US20210032812A1 - Bleaching and shive reduction process for non-wood fibers - Google Patents
Bleaching and shive reduction process for non-wood fibers Download PDFInfo
- Publication number
- US20210032812A1 US20210032812A1 US17/074,768 US202017074768A US2021032812A1 US 20210032812 A1 US20210032812 A1 US 20210032812A1 US 202017074768 A US202017074768 A US 202017074768A US 2021032812 A1 US2021032812 A1 US 2021032812A1
- Authority
- US
- United States
- Prior art keywords
- fibers
- wipe
- web
- nonwoven fabric
- product
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229920002522 Wood fibre Polymers 0.000 title abstract description 39
- 239000002025 wood fiber Substances 0.000 title abstract description 39
- 238000004061 bleaching Methods 0.000 title description 48
- 238000011946 reduction process Methods 0.000 title 1
- 239000000835 fiber Substances 0.000 claims abstract description 379
- 238000000034 method Methods 0.000 claims abstract description 100
- 238000005282 brightening Methods 0.000 claims abstract description 70
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical group O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 claims abstract description 63
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 54
- 229910001882 dioxygen Inorganic materials 0.000 claims abstract description 48
- 239000004745 nonwoven fabric Substances 0.000 claims abstract description 48
- -1 peroxide compound Chemical class 0.000 claims abstract description 36
- 239000004744 fabric Substances 0.000 claims abstract description 8
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 59
- 239000001301 oxygen Substances 0.000 claims description 59
- 229910052760 oxygen Inorganic materials 0.000 claims description 59
- 241000208202 Linaceae Species 0.000 claims description 40
- 235000004431 Linum usitatissimum Nutrition 0.000 claims description 40
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 23
- 239000004753 textile Substances 0.000 claims description 21
- 230000001681 protective effect Effects 0.000 claims description 13
- 238000012360 testing method Methods 0.000 claims description 12
- 244000025254 Cannabis sativa Species 0.000 claims description 10
- 235000012766 Cannabis sativa ssp. sativa var. sativa Nutrition 0.000 claims description 10
- 235000012765 Cannabis sativa ssp. sativa var. spontanea Nutrition 0.000 claims description 10
- 235000009120 camo Nutrition 0.000 claims description 10
- 235000005607 chanvre indien Nutrition 0.000 claims description 10
- 238000004140 cleaning Methods 0.000 claims description 10
- 239000011487 hemp Substances 0.000 claims description 10
- 229920001169 thermoplastic Polymers 0.000 claims description 10
- 239000004416 thermosoftening plastic Substances 0.000 claims description 10
- 240000008564 Boehmeria nivea Species 0.000 claims description 8
- 240000000797 Hibiscus cannabinus Species 0.000 claims description 8
- 229920003043 Cellulose fiber Polymers 0.000 claims description 7
- 240000000491 Corchorus aestuans Species 0.000 claims description 7
- 235000011777 Corchorus aestuans Nutrition 0.000 claims description 7
- 235000010862 Corchorus capsularis Nutrition 0.000 claims description 7
- 240000005622 Spartium junceum Species 0.000 claims description 7
- 235000007235 Spartium junceum Nutrition 0.000 claims description 7
- 244000274883 Urtica dioica Species 0.000 claims description 7
- 235000009108 Urtica dioica Nutrition 0.000 claims description 7
- 238000009413 insulation Methods 0.000 claims description 7
- 229920000742 Cotton Polymers 0.000 claims description 6
- 230000000249 desinfective effect Effects 0.000 claims description 5
- 239000003921 oil Substances 0.000 claims description 5
- 239000004627 regenerated cellulose Substances 0.000 claims description 5
- 239000002537 cosmetic Substances 0.000 claims description 4
- 238000001914 filtration Methods 0.000 claims description 4
- 239000012530 fluid Substances 0.000 claims description 4
- 235000013305 food Nutrition 0.000 claims description 4
- 239000004746 geotextile Substances 0.000 claims description 4
- 239000011521 glass Substances 0.000 claims description 4
- 239000010985 leather Substances 0.000 claims description 4
- 230000000474 nursing effect Effects 0.000 claims description 4
- 238000005498 polishing Methods 0.000 claims description 4
- 230000001012 protector Effects 0.000 claims description 4
- 239000002594 sorbent Substances 0.000 claims description 4
- 229920002994 synthetic fiber Polymers 0.000 claims description 4
- 239000012209 synthetic fiber Substances 0.000 claims description 4
- 229920001131 Pulp (paper) Polymers 0.000 claims 3
- KFSLWBXXFJQRDL-UHFFFAOYSA-N Peracetic acid Chemical compound CC(=O)OO KFSLWBXXFJQRDL-UHFFFAOYSA-N 0.000 abstract description 72
- 239000000203 mixture Substances 0.000 abstract description 65
- 230000008569 process Effects 0.000 description 36
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 34
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 33
- 239000001814 pectin Substances 0.000 description 29
- 229920001277 pectin Polymers 0.000 description 29
- 235000010987 pectin Nutrition 0.000 description 29
- 239000000047 product Substances 0.000 description 29
- 239000000126 substance Substances 0.000 description 28
- BGRWYDHXPHLNKA-UHFFFAOYSA-N Tetraacetylethylenediamine Chemical compound CC(=O)N(C(C)=O)CCN(C(C)=O)C(C)=O BGRWYDHXPHLNKA-UHFFFAOYSA-N 0.000 description 27
- 150000002978 peroxides Chemical class 0.000 description 22
- 241000196324 Embryophyta Species 0.000 description 21
- 238000012545 processing Methods 0.000 description 21
- 239000000523 sample Substances 0.000 description 18
- 239000000123 paper Substances 0.000 description 15
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 13
- 150000001875 compounds Chemical class 0.000 description 13
- 239000000654 additive Substances 0.000 description 12
- 235000011121 sodium hydroxide Nutrition 0.000 description 11
- 239000006172 buffering agent Substances 0.000 description 9
- 239000011162 core material Substances 0.000 description 9
- 239000006185 dispersion Substances 0.000 description 9
- 239000000463 material Substances 0.000 description 9
- 238000009895 reductive bleaching Methods 0.000 description 9
- QPCDCPDFJACHGM-UHFFFAOYSA-N N,N-bis{2-[bis(carboxymethyl)amino]ethyl}glycine Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(=O)O)CCN(CC(O)=O)CC(O)=O QPCDCPDFJACHGM-UHFFFAOYSA-N 0.000 description 8
- 239000000853 adhesive Substances 0.000 description 8
- 230000001070 adhesive effect Effects 0.000 description 8
- 239000007844 bleaching agent Substances 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 8
- 229920000642 polymer Polymers 0.000 description 8
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 7
- 238000002156 mixing Methods 0.000 description 7
- 229960003330 pentetic acid Drugs 0.000 description 7
- 239000000243 solution Substances 0.000 description 7
- LWIHDJKSTIGBAC-UHFFFAOYSA-K tripotassium phosphate Chemical compound [K+].[K+].[K+].[O-]P([O-])([O-])=O LWIHDJKSTIGBAC-UHFFFAOYSA-K 0.000 description 7
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 6
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 6
- 239000003638 chemical reducing agent Substances 0.000 description 6
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 6
- 229960003390 magnesium sulfate Drugs 0.000 description 6
- 235000019341 magnesium sulphate Nutrition 0.000 description 6
- 239000004094 surface-active agent Substances 0.000 description 6
- 239000002023 wood Substances 0.000 description 6
- VKZRWSNIWNFCIQ-UHFFFAOYSA-N 2-[2-(1,2-dicarboxyethylamino)ethylamino]butanedioic acid Chemical compound OC(=O)CC(C(O)=O)NCCNC(C(O)=O)CC(O)=O VKZRWSNIWNFCIQ-UHFFFAOYSA-N 0.000 description 5
- 239000003518 caustics Substances 0.000 description 5
- 239000012153 distilled water Substances 0.000 description 5
- 238000001035 drying Methods 0.000 description 5
- 210000004209 hair Anatomy 0.000 description 5
- 230000000670 limiting effect Effects 0.000 description 5
- 230000014759 maintenance of location Effects 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 4
- 229920000297 Rayon Polymers 0.000 description 4
- 229920002678 cellulose Polymers 0.000 description 4
- 239000001913 cellulose Substances 0.000 description 4
- 238000001816 cooling Methods 0.000 description 4
- GRWZHXKQBITJKP-UHFFFAOYSA-L dithionite(2-) Chemical compound [O-]S(=O)S([O-])=O GRWZHXKQBITJKP-UHFFFAOYSA-L 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 239000000945 filler Substances 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 238000011065 in-situ storage Methods 0.000 description 4
- 229920005610 lignin Polymers 0.000 description 4
- 239000011777 magnesium Substances 0.000 description 4
- 150000002681 magnesium compounds Chemical class 0.000 description 4
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 4
- 239000000347 magnesium hydroxide Substances 0.000 description 4
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 4
- 235000012254 magnesium hydroxide Nutrition 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- 238000000926 separation method Methods 0.000 description 4
- 239000002002 slurry Substances 0.000 description 4
- 239000011734 sodium Substances 0.000 description 4
- JVBXVOWTABLYPX-UHFFFAOYSA-L sodium dithionite Chemical compound [Na+].[Na+].[O-]S(=O)S([O-])=O JVBXVOWTABLYPX-UHFFFAOYSA-L 0.000 description 4
- PFUVRDFDKPNGAV-UHFFFAOYSA-N sodium peroxide Chemical compound [Na+].[Na+].[O-][O-] PFUVRDFDKPNGAV-UHFFFAOYSA-N 0.000 description 4
- 239000010902 straw Substances 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- WFDIJRYMOXRFFG-UHFFFAOYSA-N Acetic anhydride Chemical compound CC(=O)OC(C)=O WFDIJRYMOXRFFG-UHFFFAOYSA-N 0.000 description 3
- 102000004190 Enzymes Human genes 0.000 description 3
- 108090000790 Enzymes Proteins 0.000 description 3
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 3
- 229920000433 Lyocell Polymers 0.000 description 3
- 241001465754 Metazoa Species 0.000 description 3
- 239000004677 Nylon Substances 0.000 description 3
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 3
- 239000004952 Polyamide Substances 0.000 description 3
- 239000004698 Polyethylene Substances 0.000 description 3
- 239000004743 Polypropylene Substances 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- 239000004115 Sodium Silicate Substances 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 238000007605 air drying Methods 0.000 description 3
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 3
- 229940024606 amino acid Drugs 0.000 description 3
- 150000001413 amino acids Chemical class 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 230000003139 buffering effect Effects 0.000 description 3
- 229910000019 calcium carbonate Inorganic materials 0.000 description 3
- 229960003563 calcium carbonate Drugs 0.000 description 3
- 235000010216 calcium carbonate Nutrition 0.000 description 3
- 238000009960 carding Methods 0.000 description 3
- 238000011109 contamination Methods 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 3
- BNIILDVGGAEEIG-UHFFFAOYSA-L disodium hydrogen phosphate Chemical compound [Na+].[Na+].OP([O-])([O-])=O BNIILDVGGAEEIG-UHFFFAOYSA-L 0.000 description 3
- 229960001484 edetic acid Drugs 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000002657 fibrous material Substances 0.000 description 3
- 239000011121 hardwood Substances 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 229910052749 magnesium Inorganic materials 0.000 description 3
- 159000000003 magnesium salts Chemical class 0.000 description 3
- 229940091250 magnesium supplement Drugs 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 229920001778 nylon Polymers 0.000 description 3
- 238000009896 oxidative bleaching Methods 0.000 description 3
- 230000036961 partial effect Effects 0.000 description 3
- 229920002647 polyamide Polymers 0.000 description 3
- 229920000728 polyester Polymers 0.000 description 3
- 229920000573 polyethylene Polymers 0.000 description 3
- 229920000098 polyolefin Polymers 0.000 description 3
- 229920001155 polypropylene Polymers 0.000 description 3
- 230000002829 reductive effect Effects 0.000 description 3
- 238000009991 scouring Methods 0.000 description 3
- 239000001488 sodium phosphate Substances 0.000 description 3
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 3
- 229910052911 sodium silicate Inorganic materials 0.000 description 3
- 239000011122 softwood Substances 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 230000000087 stabilizing effect Effects 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 238000010998 test method Methods 0.000 description 3
- 230000000007 visual effect Effects 0.000 description 3
- 239000000080 wetting agent Substances 0.000 description 3
- IKHGUXGNUITLKF-UHFFFAOYSA-N Acetaldehyde Chemical compound CC=O IKHGUXGNUITLKF-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical class OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 2
- 241000283707 Capra Species 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 2
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 2
- ABLZXFCXXLZCGV-UHFFFAOYSA-N Phosphorous acid Chemical class OP(O)=O ABLZXFCXXLZCGV-UHFFFAOYSA-N 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- LSNNMFCWUKXFEE-UHFFFAOYSA-N Sulfurous acid Chemical compound OS(O)=O LSNNMFCWUKXFEE-UHFFFAOYSA-N 0.000 description 2
- 239000002250 absorbent Substances 0.000 description 2
- 230000002745 absorbent Effects 0.000 description 2
- 229910052783 alkali metal Inorganic materials 0.000 description 2
- 239000003945 anionic surfactant Substances 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 2
- 239000000920 calcium hydroxide Substances 0.000 description 2
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 2
- 235000011116 calcium hydroxide Nutrition 0.000 description 2
- 230000001413 cellular effect Effects 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 239000003599 detergent Substances 0.000 description 2
- 238000007865 diluting Methods 0.000 description 2
- ZPWVASYFFYYZEW-UHFFFAOYSA-L dipotassium hydrogen phosphate Chemical compound [K+].[K+].OP([O-])([O-])=O ZPWVASYFFYYZEW-UHFFFAOYSA-L 0.000 description 2
- 235000012489 doughnuts Nutrition 0.000 description 2
- 238000010410 dusting Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 238000000855 fermentation Methods 0.000 description 2
- 230000004151 fermentation Effects 0.000 description 2
- 238000007380 fibre production Methods 0.000 description 2
- 239000003205 fragrance Substances 0.000 description 2
- 238000009897 hydrogen peroxide bleaching Methods 0.000 description 2
- 239000004615 ingredient Substances 0.000 description 2
- 239000002655 kraft paper Substances 0.000 description 2
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 2
- 239000001095 magnesium carbonate Substances 0.000 description 2
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 2
- 235000014380 magnesium carbonate Nutrition 0.000 description 2
- 239000004337 magnesium citrate Substances 0.000 description 2
- 229960005336 magnesium citrate Drugs 0.000 description 2
- 235000002538 magnesium citrate Nutrition 0.000 description 2
- 229960000816 magnesium hydroxide Drugs 0.000 description 2
- 239000000395 magnesium oxide Substances 0.000 description 2
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 2
- 229960000869 magnesium oxide Drugs 0.000 description 2
- 229940095060 magnesium tartrate Drugs 0.000 description 2
- MUZDLCBWNVUYIR-ZVGUSBNCSA-L magnesium;(2r,3r)-2,3-dihydroxybutanedioate Chemical compound [Mg+2].[O-]C(=O)[C@H](O)[C@@H](O)C([O-])=O MUZDLCBWNVUYIR-ZVGUSBNCSA-L 0.000 description 2
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 2
- 229910021645 metal ion Inorganic materials 0.000 description 2
- 244000005700 microbiome Species 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 239000006179 pH buffering agent Substances 0.000 description 2
- 239000012466 permeate Substances 0.000 description 2
- 229920002635 polyurethane Polymers 0.000 description 2
- 239000004814 polyurethane Substances 0.000 description 2
- SCVFZCLFOSHCOH-UHFFFAOYSA-M potassium acetate Chemical compound [K+].CC([O-])=O SCVFZCLFOSHCOH-UHFFFAOYSA-M 0.000 description 2
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 2
- OQZCJRJRGMMSGK-UHFFFAOYSA-M potassium metaphosphate Chemical compound [K+].[O-]P(=O)=O OQZCJRJRGMMSGK-UHFFFAOYSA-M 0.000 description 2
- 229910000160 potassium phosphate Inorganic materials 0.000 description 2
- 235000011009 potassium phosphates Nutrition 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000010926 purge Methods 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- FQENQNTWSFEDLI-UHFFFAOYSA-J sodium diphosphate Chemical compound [Na+].[Na+].[Na+].[Na+].[O-]P([O-])(=O)OP([O-])([O-])=O FQENQNTWSFEDLI-UHFFFAOYSA-J 0.000 description 2
- 229910000162 sodium phosphate Inorganic materials 0.000 description 2
- ZDQYSKICYIVCPN-UHFFFAOYSA-L sodium succinate (anhydrous) Chemical compound [Na+].[Na+].[O-]C(=O)CCC([O-])=O ZDQYSKICYIVCPN-UHFFFAOYSA-L 0.000 description 2
- GEHJYWRUCIMESM-UHFFFAOYSA-L sodium sulfite Chemical compound [Na+].[Na+].[O-]S([O-])=O GEHJYWRUCIMESM-UHFFFAOYSA-L 0.000 description 2
- OKUCEQDKBKYEJY-UHFFFAOYSA-N tert-butyl 3-(methylamino)pyrrolidine-1-carboxylate Chemical compound CNC1CCN(C(=O)OC(C)(C)C)C1 OKUCEQDKBKYEJY-UHFFFAOYSA-N 0.000 description 2
- RYCLIXPGLDDLTM-UHFFFAOYSA-J tetrapotassium;phosphonato phosphate Chemical compound [K+].[K+].[K+].[K+].[O-]P([O-])(=O)OP([O-])([O-])=O RYCLIXPGLDDLTM-UHFFFAOYSA-J 0.000 description 2
- 235000019818 tetrasodium diphosphate Nutrition 0.000 description 2
- 238000012549 training Methods 0.000 description 2
- PLSARIKBYIPYPF-UHFFFAOYSA-H trimagnesium dicitrate Chemical compound [Mg+2].[Mg+2].[Mg+2].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O.[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O PLSARIKBYIPYPF-UHFFFAOYSA-H 0.000 description 2
- RYFMWSXOAZQYPI-UHFFFAOYSA-K trisodium phosphate Chemical compound [Na+].[Na+].[Na+].[O-]P([O-])([O-])=O RYFMWSXOAZQYPI-UHFFFAOYSA-K 0.000 description 2
- 239000001993 wax Substances 0.000 description 2
- 238000005303 weighing Methods 0.000 description 2
- 210000002268 wool Anatomy 0.000 description 2
- 239000002759 woven fabric Substances 0.000 description 2
- AEQDJSLRWYMAQI-UHFFFAOYSA-N 2,3,9,10-tetramethoxy-6,8,13,13a-tetrahydro-5H-isoquinolino[2,1-b]isoquinoline Chemical compound C1CN2CC(C(=C(OC)C=C3)OC)=C3CC2C2=C1C=C(OC)C(OC)=C2 AEQDJSLRWYMAQI-UHFFFAOYSA-N 0.000 description 1
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 1
- XYLOFRFPOPXJOQ-UHFFFAOYSA-N 2-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]-3-(piperazine-1-carbonyl)pyrazol-1-yl]-1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethanone Chemical compound O=C(Cn1cc(c(n1)C(=O)N1CCNCC1)-c1cnc(NC2Cc3ccccc3C2)nc1)N1CCc2n[nH]nc2C1 XYLOFRFPOPXJOQ-UHFFFAOYSA-N 0.000 description 1
- CYDQOEWLBCCFJZ-UHFFFAOYSA-N 4-(4-fluorophenyl)oxane-4-carboxylic acid Chemical compound C=1C=C(F)C=CC=1C1(C(=O)O)CCOCC1 CYDQOEWLBCCFJZ-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- 244000198134 Agave sisalana Species 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 239000001736 Calcium glycerylphosphate Substances 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 244000146553 Ceiba pentandra Species 0.000 description 1
- 235000003301 Ceiba pentandra Nutrition 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- 229920002488 Hemicellulose Polymers 0.000 description 1
- 206010021639 Incontinence Diseases 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 239000004820 Pressure-sensitive adhesive Substances 0.000 description 1
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 1
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 1
- UIIMBOGNXHQVGW-DEQYMQKBSA-M Sodium bicarbonate-14C Chemical compound [Na+].O[14C]([O-])=O UIIMBOGNXHQVGW-DEQYMQKBSA-M 0.000 description 1
- DWAQJAXMDSEUJJ-UHFFFAOYSA-M Sodium bisulfite Chemical compound [Na+].OS([O-])=O DWAQJAXMDSEUJJ-UHFFFAOYSA-M 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 150000001242 acetic acid derivatives Chemical class 0.000 description 1
- WETWJCDKMRHUPV-UHFFFAOYSA-N acetyl chloride Chemical compound CC(Cl)=O WETWJCDKMRHUPV-UHFFFAOYSA-N 0.000 description 1
- 239000012346 acetyl chloride Substances 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 238000004026 adhesive bonding Methods 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 239000012670 alkaline solution Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- BWZOPYPOZJBVLQ-UHFFFAOYSA-K aluminium glycinate Chemical compound O[Al+]O.NCC([O-])=O BWZOPYPOZJBVLQ-UHFFFAOYSA-K 0.000 description 1
- 229940024546 aluminum hydroxide gel Drugs 0.000 description 1
- RJZNFXWQRHAVBP-UHFFFAOYSA-I aluminum;magnesium;pentahydroxide Chemical compound [OH-].[OH-].[OH-].[OH-].[OH-].[Mg+2].[Al+3] RJZNFXWQRHAVBP-UHFFFAOYSA-I 0.000 description 1
- SMYKVLBUSSNXMV-UHFFFAOYSA-K aluminum;trihydroxide;hydrate Chemical compound O.[OH-].[OH-].[OH-].[Al+3] SMYKVLBUSSNXMV-UHFFFAOYSA-K 0.000 description 1
- 150000001412 amines Chemical group 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- 239000002280 amphoteric surfactant Substances 0.000 description 1
- 239000004599 antimicrobial Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 229910021538 borax Inorganic materials 0.000 description 1
- 150000001642 boronic acid derivatives Chemical class 0.000 description 1
- DQXBYHZEEUGOBF-UHFFFAOYSA-N but-3-enoic acid;ethene Chemical compound C=C.OC(=O)CC=C DQXBYHZEEUGOBF-UHFFFAOYSA-N 0.000 description 1
- 235000012970 cakes Nutrition 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229960005069 calcium Drugs 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- VSGNNIFQASZAOI-UHFFFAOYSA-L calcium acetate Chemical compound [Ca+2].CC([O-])=O.CC([O-])=O VSGNNIFQASZAOI-UHFFFAOYSA-L 0.000 description 1
- 235000011092 calcium acetate Nutrition 0.000 description 1
- 239000001639 calcium acetate Substances 0.000 description 1
- 229960005147 calcium acetate Drugs 0.000 description 1
- NKWPZUCBCARRDP-UHFFFAOYSA-L calcium bicarbonate Chemical compound [Ca+2].OC([O-])=O.OC([O-])=O NKWPZUCBCARRDP-UHFFFAOYSA-L 0.000 description 1
- 229910000020 calcium bicarbonate Inorganic materials 0.000 description 1
- FNAQSUUGMSOBHW-UHFFFAOYSA-H calcium citrate Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O.[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O FNAQSUUGMSOBHW-UHFFFAOYSA-H 0.000 description 1
- 239000001354 calcium citrate Substances 0.000 description 1
- 229960004256 calcium citrate Drugs 0.000 description 1
- 239000004227 calcium gluconate Substances 0.000 description 1
- 235000013927 calcium gluconate Nutrition 0.000 description 1
- 229960004494 calcium gluconate Drugs 0.000 description 1
- UHHRFSOMMCWGSO-UHFFFAOYSA-L calcium glycerophosphate Chemical compound [Ca+2].OCC(CO)OP([O-])([O-])=O UHHRFSOMMCWGSO-UHFFFAOYSA-L 0.000 description 1
- 229940095618 calcium glycerophosphate Drugs 0.000 description 1
- 235000019299 calcium glycerylphosphate Nutrition 0.000 description 1
- 229940095643 calcium hydroxide Drugs 0.000 description 1
- MKJXYGKVIBWPFZ-UHFFFAOYSA-L calcium lactate Chemical compound [Ca+2].CC(O)C([O-])=O.CC(O)C([O-])=O MKJXYGKVIBWPFZ-UHFFFAOYSA-L 0.000 description 1
- 239000001527 calcium lactate Substances 0.000 description 1
- 235000011086 calcium lactate Nutrition 0.000 description 1
- 229960002401 calcium lactate Drugs 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 159000000007 calcium salts Chemical class 0.000 description 1
- GUPPESBEIQALOS-UHFFFAOYSA-L calcium tartrate Chemical compound [Ca+2].[O-]C(=O)C(O)C(O)C([O-])=O GUPPESBEIQALOS-UHFFFAOYSA-L 0.000 description 1
- 239000001427 calcium tartrate Substances 0.000 description 1
- 235000011035 calcium tartrate Nutrition 0.000 description 1
- NEEHYRZPVYRGPP-UHFFFAOYSA-L calcium;2,3,4,5,6-pentahydroxyhexanoate Chemical compound [Ca+2].OCC(O)C(O)C(O)C(O)C([O-])=O.OCC(O)C(O)C(O)C(O)C([O-])=O NEEHYRZPVYRGPP-UHFFFAOYSA-L 0.000 description 1
- PBUBJNYXWIDFMU-UHFFFAOYSA-L calcium;butanedioate Chemical compound [Ca+2].[O-]C(=O)CCC([O-])=O PBUBJNYXWIDFMU-UHFFFAOYSA-L 0.000 description 1
- PYSZASIZWHHPHJ-UHFFFAOYSA-L calcium;phthalate Chemical compound [Ca+2].[O-]C(=O)C1=CC=CC=C1C([O-])=O PYSZASIZWHHPHJ-UHFFFAOYSA-L 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 150000005323 carbonate salts Chemical class 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical class OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 125000002843 carboxylic acid group Chemical group 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000013522 chelant Substances 0.000 description 1
- 239000002738 chelating agent Substances 0.000 description 1
- 238000012993 chemical processing Methods 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 150000001860 citric acid derivatives Chemical class 0.000 description 1
- 239000012459 cleaning agent Substances 0.000 description 1
- 239000000306 component Substances 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000013068 control sample Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000002939 deleterious effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- GDVKFRBCXAPAQJ-UHFFFAOYSA-A dialuminum;hexamagnesium;carbonate;hexadecahydroxide Chemical compound [OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Al+3].[Al+3].[O-]C([O-])=O GDVKFRBCXAPAQJ-UHFFFAOYSA-A 0.000 description 1
- 229940061607 dibasic sodium phosphate Drugs 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- IQDGSYLLQPDQDV-UHFFFAOYSA-N dimethylazanium;chloride Chemical compound Cl.CNC IQDGSYLLQPDQDV-UHFFFAOYSA-N 0.000 description 1
- 235000019797 dipotassium phosphate Nutrition 0.000 description 1
- 229910000396 dipotassium phosphate Inorganic materials 0.000 description 1
- CVOQYKPWIVSMDC-UHFFFAOYSA-L dipotassium;butanedioate Chemical compound [K+].[K+].[O-]C(=O)CCC([O-])=O CVOQYKPWIVSMDC-UHFFFAOYSA-L 0.000 description 1
- GOMCKELMLXHYHH-UHFFFAOYSA-L dipotassium;phthalate Chemical compound [K+].[K+].[O-]C(=O)C1=CC=CC=C1C([O-])=O GOMCKELMLXHYHH-UHFFFAOYSA-L 0.000 description 1
- 235000019800 disodium phosphate Nutrition 0.000 description 1
- 229910000397 disodium phosphate Inorganic materials 0.000 description 1
- HQWKKEIVHQXCPI-UHFFFAOYSA-L disodium;phthalate Chemical compound [Na+].[Na+].[O-]C(=O)C1=CC=CC=C1C([O-])=O HQWKKEIVHQXCPI-UHFFFAOYSA-L 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 235000021463 dry cake Nutrition 0.000 description 1
- 230000002500 effect on skin Effects 0.000 description 1
- 239000003974 emollient agent Substances 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 239000005038 ethylene vinyl acetate Substances 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- 229960002989 glutamic acid Drugs 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000013038 hand mixing Methods 0.000 description 1
- 239000003906 humectant Substances 0.000 description 1
- 229960001545 hydrotalcite Drugs 0.000 description 1
- 229910001701 hydrotalcite Inorganic materials 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 239000011256 inorganic filler Substances 0.000 description 1
- 229910003475 inorganic filler Inorganic materials 0.000 description 1
- 229920000126 latex Polymers 0.000 description 1
- 239000004816 latex Substances 0.000 description 1
- 229920000092 linear low density polyethylene Polymers 0.000 description 1
- 239000004707 linear low-density polyethylene Substances 0.000 description 1
- UEGPKNKPLBYCNK-UHFFFAOYSA-L magnesium acetate Chemical compound [Mg+2].CC([O-])=O.CC([O-])=O UEGPKNKPLBYCNK-UHFFFAOYSA-L 0.000 description 1
- 239000011654 magnesium acetate Substances 0.000 description 1
- 235000011285 magnesium acetate Nutrition 0.000 description 1
- 229940069446 magnesium acetate Drugs 0.000 description 1
- 229940074358 magnesium ascorbate Drugs 0.000 description 1
- QWDJLDTYWNBUKE-UHFFFAOYSA-L magnesium bicarbonate Chemical compound [Mg+2].OC([O-])=O.OC([O-])=O QWDJLDTYWNBUKE-UHFFFAOYSA-L 0.000 description 1
- 239000002370 magnesium bicarbonate Substances 0.000 description 1
- 235000014824 magnesium bicarbonate Nutrition 0.000 description 1
- 229910000022 magnesium bicarbonate Inorganic materials 0.000 description 1
- 229960001708 magnesium carbonate Drugs 0.000 description 1
- 229910001629 magnesium chloride Inorganic materials 0.000 description 1
- 229960002337 magnesium chloride Drugs 0.000 description 1
- 239000001755 magnesium gluconate Substances 0.000 description 1
- 235000015778 magnesium gluconate Nutrition 0.000 description 1
- 229960003035 magnesium gluconate Drugs 0.000 description 1
- 229940004916 magnesium glycinate Drugs 0.000 description 1
- OVGXLJDWSLQDRT-UHFFFAOYSA-L magnesium lactate Chemical compound [Mg+2].CC(O)C([O-])=O.CC(O)C([O-])=O OVGXLJDWSLQDRT-UHFFFAOYSA-L 0.000 description 1
- 239000000626 magnesium lactate Substances 0.000 description 1
- 235000015229 magnesium lactate Nutrition 0.000 description 1
- 229960004658 magnesium lactate Drugs 0.000 description 1
- JFQQIWNDAXACSR-UHFFFAOYSA-L magnesium malate Chemical compound [Mg+2].[O-]C(=O)C(O)CC([O-])=O JFQQIWNDAXACSR-UHFFFAOYSA-L 0.000 description 1
- 229940096424 magnesium malate Drugs 0.000 description 1
- QWLHYYKDLOVBNV-UHFFFAOYSA-L magnesium orotate Chemical compound [Mg+2].[O-]C(=O)C1=CC(=O)NC(=O)N1.[O-]C(=O)C1=CC(=O)NC(=O)N1 QWLHYYKDLOVBNV-UHFFFAOYSA-L 0.000 description 1
- 229960000407 magnesium orotate Drugs 0.000 description 1
- HCWCAKKEBCNQJP-UHFFFAOYSA-N magnesium orthosilicate Chemical compound [Mg+2].[Mg+2].[O-][Si]([O-])([O-])[O-] HCWCAKKEBCNQJP-UHFFFAOYSA-N 0.000 description 1
- GVALZJMUIHGIMD-UHFFFAOYSA-H magnesium phosphate Chemical compound [Mg+2].[Mg+2].[Mg+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O GVALZJMUIHGIMD-UHFFFAOYSA-H 0.000 description 1
- 239000004137 magnesium phosphate Substances 0.000 description 1
- 229960002261 magnesium phosphate Drugs 0.000 description 1
- 229910000157 magnesium phosphate Inorganic materials 0.000 description 1
- 235000010994 magnesium phosphates Nutrition 0.000 description 1
- 239000000391 magnesium silicate Substances 0.000 description 1
- 229910052919 magnesium silicate Inorganic materials 0.000 description 1
- 235000019792 magnesium silicate Nutrition 0.000 description 1
- 229960002366 magnesium silicate Drugs 0.000 description 1
- AIOKQVJVNPDJKA-ZZMNMWMASA-L magnesium;(2r)-2-[(1s)-1,2-dihydroxyethyl]-4-hydroxy-5-oxo-2h-furan-3-olate Chemical compound [Mg+2].OC[C@H](O)[C@H]1OC(=O)C(O)=C1[O-].OC[C@H](O)[C@H]1OC(=O)C(O)=C1[O-] AIOKQVJVNPDJKA-ZZMNMWMASA-L 0.000 description 1
- IAKLPCRFBAZVRW-XRDLMGPZSA-L magnesium;(2r,3s,4r,5r)-2,3,4,5,6-pentahydroxyhexanoate;hydrate Chemical compound O.[Mg+2].OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C([O-])=O.OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C([O-])=O IAKLPCRFBAZVRW-XRDLMGPZSA-L 0.000 description 1
- QUIOHQITLKCGNW-TYYBGVCCSA-L magnesium;(e)-but-2-enedioate Chemical compound [Mg+2].[O-]C(=O)\C=C\C([O-])=O QUIOHQITLKCGNW-TYYBGVCCSA-L 0.000 description 1
- AACACXATQSKRQG-UHFFFAOYSA-L magnesium;2-aminoacetate Chemical compound [Mg+2].NCC([O-])=O.NCC([O-])=O AACACXATQSKRQG-UHFFFAOYSA-L 0.000 description 1
- APLYTANMTDCWTA-UHFFFAOYSA-L magnesium;phthalate Chemical compound [Mg+2].[O-]C(=O)C1=CC=CC=C1C([O-])=O APLYTANMTDCWTA-UHFFFAOYSA-L 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000013208 measuring procedure Methods 0.000 description 1
- 238000010297 mechanical methods and process Methods 0.000 description 1
- 230000005226 mechanical processes and functions Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- JCXJVPUVTGWSNB-UHFFFAOYSA-N nitrogen dioxide Inorganic materials O=[N]=O JCXJVPUVTGWSNB-UHFFFAOYSA-N 0.000 description 1
- 239000002736 nonionic surfactant Substances 0.000 description 1
- 239000012766 organic filler Substances 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 235000021317 phosphate Nutrition 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 125000005498 phthalate group Chemical class 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 1
- 229920013639 polyalphaolefin Polymers 0.000 description 1
- 229920005646 polycarboxylate Polymers 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 239000010318 polygalacturonic acid Substances 0.000 description 1
- 229920005606 polypropylene copolymer Polymers 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 229960003975 potassium Drugs 0.000 description 1
- AVTYONGGKAJVTE-OLXYHTOASA-L potassium L-tartrate Chemical compound [K+].[K+].[O-]C(=O)[C@H](O)[C@@H](O)C([O-])=O AVTYONGGKAJVTE-OLXYHTOASA-L 0.000 description 1
- 235000011056 potassium acetate Nutrition 0.000 description 1
- 235000015497 potassium bicarbonate Nutrition 0.000 description 1
- 239000011736 potassium bicarbonate Substances 0.000 description 1
- 229910000028 potassium bicarbonate Inorganic materials 0.000 description 1
- DJEHXEMURTVAOE-UHFFFAOYSA-M potassium bisulfite Chemical compound [K+].OS([O-])=O DJEHXEMURTVAOE-UHFFFAOYSA-M 0.000 description 1
- 229940099427 potassium bisulfite Drugs 0.000 description 1
- 229910000027 potassium carbonate Inorganic materials 0.000 description 1
- 235000011181 potassium carbonates Nutrition 0.000 description 1
- 239000001508 potassium citrate Substances 0.000 description 1
- 229960002635 potassium citrate Drugs 0.000 description 1
- QEEAPRPFLLJWCF-UHFFFAOYSA-K potassium citrate (anhydrous) Chemical compound [K+].[K+].[K+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O QEEAPRPFLLJWCF-UHFFFAOYSA-K 0.000 description 1
- 235000011082 potassium citrates Nutrition 0.000 description 1
- HEZHYQDYRPUXNJ-UHFFFAOYSA-L potassium dithionite Chemical compound [K+].[K+].[O-]S(=O)S([O-])=O HEZHYQDYRPUXNJ-UHFFFAOYSA-L 0.000 description 1
- 235000010259 potassium hydrogen sulphite Nutrition 0.000 description 1
- TYJJADVDDVDEDZ-UHFFFAOYSA-M potassium hydrogencarbonate Chemical compound [K+].OC([O-])=O TYJJADVDDVDEDZ-UHFFFAOYSA-M 0.000 description 1
- 229940099402 potassium metaphosphate Drugs 0.000 description 1
- 235000019828 potassium polyphosphate Nutrition 0.000 description 1
- OTYBMLCTZGSZBG-UHFFFAOYSA-L potassium sulfate Chemical compound [K+].[K+].[O-]S([O-])(=O)=O OTYBMLCTZGSZBG-UHFFFAOYSA-L 0.000 description 1
- 229910052939 potassium sulfate Inorganic materials 0.000 description 1
- BHZRJJOHZFYXTO-UHFFFAOYSA-L potassium sulfite Chemical compound [K+].[K+].[O-]S([O-])=O BHZRJJOHZFYXTO-UHFFFAOYSA-L 0.000 description 1
- 235000011151 potassium sulphates Nutrition 0.000 description 1
- 235000019252 potassium sulphite Nutrition 0.000 description 1
- 239000001472 potassium tartrate Substances 0.000 description 1
- 229940111695 potassium tartrate Drugs 0.000 description 1
- 235000011005 potassium tartrates Nutrition 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 229960004063 propylene glycol Drugs 0.000 description 1
- 235000013772 propylene glycol Nutrition 0.000 description 1
- 239000003223 protective agent Substances 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000002964 rayon Substances 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000003352 sequestering agent Substances 0.000 description 1
- HELHAJAZNSDZJO-OLXYHTOASA-L sodium L-tartrate Chemical compound [Na+].[Na+].[O-]C(=O)[C@H](O)[C@@H](O)C([O-])=O HELHAJAZNSDZJO-OLXYHTOASA-L 0.000 description 1
- 239000001632 sodium acetate Substances 0.000 description 1
- 235000017281 sodium acetate Nutrition 0.000 description 1
- 239000012279 sodium borohydride Substances 0.000 description 1
- 229910000033 sodium borohydride Inorganic materials 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 235000017550 sodium carbonate Nutrition 0.000 description 1
- 239000001509 sodium citrate Substances 0.000 description 1
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 1
- 235000011083 sodium citrates Nutrition 0.000 description 1
- HRZFUMHJMZEROT-UHFFFAOYSA-L sodium disulfite Chemical compound [Na+].[Na+].[O-]S(=O)S([O-])(=O)=O HRZFUMHJMZEROT-UHFFFAOYSA-L 0.000 description 1
- 235000012207 sodium gluconate Nutrition 0.000 description 1
- 239000000176 sodium gluconate Substances 0.000 description 1
- 229940005574 sodium gluconate Drugs 0.000 description 1
- 235000010267 sodium hydrogen sulphite Nutrition 0.000 description 1
- 239000001540 sodium lactate Substances 0.000 description 1
- 235000011088 sodium lactate Nutrition 0.000 description 1
- 229940005581 sodium lactate Drugs 0.000 description 1
- 235000011008 sodium phosphates Nutrition 0.000 description 1
- 235000019830 sodium polyphosphate Nutrition 0.000 description 1
- 229940048086 sodium pyrophosphate Drugs 0.000 description 1
- 159000000000 sodium salts Chemical class 0.000 description 1
- 235000018341 sodium sesquicarbonate Nutrition 0.000 description 1
- 229910000031 sodium sesquicarbonate Inorganic materials 0.000 description 1
- 229940074404 sodium succinate Drugs 0.000 description 1
- 229910052938 sodium sulfate Inorganic materials 0.000 description 1
- 235000011152 sodium sulphate Nutrition 0.000 description 1
- 235000010265 sodium sulphite Nutrition 0.000 description 1
- 239000001433 sodium tartrate Substances 0.000 description 1
- 229960002167 sodium tartrate Drugs 0.000 description 1
- 235000011004 sodium tartrates Nutrition 0.000 description 1
- 235000010339 sodium tetraborate Nutrition 0.000 description 1
- 235000019832 sodium triphosphate Nutrition 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- 150000003890 succinate salts Chemical class 0.000 description 1
- 150000003892 tartrate salts Chemical class 0.000 description 1
- 239000001577 tetrasodium phosphonato phosphate Substances 0.000 description 1
- 239000012815 thermoplastic material Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- 235000013337 tricalcium citrate Nutrition 0.000 description 1
- VLCLHFYFMCKBRP-UHFFFAOYSA-N tricalcium;diborate Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]B([O-])[O-].[O-]B([O-])[O-] VLCLHFYFMCKBRP-UHFFFAOYSA-N 0.000 description 1
- NFMWFGXCDDYTEG-UHFFFAOYSA-N trimagnesium;diborate Chemical compound [Mg+2].[Mg+2].[Mg+2].[O-]B([O-])[O-].[O-]B([O-])[O-] NFMWFGXCDDYTEG-UHFFFAOYSA-N 0.000 description 1
- WUUHFRRPHJEEKV-UHFFFAOYSA-N tripotassium borate Chemical compound [K+].[K+].[K+].[O-]B([O-])[O-] WUUHFRRPHJEEKV-UHFFFAOYSA-N 0.000 description 1
- 235000019798 tripotassium phosphate Nutrition 0.000 description 1
- 229910000404 tripotassium phosphate Inorganic materials 0.000 description 1
- BSVBQGMMJUBVOD-UHFFFAOYSA-N trisodium borate Chemical compound [Na+].[Na+].[Na+].[O-]B([O-])[O-] BSVBQGMMJUBVOD-UHFFFAOYSA-N 0.000 description 1
- 235000019801 trisodium phosphate Nutrition 0.000 description 1
- 229910000406 trisodium phosphate Inorganic materials 0.000 description 1
- WCTAGTRAWPDFQO-UHFFFAOYSA-K trisodium;hydrogen carbonate;carbonate Chemical compound [Na+].[Na+].[Na+].OC([O-])=O.[O-]C([O-])=O WCTAGTRAWPDFQO-UHFFFAOYSA-K 0.000 description 1
- 235000013311 vegetables Nutrition 0.000 description 1
- 238000004383 yellowing Methods 0.000 description 1
Images
Classifications
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21C—PRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
- D21C9/00—After-treatment of cellulose pulp, e.g. of wood pulp, or cotton linters ; Treatment of dilute or dewatered pulp or process improvement taking place after obtaining the raw cellulosic material and not provided for elsewhere
- D21C9/10—Bleaching ; Apparatus therefor
- D21C9/16—Bleaching ; Apparatus therefor with per compounds
- D21C9/163—Bleaching ; Apparatus therefor with per compounds with peroxides
-
- A—HUMAN NECESSITIES
- A47—FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
- A47L—DOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
- A47L13/00—Implements for cleaning floors, carpets, furniture, walls, or wall coverings
- A47L13/10—Scrubbing; Scouring; Cleaning; Polishing
- A47L13/16—Cloths; Pads; Sponges
-
- A—HUMAN NECESSITIES
- A47—FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
- A47L—DOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
- A47L13/00—Implements for cleaning floors, carpets, furniture, walls, or wall coverings
- A47L13/10—Scrubbing; Scouring; Cleaning; Polishing
- A47L13/16—Cloths; Pads; Sponges
- A47L13/17—Cloths; Pads; Sponges containing cleaning agents
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/40—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
- D04H1/42—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
- D04H1/425—Cellulose series
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/40—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
- D04H1/42—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
- D04H1/4266—Natural fibres not provided for in group D04H1/425
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/40—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
- D04H1/44—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling
- D04H1/46—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres
- D04H1/492—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres by fluid jet
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/40—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
- D04H1/54—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
- D04H1/56—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving in association with fibre formation, e.g. immediately following extrusion of staple fibres
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H3/00—Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
- D04H3/015—Natural yarns or filaments
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H3/00—Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
- D04H3/08—Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
- D04H3/10—Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between yarns or filaments made mechanically
- D04H3/11—Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between yarns or filaments made mechanically by fluid jet
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H3/00—Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
- D04H3/08—Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
- D04H3/16—Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between thermoplastic filaments produced in association with filament formation, e.g. immediately following extrusion
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06B—TREATING TEXTILE MATERIALS USING LIQUIDS, GASES OR VAPOURS
- D06B1/00—Applying liquids, gases or vapours onto textile materials to effect treatment, e.g. washing, dyeing, bleaching, sizing or impregnating
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06L—DRY-CLEANING, WASHING OR BLEACHING FIBRES, FILAMENTS, THREADS, YARNS, FABRICS, FEATHERS OR MADE-UP FIBROUS GOODS; BLEACHING LEATHER OR FURS
- D06L4/00—Bleaching fibres, filaments, threads, yarns, fabrics, feathers or made-up fibrous goods; Bleaching leather or furs
- D06L4/10—Bleaching fibres, filaments, threads, yarns, fabrics, feathers or made-up fibrous goods; Bleaching leather or furs using agents which develop oxygen
- D06L4/13—Bleaching fibres, filaments, threads, yarns, fabrics, feathers or made-up fibrous goods; Bleaching leather or furs using agents which develop oxygen using inorganic agents
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06L—DRY-CLEANING, WASHING OR BLEACHING FIBRES, FILAMENTS, THREADS, YARNS, FABRICS, FEATHERS OR MADE-UP FIBROUS GOODS; BLEACHING LEATHER OR FURS
- D06L4/00—Bleaching fibres, filaments, threads, yarns, fabrics, feathers or made-up fibrous goods; Bleaching leather or furs
- D06L4/30—Bleaching fibres, filaments, threads, yarns, fabrics, feathers or made-up fibrous goods; Bleaching leather or furs using reducing agents
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21C—PRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
- D21C1/00—Pretreatment of the finely-divided materials before digesting
- D21C1/04—Pretreatment of the finely-divided materials before digesting with acid reacting compounds
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21C—PRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
- D21C3/00—Pulping cellulose-containing materials
- D21C3/04—Pulping cellulose-containing materials with acids, acid salts or acid anhydrides
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21C—PRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
- D21C5/00—Other processes for obtaining cellulose, e.g. cooking cotton linters ; Processes characterised by the choice of cellulose-containing starting materials
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21C—PRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
- D21C9/00—After-treatment of cellulose pulp, e.g. of wood pulp, or cotton linters ; Treatment of dilute or dewatered pulp or process improvement taking place after obtaining the raw cellulosic material and not provided for elsewhere
- D21C9/10—Bleaching ; Apparatus therefor
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21C—PRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
- D21C9/00—After-treatment of cellulose pulp, e.g. of wood pulp, or cotton linters ; Treatment of dilute or dewatered pulp or process improvement taking place after obtaining the raw cellulosic material and not provided for elsewhere
- D21C9/10—Bleaching ; Apparatus therefor
- D21C9/1026—Other features in bleaching processes
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21C—PRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
- D21C9/00—After-treatment of cellulose pulp, e.g. of wood pulp, or cotton linters ; Treatment of dilute or dewatered pulp or process improvement taking place after obtaining the raw cellulosic material and not provided for elsewhere
- D21C9/10—Bleaching ; Apparatus therefor
- D21C9/1026—Other features in bleaching processes
- D21C9/1036—Use of compounds accelerating or improving the efficiency of the processes
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21C—PRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
- D21C9/00—After-treatment of cellulose pulp, e.g. of wood pulp, or cotton linters ; Treatment of dilute or dewatered pulp or process improvement taking place after obtaining the raw cellulosic material and not provided for elsewhere
- D21C9/10—Bleaching ; Apparatus therefor
- D21C9/147—Bleaching ; Apparatus therefor with oxygen or its allotropic modifications
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21C—PRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
- D21C9/00—After-treatment of cellulose pulp, e.g. of wood pulp, or cotton linters ; Treatment of dilute or dewatered pulp or process improvement taking place after obtaining the raw cellulosic material and not provided for elsewhere
- D21C9/10—Bleaching ; Apparatus therefor
- D21C9/16—Bleaching ; Apparatus therefor with per compounds
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21C—PRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
- D21C9/00—After-treatment of cellulose pulp, e.g. of wood pulp, or cotton linters ; Treatment of dilute or dewatered pulp or process improvement taking place after obtaining the raw cellulosic material and not provided for elsewhere
- D21C9/10—Bleaching ; Apparatus therefor
- D21C9/16—Bleaching ; Apparatus therefor with per compounds
- D21C9/166—Bleaching ; Apparatus therefor with per compounds with peracids
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H11/00—Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only
- D21H11/12—Pulp from non-woody plants or crops, e.g. cotton, flax, straw, bagasse
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H17/00—Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
- D21H17/63—Inorganic compounds
- D21H17/67—Water-insoluble compounds, e.g. fillers, pigments
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H17/00—Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
- D21H17/63—Inorganic compounds
- D21H17/67—Water-insoluble compounds, e.g. fillers, pigments
- D21H17/675—Oxides, hydroxides or carbonates
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H21/00—Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties
- D21H21/14—Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties characterised by function or properties in or on the paper
- D21H21/30—Luminescent or fluorescent substances, e.g. for optical bleaching
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H21/00—Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties
- D21H21/14—Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties characterised by function or properties in or on the paper
- D21H21/32—Bleaching agents
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H27/00—Special paper not otherwise provided for, e.g. made by multi-step processes
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H27/00—Special paper not otherwise provided for, e.g. made by multi-step processes
- D21H27/002—Tissue paper; Absorbent paper
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H27/00—Special paper not otherwise provided for, e.g. made by multi-step processes
- D21H27/002—Tissue paper; Absorbent paper
- D21H27/004—Tissue paper; Absorbent paper characterised by specific parameters
-
- D—TEXTILES; PAPER
- D10—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B2201/00—Cellulose-based fibres, e.g. vegetable fibres
- D10B2201/01—Natural vegetable fibres
-
- D—TEXTILES; PAPER
- D10—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B2201/00—Cellulose-based fibres, e.g. vegetable fibres
- D10B2201/01—Natural vegetable fibres
- D10B2201/02—Cotton
-
- D—TEXTILES; PAPER
- D10—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B2201/00—Cellulose-based fibres, e.g. vegetable fibres
- D10B2201/01—Natural vegetable fibres
- D10B2201/04—Linen
-
- D—TEXTILES; PAPER
- D10—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B2201/00—Cellulose-based fibres, e.g. vegetable fibres
- D10B2201/01—Natural vegetable fibres
- D10B2201/06—Jute
-
- D—TEXTILES; PAPER
- D10—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B2201/00—Cellulose-based fibres, e.g. vegetable fibres
- D10B2201/01—Natural vegetable fibres
- D10B2201/08—Ramie
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T442/00—Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
- Y10T442/60—Nonwoven fabric [i.e., nonwoven strand or fiber material]
Definitions
- the instant invention generally is related to methods for fiber production. More specifically, the instant invention is related to methods for non-wood fiber bleaching and shive reduction.
- Bast fibers fall into three groups: seed fibers (e.g., cotton and kapok), stem fibers (bast fibers, e.g., flax and hemp), and leaf fibers (e.g., sisal and kenaf).
- Bast fibers occur as bundles of fibers, which extend through the length of the plant stems, located between the outer epidermal “skin” layers and the inner woody core (cortex) of the plant. Therefore, bast fiber straw includes three primary concentric layers: a bark-like skin covering layer, a bast fiber layer, and an inner, woody core.
- the woody core has various names, which depends on the particular plant type. For example, the flax woody core is referred to as “shive.” Thus, “shive” refers to all woody-core materials contained in bast fiber plants.
- the bundles of fibers are embedded in a matrix of pectins, hemi-celluloses, and some lignin.
- the lignin must be degraded, for example by “retting” (partial rotting) of the straw, for example by enzymes produced by fungi (e.g., during dew-retting), or bacteria (e.g., during water-retting).
- Decortication involves mechanically bending and breaking the straw to separate the fiber bundles from the shive and skin layers, and then removing the non-fiber materials using a series of conventional mechanical cleaning stages.
- pectin is a carbohydrate polymer, which includes partially-methylated poly-galacturonic acid with free carboxylic acid groups present as calcium salts. Pectin is generally insoluble in water or acid, but may be broken down, or hydrolyzed, in an alkaline solution, such as an aqueous solution of sodium hydroxide.
- pectin-containing material or gum
- Various methods for pectin removal include degumming, or removing, the pectin-containing substances from the individual bast fiber.
- U.S. Pat. No. 2,407,227 discloses a retting process for the treatment of fibrous vegetable or plant material, such as flax, ramie, and hemp.
- the retting process employs micro-organisms and moisture to dissolve or rot away much of the cellular tissues and pectins surrounding fiber bundles, facilitating separation of the fiber bundles from the shive and other non-fiber portions of the stem.
- the waxy, resinous, or gummy binding substances present in the plant structure are removed or broken down by means of fermentation.
- Shives includes pieces of stems, “straw,” dermal tissue, epidermal tissue, and the like.
- Shives are substantially resistant to defiberizing processes, rendering their presence problematic. Even following oxidative bleaching, shives continue to have deleterious effects on the appearance, surface smoothness, ink receptivity, and brightness of a finished paper product.
- Mechanical removal of shive to the level required for a high value product involves the application of significant mechanical energy, which results in fiber breakage and generation of fines, or small cellulose particles. The fines are a yield loss, increasing the production cost. Further, the broken fibers reduce the overall fiber strength so they either cannot be used in some manufacturing processes and/or result in weak textile or paper products.
- the present invention is directed to methods of increasing the brightness of non-wood fibers and nonwoven fabrics, tissues, papers, textiles, and products produced by the methods.
- the method comprises forming a mixture of non-wood fibers and exposing the mixture to a brightening agent to produce brightened fibers.
- the brightening agent is oxygen gas, peracetic acid, a peroxide compound, or a combination thereof, to produce brightened fibers.
- Such brightened fibers have a brightness greater than the fibers of the mixture before exposure to the brightening agent as measured by MacBeth UV-C standard.
- a method of reducing the amount of residual shive in non-wood fibers comprises forming a mixture of non-wood fibers and exposing the mixture to a brightening agent to produce low-shive fibers.
- the brightening agent is oxygen gas, peracetic acid, a peroxide compound, or a combination thereof.
- Such low-shive fibers have less visible shive content than the fibers of the mixture before exposure to the brightening agent.
- a nonwoven fabric made in accordance with this method comprises brightened, non-wood fibers having a brightness greater than about 65 as measured by MacBeth UV-C standard.
- Nonwoven fabrics include air-laid, carded, spunbond, and hydroentangled substrates.
- FIG. 1 is an illustration of a method for introducing oxygen gas into a bleaching liquor using within a circulation pump to dissolve the oxygen.
- FIG. 2 is an illustration of a method for introducing oxygen gas into a mixer after the circulation pump.
- FIG. 3 is an illustration of a method for introducing oxygen gas directly into the non-wood fibers.
- FIG. 4 is an illustration of a method for exposing the non-wood fibers to oxygen gas using an internal and external liquor circulation system.
- FIG. 5 is an illustration of a method for cooling the liquor in the system of FIG. 4 .
- FIG. 6 is an illustration of a method for using gas to displace the residual liquor from the fibers in the system of FIG. 4 .
- FIG. 7 is an illustration of another method for using gas to displace the residual liquor from the fibers in the system of FIG. 4 .
- FIG. 8 is an illustration of a control system for oxygen brightening of non-wood fibers.
- FIG. 9 is a photomicrograph of control flax fibers which were chemically treated to remove pectin and hydrogen peroxide bleached.
- FIG. 10 is a photomicrograph of the flax fibers of FIG. 9 after brightening using a quantum mixer and a peroxide bleaching composition.
- FIG. 11 is a photomicrograph of the flax fibers of FIG. 9 after bleaching using a quantum mixer and dissolved oxygen.
- FIG. 12 is a photomicrograph of control flax fibers which were only chemically treated to remove pectin.
- FIG. 13 is a photomicrograph of the flax fibers of FIG. 12 after bleaching using a quantum mixer and dissolved oxygen.
- compositions comprising, “comprising,” “includes,” “including,” “has,” “having,” “contains” or “containing,” or any other variation thereof, are intended to cover a non-exclusive inclusion.
- a composition, a mixture, process, method, article, or apparatus that comprises a list of elements is not necessarily limited to only those elements but can include other elements not expressly listed or inherent to such composition, mixture, process, method, article, or apparatus.
- invention or “present invention” are non-limiting terms and not intended to refer to any single aspect of the particular invention but encompass all possible aspects as described in the specification and the claims.
- the term “about” modifying the quantity of an ingredient, component, or reactant of the invention employed refers to variation in the numerical quantity that can occur, for example, through typical measuring and liquid handling procedures used for making concentrates or solutions in the real world. Furthermore, variation can occur from inadvertent error in measuring procedures, differences in the manufacture, source, or purity of the ingredients employed to make the compositions or carry out the methods, and the like. Whether or not modified by the term “about,” the claims include equivalents to the quantities. In one aspect, the term “about” means within 10% of the reported numerical value. In another aspect, “about” means within 5% of the reported numerical value.
- percent by weight means the weight of a pure substance divided by the total dry weight of a compound or composition, multiplied by 100.
- weight is measured in grams (g).
- a composition with a total weight of 100 grams, which includes 25 grams of substance A will include substance A in 25% by weight.
- nonwoven means a web or fabric having a structure of individual fibers which are randomly interlaid, but not in an identifiable manner as is the case of a knitted or woven fabric.
- the brightened fibers in accordance with the present invention can be employed to prepare nonwoven structures and textiles.
- non-wood fibers means fibers produced by and extracted from a plant or animal, the exception that such fibers do not include wood fibers, i.e., derived from a tree, and man-made fibers formed from cellulose, e.g. viscose.
- suitable non-wood fibers are plant-based, non-wood fibers, such as bast fibers. Bast fibers include, but are not limited to, flax fibers, hemp fibers, jute fibers, ramie fibers, nettle fibers, Spanish broom fibers, kenaf plant fibers, or any combination thereof.
- Non-wood fibers include seed hair fibers, for example, cotton fibers.
- Non-wood fibers can also include animal fibers, for example, wool, goat hair, human hair, and the like.
- the term “kier” means a circular boiler or vat used in processing, bleaching and/or scouring non-wood fibers.
- the term “brightening agent” refers to oxygen gas, peracetic acid, a peroxide compound, or a combination thereof.
- other compounds and agents can be included in the brightening agent.
- additional compounds include reducing agents and magnesium sulfate.
- the brightening agent can further include other gases, for example nitrogen or carbon dioxide.
- the oxygen gas can be present as a mixture with other gases. In one example, the oxygen gas is present in the brightening agent about or in any range between about 75, 80, 85, 90, 95, and 100%.
- the term “brightness” refers to the whiteness of a composition of fibers.
- brightness is determined by the “MacBeth UV-C” test method, utilizing a Macbeth 3100 spectrophotometer, commercially available from X-Rite, Inc., Grand Rapids, MI.
- UV-C is the illuminant (lamp) used for brightness testing.
- gain means the increase in fiber brightness following a bleaching process. Brightness and gain measurements of the fibers, before and after exposure to the brightening agent, are conducted on thick pads of the fiber.
- the fiber pads are prepared by diluting the fibers to a consistency in a range between about 2% and about 10% with water, mixing to separate the fibers, and then de-watering the fibers, for example on a Buchner funnel with a filter paper, to form the fiber pad.
- the fiber pad can be further dewatered by pressing between blotters in a laboratory press and then dried on a speed dryer to form a dry cake.
- the fiber pads can then be air-dried for several days prior to brightness testing. Brightness measurements also can be done on the fiber by: 1) drying the fiber with hot air to less than 2-4% moisture, 2) carding the fiber to straighten out and align the fibers into a mat, lap or sliver, and 3) measuring the brightness of the lap, mat or sliver.
- Brightness and gain testing of the fibers according to the MacBeth UV-C brightness standard is conducted before and after exposure to the brightening agent, with the brightened fibers having a brightness greater than the fibers before exposure.
- the MacBeth test measures both TAPPI brightness and LAB whiteness.
- L* is the whiteness
- a* and b* are the color (red-green and blue-yellow).
- A* and b* values close to 0 indicate very low color/no color.
- the UV-C test measures the illuminate, including the both the ultraviolet and color components of the light.
- the term “consistency” means to the percent (%) solid in a composition comprising a solid in a liquid carrier. For example, the consistency of a fiber slurry/fiber mat/fiber mass/fiber donut weighing 100 grams and comprising 50 grams of fibers has a consistency of 50%.
- cellulose fibers As used herein, the terms “cellulose fibers,” “cellulosic fibers,” and the like refer to any fibers comprising cellulose. Cellulose fibers include secondary or recycled fibers, regenerated fibers, or any combination thereof.
- Enzymes and other chemicals can be added to enhance pectin detachment from the fibers.
- U.S. Pat. Nos. 8,603,802 and 8,591,701 and Canadian Patent No. CA 2,745,606 disclose methods for pectin removal using enzymes. Following the pectin extraction step, the fibers are washed and treated with a mixture of hydrogen peroxide and sodium hydroxide to increase the brightness and whiteness of the finished fiber.
- the present disclosure is directed to a method of increasing the brightness of natural fibers, in particular, non-wood fibers.
- the method comprises forming a mixture of non-wood fibers and exposing the mixture to a brightening agent to produce brightened fibers having a brightness greater than the fibers of the mixture before exposure as measured by MacBeth UV-C standard.
- the brightening agent comprises oxygen gas, peracetic acid, a peroxide compound, or a combination thereof.
- the present disclosure is directed to a method of reducing the amount of residual shive in non-wood fibers to provide low-shive fibers having less visible shive content than the fibers of the mixture before exposure.
- bast fibers One category of non-wood fibers is bast fibers. Bast fibers are found in the stalks of the flax, hemp, jute, ramie, nettle, Spanish broom, and kenaf plants, to name only a few. Typically, native state bast fibers are 1 to 4 meters in length. These long native state fibers are comprised of bundles of straight individual fibers that have lengths between 20-100 millimeters (mm). The bundled individual fibers are glued together by pectins.
- Bast fibers bundles can be used for both woven textiles and cordage.
- An example of a woven textile produced with flax bast fiber bundles is linen. More recently, as provided in U.S. Pat. No. 7,481,843, which is incorporated herein in its entirety by reference, partially separated bast fiber is produced to form yarns and threads for woven textiles. However, yarns and threads are not suited for nonwoven fabrics.
- any non-wood fibers can be used.
- suitable fibers include cotton fibers, bast fibers, or any combination thereof.
- Bast fibers can be derived from a variety of raw materials.
- suitable bast fibers include, but are not limited to, flax fibers, hemp fibers, jute fibers, ramie fibers, nettle fibers, Spanish broom fibers, kenaf plant fibers, or any combination thereof.
- Non-wood fibers can also include animal fibers, for example, wool, goat hair, human hair, and the like.
- pectin can be substantially removed from the non-wood, plant-based fibers to form substantially individualized fibers.
- the fibers are rendered substantially straight and are substantially pectin-free.
- the fibers can be individualized, by pectin removal, using mechanical or chemical means.
- Enzymatic treatment is a non-limiting example of a chemical treatment that can be used to substantially remove pectin.
- the non-wood, plant-based fibers can have a mean length in a range between about 1 and 100 mm depending on the characteristics of the particular fibers and the cut length of the plant stalks prior to chemical processing.
- the individualized non-wood, plant-based fibers have a mean length of at least 10 mm, at least 20 mm, at least 30 mm, and at least 40 mm.
- the individualized non-wood, plant-based fibers have a mean length greater than 50 mm.
- the non-wood, plant based fibers have a mean length about or in a range between about 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, and 95 mm.
- the fiber mixture can include fibers derived from one or more source, including, but not limited to, cellulosic fibers, including staple fibers, regenerated cellulose fibers, and thermoplastic fibers.
- the cellulosic fibers are secondary, recycled fibers.
- Non-limiting examples of cellulosic fibers include, but are not limited to, hardwood fibers, such as hardwood kraft fibers or hardwood sulfite fibers; softwood fibers, such as softwood kraft fibers or softwood sulfite fibers; or any combination thereof.
- Non-limiting examples of regenerated cellulose include rayon, lyocell, (e.g., TENCEL®), Viscose®, or any combination thereof. TENCEL® and Viscose® are commercially available from Lenzing Aktiengesellschaft, Lenzing, Austria.
- the mixture of non-wood fibers includes synthetic, polymeric, thermoplastic fibers, or any combination thereof.
- Thermoplastic fibers include the conventional polymeric fibers utilized in the nonwoven industry. Such fibers are formed from polymers which include, but are not limited to, a polyester such as polyethylene terephthalate; a nylon; a polyamide; a polypropylene; a polyolefin such as polypropylene or polyethylene; a blend of two or more of a polyester, a nylon, a polyamide, or a polyolefin; a bi-component composite of any two of a polyester, a nylon, a polyamide, or a polyolefin; and the like.
- An example of a bi-component composite fiber includes, but is not limited to, a fiber having a core of one polymer and a sheath comprising a polymer different from the core polymer which completely, substantially, or partially encloses the core.
- Brightness measurements of the fibers, before and after exposure to the brightening agent can be conducted on thick pads of the fiber.
- Brightness testing of the fibers according to the MacBeth UV-C brightness standard is conducted before and after exposure to the brightening agent, with the brightened fibers having a brightness greater than the fibers before exposure.
- the brightened fibers of the present invention can have a brightness in a range between about 65 and about 90 as measured by MacBeth UV-C standard.
- the brightened fibers have a brightness in a range between about 77 and about 90.
- the brightened fibers have a brightness in a range between about 80 and about 95.
- the brightened fibers have a brightness in a range between about 65 and about 85.
- the brightness gain, or increase in fiber brightness following exposure to the brightening agent is in a range between about 10 and about 60 as measured by MacBeth UV-C standard. In one aspect, the brightness gain is in a range between about 15 and about 30 as measured by MacBeth UV-C standard. In another aspect, the brightness gain is in a range between about 45 and about 55 as measured by MacBeth UV-C standard. Yet, in another aspect, the brightness gain is about or in any range between about 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, and 60 as measured by MacBeth UV-C standard.
- the brightened fibers of the present invention can be used for any nonwoven fabric products or textiles, including air-laid, carded, spunbonded, and hydroentangled substrates.
- a nonwoven fabric comprises non-wood fibers having a brightness greater than about 65 as measured by MacBeth UV-C standard.
- Nonwood fiber brightening can be accomplished by 1) retting, mechanical separation of bast fibers, scouring to remove pectin+waxes+lignin, and one or two stage brightening as disclosed herein; or 2) retting, mechanical separation of bast fibers, scouring to remove pectin+waxes+lignin, conventional peroxide or other bleaching/pre-bleaching, and one or two stage bleaching with the disclosed process.
- the non-wood fibers pre-bleached or unbleached
- Pectin removal by chemical methods can be performed before or after forming the mixture.
- the mixture can be formed into a fibrous mat, a fiber mat, a fiber pad, a thick fiber pad, a wet cake, or a “donut” when used in a kier based system.
- the mixture can then be wetted before exposing the mixture to the brightening agent.
- the mixture can be diluted to any desired consistency, wetted, and/or combined with any desired additives, non-limiting examples of which are mentioned below.
- the fibers In the mixture before exposure to the brightening agent, the fibers have a consistency in a range between about 1% and about 50%. In one aspect, the fibers in the mixture have a consistency in a range between about 10% and about 30%. In another aspect, the fibers in the mixture have a consistency in a range between about 15% and about 35%. Yet in another aspect, the fibers in the mixture have a consistency in a range between about 20% and about 40%. Still yet, in another aspect, the fibers in the mixture have a consistency about or in any range between about 1, 2, 5, 7, 10, 12, 15, 17, 20, 22, 25, 27, 30, 32, 35, 37, 40, 42, 45, 47 and 50%.
- the mixture is then exposed to a brightening agent, the brightening agent being oxygen gas, peracetic acid, a peroxide compound, or a combination thereof.
- a brightening agent being oxygen gas, peracetic acid, a peroxide compound, or a combination thereof.
- FIGS. 1-8 Non-limiting exemplary methods for exposing the mixture to the brightening agent are shown in FIGS. 1-8 (discussed in detail below).
- the fiber mixture can be exposed to the brightening agent by any suitable method.
- Pectin can be removed from the fibers before exposure to the oxygen gas, peracetic acid, and/or a peroxide compound.
- Peracetic acid (CH 3 CO 3 H) can be produced by autoxidizing acetaldehyde in the air.
- peracetic acid can be produced by reacting acetic acid with hydrogen peroxide or acetyl chloride with acetic anhydride.
- TAED tetra acetyl ethylene diamine
- the resulting peracetic acid provides an increased brightening effect compared to the alkaline hydrogen peroxide alone.
- the brightening agent further comprises a peroxide compound and an alkaline compound.
- the peroxide compound is hydrogen peroxide and the alkaline compound is sodium hydroxide or potassium hydroxide.
- Addition of the TAED produces peracetic acid.
- the fibers can be exposed to the peracetic acid before, after, or during exposure to oxygen gas, as described in detail below. As both peracetic acid and oxygen gas increase the brightness of the fibers, they can be used alone or in combination.
- the peracetic acid can be generated in situ with the fiber or can be generated by pre-mixing the various chemicals and then added to the fiber mixture.
- a peroxide compound for example hydrogen peroxide or another alkaline compound, can be present when either oxygen gas or TAED is present in the brightening agent.
- TAED When TAED is used, it can be added in an amount in a range between about 0.1 and about 1 wt. % based on the dry weight of the fibers. In one aspect, the TAED is added in an amount in a range between about 0.5 and about 5 wt. % based on the dry weight of the fibers. In another aspect, the TAED is added in an amount in a range between about 0.3 and about 3 wt. % based on the dry weight of the fibers.
- the TAED is added in an amount about or in any range between about 0.1, 0.2, 0.3, 0.5, 0.7, 1.0, 1.2, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 7.0, 8.0, 9.0, and 10.0 based on the dry weight of the fibers.
- the peroxide compound of the brightening agent can be hydrogen peroxide, sodium peroxide, or both hydrogen peroxide and sodium peroxide.
- the brightening agent can include other additional bleaching components, for example other peroxide compounds and an alkaline compound.
- suitable peroxide compounds include hydrogen peroxide, sodium peroxide, or both hydrogen peroxide and sodium peroxide.
- Suitable alkaline compounds include, but are not limited to, sodium hydroxide, potassium hydroxide, calcium hydroxide, monoethanolamine, ammonia, or any combination thereof.
- the brightening agent pH can be adjusted to an initial pH in a range between about 9 and about 12.
- the initial pH is in a range between about 10 and about 10.5.
- the initial pH is in a range between about 9.5 and about 10.5.
- the initial pH is in a range about or in any range between about 8, 8.5, 9, 9.5, 10, 10.5, and 11.
- Additional pH buffering agents can be included to adjust the mixture to the desired pH. Sodium hydroxide and/or magnesium hydroxide can be used.
- FIG. 1 illustrates an exemplary method 100 of exposing the fiber mixture to the brightening agent, which includes oxygen gas alone, or in combination with peracetic acid.
- Peracetic acid can be added or generated in situ in the bleaching liquor 140 as described above.
- the non-wood fibers can be disposed within a fiber processing Kier 120 .
- the bleaching liquor 140 which can include additional components such as the peroxide compound, peracetic acid, TAED, or the alkaline compound, can be introduced and circulated through the system and the fibers with a liquor circulation pump 130 .
- the oxygen gas 110 is injected into the bleaching liquor circulation pump 130 , which acts to mix and dissolve the oxygen gas 110 into the bleaching liquor 140 .
- the oxygen gas 110 can be injected until the desired system pressure or partial oxygen pressure is achieved, or until the oxygen is dissolved in the solution, forming a dissolved oxygen solution. Alternatively, a low, continuous flow of oxygen gas 110 can be maintained throughout the process.
- FIG. 2 illustrates an exemplary method 200 of exposing the fiber mixture to the brightening agent.
- the oxygen gas 110 can be introduced into a static or active mixing system 210 after the liquor circulation pump 130 .
- FIG. 3 illustrates an exemplary method 300 of exposing the fiber mixture to the brightening agent.
- oxygen gas 110 is directly introduced into top of the fiber processing Kier 120 .
- the oxygen gas 110 permeates the fibers, which can be in the form of a “fiber mat,” to react with the chromophores and shive, reducing the content of shive.
- FIG. 4 illustrates an exemplary method 400 of exposing the fiber mixture to the brightening agent.
- Method 400 has an additional internal circulation system 410 in addition to the external liquor circulation systems of methods 100 , 200 , and 300 using the liquor circulation pump 130 .
- Oxygen gas 110 is injected into the liquor feed line 420 after the liquor circulation pump 130 which goes directly into the intake of the internal pump 412 .
- the entrained oxygen gas 110 enters the impeller 414 , which mixes and dissolves the oxygen gas 110 in the bleaching liquor 140 .
- the bleaching liquor 140 along with the dissolved oxygen gas 110 then enters the center shaft 416 of the basket and then travels and circulates through the fiber mass within the fiber processing Kier 120 .
- FIG. 5 is an illustration of a method 500 for cooling the liquor in the method 400 shown in FIG. 4 .
- the bleaching liquor 140 from inside the fiber processing Kier 120 is cooled below the flash temperature, for example, less than about 100° C., in a noncontact heat exchanger 514 and then into a small liquor tank 516 .
- a control valve 512 controls the recirculation of the system and also holds the pressure in the system.
- the cooled liquor 520 is then is pumped back into the liquor circulation pump 130 of the external circulation system.
- the cooling system 510 allows for addition of chemicals without depressurizing and emptying the fiber processing kier 120 .
- FIG. 6 is an illustration of a method 600 for using oxygen gas to displace the residual liquor from the fibers in the method 400 shown in FIG. 4 .
- the bleaching liquor 140 is drained from the fiber processing Kier 120 by using a drain valve 610 .
- oxygen gas 110 is injected directly into the center shaft 416 of the basket and diffuses through the fibers in the fiber processing Kier 130 .
- FIG. 7 is an illustration of another method 700 for using oxygen gas 110 to displace the residual liquor from the fibers in the method 400 shown in FIG. 4 .
- the bleaching liquor 140 is also drained from the fiber processing Kier 120 using a drain valve 610 .
- the fiber processing Kier 120 has an oxygen gas connection with a check valve 710 at the top of the fiber processing Kier 120 , at the bottom of the fiber processing Kier (not shown), or on the liquor circulation pump 130 (not shown).
- oxygen gas can be injected, and vented, into the system using check valve 710 .
- FIG. 8 is an illustration of a control system 800 for brightening of non-wood fibers in any kier system.
- the control system 800 has an oxygen tank or other oxygen source for injecting oxygen gas 110 .
- a pressure control device 810 controls the pressure of oxygen gas 110 from the primary source.
- An oxygen flow control device 820 then controls the flow of oxygen into the system.
- a liquor flow control device 840 after the liquor circulation pump 130 controls the flow of bleaching liquor 140 into the system.
- a pressure relief safety valve 830 limits the maximum safe pressure within the fiber processing Kier 120 .
- a Kier pressure control 850 also moderates the pressure within the fiber processing Kier 120 .
- the fiber mixture can be disposed within any closed system, including a fiber processing Kier.
- the fiber mixture is saturated with an alkaline peroxide bleaching liquor, e.g., hydrogen peroxide and sodium hydroxide, and then the system is drained and pressurized with oxygen.
- an alkaline peroxide bleaching liquor e.g., hydrogen peroxide and sodium hydroxide
- the oxygen permeates the fiber mixture, or “fiber mat,” to enhance the action of the peroxide liquor.
- the brightness of the fibers is increased compared to the fibers before exposure.
- the system can be maintained at a temperature in a range between about 50 and about 150° C. In another aspect, the system can be maintained at a temperature in a range between about 70 and about 140° C. during oxygen exposure. Yet, in another aspect, the system can be maintained at a temperature in a range between about 70 and about 130° C. during oxygen exposure. Still yet, in another aspect, the system can be maintained at a temperature about or in any range between about 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 105, 110, 115, 120, 125, 130, 135, 140, 145, and 150° C.
- the fibers can be exposed to the peracetic acid during or after exposure to the oxygen gas by addition of peracetic acid or by adding TAED to hydrogen peroxide to form peracetic acid.
- the TAED is added at the end of the oxygen exposure stage, for example after exposing the fibers to oxygen for about 30 minutes to about 60 minutes.
- the fibers are exposed to TAED or peracetic acid after exposing the fibers to oxygen for about 20 minutes to about 45 minutes.
- the fibers are exposed to TAED or peracetic acid after exposing the fibers to oxygen for about 40 minutes to about 60 minutes.
- TAED or peracetic acid can be added to the fibers at temperatures lower than the oxygen exposure.
- the temperature of TAED or peracetic acid addition can be in a range between about 60 and about 100° C.
- the temperature of TAED or peracetic acid addition to the fibers can be in a range between about 70 and about 90° C.
- the temperature of TAED or peracetic acid addition to the fibers can be in a range between about 70 and about 80° C.
- the temperature of TAED or peracetic acid addition can be about or in any range between about 60, 65, 70, 75, 80, 85, 90, 95, and 100° C.
- Magnesium compounds can be added to the mixture of non-wood fibers during exposure to the oxygen gas, peracetic acid, or combination of oxygen gas and peracetic acid.
- magnesium sulfate functions as both a stabilizer for oxidizing agents during bleaching/brightening process and as a protecting agent for the cellulose within the fibers by reducing oxidation.
- other magnesium compounds for example magnesium sulfate and magnesium hydroxide may provide both alkalinity and a buffering capacity, which may be beneficial.
- other suitable magnesium compounds can be included in the brightening agent and may include any magnesium salts or compounds including magnesium.
- Non-limiting examples of suitable magnesium compounds include magnesium hydroxide, magnesium oxide, magnesium sulfate, magnesium glycinate, magnesium ascorbate, magnesium chloride, magnesium orotate, magnesium citrate, magnesium fumarate, magnesium malate, magnesium succinate, magnesium tartrate, magnesium carbonate, or any combination thereof.
- the partial oxygen pressure is in a range between about 0.5 and about 10 Bar. Maintaining the system under pressure may promote oxygen dissolution in solution. Further, the amount of oxygen available to the fibers during brightening may promote brightening. For example, providing between about 0.1% and about 2% on fiber oxygen in the system is a factor in promoting increased brightening.
- flow control 820 can be a mass flow sensor that can be set to control the total mass of oxygen added to the kier. Oxygen gas can be added either very quickly at the beginning of the process, added slowly throughout the process, added very quickly at the end of the process, or any combination thereof.
- the fibers are exposed to at least about 0.1% on fiber oxygen during brightening.
- the fibers are exposed to at least about 1% on fiber oxygen during brightening. Yet, in another aspect, the fibers are exposed to between about 0.1 and about 10.0% on fiber oxygen during brightening. Still yet, in another aspect, the fibers are exposed to at least about or between about 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.4, 1.6, 1.8, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, and 10.0% on fiber oxygen during brightening.
- the system may be maintained under pressure, for a time sufficient to improve the brightness and reduce the shive content of the fibers without damaging the fibers.
- the system is maintained under pressure for a time in a range between about 5 and about 60 minutes.
- the system is maintained under pressure for a time in a range between about 10 and about 30 minutes.
- the system is maintained under pressure for a time in a range between about 20 and about 50 minutes.
- the system is maintained under pressure for a time about or in any range between about 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 65, 80, 85, 90, 95, 100, 105, 110, 115, and 120 minutes.
- the oxygen pressure can then be relieved or the oxygen addition can be stopped. Subsequently, the used bleaching components are removed from the system, and water can be used to rinse the system and remove residual bleaching components and dissolved compounds from the fibers.
- the brightened fibers which have a brightness greater than the fibers of the mixture before exposure, can be subjected to at least a second stage of bleaching (without oxygen, second brightening agent/second stage of brightening) to further increase the brightness.
- the additional stages of brightness can include any additional brightening agents.
- the additional brightening agent(s) can be a peroxide compound, an alkaline compound, a reducing agent, magnesium sulfate or a combination thereof.
- reductive bleaching typically is generally not effective on plant-based non-wood fibers in conventional processes.
- reductive bleaching is much less expensive than oxidative bleaching.
- a second stage of brightening/bleaching is performed using a peroxide compound and an alkaline compound. Subsequently, a reducing agent is used in a reductive bleaching stage to further increase brightness. In another aspect, a reducing agent is used in a second stage of brightening after initial brightening with oxygen gas, peracetic acid, and/or a peroxide compound.
- suitable reducing agents include sodium hydrosulfite, potassium hydrosulfite, sodium sulfite, potassium sulfite, sodium sulfate, potassium sulfate, sodium bisulfite, potassium bisulfite, sodium metasulfite, potassium metasulfite, sodium borohydride, or any combination thereof.
- the brightened fibers can be used to make nonwoven fabrics and/or textiles according to conventional processes known to those skilled in the art.
- the nonwoven fabrics, textiles, and other products can include any amount of the brightened fibers disclosed herein.
- nonwoven fabrics can include about or in any range between about 5, 10, 15, 20, 25, 30, 25, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, and 100 wt. % of the brightened fibers.
- Non-limiting examples of products include wipers (or wipes), such as wet wipers, dry wipers, or impregnated wipers, which include personal care wipers, household cleaning wipers, and dusting wipers.
- Personal care wipers can be impregnated with, e.g., emollients, humectants, fragrances, and the like.
- Household cleaning wipers or hard surface cleaning wipers can be impregnated with, e.g., surfactants (for example, quaternary amines), peroxides, chlorine, solvents, chelating agents, antimicrobials, fragrances, and the like.
- Dusting wipers can be impregnated with, e.g., oils.
- Non-limiting examples of wipers include baby wipes, cosmetic wipes, perinea wipes, disposable washcloths, household cleaning wipes, such as kitchen wipes, bath wipes, or hard surface wipes, disinfecting and germ removal wipes, specialty cleaning wipes, such as glass wipes, mirror wipes, leather wipes, electronics wipes, lens wipes, and polishing wipes, medical cleaning wipes, disinfecting wipes, and the like.
- Additional examples of products include sorbents, medical supplies, such as surgical drapes, gowns, and wound care products, personal protective products for industrial applications, such as protective coveralls, sleeve protectors, and the like, protective coverings for automotive applications, and protective coverings for marine applications.
- the nonwoven fabric can be incorporated into absorbent cores, liners, outer-covers, or other components of personal care articles, such as diapers (baby or adult), training pants, feminine care articles (pads and tampons) and nursing pads. Further, the nonwoven fabric can be incorporated into fluid filtration products, such air filters, water filters, and oil filters, home furnishings, such as furniture backing, thermal and acoustic insulation products, agricultural application products, landscaping application products, and geotextile application products.
- a nonwoven web of staple fibers can be formed by a mechanical process known as carding as described in U.S. Pat. No. 797,749, which is incorporated herein in its entirety by reference.
- the carding process can include an airstream component to randomize the orientation of the staple fibers when they are collected on the forming wire.
- a state of the art mechanical card such as the Tr ⁇ umlaut over ( ⁇ ) ⁇ tzschler-Fliessner EWK-413 card, can run staple fibers having significantly shorter length than the 38 mm noted above. Older card designs may require longer fiber length to achieve good formation and stable operation.
- Another common dry web forming process is air-laid or air-forming. This process employs only air flow, gravity, and centripetal force to deposit a stream of fibers onto a moving forming wire that conveys the fiber web to a web bonding process.
- Air-laid processes are described in U.S. Pat. Nos. 4,014,635 and 4,640,810, both of which are incorporated herein in their entirety by reference. Pulp-based air-formed nonwoven webs frequently incorporate thermoplastic fibers that melt and bond the air-laid web together when the air-formed web is passed through ovens.
- Thermal bonding is also referred to as calendar bonding, point bonding, or pattern bonding, can be used to bond a fiber web to form a nonwoven fabric. Thermal bonding can also incorporate a pattern into the fabric. Thermal bonding is described in PCT International Publication No. WO/2005/025865, which is incorporated herein by reference in its entirety. Thermal bonding requires incorporation of thermoplastic fibers into the fiber web. Examples of thermoplastic fibers are discussed above. In thermal bonding, the fiber web is bonded under pressure by passing through heated calendar rolls, which can be embossed with a pattern that transfers to the surface of the fiber web. During thermal bonding, the calendar rolls are heated to a temperature at least between the glass transition temperature (T g ) and the melting temperature (T m ) of the thermoplastic material.
- T g glass transition temperature
- T m melting temperature
- Brightened fibers are formed into an unbounded web in the wet or dry state.
- the web is formed by a method employing a mechanical card.
- the web is formed by a method employing a combination of a mechanical card and a forced air stream.
- the dry web can be bonded by hydroentangling, or hydroentanglement.
- the hydroentangled web can be treated with an aqueous adhesive and exposed to heat to bond and dry the web.
- the dry web can be bonded by mechanical needle punching and/or passing a heated air stream through the web.
- the dry web can be bonded by applying an aqueous adhesive to the unbounded web and exposing the web to heat.
- Hydroentanglement also known as spunlacing, or spunbonding, to form non-woven fabrics and substrates is well-known in the art.
- Non-limiting examples of the hydroentangling process are described in Canadian Patent No. 841,938 and U.S. Pat. Nos. 3,485,706 and 5,958,186.
- U.S. Pat. Nos. 3,485,706 and 5,958,186, respectively, are incorporated herein in their entirety.
- Hydroentangling involves forming a fiber web, either wet-laid or dry-laid, and thereafter entangling the fibers by employing very fine water jets under high pressure. For example, a plurality of rows of waterjets is directed towards the fiber web which is disposed on a moving support, such as a wire (mesh). Hydroentangling of the fibers provides distinct hydroemboss patterns, which can create low fiber count zones, facilitate water dispersion, and provide a three dimensional structure. The entangled web is then dried.
- a nonwoven fiber web of brightened fibers can be wet-laid or foam-formed in the presence of a dispersion agent.
- the dispersion agent can either be directly added to the fibers in the form of a so-called “fiber finish” or it can be added to the water system in a wet-laying or foam-forming process.
- the addition of a suitable dispersion agent assists in providing a good formation, i.e, substantially uniform fiber dispersion, of brightend fibers.
- the dispersion agent can be of many different types which provide a suitable dispersion effect on the brightened fibers or any mixture of such brightened fibers.
- a non-limiting example of a dispersion agent is a mixture of 75% bis(hydrogeneratedtallowalkyl)dimethyl ammonium chloride and 25% propyleneglycol. The addition ought to be within the range of 0.01-0.1 weight %.
- the fibers are dispersed in a foamed liquid containing a foam-forming surfactant and water, whereafter the fiber dispersion is dewatered on a support, e.g., a wire (mesh), in the same way as with wet-laying.
- a support e.g., a wire (mesh)
- the fiber web is subjected to hydroentanglement with an energy flux of about 23,000 foot-pounds per square inch per second or higher.
- the hydroentanglement is carried out using conventional techniques and with equipment supplied by machine manufacturers.
- the material is pressed and dried and, optionally, wound onto a roll. The ready material is then converted in a known way to a suitable format and is packed.
- the nonwoven fabric of the present invention can be incorporated into a laminate comprising the nonwoven fabric and a film.
- Laminates can be used in a wide variety of applications, such outer-covers for personal care products and absorbent articles, for example diapers, training paints, incontinence garments, feminine hygiene products, wound dressings, bandages, and the like.
- an adhesive is applied to a support surface of the nonwoven fabric or a surface of the film.
- suitable adhesives include sprayable latex, polyalphaolefin, (commercially available as Rextac 2730 and Rextac 2723 from Huntsman Polymers, Houston, Tex.), and ethylene vinyl acetate. Additional commercially available adhesives include, but are not limited to, those available from Bostik Findley, Inc., Wauwatosa, Wis.
- a film is fed onto the forming wire on top of the nonwoven fabric. Before application to the nonwoven fabric, the film is stretched as desired. The nonwoven fabric and film are combined and compressed in a nip to form the laminate.
- the nip can be maintained at a desired adhesive bonding temperature suitable for the adhesive employed, e.g. heat activated adhesions.
- the laminate can be cut, directed to a winder, or directed to further processing.
- another fabric can be bonded to the nonwoven fabric, which can be, for example another nonwoven fabric or a woven fabric.
- the nonwoven fabric can be a nonwoven fabric made in accordance with the present invention.
- An adhesive can be applied to either the nonwoven fabric or the another fabric before nipping to form the laminate.
- the films used in laminates can include, but are not limited to, polyethylene polymers, polyethylene copolymers, polypropylene polymers, polypropylene copolymers, polyurethane polymers, polyurethane copolymers, styrenebutadiene copolymers, or linear low density polyethylene.
- a breathable film e.g. a film comprising calcium carbonate, can be employed to form the laminate.
- a film is “breathable” if it has a water vapor transmission rate of at least 100 grams/square meter/24 hours, which can be measured, for example, by the test method described in U.S. Pat. No. 5,695,868, which is incorporated herein in its entirety by reference.
- Breathable films are not limited to films comprising calcium carbonate. Breathable films can include any filler. As used herein, “filler” is meant to include particulates and other forms of materials which will not chemically interfere with or adversely affect the film, but will be substantially uniformly dispersed throughout the film. Generally, fillers are in particulate form and spherical in shape, with average diameters in the range between about 0.1 micrometers to about 7 micrometers. Fillers include, but are not limited to, organic and inorganic fillers.
- the brightening agent or the fiber mixture includes additives.
- Suitable additives include, but are not limited to, chelants, magnesium sulfate, surfactants, wetting agents, pH buffering agents, stabilizing additives, or any combination thereof.
- the optional one or more additives can be present in a range between about 0.5 and about 5 wt. % based on the total weight of the mixture of non-wood fibers. In another aspect, one or more additives can be present in a range between about 1 and about 10 wt. %. Yet, in another aspect, one or more additives can be present in a range between about 2 and about 6 wt. %. Still yet, in another aspect, one or additives can be present in a range between about 3 and about 5 wt. %.
- the mixture of non-wood fibers can include one or more additives about or in any range between about 0.1, 0.2, 0.5, 0.7, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, and 20 wt. %.
- Suitable chelants include any metal sequestrant.
- Non-limiting examples of chelants include ethylenediamine-N,N′-disuccinic acid (EDDS) or the alkali metal, alkaline earth metal, ammonium, or substituted ammonium salts thereof, or mixtures thereof.
- EDDS compounds include the free acid form and the sodium or magnesium salt thereof. Examples of sodium salts of EDDS include Na 2 EDDS and Na 4 EDDS. Examples of such magnesium salts of EDDS include MgEDDS and Mg 2 EDDS.
- chelants include the organic phosphonates, including amino alkylene poly(alkylene phosphonate), alkali metal ethane-1-hydroxy diphosphonates, nitrile-trimethylene phosphonates, ethylene diamine tetra methylene phosphonates, and diethylene triamine penta methylene phosphonates.
- the phosphonate compounds can be present either in their acid form or as a complex of either an alkali or alkaline metal ion, the molar ratio of the metal ion to phosphonate compound being at least 1:1.
- suitable chelants include amino polycarboxylate chelants such as EDTA.
- Suitable wetting agents and/or cleaning agents include, but are not limited to, detergents and nonionic, amphoteric, and anionic surfactants, including amino acid-based surfactants.
- Amino acid-based surfactant systems such as those derived from amino acids L-glutamic acid and other natural fatty acids, offer pH compatibility to human skin and good cleansing power, while being relatively safe and providing improved tactile and moisturization properties compared to other anionic surfactants.
- Suitable buffering systems include any agents buffering agents that assist the buffering system in reducing pH changes.
- Illustrative classes of buffering agents include, but are not limited to, a salt of a Group IA metal including, for example, a bicarbonate salt of a Group IA metal, a carbonate salt of a Group IA metal, an alkaline or alkali earth metal buffering agent, an aluminum buffering agent, a calcium buffering agent, a sodium buffering agent, a magnesium buffering agent, or any combination thereof.
- Suitable buffering agents include carbonates, phosphates, bicarbonates, citrates, borates, acetates, phthalates, tartrates, succinates of any of the foregoing, for example sodium or potassium phosphate, citrate, borate, acetate, bicarbonate and carbonate, or any combination thereof.
- Non-limiting examples of suitable buffering agents include aluminum-magnesium hydroxide, aluminum glycinate, calcium acetate, calcium bicarbonate, calcium borate, calcium carbonate, calcium citrate, calcium gluconate, calcium glycerophosphate, calcium hydroxide, calcium lactate, calcium phthalate, calcium phosphate, calcium succinate, calcium tartrate, dibasic sodium phosphate, dipotassium hydrogen phosphate, dipotassium phosphate, disodium hydrogen phosphate, disodium succinate, dry aluminum hydroxide gel, magnesium acetate, magnesium aluminate, magnesium borate, magnesium bicarbonate, magnesium carbonate, magnesium citrate, magnesium gluconate, magnesium hydroxide, magnesium lactate, magnesium metasilicate aluminate, magnesium oxide, magnesium phthalate, magnesium phosphate, magnesium silicate, magnesium succinate, magnesium tartrate, potassium acetate, potassium carbonate, potassium bicarbonate, potassium borate, potassium citrate, potassium metaphosphate, potassium phthalate, potassium phosphate, potassium
- one or more stabilizing additives can be added during the bleaching or brightening process to prevent hydrogen peroxide decomposition.
- suitable stabilizing additives include sodium silicate, magnesium sulfate, diethylene triamine penta acetic acid (DTPA), DTPA salts, ethylene diamine tetra acetic acid (EDTA), EDTA salts, or any combination thereof.
- the brightened fibers of the present invention can be used for any paper or tissue product, including but not limited to, tissue products made in a wet laid paper machine.
- a tissue or a paper comprises non-wood fibers having a brightness greater than about 65 as measured by MacBeth UV-C standard.
- the tissue paper can include any additional papermaking fibers, thermoplastic fibers, and/or synthetic fibers, and produced according to the Conventional Wet Press (CWP) manufacturing method, or by the Through Air Drying (TAD) manufacturing method, or any alternative manufacturing method (e.g., Advanced Tissue Molding System ATMOS of the company Voith, or Energy Efficient Technologically Advanced Drying eTAD of the company Georgia-Pacific).
- the web can be dried on a Yankee dryer and can be creped or un-creped.
- tissue or paper can include any amount of the brightened fibers disclosed herein.
- tissues and papers can include about or in any range between about 5, 10, 15, 20, 25, 30, 25, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, and 100 wt. % of the brightened fibers.
- conventional wet pressed tissues are prepared by first preparing and mixing the raw fiber material in a vat to produce a fiber slurry. Then, the fiber slurry is transferred through a centrifugal pump to a headbox. From the headbox, the fibrous mixture is deposited onto a moving foraminous wire, such as Fourdrinier wire, to form a nascent web. Water can drain through the wire by use of vacuum and/or drainage elements.
- the web can then be dried by any suitable methods, including, but not limited to, air-drying, through-air drying (TAD), or drying on a Yankee dryer. For drying on a Yankee dryer, first an adhesive material is sprayed onto the surface of the Yankee dryer.
- the nascent web is transferred onto the hot Yankee dryer via one or two press rolls.
- the web is dried on the Yankee dryer and then removed with a creping doctor, which scrapes the web from the surface of the Yankee dryer drum. Then, the dried web is wound into a roll at the reel of the paper machine.
- the fiber slurry can include any additional additives known in the art, including, but not limited to, wet strength agents, debonders, surfactants, or any combination thereof.
- flax fibers commercially available from Crailar Technologies, Inc., Greensboro, N.C. were used to assess the impact of oxygen during the bleaching process on shive content and brightness.
- the initial starting (control) flax was commercially available “finished flax” from Crailar Technologies, Inc. These fibers were treated by the Crailar process, which included mechanical treatment, chemical treatment to remove pectin, hydrogen peroxide bleaching, and drying. As shown in Table 1 below (ID 1), these flax fibers demonstrated a MacBeth UV-C brightness of 57.8.
- FIG. 12 shows a photomicrograph of flax fibers, which have substantial shive content.
- control flax fibers (Example 1) were bleached using the “bag” or “bath” method. Flax samples were placed in a zip lock style plastic bag and maintained at a constant temperature in a water bath for the bleaching process duration. Thirty oven dry (OD) grams of fiber were diluted to a 12% consistency using distilled water including the respective chemicals (see Table 1). Additional mixing was performed at 30 minute intervals for the remaining retention time. The samples were then removed from the water bath, and brightness pads of fibers were prepared as detailed above. As shown in Table 1, brightness gain ranged between about 18.0 and 19.6 according to the MacBeth UV-C standard test.
- Examples 5 and 6 mirror the chemical application of Examples 3 and 4 and demonstrated a 19.0 and 20.9 brightness gain, respectively. However, there was no significant difference in brightness gain between the bag and spinner bleaching. Sodium silicate also did not have any significant impact on the results.
- Example 7 used the same initial charge of Example 6 (also a modified spinner method). This sample was allowed to peroxide bleach for 90 minutes, and then a sample equal to 0.5 wt. % of TAED granules was added to the pulp. The TAED was added to react with residual hydrogen peroxide and sodium hydroxide to form peracetic acid in situ. The addition of TAED resulted in a 1.0 higher brightness gain compared to the baseline peroxide bleach.
- Example 8-9 a Quantum Mixer Mark III (Quantum Technologies, Akron, Ohio) was used to test the addition of oxygen gas to the peroxide bleach.
- the mixer was a variable speed, high intensity mixer suitable for all bleaching stages, which allowed the pulp and chemical to react under controlled conditions of time, temperature and agitation with constant pH read out. The mixer was run with the lowest possible level of mixing to minimize fiber tangling in the final pulp mass.
- Examples 8 and 9 compare brightness results with and without oxygen.
- Example 9 was run without oxygen and achieved a 20.8 brightness gain, which is comparable to the 19.0 and 20.9 gain for the spinner bleaches in Examples 5 and 6.
- Example 8 was run with oxygen addition for the first 60 minutes of the bleach.
- the mixer bowel was pressurized to 60 psig pressure with oxygen at the start of the bleach. After 15 minutes, the pressure was relieved and a second 60 psig charge was added. After 60 minutes, the oxygen was vented, and the remaining 120 minutes of the retention was performed at atmospheric pressure. This sample achieved a 26.6 brightness gain for a 84.4 final brightness. Compared to Example 9, the oxygen increased the brightness gain by 5.8. In addition, visual examination of the handsheets showed a decreased visible shive content in the oxygen Example 8 (see FIG. 11 ) compared the non-oxygen Example 9 (see FIG. 10 ).
- Example 10-17 shown in Table 2 bleaching was performed in the Quantum mixer to assess the impacts of oxygen and TAED on brightness, as well as the effect of reductive bleaching. All experiments were performed on a de-pectinified, unbleached flax sample (Example 10). This control sample had a lower brightness, 27.9 and a higher level of shive contamination (see also FIG. 12 of Example 24 below).
- Example 11 utilized oxygen in the initial peroxide stage and demonstrated a 64.0 brightness after 120 minutes of retention (the first 60 minutes with oxygen as detailed above). As shown in FIG. 13 , the fiber brightness pad demonstrated that the sample contained long, dark fibers which have a different appearance than the shives seen in the non-oxygen samples. Sample 11 was then washed on a Buchner funnel using the procedure detailed above, returned to the mixer, and then bleached with a hydrogen peroxide bleaching mixture. The final brightness after the second stage of bleaching was 82.6 (Example 12), compared to the final brightness of about 68 for the two-stage peroxide bleaching without oxygen (see Table 4). The fiber pad also showed a significant reduction in the long, dark fiber content and a very low level of shive.
- Example 13 was performed similar to Example 11, except that a quantity of TAED equal to about 0.5 wt. % on pulp was added after 60 minutes (after the oxygen was vented). The TAED was added to form peracetic acid in situ from the residual peroxide and caustic. After an additional 60 minutes of retention, the brightness was measured and found to be 64.1.
- Examples 14-16 were performed to assess the impact of reductive bleaching on an oxygen-treated sample.
- the flax fibers were peroxide bleached in the Quantum mixer analogously to Example 11, except with a lower peroxide charge (3% versus 4%).
- the pulp was removed from the mixer, washed on a Buchner funnel and then split into three portions.
- Each of the samples was reductively bleached using a sodium hydrosulfite and the bag method.
- a 20 g OD portion of the pulp was diluted to 8% consistency with distilled water and placed in a zip-lock type bag.
- the samples were then placed in a sealed glove box, and nitrogen was used to purge the oxygen. Nitrogen was purged into the box for approximately 15 minutes.
- the specified sodium hydrosulfite charge was prepared by weighing the required hydrosulfite powder, adding 25 mL of distilled water to dissolve the powder, and then adding the composition to the flax sample. The bags were sealed and hand kneaded to mix the sodium hydrosulfite. The sealed bags were then removed from the glove box and placed in a 180° F. water bath for 60 minutes. Then, the bags were removed from the bath and a brightness pad was prepared for each sample.
- Example 14-16 The final brightness for these samples was between 81.8 and 83.6, which is comparable to a 82.6 brightness for the two-stage peroxide bleach Example 12.
- Table 4 below provides the brightness and color data for these samples.
- the hydrosulfite bleached pulps Examples 14-16
- Example 12 A* and B*
- the MacBeth meter measures both TAPPI brightness and LAB whiteness.
- L* is the whiteness
- a* and b* are the color (red-green and blue-yellow).
- A* and b* values close to 0 indicate very low color/no color.
- the b* values shown in Table 3 are important because indicate a reduction in the yellow color of the fiber. Natural flax fiber is very yellow and thus not desirable in a wiper or tissue product.
- UV-C is the “C” illuminate, including the ultraviolet component of the light. “UV Excl” is UV excluded and does not include the ultraviolet light. The UV-C with UV may provide the most realistic conditions under which consumers perceive nonwovens.
- Example 18-24 In Examples 18-24 (see Table 4), one and two-stage peroxide bleach processes, without oxygen, were performed on de-pectinified, unbleached flax (Example 24).
- FIG. 12 shows a photomicrograph of the fibers in Example 24 (brightness of 57.8), which demonstrates the higher level of shive contamination.
- the modified “spinner” method was used for the bleaches. After the first bleaching stage, the sample was diluted to approximately 2 L with distilled water and de-watered on a Buchner funnel. Two 1 L rinses were added to the de-watered pulp in the Buchner funnel to remove any residual chemical. The pulp was then split and one part used to make a pad for brightness testing. The remaining pulp was then bleached in the spinner method for a second peroxide stage. Finally, the brightness pad was made from the pulp after the second bleaching stage was complete.
- Example 1 the Crailar bleached flax (commercial bleaching process by unknown bleaching methods), had a brightness of 57.8.
- Examples 18, 20, and 22 were single stage peroxide bleached flax, which achieved brightness between 59.2 and 60.2. The flat brightness response was independent of the amount of peroxide used.
- Example 10 To determine the impact of reducing agents on the fiber without prior oxygen treatment, a set of experiments was performed on the unbleached (Exached 10) and bleached (Example 1) flax samples at neutral and acidic pH. Table 5 shows the brightness gains and optical data for Examples 25-28.
- the unbleached samples unexpectedly increased in brightness during visual observation.
- the lower pH sample demonstrated the largest change and had a light tan color, compared to the starting grey color.
- the color reverted back to the dark grey color, resulting in only a slight improvement in brightness over the starting sample.
- the bleached flax sample may also have displayed similar reversion, although, due to the higher initial brightness, it was difficult to be sure how much reversion was actually observed. This reversion was not observed in the oxygen treated samples.
Landscapes
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Wood Science & Technology (AREA)
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Mechanical Engineering (AREA)
- Chemical Or Physical Treatment Of Fibers (AREA)
- Detergent Compositions (AREA)
- Paper (AREA)
- Nonwoven Fabrics (AREA)
- Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
Abstract
Description
- This application is a continuation of U.S. patent application Ser. No. 14/716,153, filed May 19, 2015, which claims benefit of U.S. Provisional Patent Application Ser. No. 62/000,825, filed May 20, 2014, both of which are incorporated herein in their entirety by reference.
- The instant invention generally is related to methods for fiber production. More specifically, the instant invention is related to methods for non-wood fiber bleaching and shive reduction.
- Plant fibers fall into three groups: seed fibers (e.g., cotton and kapok), stem fibers (bast fibers, e.g., flax and hemp), and leaf fibers (e.g., sisal and kenaf). Bast fibers occur as bundles of fibers, which extend through the length of the plant stems, located between the outer epidermal “skin” layers and the inner woody core (cortex) of the plant. Therefore, bast fiber straw includes three primary concentric layers: a bark-like skin covering layer, a bast fiber layer, and an inner, woody core. The woody core has various names, which depends on the particular plant type. For example, the flax woody core is referred to as “shive.” Thus, “shive” refers to all woody-core materials contained in bast fiber plants.
- The bundles of fibers are embedded in a matrix of pectins, hemi-celluloses, and some lignin. The lignin must be degraded, for example by “retting” (partial rotting) of the straw, for example by enzymes produced by fungi (e.g., during dew-retting), or bacteria (e.g., during water-retting). Decortication involves mechanically bending and breaking the straw to separate the fiber bundles from the shive and skin layers, and then removing the non-fiber materials using a series of conventional mechanical cleaning stages.
- A substantial proportion of the pectin-containing material that surrounds the individual bast fibers is pectin, with the remaining portion being primarily various water-soluble constituents. Pectin is a carbohydrate polymer, which includes partially-methylated poly-galacturonic acid with free carboxylic acid groups present as calcium salts. Pectin is generally insoluble in water or acid, but may be broken down, or hydrolyzed, in an alkaline solution, such as an aqueous solution of sodium hydroxide.
- Removal of the pectin-containing material, or gum, is necessary in many instances to utilize the fiber for its intended purposes. Various methods for pectin removal include degumming, or removing, the pectin-containing substances from the individual bast fiber. For example, U.S. Pat. No. 2,407,227 discloses a retting process for the treatment of fibrous vegetable or plant material, such as flax, ramie, and hemp. The retting process employs micro-organisms and moisture to dissolve or rot away much of the cellular tissues and pectins surrounding fiber bundles, facilitating separation of the fiber bundles from the shive and other non-fiber portions of the stem. Thus, the waxy, resinous, or gummy binding substances present in the plant structure are removed or broken down by means of fermentation.
- Following retting, the stalks are broken, and then a series of chemical and mechanical steps are performed to produce individual or small bundles of cellulose fiber. However, a common problem still occurring in non-wood fiber processes is the occurrence of shives, which are undesirable particles in finished paper products. Shives includes pieces of stems, “straw,” dermal tissue, epidermal tissue, and the like.
- Shives are substantially resistant to defiberizing processes, rendering their presence problematic. Even following oxidative bleaching, shives continue to have deleterious effects on the appearance, surface smoothness, ink receptivity, and brightness of a finished paper product. Mechanical removal of shive to the level required for a high value product involves the application of significant mechanical energy, which results in fiber breakage and generation of fines, or small cellulose particles. The fines are a yield loss, increasing the production cost. Further, the broken fibers reduce the overall fiber strength so they either cannot be used in some manufacturing processes and/or result in weak textile or paper products.
- Thus, conventional methods of non-wood fiber processing are not sufficiently robust to remove, decolorize, and break up the residual shive present in the fibers. Thus, processed and finished fibers can still include dark particles of shive, which are both aesthetically unattractive and reduce the commercial value of the fiber product. Furthermore, conventional bleaching processes are not sufficiently robust to increase paper brightness to sufficient levels required for commercial products.
- Accordingly, there exists an on-going need for a method to both adequately bleach and sufficiently reduce shive presence in non-wood fibers, including plant-based fibers. Thus, the present invention is directed to meeting this and other needs and solving the problems described above.
- The present invention is directed to methods of increasing the brightness of non-wood fibers and nonwoven fabrics, tissues, papers, textiles, and products produced by the methods. In one aspect, the method comprises forming a mixture of non-wood fibers and exposing the mixture to a brightening agent to produce brightened fibers. The brightening agent is oxygen gas, peracetic acid, a peroxide compound, or a combination thereof, to produce brightened fibers. Such brightened fibers have a brightness greater than the fibers of the mixture before exposure to the brightening agent as measured by MacBeth UV-C standard.
- In another aspect, a method of reducing the amount of residual shive in non-wood fibers comprises forming a mixture of non-wood fibers and exposing the mixture to a brightening agent to produce low-shive fibers. The brightening agent is oxygen gas, peracetic acid, a peroxide compound, or a combination thereof. Such low-shive fibers have less visible shive content than the fibers of the mixture before exposure to the brightening agent. Yet, in another aspect, a nonwoven fabric made in accordance with this method comprises brightened, non-wood fibers having a brightness greater than about 65 as measured by MacBeth UV-C standard. Nonwoven fabrics include air-laid, carded, spunbond, and hydroentangled substrates.
- It is to be understood that the phraseology and terminology employed herein are for the purpose of description and should not be regarded as limiting. As such, those skilled in the art will appreciate that the conception, upon which this disclosure is based, may readily be utilized as a basis for the designing of other structures, methods, and systems for carrying out the present invention. It is important, therefore, that the claims be regarded as including such equivalent constructions insofar as they do not depart from the spirit and scope of the present invention.
- Other advantages and capabilities of the invention will become apparent from the following description taken in conjunction with the examples showing aspects of the present invention.
- The invention will be better understood and the above object as well as other objects other than those set forth above will become apparent when consideration is given to the following detailed description thereof. Such description makes reference to the annexed drawing wherein:
-
FIG. 1 is an illustration of a method for introducing oxygen gas into a bleaching liquor using within a circulation pump to dissolve the oxygen. -
FIG. 2 is an illustration of a method for introducing oxygen gas into a mixer after the circulation pump. -
FIG. 3 is an illustration of a method for introducing oxygen gas directly into the non-wood fibers. -
FIG. 4 is an illustration of a method for exposing the non-wood fibers to oxygen gas using an internal and external liquor circulation system. -
FIG. 5 is an illustration of a method for cooling the liquor in the system ofFIG. 4 . -
FIG. 6 is an illustration of a method for using gas to displace the residual liquor from the fibers in the system ofFIG. 4 . -
FIG. 7 is an illustration of another method for using gas to displace the residual liquor from the fibers in the system ofFIG. 4 . -
FIG. 8 is an illustration of a control system for oxygen brightening of non-wood fibers. -
FIG. 9 is a photomicrograph of control flax fibers which were chemically treated to remove pectin and hydrogen peroxide bleached. -
FIG. 10 is a photomicrograph of the flax fibers ofFIG. 9 after brightening using a quantum mixer and a peroxide bleaching composition. -
FIG. 11 is a photomicrograph of the flax fibers ofFIG. 9 after bleaching using a quantum mixer and dissolved oxygen. -
FIG. 12 is a photomicrograph of control flax fibers which were only chemically treated to remove pectin. -
FIG. 13 is a photomicrograph of the flax fibers ofFIG. 12 after bleaching using a quantum mixer and dissolved oxygen. - For a fuller understanding of the nature and desired objects of this invention, reference should be made to the above and following detailed description taken in connection with the accompanying figures. When reference is made to the figures, like reference numerals designate corresponding parts throughout the several figures.
- The following definitions and abbreviations are to be used for the interpretation of the claims and the specification. As used herein, the terms “comprises,” “comprising,” “includes,” “including,” “has,” “having,” “contains” or “containing,” or any other variation thereof, are intended to cover a non-exclusive inclusion. For example, a composition, a mixture, process, method, article, or apparatus that comprises a list of elements is not necessarily limited to only those elements but can include other elements not expressly listed or inherent to such composition, mixture, process, method, article, or apparatus.
- As used herein, the articles “a” and “an” preceding an element or component are intended to be nonrestrictive regarding the number of instances (i.e. occurrences) of the element or component. Therefore, “a” or “an” should be read to include one or at least one, and the singular word form of the element or component also includes the plural unless the number is obviously meant to be singular.
- As used herein, the terms “invention” or “present invention” are non-limiting terms and not intended to refer to any single aspect of the particular invention but encompass all possible aspects as described in the specification and the claims.
- As used herein, the term “about” modifying the quantity of an ingredient, component, or reactant of the invention employed refers to variation in the numerical quantity that can occur, for example, through typical measuring and liquid handling procedures used for making concentrates or solutions in the real world. Furthermore, variation can occur from inadvertent error in measuring procedures, differences in the manufacture, source, or purity of the ingredients employed to make the compositions or carry out the methods, and the like. Whether or not modified by the term “about,” the claims include equivalents to the quantities. In one aspect, the term “about” means within 10% of the reported numerical value. In another aspect, “about” means within 5% of the reported numerical value.
- As used herein, the terms “percent by weight,” “% by weight,” and “wt. %” mean the weight of a pure substance divided by the total dry weight of a compound or composition, multiplied by 100. Typically, “weight” is measured in grams (g). For example, a composition with a total weight of 100 grams, which includes 25 grams of substance A, will include substance A in 25% by weight.
- As used herein, the terms “nonwoven” means a web or fabric having a structure of individual fibers which are randomly interlaid, but not in an identifiable manner as is the case of a knitted or woven fabric. The brightened fibers in accordance with the present invention can be employed to prepare nonwoven structures and textiles.
- As used herein, the term “non-wood fibers” means fibers produced by and extracted from a plant or animal, the exception that such fibers do not include wood fibers, i.e., derived from a tree, and man-made fibers formed from cellulose, e.g. viscose. Non-limiting examples of suitable non-wood fibers are plant-based, non-wood fibers, such as bast fibers. Bast fibers include, but are not limited to, flax fibers, hemp fibers, jute fibers, ramie fibers, nettle fibers, Spanish broom fibers, kenaf plant fibers, or any combination thereof. Non-wood fibers include seed hair fibers, for example, cotton fibers. Non-wood fibers can also include animal fibers, for example, wool, goat hair, human hair, and the like.
- As used herein, the term “kier” means a circular boiler or vat used in processing, bleaching and/or scouring non-wood fibers.
- As used herein, the term “brightening agent” refers to oxygen gas, peracetic acid, a peroxide compound, or a combination thereof. In addition to oxygen gas, peracetic acid, and a peroxide compound, other compounds and agents can be included in the brightening agent. Non-limiting examples of additional compounds include reducing agents and magnesium sulfate. The brightening agent can further include other gases, for example nitrogen or carbon dioxide. The oxygen gas can be present as a mixture with other gases. In one example, the oxygen gas is present in the brightening agent about or in any range between about 75, 80, 85, 90, 95, and 100%.
- As used herein, the term “brightness” refers to the whiteness of a composition of fibers. As discussed herein, brightness is determined by the “MacBeth UV-C” test method, utilizing a Macbeth 3100 spectrophotometer, commercially available from X-Rite, Inc., Grand Rapids, MI. UV-C is the illuminant (lamp) used for brightness testing. As used herein, the term “gain” means the increase in fiber brightness following a bleaching process. Brightness and gain measurements of the fibers, before and after exposure to the brightening agent, are conducted on thick pads of the fiber. The fiber pads are prepared by diluting the fibers to a consistency in a range between about 2% and about 10% with water, mixing to separate the fibers, and then de-watering the fibers, for example on a Buchner funnel with a filter paper, to form the fiber pad. The fiber pad can be further dewatered by pressing between blotters in a laboratory press and then dried on a speed dryer to form a dry cake. The fiber pads can then be air-dried for several days prior to brightness testing. Brightness measurements also can be done on the fiber by: 1) drying the fiber with hot air to less than 2-4% moisture, 2) carding the fiber to straighten out and align the fibers into a mat, lap or sliver, and 3) measuring the brightness of the lap, mat or sliver. Brightness and gain testing of the fibers according to the MacBeth UV-C brightness standard is conducted before and after exposure to the brightening agent, with the brightened fibers having a brightness greater than the fibers before exposure. The MacBeth test measures both TAPPI brightness and LAB whiteness. L* is the whiteness, and a* and b* are the color (red-green and blue-yellow). A* and b* values close to 0 indicate very low color/no color. The UV-C test measures the illuminate, including the both the ultraviolet and color components of the light.
- As used herein, the term “consistency” means to the percent (%) solid in a composition comprising a solid in a liquid carrier. For example, the consistency of a fiber slurry/fiber mat/fiber mass/fiber donut weighing 100 grams and comprising 50 grams of fibers has a consistency of 50%.
- As used herein, the terms “cellulose fibers,” “cellulosic fibers,” and the like refer to any fibers comprising cellulose. Cellulose fibers include secondary or recycled fibers, regenerated fibers, or any combination thereof.
- Conventional plant-based, non-wood fiber production involves mechanical removal of non-fiber shive material, followed by chemical removal of pectin and a mild oxidative bleaching step. Plants, including flax, require an initial “retting” step before mechanical removal of non-fiber material. The retting process employs micro-organisms and moisture to dissolve or rot away much of the cellular tissues and pectins surrounding fiber bundles, thus facilitating separation of the fiber from the stem. Thus, waxy, resinous, or gummy binding substances present in the plant structure are removed or broken down by means of fermentation. Pectin removal can be accomplished using an alkaline agent, such as sodium hydroxide, at elevated temperatures. Enzymes and other chemicals, such as detergents and wetting agents, also can be added to enhance pectin detachment from the fibers. U.S. Pat. Nos. 8,603,802 and 8,591,701 and Canadian Patent No. CA 2,745,606 disclose methods for pectin removal using enzymes. Following the pectin extraction step, the fibers are washed and treated with a mixture of hydrogen peroxide and sodium hydroxide to increase the brightness and whiteness of the finished fiber.
- However, there are drawbacks to these conventional methods. First, available pectin extraction and bleaching steps are not robust enough to decolorize and/or break up residual shive in the fiber. Second, the bleaching process also is not robust enough to increase the brightness to levels required for high quality commercial products. The result is finished fibers containing dark shive particles, which is aesthetically unappealing and reduces the commercial value of the fiber product. The shive also interferes with the manufacturing processes which utilize the fiber. For example, particles of shive can plug the filters on a hydroentanglement system. The shive also has very low bonding ability. Thus, any shive entrained in the finished product will fall out and be unappealing to the end user. Further, residual shive could also be a potential source of contamination when used, for example, in food service wipes.
- One commercially available solution to the shive problem is to either increase the intensity of the mechanical shive removal process or to add multiple mechanical removal stages so that the residual shive content is low enough to be imperceptible in the finished product. However, this solution has drawbacks. First, additional mechanical processing increases the operating and capital costs of production. Second, the additional mechanical processing damages the fragile fibers, resulting in a product with inferior tensile strength properties. Finally, additional mechanical processing reduces the yield of the finished fiber because of the generation of fines and long fiber losses due to the inherent inefficiency of mechanical processing.
- It was discovered that the addition of oxygen gas and/or peracetic acid to the bleaching process both increases the fiber brightness and reduces the residual shive to levels that dramatically reduce the impact of shive on the appearance of the finished fiber. Furthermore, and without being bound by theory, it is believed that the brightening process disclosed herein reduces the integrity of the shives so that they are more easily broken up and removed in mechanical treatment. Reduced shive content after exposure to the brightening agent can be assessed by visual examination of the fibers.
- Accordingly, the present disclosure is directed to a method of increasing the brightness of natural fibers, in particular, non-wood fibers. In one aspect of the present invention, the method comprises forming a mixture of non-wood fibers and exposing the mixture to a brightening agent to produce brightened fibers having a brightness greater than the fibers of the mixture before exposure as measured by MacBeth UV-C standard. The brightening agent comprises oxygen gas, peracetic acid, a peroxide compound, or a combination thereof. In another aspect, the present disclosure is directed to a method of reducing the amount of residual shive in non-wood fibers to provide low-shive fibers having less visible shive content than the fibers of the mixture before exposure.
- One category of non-wood fibers is bast fibers. Bast fibers are found in the stalks of the flax, hemp, jute, ramie, nettle, Spanish broom, and kenaf plants, to name only a few. Typically, native state bast fibers are 1 to 4 meters in length. These long native state fibers are comprised of bundles of straight individual fibers that have lengths between 20-100 millimeters (mm). The bundled individual fibers are glued together by pectins.
- Bast fibers bundles can be used for both woven textiles and cordage. An example of a woven textile produced with flax bast fiber bundles is linen. More recently, as provided in U.S. Pat. No. 7,481,843, which is incorporated herein in its entirety by reference, partially separated bast fiber is produced to form yarns and threads for woven textiles. However, yarns and threads are not suited for nonwoven fabrics.
- In accordance with the present invention, any non-wood fibers can be used. In one example, suitable fibers include cotton fibers, bast fibers, or any combination thereof. Bast fibers can be derived from a variety of raw materials. Non-limiting examples of suitable bast fibers include, but are not limited to, flax fibers, hemp fibers, jute fibers, ramie fibers, nettle fibers, Spanish broom fibers, kenaf plant fibers, or any combination thereof. Non-wood fibers can also include animal fibers, for example, wool, goat hair, human hair, and the like.
- Initially, pectin can be substantially removed from the non-wood, plant-based fibers to form substantially individualized fibers. Thus, the fibers are rendered substantially straight and are substantially pectin-free. The fibers can be individualized, by pectin removal, using mechanical or chemical means.
- Enzymatic treatment is a non-limiting example of a chemical treatment that can be used to substantially remove pectin. PCT International Publication No. WO 2007/140578, which is incorporated herein in its entirety by reference, describes a pectin removal technology which produces individualized hemp and flax fiber for application in the woven textile industry. The process to remove pectin described in WO 2007/140578 can be employed.
- The non-wood, plant-based fibers can have a mean length in a range between about 1 and 100 mm depending on the characteristics of the particular fibers and the cut length of the plant stalks prior to chemical processing. In one aspect, the individualized non-wood, plant-based fibers have a mean length of at least 10 mm, at least 20 mm, at least 30 mm, and at least 40 mm. In another aspect, the individualized non-wood, plant-based fibers have a mean length greater than 50 mm. Still yet, in another aspect, the non-wood, plant based fibers have a mean length about or in a range between about 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, and 95 mm.
- In addition to non-wood, plant-based fibers, the fiber mixture can include fibers derived from one or more source, including, but not limited to, cellulosic fibers, including staple fibers, regenerated cellulose fibers, and thermoplastic fibers. Optionally, the cellulosic fibers are secondary, recycled fibers. Non-limiting examples of cellulosic fibers include, but are not limited to, hardwood fibers, such as hardwood kraft fibers or hardwood sulfite fibers; softwood fibers, such as softwood kraft fibers or softwood sulfite fibers; or any combination thereof. Non-limiting examples of regenerated cellulose include rayon, lyocell, (e.g., TENCEL®), Viscose®, or any combination thereof. TENCEL® and Viscose® are commercially available from Lenzing Aktiengesellschaft, Lenzing, Austria.
- In one aspect, the mixture of non-wood fibers includes synthetic, polymeric, thermoplastic fibers, or any combination thereof. Thermoplastic fibers include the conventional polymeric fibers utilized in the nonwoven industry. Such fibers are formed from polymers which include, but are not limited to, a polyester such as polyethylene terephthalate; a nylon; a polyamide; a polypropylene; a polyolefin such as polypropylene or polyethylene; a blend of two or more of a polyester, a nylon, a polyamide, or a polyolefin; a bi-component composite of any two of a polyester, a nylon, a polyamide, or a polyolefin; and the like. An example of a bi-component composite fiber includes, but is not limited to, a fiber having a core of one polymer and a sheath comprising a polymer different from the core polymer which completely, substantially, or partially encloses the core.
- Brightness measurements of the fibers, before and after exposure to the brightening agent, can be conducted on thick pads of the fiber. Brightness testing of the fibers according to the MacBeth UV-C brightness standard is conducted before and after exposure to the brightening agent, with the brightened fibers having a brightness greater than the fibers before exposure. The brightened fibers of the present invention can have a brightness in a range between about 65 and about 90 as measured by MacBeth UV-C standard. In one aspect, the brightened fibers have a brightness in a range between about 77 and about 90. In another aspect, the brightened fibers have a brightness in a range between about 80 and about 95. Yet, in another aspect, the brightened fibers have a brightness in a range between about 65 and about 85.
- The brightness gain, or increase in fiber brightness following exposure to the brightening agent is in a range between about 10 and about 60 as measured by MacBeth UV-C standard. In one aspect, the brightness gain is in a range between about 15 and about 30 as measured by MacBeth UV-C standard. In another aspect, the brightness gain is in a range between about 45 and about 55 as measured by MacBeth UV-C standard. Yet, in another aspect, the brightness gain is about or in any range between about 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, and 60 as measured by MacBeth UV-C standard.
- The brightened fibers of the present invention can be used for any nonwoven fabric products or textiles, including air-laid, carded, spunbonded, and hydroentangled substrates. In one aspect, a nonwoven fabric comprises non-wood fibers having a brightness greater than about 65 as measured by MacBeth UV-C standard.
- Nonwood fiber brightening can be accomplished by 1) retting, mechanical separation of bast fibers, scouring to remove pectin+waxes+lignin, and one or two stage brightening as disclosed herein; or 2) retting, mechanical separation of bast fibers, scouring to remove pectin+waxes+lignin, conventional peroxide or other bleaching/pre-bleaching, and one or two stage bleaching with the disclosed process.
- Then, the non-wood fibers (pre-bleached or unbleached) are combined to form a mixture. Pectin removal by chemical methods can be performed before or after forming the mixture. The mixture can be formed into a fibrous mat, a fiber mat, a fiber pad, a thick fiber pad, a wet cake, or a “donut” when used in a kier based system. Optionally, the mixture can then be wetted before exposing the mixture to the brightening agent. The mixture can be diluted to any desired consistency, wetted, and/or combined with any desired additives, non-limiting examples of which are mentioned below.
- In the mixture before exposure to the brightening agent, the fibers have a consistency in a range between about 1% and about 50%. In one aspect, the fibers in the mixture have a consistency in a range between about 10% and about 30%. In another aspect, the fibers in the mixture have a consistency in a range between about 15% and about 35%. Yet in another aspect, the fibers in the mixture have a consistency in a range between about 20% and about 40%. Still yet, in another aspect, the fibers in the mixture have a consistency about or in any range between about 1, 2, 5, 7, 10, 12, 15, 17, 20, 22, 25, 27, 30, 32, 35, 37, 40, 42, 45, 47 and 50%.
- To increase the brightness of the fibers, the mixture is then exposed to a brightening agent, the brightening agent being oxygen gas, peracetic acid, a peroxide compound, or a combination thereof. Non-limiting exemplary methods for exposing the mixture to the brightening agent are shown in
FIGS. 1-8 (discussed in detail below). However, the fiber mixture can be exposed to the brightening agent by any suitable method. Pectin can be removed from the fibers before exposure to the oxygen gas, peracetic acid, and/or a peroxide compound. - Peracetic acid (CH3CO3H) can be produced by autoxidizing acetaldehyde in the air. Alternatively, peracetic acid can be produced by reacting acetic acid with hydrogen peroxide or acetyl chloride with acetic anhydride. In addition, tetra acetyl ethylene diamine (TAED) can be added to an alkaline hydrogen peroxide solution to form peracetic acid. The resulting peracetic acid provides an increased brightening effect compared to the alkaline hydrogen peroxide alone.
- TAED can be added to the brightening agent or the fibers to increase the effective brightening on the fibers. In one aspect, the brightening agent further comprises a peroxide compound and an alkaline compound. In another aspect, the peroxide compound is hydrogen peroxide and the alkaline compound is sodium hydroxide or potassium hydroxide. Addition of the TAED produces peracetic acid. Optionally, the fibers can be exposed to the peracetic acid before, after, or during exposure to oxygen gas, as described in detail below. As both peracetic acid and oxygen gas increase the brightness of the fibers, they can be used alone or in combination. The peracetic acid can be generated in situ with the fiber or can be generated by pre-mixing the various chemicals and then added to the fiber mixture. A peroxide compound, for example hydrogen peroxide or another alkaline compound, can be present when either oxygen gas or TAED is present in the brightening agent.
- When TAED is used, it can be added in an amount in a range between about 0.1 and about 1 wt. % based on the dry weight of the fibers. In one aspect, the TAED is added in an amount in a range between about 0.5 and about 5 wt. % based on the dry weight of the fibers. In another aspect, the TAED is added in an amount in a range between about 0.3 and about 3 wt. % based on the dry weight of the fibers. Yet, in another aspect, the TAED is added in an amount about or in any range between about 0.1, 0.2, 0.3, 0.5, 0.7, 1.0, 1.2, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 7.0, 8.0, 9.0, and 10.0 based on the dry weight of the fibers.
- The peroxide compound of the brightening agent can be hydrogen peroxide, sodium peroxide, or both hydrogen peroxide and sodium peroxide. The brightening agent can include other additional bleaching components, for example other peroxide compounds and an alkaline compound. Non-limiting examples of suitable peroxide compounds include hydrogen peroxide, sodium peroxide, or both hydrogen peroxide and sodium peroxide. Suitable alkaline compounds include, but are not limited to, sodium hydroxide, potassium hydroxide, calcium hydroxide, monoethanolamine, ammonia, or any combination thereof. After exposing the fibers to the brightening agent, the fibers can be mixed or agitated. However, excessive mixing can induce fiber tangling.
- The brightening agent pH can be adjusted to an initial pH in a range between about 9 and about 12. In one aspect, the initial pH is in a range between about 10 and about 10.5. In another aspect, the initial pH is in a range between about 9.5 and about 10.5. Yet in another aspect, the initial pH is in a range about or in any range between about 8, 8.5, 9, 9.5, 10, 10.5, and 11. Additional pH buffering agents can be included to adjust the mixture to the desired pH. Sodium hydroxide and/or magnesium hydroxide can be used.
- Turning now to the figures,
FIG. 1 illustrates anexemplary method 100 of exposing the fiber mixture to the brightening agent, which includes oxygen gas alone, or in combination with peracetic acid. Peracetic acid can be added or generated in situ in thebleaching liquor 140 as described above. The non-wood fibers can be disposed within afiber processing Kier 120. Thebleaching liquor 140, which can include additional components such as the peroxide compound, peracetic acid, TAED, or the alkaline compound, can be introduced and circulated through the system and the fibers with aliquor circulation pump 130. Theoxygen gas 110 is injected into the bleachingliquor circulation pump 130, which acts to mix and dissolve theoxygen gas 110 into thebleaching liquor 140. Theoxygen gas 110 can be injected until the desired system pressure or partial oxygen pressure is achieved, or until the oxygen is dissolved in the solution, forming a dissolved oxygen solution. Alternatively, a low, continuous flow ofoxygen gas 110 can be maintained throughout the process. -
FIG. 2 illustrates anexemplary method 200 of exposing the fiber mixture to the brightening agent. As shown, theoxygen gas 110 can be introduced into a static oractive mixing system 210 after theliquor circulation pump 130. -
FIG. 3 illustrates anexemplary method 300 of exposing the fiber mixture to the brightening agent. As shown,oxygen gas 110 is directly introduced into top of thefiber processing Kier 120. As such, theoxygen gas 110 permeates the fibers, which can be in the form of a “fiber mat,” to react with the chromophores and shive, reducing the content of shive. -
FIG. 4 illustrates anexemplary method 400 of exposing the fiber mixture to the brightening agent.Method 400 has an additionalinternal circulation system 410 in addition to the external liquor circulation systems ofmethods liquor circulation pump 130.Oxygen gas 110 is injected into theliquor feed line 420 after theliquor circulation pump 130 which goes directly into the intake of theinternal pump 412. The entrainedoxygen gas 110 enters theimpeller 414, which mixes and dissolves theoxygen gas 110 in thebleaching liquor 140. Thebleaching liquor 140, along with the dissolvedoxygen gas 110 then enters thecenter shaft 416 of the basket and then travels and circulates through the fiber mass within thefiber processing Kier 120. -
FIG. 5 is an illustration of amethod 500 for cooling the liquor in themethod 400 shown inFIG. 4 . Inmethod 500, employing acooling system 510, thebleaching liquor 140 from inside thefiber processing Kier 120 is cooled below the flash temperature, for example, less than about 100° C., in anoncontact heat exchanger 514 and then into asmall liquor tank 516. Acontrol valve 512 controls the recirculation of the system and also holds the pressure in the system. The cooledliquor 520 is then is pumped back into theliquor circulation pump 130 of the external circulation system. Thecooling system 510 allows for addition of chemicals without depressurizing and emptying thefiber processing kier 120. -
FIG. 6 is an illustration of amethod 600 for using oxygen gas to displace the residual liquor from the fibers in themethod 400 shown inFIG. 4 . Inmethod 600, thebleaching liquor 140 is drained from thefiber processing Kier 120 by using adrain valve 610. Then,oxygen gas 110 is injected directly into thecenter shaft 416 of the basket and diffuses through the fibers in thefiber processing Kier 130. -
FIG. 7 is an illustration of anothermethod 700 for usingoxygen gas 110 to displace the residual liquor from the fibers in themethod 400 shown inFIG. 4 . Inmethod 700, thebleaching liquor 140 is also drained from thefiber processing Kier 120 using adrain valve 610. Thefiber processing Kier 120 has an oxygen gas connection with acheck valve 710 at the top of thefiber processing Kier 120, at the bottom of the fiber processing Kier (not shown), or on the liquor circulation pump 130 (not shown). Thus, oxygen gas can be injected, and vented, into the system usingcheck valve 710. -
FIG. 8 is an illustration of acontrol system 800 for brightening of non-wood fibers in any kier system. Thecontrol system 800 has an oxygen tank or other oxygen source for injectingoxygen gas 110. Apressure control device 810 controls the pressure ofoxygen gas 110 from the primary source. An oxygenflow control device 820 then controls the flow of oxygen into the system. A liquorflow control device 840 after theliquor circulation pump 130 controls the flow ofbleaching liquor 140 into the system. A pressurerelief safety valve 830 limits the maximum safe pressure within thefiber processing Kier 120. AKier pressure control 850 also moderates the pressure within thefiber processing Kier 120. - In another aspect, the fiber mixture can be disposed within any closed system, including a fiber processing Kier. The fiber mixture is saturated with an alkaline peroxide bleaching liquor, e.g., hydrogen peroxide and sodium hydroxide, and then the system is drained and pressurized with oxygen. As a result, the oxygen permeates the fiber mixture, or “fiber mat,” to enhance the action of the peroxide liquor. Thus, the brightness of the fibers is increased compared to the fibers before exposure.
- During oxygen gas exposure, the system can be maintained at a temperature in a range between about 50 and about 150° C. In another aspect, the system can be maintained at a temperature in a range between about 70 and about 140° C. during oxygen exposure. Yet, in another aspect, the system can be maintained at a temperature in a range between about 70 and about 130° C. during oxygen exposure. Still yet, in another aspect, the system can be maintained at a temperature about or in any range between about 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 105, 110, 115, 120, 125, 130, 135, 140, 145, and 150° C.
- The fibers can be exposed to the peracetic acid during or after exposure to the oxygen gas by addition of peracetic acid or by adding TAED to hydrogen peroxide to form peracetic acid. In one aspect, the TAED is added at the end of the oxygen exposure stage, for example after exposing the fibers to oxygen for about 30 minutes to about 60 minutes. In another aspect, the fibers are exposed to TAED or peracetic acid after exposing the fibers to oxygen for about 20 minutes to about 45 minutes. Yet, in another aspect, the fibers are exposed to TAED or peracetic acid after exposing the fibers to oxygen for about 40 minutes to about 60 minutes.
- Optionally, TAED or peracetic acid can be added to the fibers at temperatures lower than the oxygen exposure. For example, the temperature of TAED or peracetic acid addition can be in a range between about 60 and about 100° C. In another aspect, the temperature of TAED or peracetic acid addition to the fibers can be in a range between about 70 and about 90° C. Yet, in another aspect, the temperature of TAED or peracetic acid addition to the fibers can be in a range between about 70 and about 80° C. Still yet, the temperature of TAED or peracetic acid addition can be about or in any range between about 60, 65, 70, 75, 80, 85, 90, 95, and 100° C.
- Magnesium compounds can be added to the mixture of non-wood fibers during exposure to the oxygen gas, peracetic acid, or combination of oxygen gas and peracetic acid. In one aspect of the present invention, magnesium sulfate functions as both a stabilizer for oxidizing agents during bleaching/brightening process and as a protecting agent for the cellulose within the fibers by reducing oxidation. In another aspect, other magnesium compounds, for example magnesium sulfate and magnesium hydroxide may provide both alkalinity and a buffering capacity, which may be beneficial. Yet in another aspect, other suitable magnesium compounds can be included in the brightening agent and may include any magnesium salts or compounds including magnesium. Non-limiting examples of suitable magnesium compounds include magnesium hydroxide, magnesium oxide, magnesium sulfate, magnesium glycinate, magnesium ascorbate, magnesium chloride, magnesium orotate, magnesium citrate, magnesium fumarate, magnesium malate, magnesium succinate, magnesium tartrate, magnesium carbonate, or any combination thereof.
- During the brightening process, the partial oxygen pressure is in a range between about 0.5 and about 10 Bar. Maintaining the system under pressure may promote oxygen dissolution in solution. Further, the amount of oxygen available to the fibers during brightening may promote brightening. For example, providing between about 0.1% and about 2% on fiber oxygen in the system is a factor in promoting increased brightening. For example, as shown in
FIG. 8 ,flow control 820 can be a mass flow sensor that can be set to control the total mass of oxygen added to the kier. Oxygen gas can be added either very quickly at the beginning of the process, added slowly throughout the process, added very quickly at the end of the process, or any combination thereof. In one aspect, the fibers are exposed to at least about 0.1% on fiber oxygen during brightening. In another aspect, the fibers are exposed to at least about 1% on fiber oxygen during brightening. Yet, in another aspect, the fibers are exposed to between about 0.1 and about 10.0% on fiber oxygen during brightening. Still yet, in another aspect, the fibers are exposed to at least about or between about 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.4, 1.6, 1.8, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, and 10.0% on fiber oxygen during brightening. - The system may be maintained under pressure, for a time sufficient to improve the brightness and reduce the shive content of the fibers without damaging the fibers. In one aspect, the system is maintained under pressure for a time in a range between about 5 and about 60 minutes. In another aspect, the system is maintained under pressure for a time in a range between about 10 and about 30 minutes. Yet, in another aspect, the system is maintained under pressure for a time in a range between about 20 and about 50 minutes. Still yet, in another aspect, the system is maintained under pressure for a time about or in any range between about 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 65, 80, 85, 90, 95, 100, 105, 110, 115, and 120 minutes.
- Once the brightness of the fibers has been sufficiently increased, and the shive content sufficiently reduced, the oxygen pressure can then be relieved or the oxygen addition can be stopped. Subsequently, the used bleaching components are removed from the system, and water can be used to rinse the system and remove residual bleaching components and dissolved compounds from the fibers.
- Subsequent to the oxygen gas, peracetic acid, and/or peroxide compound exposure (first stage of brightening), the brightened fibers, which have a brightness greater than the fibers of the mixture before exposure, can be subjected to at least a second stage of bleaching (without oxygen, second brightening agent/second stage of brightening) to further increase the brightness. The additional stages of brightness can include any additional brightening agents. The additional brightening agent(s) can be a peroxide compound, an alkaline compound, a reducing agent, magnesium sulfate or a combination thereof.
- Unexpectedly, exposure to oxygen gas during brightening dramatically improved the performance of a subsequent reductive bleaching stage. In contrast, reductive bleaching typically is generally not effective on plant-based non-wood fibers in conventional processes. Thus, only after an oxygen treatment in a first stage of brightening is it possible to use reductive bleaching in a second brightening stage effectively. This result is a major commercial advantage because reductive bleaching is much less expensive than oxidative bleaching.
- In one aspect, a second stage of brightening/bleaching is performed using a peroxide compound and an alkaline compound. Subsequently, a reducing agent is used in a reductive bleaching stage to further increase brightness. In another aspect, a reducing agent is used in a second stage of brightening after initial brightening with oxygen gas, peracetic acid, and/or a peroxide compound. Non-limiting examples of suitable reducing agents include sodium hydrosulfite, potassium hydrosulfite, sodium sulfite, potassium sulfite, sodium sulfate, potassium sulfate, sodium bisulfite, potassium bisulfite, sodium metasulfite, potassium metasulfite, sodium borohydride, or any combination thereof.
- The brightened fibers can be used to make nonwoven fabrics and/or textiles according to conventional processes known to those skilled in the art. The nonwoven fabrics, textiles, and other products can include any amount of the brightened fibers disclosed herein. For example, nonwoven fabrics can include about or in any range between about 5, 10, 15, 20, 25, 30, 25, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, and 100 wt. % of the brightened fibers.
- The nonwoven fabric described herein can be incorporated into a variety of textiles and products. Non-limiting examples of products include wipers (or wipes), such as wet wipers, dry wipers, or impregnated wipers, which include personal care wipers, household cleaning wipers, and dusting wipers. Personal care wipers can be impregnated with, e.g., emollients, humectants, fragrances, and the like. Household cleaning wipers or hard surface cleaning wipers can be impregnated with, e.g., surfactants (for example, quaternary amines), peroxides, chlorine, solvents, chelating agents, antimicrobials, fragrances, and the like. Dusting wipers can be impregnated with, e.g., oils.
- Non-limiting examples of wipers include baby wipes, cosmetic wipes, perinea wipes, disposable washcloths, household cleaning wipes, such as kitchen wipes, bath wipes, or hard surface wipes, disinfecting and germ removal wipes, specialty cleaning wipes, such as glass wipes, mirror wipes, leather wipes, electronics wipes, lens wipes, and polishing wipes, medical cleaning wipes, disinfecting wipes, and the like. Additional examples of products include sorbents, medical supplies, such as surgical drapes, gowns, and wound care products, personal protective products for industrial applications, such as protective coveralls, sleeve protectors, and the like, protective coverings for automotive applications, and protective coverings for marine applications. The nonwoven fabric can be incorporated into absorbent cores, liners, outer-covers, or other components of personal care articles, such as diapers (baby or adult), training pants, feminine care articles (pads and tampons) and nursing pads. Further, the nonwoven fabric can be incorporated into fluid filtration products, such air filters, water filters, and oil filters, home furnishings, such as furniture backing, thermal and acoustic insulation products, agricultural application products, landscaping application products, and geotextile application products.
- A nonwoven web of staple fibers can be formed by a mechanical process known as carding as described in U.S. Pat. No. 797,749, which is incorporated herein in its entirety by reference. The carding process can include an airstream component to randomize the orientation of the staple fibers when they are collected on the forming wire. A state of the art mechanical card, such as the Tr{umlaut over (υ)}tzschler-Fliessner EWK-413 card, can run staple fibers having significantly shorter length than the 38 mm noted above. Older card designs may require longer fiber length to achieve good formation and stable operation.
- Another common dry web forming process is air-laid or air-forming. This process employs only air flow, gravity, and centripetal force to deposit a stream of fibers onto a moving forming wire that conveys the fiber web to a web bonding process. Air-laid processes are described in U.S. Pat. Nos. 4,014,635 and 4,640,810, both of which are incorporated herein in their entirety by reference. Pulp-based air-formed nonwoven webs frequently incorporate thermoplastic fibers that melt and bond the air-laid web together when the air-formed web is passed through ovens.
- Thermal bonding is also referred to as calendar bonding, point bonding, or pattern bonding, can be used to bond a fiber web to form a nonwoven fabric. Thermal bonding can also incorporate a pattern into the fabric. Thermal bonding is described in PCT International Publication No. WO/2005/025865, which is incorporated herein by reference in its entirety. Thermal bonding requires incorporation of thermoplastic fibers into the fiber web. Examples of thermoplastic fibers are discussed above. In thermal bonding, the fiber web is bonded under pressure by passing through heated calendar rolls, which can be embossed with a pattern that transfers to the surface of the fiber web. During thermal bonding, the calendar rolls are heated to a temperature at least between the glass transition temperature (Tg) and the melting temperature (Tm) of the thermoplastic material.
- Brightened fibers are formed into an unbounded web in the wet or dry state. In one aspect, the web is formed by a method employing a mechanical card. In another aspect, the web is formed by a method employing a combination of a mechanical card and a forced air stream. The dry web can be bonded by hydroentangling, or hydroentanglement. In addition, the hydroentangled web can be treated with an aqueous adhesive and exposed to heat to bond and dry the web. Also, the dry web can be bonded by mechanical needle punching and/or passing a heated air stream through the web. Alternatively, the dry web can be bonded by applying an aqueous adhesive to the unbounded web and exposing the web to heat.
- Hydroentanglement, also known as spunlacing, or spunbonding, to form non-woven fabrics and substrates is well-known in the art. Non-limiting examples of the hydroentangling process are described in Canadian Patent No. 841,938 and U.S. Pat. Nos. 3,485,706 and 5,958,186. U.S. Pat. Nos. 3,485,706 and 5,958,186, respectively, are incorporated herein in their entirety. Hydroentangling involves forming a fiber web, either wet-laid or dry-laid, and thereafter entangling the fibers by employing very fine water jets under high pressure. For example, a plurality of rows of waterjets is directed towards the fiber web which is disposed on a moving support, such as a wire (mesh). Hydroentangling of the fibers provides distinct hydroemboss patterns, which can create low fiber count zones, facilitate water dispersion, and provide a three dimensional structure. The entangled web is then dried.
- A nonwoven fiber web of brightened fibers can be wet-laid or foam-formed in the presence of a dispersion agent. The dispersion agent can either be directly added to the fibers in the form of a so-called “fiber finish” or it can be added to the water system in a wet-laying or foam-forming process. The addition of a suitable dispersion agent assists in providing a good formation, i.e, substantially uniform fiber dispersion, of brightend fibers. The dispersion agent can be of many different types which provide a suitable dispersion effect on the brightened fibers or any mixture of such brightened fibers. A non-limiting example of a dispersion agent is a mixture of 75% bis(hydrogeneratedtallowalkyl)dimethyl ammonium chloride and 25% propyleneglycol. The addition ought to be within the range of 0.01-0.1 weight %.
- During foam-forming the fibers are dispersed in a foamed liquid containing a foam-forming surfactant and water, whereafter the fiber dispersion is dewatered on a support, e.g., a wire (mesh), in the same way as with wet-laying. After the fiber web is formed, the fiber web is subjected to hydroentanglement with an energy flux of about 23,000 foot-pounds per square inch per second or higher. The hydroentanglement is carried out using conventional techniques and with equipment supplied by machine manufacturers. After hydroentanglement, the material is pressed and dried and, optionally, wound onto a roll. The ready material is then converted in a known way to a suitable format and is packed.
- The nonwoven fabric of the present invention can be incorporated into a laminate comprising the nonwoven fabric and a film. Laminates can be used in a wide variety of applications, such outer-covers for personal care products and absorbent articles, for example diapers, training paints, incontinence garments, feminine hygiene products, wound dressings, bandages, and the like.
- To form a laminate, an adhesive is applied to a support surface of the nonwoven fabric or a surface of the film. Examples of suitable adhesives include sprayable latex, polyalphaolefin, (commercially available as Rextac 2730 and Rextac 2723 from Huntsman Polymers, Houston, Tex.), and ethylene vinyl acetate. Additional commercially available adhesives include, but are not limited to, those available from Bostik Findley, Inc., Wauwatosa, Wis. Then, a film is fed onto the forming wire on top of the nonwoven fabric. Before application to the nonwoven fabric, the film is stretched as desired. The nonwoven fabric and film are combined and compressed in a nip to form the laminate. Although not required for pressure sensitive adhesives, the nip can be maintained at a desired adhesive bonding temperature suitable for the adhesive employed, e.g. heat activated adhesions. The laminate can be cut, directed to a winder, or directed to further processing.
- In addition to applying a film to the nonwoven fabric, another fabric can be bonded to the nonwoven fabric, which can be, for example another nonwoven fabric or a woven fabric. The nonwoven fabric can be a nonwoven fabric made in accordance with the present invention. An adhesive can be applied to either the nonwoven fabric or the another fabric before nipping to form the laminate.
- The films used in laminates can include, but are not limited to, polyethylene polymers, polyethylene copolymers, polypropylene polymers, polypropylene copolymers, polyurethane polymers, polyurethane copolymers, styrenebutadiene copolymers, or linear low density polyethylene. Optionally, a breathable film, e.g. a film comprising calcium carbonate, can be employed to form the laminate. Generally, a film is “breathable” if it has a water vapor transmission rate of at least 100 grams/square meter/24 hours, which can be measured, for example, by the test method described in U.S. Pat. No. 5,695,868, which is incorporated herein in its entirety by reference. Breathable films, however, are not limited to films comprising calcium carbonate. Breathable films can include any filler. As used herein, “filler” is meant to include particulates and other forms of materials which will not chemically interfere with or adversely affect the film, but will be substantially uniformly dispersed throughout the film. Generally, fillers are in particulate form and spherical in shape, with average diameters in the range between about 0.1 micrometers to about 7 micrometers. Fillers include, but are not limited to, organic and inorganic fillers.
- Optionally, the brightening agent or the fiber mixture includes additives. Suitable additives include, but are not limited to, chelants, magnesium sulfate, surfactants, wetting agents, pH buffering agents, stabilizing additives, or any combination thereof.
- The optional one or more additives can be present in a range between about 0.5 and about 5 wt. % based on the total weight of the mixture of non-wood fibers. In another aspect, one or more additives can be present in a range between about 1 and about 10 wt. %. Yet, in another aspect, one or more additives can be present in a range between about 2 and about 6 wt. %. Still yet, in another aspect, one or additives can be present in a range between about 3 and about 5 wt. %. In one aspect, the mixture of non-wood fibers can include one or more additives about or in any range between about 0.1, 0.2, 0.5, 0.7, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, and 20 wt. %.
- Suitable chelants include any metal sequestrant. Non-limiting examples of chelants include ethylenediamine-N,N′-disuccinic acid (EDDS) or the alkali metal, alkaline earth metal, ammonium, or substituted ammonium salts thereof, or mixtures thereof. Suitable EDDS compounds include the free acid form and the sodium or magnesium salt thereof. Examples of sodium salts of EDDS include Na2EDDS and Na4EDDS. Examples of such magnesium salts of EDDS include MgEDDS and Mg2EDDS. Other chelants include the organic phosphonates, including amino alkylene poly(alkylene phosphonate), alkali metal ethane-1-hydroxy diphosphonates, nitrile-trimethylene phosphonates, ethylene diamine tetra methylene phosphonates, and diethylene triamine penta methylene phosphonates. The phosphonate compounds can be present either in their acid form or as a complex of either an alkali or alkaline metal ion, the molar ratio of the metal ion to phosphonate compound being at least 1:1. Other suitable chelants include amino polycarboxylate chelants such as EDTA.
- Suitable wetting agents and/or cleaning agents include, but are not limited to, detergents and nonionic, amphoteric, and anionic surfactants, including amino acid-based surfactants. Amino acid-based surfactant systems, such as those derived from amino acids L-glutamic acid and other natural fatty acids, offer pH compatibility to human skin and good cleansing power, while being relatively safe and providing improved tactile and moisturization properties compared to other anionic surfactants.
- Suitable buffering systems include any agents buffering agents that assist the buffering system in reducing pH changes. Illustrative classes of buffering agents include, but are not limited to, a salt of a Group IA metal including, for example, a bicarbonate salt of a Group IA metal, a carbonate salt of a Group IA metal, an alkaline or alkali earth metal buffering agent, an aluminum buffering agent, a calcium buffering agent, a sodium buffering agent, a magnesium buffering agent, or any combination thereof. Suitable buffering agents include carbonates, phosphates, bicarbonates, citrates, borates, acetates, phthalates, tartrates, succinates of any of the foregoing, for example sodium or potassium phosphate, citrate, borate, acetate, bicarbonate and carbonate, or any combination thereof. Non-limiting examples of suitable buffering agents include aluminum-magnesium hydroxide, aluminum glycinate, calcium acetate, calcium bicarbonate, calcium borate, calcium carbonate, calcium citrate, calcium gluconate, calcium glycerophosphate, calcium hydroxide, calcium lactate, calcium phthalate, calcium phosphate, calcium succinate, calcium tartrate, dibasic sodium phosphate, dipotassium hydrogen phosphate, dipotassium phosphate, disodium hydrogen phosphate, disodium succinate, dry aluminum hydroxide gel, magnesium acetate, magnesium aluminate, magnesium borate, magnesium bicarbonate, magnesium carbonate, magnesium citrate, magnesium gluconate, magnesium hydroxide, magnesium lactate, magnesium metasilicate aluminate, magnesium oxide, magnesium phthalate, magnesium phosphate, magnesium silicate, magnesium succinate, magnesium tartrate, potassium acetate, potassium carbonate, potassium bicarbonate, potassium borate, potassium citrate, potassium metaphosphate, potassium phthalate, potassium phosphate, potassium polyphosphate, potassium pyrophosphate, potassium succinate, potassium tartrate, sodium acetate, sodium bicarbonate, sodium borate, sodium carbonate, sodium citrate, sodium gluconate, sodium hydrogen phosphate, sodium hydroxide, sodium lactate, sodium phthalate, sodium phosphate, sodium polyphosphate, sodium pyrophosphate, sodium sesquicarbonate, sodium succinate, sodium tartrate, sodium tripolyphosphate, synthetic hydrotalcite, tetrapotassium pyrophosphate, tetrasodium pyrophosphate, tripotassium phosphate, trisodium phosphate, trometarnol, or any combination thereof.
- Optionally, one or more stabilizing additives can be added during the bleaching or brightening process to prevent hydrogen peroxide decomposition. Non-limiting examples of suitable stabilizing additives include sodium silicate, magnesium sulfate, diethylene triamine penta acetic acid (DTPA), DTPA salts, ethylene diamine tetra acetic acid (EDTA), EDTA salts, or any combination thereof.
- The brightened fibers of the present invention can be used for any paper or tissue product, including but not limited to, tissue products made in a wet laid paper machine. In one aspect, a tissue or a paper comprises non-wood fibers having a brightness greater than about 65 as measured by MacBeth UV-C standard.
- The tissue paper can include any additional papermaking fibers, thermoplastic fibers, and/or synthetic fibers, and produced according to the Conventional Wet Press (CWP) manufacturing method, or by the Through Air Drying (TAD) manufacturing method, or any alternative manufacturing method (e.g., Advanced Tissue Molding System ATMOS of the company Voith, or Energy Efficient Technologically Advanced Drying eTAD of the company Georgia-Pacific). The web can be dried on a Yankee dryer and can be creped or un-creped.
- The tissue or paper can include any amount of the brightened fibers disclosed herein. For example, tissues and papers can include about or in any range between about 5, 10, 15, 20, 25, 30, 25, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, and 100 wt. % of the brightened fibers.
- For example, conventional wet pressed tissues are prepared by first preparing and mixing the raw fiber material in a vat to produce a fiber slurry. Then, the fiber slurry is transferred through a centrifugal pump to a headbox. From the headbox, the fibrous mixture is deposited onto a moving foraminous wire, such as Fourdrinier wire, to form a nascent web. Water can drain through the wire by use of vacuum and/or drainage elements. The web can then be dried by any suitable methods, including, but not limited to, air-drying, through-air drying (TAD), or drying on a Yankee dryer. For drying on a Yankee dryer, first an adhesive material is sprayed onto the surface of the Yankee dryer. The nascent web is transferred onto the hot Yankee dryer via one or two press rolls. The web is dried on the Yankee dryer and then removed with a creping doctor, which scrapes the web from the surface of the Yankee dryer drum. Then, the dried web is wound into a roll at the reel of the paper machine.
- When used to form tissues or paper, the fiber slurry can include any additional additives known in the art, including, but not limited to, wet strength agents, debonders, surfactants, or any combination thereof.
- In the following examples, flax fibers (commercially available from Crailar Technologies, Inc., Greensboro, N.C.) were used to assess the impact of oxygen during the bleaching process on shive content and brightness.
- All brightness measurements were conducted on thick pads of flax fiber. The pads were generated by diluting a sample of the flax fibers to approximately 2% consistency with water. The flax samples were gently hand mixed to separate the fibers as much as possible and then dewatered on a Buchner funnel with a piece of filter paper to form the fiber pad. During dewatering, the flax fiber was manually distributed to form as uniform a pad as possible. Then the pad was removed from the Buchner funnel and pressed between blotters in a laboratory press machine for about 10 minutes under a maximum pressure of 3,000 PSI. The fiber pads were then dried on a speed dryer until substantially dry. Care was taken to avoid overheating the samples because any potential excess heat induced yellowing. The fiber pads were air-dried for several days prior to brightness testing. All brightness tests were conducted in accordance with the MacBeth UV-C test method.
- The initial starting (control) flax was commercially available “finished flax” from Crailar Technologies, Inc. These fibers were treated by the Crailar process, which included mechanical treatment, chemical treatment to remove pectin, hydrogen peroxide bleaching, and drying. As shown in Table 1 below (ID 1), these flax fibers demonstrated a MacBeth UV-C brightness of 57.8.
FIG. 12 shows a photomicrograph of flax fibers, which have substantial shive content. -
TABLE 1 Compositions and properties for Examples 1-9 Brightness Chemicals % OP Physical MacBeth UV-C ID Peroxide Caustic Oxygen TAED DTPA Silicate Method % TSS Temp F. Minutes Brightness Gain 1 Start Sample - “Bleached” 57.8 2 1 1 0 0 0.1 0 Bath 12 190 120 76.4 18.6 3 2 2 0 0 0.0 0 Bath 12 190 120 77.4 19.6 4 4 3 0 0 0.1 0 Bath 12 190 120 75.8 18.0 5 2 2 0 0 0.1 0.2 Spinner 8 190 120 76.8 19.0 6 4 2 0 0 0.1 0.2 Spinner 8 190 120 78.7 20.9 7 4 2 0 0.5 0.1 0.2 Spinner 8 190 120 79.7 21.9 8 3 1 1 0 0.0 0.2 Q Mixer 12 190 180 84.4 26.6 9 3 1 0 0 0.1 0.2 Q Mixer 12 190 180 78.6 20.8 DTPA = diethylene triamine pentaacetic acid, a chelant; Caustic = NaOH/sodium hydroxide; % TSS = percent Total suspended solids/consistency - In Table 1, all the chemicals were % On Pulp (OP)=(weight of the chemical/weight of the fiber)*100. All chemicals were calculated on a 100% basis, i.e., the actual mass amount of the chemical and not the amount of a solution of the chemical. In Example 1, 30% hydrogen peroxide solution was used, but the data was recited in terms of 100% hydrogen peroxide.
- In Examples 1-3, control flax fibers (Example 1) were bleached using the “bag” or “bath” method. Flax samples were placed in a zip lock style plastic bag and maintained at a constant temperature in a water bath for the bleaching process duration. Thirty oven dry (OD) grams of fiber were diluted to a 12% consistency using distilled water including the respective chemicals (see Table 1). Additional mixing was performed at 30 minute intervals for the remaining retention time. The samples were then removed from the water bath, and brightness pads of fibers were prepared as detailed above. As shown in Table 1, brightness gain ranged between about 18.0 and 19.6 according to the MacBeth UV-C standard test.
- Another method of bleaching at a lower consistency (8%), a modified “spinner” method, was used in Examples 5-7. In this method, 30 g OD fiber was added to a 4 L beaker. Distilled water and the indicated chemicals were added to bring the pulp to an 8% consistency. The beakers were then placed in a 190° F. water bath about 80% submerged. Instead of continuously agitating the fibers with a motorized spinner, the samples were manually mixed (using a spoon) at approximately 10 minute intervals throughout the 180 minute duration of bleaching. A small amount of sodium silicate, 0.2 wt. % on pulp, was also added to the samples to help stabilize hydrogen peroxide.
- Examples 5 and 6 mirror the chemical application of Examples 3 and 4 and demonstrated a 19.0 and 20.9 brightness gain, respectively. However, there was no significant difference in brightness gain between the bag and spinner bleaching. Sodium silicate also did not have any significant impact on the results.
- Example 7 used the same initial charge of Example 6 (also a modified spinner method). This sample was allowed to peroxide bleach for 90 minutes, and then a sample equal to 0.5 wt. % of TAED granules was added to the pulp. The TAED was added to react with residual hydrogen peroxide and sodium hydroxide to form peracetic acid in situ. The addition of TAED resulted in a 1.0 higher brightness gain compared to the baseline peroxide bleach.
- In Example 8-9, a Quantum Mixer Mark III (Quantum Technologies, Akron, Ohio) was used to test the addition of oxygen gas to the peroxide bleach. The mixer was a variable speed, high intensity mixer suitable for all bleaching stages, which allowed the pulp and chemical to react under controlled conditions of time, temperature and agitation with constant pH read out. The mixer was run with the lowest possible level of mixing to minimize fiber tangling in the final pulp mass. Examples 8 and 9 compare brightness results with and without oxygen. Example 9 was run without oxygen and achieved a 20.8 brightness gain, which is comparable to the 19.0 and 20.9 gain for the spinner bleaches in Examples 5 and 6. Example 8 was run with oxygen addition for the first 60 minutes of the bleach. The mixer bowel was pressurized to 60 psig pressure with oxygen at the start of the bleach. After 15 minutes, the pressure was relieved and a second 60 psig charge was added. After 60 minutes, the oxygen was vented, and the remaining 120 minutes of the retention was performed at atmospheric pressure. This sample achieved a 26.6 brightness gain for a 84.4 final brightness. Compared to Example 9, the oxygen increased the brightness gain by 5.8. In addition, visual examination of the handsheets showed a decreased visible shive content in the oxygen Example 8 (see
FIG. 11 ) compared the non-oxygen Example 9 (seeFIG. 10 ). - In Examples 10-17 shown in Table 2, bleaching was performed in the Quantum mixer to assess the impacts of oxygen and TAED on brightness, as well as the effect of reductive bleaching. All experiments were performed on a de-pectinified, unbleached flax sample (Example 10). This control sample had a lower brightness, 27.9 and a higher level of shive contamination (see also
FIG. 12 of Example 24 below). -
TABLE 2 Compositions and properties for Examples 10-17 Chemicals % OP Brightness Start Hydro- Physical MacBeth UV-C ID Sample Peroxide Caustic Oxygen TAED DTPA Silicate sulfate Method % TSS Temp F. Minutes Brightness Gain 10 Unbleached 27.9 11 10 4 1.5 1 0.1 0.5 Mixer 15 190 120 64.0 36.1 12 11 3 1.5 Mixer 15 180 120 82.6 54.7 13 10 4 1.5 1 0.5 0.1 Mixer 15 190 180 64.1 36.2 14 Unbleached 3 1.5 1 0.1 0.5 0.5 Mixer 15 190 180 83.6 55.7 15 Unbleached 3 1.5 1 0.1 0.5 1 Mixer 15 190 180 81.8 53.9 16 Unbleached 3 1.5 1 0.1 0.5 1.5 Mixer 15 190 180 82.2 54.3 17 1 2 1 1 0.1 0.5 Mixer 15 190 180 83.9 26.1 - Example 11 utilized oxygen in the initial peroxide stage and demonstrated a 64.0 brightness after 120 minutes of retention (the first 60 minutes with oxygen as detailed above). As shown in
FIG. 13 , the fiber brightness pad demonstrated that the sample contained long, dark fibers which have a different appearance than the shives seen in the non-oxygen samples. Sample 11 was then washed on a Buchner funnel using the procedure detailed above, returned to the mixer, and then bleached with a hydrogen peroxide bleaching mixture. The final brightness after the second stage of bleaching was 82.6 (Example 12), compared to the final brightness of about 68 for the two-stage peroxide bleaching without oxygen (see Table 4). The fiber pad also showed a significant reduction in the long, dark fiber content and a very low level of shive. - Example 13 was performed similar to Example 11, except that a quantity of TAED equal to about 0.5 wt. % on pulp was added after 60 minutes (after the oxygen was vented). The TAED was added to form peracetic acid in situ from the residual peroxide and caustic. After an additional 60 minutes of retention, the brightness was measured and found to be 64.1.
- Examples 14-16 were performed to assess the impact of reductive bleaching on an oxygen-treated sample. The flax fibers were peroxide bleached in the Quantum mixer analogously to Example 11, except with a lower peroxide charge (3% versus 4%). The pulp was removed from the mixer, washed on a Buchner funnel and then split into three portions. Each of the samples was reductively bleached using a sodium hydrosulfite and the bag method. For the reductive stage of bleaching, a 20 g OD portion of the pulp was diluted to 8% consistency with distilled water and placed in a zip-lock type bag. The samples were then placed in a sealed glove box, and nitrogen was used to purge the oxygen. Nitrogen was purged into the box for approximately 15 minutes. While under nitrogen purge, the specified sodium hydrosulfite charge was prepared by weighing the required hydrosulfite powder, adding 25 mL of distilled water to dissolve the powder, and then adding the composition to the flax sample. The bags were sealed and hand kneaded to mix the sodium hydrosulfite. The sealed bags were then removed from the glove box and placed in a 180° F. water bath for 60 minutes. Then, the bags were removed from the bath and a brightness pad was prepared for each sample.
- The final brightness for these samples was between 81.8 and 83.6, which is comparable to a 82.6 brightness for the two-stage peroxide bleach Example 12. Table 4 below provides the brightness and color data for these samples. As indicated, the hydrosulfite bleached pulps (Examples 14-16) had less color than Example 12 (A* and B*).
- The MacBeth meter measures both TAPPI brightness and LAB whiteness. L* is the whiteness, and a* and b* are the color (red-green and blue-yellow). A* and b* values close to 0 indicate very low color/no color. The b* values shown in Table 3 are important because indicate a reduction in the yellow color of the fiber. Natural flax fiber is very yellow and thus not desirable in a wiper or tissue product. UV-C is the “C” illuminate, including the ultraviolet component of the light. “UV Excl” is UV excluded and does not include the ultraviolet light. The UV-C with UV may provide the most realistic conditions under which consumers perceive nonwovens.
-
TABLE 3 Brightness and color results for Examples 10-17 Brtness Color MB Color MB Color MB Brtness Color Color Color UV Excl. UV Excl. UV Excl. UV Excl. MacBeth MacBeth MacBeth MacBeth Whtness MacBeth A* B* L* UV-C L*UV C a*-UV C b*-UV C MacBeth ID % Unitless Unitless Unitless % Unitless Unitless Unitless UV-C 10 28.8 0.9 8.7 65.5 27.9 64.6 1.0 8.5 −20.5 11 65.3 −1.0 10.3 90.4 64.0 89.7 −1.1 10.2 25.8 12 82.5 −1.0 5.4 95.8 82.6 95.7 −1.1 5.3 65.0 13 63.8 −1.2 10.5 89.7 64.1 90.1 −1.1 11.0 23.4 14 83.7 −0.8 4.7 95.9 83.6 95.8 −0.7 4.6 68.6 15 82.9 −0.7 4.8 95.6 81.8 95.4 −0.9 5.3 64.0 16 82.4 −0.8 5.0 95.4 82.2 95.2 −0.7 4.7 66.3 17 83.7 −0.8 4.4 95.7 83.9 95.8 −0.9 4.4 69.4 - In Examples 18-24 (see Table 4), one and two-stage peroxide bleach processes, without oxygen, were performed on de-pectinified, unbleached flax (Example 24).
FIG. 12 shows a photomicrograph of the fibers in Example 24 (brightness of 57.8), which demonstrates the higher level of shive contamination. -
TABLE 4 Compositions and properties for Examples 18-24 Brightness Chemicals % OP Physical MacBeth UV-C ID Stage Peroxide Caustic DTPA Silicate Method % TSS Temp F. Minutes Brightness Stage Gain Total Gain 24 Start Sample - “Unbleached” 28.5 18 1 2 1 0.1 0.05 Spinner 8 190 180 60.2 31.7 19 2 3 1 0.05 Spinner 8 190 120 68.2 8.0 39.7 20 1 3 1 0.1 0.05 Spinner 8 190 180 59.2 30.7 21 2 3 1 0.05 Spinner 8 190 120 67.5 8.3 39.0 22 1 6 2 0.1 0.05 Spinner 8 190 180 60.0 31.5 23 2 3 1 0.05 Spinner 8 190 120 68.1 8.1 39.6 - The modified “spinner” method was used for the bleaches. After the first bleaching stage, the sample was diluted to approximately 2 L with distilled water and de-watered on a Buchner funnel. Two 1 L rinses were added to the de-watered pulp in the Buchner funnel to remove any residual chemical. The pulp was then split and one part used to make a pad for brightness testing. The remaining pulp was then bleached in the spinner method for a second peroxide stage. Finally, the brightness pad was made from the pulp after the second bleaching stage was complete.
- Example 1, the Crailar bleached flax (commercial bleaching process by unknown bleaching methods), had a brightness of 57.8. In comparison, Examples 18, 20, and 22 were single stage peroxide bleached flax, which achieved brightness between 59.2 and 60.2. The flat brightness response was independent of the amount of peroxide used.
- Each of the pulps was then second stage bleached as described above (Examples 19, 21, and 23). An additional 8.0 to 8.3 brightness gain was seen in the second stage to provide a final brightness between 67.5 and 68.3. Again, there was no difference in brightness attributable to peroxide dose.
- To determine the impact of reducing agents on the fiber without prior oxygen treatment, a set of experiments was performed on the unbleached (Example 10) and bleached (Example 1) flax samples at neutral and acidic pH. Table 5 shows the brightness gains and optical data for Examples 25-28.
-
TABLE 5 Brightness gains and optical data Start Hydrosulfite Physical MacBeth UV-C ID Sample pH % OP Method % TSS Temp F. Minutes Brightness Gain L* A* B* 1 Initial 59.1 87.34 −0.16 10.75 25 Bleached 7.03 1 Bag 8 180 60 61.1 2.0 87.5 −0.4 9.16 26 Bleached 3.36 1 Bag 8 180 60 61.0 2.0 87.54 −0.57 9.29 10 Initial 30.0 66.24 1.03 8.12 27 Unbleached 8.06 1 Bag 8 180 60 31.3 1.3 67.13 0.51 7.85 28 Unbleached 8.06 1 Bag 8 180 60 30.2 0.1 66.45 0.68 8.34 - As shown in Table 5, single stage hydrosulfite bleaching on both samples only showed up to 2 points of brightness gain and a slight reduction in color. When this result is compared to the reductive bleaching of oxygen-treated flax (Examples 14-16), it is evident that oxygen-treated flax demonstrates a 15 to 20 point brightness gain. Without being bound by theory, oxygen may be acting as an activating agent to enhance the performance of a subsequent reductive bleaching stage.
- During hand-mixing of the samples (15 minute intervals during the 60 minute retention), the unbleached samples unexpectedly increased in brightness during visual observation. The lower pH sample demonstrated the largest change and had a light tan color, compared to the starting grey color. However, soon after the fiber was exposed to air, the color reverted back to the dark grey color, resulting in only a slight improvement in brightness over the starting sample. The bleached flax sample may also have displayed similar reversion, although, due to the higher initial brightness, it was difficult to be sure how much reversion was actually observed. This reversion was not observed in the oxygen treated samples.
- With respect to the above description then, it is to be realized that the optimum dimensional relationships for the parts of the invention, to include variations in size, materials, shape, form, function, and manner of operation, assembly and use, are deemed readily apparent and obvious to one skilled in the art, and all equivalent relationships to those illustrated in the drawings and described in the specification are intended to be encompassed by the present invention.
- Therefore, the foregoing is considered as illustrative only of the principles of the invention. Further, various modifications may be made of the invention without departing from the scope thereof and it is desired, therefore, that only such limitations shall be placed thereon as are imposed by the prior art and which are set forth in the appended claims.
Claims (20)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/074,768 US20210032812A1 (en) | 2014-05-20 | 2020-10-20 | Bleaching and shive reduction process for non-wood fibers |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201462000825P | 2014-05-20 | 2014-05-20 | |
US14/716,153 US10844538B2 (en) | 2014-05-20 | 2015-05-19 | Bleaching and shive reduction process for non-wood fibers |
US17/074,768 US20210032812A1 (en) | 2014-05-20 | 2020-10-20 | Bleaching and shive reduction process for non-wood fibers |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/716,153 Continuation US10844538B2 (en) | 2014-05-20 | 2015-05-19 | Bleaching and shive reduction process for non-wood fibers |
Publications (1)
Publication Number | Publication Date |
---|---|
US20210032812A1 true US20210032812A1 (en) | 2021-02-04 |
Family
ID=54554619
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/716,153 Active 2036-09-27 US10844538B2 (en) | 2014-05-20 | 2015-05-19 | Bleaching and shive reduction process for non-wood fibers |
US17/074,768 Pending US20210032812A1 (en) | 2014-05-20 | 2020-10-20 | Bleaching and shive reduction process for non-wood fibers |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/716,153 Active 2036-09-27 US10844538B2 (en) | 2014-05-20 | 2015-05-19 | Bleaching and shive reduction process for non-wood fibers |
Country Status (9)
Country | Link |
---|---|
US (2) | US10844538B2 (en) |
EP (1) | EP3146109A4 (en) |
JP (2) | JP6587638B2 (en) |
CN (2) | CN106471184A (en) |
CA (1) | CA2949801A1 (en) |
IL (2) | IL249071B (en) |
MX (1) | MX2016015290A (en) |
TW (1) | TW201544652A (en) |
WO (1) | WO2015179380A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20200332466A1 (en) * | 2014-05-20 | 2020-10-22 | Gpcp Ip Holdings Llc | Bleaching and shive reduction process for non-wood fibers |
Families Citing this family (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201610265A (en) * | 2014-05-20 | 2016-03-16 | 喬治亞太平洋消費者產品公司 | Bleaching and shive reduction process for non-wood fibers |
US10309057B2 (en) | 2015-12-18 | 2019-06-04 | The Procter & Gamble Company | Methods for liberating trichome fibers form portions of a host plant |
WO2017205229A1 (en) * | 2016-05-23 | 2017-11-30 | The Procter & Gamble Company | Process for individualizing trichomes |
CN106192509A (en) * | 2016-07-20 | 2016-12-07 | 昆明理工大学 | The technique promoting sulfate pulping combined by sodium borohydride and hydrogen peroxide |
RU2637015C1 (en) * | 2016-11-08 | 2017-11-29 | Евгений Александрович Луканин | Method of producing purified cellulose from lumber fibre |
WO2018222629A1 (en) | 2017-05-30 | 2018-12-06 | Gpcp Ip Holdings Llc | Cleaning compositions and methods for making and using same |
EP3466388B1 (en) | 2017-10-06 | 2020-05-20 | The Procter & Gamble Company | Absorbent article comprising a nonwoven material with antimony-free polyethylene terephthalate |
EP3466385B1 (en) * | 2017-10-06 | 2020-05-27 | The Procter & Gamble Company | Absorbent article or wipe comprising a nonwoven material with bicomponent fibers comprising antimony-free polyethylene terephthalate |
CN108004676B (en) * | 2017-12-28 | 2023-04-21 | 无锡市艾克斯染整设备有限公司 | Continuous production method and device for pure cotton bleached non-woven fabrics |
WO2019180681A1 (en) | 2018-03-23 | 2019-09-26 | Bast Fibre Technologies Inc. | Nonwoven fabic comprised of crimped bast fibers |
US11427960B2 (en) | 2018-06-29 | 2022-08-30 | The Procter & Gamble Company | Bleaching trichomes to remove proteins |
US11180888B2 (en) | 2018-06-29 | 2021-11-23 | The Procter & Gamble Company | Fibrous structures comprising trichome compositions and methods for obtaining same |
US20200002889A1 (en) | 2018-06-29 | 2020-01-02 | The Procter & Gamble Company | Process for Separating Trichomes from Non-Trichome Materials |
US12104320B2 (en) | 2018-06-29 | 2024-10-01 | The Procter & Gamble Company | Enzymatic and acid methods for individualizing trichomes |
FR3083550B1 (en) * | 2018-07-03 | 2021-05-14 | Swm Luxembourg Sarl | VEGETABLE PAPER CONTAINING LIBERIAN FIBERS |
CN114423600B (en) * | 2019-07-02 | 2023-12-01 | 克瓦德拉特股份公司 | Artificial leather product and production method thereof |
US11739454B2 (en) * | 2019-12-31 | 2023-08-29 | Bastcore, Inc. | Method for wet processing of hemp fibers |
FR3106142B1 (en) * | 2020-01-10 | 2023-05-19 | Swm Luxembourg Sarl | Soft and flexible wipe with individualized bast fibers |
CN111608002A (en) * | 2020-04-17 | 2020-09-01 | 仙鹤股份有限公司 | Preparation method of carbonization-free solid capacitor paper |
CN111455708B (en) * | 2020-05-15 | 2021-04-06 | 山鹰国际控股股份公司 | Preparation method of low-gram-weight writing paper |
KR102280322B1 (en) * | 2021-01-16 | 2021-07-20 | 김성엽 | Paper making method using coffee |
CN113322664B (en) * | 2021-05-27 | 2022-07-19 | 江南大学 | Preparation method of extra-white cotton fabric |
TWI819375B (en) * | 2021-09-13 | 2023-10-21 | 南亞塑膠工業股份有限公司 | Method of decolorizing polyester fabric |
US20230381030A1 (en) * | 2022-05-24 | 2023-11-30 | The Procter & Gamble Company | Tampon with naturally hydrophobic components |
KR102432799B1 (en) * | 2022-06-30 | 2022-08-12 | 황웅규 | A decolorization method of hemp rind for burlap thread |
SE2230370A1 (en) * | 2022-11-15 | 2024-05-16 | Valmet Oy | Method for bleaching cellulose pulp formed from recycled textile material |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003087448A1 (en) * | 2002-04-12 | 2003-10-23 | Bki Holding Corporation | Ultra white wipe |
US20030230391A1 (en) * | 2002-06-11 | 2003-12-18 | Hamed Othman A. | Chemically cross-linked cellulosic fiber and method of making same |
CA2589608A1 (en) * | 2006-06-09 | 2007-12-09 | Celanese International Corporation | Synthetic nonwoven wallcoverings with aqueous ground coating |
US20120031575A1 (en) * | 2010-04-28 | 2012-02-09 | Savage Services Corporation | Pulp Bleaching and Alkaline Extraction Method |
US20140066872A1 (en) * | 2012-09-05 | 2014-03-06 | Georgia-Pacific Consumer Products Lp | Nonwoven Fabrics Comprised of Individualized Bast Fibers |
Family Cites Families (84)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA841938A (en) | 1970-05-19 | E.I. Du Pont De Nemours And Company | Process for producing a nonwoven web | |
US797749A (en) | 1905-05-08 | 1905-08-22 | Robert B Robinson | Carding-machine. |
US1868513A (en) | 1928-05-24 | 1932-07-26 | Roessler & Hasslacher Chemical | Process and apparatus for treating textile materials |
US2018276A (en) | 1930-07-10 | 1935-10-22 | Ralph H Mckee | Art of treating vegetable fibers |
FR723798A (en) * | 1930-10-04 | 1932-04-14 | Produits Peroxydes Soc D | Improvements in the bleaching of vegetable textile materials |
GB412470A (en) | 1933-08-10 | 1934-06-28 | Francesco Carlo Palazzo | Process for refining fibres of hemp and other bast fibres such as nettle fibres, flax fibres and the like |
US2073682A (en) | 1935-06-13 | 1937-03-16 | Jr Franklin R Chesley | Processes of treating vegetable fibrous material for the production of cellulose fibe |
US2174178A (en) * | 1936-10-31 | 1939-09-26 | Henry C Nichols | Apparatus for and method of treating pervious material with fluid |
BE438417A (en) | 1939-03-29 | 1900-01-01 | ||
US2407227A (en) | 1943-11-12 | 1946-09-10 | Earle Theodore | Retting method |
US2469249A (en) | 1945-11-27 | 1949-05-03 | Olin Mathieson | Process of scouring cellulosic textiles using steam |
BE633420A (en) | 1962-07-16 | |||
US3384444A (en) | 1964-06-29 | 1968-05-21 | Reeves Bros Inc | Production of lightfast jute |
US3485706A (en) | 1968-01-18 | 1969-12-23 | Du Pont | Textile-like patterned nonwoven fabrics and their production |
US3472609A (en) | 1968-07-08 | 1969-10-14 | Nujute Inc | Bleaching of jute |
US3661699A (en) | 1970-12-21 | 1972-05-09 | American Cyanamid Co | Bleaching of lignin-containing cellulose materials such as pulp |
US3775055A (en) | 1971-01-25 | 1973-11-27 | Burlington Industries Inc | Process for treating textile materials |
GB1518284A (en) | 1974-10-31 | 1978-07-19 | Kroyer K K K | Apparatus for the deposition of a uniform layer of dry fibres on a foraminous forming surface |
US4033811A (en) | 1975-06-09 | 1977-07-05 | Stig Gloersen | Method and apparatus for filling of fiber material and liquid to steam phase in treatment vessel |
US4363697A (en) | 1979-12-03 | 1982-12-14 | The Black Clawson Company | Method for medium consistency oxygen delignification of pulp |
SE445052C (en) | 1980-03-13 | 1987-11-09 | Sunds Defibrator | SET AND DEVICE FOR CONTINUOUS MIXING OF GAS AND / OR LIQUID TREATMENTS IN A MASSAGE SUSPENSION |
US4640810A (en) | 1984-06-12 | 1987-02-03 | Scan Web Of North America, Inc. | System for producing an air laid web |
FR2566015B1 (en) * | 1984-06-15 | 1986-08-29 | Centre Tech Ind Papier | PROCESS FOR BLEACHING MECHANICAL PASTE WITH HYDROGEN PEROXIDE |
CA1251903A (en) | 1985-06-17 | 1989-04-04 | Pulp And Paper Research Institute Of Canada | Alkaline-peroxide-oxygen treatment of unbleached and chlorinated chemical pulps |
CN86103060A (en) | 1986-04-27 | 1987-04-22 | 刘能振 | The bleaching agent of forming by permanganate and reducing substances |
US5244466A (en) * | 1987-10-21 | 1993-09-14 | Praxair Technology, Inc. | Oxygen bleaching of textiles |
WO1989005881A1 (en) * | 1987-12-21 | 1989-06-29 | Aga Aktiebolag | A method of bleaching cotton |
US4795476A (en) | 1988-01-27 | 1989-01-03 | General Chemical Corporation | Method for permanganate bleaching of fabric and garments |
US5409570A (en) * | 1989-02-15 | 1995-04-25 | Union Camp Patent Holding, Inc. | Process for ozone bleaching of oxygen delignified pulp while conveying the pulp through a reaction zone |
CA2017529A1 (en) | 1989-06-15 | 1990-12-15 | Michael J. Wax | Prevention of ammonia generation in animal areas |
US5205835A (en) | 1991-02-07 | 1993-04-27 | Fmc Corporation | Process to remove manganese dioxide from wet process denim fibers by neutralizing with peracetic acid |
US6126781A (en) * | 1991-08-01 | 2000-10-03 | Union Camp Patent Holding, Inc. | Process for conditioning ozone gas recycle stream in ozone pulp bleaching |
CN1072746A (en) | 1991-11-20 | 1993-06-02 | 杨广富 | A kind of method of efficient bleached pulp |
EP0715571B1 (en) * | 1992-02-26 | 2000-05-17 | The University Of Tennessee Research Corporation | Novel composite web |
US5589032A (en) * | 1992-09-21 | 1996-12-31 | North Carolina State University | Process for preparing a bleaching liquor containing percarboxylic acid and caro's acid |
CA2116081C (en) | 1993-12-17 | 2005-07-26 | Ann Louise Mccormack | Breathable, cloth-like film/nonwoven composite |
SE503606C2 (en) | 1994-10-24 | 1996-07-15 | Moelnlycke Ab | Nonwoven material containing a mixture of pulp fibers and long hydrophilic plant fibers and a process for producing the nonwoven material |
JPH09136969A (en) | 1995-11-16 | 1997-05-27 | Kawasaki Steel Corp | Wet production of fiber-reinforced tehrmoplastic resin sheet and equipment therefor |
US6514380B1 (en) | 1995-03-08 | 2003-02-04 | Andritz Oy | Treatment of chemical pulp |
EP0763341A1 (en) | 1995-09-15 | 1997-03-19 | The Procter & Gamble Company | Wet wipes with low viscosity silicone emulsion systems |
DE19614587A1 (en) | 1996-04-13 | 1997-10-16 | Jaschinski Thomas Dipl Holzw | Process and bleaching solution for bleaching cellulosic fibers |
WO1998026808A2 (en) | 1996-12-17 | 1998-06-25 | The Procter & Gamble Company | Absorbent articles with odor control system |
PL339428A1 (en) * | 1997-09-29 | 2000-12-18 | Novo Nordisk Biochem Inc | Treatment of cellulosic materials by means of cellulases |
EP0931862A1 (en) | 1998-01-23 | 1999-07-28 | Instituut Voor Agrotechnologisch Onderzoek (Ato-Dlo) | Process for the production of elementary vegetable bast fibres |
ATE252175T1 (en) * | 1998-04-17 | 2003-11-15 | Alberta Res Council | METHOD FOR PRODUCING LIGNOCELLULOSE-CONTAINING PULP FROM NON-WOODY MATERIAL |
FI109545B (en) * | 1998-08-27 | 2002-08-30 | Metso Paper Inc | Process for the production of fibrous pulp from herbaceous plants |
US6569286B1 (en) | 1998-09-30 | 2003-05-27 | Warwick International Group Limited | Method for the alkaline bleaching of pulp with a peroxyacid based oxygen bleaching species using an agglomerated bleach activator |
MXPA01008545A (en) | 1999-02-24 | 2003-06-06 | Sca Hygiene Prod Gmbh | Oxidized cellulose-containing fibrous materials and products made therefrom. |
US6524348B1 (en) | 1999-03-19 | 2003-02-25 | Weyerhaeuser Company | Method of making carboxylated cellulose fibers and products of the method |
US6302997B1 (en) * | 1999-08-30 | 2001-10-16 | North Carolina State University | Process for producing a pulp suitable for papermaking from nonwood fibrous materials |
US7044985B2 (en) | 1999-12-21 | 2006-05-16 | Clariant Finance (Bvi) Limited | Process for pre-treating cellulosic fibers and cellulosic fiber blends |
FI116699B (en) * | 2000-01-21 | 2006-01-31 | Metso Automation Oy | Method and instrument for measuring suspension |
US7101612B2 (en) | 2000-05-04 | 2006-09-05 | Kimberly Clark Worldwide, Inc. | Pre-moistened wipe product |
US6428653B1 (en) * | 2000-12-04 | 2002-08-06 | West Fraser Timber Co. Ltd. | Method of bleaching with formamidine sulfinic acid using a reducing agent to eliminate residual peroxide |
DE10114341C2 (en) * | 2001-03-23 | 2003-10-02 | Rettenmaier & Soehne Gmbh & Co | Process for grinding and bleaching cellulosic material, its use and the cellulosic material |
JP2002363878A (en) * | 2001-06-07 | 2002-12-18 | Onda Akio | Method for manufacturing pulp having high whiteness |
CN1141425C (en) | 2001-12-27 | 2004-03-10 | 东华大学 | Refined jute-kenaf fibres and application thereof |
JP3520990B2 (en) * | 2002-02-22 | 2004-04-19 | 丸三産業株式会社 | Undefatted bleaching method of natural fiber |
GB0208029D0 (en) | 2002-04-06 | 2002-05-15 | Accantia Holdings Ltd | Fabric & application |
US7147751B2 (en) | 2002-12-20 | 2006-12-12 | Kimberly-Clark Worldwide, Inc. | Wiping products having a low coefficient of friction in the wet state and process for producing same |
US6923887B2 (en) * | 2003-02-21 | 2005-08-02 | Alberta Research Council Inc. | Method for hydrogen peroxide bleaching of pulp using an organic solvent in the bleaching medium |
US20040256065A1 (en) * | 2003-06-18 | 2004-12-23 | Aziz Ahmed | Method for producing corn stalk pulp and paper products from corn stalk pulp |
US7932196B2 (en) | 2003-08-22 | 2011-04-26 | Kimberly-Clark Worldwide, Inc. | Microporous stretch thinned film/nonwoven laminates and limited use or disposable product applications |
FI121385B (en) * | 2004-02-24 | 2010-10-29 | Kemira Oyj | Process for Reducing Extract Substance in High Yield Masses and Process for Preparing Bleached High Yield Masses |
US20060183816A1 (en) | 2005-02-11 | 2006-08-17 | Gelman Robert A | Additive system for use in paper making and process of using the same |
CN100393924C (en) | 2005-11-01 | 2008-06-11 | 徐梅荣 | Extraction and preparation method of fibrilia, fibrilia obtained by the method and application thereof |
EP2029800B1 (en) | 2006-06-08 | 2013-01-16 | National Research Council of Canada | Extraction of hemp fibers |
JP2008013859A (en) * | 2006-07-03 | 2008-01-24 | Mitsubishi Gas Chem Co Inc | Method for bleaching non-wood pulp without chlorine |
US20080087390A1 (en) * | 2006-10-11 | 2008-04-17 | Fort James Corporation | Multi-step pulp bleaching |
WO2008084139A1 (en) | 2007-01-12 | 2008-07-17 | Ahlstrom Corporation | A method of forming a reinforced parchmented nonwoven product, and the product |
KR100786717B1 (en) * | 2007-02-27 | 2007-12-21 | 장현영 | A method of removing hemp bast pectin using microorganism |
JP2009020856A (en) | 2007-07-10 | 2009-01-29 | Toshiba Tec Corp | Handy-type wireless tag reader/writer |
CN101215776A (en) | 2008-01-18 | 2008-07-09 | 安徽大学 | Method for bleaching black feather and cotton fabric |
CN101591866A (en) * | 2008-05-28 | 2009-12-02 | 李朝旺 | Clean paper making method by kenaf |
MX2011007504A (en) | 2009-01-13 | 2011-12-16 | Ca Nat Research Council | Enzymatic preparation of plant fibers. |
US8080129B2 (en) * | 2009-11-17 | 2011-12-20 | Naila Yaqoob | Environmentally benign TCF bleaching sequences for AS/AQ wheat straw pulp |
CN102086533B (en) | 2009-12-04 | 2013-04-24 | 江苏紫荆花纺织科技股份有限公司 | Pretreatment process of jute or red ramie |
IT1404146B1 (en) | 2010-12-27 | 2013-11-15 | Loris Bellini S P A | MACHINE AND PROCEDURE FOR DYEING OF WIRE ROCKS AND / OR WRAPPED PACKS OF TEXTILE FIBER |
AR087707A1 (en) * | 2011-08-30 | 2014-04-09 | Cargill Inc | ARTICLES MANUFACTURED FROM A PULP COMPOSITION |
CN103243599B (en) | 2013-04-28 | 2015-04-01 | 广东松炀再生资源股份有限公司 | Process for recycling and preparing coated white board paper by using waste paper |
CN103255661A (en) | 2013-05-14 | 2013-08-21 | 昆明理工大学 | Preparation method of straw pulp |
CN103266519A (en) | 2013-05-14 | 2013-08-28 | 昆明理工大学 | Preparation method of bleached straw pulp |
TW201610261A (en) | 2014-05-20 | 2016-03-16 | 喬治亞太平洋消費者產品公司 | Bleaching and shive reduction process for non-wood fibers |
SI3221512T1 (en) * | 2014-11-19 | 2020-01-31 | Omya International Ag | Method of producing a filler |
-
2015
- 2015-05-12 TW TW104115007A patent/TW201544652A/en unknown
- 2015-05-19 US US14/716,153 patent/US10844538B2/en active Active
- 2015-05-19 CN CN201580035298.2A patent/CN106471184A/en active Pending
- 2015-05-19 CA CA2949801A patent/CA2949801A1/en not_active Abandoned
- 2015-05-19 JP JP2016568922A patent/JP6587638B2/en not_active Expired - Fee Related
- 2015-05-19 MX MX2016015290A patent/MX2016015290A/en unknown
- 2015-05-19 CN CN201910669113.3A patent/CN110241656A/en active Pending
- 2015-05-19 EP EP15796592.2A patent/EP3146109A4/en active Pending
- 2015-05-19 WO PCT/US2015/031551 patent/WO2015179380A1/en active Application Filing
-
2016
- 2016-11-20 IL IL249071A patent/IL249071B/en active IP Right Grant
-
2019
- 2019-06-10 JP JP2019107862A patent/JP2019163586A/en active Pending
-
2020
- 2020-05-24 IL IL274857A patent/IL274857B/en unknown
- 2020-10-20 US US17/074,768 patent/US20210032812A1/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003087448A1 (en) * | 2002-04-12 | 2003-10-23 | Bki Holding Corporation | Ultra white wipe |
US20030230391A1 (en) * | 2002-06-11 | 2003-12-18 | Hamed Othman A. | Chemically cross-linked cellulosic fiber and method of making same |
CA2589608A1 (en) * | 2006-06-09 | 2007-12-09 | Celanese International Corporation | Synthetic nonwoven wallcoverings with aqueous ground coating |
US20120031575A1 (en) * | 2010-04-28 | 2012-02-09 | Savage Services Corporation | Pulp Bleaching and Alkaline Extraction Method |
US20140066872A1 (en) * | 2012-09-05 | 2014-03-06 | Georgia-Pacific Consumer Products Lp | Nonwoven Fabrics Comprised of Individualized Bast Fibers |
Non-Patent Citations (2)
Title |
---|
Aziz et al. "Biokraft Pulping of Kenaf and its Bleachability", 1998 TAPPI Proceedings (Year: 1998) * |
Miao et al. ("Evaluation of Hemp Root Bast as a New Material for Papermaking",Bioresources, 2013.) (Year: 2013) * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20200332466A1 (en) * | 2014-05-20 | 2020-10-22 | Gpcp Ip Holdings Llc | Bleaching and shive reduction process for non-wood fibers |
Also Published As
Publication number | Publication date |
---|---|
US20150337496A1 (en) | 2015-11-26 |
JP2017516923A (en) | 2017-06-22 |
IL274857A (en) | 2020-07-30 |
IL274857B (en) | 2021-08-31 |
IL249071B (en) | 2020-06-30 |
CA2949801A1 (en) | 2015-11-26 |
EP3146109A1 (en) | 2017-03-29 |
TW201544652A (en) | 2015-12-01 |
US10844538B2 (en) | 2020-11-24 |
MX2016015290A (en) | 2017-08-15 |
EP3146109A4 (en) | 2017-12-20 |
JP6587638B2 (en) | 2019-10-09 |
IL249071A0 (en) | 2017-01-31 |
CN106471184A (en) | 2017-03-01 |
WO2015179380A1 (en) | 2015-11-26 |
JP2019163586A (en) | 2019-09-26 |
CN110241656A (en) | 2019-09-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20210032812A1 (en) | Bleaching and shive reduction process for non-wood fibers | |
US20200332466A1 (en) | Bleaching and shive reduction process for non-wood fibers | |
JP5624694B2 (en) | Recycled fiber and recycled fiber molded product | |
TWI534318B (en) | Hydrolytic fiber flakes | |
RU2598284C2 (en) | Method and apparatus for forming sheet of fluff pulp | |
CN105143547B (en) | With low viscosity kraft fibers for increasing carboxyl-content and production and preparation method thereof | |
JPH04503231A (en) | Method for producing a water-absorbing nonwoven fabric made of natural fibers, especially unbleached cotton, and the resulting nonwoven fabric | |
US10640899B2 (en) | Bleaching and shive reduction process for non-wood fibers | |
TWI526589B (en) | Preparation method of hydrolyzable fiber sheet | |
KR102511462B1 (en) | Washable plant-based substrate thermally bonded with bio-based fibers | |
US20200340172A1 (en) | Bleaching and shive reduction process for non-wood fibers | |
US20210032801A1 (en) | Bleaching and shive reduction for non-wood fibers | |
CN114302991B (en) | Fluff pulp | |
EP4139512B1 (en) | Method of forming biodegradable nonwoven fabric, and nonwoven fabric | |
RU2130515C1 (en) | Method of treating flax fiber | |
CA2214992A1 (en) | Method of producing a sheet of cotton |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STPP | Information on status: patent application and granting procedure in general |
Free format text: APPLICATION DISPATCHED FROM PREEXAM, NOT YET DOCKETED |
|
AS | Assignment |
Owner name: GPCP IP HOLDINGS LLC, GEORGIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:LEE, JEFFREY A.;REEL/FRAME:054521/0479 Effective date: 20150521 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: ADVISORY ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |