the load. While providing a sufficiently large amount of power to the load will trigger the circuit breaker, another source of heat that could trigger the circuit breaker is a loose wire connection to the circuit breaker. The loose wire connection builds up additional heat in the circuit breaker, generally as a result of small sparks that form between the surfaces of the loose wire connection. If a loose wire connection to the circuit breaker can be sensed, as a result of the additional heat being generated by the loose connection, then a technician will be able to properly secure the wire to the circuit breaker so that the circuit breaker does not subsequently trip as a result of the loose connection, and otherwise power is not unnecessarily interrupted to the load, such as one or more servers of a data center.
- Referring to
FIG. 7 , the set of current sensors arranged along the elongate support may further include atemperature sensor 700 supported by the elongate support or otherwise connected to the elongate support. Thetemperature sensor 700 may provide anoutput 710, either digital or analog, that indicates the temperature in the vicinity of the current sensors. The temperature sensor may be supported by or enclosed within a housing of the current sensor. Thetemperature sensor output 710 may be provided to the data processing unit for further processing or other suitable location. - Referring to
FIG. 8 , in another embodiment atemperature sensor 800 is supported by or enclosed within a housing enclosing the current sensor, which is in turn connected to the elongate support. Thetemperature sensor 800 may provide anoutput 810, either digital or analog, that indicates the temperature in the vicinity of the current sensors. The temperature sensor may be supported by or otherwise connected to the elongate support. Thetemperature sensor output 810 may be provided to the data processing unit for further processing or other suitable location. - In general, the temperature sensor may be associated with the current sensor(s) and/or the power cable(s), which are likewise in turn associated with the other of the current sensor(s) and/or the power cable(s) which are associated with one or more circuit breakers.
- Referring to
FIG. 9 , a temperature threshold alarm level may be determined, which may be an absolute temperature threshold. When the temperature rises above the temperature threshold an alarm condition is triggered. The alarm condition may provide a signal to a control panel, or otherwise, so that the circuit breakers of the particular panel associated with the current sensors may be checked to ensure that all connections are sufficiently secure. In this manner, inadvertent tripping of the circuit breakers may be alleviated as a result of loose electrical connections. When the temperature rises above the lower temperature threshold a warning condition is triggered. The warning condition may provide a signal to a control panel, or otherwise, so that the circuit breakers of the particular panel associated with the current sensors may be checked to ensure that all connections are sufficiently secure. In this manner, inadvertent tripping of the circuit breakers may be alleviated as a result of loose electrical connections. - Referring to
FIG. 10 , a temperature threshold alarm level may be determined, which may be a relative temperature based upon a historical average temperature. By way of example, the temperature may be averaged over a period of 24 hours with a temperature sampling every 5 minutes, and when the current sensed temperature is 20 percent above the average temperature over the time period an alarm condition is triggered. When the temperature rises above the temperature threshold an alarm condition is triggered. The alarm condition may provide a signal to a control panel, or otherwise, so that the circuit breakers of the particular panel associated with the current sensors may be checked to ensure that all connections are sufficiently secure. When the temperature rises above the lower temperature threshold a warning condition is triggered. The warning condition may provide a signal to a control panel, or otherwise, so that the circuit breakers of the particular panel associated with the current sensors may be checked to ensure that all connections are sufficiently secure. In this manner, inadvertent tripping of the circuit breakers may be alleviated as a result of loose electrical connections. In this manner, inadvertent tripping of the circuit breakers may be alleviated as a result of loose electrical connections. - Referring to
FIG. 11 , the set of current sensors arranged along the elongate support may further include a set of spaced aparttemperature sensors 1100 supported by the elongate support or otherwise connected to the elongate support. Thetemperature sensors 1100 may provide arespective output 1110, either digital or analog, that indicates the temperature in the vicinity of the respective current sensors. The temperature sensor may be supported by or enclosed within a housing of the current sensor. Thetemperature sensor output 1110 may be provided to the data processing unit for further processing or other suitable location. - Referring to
FIG. 12 , in anotherembodiment temperature sensors 1200 are supported by and/or enclosed within a respective housing enclosing the respective current sensor, which are in turn connected to the elongate support. Thetemperature sensors 1200 may provide anoutput 1210, either digital or analog, that indicates the temperature in the vicinity of the respective current sensors. The temperature sensor may be supported by or otherwise connected to the elongate support. Thetemperature sensor output 1210 may be provided to the data processing unit for further processing of other suitable location. - Referring to
FIG. 13 , a temperature threshold alarm level may be determined for each temperature sensor, which may be an absolute temperature threshold of one or more of the temperature sensors. When the temperature rises above the temperature threshold an alarm condition is triggered. The alarm condition may provide a signal to a control panel, or otherwise, so that the circuit breakers of the particular panel associated with the current sensors may be checked to ensure that all connections are sufficiently secure. A warning condition may also be provided. In this manner, inadvertent tripping of the circuit breakers may be alleviated as a result of loose electrical connections. - Referring to
FIG. 14 , a temperature threshold alarm level may be determined for each temperature sensor, which may be a relative temperature based upon a historical average temperature of one or more of the temperature sensors. By way of example, the temperature of all the current sensors may be averaged over a period of 24 hours with a temperature sampling every 5 minutes, and when the current sensed temperature is 20 percent above the average temperature over the time period an alarm condition is triggered. When the temperature rises above the temperature threshold an alarm condition is triggered. The alarm condition may provide a signal to a control panel, or otherwise, so that the circuit breakers of the particular panel associated with the current sensors may be checked to ensure that all connections are sufficiently secure. A aming condition may also be provided. In this manner, inadvertent tripping of the circuit breakers may be alleviated as a result of loose electrical connections. - Referring to
FIG. 15 , in some cases a temperature sensor may be associated with each phase of a multi-phase (e.g., two phase and/or three phase) circuit. In this case, it would be expected that under normal operating conditions that the temperature sensed for each of the phases would be substantially the same. In the event that one or more of the temperatures sensed of a multi-phase circuit is substantially greater than one or more of the other phases, then an alarm condition may be triggered. By way of example, the difference may be 20% or more. - In an alternative embodiment, one or more of the temperature sensors may be associated with one or more of the current sensors.
- Referring to
FIG. 16 , with a plurality of spaced apart temperature sensors a two dimensional profile may be determined for the temperature sensors. It would be expected that the temperature associated with each of the temperature sensors are relatively consistent with one another. When the temperature associated with one or more of the temperature sensors is sufficiently different than the other current sensors, then those circuit breakers associated with the temperature sensors having sufficiently different values may be identified as being a potential loose connection. Also, the profile may be used to determine false negatives from the temperature sensors. If one temperature sensor indicates a heightened temperature level, but one or more other proximate temperature sensors do not indicate a heightened temperature level, the heightened temperature level sensor may be ignored as a false positive or otherwise a warning may be indicated which may have a lower severity level than an alarm. - The alarm condition and/or the warning condition may further be based upon a combination of the output of one or more of the temperature sensors together with the output of one or more of the current sensors.
- In some situations, the temperature variations may be based upon a change in the voltage levels being provided to a particular load. By way of example, the loose connection between the power cable and the circuit breaker may result in undesirable variations in the voltage levels. While a contact based voltage sensor may be provided for each of the power cables, it is preferable that one or more non-contact voltage sensors are supported by or connected to the elongate circuit board. Also, a non-contact voltage sensor may be supported by or enclosed within a respective housing for a current sensor. The non-contact voltage sensor preferably senses a voltage level within a respective power conductor. The output of one or more of the temperature sensors may be associated with one or more of the outputs of the current sensors and/or one or more output of the non-contact voltage sensors to determine a warning condition and/or an alarm condition for one or more of the circuit breakers and/or loads.
- The detailed description, above, sets forth numerous specific details to provide a thorough understanding of the present invention. However, those skilled in the art will appreciate that the present invention may be practiced without these specific details. In other instances, well known methods, procedures, components, and circuitry have not been described in detail to avoid obscuring the present invention.
- All the references cited herein are incorporated by reference.
- The terms and expressions that have been employed in the foregoing specification are used as terms of description and not of limitation, and there is no intention, in the use of such terms and expressions, of excluding equivalents of the features shown and described or portions thereof, it being recognized that the scope of the invention is defined and limited only by the claims that follow,
Claims (20)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/613,234 US11085955B2 (en) | 2017-05-19 | 2018-05-17 | Energy metering system with temperature monitoring based on circuit breakers of power panel likely to trip |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201762508732P | 2017-05-19 | 2017-05-19 | |
US15/792,573 US10705126B2 (en) | 2017-05-19 | 2017-10-24 | Energy metering with temperature monitoring |
US16/613,234 US11085955B2 (en) | 2017-05-19 | 2018-05-17 | Energy metering system with temperature monitoring based on circuit breakers of power panel likely to trip |
PCT/US2018/033119 WO2018213536A1 (en) | 2017-05-19 | 2018-05-17 | Energy metering with temperature monitoring |
Related Parent Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/792,573 Continuation US10705126B2 (en) | 2017-05-19 | 2017-10-24 | Energy metering with temperature monitoring |
US15/972,573 Continuation US10409597B2 (en) | 2012-12-28 | 2018-05-07 | Memory management in secure enclaves |
Publications (4)
Publication Number | Publication Date |
---|---|
US20200142695A1 US20200142695A1 (en) | 2020-05-07 |
US20210042113A9 true US20210042113A9 (en) | 2021-02-11 |
US20210173645A9 US20210173645A9 (en) | 2021-06-10 |
US11085955B2 US11085955B2 (en) | 2021-08-10 |
Family
ID=64271463
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/792,573 Active 2038-05-02 US10705126B2 (en) | 2017-05-19 | 2017-10-24 | Energy metering with temperature monitoring |
US16/613,234 Active US11085955B2 (en) | 2017-05-19 | 2018-05-17 | Energy metering system with temperature monitoring based on circuit breakers of power panel likely to trip |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/792,573 Active 2038-05-02 US10705126B2 (en) | 2017-05-19 | 2017-10-24 | Energy metering with temperature monitoring |
Country Status (2)
Country | Link |
---|---|
US (2) | US10705126B2 (en) |
WO (1) | WO2018213536A1 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10571297B2 (en) * | 2017-01-03 | 2020-02-25 | Centurylink Intellectual Property Llc | Meter collar system for powerline communication |
US10705126B2 (en) * | 2017-05-19 | 2020-07-07 | Veris Industries, Llc | Energy metering with temperature monitoring |
GB2588717B (en) * | 2018-04-04 | 2021-10-27 | Panoramic Power Ltd | System and method for measuring powerline temperature based on self-powered power sensors |
US11573254B2 (en) | 2020-06-09 | 2023-02-07 | Sensus Spectrum, Llc | Systems for detecting temperature and current events in a power grid and related methods |
WO2022177857A1 (en) * | 2021-02-16 | 2022-08-25 | Commscope Technologies Llc | Systems and methods to reduce cable heating in radio communications |
BE1031076A9 (en) * | 2022-11-28 | 2024-07-08 | Ethernetics | A POWER DISTRIBUTION UNIT (PDU) MODULE FOR DISTRIBUTING POWER TO ELECTRICAL EQUIPMENT SUCH AS SERVERS AND NETWORK SWITCHES IN A DATA CENTER RACK |
Family Cites Families (266)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1100171A (en) | 1912-10-07 | 1914-06-16 | Earl W Brown | Method of and apparatus for sampling gases. |
US1455263A (en) | 1920-06-11 | 1923-05-15 | George G Oberfell | Method and apparatus for testing gaseous mixtures |
US1569723A (en) | 1925-08-14 | 1926-01-12 | Gen Electric | Instrument transformer |
US1871710A (en) | 1929-04-11 | 1932-08-16 | Westinghouse Electric & Mfg Co | Metering system |
US1800474A (en) | 1929-10-30 | 1931-04-14 | Western Electromechanical Co I | Meter for alternating current |
US1830541A (en) | 1930-06-20 | 1931-11-03 | Gen Electric | Instrument transformer |
US2059594A (en) | 1935-04-02 | 1936-11-03 | Frank Massa | Electrical measuring instrument |
US2428613A (en) | 1943-10-18 | 1947-10-07 | Gen Electric | Transformer |
US2412782A (en) | 1944-05-26 | 1946-12-17 | Robert T Palmer | Wet bulb thermometer and thermostat |
US2663190A (en) | 1950-11-16 | 1953-12-22 | Bell Telephone Labor Inc | Humidity indicator |
US2746295A (en) | 1951-12-12 | 1956-05-22 | Underwood Corp | Apparatus for measuring and recording pressures indicated by manometer tubes |
US2802182A (en) | 1954-02-01 | 1957-08-06 | Fox Prod Co | Current density responsive apparatus |
US2852739A (en) | 1954-07-26 | 1958-09-16 | Gen Electric | Remote controlled impedance measuring circuit |
US2943488A (en) | 1957-05-27 | 1960-07-05 | Robertshaw Fulton Controls Co | Humidistat |
US3190122A (en) | 1960-09-01 | 1965-06-22 | Simmonds Precision Products | Mercurial capacitors for remote indication of pressure |
US3243674A (en) | 1963-02-01 | 1966-03-29 | Ebert Gotthold | Capacitor type sensing device |
US3287974A (en) | 1964-03-30 | 1966-11-29 | Holley Carburetor Co | Ice condition detection device |
US3374434A (en) | 1965-09-09 | 1968-03-19 | Geodyne Corp | Inductive coupling apparatus for use in coupling to underwater electric systems and the like |
US3493760A (en) | 1966-12-14 | 1970-02-03 | Us Army | Optical isolator for electric signals |
US3584294A (en) | 1967-07-17 | 1971-06-08 | Fenwal Inc | A system for measuring low levels of electrical energy |
US3512045A (en) | 1968-06-28 | 1970-05-12 | Gen Signal Corp | Ground fault responsive apparatus for electric power distribution apparatus |
US3593078A (en) | 1969-09-08 | 1971-07-13 | North American Rockwell | Starting and operating control for an ac motor powered by a dc power supply |
US3728705A (en) | 1970-05-04 | 1973-04-17 | Wagner Electric Corp | Lamp outage indicator |
US3696288A (en) | 1970-05-08 | 1972-10-03 | Cameron Iron Works Inc | Optically coupled control circuit |
DE2124345C3 (en) | 1971-05-17 | 1978-10-19 | Friedrich Dr.-Ing.E.H. 8600 Bamberg Raupach | Transformer for generating or measuring high and extremely high voltages or for measuring currents at high voltage potential in cascade connection |
US3769548A (en) | 1972-05-15 | 1973-10-30 | Ite Imperial Corp | Ground fault indicator |
US3861411A (en) | 1974-01-11 | 1975-01-21 | Sybron Corp | Electro-pneumatic transducer |
US4158810A (en) | 1974-10-21 | 1979-06-19 | Leskovar Silvin M | Telemetering post for measuring variables in a high-voltage overhead line |
US3955701A (en) | 1975-04-21 | 1976-05-11 | Reinhold Fisch | Universal extension for outlet boxes |
FR2313723A1 (en) | 1975-06-02 | 1976-12-31 | Commissariat Energie Atomique | ABNORMAL PHENOMENON DETECTOR |
US4001758A (en) | 1975-09-02 | 1977-01-04 | Ford Motor Company | Stoichiometric air/fuel ratio exhaust gas sensor |
US4001647A (en) | 1975-10-22 | 1977-01-04 | General Electric Company | Ground fault receptacle with unitary support of gfci module and switching mechanism |
US4426673A (en) | 1976-03-12 | 1984-01-17 | Kavlico Corporation | Capacitive pressure transducer and method of making same |
US4388668A (en) | 1976-03-12 | 1983-06-14 | Kaylico Corporation | Capacitive pressure transducer |
US4177496A (en) | 1976-03-12 | 1979-12-04 | Kavlico Corporation | Capacitive pressure transducer |
US4030058A (en) | 1976-03-30 | 1977-06-14 | Westinghouse Electric Corporation | Inductive coupler |
US4048605A (en) | 1976-04-05 | 1977-09-13 | Sangamo Electric Company | Split core current transformer having an interleaved joint and hinge structure |
FR2361022A1 (en) | 1976-08-06 | 1978-03-03 | Aerospatiale | METHOD AND DEVICE FOR TRANSMISSION OF SIGNALS BY OPTICAL FIBERS |
US4158217A (en) | 1976-12-02 | 1979-06-12 | Kaylico Corporation | Capacitive pressure transducer with improved electrode |
US4207604A (en) | 1976-12-02 | 1980-06-10 | Kavlico Corporation | Capacitive pressure transducer with cut out conductive plate |
USD249883S (en) | 1976-12-29 | 1978-10-10 | International Rectifier Corporation | Solid state relay |
US4107519A (en) | 1977-04-13 | 1978-08-15 | The United States Of America As Represented By The United States Department Of Energy | Optical control system for high-voltage terminals |
US4096436A (en) | 1977-05-23 | 1978-06-20 | The Valeron Corporation | Power monitor |
US4151578A (en) | 1977-08-01 | 1979-04-24 | Kavlico Corporation | Capacitive pressure transducer |
US4413230A (en) | 1978-07-11 | 1983-11-01 | Westinghouse Electric Corp. | Electric energy meter having a mutual inductance current transducer |
US4198595A (en) | 1978-09-05 | 1980-04-15 | General Electric Company | Apparatus and method of phase shift compensation of an active terminated current transformer |
FR2437627A1 (en) | 1978-09-29 | 1980-04-25 | Kostal Fa Leopold | ELECTRICAL DEVICE CONTROL ASSEMBLY |
US4250449A (en) | 1978-11-24 | 1981-02-10 | Westinghouse Electric Corp. | Digital electric energy measuring circuit |
US4241237A (en) | 1979-01-26 | 1980-12-23 | Metretek Incorporated | Apparatus and method for remote sensor monitoring, metering and control |
US4253336A (en) | 1979-03-19 | 1981-03-03 | Pietzuch Edward E | Vehicle exhaust emission testing adapter |
FR2456377A1 (en) | 1979-05-07 | 1980-12-05 | Commissariat Energie Atomique | METHOD AND DEVICE FOR ELECTRIC TRANSMISSION THROUGH A CONTACTLESS REMOVABLE CONNECTION SYSTEM |
JPS5610244A (en) | 1979-07-04 | 1981-02-02 | Matsushita Electric Ind Co Ltd | Temperature sensor controlling device |
US4227419A (en) | 1979-09-04 | 1980-10-14 | Kavlico Corporation | Capacitive pressure transducer |
US4297741A (en) | 1979-09-04 | 1981-10-27 | General Electric Company | Rate sensing instantaneous trip mode network |
US4258348A (en) | 1979-11-13 | 1981-03-24 | Stb Transformer Company | Current measuring transformer |
US4362580A (en) | 1980-02-04 | 1982-12-07 | Corning Glass Works | Furnace and method with sensor |
US4491790A (en) | 1980-02-13 | 1985-01-01 | Westinghouse Electric Corp. | Electric energy meter having a mutual inductance current transducer |
US4328903A (en) | 1980-02-29 | 1982-05-11 | Baars George J | Weatherproof junction box |
US4363061A (en) | 1980-06-10 | 1982-12-07 | Westinghouse Electric Corp. | Electric motor and transformer load sensing technique |
US4384289A (en) | 1981-01-23 | 1983-05-17 | General Electric Company | Transponder unit for measuring temperature and current on live transmission lines |
EP0059769B1 (en) | 1981-03-07 | 1985-10-09 | Kernforschungszentrum Karlsruhe Gmbh | Differential pressure detector |
US4413193A (en) | 1981-06-11 | 1983-11-01 | Teccor Electronics, Inc. | Optically coupled solid state relay |
US4398426A (en) | 1981-07-02 | 1983-08-16 | Kavlico Corporation | Linear capacitive pressure transducer system |
US4359672A (en) | 1981-07-10 | 1982-11-16 | Allen-Bradley Company | Motor starter with optically coupled pushbutton station |
US4371814A (en) | 1981-09-09 | 1983-02-01 | Silent Running Corporation | Infrared transmitter and control circuit |
US4408175A (en) | 1982-01-18 | 1983-10-04 | Honeywell Inc. | Self centering current responsive pickup means |
US4605883A (en) | 1982-02-05 | 1986-08-12 | Sunbeam Corporation | Motor speed control circuit |
US4495463A (en) | 1982-02-24 | 1985-01-22 | General Electric Company | Electronic watt and/or watthour measuring circuit having active load terminated current sensor for sensing current and providing automatic zero-offset of current sensor DC offset error potentials |
US4492919A (en) | 1982-04-12 | 1985-01-08 | General Electric Company | Current sensors |
US4432238A (en) | 1982-07-22 | 1984-02-21 | Tward 2001 Limited | Capacitive pressure transducer |
US4558310A (en) | 1982-09-29 | 1985-12-10 | Mcallise Raymond J | Current sensing device and monitor |
US4506199A (en) | 1982-12-28 | 1985-03-19 | Asche Bernard J | Agricultural fan control system |
US4794327A (en) | 1983-04-13 | 1988-12-27 | Fernandes Roosevelt A | Electrical parameter sensing module for mounting on and removal from an energized high voltage power conductor |
US4855671A (en) | 1983-04-13 | 1989-08-08 | Fernandes Roosevelt A | Electrical power line and substation monitoring apparatus |
US4689752A (en) | 1983-04-13 | 1987-08-25 | Niagara Mohawk Power Corporation | System and apparatus for monitoring and control of a bulk electric power delivery system |
US4709339A (en) | 1983-04-13 | 1987-11-24 | Fernandes Roosevelt A | Electrical power line parameter measurement apparatus and systems, including compact, line-mounted modules |
US4574266A (en) | 1983-06-13 | 1986-03-04 | Motorola, Inc. | Electrical load monitoring system and method |
US4783748A (en) | 1983-12-09 | 1988-11-08 | Quadlogic Controls Corporation | Method and apparatus for remote measurement |
JPH0736988B2 (en) | 1984-05-18 | 1995-04-26 | 東京瓦斯株式会社 | Mobile robot in pipe and its control system |
CH667557A5 (en) | 1985-03-14 | 1988-10-14 | Sprecher Energie Ag | HIGH VOLTAGE SWITCHGEAR. |
US4558595A (en) | 1985-03-29 | 1985-12-17 | Honeywell Inc. | Capacitance monitoring bridge circuit for an enthalpy responsive device |
US4758774A (en) | 1985-04-29 | 1988-07-19 | Special Instruments Laboratory, Incorporated | Portable tester and related method for determining the primary winding to secondary winding current ratio of an in-service current transformer |
DE3525903A1 (en) | 1985-07-19 | 1987-01-29 | Ngk Spark Plug Co | GASSONDE |
US4757416A (en) | 1986-07-01 | 1988-07-12 | Basler Electric Company | Protective apparatus, methods of operating same and phase window adjusting apparatus for use therein |
US4746809A (en) | 1986-10-30 | 1988-05-24 | Pittway Corporation | AC power line signaling system |
FR2614481B1 (en) | 1987-02-13 | 1990-08-31 | Pk I | METHOD FOR CONTROLLING AN ASYNCHRONOUS MOTOR AND ELECTRIC DRIVE IMPLEMENTING THIS METHOD |
USD301331S (en) | 1987-04-30 | 1989-05-30 | Rhodin Goran C | Combined battery charger and relay |
US4754365A (en) | 1987-06-15 | 1988-06-28 | Fischer & Porter Company | Differential pressure transducer |
US5099193A (en) | 1987-07-30 | 1992-03-24 | Lutron Electronics Co., Inc. | Remotely controllable power control system |
US4939451A (en) | 1987-08-24 | 1990-07-03 | Metricom, Inc. | Wide dynamic range a.c. current sensor |
US4739229A (en) | 1987-09-18 | 1988-04-19 | Eastman Kodak Company | Apparatus for utilizing an a.c. power supply to bidirectionally drive a d.c. motor |
US4890318A (en) | 1987-10-19 | 1989-12-26 | Gte Products Corporation | Building entrance terminal |
US5006846A (en) | 1987-11-12 | 1991-04-09 | Granville J Michael | Power transmission line monitoring system |
US4874904A (en) | 1988-04-14 | 1989-10-17 | Brintec Corporation | Fiber optic faceplate assembly |
JPH0738011B2 (en) * | 1988-05-16 | 1995-04-26 | 株式会社日立製作所 | Abnormality diagnosis system for high-voltage power equipment |
US5803712A (en) | 1988-05-17 | 1998-09-08 | Patient Solutions, Inc. | Method of measuring an occlusion in an infusion device with disposable elements |
AU104272S (en) | 1988-06-16 | 1989-06-29 | Schneider Electric Ind Sa | A thermal relay housing |
US4851803A (en) | 1988-07-25 | 1989-07-25 | E-Mon Corporation | Split core insulator and locking device |
US5051601A (en) | 1988-08-23 | 1991-09-24 | Canon Kabushiki Kaisha | Electronic apparatus with light communication |
JPH0543510Y2 (en) | 1988-09-29 | 1993-11-02 | ||
US5066904A (en) | 1988-10-18 | 1991-11-19 | General Electric Company | Coaxial current sensors |
US4944187A (en) | 1988-12-23 | 1990-07-31 | Rosemount Inc. | Multimodulus pressure sensor |
US5079510A (en) | 1988-12-26 | 1992-01-07 | Nec Corporation | Meter for accurately measuring integrated electric power |
JP2521801Y2 (en) | 1989-02-17 | 1997-01-08 | 北川工業 株式会社 | Noise absorber |
US5039970A (en) | 1989-05-17 | 1991-08-13 | Minnesota Mining And Manufacturing Company | Self-aligning core for induction coil |
US4992709A (en) | 1989-06-20 | 1991-02-12 | Lightolier, Inc. | Switching circuit providing adjustable capacitive series voltage dropping circuit with a fractional horsepower motor |
US4999575A (en) | 1989-09-25 | 1991-03-12 | General Electric Company | Power supply and monitor for controlling an electrical load following a power outage |
US5014908A (en) | 1989-11-27 | 1991-05-14 | Emerson Electric Co. | Control circuit using a sulphonated fluorocarbon humidity sensor |
CA2004866C (en) | 1989-12-21 | 1994-03-01 | Nien Ming | Attachable hand-operated/automatic dual usage venetian blind controller |
US5181026A (en) | 1990-01-12 | 1993-01-19 | Granville Group, Inc., The | Power transmission line monitoring system |
DE4005609B4 (en) | 1990-02-22 | 2004-04-29 | Robert Bosch Gmbh | Method and device for monitoring the function of an electrical consumer |
US5003278A (en) | 1990-03-01 | 1991-03-26 | Ferrishield, Inc. | Ferrite suppressor case with retaining fingers |
DE4012109C2 (en) | 1990-04-14 | 1999-06-10 | Bosch Gmbh Robert | Device for monitoring the function of an electrical / electronic switching device, its connected consumer, a control and its connecting line |
US5122735A (en) | 1990-06-14 | 1992-06-16 | Transdata, Inc. | Digital power metering |
US5563506A (en) | 1990-07-10 | 1996-10-08 | Polymeters Response International Limited | Electricity meters using current transformers |
NO174942C (en) | 1990-12-03 | 1994-08-03 | Corrocean As | Device for mounting, respectively. disassembly of probes in process tubes, tanks, etc. |
US5196784A (en) | 1991-03-18 | 1993-03-23 | Hughes Aircraft Company | Isolated current monitoring circuit for measuring direct and high duty factor currents |
US5223790A (en) | 1991-05-10 | 1993-06-29 | Metricom, Inc. | Current sensor using current transformer with sintered primary |
US5148348A (en) | 1991-06-17 | 1992-09-15 | Westinghouse Electric Corp. | Polymeric enclosure for electrical apparatus |
JPH0599877A (en) | 1991-06-25 | 1993-04-23 | Yamatake Honeywell Co Ltd | Humidity sensing apparatus |
USD335488S (en) | 1991-07-01 | 1993-05-11 | Mitsubishi Denki Kabushiki Kaisha | Electronic trip relay |
US5384712A (en) | 1991-08-15 | 1995-01-24 | Eaton Corporation | Energy monitoring system for a plurality of local stations with snapshot polling from a central station |
US5391983A (en) | 1991-10-08 | 1995-02-21 | K C Corp. | Solid state electric power usage meter and method for determining power usage |
US5337206A (en) | 1991-10-15 | 1994-08-09 | Andrew S. Kadah | Three phase power monitor |
JP2536226Y2 (en) | 1991-12-13 | 1997-05-21 | ティーディーケイ株式会社 | Humidity sensor |
US5537029A (en) | 1992-02-21 | 1996-07-16 | Abb Power T&D Company Inc. | Method and apparatus for electronic meter testing |
US5784249A (en) | 1992-02-25 | 1998-07-21 | Pouliot; Gary J. | Electrical distribution panel with quick change electrical outlets |
US5323256A (en) | 1992-04-06 | 1994-06-21 | Banks Franklin J | Apparatus for controlling remote servoactuators using fiber optics |
US5397970A (en) | 1992-04-24 | 1995-03-14 | Texas Instruments Incorporated | Interface circuit having improved isolation among signals for use with a variable speed electrically commutated fan motor |
US5267122A (en) | 1992-06-15 | 1993-11-30 | Alcatel Network Systems, Inc. | Optical network unit |
US5753983A (en) | 1992-06-16 | 1998-05-19 | 1012384 Ontario, Inc. | Multi-function control switch for electrically operating devices |
US5347476A (en) | 1992-11-25 | 1994-09-13 | Mcbean Sr Ronald V | Instrumentation system with multiple sensor modules |
US5471359A (en) | 1993-02-25 | 1995-11-28 | Impco Inc. | Polyphase current monitor and control system |
USD354945S (en) | 1993-08-25 | 1995-01-31 | General Electric | Electronic relay unit |
US5444183A (en) | 1993-11-29 | 1995-08-22 | Eaton Corporation | Polymeric electrical enclosure with improved knockout |
FR2713781B1 (en) | 1993-12-09 | 1996-01-19 | Accumulateurs Fixes | Measuring circuit for modular set of cells electrically connected in series, in particular for electric storage battery. |
US5473234A (en) | 1993-12-28 | 1995-12-05 | Richardson; Robert H. | Level sensor and control apparatus |
US5410920A (en) | 1994-01-28 | 1995-05-02 | Veris, Inc. | Apparatus for inserting and removing a sensing element from a fluid pipeline |
US5572073A (en) | 1994-02-15 | 1996-11-05 | Intellinet, Inc. | AC power module for automation system |
US5426360A (en) | 1994-02-17 | 1995-06-20 | Niagara Mohawk Power Corporation | Secondary electrical power line parameter monitoring apparatus and system |
US5450765A (en) | 1994-03-01 | 1995-09-19 | Tdw Delaware, Inc. | Apparatus for providing signal communication between the interior and exterior of a pipeline |
US5592989A (en) | 1994-04-28 | 1997-01-14 | Landis & Gyr Powers, Inc. | Electronic thermostat having high and low voltage control capability |
US5467012A (en) | 1994-05-10 | 1995-11-14 | Load Controls Incorporated | Power monitoring |
DE19500452B4 (en) | 1995-01-10 | 2011-06-16 | Robert Bosch Gmbh | Method and device for monitoring the functionality of an idle actuator |
US5604315A (en) | 1995-01-12 | 1997-02-18 | Setra Systems, Inc. | Apparatus using a feedback network to measure fluid pressures |
US5712558A (en) | 1995-01-13 | 1998-01-27 | Saint-Cyr; Pierre | Optically actuated and controlled dimmer type light switch |
US6242993B1 (en) | 1995-03-13 | 2001-06-05 | Square D Company | Apparatus for use in arcing fault detection systems |
US5596652A (en) | 1995-03-23 | 1997-01-21 | Portable Data Technologies, Inc. | System and method for accounting for personnel at a site and system and method for providing personnel with information about an emergency site |
US5612499A (en) | 1995-05-05 | 1997-03-18 | Tdw Delaware, Inc. | Method of inserting a sensor into a pipeline |
US5808846A (en) | 1995-07-11 | 1998-09-15 | Veris Industries, Inc. | Combination current sensor and relay |
US6219216B1 (en) | 1998-04-08 | 2001-04-17 | Veris Industries | Combination current sensor and relay |
DE19528427C2 (en) | 1995-08-02 | 2000-02-17 | Wolf Geraete Gmbh Vertrieb | Safety switching device for a motor-driven garden tool |
US5920190A (en) | 1995-09-21 | 1999-07-06 | Delco Electronics Corp. | Sampled capacitor electrometer |
US6384946B1 (en) | 1995-12-22 | 2002-05-07 | Thomson Licensing S.A. | Electrical isolation between IR receiver and further electronic circuits |
US5677476A (en) | 1996-02-06 | 1997-10-14 | Endress + Hauser Conducta Gesellschaft Fuer Mess- Und Regeltechnik Mbh & Co. | Sensor and transmitter with multiple outputs |
US5909087A (en) | 1996-03-13 | 1999-06-01 | Lutron Electronics Co. Inc. | Lighting control with wireless remote control and programmability |
US6144924A (en) | 1996-05-20 | 2000-11-07 | Crane Nuclear, Inc. | Motor condition and performance analyzer |
US5672808A (en) | 1996-06-11 | 1997-09-30 | Moore Products Co. | Transducer having redundant pressure sensors |
US5705989A (en) | 1996-07-19 | 1998-01-06 | Veris Industries, Inc. | Current status circuit for a variable frequency motor |
US5994892A (en) | 1996-07-31 | 1999-11-30 | Sacramento Municipal Utility District | Integrated circuit design automatic utility meter: apparatus & method |
US5880677A (en) | 1996-10-15 | 1999-03-09 | Lestician; Guy J. | System for monitoring and controlling electrical consumption, including transceiver communicator control apparatus and alternating current control apparatus |
US6133709A (en) | 1997-01-21 | 2000-10-17 | Metrixx Limited | Signalling system |
US5995911A (en) | 1997-02-12 | 1999-11-30 | Power Measurement Ltd. | Digital sensor apparatus and system for protection, control, and management of electricity distribution systems |
US5844138A (en) | 1997-03-07 | 1998-12-01 | Veris Industries, Inc. | Humidity sensor |
US6269317B1 (en) | 1997-04-30 | 2001-07-31 | Lecroy Corporation | Self-calibration of an oscilloscope using a square-wave test signal |
US5861683A (en) | 1997-05-30 | 1999-01-19 | Eaton Corporation | Panelboard for controlling and monitoring power or energy |
DE19729402C2 (en) | 1997-07-09 | 2003-07-03 | Siemens Ag | Anti-theft system for a motor vehicle |
US5905439A (en) | 1997-09-02 | 1999-05-18 | Eastman Kodak Company | Apparatus and method for monitoring a plurality of parallel loads having a common supply |
US5920191A (en) | 1997-11-12 | 1999-07-06 | Wrap-On Company, Inc. | Current flow monitor for heating cables |
US6044430A (en) | 1997-12-17 | 2000-03-28 | Advanced Micro Devices Inc. | Real time interrupt handling for superscalar processors |
US6020702A (en) | 1998-01-12 | 2000-02-01 | Tecumseh Products Company | Single phase compressor thermostat with start relay and motor protection |
CA2227659A1 (en) | 1998-01-21 | 1999-07-21 | Patrick O'donnell | Enclosure for interfacing electrical and control or communication devices |
US6122972A (en) | 1998-03-04 | 2000-09-26 | Veris Industries | Capacitive pressure sensor with moving or shape-changing dielectric |
US6137418A (en) | 1998-03-05 | 2000-10-24 | Eaton Corporation | Single channel apparatus for on-line monitoring of three-phase AC motor stator electrical faults |
US6064192A (en) | 1998-04-08 | 2000-05-16 | Ohio Semitronics | Revenue meter with integral current transformer |
US6046550A (en) | 1998-06-22 | 2000-04-04 | Lutron Electronics Co., Inc. | Multi-zone lighting control system |
US6133723A (en) | 1998-06-29 | 2000-10-17 | E. O. Schweitzer Manufacturing Co. | Fault indicator having remote light indication of fault detection |
US6373238B2 (en) | 1998-07-06 | 2002-04-16 | Veris Industries, Llc | Three-phase electrical power measurement system including three transformers and a measurement circuit to calculate the power thereof |
US6344951B1 (en) | 1998-12-14 | 2002-02-05 | Alps Electric Co., Ltd. | Substrate having magnetoresistive elements and monitor element capable of preventing a short circuit |
US6380696B1 (en) | 1998-12-24 | 2002-04-30 | Lutron Electronics Co., Inc. | Multi-scene preset lighting controller |
USD431534S (en) | 1999-02-19 | 2000-10-03 | Holce Kent J | Combination current sensor relay housing |
USD419964S (en) | 1999-02-19 | 2000-02-01 | Holce Kent J | Combination current sensor relay housing |
US6889271B1 (en) | 1999-06-30 | 2005-05-03 | General Electric Company | Methods and apparatus for meter I/O board addressing and communication |
CA2288288A1 (en) | 1999-07-26 | 2001-01-26 | Veris Industries, Inc. | Combination current sensor and relay |
US6615147B1 (en) | 1999-08-09 | 2003-09-02 | Power Measurement Ltd. | Revenue meter with power quality features |
US6571186B1 (en) | 1999-09-14 | 2003-05-27 | Textronix, Inc. | Method of waveform time stamping for minimizing digitization artifacts in time interval distribution measurements |
AU1227901A (en) | 1999-10-21 | 2001-04-30 | Siemens Power Transmission & Distribution, Inc. | External transformer correction in an electricity meter |
US6504695B1 (en) | 2000-01-21 | 2003-01-07 | Veris Industries, Llc | Combination current sensor and relay |
US6330516B1 (en) | 2000-03-27 | 2001-12-11 | Power Distribution, Inc. | Branch circuit monitor |
AU2001253541A1 (en) | 2000-04-13 | 2001-10-30 | Genscape, Inc. | Apparatus and method for the measurement and monitoring of electrical power generation and transmission |
US6657424B1 (en) | 2000-04-24 | 2003-12-02 | Siemens Power Transmission & Distribution, Inc. | DC load detection in an electric utility meter |
DE10118231A1 (en) | 2001-04-11 | 2002-10-17 | Heidenhain Gmbh Dr Johannes | Optoelectronic component arrangement comprises an optoelectronic component arranged on a support element, a closed dam on the support element and surrounding the optoelectronic component, and a casting composition arranged inside a dam |
US7282889B2 (en) | 2001-04-19 | 2007-10-16 | Onwafer Technologies, Inc. | Maintenance unit for a sensor apparatus |
US6636028B2 (en) | 2001-06-01 | 2003-10-21 | General Electric Company | Electronic electricity meter configured to correct for transformer inaccuracies |
US7239810B2 (en) | 2001-06-13 | 2007-07-03 | Veris Industries, Llc | System for controlling an electrical device |
US6815942B2 (en) | 2001-09-25 | 2004-11-09 | Landis+Gyr, Inc. | Self-calibrating electricity meter |
US6937003B2 (en) | 2002-03-26 | 2005-08-30 | Veris Industries, Llc | Power monitoring system |
CA2366640A1 (en) | 2001-11-30 | 2003-05-30 | Veris Industries, Llc | Electrical monitoring system |
CA2366731A1 (en) | 2001-11-30 | 2003-05-30 | Veris Industries, Llc | Power monitoring system |
CA2366734A1 (en) | 2001-11-30 | 2003-05-30 | Veris Industries, Llc | Identification system |
CA98291S (en) | 2001-12-05 | 2003-05-15 | Veris Industries Llc | Current sensor array |
USD478313S1 (en) | 2002-03-26 | 2003-08-12 | Veris Industries, Llc | Current monitor |
US6737854B2 (en) | 2002-03-26 | 2004-05-18 | Veris Industries, Llc | Electrical current monitoring system with improved current sensor configuration |
US6871827B2 (en) | 2002-05-03 | 2005-03-29 | Pw Industries, Inc. | Universal electrical outlet box mounting bracket |
US6756776B2 (en) | 2002-05-28 | 2004-06-29 | Amperion, Inc. | Method and device for installing and removing a current transformer on and from a current-carrying power line |
US6774803B1 (en) | 2002-05-31 | 2004-08-10 | Ameren Corporation | Fault trip indicator and maintenance method for a circuit breaker |
US6838867B2 (en) | 2002-06-27 | 2005-01-04 | Elster Electricity, Llc | Electrical-energy meter |
WO2004073135A2 (en) | 2003-02-10 | 2004-08-26 | Briggs & Stratton Power Products Group, Llc | Monitoring system for a generator |
EP1639419B1 (en) | 2003-06-16 | 2012-08-01 | Yong Jai Kwon | A circuit for detecting electric current |
GB2408107B (en) | 2003-11-13 | 2007-02-07 | Actaris Uk Ltd | Meter for metering electrical power |
US7312964B2 (en) | 2004-02-17 | 2007-12-25 | Tchernobrivets Serguei Borissovitch | Ground-fault monitor for multiple circuits |
CA2484957A1 (en) | 2004-07-07 | 2006-01-07 | Veris Industries, Llc | Split core sensing transformer |
US7161345B2 (en) | 2004-09-09 | 2007-01-09 | Veris Industries, Llc | Power monitoring system that determines phase using a superimposed signal |
CA2484960C (en) | 2004-09-21 | 2012-01-24 | Veris Industries, Llc | Status indicator |
CA2484951A1 (en) | 2004-09-27 | 2006-03-27 | Veris Industries, Llc | Method and apparatus for phase determination |
CA2484742A1 (en) | 2004-09-28 | 2006-03-28 | Veris Industries, Llc | Electricity metering with a current transformer |
CA2487096A1 (en) | 2004-10-18 | 2006-04-18 | Veris Industries, Llc | Prioritized interrupt for waveform measurement |
US7305310B2 (en) | 2004-10-18 | 2007-12-04 | Electro Industries/Gauge Tech. | System and method for compensating for potential and current transformers in energy meters |
CA2487050A1 (en) | 2004-10-21 | 2006-04-21 | Veris Industries, Llc | Power monitor sensor |
US20060103548A1 (en) | 2004-11-01 | 2006-05-18 | Centerpoint Energy, Inc. | Current sensing bar |
US7447603B2 (en) | 2004-12-13 | 2008-11-04 | Veris Industries, Llc | Power meter |
US7352287B2 (en) | 2005-01-07 | 2008-04-01 | Veris Industries, Llc | Pneumatic controller |
US7453267B2 (en) | 2005-01-14 | 2008-11-18 | Power Measurement Ltd. | Branch circuit monitor system |
WO2007061390A1 (en) | 2005-11-28 | 2007-05-31 | Ladislav Grno | Precision flexible current sensor |
US7652871B2 (en) | 2006-01-04 | 2010-01-26 | General Electric Company | Methods and systems for electrical power sub-metering |
US7193428B1 (en) | 2006-01-19 | 2007-03-20 | Veris Industries, Llc | Low threshold current switch |
US7869169B2 (en) * | 2006-07-14 | 2011-01-11 | William Davison | Method and system of current transformer output magnitude compensation in a circuit breaker system |
US20080077336A1 (en) * | 2006-09-25 | 2008-03-27 | Roosevelt Fernandes | Power line universal monitor |
CA2609619A1 (en) | 2007-09-10 | 2009-03-10 | Veris Industries, Llc | Status indicator |
CA2609629A1 (en) | 2007-09-10 | 2009-03-10 | Veris Industries, Llc | Current switch with automatic calibration |
US8212548B2 (en) | 2008-06-02 | 2012-07-03 | Veris Industries, Llc | Branch meter with configurable sensor strip arrangement |
US20100117626A1 (en) | 2008-11-10 | 2010-05-13 | Governors America Corporation | Analog and digital indicating meter |
US8421639B2 (en) | 2008-11-21 | 2013-04-16 | Veris Industries, Llc | Branch current monitor with an alarm |
US8421443B2 (en) | 2008-11-21 | 2013-04-16 | Veris Industries, Llc | Branch current monitor with calibration |
US8212549B2 (en) | 2009-02-18 | 2012-07-03 | Hd Electric Company | Ammeter with improved current sensing |
US9335352B2 (en) | 2009-03-13 | 2016-05-10 | Veris Industries, Llc | Branch circuit monitor power measurement |
US8193803B2 (en) | 2009-03-23 | 2012-06-05 | Consolidated Edison Company Of New York, Inc. | Current measuring device |
US8085055B2 (en) | 2009-04-20 | 2011-12-27 | Veris Industries, Llc | Branch current monitoring system |
US8294453B2 (en) | 2009-05-21 | 2012-10-23 | Veris Industries, Llc | Externally reporting branch power monitoring system |
US8624578B2 (en) | 2009-06-04 | 2014-01-07 | Veris Industries, Llc | Branch current monitor with configuration |
EP2452415B1 (en) * | 2009-07-08 | 2015-09-02 | ABB Research Ltd. | Bus condition monitoring system |
AU2010201974A1 (en) | 2009-10-23 | 2011-05-12 | Iconstruct (Aus) Pty Ltd | System and Method for Managing Information |
US8310370B1 (en) * | 2009-12-23 | 2012-11-13 | Southern Company Services, Inc. | Smart circuit breaker with integrated energy management interface |
JP5769927B2 (en) | 2010-01-22 | 2015-08-26 | ソニー株式会社 | Power monitoring system |
US9577443B2 (en) | 2010-06-03 | 2017-02-21 | C&C Power, Inc. | Battery system and management method |
US8878475B2 (en) | 2010-11-05 | 2014-11-04 | Stmicroelectronics, Inc. | Current limiting for a motor winding |
US9146264B2 (en) | 2011-02-25 | 2015-09-29 | Veris Industries, Llc | Current meter with on board memory |
US8405383B2 (en) | 2011-03-14 | 2013-03-26 | General Electric Company | Three-phase selectable energy meter |
CN102890186A (en) | 2011-07-20 | 2013-01-23 | 鸿富锦精密工业(深圳)有限公司 | Power testing circuit |
CA2783433C (en) | 2011-07-25 | 2020-12-15 | William Kenneth Mcgrail | Transformerinstrumentationandmeteringsystem |
CN103149519A (en) | 2011-12-06 | 2013-06-12 | 鸿富锦精密工业(深圳)有限公司 | Central processing unit (CPU) power measuring method and device |
US20130294014A1 (en) | 2012-05-02 | 2013-11-07 | Server Technology, Inc. | Relay with integrated power sensor |
US8610438B1 (en) | 2012-08-09 | 2013-12-17 | Precision Air & Energy Services, LLC | Branch circuit monitor |
US9506952B2 (en) * | 2012-12-31 | 2016-11-29 | Veris Industries, Llc | Power meter with automatic configuration |
US9395344B2 (en) | 2013-02-06 | 2016-07-19 | Veris Industries, Llc | Gas sensor with thermal measurement compensation |
US9329659B2 (en) | 2013-02-06 | 2016-05-03 | Veris Industries, Llc | Power monitoring system that determines frequency and phase relationships |
US8964360B2 (en) | 2013-02-06 | 2015-02-24 | Jonathan D. Trout | System to connect and multiplex sensor signals |
US20150028848A1 (en) | 2013-07-25 | 2015-01-29 | Bractlet, LLC | Wireless Monitoring of Power Draw from Individual Breakers Within a Circuit Breaker Panel |
US9424975B2 (en) | 2013-08-23 | 2016-08-23 | Veris Industries, Llc | Split core transformer with self-aligning cores |
US9588148B2 (en) | 2014-01-23 | 2017-03-07 | Veris Industries, Llc | Input circuit for current transformer |
US9607749B2 (en) | 2014-01-23 | 2017-03-28 | Veris Industries, Llc | Split core current transformer |
US9864008B2 (en) * | 2014-03-31 | 2018-01-09 | Schweitzer Engineering Laboratories, Inc. | Electric power system circuit breaker trip diagnostic |
US20150293549A1 (en) | 2014-04-14 | 2015-10-15 | Eaton Corporation | Load panel system |
EP3195422A4 (en) | 2014-07-25 | 2018-04-11 | Selec Controls Pvt. Ltd. | Current transformer assembly with attachable functional adaptor |
EP3289368A4 (en) | 2015-04-27 | 2018-12-26 | Raritan Americas, Inc. | Modular power metering system |
US10705126B2 (en) * | 2017-05-19 | 2020-07-07 | Veris Industries, Llc | Energy metering with temperature monitoring |
-
2017
- 2017-10-24 US US15/792,573 patent/US10705126B2/en active Active
-
2018
- 2018-05-17 WO PCT/US2018/033119 patent/WO2018213536A1/en active Application Filing
- 2018-05-17 US US16/613,234 patent/US11085955B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
US10705126B2 (en) | 2020-07-07 |
US11085955B2 (en) | 2021-08-10 |
US20180335456A1 (en) | 2018-11-22 |
US20210173645A9 (en) | 2021-06-10 |
WO2018213536A1 (en) | 2018-11-22 |
US20200142695A1 (en) | 2020-05-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11085955B2 (en) | Energy metering system with temperature monitoring based on circuit breakers of power panel likely to trip | |
US11215650B2 (en) | Phase aligned branch energy meter | |
US8421639B2 (en) | Branch current monitor with an alarm | |
US8624578B2 (en) | Branch current monitor with configuration | |
US10274572B2 (en) | Calibration system for a power meter | |
US11770006B2 (en) | Integrated electrical panel | |
US9335352B2 (en) | Branch circuit monitor power measurement | |
US10408911B2 (en) | Network configurable system for a power meter | |
US11137421B1 (en) | Non-contact voltage sensing system | |
US9804211B2 (en) | Indicators for a power meter | |
CA2558793A1 (en) | High-density metering system | |
KR20130102091A (en) | Measuring system for monitoring at least one phase of a system | |
KR20090126488A (en) | A assembled power distriburting unit making possible monitoring | |
US20170184641A1 (en) | Configuration system for a power meter | |
WO1999046606A2 (en) | Electrical power metering system | |
US9778290B2 (en) | Branch current monitor with reconfiguration | |
KR101208351B1 (en) | Split type mesuring device | |
US11293955B2 (en) | Energy metering for a building | |
JP6868817B2 (en) | Information presentation system, distribution board, information presentation method, and program | |
US10371730B2 (en) | Branch current monitor with client level access | |
US20240356312A1 (en) | Electrical panelboard with arc fault protection and user interface | |
JP2010151488A (en) | Device and system for detecting ground fault |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: VERIS INDUSTRIES, LLC, OREGON Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:COOK, MARTIN;REEL/FRAME:050996/0357 Effective date: 20171127 Owner name: VERIS INDUSTRIES, LLC, OREGON Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:COOK, MARTIN;REEL/FRAME:050996/0502 Effective date: 20171127 |
|
FEPP | Fee payment procedure |
Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
FEPP | Fee payment procedure |
Free format text: PETITION RELATED TO MAINTENANCE FEES GRANTED (ORIGINAL EVENT CODE: PTGR); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
FEPP | Fee payment procedure |
Free format text: PETITION RELATED TO MAINTENANCE FEES GRANTED (ORIGINAL EVENT CODE: PTGR); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT RECEIVED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |