US20210017194A1 - Condensed heterocyclic compounds and pesticides - Google Patents

Condensed heterocyclic compounds and pesticides Download PDF

Info

Publication number
US20210017194A1
US20210017194A1 US17/037,817 US202017037817A US2021017194A1 US 20210017194 A1 US20210017194 A1 US 20210017194A1 US 202017037817 A US202017037817 A US 202017037817A US 2021017194 A1 US2021017194 A1 US 2021017194A1
Authority
US
United States
Prior art keywords
alkyl
haloalkyl
hydrogen atom
formula
salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US17/037,817
Inventor
Takao Kudo
Yukihiro Maizuru
Ayano TANAKA
Kenkichi NOTO
Hiroto Matsui
Masaki Kobayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Chemical Corp
Original Assignee
Nissan Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Chemical Corp filed Critical Nissan Chemical Corp
Priority to US17/037,817 priority Critical patent/US20210017194A1/en
Publication of US20210017194A1 publication Critical patent/US20210017194A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/90Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having two or more relevant hetero rings, condensed among themselves or with a common carbocyclic ring system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/4353Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems
    • A61K31/437Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems the heterocyclic ring system containing a five-membered ring having nitrogen as a ring hetero atom, e.g. indolizine, beta-carboline
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/50Pyridazines; Hydrogenated pyridazines
    • A61K31/5025Pyridazines; Hydrogenated pyridazines ortho- or peri-condensed with heterocyclic ring systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/519Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P33/00Antiparasitic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P33/00Antiparasitic agents
    • A61P33/14Ectoparasiticides, e.g. scabicides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D513/00Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for in groups C07D463/00, C07D477/00 or C07D499/00 - C07D507/00
    • C07D513/02Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for in groups C07D463/00, C07D477/00 or C07D499/00 - C07D507/00 in which the condensed system contains two hetero rings
    • C07D513/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D519/00Heterocyclic compounds containing more than one system of two or more relevant hetero rings condensed among themselves or condensed with a common carbocyclic ring system not provided for in groups C07D453/00 or C07D455/00

Definitions

  • the present invention relates to a novel condensed heterocyclic compound and its salt, and a pesticide containing the compound as an active ingredient.
  • Patent Documents 1 to 31 disclose condensed heterocyclic compounds, however, they failed to disclose the condensed heterocyclic compounds of the present invention.
  • Usefulness of the compounds as pesticides, especially, as insecticides, acaricides or parasiticides against internal or external parasites in or on a mammal or bird is not known at all.
  • Patent Document 1 WO2016/005263
  • Patent Document 2 WO2015/198859
  • Patent Document 3 WO2015/133603
  • Patent Document 4 WO2015/121136
  • Patent Document 5 WO2015/091945
  • Patent Document 6 WO2015/087458
  • Patent Document 7 WO2015/071180
  • Patent Document 8 WO2015/059088
  • Patent Document 9 WO2015/002211
  • Patent Document 10 WO2015/000715
  • Patent Document 11 WO2014/157600
  • Patent Document 12 WO2014/148451
  • Patent Document 13 WO2014/142292
  • Patent Document 14 WO2014/132972
  • Patent Document 15 WO2014/132971
  • Patent Document 16 WO2014/123206
  • Patent Document 17 WO2014/123205
  • Patent Document 18 WO2014/104407
  • Patent Document 19 WO2013/180194
  • Patent Document 20 WO2013/180193
  • Patent Document 21 WO2013/191113
  • Patent Document 22 WO2013/191189
  • Patent Document 23 WO2013/191112
  • Patent Document 24 WO2013/191188
  • Patent Document 25 WO2013/018928
  • Patent Document 26 WO2012/086848
  • Patent Document 27 WO2012/074135
  • Patent Document 28 WO2011/162364
  • Patent Document 29 WO2011/043404
  • Patent Document 30 WO2010/125985
  • Patent Document 31 WO2009/131237
  • a novel condensed heterocyclic compound represented by the following formula (1) of the present invention is a very useful compound which has excellent pesticidal activities particularly insecticidal and acaricidal activities, and which has little harmful effect on non-target organisms such as mammals, fishes and useful insects, and accomplished the present invention.
  • the present invention relates to the following [1] to [167].
  • D substituted with —S(O) n R 1 is a ring represented by any one of D1, D2 and D3:
  • Q is a ring represented by any one of Q1, Q2, Q3 and Q4:
  • G 1 is a nitrogen atom or C(Y1)
  • G 2 is a nitrogen atom or C(Y2)
  • G 3 is a nitrogen atom or C(Y3)
  • G 4 is a nitrogen atom or C(Y4)
  • G 5 is a nitrogen atom or C(Y5)
  • T 1 is N(T 1a ), an oxygen atom or a sulfur atom,
  • a 1 is N(A 1a ), an oxygen atom or a sulfur atom,
  • a 2 is a nitrogen atom or C(R 2 ),
  • a 3 is a nitrogen atom or C(R 3 ),
  • a 4 is a nitrogen atom or C(R 4 ),
  • a 5 is a nitrogen atom or C(R 5 ),
  • a 8 is a nitrogen atom or C(R 8 ),
  • R 1 is C 1 -C 6 alkyl, C 1 -C 6 haloalkyl, (C 1 -C 6 ) alkyl optionally substituted with R 1a , C 2 -C 6 alkenyl, C 2 -C 6 haloalkenyl, C 2 -C 6 alkynyl, C 2 -C 6 haloalkynyl, C 3 -C 6 cycloalkyl, 03-C 6 halocycloalkyl, C 3 -C 6 cycloalkyl (C 1 -C 6 ) alkyl, C 3 -C 6 halocycloalkyl (C 1 -C 6 ) alkyl or hydroxy (C 1 -C 6 ) alkyl,
  • R 1a is C 1 -C 8 alkoxy, C 1 -C 8 haloalkoxy, C 1 -C 8 alkoxycarbonyl, C 1 -C 6 alkylthio, C 1 -C 6 haloalkylthio, C 1 -C 6 alkylsulfinyl, C 1 -C 6 haloalkylsulfinyl, C 1 -C 6 alkylsulfonyl, C 1 -C 6 haloalkylsulfonyl or cyano,
  • R 2 is a hydrogen atom, a halogen atom, C 1 -C 6 alkyl, C 1 -C 6 haloalkyl, C 1 -C 8 alkoxy, C 1 -C 8 haloalkoxy, C 3 -C 6 cycloalkyl, C 3 -C 6 halocycloalkyl, C 1 -C 6 alkylthio, C 1 -C 6 haloalkylthio, C 1 -C 6 alkylsulfinyl, C 1 -C 6 haloalkylsulfinyl, C 1 -C 6 alkylsulfonyl, C 1 -C 6 haloalkylsulfonyl, —C(O)R 20a , —C(O)OH, hydroxy, —NH 2 , —NHR 20g , —N(R 20h )R 20g , mercapto, cyano or nitro,
  • R 3 is a hydrogen atom, a halogen atom, C 1 -C 6 alkyl, C 1 -C 6 haloalkyl, C 2 -C 6 haloalkenyl, C 2 -C 6 haloalkynyl, C 1 -C 8 alkoxy, C 1 -C 8 haloalkoxy, C 3 -C 6 cycloalkyl, C 3 -C 6 halocycloalkyl, C 1 -C 6 alkylthio, C 1 -C 6 haloalkylthio, (C 1 -C 6 ) alkylthio optionally substituted with R 3a , C 1 -C 6 alkylsulfinyl, C 1 -C 6 haloalkylsulfinyl, C 1 -C 6 alkylsulfonyl, C 1 -C 6 haloalkylsulfonyl, —C(O)R 30a , —
  • R 3a is C 1 -C 8 alkoxycarbonyl
  • R 3b is a halogen atom, C 1 -C 6 alkyl, C 1 -C 6 haloalkyl, C 1 -C 8 alkoxy, C 1 -C 8 haloalkoxy, cyano or nitro,
  • R 4 is a hydrogen atom, a halogen atom, C 1 -C 6 alkyl, C 1 -C 6 haloalkyl, C 2 -C 6 haloalkenyl, C 2 -C 6 haloalkynyl, C 1 -C 8 alkoxy, C 1 -C 8 haloalkoxy, C 3 -C 6 cycloalkyl, C 3 -C 6 halocycloalkyl, C 1 -C 6 alkylthio, C 1 -C 6 haloalkylthio, (C 1 -C 6 ) alkylthio optionally substituted with R 4a , C 1 -C 6 alkylsulfinyl, C 1 -C 6 haloalkylsulfinyl, C 1 -C 6 alkylsulfonyl, C 1 -C 6 haloalkylsulfonyl, —C(O)R 40a , —
  • R 4a is C 1 -C 8 alkoxycarbonyl
  • R 4b is a halogen atom, C 1 -C 6 alkyl, C 1 -C 6 haloalkyl, C 1 -C 8 alkoxy, C 1 -C 8 haloalkoxy, cyano or nitro,
  • R 5 is a hydrogen atom, a halogen atom, C 1 -C 6 alkyl, C 1 -C 6 haloalkyl, C 1 -C 8 alkoxy, C 1 -C 8 haloalkoxy, C 3 -C 6 cycloalkyl, C 3 -C 6 halocycloalkyl, C 1 -C 6 alkylthio, C 1 -C 6 haloalkylthio, C 1 -C 6 alkylsulfinyl, C 1 -C 6 haloalkylsulfinyl, C 1 -C 6 alkylsulfonyl, C 1 -C 6 haloalkylsulfonyl, —C(O)R 50a , —C(O)OH, hydroxy, —NH 2 , —NHR 50g , —N(R 50h )R 50g , mercapto, cyano or nitro,
  • R 6 is a hydrogen atom, a halogen atom, C 1 -C 6 alkyl, C 1 -C 6 haloalkyl, C 1 -C 8 alkoxy, C 1 -C 8 haloalkoxy, C 3 -C 6 cycloalkyl, C 3 -C 6 halocycloalkyl, C 1 -C 6 alkylthio, C 1 -C 6 haloalkylthio, C 1 -C 6 alkylsulfinyl, C 1 -C 6 haloalkylsulfinyl, C 1 -C 6 alkylsulfonyl, C 1 -C 6 haloalkylsulfonyl, —C(O)R 60a , —C(O)OH, hydroxy, —NH 2 , —NHR 60g , —N(R 60h )R 60g , mercapto, cyano or nitro,
  • R 7 is a hydrogen atom, a halogen atom, C 1 -C 6 alkyl, C 1 -C 6 haloalkyl, C 1 -C 8 alkoxy, C 1 -C 8 haloalkoxy, C 1 -C 6 alkylthio, C 1 -C 6 haloalkylthio, C 1 -C 6 alkylsulfinyl, C 1 -C 6 haloalkylsulfinyl, C 1 -C 6 alkylsulfonyl, C 1 -C 6 haloalkylsulfonyl, mercapto, —SF 5 , cyano or nitro,
  • R 8 is a hydrogen atom, a halogen atom, C 1 -C 6 alkyl, C 1 -C 6 haloalkyl, C 1 -C 8 alkoxy, C 1 -C 8 haloalkoxy or cyano,
  • a 1a is a hydrogen atom, C 1 -C 6 alkyl.
  • a 1a-a is C 1 -C 5 alkoxy, C 1 -C 8 haloalkoxy, C 1 -C 8 alkoxycarbonyl, C 1 -C 8 haloalkoxycarbonyl, C 1 -C 6 alkylcarbonyl, C 1 -C 6 haloalkylcarbonyl, C 1 -C 6 alkylthio, C 1 -C 6 haloalkylthio, C 1 -C 6 alkylsulfinyl, C 1 -C 6 haloalkylsulfinyl, C 1 -C 6 alkylsulfonyl, C 1 -C 6 haloalkylsulfonyl, hydroxy or cyano,
  • T 1a is a hydrogen atom, C 1 -C 6 alkyl, C 1 -C 6 haloalkyl, C 2 -C 6 alkenyl, C 2 -C 6 haloalkenyl, C 2 -C 6 alkynyl, C 2 -C 6 haloalkynyl, C 1 -C 8 alkoxy, C 1 -C 8 haloalkoxy, C 3 -C 6 cycloalkyl, C 3 -C 6 halocycloalkyl, C 3 -C 6 cycloalkyl (C 1 -C 6 ) alkyl or C 3 -C 6 halocycloalkyl (C 1 -C 6 ) alkyl,
  • each of Y1, Y2, Y3 and Y4 is independently a hydrogen atom, a halogen atom, C 1 -C 6 alkyl, C 1 -C 6 haloalkyl, (C 1 -C 6 ) alkyl optionally substituted with Y a , (C 1 -C 6 ) haloalkyl optionally substituted with Y a , C 2 -C 6 alkenyl, C 2 -C 6 haloalkenyl, (C 2 -C 6 ) alkenyl optionally substituted with Y a , C 2 -C 6 alkynyl, C 2 -C 6 haloalkynyl, (C 2 -C 6 ) alkynyl optionally substituted with Y b , C 1 -C 8 alkoxy, C 1 -C 8 haloalkoxy, (C 1 -C 8 ) alkoxy optionally substituted with Y a , C 2 -
  • each of Y5 and Y6 is independently a hydrogen atom, a halogen atom, C 1 -C 6 alkyl, C 1 -C 6 haloalkyl, C 1 -C 8 alkoxy, C 1 -C 8 haloalkoxy, C 1 -C 6 alkylthio, C 1 -C 6 haloalkylthio, C 1 -C 6 alkylsulfinyl, C 1 -C 6 haloalkylsulfinyl, C 1 -C 6 alkylsulfonyl, C 1 -C 6 haloalkylsulfonyl, mercapto, —SF 5 , cyano or nitro,
  • Y a is C 1 -C 8 alkoxy, C 1 -C 8 haloalkoxy, C 1 -C 8 alkoxycarbonyl, C 1 -C 8 haloalkoxycarbonyl, C 1 -C 6 alkylcarbonyl, C 1 -C 6 haloalkylcarbonyl, C 1 -C 6 alkylthio, C 1 -C 6 haloalkylthio, C 1 -C 6 alkylsulfinyl, C 1 -C 6 haloalkylsulfinyl, C 1 -C 6 alkylsulfonyl, C 1 -C 6 haloalkylsulfonyl, hydroxy or cyano,
  • Y b is C 1 -C 6 alkyl, C 3 -C 6 cycloalkyl, trimethylsilyl or phenyl,
  • Y c is a halogen atom, C 1 -C 6 alkyl, C 1 -C 6 haloalkyl, C 1 -C 8 alkoxy, C 1 -C 8 haloalkoxy, cyano or nitro,
  • each of R 10a , R 20a , R 30a , R 30e , R 40a , R 40e , R 50a , R 60a and R 90a is independently a hydrogen atom, C 1 -C 6 alkyl, C 1 -C 6 haloalkyl, C 1 -C 8 alkoxy or C 1 -C 8 haloalkoxy,
  • each of R 20g , R 20h , R 30f , R 30g , R 30h , R 30i , R 40f , R 40g , R 40h , R 40i , R 50g , R 50h , R 60g , R 60h , R 90b , R 90c , R 90i , R 90j and R 90k is independently C 1 -C 6 alkyl or C 1 -C 6 haloalkyl,
  • R 90d is a hydrogen atom, C 1 -C 6 alkyl or C 1 -C 6 haloalkyl
  • R 90e is a hydrogen atom, C 1 -C 6 alkyl, C 1 -C 6 haloalkyl, C 1 -C 8 alkoxy, C 1 -C 8 haloalkoxy, C 1 -C 6 alkylamino, C 1 -C 6 haloalkylamino, di(C 1 -C 6 ) alkylamino or di(C 1 -C 6 ) haloalkylamino,
  • R 90f is C 1 -C 6 alkyl, C 1 -C 6 haloalkyl, C 1 -C 6 alkylamino, C 1 -C 6 haloalkylamino, di(C 1 -C 6 ) alkylamino or di(C 1 -C 6 ) haloalkylamino,
  • each of R 90g and R 90h is independently C 1 -C 6 alkyl, C 1 -C 6 haloalkyl, C 1 -C 6 alkylcarbonyl, C 1 -C 6 haloalkylcarbonyl, C 1 -C 8 alkoxycarbonyl, C 1 -C 8 haloalkoxycarbonyl, C 1 -C 6 alkylaminocarbonyl, C 1 -C 6 haloalkylaminocarbonyl, C 1 -C 6 alkylaminothiocarbonyl, C 1 -C 6 haloalkylaminothiocarbonyl, phenylcarbonyl, C 1 -C 6 alkylsulfonyl, C 1 -C 6 haloalkylsulfonyl, C 1 -C 6 alkylaminosulfonyl or di(C 1 -C 6 ) alkylaminosulfonyl, and
  • n is an integer of 0, 1 or 2.
  • D substituted with —S(O) n R 1 is a ring represented by D1
  • G 1 is C(Y1)
  • G 2 is C(Y2)
  • G 3 is C(Y3)
  • G 4 is C(Y4)
  • a 2 is C(R 2 )
  • a 3 is C(R 3 ),
  • R 1 is C 1 -C 6 alkyl, C 1 -C 6 haloalkyl, C 2 -C 6 alkenyl, C 2 -C 6 haloalkenyl, C 2 -C 6 alkynyl, C 2 -C 6 haloalkynyl, C 3 -C 6 cycloalkyl (C 1 -C 6 ) alkyl or C 3 -C 6 halocycloalkyl (C 1 -C 6 ) alkyl,
  • R 2 is a hydrogen atom, a halogen atom, C 1 -C 6 alkyl or C 1 -C 6 haloalkyl,
  • R 3 is a hydrogen atom, a halogen atom, C 1 -C 6 alkyl, C 1 -C 6 haloalkyl, C 1 -C 8 alkoxy, C 1 -C 8 haloalkoxy, C 1 -C 6 alkylthio, C 1 -C 6 haloalkylthio, (C 1 -C 6 ) alkylthio optionally substituted with R 3a , C 1 -C 6 alkylsulfinyl, C 1 -C 6 haloalkylsulfinyl, C 1 -C 6 alkylsulfonyl or C 1 -C 6 haloalkylsulfonyl,
  • R 4 is a hydrogen atom, a halogen atom, C 1 -C 6 alkyl, C 1 -C 6 haloalkyl, C 1 -C 8 alkoxy, C 1 -C 8 haloalkoxy, C 1 -C 6 alkylthio, C 1 -C 6 haloalkylthio.
  • (C 1 -C 6 ) alkylthio optionally substituted with R 4a , C 1 -C 6 alkylsulfinyl, C 1 -C 6 haloalkylsulfinyl, C 1 -C 6 alkylsulfonyl or C 1 -C 6 haloalkylsulfonyl,
  • each of R 5 , R 6 and R 8 is independently a hydrogen atom, a halogen atom, C 1 -C 6 alkyl or C 1 -C 6 haloalkyl,
  • R 7 is a hydrogen atom, a halogen atom or C 1 -C 6 haloalkyl
  • a 1a is a hydrogen atom, C 1 -C 6 alkyl, (C 1 -C 6 ) alkyl optionally substituted with A 1a-a , C 2 -C 6 alkenyl, C 2 -C 6 alkynyl, C 1 -C 8 alkoxy, C 3 -C 6 cycloalkyl or C(O)R 10a ,
  • a 1a-a is C 1 -C 8 alkoxy, C 1 -C 6 alkylthio, C 1 -C 6 alkylsulfinyl, C 1 -C 6 alkylsulfonyl or cyano,
  • R 10a is a hydrogen atom, C 1 -C 6 alkyl or C 1 -C 8 alkoxy,
  • each of Y1, Y2, Y3 and Y4 is independently a hydrogen atom, a halogen atom, C 1 -C 6 alkyl, C 1 -C 6 haloalkyl, C 2 -C 6 alkenyl, C 2 -C 6 alkynyl, (C 2 -C 6 ) alkynyl optionally substituted with Y b , C 1 -C 8 alkoxy, C 1 -C 8 haloalkoxy, C 1 -C 6 alkylthio, C 1 -C 6 haloalkylthio, (C 1 -C 6 ) alkylthio optionally substituted with Y a , C 1 -C 6 alkylsulfinyl, C 1 -C 6 haloalkylsulfinyl, C 1 -C 6 alkylsulfonyl, C 1 -C 6 haloalkylsulfonyl, —C(O)R
  • Y a is C 1 -C 8 alkoxycarbonyl.
  • D substituted with —S(O) n R 1 is a ring represented by D2,
  • Q is a ring represented by Q1
  • a 1 is N(A 1a ),
  • a 2 is C(R 2 )
  • a 3 is C(R 3 ),
  • a 4 is C(R 4 ),
  • a 5 is a nitrogen atom
  • R 1 is C 1 -C 6 alkyl, C 1 -C 6 haloalkyl, C 2 -C 6 alkenyl, C 2 -C 6 haloalkenyl, C 2 -C 6 alkynyl, C 2 -C 6 haloalkynyl, C 3 -C 6 cycloalkyl (C 1 -C 6 ) alkyl or C 3 -C 6 halocycloalkyl (C 1 -C 6 ) alkyl,
  • R 2 is a hydrogen atom, a halogen atom, C 1 -C 6 alkyl or C 1 -C 6 haloalkyl,
  • R 3 is a hydrogen atom, a halogen atom, C 1 -C 6 alkyl, C 1 -C 6 haloalkyl, C 1 -C 8 alkoxy, C 1 -C 8 haloalkoxy, C 1 -C 6 alkylthio, C 1 -C 6 haloalkylthio, (C 1 -C 6 ) alkylthio optionally substituted with R 3a , C 1 -C 6 alkylsulfinyl, C 1 -C 6 haloalkylsulfinyl, C 1 -C 6 alkylsulfonyl or C 1 -C 6 haloalkylsulfonyl,
  • R 4 is a hydrogen atom, a halogen atom, C 1 -C 6 alkyl, C 1 -C 6 haloalkyl, C 1 -C 8 alkoxy, C 1 -C 8 haloalkoxy, C 1 -C 6 alkylthio, C 1 -C 6 haloalkylthio, (C 1 -C 6 ) alkylthio optionally substituted with R 4a , C 1 -C 6 alkylsulfinyl, C 1 -C 6 haloalkylsulfinyl, C 1 -C 6 alkylsulfonyl or C 1 -C 6 haloalkylsulfonyl,
  • a 1a is a hydrogen atom, C 1 -C 6 alkyl, (C 1 -C 6 ) alkyl optionally substituted with A 1a-a , C 2 -C 6 alkenyl, C 2 -C 6 alkynyl, C 1 -C 8 alkoxy, C 3 -C 6 cycloalkyl or C(O)R 10a ,
  • a 1a-a is C 1 -C 8 alkoxy, C 1 -C 6 alkylthio, C 1 -C 6 alkylsulfinyl, C 1 -C 6 alkylsulfonyl or cyano,
  • R 10a is a hydrogen atom, C 1 -C 6 alkyl or C 1 -C 8 alkoxy,
  • Y5 is a hydrogen atom, a halogen atom, C 1 -C 6 alkyl or C 1 -C 6 haloalkyl
  • Y6 is a hydrogen atom, a halogen atom or C 1 -C 6 haloalkyl.
  • D substituted with —S(O) n R 1 is a ring represented by D3,
  • Q is a ring represented by Q1
  • G 1 is C(Y1)
  • G 2 is C(Y2)
  • G 3 is C(Y3)
  • G 4 is C(Y4)
  • T 1 is N(T 1a ) or a sulfur atom
  • a 1 is N(A 1a )
  • a 2 is C(R 2 )
  • a 3 is C(R 3 ),
  • a 4 is C(R 4 ),
  • a 5 is a nitrogen atom
  • R 1 is C 1 -C 6 alkyl, C 1 -C 6 haloalkyl, C 2 -C 6 alkenyl, C 2 -C 6 haloalkenyl, C 2 -C 6 alkynyl, C 2 -C 6 haloalkynyl, C 3 -C 6 cycloalkyl (C 1 -C 6 ) alkyl or C 3 -C 6 halocycloalkyl (C 1 -C 6 ) alkyl,
  • R 2 is a hydrogen atom, a halogen atom, C 1 -C 6 alkyl or C 1 -C 6 haloalkyl,
  • R 3 is a hydrogen atom, a halogen atom, C 1 -C 6 alkyl, C 1 -C 6 haloalkyl, C 1 -C 8 alkoxy, C 1 -C 8 haloalkoxy, C 1 -C 6 alkylthio, C 1 -C 6 haloalkylthio, (C 1 -C 6 ) alkylthio optionally substituted with R 3a , C 1 -C 6 alkylsulfinyl, C 1 -C 6 haloalkylsulfinyl, C 1 -C 6 alkylsulfonyl or C 1 -C 6 haloalkylsulfonyl,
  • R 4 is a hydrogen atom, a halogen atom, C 1 -C 6 alkyl, C 1 -C 6 haloalkyl, C 1 -C 8 alkoxy, C 1 -C 8 haloalkoxy, C 1 -C 6 alkylthio, C 1 -C 6 haloalkylthio, (C 1 -C 6 ) alkylthio optionally substituted with R 4a , C 1 -C 6 alkylsulfinyl, C 1 -C 6 haloalkylsulfinyl, C 1 -C 6 alkylsulfonyl or C 1 -C 6 haloalkylsulfonyl,
  • a 1a is a hydrogen atom, C 1 -C 6 alkyl, (C 1 -C 6 ) alkyl optionally substituted with A 1a-a C 2 -C 6 alkenyl, C 2 -C 6 alkynyl, C 1 -C 8 alkoxy, C 3 -C 6 cycloalkyl or C(O)R 10a ,
  • a 1a-a is C 1 -C 8 alkoxy, C 1 -C 6 alkylthio, C 1 -C 6 alkylsulfinyl, C 1 -C 6 alkylsulfonyl or cyano,
  • R 10a is a hydrogen atom, C 1 -C 6 alkyl or C 1 -C 8 alkoxy,
  • T 1a is a hydrogen atom or C 1 -C 6 alkyl
  • each of Y1, Y2, Y3 and Y4 is independently a hydrogen atom, a halogen atom, C 1 -C 6 alkyl, C 1 -C 6 haloalkyl, C 1 -C 8 alkoxy, C 1 -C 8 haloalkoxy, C 1 -C 6 alkylthio, C 1 -C 6 haloalkylthio, C 1 -C 6 alkylsulfinyl, C 1 -C 6 haloalkylsulfinyl, C 1 -C 6 alkylsulfonyl, C 1 -C 6 haloalkylsulfonyl, cyano or nitro.
  • Q is a ring represented by Q1
  • a 1 is N(A 1a ),
  • R 1 is C 1 -C 6 alkyl
  • R 3 is a hydrogen atom, a halogen atom, C 1 -C 6 haloalkyl, C 1 -C 6 haloalkylthio, C 6 ) alkylthio optionally substituted with R 3a , C 1 -C 6 haloalkylsulfinyl or C 1 -C 6 haloalkylsulfonyl,
  • R 4 is a hydrogen atom, a halogen atom, C 1 -C 6 haloalkyl, C 1 -C 6 haloalkylthio, (C 1 -C 6 ) alkylthio optionally substituted with R 4a , C 1 -C 6 haloalkylsulfinyl or C 1 -C 6 haloalkylsulfonyl, and
  • a 1a is a hydrogen atom or C 1 -C 6 alkyl.
  • a 4 is C(R 4 ), and
  • a 5 is a nitrogen atom.
  • a 4 is C(R 4 ),
  • a 5 is a nitrogen atom
  • R 2 is a hydrogen atom
  • R 4 is a hydrogen atom or C 1 -C 6 haloalkyl
  • Y1 is a hydrogen atom, C 1 -C 6 alkyl or C 1 -C 6 haloalkyl
  • Y2 is a hydrogen atom, a halogen atom, C 1 -C 6 alkyl, C 1 -C 6 haloalkyl, C 2 -C 6 alkenyl, (C 2 -C 6 ) alkynyl optionally substituted with Y b , C 1 -C 8 alkoxy, C 1 -C 6 alkylthio, C 1 -C 6 haloalkylthio, (C 1 -C 6 ) alkylthio optionally substituted with Y a , C 1 -C 6 alkylsulfinyl, C 1 -C 6 alkylsulfonyl, —NH 2 , —NHR 90g , nitro, phenyl, phenyl optionally substituted with Y c , thiophen-2-yl, pyridin-3-yl or pyridin-4-yl,
  • Y3 is a hydrogen atom, a halogen atom, C 1 -C 6 alkyl, C 1 -C 6 haloalkyl, C 1 -C 8 alkoxy, C 1 -C 6 alkylthio, (C 1 -C 6 ) alkylthio optionally substituted with Y a , C 1 -C 6 alkylsulfinyl, C 1 -C 6 alkylsulfonyl, —C(O)R 90a , —C(O)N(R 90c )R 90b , —C(O)OH, cyano or nitro,
  • Y4 is a hydrogen atom, a halogen atom, C 1 -C 6 alkyl, C 1 -C 6 haloalkyl, C 1 -C 8 alkoxy, C 1 -C 6 alkylthio, C 1 -C 6 alkylsulfonyl, —N(R 90h )R 90g or cyano,
  • Y a is C 1 -C 8 alkoxycarbonyl
  • Y b is C 3 -C 6 cycloalkyl or trimethylsilyl
  • Y c is a halogen atom or C 1 -C 6 haloalkyl
  • R 90a is C 1 -C 8 alkoxy
  • each of R 90b and R 90c is independently C 1 -C 6 alkyl
  • R 90g is C 1 -C 6 alkyl, C 1 -C 6 haloalkylcarbonyl, C 1 -C 8 alkoxycarbonyl or phenylcarbonyl, and
  • R 90h is C 1 -C 6 alkyl.
  • a 4 is a nitrogen atom
  • a 5 is C(R 5 ).
  • a 4 is a nitrogen atom
  • a 5 is C(R 5 ),
  • R 2 is a hydrogen atom
  • R 3 is C 1 -C 6 haloalkyl
  • R 5 is a hydrogen atom or C 1 -C 6 alkyl
  • Y1 is a hydrogen atom
  • Y2 is a hydrogen atom, a halogen atom or C 1 -C 6 haloalkyl
  • Y3 is a hydrogen atom, a halogen atom, C 1 -C 6 haloalkyl or cyano, and
  • Y4 is a hydrogen atom, a halogen atom or C 1 -C 8 alkoxy.
  • Q is a ring represented by Q2
  • a 4 is a nitrogen atom or C(R 4 ),
  • a 5 is a nitrogen atom or C(R 5 ),
  • R 1 is C 1 -C 6 alkyl
  • R 2 is a hydrogen atom
  • R 3 is a hydrogen atom, a halogen atom, C 1 -C 6 haloalkyl, C 1 -C 6 haloalkylthio, (C 1 -C 6 ) alkylthio optionally substituted with R 3a , C 1 -C 6 haloalkylsulfinyl or C 1 -C 6 haloalkylsulfonyl, and
  • R 4 is a hydrogen atom, a halogen atom, C 1 -C 6 haloalkyl, C 1 -C 6 haloalkylthio, (C 1 -C 6 ) alkylthio optionally substituted with R 4a , C 1 -C 6 haloalkylsulfinyl or C 1 -C 6 haloalkylsulfonyl.
  • a 4 is C(R 4 ), and
  • a 5 is C(R 5 ).
  • a 4 is C(R 4 ), and
  • a 5 is a nitrogen atom.
  • a 4 is a nitrogen atom
  • a 5 is C(R 5 ).
  • a 4 is a nitrogen atom
  • a 5 is C(R 5 ),
  • R 3 is C 1 -C 6 haloalkyl
  • R 5 is a hydrogen atom or C 1 -C 6 alkyl
  • R 6 is a hydrogen atom, a halogen atom or C 1 -C 6 alkyl
  • each of Y1 and Y4 is a hydrogen atom
  • Y2 is a hydrogen atom, a halogen atom or C 1 -C 6 haloalkyl
  • Y3 is a hydrogen atom or C 1 -C 6 haloalkyl.
  • Q is a ring represented by Q3
  • a 4 is a nitrogen atom or C(R 4 ),
  • a 5 is a nitrogen atom or C(R 5 ),
  • R 1 is C 1 -C 6 alkyl
  • R 2 is a hydrogen atom
  • R 3 is a hydrogen atom, a halogen atom, C 1 -C 6 haloalkyl, C 1 -C 6 haloalkylthio, (C 1 -C 6 )alkylthio optionally substituted with R 3a , C 1 -C 6 haloalkylsulfinyl or C 1 -C 6 haloalkylsulfonyl, and
  • R 4 is a hydrogen atom, a halogen atom, C 1 -C 6 haloalkyl, C 1 -C 6 haloalkylthio, (C 1 -C 6 ) alkylthio optionally substituted with R 4a , C 1 -C 6 haloalkylsulfinyl or C 1 -C 6 haloalkylsulfonyl.
  • a 4 is C(R 4 ), and
  • a 5 is C(R 5 ).
  • a 4 is C(R 4 ), and
  • a 5 is a nitrogen atom.
  • a 4 is a nitrogen atom
  • a 5 is C(R 5 ).
  • a 4 is a nitrogen atom
  • a 5 is C(R 5 ),
  • R 3 is C 1 -C 6 haloalkyl
  • R 5 is a hydrogen atom
  • R 6 is a hydrogen atom
  • Y1 is a hydrogen atom
  • each of Y2 and Y3 is independently a hydrogen atom, a halogen atom or C 1 -C 6 haloalkyl, and
  • Y4 is a hydrogen atom or a halogen atom.
  • a 8 is a nitrogen atom.
  • a 8 is C(R 8 ).
  • R 1 is C 1 -C 6 alkyl
  • R 6 is a hydrogen atom
  • R 7 is C 1 -C 6 haloalkyl
  • R 8 is a hydrogen atom or C 1 -C 6 alkyl
  • each of Y1 and Y4 is a hydrogen atom
  • Y2 is a hydrogen atom, a halogen atom or C 1 -C 6 haloalkyl
  • Y3 is a hydrogen atom or C 1 -C 6 haloalkyl.
  • R 1 is C 1 -C 6 alkyl
  • R 2 is a hydrogen atom
  • R 3 is C 1 -C 6 haloalkyl
  • R 4 is a hydrogen atom
  • a 1a is C 1 -C 6 alkyl
  • Y5 is a hydrogen atom
  • Y6 is C 1 -C 6 haloalkyl.
  • R 1 is C 1 -C 6 alkyl
  • R 2 is a hydrogen atom
  • R 3 is C 1 -C 6 haloalkyl
  • R 4 is a hydrogen atom
  • a 1a is C 1 -C 6 alkyl
  • T 1a is C 1 -C 6 alkyl
  • each of Y1, Y3 and Y4 is a hydrogen atom
  • Y2 is C 1 -C 6 haloalkyl.
  • a 1 is N(A 1a ) or an oxygen atom
  • R 2 is a hydrogen atom
  • R 3 is C 1 -C 6 haloalkyl, C 1 -C 6 haloalkylthio, C 1 -C 6 haloalkylsulfinyl or C 1 -C 6 haloalkylsulfonyl,
  • R 4 is a hydrogen atom
  • R 5 is a hydrogen atom or C 1 -C 6 alkyl
  • R 6 is a hydrogen atom
  • a 1a is C 1 -C 6 alkyl
  • each of Y1 and Y4 is a hydrogen atom
  • each of Y2 and Y3 is independently a hydrogen atom or C 1 -C 6 haloalkyl.
  • R 1 is C 1 -C 6 alkyl, C 1 -C 6 haloalkyl, C 2 -C 6 alkenyl, C 2 -C 6 haloalkenyl, C 2 -C 6 alkynyl or C 2 -C 6 haloalkynyl,
  • R 3 is a hydrogen atom, a halogen atom, C 1 -C 6 alkyl, C 1 -C 6 haloalkyl, C 1 -C 8 alkoxy, C 1 -C 8 haloalkoxy, C 1 -C 6 alkylthio, C 1 -C 6 haloalkylthio, C 1 -C 6 alkylsulfinyl, C 1 -C 6 haloalkylsulfinyl, C 1 -C 6 alkylsulfonyl or C 1 -C 6 haloalkylsulfonyl,
  • a 1a is a hydrogen atom, C 1 -C 6 alkyl, C 2 -C 6 alkenyl or C 2 -C 6 alkynyl, and
  • each of R 2 , R 4 , Y2, Y3 and Y4 is independently a hydrogen atom, a halogen atom, C 1 -C 6 alkyl or C 1 -C 6 haloalkyl.
  • each of R′ and A 1a is independently C 1 -C 6 alkyl
  • each of R 3 and Y3 is independently C 1 -C 6 haloalkyl
  • each of R 2 , R 4 , Y2 and Y4 is a hydrogen atom.
  • R 1 is C 1 -C 6 alkyl, C 1 -C 6 haloalkyl, C 2 -C 6 alkenyl, C 2 -C 6 haloalkenyl, C 2 -C 6 alkynyl or C 2 -C 6 haloalkynyl,
  • R 3 is a hydrogen atom, a halogen atom, C 1 -C 6 alkyl, C 1 -C 6 haloalkyl, C 1 -C 8 alkoxy, C 1 -C 8 haloalkoxy, C 1 -C 6 alkylthio, C 1 -C 6 haloalkylthio, C 1 -C 6 alkylsulfinyl, C 1 -C 6 haloalkylsulfinyl, C 1 -C 6 alkylsulfonyl or C 1 -C 6 haloalkylsulfonyl,
  • a 1a is a hydrogen atom, C 1 -C 6 alkyl, C 2 -C 6 alkenyl or C 2 -C 6 alkynyl, and
  • each of R 2 , R 4 , Y1, Y3 and Y4 is independently a hydrogen atom, a halogen atom, C 1 -C 6 alkyl or C 1 -C 6 haloalkyl.
  • each of R 1 and A 1a is independently C 1 -C 6 alkyl
  • each of R 3 and Y3 is independently C 1 -C 6 haloalkyl
  • each of R 2 , R 4 , Y1 and Y4 is a hydrogen atom.
  • R 1 is C 1 -C 6 alkyl, C 1 -C 6 haloalkyl, C 2 -C 6 alkenyl, C 2 -C 6 haloalkenyl, C 2 -C 6 alkynyl or C 2 -C 6 haloalkynyl,
  • R 3 is a hydrogen atom, a halogen atom, C 1 -C 6 alkyl, C 1 -C 6 haloalkyl, C 1 -C 8 alkoxy, C 1 -C 8 haloalkoxy, C 1 -C 6 alkylthio, C 1 -C 6 haloalkylthio, C 1 -C 6 alkylsulfinyl, C 1 -C 6 haloalkylsulfinyl, C 1 -C 6 alkylsulfonyl or C 1 -C 6 haloalkylsulfonyl,
  • a 1a is a hydrogen atom, C 1 -C 6 alkyl, C 2 -C 6 alkenyl or C 2 -C 6 alkynyl, and
  • each of R 2 , R 4 , Y1, Y2 and Y4 is independently a hydrogen atom, a halogen atom, C 1 -C 6 alkyl or C 1 -C 6 haloalkyl.
  • each of R 1 and A 1a is independently C 1 -C 6 alkyl
  • R 3 is C 1 -C 6 haloalkyl
  • each of R 2 , R 4 , Y1 and Y4 is a hydrogen atom
  • Y2 is a hydrogen atom or a halogen atom.
  • R 1 is C 1 -C 6 alkyl, C 1 -C 6 haloalkyl, C 2 -C 6 alkenyl, C 2 -C 6 haloalkenyl, C 2 -C 6 alkynyl or C 2 -C 6 haloalkynyl,
  • R 3 is a hydrogen atom, a halogen atom, C 1 -C 6 alkyl, C 1 -C 6 haloalkyl, C 1 -C 8 alkoxy, C 1 -C 8 haloalkoxy, C 1 -C 6 alkylthio, C 1 -C 6 haloalkylthio, C 1 -C 6 alkylsulfinyl, C 1 -C 6 haloalkylsulfinyl, C 1 -C 6 alkylsulfonyl or C 1 -C 6 haloalkylsulfonyl,
  • a 1a is a hydrogen atom, C 1 -C 6 alkyl, C 2 -C 6 alkenyl or C 2 -C 6 alkynyl, and
  • each of R 2 , R 4 , Y1, Y2 and Y3 is independently a hydrogen atom, a halogen atom, C 1 -C 6 alkyl or C 1 -C 6 haloalkyl.
  • each of R 1 and A 1a is independently C 1 -C 6 alkyl
  • R 3 is C 1 -C 6 haloalkyl
  • each of R 2 , R 4 , Y1 and Y3 is a hydrogen atom
  • Y2 is a halogen atom or C 1 -C 6 haloalkyl.
  • R 1 is C 1 -C 6 alkyl, C 1 -C 6 haloalkyl, C 2 -C 6 alkenyl, C 2 -C 6 haloalkenyl, C 2 -C 6 alkynyl or C 2 -C 6 haloalkynyl,
  • R 3 is a hydrogen atom, a halogen atom, C 1 -C 6 alkyl, C 1 -C 6 haloalkyl, C 1 -C 8 alkoxy, C 1 -C 8 haloalkoxy, C 1 -C 6 alkylthio, C 1 -C 6 haloalkylthio, C 1 -C 6 alkylsulfinyl, C 1 -C 6 haloalkylsulfinyl, C 1 -C 6 alkylsulfonyl or C 1 -C 6 haloalkylsulfonyl,
  • a 1a is a hydrogen atom, C 1 -C 6 alkyl, C 2 -C 6 alkenyl or C 2 -C 6 alkynyl, and
  • each of R 4 , R 5 , Y1, Y2, Y3 and Y4 is independently a hydrogen atom, a halogen atom, C 1 -C 6 alkyl or C 1 -C 6 haloalkyl.
  • each of R 1 and A 1a is independently C 1 -C 6 alkyl
  • each of R 3 and Y3 is independently C 1 -C 6 haloalkyl
  • each of R 4 , R 5 , Y1, Y2 and Y4 is a hydrogen atom.
  • R 1 is C 1 -C 6 alkyl, C 1 -C 6 haloalkyl, C 2 -C 6 alkenyl, C 2 -C 6 haloalkenyl, C 2 -C 6 alkynyl or C 2 -C 6 haloalkynyl,
  • R 4 is a hydrogen atom, a halogen atom, C 1 -C 6 alkyl, C 1 -C 6 haloalkyl, C 1 -C 8 alkoxy, C 1 -C 8 haloalkoxy, C 1 -C 6 alkylthio, C 1 -C 6 haloalkylthio, C 1 -C 6 alkylsulfinyl, C 1 -C 6 haloalkylsulfinyl, C 1 -C 6 alkylsulfonyl or C 1 -C 6 haloalkylsulfonyl,
  • a 1a is a hydrogen atom, C 1 -C 6 alkyl, C 2 -C 6 alkenyl or C 2 -C 6 alkynyl, and
  • each of R 2 , R 5 , Y1, Y2, Y3 and Y4 is independently a hydrogen atom, a halogen atom, C 1 -C 6 alkyl or C 1 -C 6 haloalkyl.
  • each of R 1 and A 1a is independently C 1 -C 6 alkyl
  • R 4 is C 1 -C 6 haloalkyl
  • Y2 is a hydrogen atom or C 1 -C 6 haloalkyl
  • Y3 is a hydrogen atom, a halogen atom or C 1 -C 6 haloalkyl
  • each of R 2 , R 5 , Y1 and Y4 is a hydrogen atom.
  • R 1 is C 1 -C 6 alkyl, C 1 -C 6 haloalkyl, C 2 -C 6 alkenyl, C 2 -C 6 haloalkenyl, C 2 -C 6 alkynyl or C 2 -C 6 haloalkynyl,
  • R 4 is a hydrogen atom, a halogen atom, C 1 -C 6 alkyl, C 1 -C 6 haloalkyl, C 1 -C 8 alkoxy, C 1 -C 8 haloalkoxy, C 1 -C 6 alkylthio, C 1 -C 6 haloalkylthio, C 1 -C 6 alkylsulfinyl, C 1 -C 6 haloalkylsulfinyl, C 1 -C 6 alkylsulfonyl or C 1 -C 6 haloalkylsulfonyl, and
  • each of R 2 , R 5 , R 6 , Y1, Y2, Y3 and Y4 is independently a hydrogen atom, a halogen atom, C 1 -C 6 alkyl or C 1 -C 6 haloalkyl.
  • R 1 is C 1 -C 6 alkyl
  • R 4 is C 1 -C 6 haloalkyl
  • each of Y2 and Y3 is independently a hydrogen atom or C 1 -C 6 haloalkyl
  • each of R 2 , R 5 , R 6 , Y1 and Y4 is a hydrogen atom.
  • R 1 is C 1 -C 6 alkyl, C 1 -C 6 haloalkyl, C 2 -C 6 alkenyl, C 2 -C 6 haloalkenyl, C 2 -C 6 alkynyl or C 2 -C 6 haloalkynyl,
  • R 4 is a hydrogen atom, a halogen atom, C 1 -C 6 alkyl, C 1 -C 6 haloalkyl, C 1 -C 8 alkoxy, C 1 -C 8 haloalkoxy, C 1 -C 6 alkylthio, C 1 -C 6 haloalkylthio, C 1 -C 6 alkylsulfinyl, C 1 -C 6 haloalkylsulfinyl, C 1 -C 6 alkylsulfonyl or C 1 -C 6 haloalkylsulfonyl, and
  • each of R 3 , R 5 , R 6 , Y1, Y2, Y3 and Y4 is independently a hydrogen atom, a halogen atom, C 1 -C 6 alkyl or C 1 -C 6 haloalkyl.
  • R 1 is C 1 -C 6 alkyl
  • R 4 is C 1 -C 6 haloalkyl
  • each of R 6 and Y2 is independently a halogen atom
  • each of R 3 , R 5 , Y1, Y3 and Y4 is a hydrogen atom.
  • R 1 is C 1 -C 6 alkyl, C 1 -C 6 haloalkyl, C 2 -C 6 alkenyl, C 2 -C 6 haloalkenyl, C 2 -C 6 alkynyl or C 2 -C 6 haloalkynyl,
  • each of R 3 and R 4 is independently a hydrogen atom, a halogen atom, C 1 -C 6 alkyl, C 1 -C 6 haloalkyl, C 1 -C 8 alkoxy, C 1 -C 8 haloalkoxy, C 1 -C 6 alkylthio, C 1 -C 6 haloalkylthio, C 1 -C 6 alkylsulfinyl, C 1 -C 6 haloalkylsulfinyl, C 1 -C 6 alkylsulfonyl or C 1 -C 6 haloalkylsulfonyl, and
  • each of R 2 , R 5 , Y1, Y2, Y3 and Y4 is independently a hydrogen atom, a halogen atom, C 1 -C 6 alkyl or C 1 -C 6 haloalkyl.
  • R 1 is C 1 -C 6 alkyl
  • R 3 is C 1 -C 6 haloalkylthio, C 1 -C 6 haloalkylsulfinyl or C 1 -C 6 haloalkylsulfonyl,
  • each of Y2 and Y3 is independently a hydrogen atom or C 1 -C 6 haloalkyl
  • each of R 2 , R 4 , R 5 , Y1 and Y4 is a hydrogen atom.
  • R 1 is C 1 -C 6 alkyl, C 1 -C 6 haloalkyl, C 2 -C 6 alkenyl, C 2 -C 6 haloalkenyl, C 2 -C 6 alkynyl or C 2 -C 6 haloalkynyl,
  • each of R 3 and R 4 is independently a hydrogen atom, a halogen atom, C 1 -C 6 alkyl, C 1 -C 6 haloalkyl, C 1 -C 8 alkoxy, C 1 -C 8 haloalkoxy, C 1 -C 6 alkylthio, C 1 -C 6 haloalkylthio, C 1 -C 6 alkylsulfinyl, C 1 -C 6 haloalkylsulfinyl, C 1 -C 6 alkylsulfonyl or C 1 -C 6 haloalkylsulfonyl, and
  • each of R 2 , Y1, Y2, Y3 and Y4 is independently a hydrogen atom, a halogen atom, C 1 -C 6 alkyl or C 1 -C 6 haloalkyl.
  • R 1 is C 1 -C 6 alkyl
  • each of R 3 and Y3 is independently C 1 -C 6 haloalkyl
  • each of R 2 , R 4 , Y1, Y2 and Y4 is a hydrogen atom.
  • R 1 is C 1 -C 6 alkyl, C 1 -C 6 haloalkyl, C 2 -C 6 alkenyl, C 2 -C 6 haloalkenyl, C 2 -C 6 alkynyl or C 2 -C 6 haloalkynyl,
  • R 3 is a hydrogen atom, a halogen atom, C 1 -C 6 alkyl, C 1 -C 6 haloalkyl, C 1 -C 8 alkoxy, C 1 -C 8 haloalkoxy, C 1 -C 6 alkylthio, C 1 -C 6 haloalkylthio, C 1 -C 6 alkylsulfinyl, C 1 -C 6 haloalkylsulfinyl, C 1 -C 6 alkylsulfonyl or C 1 -C 6 haloalkylsulfonyl, and
  • each of R 2 , R 4 , Y1, Y2, Y3 and Y4 is independently a hydrogen atom, a halogen atom, C 1 -C 6 alkyl or C 1 -C 6 haloalkyl.
  • R 1 is C 1 -C 6 alkyl
  • each of R 3 and Y3 is independently C 1 -C 6 haloalkyl
  • each of R 2 , R 4 , Y1, Y2 and Y4 is a hydrogen atom.
  • R 1 is C 1 -C 6 alkyl
  • R 3 is a hydrogen atom, a halogen atom, C 1 -C 6 haloalkyl, C 1 -C 6 haloalkylthio, C 1 -C 6 haloalkylsulfinyl or C 1 -C 6 haloalkylsulfonyl,
  • R 4 is a hydrogen atom, a halogen atom or C 1 -C 6 haloalkyl
  • a 1a is a hydrogen atom or C 1 -C 6 alkyl
  • each of R 2 , R 5 , Y1, Y2, Y3 and Y4 is independently a hydrogen atom, a halogen atom, C 1 -C 6 alkyl or C 1 -C 6 haloalkyl.
  • each of R 2 and R 5 is independently a hydrogen atom or a halogen atom
  • each of R 3 and R 4 is independently a hydrogen atom or C 1 -C 6 haloalkyl
  • Y3 is C 1 -C 6 haloalkyl
  • each of Y1, Y2 and Y4 is a hydrogen atom.
  • R 1 is C 1 -C 6 alkyl
  • R 3 is a hydrogen atom, a halogen atom, C 1 -C 6 haloalkyl, C 1 -C 6 haloalkylthio, C 1 -C 6 haloalkylsulfinyl or C 1 -C 6 haloalkylsulfonyl,
  • a 1a is a hydrogen atom or C 1 -C 6 alkyl
  • each of R 2 , Y1, Y2, Y3 and Y4 is independently a hydrogen atom, a halogen atom, C 1 -C 6 alkyl or C 1 -C 6 haloalkyl.
  • each of R 3 and Y2 is independently C 1 -C 6 haloalkyl
  • a 1a is C 1 -C 6 alkyl
  • each of R 2 , Y1, Y3 and Y4 is a hydrogen atom.
  • R 1 is C 1 -C 6 alkyl
  • R 2 is a hydrogen atom
  • R 3 is a hydrogen atom, a halogen atom, C 1 -C 6 haloalkyl, C 1 -C 6 haloalkylthio, C 1 -C 6 haloalkylsulfinyl or C 1 -C 6 haloalkylsulfonyl,
  • R 4 is a hydrogen atom, a halogen atom or C 1 -C 6 haloalkyl
  • each of R 5 , R 6 , Y1, Y2, Y3 and Y4 is independently a hydrogen atom, a halogen atom, C 1 -C 6 alkyl or C 1 -C 6 haloalkyl.
  • each of R 3 , R 4 , Y2 and Y3 is independently a hydrogen atom or C 1 -C 6 haloalkyl
  • each of R 5 , R 6 , Y1 and Y4 is a hydrogen atom.
  • R 1 is C 1 -C 6 alkyl
  • R 2 is a hydrogen atom
  • R 3 is a hydrogen atom, a halogen atom, C 1 -C 6 haloalkyl, C 1 -C 6 haloalkylthio, C 1 -C 6 haloalkylsulfinyl or C 1 -C 6 haloalkylsulfonyl,
  • R 4 is a hydrogen atom, a halogen atom or C 1 -C 6 haloalkyl
  • each of R 6 , Y1, Y2, Y3 and Y4 is independently a hydrogen atom, a halogen atom, C 1 -C 6 alkyl or C 1 -C 6 haloalkyl.
  • R 3 is C 1 -C 6 haloalkyl
  • Y2 is a hydrogen atom, a halogen atom or C 1 -C 6 haloalkyl
  • Y3 is a hydrogen atom or C 1 -C 6 haloalkyl
  • each of R 4 , R 6 , Y1 and Y4 is a hydrogen atom.
  • R 1 is C 1 -C 6 alkyl
  • R 2 is a hydrogen atom
  • R 3 is a hydrogen atom, a halogen atom, C 1 -C 6 haloalkyl, C 1 -C 6 haloalkylthio, C 1 -C 6 haloalkylsulfinyl or C 1 -C 6 haloalkylsulfonyl,
  • R 4 is a hydrogen atom, a halogen atom or C 1 -C 6 haloalkyl
  • each of R 5 , R 6 , Y1, Y2, Y3 and Y4 is independently a hydrogen atom, a halogen atom, C 1 -C 6 alkyl or C 1 -C 6 haloalkyl.
  • each of R 3 and Y3 is independently C 1 -C 6 haloalkyl
  • each of R 4 , R 5 , R 6 , Y1, Y2 and Y4 is a hydrogen atom.
  • R 1 is C 1 -C 6 alkyl
  • R 2 is a hydrogen atom
  • R 3 is a hydrogen atom, a halogen atom, C 1 -C 6 haloalkyl, C 1 -C 6 haloalkylthio, C 1 -C 6 haloalkylsulfinyl or C 1 -C 6 haloalkylsulfonyl,
  • R 4 is a hydrogen atom, a halogen atom or C 1 -C 6 haloalkyl
  • each of R 6 , Y1, Y2, Y3 and Y4 is independently a hydrogen atom, a halogen atom, C 1 -C 6 alkyl or C 1 -C 6 haloalkyl.
  • R 3 is C 1 -C 6 haloalkyl
  • Y2 is a hydrogen atom or a halogen atom
  • Y3 is a hydrogen atom or C 1 -C 6 haloalkyl
  • each of R 4 , R 6 , Y1 and Y4 is a hydrogen atom.
  • D substituted with —S(O) n R 1 is a ring represented by either D1 or D2,
  • Q is a ring represented by either Q1 or Q2,
  • R 1a is C 1 -C 8 alkoxycarbonyl
  • R 2 is a hydrogen atom, a halogen atom, C 1 -C 6 alkyl, C 1 -C 6 haloalkyl, C 1 -C 8 alkoxy or C 1 -C 8 haloalkoxy,
  • each of R 3 and R 4 is independently a hydrogen atom, a halogen atom, C 1 -C 6 alkyl, haloalkyl, C 1 -C 8 alkoxy, C 1 -C 8 haloalkoxy, C 1 -C 6 alkylthio, C 1 -C 6 haloalkylthio, C 1 -C 6 alkylsulfinyl, C 1 -C 6 haloalkylsulfinyl, C 1 -C 6 alkylsulfonyl, C 1 -C 6 haloalkylsulfonyl, mercapto, cyano or nitro,
  • R 5 is a hydrogen atom, a halogen atom, C 1 -C 6 alkyl or C 1 -C 6 haloalkyl,
  • R 6 is a hydrogen atom, a halogen atom or C 1 -C 6 alkyl
  • a 1a is a hydrogen atom, C 1 -C 6 alkyl, C 1 -C 6 haloalkyl, C 2 -C 6 alkenyl, C 2 -C 6 haloalkenyl, C 2 -C 6 alkynyl, C 2 -C 6 haloalkynyl, C 3 -C 6 cycloalkyl (C 1 -C 6 ) alkyl or C 3 -C 6 halocycloalkyl (C 1 -C 6 ) alkyl, and
  • each of Y1, Y2, Y3, Y4, Y5 and Y6 is independently a hydrogen atom, a halogen atom, C 1 -C 6 alkyl, C 1 -C 6 haloalkyl, C 1 -C 8 alkoxy, C 1 -C 8 haloalkoxy, cyano or nitro.
  • D substituted with —S(O) n R 1 is a ring represented by D1
  • G 1 is C(Y1)
  • G 2 is C(Y2)
  • G 3 is C(Y3)
  • G 4 is C(Y4)
  • a 1 is N(A 1a ) or an oxygen atom
  • a 2 is C(R 2 )
  • a 3 is C(R 3 ),
  • each of R 1 and A 1a is independently C 1 -C 6 alkyl
  • R 3 is C 1 -C 6 haloalkyl, C 1 -C 6 haloalkylthio, C 1 -C 6 haloalkylsulfinyl or C 1 -C 6 haloalkylsulfonyl,
  • R 5 is a hydrogen atom or C 1 -C 6 alkyl
  • each of Y2 and Y3 is independently a hydrogen atom or C 1 -C 6 haloalkyl
  • each of R 2 , R 4 , R 6 , Y1 and Y4 is a hydrogen atom.
  • D substituted with —S(O) n R 1 is a ring represented by D2,
  • Q is a ring represented by Q1
  • G 5 is C(Y5)
  • a 1 is N(A 1a ),
  • a 2 is C(R 2 )
  • a 3 is C(R 3 ),
  • a 4 is C(R 4 ),
  • a 5 is a nitrogen atom
  • each of R 1 and A 1a is independently C 1 -C 6 alkyl
  • each of R 2 , R 4 and Y5 is a hydrogen atom
  • each of R 3 and Y6 is independently C 1 -C 6 haloalkyl.
  • R 1 is C 1 -C 6 alkyl, C 1 -C 6 haloalkyl, C 2 -C 6 alkenyl, C 2 -C 6 haloalkenyl, C 2 -C 6 alkynyl, C 2 -C 6 haloalkynyl, C 3 -C 6 cycloalkyl (C 1 -C 6 ) alkyl or C 3 -C 6 halocycloalkyl (C 1 -C 6 ) alkyl.
  • R 1 is C 1 -C 6 alkyl, C 1 -C 6 haloalkyl or C 3 -C 6 cycloalkyl (C 1 -C 6 ) alkyl.
  • R 1 is C 1 -C 6 alkyl or C 1 -C 6 haloalkyl.
  • R 1 is C 1 -C 6 alkyl.
  • R 1 is C 1 -C 6 haloalkyl.
  • R 1a is C 1 -C 8 alkoxy, C 1 -C 8 alkoxycarbonyl or cyano.
  • R 1a is C 1 -C 8 alkoxycarbonyl.
  • R 2 is a hydrogen atom, a halogen atom, C 1 -C 6 alkyl or C 1 -C 6 haloalkyl.
  • R 2 is a hydrogen atom.
  • R 3 is a hydrogen atom, a halogen atom, C 1 -C 6 alkyl.
  • R 3 is a hydrogen atom, a halogen atom, C 1 -C 6 haloalkyl, C 1 -C 6 alkylthio, (C 1 -C 6 ) alkylthio optionally substituted with R 3a , C 1 -C 6 haloalkylthio, C 1 -C 6 haloalkylsulfinyl or C 1 -C 6 haloalkylsulfonyl.
  • R 3 is a hydrogen atom, a halogen atom, C 1 -C 6 haloalkyl, C 1 -C 6 haloalkylthio,
  • R 3 is C 1 -C 6 haloalkylthio, C 1 -C 6 haloalkylsulfinyl or C 1 -C 6 haloalkylsulfonyl.
  • R 3 is a halogen atom.
  • R 3 is C 1 -C 6 haloalkyl.
  • R 3 is C 1 -C 6 haloalkylthio.
  • R 3 is C 1 -C 6 haloalkylsulfinyl.
  • R 3 is C 1 -C 6 haloalkylsulfonyl.
  • R 4 is a hydrogen atom, a halogen atom, C 1 -C 6 alkyl.
  • R 4 is a hydrogen atom, a halogen atom, C 1 -C 6 haloalkyl, C 1 -C 6 alkylthio, (C 1 -C 6 ) alkylthio optionally substituted with R 4a , C 1 -C 6 haloalkylthio, C 1 -C 6 haloalkylsulfinyl or C 1 -C 6 haloalkylsulfonyl.
  • R 4 is a hydrogen atom, a halogen atom, C 1 -C 6 haloalkyl, C 1 -C 6 haloalkylthio, C 1 -C 6 haloalkylsulfinyl or C 1 -C 6 haloalkylsulfonyl.
  • R 4 is a hydrogen atom.
  • R 4 is a halogen atom.
  • R 4 is C 1 -C 6 haloalkylthio, C 1 -C 6 haloalkylsulfinyl or C 1 -C 6 haloalkylsulfonyl.
  • R 4 is C 1 -C 6 haloalkyl.
  • R 5 is a hydrogen atom, a halogen atom, C 1 -C 6 alkyl or C 1 -C 6 haloalkyl.
  • R 5 is a halogen atom.
  • R 5 is a hydrogen atom.
  • R 5 is C 1 -C 6 alkyl.
  • R 6 is a hydrogen atom, a halogen atom, C 1 -C 6 alkyl or C 1 -C 6 haloalkyl.
  • R 6 is a hydrogen atom.
  • R 6 is a halogen atom.
  • R 6 is C 1 -C 6 alkyl.
  • R 7 is a hydrogen atom, a halogen atom or C 1 -C 6 haloalkyl.
  • R 7 is C 1 -C 6 haloalkyl.
  • R 8 is a hydrogen atom, a halogen atom, C 1 -C 6 alkyl or C 1 -C 6 haloalkyl.
  • R 8 is C 1 -C 6 alkyl.
  • a 1a is a hydrogen atom, C 1 -C 6 alkyl, (C 1 -C 6 ) alkyl optionally substituted with A 1a-a , C 2 -C 6 alkenyl, C 2 -C 6 alkynyl, C 1 -C 8 alkoxy, C 3 -C 6 cycloalkyl or C(O)R 10a .
  • a 1a is a hydrogen atom, C 1 -C 6 alkyl, C 2 -C 6 alkenyl, C 2 -C 6 alkynyl or C 3 -C 6 cycloalkyl.
  • a 1a is a hydrogen atom.
  • a 1a is C 1 -C 6 alkyl.
  • each of Y1, Y2, Y3 and Y4 is independently a hydrogen atom, a halogen atom, C 1 -C 6 alkyl, C 1 -C 6 haloalkyl, C 2 -C 6 alkenyl, C 2 -C 6 alkynyl, (C 2 -C 6 ) alkynyl optionally substituted with Y b , C 1 -C 8 alkoxy, C 1 -C 8 haloalkoxy, C 1 -C 6 alkylthio, C 1 -C 6 haloalkylthio, (C 1 -C 6 ) alkylthio optionally substituted with Y a , C 1 -C 6 alkylsulfinyl, C 1 -C 6 haloalkylsulfinyl, C 1 -C 6 alkylsulfonyl, C 1 -C 6 haloalkylsulfonyl, —C(O)R
  • each of Y1, Y2, Y3 and Y4 is independently a hydrogen atom, a halogen atom, C 1 -C 6 alkyl, C 1 -C 6 haloalkyl, C 2 -C 6 alkenyl, (C 2 -C 6 ) alkynyl optionally substituted with Y b , C 1 -C 8 alkoxy, C 1 -C 6 alkylthio, C 1 -C 6 haloalkylthio, (C 1 -C 6 ) alkylthio optionally substituted with Y a , C 1 -C 6 alkylsulfinyl, C 1 -C 6 alkylsulfonyl, —C(O)R 90a , —C(O)N(R 90c )R 90b , —C(O)OH, —NH 2 , —NHR 90g , —N(R 90h )R 90g , mercapto,
  • Y1 is a hydrogen atom, a halogen atom, C 1 -C 6 alkyl or C 1 -C 6 haloalkyl.
  • Y1 is a hydrogen atom.
  • Y1 is a halogen atom.
  • Y1 is C 1 -C 6 alkyl.
  • Y1 is C 1 -C 6 haloalkyl.
  • Y2 is a hydrogen atom, a halogen atom, C 1 -C 6 alkyl, C 1 -C 6 haloalkyl, C 2 -C 6 alkenyl, (C 2 -C 6 ) alkynyl optionally substituted with Y b , C 1 -C 8 alkoxy, C 1 -C 6 alkylthio, C 1 -C 6 haloalkylthio, (C 1 -C 6 ) alkylthio optionally substituted with Y a , C 1 -C 6 alkylsulfinyl, C 1 -C 6 alkylsulfonyl, —NH 2 , —NHR 90g , nitro, phenyl, phenyl optionally substituted with Y c or heterocyclyl.
  • Y2 is a hydrogen atom, a halogen atom, C 1 -C 6 alkyl or C 1 -C 6 haloalkyl.
  • Y2 is a hydrogen atom.
  • Y2 is a halogen atom.
  • Y2 is C 1 -C 6 alkyl.
  • Y2 is C 1 -C 6 haloalkyl.
  • Y3 is a hydrogen atom, a halogen atom, C 1 -C 6 alkyl, C 1 -C 6 haloalkyl, C 1 -C 8 alkoxy, C 1 -C 6 alkylthio, (C 1 -C 6 ) alkylthio optionally substituted with Y a , C 1 -C 6 alkylsulfinyl, C 1 -C 6 alkylsulfonyl, —C(O)R 90a , —C(O)N(R 90c )R 90b , —C(O)OH, cyano or nitro.
  • Y3 is a hydrogen atom, a halogen atom, C 1 -C 6 alkyl or C 1 -C 6 haloalkyl.
  • Y3 is a hydrogen atom.
  • Y3 is a halogen atom.
  • Y3 is C 1 -C 6 alkyl.
  • Y3 is C 1 -C 6 haloalkyl.
  • Y4 is a hydrogen atom, a halogen atom, C 1 -C 6 alkyl, C 1 -C 6 haloalkyl, C 1 -C 8 alkoxy, alkylthio, C 1 -C 6 alkylsulfonyl, —N(R 90h )R 90g or cyano.
  • Y4 is C 1 -C 8 alkoxy, C 1 -C 6 alkylthio, C 1 -C 6 alkylsulfonyl, —N(R 90h )R 90g or cyano.
  • Y4 is a hydrogen atom, a halogen atom, C 1 -C 6 alkyl or C 1 -C 6 haloalkyl.
  • Y4 is a hydrogen atom.
  • Y4 is a halogen atom.
  • Y4 is C 1 -C 6 alkyl.
  • Y4 is C 1 -C 6 haloalkyl.
  • Y a is C 1 -C 8 alkoxycarbonyl or C 1 -C 6 alkylcarbonyl.
  • Y a is C 1 -C 8 alkoxycarbonyl.
  • Y b is C 1 -C 6 alkyl, C 3 -C 6 cycloalkyl, trimethylsilyl or phenyl.
  • Y b is C 3 -C 6 cycloalkyl or trimethylsilyl.
  • Y b is C 3 -C 6 cycloalkyl.
  • Y b is trimethylsilyl
  • Y c is a halogen atom, C 1 -C 6 alkyl, C 1 -C 6 haloalkyl, C 1 -C 8 alkoxy, C 1 -C 8 haloalkoxy, cyano or nitro.
  • Y c is a halogen atom or C 1 -C 6 haloalkyl.
  • Y c is C 1 -C 6 haloalkyl.
  • each of R 10a , R 20a , R 30a , R 40a , R 40e , R 50a , R 60a and R 90a is independently a hydrogen atom, C 1 -C 6 alkyl, C 1 -C 6 haloalkyl, C 1 -C 8 alkoxy or C 1 -C 8 haloalkoxy.
  • each of R 10a , R 20a , R 30a , R 30e , R 40a , R 40e , R 50a , R 60a and R 90a is independently a hydrogen atom, C 1 -C 6 alkyl or C 1 -C 8 alkoxy.
  • each of R 10a , R 20a , R 30a , R 30e , R 40a , R 40e , R 50a , R 60a and R 90a is a hydrogen atom.
  • each of R 10a , R 20a , R 30a , R 30e , R 40a , R 40e , R 50a , R 60a and R 90a is independently C 1 -C 6 alkyl.
  • each of R 10a , R 20a , R 30a , R 30e , R 40a , R 50a , R 60a , and R 90a is independently C 1 -C 8 alkoxy.
  • each of R 20g , R 20h , R 30f , R 30g , R 30h , R 30i , R 40f , R 40g , R 40h , R 40i , R 50g , R 50h , R 60g , R 60h , R 90b , R 90c , R 90i , R 90j and R 90k is independently C 1 -C 6 alkyl or C 1 -C 6 haloalkyl.
  • each of R 20g , R 20h , R 30f , R 30g , R 30h , R 30i , R 40f , R 40g , R 40h , R 40i , R 50g , R 50h , R 60g , R 60h , R 90b , R 90c , R 90i , R 90j and R 90k is independently C 1 -C 6 alkyl.
  • each of R 90g and R 90h is independently C 1 -C 6 alkyl, C 1 -C 6 haloalkyl, C 1 -C 6 alkylcarbonyl, C 1 -C 6 haloalkylcarbonyl, alkoxycarbonyl, C 1 -C 6 haloalkoxycarbonyl, C 1 -C 6 alkylaminocarbonyl, C 1 -C 6 haloalkylaminocarbonyl, C 1 -C 6 alkylaminothiocarbonyl, haloalkylaminothiocarbonyl, phenylcarbonyl, C 1 -C 6 alkylsulfonyl, C 1 -C 6 haloalkylsulfonyl, C 1 -C 6 alkylaminosulfonyl or di(C 1 -C 6 ) alkylaminosulfonyl.
  • R 99g is C 1 -C 6 alkyl, C 1 -C 6 haloalkylcarbonyl, C 1 -C 8 alkoxycarbonyl or phenylcarbonyl.
  • R 90g is C 1 -C 6 alkyl.
  • R 90g is C 1 -C 6 haloalkylcarbonyl.
  • R 90g is C 1 -C 8 alkoxycarbonyl.
  • R 90g is phenylcarbonyl.
  • R 90h is C 1 -C 6 alkyl.
  • T 1 is a sulfur atom.
  • T 1 is N(T 1a ).
  • T 1a is a hydrogen atom.
  • T 1a is C 1 -C 6 alkyl.
  • [162] A pesticide containing one or more members selected from the condensed heterocyclic compounds and their salts as defined in the above [1] to [161] as active ingredient(s).
  • [163] An agricultural chemical containing one or more members selected from the condensed heterocyclic compounds and their salts as defined in the above [1] to [161] as active ingredient(s).
  • [164] A parasiticide against internal or external parasites in or on a mammal or bird, containing one or more members selected from the condensed heterocyclic compounds and their salts as defined in the above [1] to [161] as active ingredient(s).
  • the parasiticide according to the above [164], wherein the external parasites are Siphonaptera or ticks.
  • a seed treatment agent according to the above [167] which is used to treat seeds by dipping.
  • the soil treatment agent according to the above [169] which is used to treat soil by irrigation.
  • the compounds of the present invention have excellent insecticidal and acaricidal activities on many agricultural pest insects, spider mites, internal or external parasites in or on a mammal or bird and have sufficient controlling effect on pest insects which have acquired resistance to conventional insecticides.
  • the compounds of the present invention have little harmful effect on mammals, fish and beneficial insects, show low persistence and are environmentally friendly. Thus, the present invention can provide useful novel pesticides.
  • the compounds of the present invention can have geometrical isomers such as E-isomers and Z-isomers, depending on the types of substituents in them, and the present invention covers both E-isomers and Z-isomers and mixtures containing them in any ratios.
  • the compounds of the present invention can have optically active isomers due to the presence of one or more asymmetric carbon atoms or asymmetric sulfur atoms, and the present invention covers any optically active isomers and any racemates.
  • the compounds of the present invention can have tautomers depending on the type of substituents in them, and the present invention covers all tautomers and mixtures containing them in any ratios.
  • Some of the compounds of the present invention can be converted, by ordinary methods, to salts with hydrogen halides such as hydrofluoric acid, hydrochloric acid, hydrobromic acid and hydroiodic acid, with inorganic acids such as nitric acid, sulfuric acid, phosphoric acid, chloric acid and perchloric acid, with sulfonic acids such as methanesulfonic acid, ethanesulfonic acid, trifluoromethanesulfonic acid, benzenesulfonic acid and p-toluenesulfonic acid, with carboxylic acids such as formic acid, acetic acid, propionic acid, trifluoroacetic acid, fumaric acid, tartaric acid, oxalic acid, maleic acid, malic acid, succinic acid, benzoic acid, mandelic acid, ascorbic acid, lactic acid, gluconic acid and citric acid, with amino acids such as glutamic acid and aspartic acid, with alkali metals
  • the N-oxide is a compound having a nitrogen atom constituting the ring in the heterocyclic group oxidized.
  • a heterocyclic group which may constitute an N-oxide may, for example, be a condensed ring containing a pyridine ring, a condensed ring containing a pyrazine ring, a condensed ring containing a pyridazine ring or a condensed ring containing a pyrimidine ring.
  • n-de notes normal, i-iso, s-secondary, and tert-tertiary.
  • halogen atom in the compounds of the present invention, a fluorine atom, a chlorine atom, a bromine atom or an iodine atom may be mentioned.
  • halo also means such a halogen atom.
  • C a -C b alkyl herein means a linear or branched hydrocarbon group containing from a to b carbon atoms such as methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, s-butyl, tert-butyl, n-pentyl, 1,1-dimethylpropyl or n-hexyl, and those within the designated carbon number range are selected.
  • C a -C b haloalkyl herein means a linear or branched hydrocarbon group containing from a to b carbon atoms in which hydrogen atom(s) on carbon atom(s) are optionally substituted with halogen atom(s) which may be identical with or different from one another if two or more halogen atoms are present, such as fluoromethyl, chloromethyl, bromomethyl, iodomethyl, difluoromethyl, dichloromethyl, trifluoromethyl, chlorodifluoromethyl, trichloromethyl, bromodifluoromethyl, 1-fluoroethyl, 2-fluoroethyl, 2-chloroethyl, 2-bromoethyl, 2,2-difluoroethyl, 2,2,2-trifluoroethyl, 2-chloro-2,2-difluoroethyl, 2,2,2-trichloroethyl, 2-bromo-2,
  • C a -C b alkenyl herein means a linear or branched unsaturated hydrocarbon group containing from a to b carbon atoms and having one or more double bonds in the molecule, such as vinyl, 1-propenyl, 2-propenyl, 1-methylethenyl, 2-butenyl, 2-methyl-2-propenyl, 3-methyl-2-butenyl or 1,1-dimethyl-2-propenyl, and those within the designated carbon number range are selected.
  • C a -C b haloalkenyl herein means a linear or branched unsaturated hydrocarbon group containing from a to b carbon atoms and having one or more double bonds in the molecule, in which hydrogen atom(s) on carbon atom(s) are optionally substituted with halogen atom(s) which may be identical with or different from one another if two or more halogen atoms are present, such as 2,2-dichlorovinyl, 2-fluoro-2-propenyl, 2-chloro-2-propenyl, 3-chloro-2-propenyl, 2-bromo-2-propenyl, 3,3-difluoro-2-propenyl, 2,3-dichloro-2-propenyl, 3,3-dichloro-2-propenyl, 2,3,3-trifluoro-2-propenyl, 2,3,3-trichloro-2-propenyl, 1-(trifluoromethyl)ethenyl,
  • C a -C b alkynyl herein means a linear or branched unsaturated hydrocarbon group containing from a to b carbon atoms and having one or more triple bonds in the molecule, such as ethynyl, propargyl, 2-butynyl, 3-butynyl, 1-pentynyl, 1-hexynyl or 4,4,4-trifluoro-2-butynyl, and those within the designated carbon number range are selected.
  • C a -C b haloalkynyl herein means a linear or branched unsaturated hydrocarbon group containing from a to b carbon atoms and having one or more triple bonds in the molecule, in which hydrogen atom(s) on carbon atom(s) are optionally substituted with halogen atom(s) which may be identical with or different from one another if two or more halogen atoms are present, such as 2-chloroethynyl, 2-bromoethynyl, 2-iodoethynyl, 3-chloro-2-propynyl, 3-bromo-2-propynyl or 3-iodo-2-propynyl, and those within the designated carbon number range are selected.
  • C a -C b cycloalkyl herein means a cyclic hydrocarbon group containing from a to b carbon atoms in the form of a 3- to 6-membered monocyclic or polycyclic ring which may optionally be substituted with an alkyl group as long as the number of carbon atoms does not exceed the designated carbon number range, such as cyclopropyl, 1-methylcyclopropyl, 2-m ethylcyclopropyl, 2,2-dimethylcyclopropyl, cyclobutyl, cyclopentyl or cyclohexyl, and those within the designated carbon number range are selected.
  • C a -C b halocycloalkyl herein means a cyclic hydrocarbon group containing from a to b carbon atoms in the form of a 3- to 6-membered monocyclic or polycyclic ring which may optionally be substituted with an alkyl group as long as the number of carbon atoms does not exceed the designated carbon number range, in which hydrogen atom(s) on carbon atom(s) in a ring moiety and/or in a side chain are optionally substituted with halogen atom(s) which may be identical with or different from one another if two or more halogen atoms are present, such as 2,2-difluorocyclopropyl, 2,2-dichlorocyclopropyl, 2,2-dibromocyclopropyl, 2,2-difluoro-1-methylcyclopropyl, 2,2-dichloro-1-methylcyclopropyl, 2,2-dibromo-1-methylcyclopropyl or 2,2,3,3
  • C a -C b alkoxy herein means an alkyl-O— group in which the alkyl is a previously mentioned alkyl group containing from a to b carbon atoms, such as methoxy, ethoxy, n-propyloxy, i-propyloxy, n-butyloxy, i-butyloxy, s-butyloxy, tert-butyloxy or 2-ethylhexyloxy, and those within the designated carbon number range are selected.
  • C a -C b haloalkoxy herein means a haloalkyl-O— group in which the haloalkyl is a previously mentioned haloalkyl group containing from a to b carbon atoms, such as difluoromethoxy, trifluoromethoxy, chlorodifluoromethoxy, bromodifluoromethoxy, 2-fluoroethoxy, 2-chloroethoxy, 2,2,2-trifluoroethoxy, 1,1,2,2,-tetrafluoroethoxy, 2-chloro-1,1,2-trifluoroethoxy or 1,1,2,3,3,3-hexafluoropropyloxy, and those within the designated carbon number range are selected.
  • C a -C b alkenyloxy herein means an alkenyl-O— group in which the alkenyl is a previously mentioned alkenyl group containing from a to b carbon atoms, such as 2-propenyloxy, 2-butenyloxy, 2-methyl-2-propenyloxy or 3-methyl-2-butenyloxy, and those within the designated carbon number range are selected.
  • C a -C b haloalkenyloxy herein means a haloalkenyl-O— group in which the haloalkenyl is a previously mentioned haloalkenyl group containing from a to b carbon atoms, such as 3,3-difluoroallyloxy or 3,3-dichloroallyloxy, and those within the designated carbon number range are selected.
  • C a -C b alkynyloxy herein means an alkynyl-O— group in which the alkynyl is a previously mentioned alkynyl group containing from a to b carbon atoms, such as ethynyloxy, propargyloxy, 2-butynyloxy, 1-pentynyloxy or 1-hexynyloxy, and those within the designated carbon number range are selected.
  • C a -C b haloalkynyloxy herein means a haloalkynyl-O— group in which the haloalkynyl is a previously mentioned haloalkynyl group containing from a to b carbon atoms, such as 3-chloro-2-propynyloxy, 3-bromo-2-propynyloxy or 3-iodo-2-propynyloxy, and those within the designated carbon number range are selected.
  • C a -C b alkylthio herein means an alkyl-S— group in which the alkyl is a previously mentioned alkyl group containing from a to b carbon atoms, such as methylthio, ethylthio, n-propylthio, i-propylthio, n-butylthio, i-butylthio, s-butylthio or tert-butylthio, and those within the designated carbon number range are selected.
  • C a -C b haloalkylthio herein means a haloalkyl-S— group in which the haloalkyl is a previously mentioned haloalkyl group containing from a to b carbon atoms, such as difluoromethylthio, trifluoromethylthio, chlorodifluoromethylthio, bromodifluoromethylthio, 2,2,2-trifluoroethylthio, 1,1,2,2-tetrafluoroethylthio, 2-chloro-1,1,2-trifluoroethylthio, pentafluoroethylthio, 1,1,2,3,3,3-hexafluoropropylthio, heptafluoropropylthio, 1,2,2,2-tetrafluoro-1-(trifluoromethyl)ethylthio or nonafluorobutylthio, and those within the designated carbon number range are selected.
  • C a -C b alkenylthio herein means an alkenyl-S— group in which the alkenyl is a previously mentioned alkenyl group containing from a to b carbon atoms, such as 2-propenylthio, 2-butenylthio, 2-methyl-2-propenylthio or 3-methyl-2-butenylthio, and those within the designated carbon number range are selected.
  • C a -C b haloalkenylthio herein means a haloalkenyl-S— group in which the haloalkenyl is a previously mentioned haloalkenyl group containing from a to b carbon atoms, such as 2-fluoro-2-propenylthio, 2-chloro-2-propenylthio, 3,3-difluoro-2-propenylthio, 3,3-dichloro-2-propenylthio, 2,3,3-trifluoro-2-propenylthio, 4,4-difluoro-3-butenylthio or 3,4,4-trifluoro-3-butenylthio, and those within the designated carbon number range are selected.
  • C a -C b alkynylthio herein means an alkynyl-S— group in which the alkynyl is a previously mentioned alkynyl group containing from a to b carbon atoms, such as propynylthio, butynylthio, pentynylthio or hexynylthio, and those within the designated carbon number range are selected.
  • C a -C b haloalkynylthio herein means a haloalkynyl-S— group in which the haloalkynyl is a previously mentioned haloalkynyl group containing from a to b carbon atoms, such as 3-chloro-2-propynylthio, 3-bromo-2-propynylthio or 3-iodo-2-propynylthio, and those within the designated carbon number range are selected.
  • C a -C b alkylsulfinyl herein means an alkyl-S(O)— group in which the alkyl is a previously mentioned alkyl group containing from a to b carbon atoms, such as methylsulfinyl, ethylsulfinyl, n-propylsulfinyl, i-propylsulfinyl, n-butylsulfinyl, i-butylsulfinyl, s-butylsulfinyl or tert-butylsulfinyl, and those within the designated carbon number range are selected.
  • C a -C b haloalkylsulfinyl herein means a haloalkyl-S(O)— group in which the haloalkyl is a previously mentioned haloalkyl group containing from a to b carbon atoms, such as difluoromethylsulfinyl, trifluoromethylsulfinyl, chlorodifluoromethylsulfinyl, bromodifluoromethylsulfinyl, 2,2,2-trifluoroethylsulfinyl, 1,2,2,2-tetrafluoro-1-(trifluoromethyl)ethylsulfinyl or nonafluorobutylsulfinyl, and those within the designated carbon number range are selected.
  • C a -C b alkenylsulfinyl herein means an alkenyl-S(O)— group in which the alkenyl is a previously mentioned alkenyl group containing from a to b carbon atoms, such as 2-propenylsulfinyl, 2-butenylsulfinyl, 2-methyl-2-propenylsulfinyl or 3-methyl-2-butenylsulfinyl, and those within the designated carbon number range are selected.
  • C a -C b haloalkenylsulfinyl herein means a haloalkenyl-S(O)— group in which the haloalkenyl is a previously mentioned haloalkenyl group containing from a to b carbon atoms, such as 2-fluoro-2-propenylsulfinyl, 2-chloro-2-propenylsulfinyl, 3,3-difluoro-2-propenylsulfinyl, 3,3-dichloro-2-propenylsulfinyl, 4,4-difluoro-3-butenylsulfinyl or 3,4,4-trifluoro-3-butenylsulfinyl, and those within the designated carbon number range are selected.
  • C a -C b alkynylsulfinyl herein means an alkynyl-S(O)— group in which the alkynyl is a previously mentioned alkynyl group containing from a to b carbon atoms, such as 2-propynylsulfinyl or 2-butynylsulfinyl, and those within the designated carbon number range are selected.
  • C a -C b haloalkynylsulfinyl herein means a haloalkynyl-S(O)— group in which the haloalkynyl is a previously mentioned haloalkynyl group containing from a to b carbon atoms, such as 3-chloro-2-propynylsulfinyl, 3-bromo-2-propynylsulfinyl or 3-iodo-2-propynylsulfinyl, and those within the designated carbon number range are selected.
  • C a -C b alkylsulfonyl herein means an alkyl-S02-group in which the alkyl is a previously mentioned alkyl group containing from a to b carbon atoms, such as methylsulfonyl, ethylsulfonyl, n-propylsulfonyl, i-propylsulfonyl, n-butylsulfonyl, i-butylsulfonyl, s-butylsulfonyl or tert-butylsulfonyl, and those within the designated carbon number range are selected.
  • C a -C b haloalkylsulfonyl herein means a haloalkyl-SO 2 — group in which the haloalkyl is a previously mentioned haloalkyl group containing from a to b carbon atoms, such as difluoromethylsulfonyl, trifluoromethylsulfonyl, chlorodifluoromethylsulfonyl, bromodifluoromethylsulfonyl, 2,2,2-trifluoroethylsulfonyl, 1,1,2,2-tetrafluoroethylsulfonyl or 2-chloro-1,1,2-trifluoroethylsulfonyl, and those within the designated carbon number range are selected.
  • C a -C b alkenylsulfonyl herein means an alkenyl-SO 2 — group in which the alkenyl is a previously mentioned alkenyl group containing from a to b carbon atoms, such as 2-propenylsulfonyl, 2-butenylsulfonyl, 2-methyl-2-propenylsulfonyl or 3-methyl-2-butenylsulfonyl, and those within the designated carbon number range are selected.
  • C a -C b haloalkenylsulfonyl herein means a haloalkenyl-SO 2 — group in which the haloalkenyl is a previously mentioned haloalkenyl group containing from a to b carbon atoms, such as 2-fluoro-2-propenylsulfonyl, 2-chloro-2-propenylsulfonyl, 3,3-difluoro-2-propenylsulfonyl, 3,3-dichloro-2-propenylsulfonyl, 4,4-difluoro-3-butenylsulfonyl or 3,4,4-trifluoro-3-butenylsulfonyl, and those within the designated carbon number range are selected.
  • C a -C b alkynylsulfonyl herein means an alkynyl-SO 2 — group in which the alkynyl is a previously mentioned alkynyl group containing from a to b carbon atoms, such as 2-propynylsulfonyl or 2-butynylsulfonyl, and those within the designated carbon number range are selected.
  • C a -C b haloalkynylsulfonyl herein means a haloalkynyl-SO 2 — group in which the haloalkynyl is a previously mentioned haloalkynyl group containing from a to b carbon atoms, such as 3-chloro-2-propynylsulfonyl, 3-bromo-2-propynylsulfonyl or 3-iodo-2-propynylsulfonyl, and those within the designated carbon number range are selected.
  • C a -C b alkylamino herein means an amino group in which either hydrogen atom is replaced with a previously mentioned alkyl group containing from a to b carbon atoms, such as methylamino, ethylamino, n-propylamino, i-propylamino, n-butylamino, i-butylamino or tert-butylamino, and those within the designated carbon number range are selected.
  • C a -C b haloalkylamino herein means an amino group in which either hydrogen atom is replaced with a previously mentioned haloalkyl group containing from a to b carbon atoms, such as 2,2,2-trifluoroethylamino, 2-chloro-2,2-difluoroethylamino or 3,3,3-trifluoropropylamino, and those within the designated carbon number range are selected.
  • di(C a -C b ) alkylamino herein means an amino group in which both hydrogen atoms are replaced with previously mentioned alkyl groups containing from a to b carbon atoms which may be identical with or different from each other, such as dimethylamino, ethyl(methyl)amino, diethylamino, n-propyl(methyl)amino, i-propyl(methyl)amino, di(n-propyl)amino or di(n-butyl)amino, and those within the designated carbon number range are selected.
  • di(C a -C b ) haloalkylamino herein means an amino group in which both hydrogen atoms are replaced with previously mentioned haloalkyl groups containing from a to b carbon atoms which may be identical with or different from each other, such as bis(2,2,2-trifluoroethyl)amino, and those within the designated carbon number range are selected.
  • C a -C b alkylcarbonyl herein means an alkyl-C(O)— group in which the alkyl means a previously mentioned alkyl group containing from a to b carbon atoms, such as acetyl, propionyl, butyryl, isobutyryl, valeryl, isovaleryl, 2-methylbutanoyl, pivaloyl, hexanoyl or heptanoyl, and those within the designated carbon number range are selected.
  • C a -C b haloalkylcarbonyl herein means a haloalkyl-C(O)— group in which the haloalkyl means a previously mentioned haloalkyl group containing from a to b carbon atoms, such as fluoroacetyl, chloroacetyl, difluoroacetyl, dichloroacetyl, trifluoroacetyl, chlorodifluoroacetyl, bromodifluoroacetyl, trichloroacetyl, pentafluoropropionyl, heptafluorobutanoyl or 3-chloro-2,2-dimethylpropanoyl, and those within the designated carbon number range are selected.
  • C a -C b alkoxycarbonyl herein means an alkyl-O—C(O)— group in which the alkyl means a previously mentioned alkyl group containing from a to b carbon atoms, such as methoxycarbonyl, ethoxycarbonyl, n-propyloxycarbonyl, propyloxycarbonyl, n-butoxycarbonyl, i-butoxycarbonyl, s-butoxycarbonyl, tert-butoxycarbonyl or 2-ethylhexyloxycarbonyl, and those within the designated carbon number range are selected.
  • C a -C b haloalkoxycarbonyl herein means a haloalkyl-O—C(O)— group in which the haloalkyl means a previously mentioned haloalkyl group containing from a to b carbon atoms, such as chloromethoxycarbonyl, 2-chloroethoxycarbonyl, 2,2-d ifluoroethoxycarbonyl, 2,2,2-trifluoroethoxycarbonyl or 2,2,2-trichloroethoxycarbonyl, and those within the designated carbon number range are selected.
  • C a -C b alkylaminocarbonyl herein means a carbamoyl group in which either hydrogen atom is replaced with a previously mentioned alkyl group containing from a to b carbon atoms, such as methylcarbamoyl, ethylcarbamoyl, n-propylcarbamoyl, i-propylcarbamoyl, n-butylcarbamoyl, i-butylcarbamoyl, s-butylcarbamoyl or tert-butylcarbamoyl, and those within the designated carbon number range are selected.
  • C a -C b haloalkylaminocarbonyl herein means a carbamoyl group in which either hydrogen atom is replaced with a previously mentioned haloalkyl group containing from a to b carbon atoms, such as 2-fluoroethylcarbamonyl, 2-chloroethylcarbamoyl, 2,2-difluoroethylcarbamoyl or 2-trifluoroethylcarbamoyl, and those within the designated carbon number range are selected.
  • C a -C b alkylaminothiocarbonyl herein means an amino-C( ⁇ S)— group in which either hydrogen atom is replaced with a previously mentioned alkyl group containing from a to b carbon atoms, such as methylthiocarbamoyl, ethylthiocarbamoyl, n-propylthiocarbamoyl, i-propylthiocarbamoyl, n-butylthiocarbamoyl, i-butylthiocarbamoyl, s-butylthiocarbamoyl or tert-butylthiocarbamoyl, and those within the designated carbon number range are selected.
  • C a -C b haloalkylaminothiocarbonyl herein means an amino-C( ⁇ S)— group in which either hydrogen atom is replaced with a previously mentioned haloalkyl group containing from a to b carbon atoms, such as 2-fluoroethylthiocarbamoyl, 2-chloroethylthiocarbamoyl, 2,2-difluoroethylthiocarbamoyl or 2-trifluoroethylthiocarbamoyl, and those within the designated carbon number range are selected.
  • C a -C b alkylaminosulfonyl herein means a sulfamoyl group in which either hydrogen atom is replaced with a previously mentioned alkyl group containing from a to b carbon atoms, such as methylsulfamoyl, ethylsulfamoyl, n-propylsulfamoyl, i-propylsulfamoyl, n-butylsulfamoyl, i-butylsulfamoyl, s-butylsulfamoyl or tert-butylsulfamoyl, and those within the designated carbon number range are selected.
  • di(C a -C b ) alkylaminosulfonyl herein means a sulfamoyl group in which both hydrogen atoms are replaced with previously mentioned alkyl groups containing from a to b carbon atoms which may be identical with or different from each other, such as N,N-dimethylsulfamoyl, N-ethyl-N-methylsulfamoyl, N,N-diethylsulfamoyl, N,N-di(n-propyl)sulfamoyl or N,N-di(n-butyl)sulfamoyl, and those within the designated carbon number range are selected.
  • heterocyclyl herein may, for example, be specifically thiophen-2-yl, thiophen-3-yl, furan-2-yl, furan-3-yl, pyrrol-1-yl, pyrrol-2-yl, pyrrol-3-yl, oxazol-2-yl, oxazol-4-yl, oxazol-5-yl, isoxazol-3-yl, isoxazol-4-yl, isoxazol-5-yl, isoxazolin-3-yl, isoxazolin-4-yl, isoxazolin-5-yl, thiazol-2-yl, thiazol-4-yl, thiazol-5-yl, isothiazol-3-yl, isothiazol-4-yl, isothiazol-5-yl, pyrazol-1-yl, pyrazol-3-yl, pyrazol-4-yl, pyrazol-1-yl
  • C a -C b cycloalkyl (C d -C e ) alkyl means a previously mentioned alkyl group containing from d to e carbon atoms in which hydrogen atom(s) on carbon atom(s) are optionally substituted with an optional previously mentioned C a -C b cycloalkyl, C a -C b halocycloalkyl or hydroxy, and those within the designated carbon number range are selected.
  • (C a -C b ) alkyl optionally substituted with R 1a ”, “(C 1 -C 6 ) alkyl optionally substituted with A 1a-a ” or “(C 1 -C 6 ) alkyl optionally substituted with Y a ” herein means a previously mentioned alkyl group having from a to b carbon atoms in which hydrogen atom(s) on carbon(s) are optionally substituted with optional R 1a , A 1a-a or Y a , and those within the designated carbon number range are selected.
  • each R 1a , A 1a-a or Y a may be identical with or different from one another.
  • (C a -C b ) haloalkyl optionally substituted with A 1a-a ” or “(C a —C b ) haloalkyl optionally substituted with y e ” herein means a previously mentioned haloalkyl group having from a to b carbon atoms in which hydrogen atom(s) or halogen atom(s) on carbon atom(s) are optionally substituted with optional A 1a-a or Y a , and those within the designated carbon number range are selected.
  • each A 1a-a or Y a may be identical with or different from one another.
  • (C a -C b ) alkenyl optionally substituted with Y a ” herein means a previously mentioned alkenyl group having from a to b carbon atoms in which hydrogen atom(s) on carbon atom(s) are optionally substituted with optional y e , and those within the designated carbon number range are selected.
  • each Y a may be identical with or different from one another.
  • (C a -C b ) alkynyl optionally substituted with Y b ” herein means a previously mentioned alkynyl group having from a to b carbon atoms in which hydrogen atom(s) on carbon atom(s) are optionally substituted with optional Y b , and those within the designated carbon number range are selected.
  • each Y b may be identical with or different from one another.
  • (C a -C b ) alkoxy optionally substituted with Y a herein means a previously mentioned alkoxy group having from a to b carbon atoms in which hydrogen atom(s) on carbon atom(s) are optionally substituted with optional Y a , and those within the designated carbon number range are selected.
  • each Y a may be identical with or different from one another.
  • (C a -C b ) alkenyloxy optionally substituted with Y a herein means a previously mentioned alkenyloxy group having from a to b carbon atoms in which hydrogen atom(s) on carbon atom(s) are optionally substituted with optional Y a , and those within the designated carbon number range are selected.
  • each Y a may be identical with or different from one another.
  • (C a -C b ) alkynyloxy optionally substituted with Y a ” herein means a previously mentioned alkynyloxy group having from a to b carbon atoms in which hydrogen atom(s) on carbon atom(s) are optionally substituted with optional Y a , and those within the designated carbon number range are selected.
  • each Y a may be identical with or different from one another.
  • (C a -C b ) alkylthio optionally substituted with R 3a ”, “(C a -C b ) alkylthio optionally substituted with R 4a ” or “(C a -C b ) alkylthio optionally substituted with Y a ” herein means a previously mentioned alkylthio group having from a to b carbon atoms in which hydrogen atom(s) on carbon atom(s) are optionally substituted with optional R 3a , R 4a or Y a , and those within the designated carbon number range are selected.
  • each R 3a , R 4a or Y a may be identical with or different from one another.
  • (C a -C b ) alkylsulfinyl optionally substituted with Y a herein means a previously mentioned alkylsulfinyl group having from a to b carbon atoms in which hydrogen atom(s) on carbon atom(s) are optionally substituted with optional Y a , and those within the designated carbon number range are selected.
  • each Y a may be identical with or different from one another.
  • (C a -C b ) alkylsulfonyl optionally substituted with Y a herein means a previously mentioned alkylsulfonyl group having from a to b carbon atoms in which hydrogen atom(s) on carbon atom(s) are optionally substituted with optional Y a , and those within the designated carbon number range are selected.
  • each Y a may be identical with or different from one another.
  • phenyl optionally substituted with R 3b means a previously mentioned phenyl in which hydrogen atom(s) on carbon atoms) are optionally substituted with optional R 3b , R 4b or Y c .
  • each R 3b , R 4b or Y c may be identical with or different from one another.
  • heterocyclyl optionally substituted with R 3b means a heterocyclic group in which hydrogen atom(s) on carbon atom(s) or nitrogen atom(s) are optionally substituted with optional R 3b , R 4b or Y c .
  • R 3b 's, R 4b 's or Y c 's each R 3b , R 4b or Y c may be identical with or different from one another.
  • the compounds of the present invention may be produced, for example, by the following Processes 1 to 17.
  • a compound represented by the formula (2Q1-a) (wherein A 1a , A 2 , A 3 , A 4 and A 5 are the same as defined above) and a compound represented by the formula (3D-a) (wherein R 1 , D and n are the same as defined above) are reacted in a solvent or without solvent, as the case requires, in the presence of a dehydration condensation agent, and as the case requires, in the presence of a catalyst to produce a compound represented by the formula (4-a) (wherein R 1 , A 1a , A 2 , A 3 , A 4 , A 5 , D and n are the same as defined above).
  • the solvent used may be any solvent which is inert to the reaction, and for example, water, a lower alcohol such as methanol or ethanol, an ether such as diethyl ether, tetrahydrofuran, 1,4-dioxane or 1,2-dimethoxyethane, an aromatic hydrocarbon such as benzene, chlorobenzene, bromobenzene, xylene or toluene, an aliphatic hydrocarbon such as pentane, hexane or cyclohexane, a halogenated hydrocarbon such as dichloromethane, chloroform or 1,2-dichloroethane, a nitrile such as acetonitrile or propionitrile, an amide such as N,N-dimethylformamide, N,N-dimethylacetamide, N-methylpyrrolidone or N,N′-dimethylimidazolidinone, a sulfate, a sulfam
  • the reaction may be carried out in the presence of a dehydration condensation agent.
  • the dehydration condensation agent to be used may, for example, be 1H-benzotriazol-1-yloxytris(dimethylamino)phosphonium hexafluorophosphate, N,N′-dicyclohexylcarbodiimide, 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride or 2-chloro-1-methylpyridinium iodide.
  • the equivalent amount of the hehydration condensation agent used is from 0.1 to 100 equivalent amount, preferably from 1 to 20 equivalent amount based on the compound represented by the formula (2Q1-a).
  • the reaction may be carried out in the presence of a catalyst.
  • the catalyst to be used may, for example, be 1-hydroxybenzotriazole or 4-(dimethylamino)pyridine.
  • the equivalent amount of the catalyst used is from 0.005 to 20 equivalent amount, preferably from 0.1 to 5 equivalent amount based on the compound represented by the formula (2Q1-a).
  • the reaction temperature may be set at an optional temperature of from ⁇ 80° C. to the refluxing temperature of the reaction mixture, and is preferably within a range of from 0° C. to the refluxing temperature of the reaction mixture.
  • the reaction time varies depending upon the concentration of the reaction substrate and the reaction temperature, and is optionally set usually within a range of from 5 minutes to 100 hours, and is preferably from 1 to 48 hours.
  • the compound (3D-a) may be used in an amount of from 0.5 to 50 equivalent amount, preferably from 1 to 20 equivalent amount based on the compound (2Q1-a).
  • the compound represented by the formula (4-a) may be produced by reacting the compound represented by the formula (201-a) and a compound represented by the formula (3D-b) (wherein R 1 , D and n are the same as defined above) in a solvent or without solvent, and as the case requires, in the presence of a base.
  • the solvent used may be any solvent which is inert to the reaction, and for example, water, a lower alcohol such as methanol or ethanol, an ether such as diethyl ether, tetrahydrofuran, 1,4-dioxane or 1,2-dimethoxyethane, an aromatic hydrocarbon such as benzene, chlorobenzene, bromobenzene, xylene or toluene, an aliphatic hydrocarbon such as pentane, hexane or cyclohexane, a halogenated hydrocarbon such as dichloromethane, chloroform or 1,2-dichloroethane, a nitrile such as acetonitrile or propionitrile, an amide such as N,N-dimethylformamide, N,N-dimethylacetamide, N-methylpyrrolidone or N,N′-dimethylimidazolidinone, a sulfate, a sulfam
  • the reaction may be carried out in the presence of a base.
  • the base to be used may, for example, be an organic base such as pyridine, 2,6-lutidine, 4-dimethylaminopyridine, triethylamine, diisopropylethylamine, tributylamine, 4-(dimethylamino)pyridine, 1,4-diazabicyclo[2.2.2]octane (DABCO), 1,8-diazabicyclo[5.4.0]-7-undecene (DBU) or 1,5-diazabicyclo[4.3.0]-5-nonene (DBN), or an inorganic base such as sodium hydroxide, potassium hydroxide, sodium hydride, sodium hydrogen carbonate, potassium carbonate or cesium carbonate.
  • the equivalent amount of the base used is from 0.1 to 100 equivalent amount, preferably from 1 to 20 equivalent amount based on the compound represented by the formula (2Q1-a).
  • the reaction temperature may be set at an optional temperature of from ⁇ 80° C. to the refluxing temperature of the reaction mixture, and is preferably within a range of from 0° C. to the refluxing temperature of the reaction mixture.
  • the reaction time varies depending upon the concentration of the reaction substrate and the reaction temperature, and is optionally set usually within a range of from 5 minutes to 100 hours, and is preferably from 1 to 48 hours.
  • the compound (3D-b) may be used in an amount of from 0.5 to 50 equivalent amount, preferably from 1 to 20 equivalent amount based on the compound (2Q1-a).
  • the compound represented by the formula (4-a) is subjected to dehydration condensation in a solvent or without solvent, as the case requires, in the presence of an acid, and as the case requires, in the presence of a dehydration agent to produce a compound represented by the formula (1-a) (wherein R 1 , A 1a , A 2 , A 3 , A 4 , A 5 , D and n are the same as defined above).
  • the solvent used may be any solvent which is inert to the reaction, and for example, water, a lower alcohol such as methanol or ethanol, an ether such as diethyl ether, tetrahydrofuran, 1,4-dioxane or 1,2-dimethoxyethane, an aromatic hydrocarbon such as benzene, chlorobenzene, bromobenzene, xylene or toluene, an aliphatic hydrocarbon such as pentane, hexane or cyclohexane, a halogenated hydrocarbon such as dichloromethane, chloroform or 1,2-dichloroethane, a nitrile such as acetonitrile or propionitrile, an amide such as N,N-dimethylformamide, N,N-dimethylacetamide, N-methylpyrrolidone or N,N′-dimethylimidazolidinone, a sulfate, a sulfam
  • the reaction may be carried out in the presence of an acid.
  • the acid to be used may, for example, be p-toluenesulfonic acid, polyphosphoric acid, acetic acid or propionic acid.
  • the equivalent amount of the acid used is from 0.1 to 1,000 equivelent amount, preferably from 1 to 500 equivalent amount based on the compound represented by the formula (4-a).
  • the reaction may be carried out in the presence of a dehydration agent.
  • the dehydration agent to be used may, for example, be phosphorus oxychloride or acetic anhydride.
  • the equivalent amount of the dehydration agent used is from 0.5 to 50 equivalent amount, preferably from 1 to 20 equivalent amount based on the compound represented by the formula (4-a).
  • the reaction temperature may be set at an optional temperature of from ⁇ 80° C. to the refluxing temperature of the reaction mixture, and is preferably within a range of from 0° C. to the refluxing temperature of the reaction mixture.
  • the reaction time varies depending upon the concentration of the reaction substrate and the reaction temperature, and is optionally set usually within a range of from 5 minutes to 100 hours, and is preferably from 1 to 48 hours.
  • the compound represented by the formula (3D-b) may be prepared, for example, in accordance with the after-mentioned Reaction Scheme 1.
  • a compound represented by the formula (1-f) (wherein R 1 , A 2 , A 3 , A 4 , A 5 , D and n are the same as defined above) and a compound represented by the formula (16) (wherein A 1aa is C 1 -C 6 alkyl, and X 1 is a leaving group such as a halogen atom, C 1 -C 4 alkylsulfonate (such as methanesulfonyloxy), C 1 -C 4 haloalkylsulfonate (such as trifluoromethanesulfonyloxy) or arylsulfonate (such as benzenesulfonyloxy or p-toluenesulfonyloxy)) are reacted in a solvent or without solvent, and as the case requires, in the presence of a base, to produce a compound represented by the formula (1-g) (wherein R 1 , A 1aa , A 2 , A 3 ,
  • the solvent used may be any solvent which is inert to the reaction, and for example, water, a lower alcohol such as methanol or ethanol, an ether such as diethyl ether, tetrahydrofuran, 1,4-dioxane or 1,2-dimethoxyethane, an aromatic hydrocarbon such as benzene, chlorobenzene, bromobenzene, xylene or toluene, an aliphatic hydrocarbon such as pentane, hexane or cyclohexane, a halogenated hydrocarbon such as dichloromethane, chloroform or 1,2-dichloroethane, a nitrile such as acetonitrile or propionitrile, an amide such as N,N-dimethylformamide, N,N-dimethylacetamide, N-methylpyrrolidone or N,N′-dimethylimidazolidinone, a sulfate, a sulfam
  • the reaction may be carried out in the presence of a base.
  • the base to be used may, for example, be an organic base such as pyridine, 2,6-lutidine, 4-dimethylaminopyridine, triethylamine, diisopropylethylamine, tributylamine, 4-(dimethylamino)pyridine, 1,4-diazabicyclo[2.2.2]octane (DABCO), 1,8-diazabicyclo[5.4.0]-7-undecene (DBU) or 1,5-diazabicyclo[4.3.0]-5-nonene (DBN), or an inorganic base such as sodium hydroxide, potassium hydroxide, sodium hydride, sodium hydrogen carbonate, potassium carbonate or cesium carbonate.
  • the equivalent amount of the base used is from 0.1 to 100 equivalent amount, preferably from 1 to 20 equivalent amount based on the compound represented by the formula (1-f).
  • the reaction temperature may be set at an optional temperature of from ⁇ 80° C. to the refluxing temperature of the reaction mixture, and is preferably within a range of from 0° C. to the refluxing temperature of the reaction mixture.
  • the reaction time varies depending upon the concentration of the reaction substrate and the reaction temperature, and is optionally set usually within a range of from 5 minutes to 100 hours, and is preferably from 1 to 48 hours.
  • the compound (16) may be used in an amount of from 0.5 to 50 equivalent amount, preferably from 1 to 20 equivalent amount based on the compound (1-f).
  • the compound represented by the formula (1-f) may be prepared in accordance with Process 1.
  • the compound represented by the formula (18-a) may be produced by reacting the compound represented by the formula (2Q1-a) and a compound represented by the formula (17-b) (wherein G 1 , G 2 , G 3 and G 4 are the same as defined above) in accordance with the method disclosed in step [A] of Process 1.
  • step [B] of Process 1 the compound represented by the formula (18-a) is subjected to dehydration condensation in accordance with the method disclosed in step [B] of Process 1 to produce a compound represented by the formula (19-a) (wherein A 1a , A 2 , A 3 , A 4 , A 5 , G 1 , G 2 , G 3 and G 4 are the same as defined above).
  • the compound represented by the formula (19-a) is reacted with a compound represented by the formula (9) (wherein R 1 is the same as defined above) and a halogenating agent in a solvent or without solvent to produce a compound represented by the formula (1-h) (wherein R 1 , A 1a , A 2 , A 3 , A 4 , A 5 , G 1 , G 2 , G 3 and G 4 are the same as defined above).
  • the solvent used may be any solvent which is inert to the reaction, and for example, water, a lower alcohol such as methanol or ethanol, an ether such as diethyl ether, tetrahydrofuran, 1,4-dioxane or 1,2-dimethoxyethane, an aromatic hydrocarbon such as benzene, chlorobenzene, bromobenzene, xylene or toluene, an aliphatic hydrocarbon such as pentane, hexane or cyclohexane, a halogenated hydrocarbon such as dichloromethane, chloroform or 1,2-dichloroethane, a nitrile such as acetonitrile or propionitrile, an amide such as N,N-dimethylformamide, N,N-dimethylacetamide, N-methylpyrrolidone or N,N′-dimethylimidazolidinone, a sulfate, a sulfam
  • the halogenating agent may, for example, be chlorine, bromine, iodine, N-chlorosuccinimide, N-bromosuccinimide, N-iodosuccinimide, 1,3-dichloro-5,5-dimethylhydantoin, 1,3-dibromo-5,5-dimethylhydantoin or 1,3-diiodo-5,5-dimethylhydantoin.
  • the equivalent amount of the halogenating agent used is from 0.5 to 50 equivalent amount, preferably from 1 to 20 equivalent amount based on the compound represented by the formula (19-a).
  • the reaction temperature may be set at an optional temperature of from ⁇ 80° C. to the refluxing temperature of the reaction mixture, and is preferably within a range of from 0° C. to the refluxing temperature of the reaction mixture.
  • the reaction time varies depending upon the concentration of the reaction substrate and the reaction temperature, and is optionally set usually within a range of from 5 minutes to 100 hours, and is preferably from 1 to 48 hours.
  • the compound (9) may be used in an amount of from 0.5 to 50 equivalent amount, preferably from 1 to 20 equivalent amount based on the compound (19-a).
  • the compound represented by the formula (19-a) and a halogenating agent are reacted in a solvent or without solvent to produce a compound represented by the formula (23-a) (wherein A 1a , A 2 , A 3 , A 4 , A 5 , G 1 , G 2 , G 3 and G 4 are the same as defined above, and X 10 is a chlorine atom, a bromine atom or an iodine atom).
  • the solvent used may be any solvent which is inert to the reaction, and for example, water, a lower alcohol such as methanol or ethanol, an ether such as diethyl ether, tetrahydrofuran, 1,4-dioxane or 1,2-dimethoxyethane, an aromatic hydrocarbon such as benzene, chlorobenzene, bromobenzene, xylene or toluene, an aliphatic hydrocarbon such as pentane, hexane or cyclohexane, a halogenated hydrocarbon such as dichloromethane, chloroform or 1,2-dichloroethane, a nitrile such as acetonitrile or propionitrile, an amide such as N,N-dimethylformamide, N,N-dimethylacetamide, N-methylpyrrolidone or N,N′-dimethylimidazolidinone, a sulfate, a sulfam
  • the halogenating agent may, for example, be chlorine, bromine, iodine, N-chlorosuccinimide, N-bromosuccinimide, N-iodosuccinimide, 1,3-dichloro-5,5-dimethylhydantoin, 1,3-dibromo-5,5-dimethylhydantoin or 1,3-diiodo-5,5-dimethylhydantoin.
  • the equivalent amount of the halogenating agent used is from 0.5 to 50 equivalent amount, preferably from 1 to 20 equivalent amount based on the compound represented by the formula (19-a).
  • the reaction temperature may be set at an optional temperature of from ⁇ 80° C. to the refluxing temperature of the reaction mixture, and is preferably within a range of from 0° C. to the refluxing temperature of the reaction mixture.
  • the reaction time varies depending upon the concentration of the reaction substrate and the reaction temperature, and is optionally set usually within a range of from 5 minutes to 100 hours, and is preferably from 1 to 48 hours.
  • the solvent used may be any solvent which is inert to the reaction, and for example, water, a lower alcohol such as methanol or ethanol, an ether such as diethyl ether, tetrahydrofuran, 1,4-dioxane or 1,2-dimethoxyethane, an aromatic hydrocarbon such as benzene, chlorobenzene, bromobenzene, xylene or toluene, an aliphatic hydrocarbon such as pentane, hexane or cyclohexane, a halogenated hydrocarbon such as dichloromethane, chloroform or 1,2-dichloroethane, a nitrile such as acetonitrile or propionitrile, an amide such as N,N-dimethylformamide, N,N-dimethylacetamide, N-methylpyrrolidone or N,N′-dimethylimidazolidinone, a sulfate, a sulfam
  • the reaction may be carried out in the presence of a base.
  • the base to be used may, for example, be an organic base such as pyridine, 2,6-lutidine, 4-dimethylaminopyridine, triethylamine, diisopropylethylamine, tributylamine, 4-(dimethylamino)pyridine, 1,4-diazabicyclo[2.2.2]octane (DABCO), 1,8-diazabicyclo[5.4.0]-7-undecene (DBU) or 1,5-diazabicyclo[4.3.0]-5-nonene (DBN), or an inorganic base such as sodium hydroxide, potassium hydroxide, sodium hydride, sodium hydrogen carbonate, potassium carbonate or cesium carbonate.
  • the equivalent amount of the base used is from 0.1 to 100 equivalent amount, preferably from 1 to 20 equivalent amount based on the compound represented by the formula (23-a).
  • the reaction temperature may be set at an optional temperature of from ⁇ 80° C. to the refluxing temperature of the reaction mixture, and is preferably within a range of from 0° C. to the refluxing temperature of the reaction mixture.
  • the reaction time varies depending upon the concentration of the reaction substrate and the reaction temperature, and is optionally set usually within a range of from 5 minutes to 100 hours, and is preferably from 1 to 48 hours.
  • the compound (24) may be used in an amount of from 0.5 to 50 equivalent amount, preferably from 1 to 20 equivalent amount based on the compound (23-a).
  • the compound represented by the formula (1-h) may be produced by reacting the compound represented by the formula (23-a) and the compound represented by the formula (9) in a solvent or without solvent, as the case requires, in the presence of a base, as the case requires, in the presence of a palladium catalyst, and as the case requires, in the presence of a ligand.
  • the solvent used may be any solvent which is inert to the reaction, and for example, water, a lower alcohol such as methanol or ethanol, an ether such as diethyl ether, tetrahydrofuran, 1,4-dioxane or 1,2-dimethoxyethane, an aromatic hydrocarbon such as benzene, chlorobenzene, bromobenzene, xylene or toluene, an aliphatic hydrocarbon such as pentane, hexane or cyclohexane, a halogenated hydrocarbon such as dichloromethane, chloroform or 1,2-dichloroethane, a nitrile such as acetonitrile or propionitrile, an amide such as N,N-dimethylformamide, N,N-dimethylacetamide, N-methylpyrrolidone or N N′-dimethylimidazolidinone, a sulfox
  • the reaction may be carried out in the presence of a base.
  • the base to be used may, for example, be an organic base such as pyridine, 2,6-lutidine, 4-dimethylaminopyridine, triethylamine, diisopropylethylamine, tributylamine, 4-(dimethylamino)pyridine, 1,4-diazabicyclo[2.2.2]octane (DABCO), 1,8-diazabicyclo[5.4.0]-7-undecene (DBU) or 1,5-diazabicyclo[4.3.0]-5-nonene (DBN), or an inorganic base such as sodium hydroxide, potassium hydroxide, sodium hydride, sodium hydrogen carbonate, potassium carbonate or cesium carbonate.
  • the equivalent amount of the base used is from 0.1 to 100 equivalent amount, preferably from 1 to 20 equivalent amount based on the compound represented by the formula (23-a).
  • the reaction may be carried out in the presence of a palladium catalyst.
  • the palladium catalyst to be used may, for example, be palladium-carbon, palladium(II) chloride, palladium(II) acetate, bis(triphenylphosphine) palladium(II) dichloride, tetrakis(triphenylphosphine) palladium(0), bis(dibenzylideneacetone) palladium(0) or tris(dibenzylideneacetone) dipalladium(0).
  • the equivalent amount of the palladium catalyst used may be from 0.005 to 20 equivalent amount, preferably from 0.01 to 5 equivalent amount based on the compound (23-a).
  • the reaction may be carried out in the presence of a ligand.
  • the ligand to be used may, for example, be 4,5′-bis(diphenylphosphino)-9,9′-dimethylxanthene or 1,10-phenanthroline.
  • the equivalent amount of the ligand used may be from 0.005 to 20 equivalent amount, preferably from 0.01 to 5 equivalent amount based on the compound (23-a).
  • the reaction temperature may be set at an optional temperature of from ⁇ 80° C. to the refluxing temperature of the reaction mixture, and is preferably within a range of from 0° C. to the refluxing temperature of the reaction mixture.
  • the reaction time varies depending upon the concentration of the reaction substrate and the reaction temperature, and is optionally set usually within a range of from 5 minutes to 100 hours, and is preferably from 1 to 48 hours.
  • the compound (9) may be used in an amount of from 0.5 to 50 equivalent amount, preferably from 1 to 20 equivalent amount based on the compound (23-a).
  • the compound represented by the formula (2Q1-a) is reacted with a compound represented by the formula (20-a) (wherein T 1 , G 1 , G 2 , G 3 and G 4 are the same as defined above) in accordance with the method disclosed in step [A] of Process 1 to produce a compound represented by the formula (21-a) (wherein A 1a , A 2 , A 3 , A 4 , A 5 , T 1 , G 1 , G 2 , G 3 and G 4 are the same as defined above).
  • the compound represented by the formula (21-a) may be produced by reacting the compound represented by the formula (2Q1-a) and a compound represented by the formula (20-b) (wherein T 1 , G 1 , G 2 , G 3 and G 4 are the same as defined above) in accordance with the method disclosed in step [A] of Process 1.
  • step [B] of Process 1 the compound represented by the formula (21-a) is subjected to hydration condensation in accordance with the method disclosed in step [B] of Process 1 to produce a compound represented by the formula (22-a) (wherein A 1a , A 2 , A 3 , A 4 , A 5 , G 1 , G 2 , G 3 and G 4 are the same as defined above).
  • a compound represented by the formula (2Q1-b) (wherein A 2 , A 3 , A 4 and A 5 are the same as defined above, and A 1b is an oxygen atom or a sulfur atom) and a compound represented by the formula (3D-a) are reacted in accordance with the method disclosed in step [A] of Process 1 to produce a compound represented by the formula (4-b) (wherein A 1b , R 1 , A 2 , A 3 , A 4 , A 5 , D and n are the same as defined above).
  • the compound represented by the formula (4-b) may be produced by reacting the compound represented by the formula (2Q1-b) and the compound represented by the formula (3D-b) in accordance with the method disclosed in step [A] of Process 1.
  • the compound represented by the formula (4-b) is reacted in a solvent or without solvent, as the case requires, in the presence of an acid, and as the case requires, in the presence of a dehydration condensation agent to produce a compound represented by the formula (1-b) (wherein A 1b , R 1 , A 2 , A 3 , A 4 , A 5 , D and n are the same as defined above).
  • the solvent used may be any solvent which is inert to the reaction, and for example, water, a lower alcohol such as methanol or ethanol, an ether such as diethyl ether, tetrahydrofuran, 1,4-dioxane or 1,2-dimethoxyethane, an aromatic hydrocarbon such as benzene, chlorobenzene, bromobenzene, xylene or toluene, an aliphatic hydrocarbon such as pentane, hexane or cyclohexane, a halogenated hydrocarbon such as dichloromethane, chloroform or 1,2-dichloroethane, a nitrile such as acetonitrile or propionitrile, an amide such as N,N-dimethylformamide, N,N-dimethylacetamide, N-methylpyrrolidone or N,N′-dimethylimidazolidinone, a sulfate, a sulfam
  • the reaction may be carried out in the presence of an acid.
  • the acid to be used may, for example, be p-toluenesulfonic acid, polyphosphoric acid, acetic acid or propionic acid.
  • the equivalent amount of the acid used is from 0.1 to 1,000 equivelent amount, preferably from 1 to 500 equivalent amount based on the compound represented by the formula (4-b).
  • the reaction may be carried out in the presence of a dehydration condensation agent.
  • the dehydration condensation agent to be used may, for example, be a mixture of triphenylphosphine and bis(2-methoxyethyl) azodicarboxylate.
  • the equivalent amount of triphenylphosphine used is from 0.5 to 50 equivalent amount, preferably from 1 to 20 equivalent amount based on the compound represented by the formula (4-b).
  • the equivalent amount of bis(2-methoxyethyl) azodicarboxylate used is from 0.5 to 50 equivalent amount, preferably from 1 to 20 equivalent amount based on the compound represented by the formula (4-b).
  • the reaction temperature may be set at an optional temperature of from ⁇ 80° C. to the refluxing temperature of the reaction mixture, and is preferably within a range of from 0° C. to the refluxing temperature of the reaction mixture.
  • the reaction time varies depending upon the concentration of the reaction substrate and the reaction temperature, and is optionally set usually within a range of from 5 minutes to 100 hours, and is preferably from 1 to 48 hours.
  • a compound represented by the formula (2Q2-a) (wherein A 2 , A 3 , A 4 and A 5 are the same as defined above) and a compound represented by the formula (3D-c) (wherein R 1 , R 6 , D and n are the same as defined above, and X 2 is a chlorine atom, a bromine atom or an iodine atom) are reacted in the presence of a solvent or without solvent, and as the case requires, in the presence of a base to produce a compound represented by the formula (1-c) (wherein R 1 , R 6 , A 2 , A 3 , A 4 , A 5 D and n are the same as defined above).
  • the solvent used may be any solvent which is inert to the reaction, and for example, water, a lower alcohol such as methanol or ethanol, an ether such as diethyl ether, tetrahydrofuran, 1,4-dioxane or 1,2-dimethoxyethane, an aromatic hydrocarbon such as benzene, chlorobenzene, bromobenzene, xylene or toluene, an aliphatic hydrocarbon such as pentane, hexane or cyclohexane, a halogenated hydrocarbon such as dichloromethane, chloroform or 1,2-dichloroethane, a nitrile such as acetonitrile or propionitrile, an amide such as N,N-dimethylformamide, N,N-dimethylacetamide, N-methylpyrrolidone or N,N′-dimethylimidazolidinone, a sulfate, a sulfam
  • the reaction may be carried out in the presence of a base.
  • the base to be used may, for example, be an organic base such as pyridine, 2,6-lutidine, 4-dimethylaminopyridine, triethylamine, diisopropylethylamine, tributylamine, 4-(dimethylamino)pyridine, 1,4-diazabicyclo[2.2.2]octane (DABCO), 1,8-diazabicyclo[5.4.0]-7-undecene (DBU) or 1,5-diazabicyclo[4.3.0]-5-nonene (DBN), or an inorganic base such as sodium hydroxide, potassium hydroxide, sodium hydride, sodium hydrogen carbonate, potassium carbonate or cesium carbonate.
  • the equivalent amount of the base used is from 0.1 to 100 equivalent amount, preferably from 1 to 20 equivalent amount based on the compound represented by the formula (2Q2-a).
  • the reaction temperature may be set at an optional temperature of from ⁇ 80° C. to the refluxing temperature of the reaction mixture, and is preferably within a range of from 0° C. to the refluxing temperature of the reaction mixture.
  • the reaction time varies depending upon the concentration of the reaction substrate and the reaction temperature, and is optionally set usually within a range of from 5 minutes to 100 hours, and is preferably from 1 to 48 hours.
  • the compound represented by the formula (3D-c) may be prepared, for example, in accordance with the after-mentioned Reaction Scheme 1.
  • a compound represented by the formula (1-j) (wherein R 1 , A 2 , A 3 , A 4 , A 5 , D and n are the same as defined above) and a halogenating agent are reacted in a solvent or without solvent to produce a compound represented by the formula (1-k) (wherein R 1 , A 2 , A 3 , A 4 , A 5 , D and n are the same as defined above, and X 4 is a chlorine atom, a bromine atom or an iodine atom).
  • the solvent used may be any solvent which is inert to the reaction, and for example, water, a lower alcohol such as methanol or ethanol, an ether such as diethyl ether, tetrahydrofuran, 1,4-dioxane or 1,2-dimethoxyethane, an aromatic hydrocarbon such as benzene, chlorobenzene, bromobenzene, xylene or toluene, an aliphatic hydrocarbon such as pentane, hexane or cyclohexane, a halogenated hydrocarbon such as dichloromethane, chloroform or 1,2-dichloroethane, a nitrile such as acetonitrile or propionitrile, an amide such as N,N-dimethylformamide, N,N-dimethylacetamide, N-methylpyrrolidone or N,N′-dimethylimidazolidinone, a sulfate, a sulfam
  • the halogenating agent may, for example, be chlorine, bromine, iodine, N-chlorosuccinimide, N-bromosuccinimide, N-iodosuccinimide, 1,3-dichloro-5,5-dimethylhydantoin, 1,3-dibromo-5,5-dimethylhydantoin or 1,3-diiodo-5,5-dimethylhydantoin.
  • the equivalent amount of the halogenating agent used is from 0.5 to 50 equivalent amount, preferably from 1 to 20 equivalent amount based on the compound represented by the formula (1-j).
  • the reaction temperature may be set at an optional temperature of from ⁇ 80° C. to the refluxing temperature of the reaction mixture, and is preferably within a range of from 0° C. to the refluxing temperature of the reaction mixture.
  • the reaction time varies depending upon the concentration of the reaction substrate and the reaction temperature, and is optionally set usually within a range of from 5 minutes to 100 hours, and is preferably from 1 to 48 hours.
  • the compound represented by the formula (1-j) may be prepared in accordance with the method disclosed in Process 6.
  • a compound represented by the formula (2Q3-a) (wherein R 2 , R 3 , A 4 and A 5 are the same as defined above) and a compound represented by the formula (3D-d) (wherein R 1 , D and n are the same as defined above) are reacted in a solvent or without solvent, and as the case requires, in the presence of an acid to produce a compound represented by the formula (40) (wherein R 1 , R 2 , R 3 , A 4 , A 5 , D and n are the same as defined above).
  • the solvent used may be any solvent which is inert to the reaction, and for example, water, a lower alcohol such as methanol or ethanol, an ether such as diethyl ether, tetrahydrofuran, 1,4-dioxane or 1,2-dimethoxyethane, an aromatic hydrocarbon such as benzene, chlorobenzene, bromobenzene, xylene or toluene, an aliphatic hydrocarbon such as pentane, hexane or cyclohexane, a halogenated hydrocarbon such as dichloromethane, chloroform or 1,2-dichloroethane, a nitrile such as acetonitrile or propionitrile, an amide such as N,N-dimethylformamide, N,N-dimethylacetamide, N-methylpyrrolidone or N,N′-dimethylimidazolidinone, a sulfate, a sulfam
  • the reaction may be carried out in the presence of an acid.
  • the acid to be used may, for example, be acetic acid, formic acid or p-toluenesulfonic acid.
  • the equivalent amount of the acid used is from 0.1 to 100 equivalent amount, preferably from 1 to 20 equivalent amount based on the compound represented by the formula (2Q3-a).
  • the reaction temperature may be set at an optional temperature of from ⁇ 80° C. to the refluxing temperature of the reaction mixture, and is preferably within a range of from 0° C. to the refluxing temperature of the reaction mixture.
  • the reaction time varies depending upon the concentration of the reaction substrate and the reaction temperature, and is optionally set usually within a range of from 5 minutes to 100 hours, and is preferably from 1 to 48 hours.
  • the compound (3D-d) may be used in an amount of from 0.5 to 50 equivalent amount, preferably from 1 to 20 equivalent amount based on the compound (2Q3-a).
  • the solvent used may be any solvent which is inert to the reaction, and for example, water, a lower alcohol such as methanol or ethanol, an ether such as diethyl ether, tetrahydrofuran, 1,4-dioxane or 1,2-dimethoxyethane, an aromatic hydrocarbon such as benzene, chlorobenzene, bromobenzene, xylene or toluene, an aliphatic hydrocarbon such as pentane, hexane or cyclohexane, a halogenated hydrocarbon such as dichloromethane, chloroform or 1,2-dichloroethane, a nitrile such as acetonitrile or propionitrile, an amide such as N,N-dimethylformamide, N,N-dimethylacetamide, N-methylpyrrolidone or N,N′-dimethylimidazolidinone, a sulfate, a sulfam
  • the phosphite may, for example, be trimethyl phosphite or triethyl phosphite.
  • the equivalent amount of the phosphite used is from 0.5 to 50 equivalent amount, preferably from 1 to 20 equivalent amount based on the compound represented by the formula (40).
  • the reaction temperature may be set at an optional temperature of from ⁇ 80° C. to the refluxing temperature of the reaction mixture, and is preferably within a range of from 0° C. to the refluxing temperature of the reaction mixture.
  • the reaction time varies depending upon the concentration of the reaction substrate and the reaction temperature, and is optionally set usually within a range of from 5 minutes to 100 hours, and is preferably from 1 to 48 hours.
  • a compound represented by the formula (2Q3-b) (wherein R 2 , R 3 , A 4 and A 5 are the same as defined above, and X 3 is a fluorine atom, a chlorine atom, a bromine atom or an iodine atom) and sodium azide are reacted in a solvent or without solvent to produce a compound represented by the formula (2Q3-c) (wherein R 2 , R 3 , A 4 and A 5 are the same as defined above).
  • the solvent used may be any solvent which is inert to the reaction, and for example, water, a lower alcohol such as methanol or ethanol, an ether such as diethyl ether, tetrahydrofuran, 1,4-dioxane or 1,2-dimethoxyethane, an aromatic hydrocarbon such as benzene, chlorobenzene, bromobenzene, xylene or toluene, an aliphatic hydrocarbon such as pentane, hexane or cyclohexane, a halogenated hydrocarbon such as dichloromethane, chloroform or 1,2-dichloroethane, a nitrile such as acetonitrile or propionitrile, an amide such as N,N-dimethylformamide, N,N-dimethylacetamide, N-methylpyrrolidone or N,N′-dimethylimidazolidinone, a sulfate, a sulfam
  • the reaction temperature may be set at an optional temperature of from ⁇ 80° C. to the refluxing temperature of the reaction mixture, and is preferably within a range of from 0° C. to the refluxing temperature of the reaction mixture.
  • the reaction time varies depending upon the concentration of the reaction substrate and the reaction temperature, and is optionally set usually within a range of from 5 minutes to 100 hours, and is preferably from 1 to 48 hours.
  • sodium azide may be used in an amount of from 0.5 to 50 equivalent amount, preferably from 1 to 20 equivalent amount based on the compound (2Q3-b).
  • the solvent used may be any solvent which is inert to the reaction, and for example, water, a lower alcohol such as methanol or ethanol, an ether such as diethyl ether, tetrahydrofuran, 1,4-dioxane or 1,2-dimethoxyethane, an aromatic hydrocarbon such as benzene, chlorobenzene, bromobenzene, xylene or toluene, an aliphatic hydrocarbon such as pentane, hexane or cyclohexane, a halogenated hydrocarbon such as dichloromethane, chloroform or 1,2-dichloroethane, a nitrile such as acetonitrile or propionitrile, an amide such as N,N-dimethylformamide, N,N-dimethylacetamide, N-methylpyrrolidone or N,N′-dimethylimidazolidinone, a sulfate, a sulfam
  • the reaction may be carried out in the presence of a base.
  • the base to be used may, for example, be an organic base such as pyridine, 2,6-lutidine, 4-dimethylaminopyridine, triethylamine, diisopropylethylamine, tributylamine, 4-(dimethylamino)pyridine, 1,4-diazabicyclo[2.2.2]octane (DABCO), 1,8-diazabicyclo[5.4.0]-7-undecene (DBU) or 1,5-diazabicyclo[4.3.0]-5-nonene (DBN), or an inorganic base such as sodium hydroxide, potassium hydroxide, sodium hydride, sodium hydrogen carbonate, potassium carbonate or cesium carbonate.
  • the equivalent amount of the base used is from 0.1 to 100 equivalent amount, preferably from 1 to 20 equivalent amount based on the compound represented by the formula (2Q3-c).
  • the reaction may be carried out in the presence of a catalyst.
  • the catalyst to be used may, for example, be titanium tetrachloride.
  • the equivalent amount of the catalyst used is from 0.005 to 20 equivalent amount, preferably from 0.1 to 5 equivalent amount based on the compound represented by the formula (2Q3-c).
  • the reaction temperature may be set at an optional temperature of from ⁇ 80° C. to the refluxing temperature of the reaction mixture, and is preferably within a range of from 0° C. to the refluxing temperature of the reaction mixture.
  • the reaction time varies depending upon the concentration of the reaction substrate and the reaction temperature, and is optionally set usually within a range of from 5 minutes to 100 hours, and is preferably from 1 to 48 hours.
  • the compound (3D-d) may be used in an amount of from 0.5 to 50 equivalent amount, preferably from 1 to 20 equivalent amount based on the compound (2Q3-c).
  • the compound represented by the formula (41) is cyclized in a solvent or without solvent to produce a compound represented by the formula (1-m) (wherein R 1 , R 2 , R 3 , A 4 , A 5 , D and n are the same as defined above).
  • the solvent used may be any solvent which is inert to the reaction, and for example, water, a lower alcohol such as methanol or ethanol, an ether such as diethyl ether, tetrahydrofuran, 1,4-dioxane or 1,2-dimethoxyethane, an aromatic hydrocarbon such as benzene, chlorobenzene, bromobenzene, xylene or toluene, an aliphatic hydrocarbon such as pentane, hexane or cyclohexane, a halogenated hydrocarbon such as dichloromethane, chloroform or 1,2-dichloroethane, a nitrile such as acetonitrile or propionitrile, an amide such as N,N-dimethylformamide, N,N-dimethylacetamide, N-methylpyrrolidone or N,N′-dimethylimidazolidinone, a sulfate, a sulfam
  • the reaction temperature may be set at an optional temperature of from ⁇ 80° C. to the refluxing temperature of the reaction mixture, and is preferably within a range of from 0° C. to the refluxing temperature of the reaction mixture.
  • the reaction time varies depending upon the concentration of the reaction substrate and the reaction temperature, and is optionally set usually within a range of from 5 minutes to 100 hours, and is preferably from 1 to 48 hours.
  • a compound represented by the formula (2Q4-a) (wherein R 7 and A 8 are the same as defined above) is reacted with the compound represented by the formula (3D-c) in accordance with the method disclosed in Process 6 to produce a compound represented by the formula (1-n) (wherein R 1 , R 6 , R 7 , A 8 , D and n are the same as defined above).
  • a compound represented by the formula (1-d) (wherein R 1 , Q and D are the same as defined above) and an oxidizing agent are reacted in a solvent or without solvent, and as the case requires, in the presence of a catalyst to produce a compound represented by the formula (1-e) (wherein R 1 , Q and D are the same as defined above, and n′ is an integer of 1 or 2).
  • the solvent used may be any solvent which is inert to the reaction, and for example, water, a lower alcohol such as methanol or ethanol, an ether such as diethyl ether, tetrahydrofuran, 1,4-dioxane or 1,2-dimethoxyethane, an aromatic hydrocarbon such as benzene, chlorobenzene, bromobenzene, xylene or toluene, an aliphatic hydrocarbon such as pentane, hexane or cyclohexane, a halogenated hydrocarbon such as dichloromethane, chloroform or 1,2-dichloroethane, a nitrile such as acetonitrile or propionitrile, an amide such as N,N-dimethylformamide, N,N-dimethylacetamide, N-methylpyrrolidone or N,N′-dimethylimidazolidinone, a sulfate, a sulfam
  • the oxidizing agent may, for example, be a peracid such as m-chloroperbenzoic acid or peracetic acid, hydrogen peroxide or OXONE (registered trademark by E. I. duPont, potassium peroxymonosulfate).
  • the equivalent amount of the oxidizing agent used is from 0.1 to 100 equivalent amount, preferably from 1 to 20 equivalent amount based on the compound represented by the formula (1-d).
  • the reaction may be carried out in the presence of a catalyst.
  • the catalyst used may, for example, be sodium tungstate.
  • the equivalent amount of the catalyst used is from 0.005 to 20 equivalent amount, preferably from 0.1 to 5 equivalent amount based on the compound represented by the formula (1-d).
  • the reaction temperature may be set at an optional temperature of from ⁇ 80° C. to the refluxing temperature of the reaction mixture, and is preferably within a range of from 0° C. to the refluxing temperature of the reaction mixture.
  • the reaction time varies depending upon the concentration of the reaction substrate and the reaction temperature, and is optionally set usually within a range of from 5 minutes to 100 hours, and is preferably from 1 to 48 hours.
  • the compound represented by the formula (1-d) may be prepared in accordance with the methods in Processes 1 to 10 or the following Processes 14 to 17.
  • a compound represented by the formula (1-o) (wherein R 1 , R 2 , R 3 , R 4 , A 1 , D and n are the same as defined above) is reacted with an oxidizing agent in accordance with the method disclosed in Process 11 to produce a compound represented by the formula (1-p) (wherein R 1 , R 2 , R 3 , R 4 , A 1 and D are the same as defined above).
  • the compound represented by the formula (1-0) may be prepared in accordance with the method disclosed in Processes 1 to 5.
  • a compound represented by the formula (1-q) (wherein R 1 , A 1 , A 2 , A 4 , A 5 , D and n are the same as defined above, and X 9 is a chlorine atom, a bromine atom or an iodine atom) is reacted with a thiolating agent such as 2-ethylhexyl 3-mercaptopropionate, sodium hydrogen sulfide or sodium sulfide, for example, in accordance with the method disclosed in Organic Lett. 2007, Vol. 9, p. 3687, Tetrahedron 1998, Vol. 44, p. 1187, WO2011/159839 or the like to produce a compound represented by the formula (1-r) (wherein R 1 , A 1 , A 2 , A 4 , A 5 , D and n are the same as defined above).
  • a thiolating agent such as 2-ethylhexyl 3-mercaptopropionate, sodium hydrogen sulfide or sodium sul
  • the compound represented by the formula (1-r) is reacted with a trifluoromethylating agent such as Umemoto reagent (5-(trifluoromethyl)dibenzothiophenium trifluoromethanesulfonate) or Togni reagent (1-trifluoromethyl-3,3-dimethyl-1,2-benziodoxole), for example, in accordance with the method disclosed in WO2013/043962, WO2013/040863, WO2012/082566 or the like, to produce a compound represented by the formula (1-s) (wherein R 1 , A 1 , A 2 , A 4 , A 5 , D and n are the same as defined above).
  • a trifluoromethylating agent such as Umemoto reagent (5-(trifluoromethyl)dibenzothiophenium trifluoromethanesulfonate) or Togni reagent (1-trifluoromethyl-3,3-dimethyl-1,2-benziodoxole
  • the compound represented by the formula (1-q) may be prepared in accordance with the method disclosed in Processes 1 to 5.
  • a compound represented by the formula (2Q1-c) (wherein A 1a , A 4 , A 5 , R 2 and R 3 are the same as defined above, and X 11 is a chlorine atom, a bromine atom or an iodine atom) and a compound represented by the formula (3D-e) (wherein R 1 , D and n are the same as defined above) are reacted in a solvent or without solvent, as the case requires, in the presence of a copper catalyst, as the case requires, in the presence of a base, and as the case requires, in the presence of a ligand.
  • the solvent used may be any solvent which is inert to the reaction, and for example, water, a lower alcohol such as methanol or ethanol, an ether such as diethyl ether, tetrahydrofuran, 1,4-dioxane or 1,2-dimethoxyethane, an aromatic hydrocarbon such as benzene, chlorobenzene, bromobenzene, xylene or toluene, an aliphatic hydrocarbon such as pentane, hexane or cyclohexane, a halogenated hydrocarbon such as dichloromethane, chloroform or 1,2-dichloroethane, a nitrile such as acetonitrile or propionitrile, an amide such as N,N-dimethylformamide, N,N-dimethylacetamide, N-methylpyrrolidone or N,N′-dimethylimidazolidinone, a sulfate, a sulfam
  • the reaction may be carried out in the presence of a copper catalyst.
  • the copper catalyst to be used may, for example, be copper(I) iodide.
  • the equivalent amount of the copper catalyst used is from 0.005 to 20 equivalent amount, preferably from 0.01 to 5 equivalent amount based on the compound (2Q1-c).
  • the reaction may be carried out in the presence of a base.
  • the base to be used may, for example, be an organic base such as pyridine, 2,6-lutidine, 4-dimethylaminopyridine, triethylamine, diisopropylethylamine, tributylamine, 4-(dimethylamino)pyridine, 1,4-diazabicyclo[2.2.2]octane (DABCO), 1,8-diazabicyclo[5.4.0]-7-undecene (DBU) or 1,5-diazabicyclo[4.3.0]-5-nonene (DBN), or an inorganic base such as sodium hydroxide, potassium hydroxide, sodium hydride, sodium hydrogen carbonate, potassium carbonate, cesium carbonate or potassium phosphate.
  • the equivalent amount of the base used is from 0.1 to 100 equivalent amount, preferably from 1 to 20 equivalent amount based on the compound represented by the formula (2Q1-c).
  • the reaction may be carried out in the presence of a ligand.
  • the ligand to be used may, for example, be 1,10-phenanthroline, 1,2-diaminoethane or N,N′-dimethylethylenediamine.
  • the equivalent amount of the ligand used is from 0.005 to 20 equivalent amount, preferably from 0.01 to 5 equivalent amount based on the compound (2Q1-c).
  • the reaction temperature may be set at an optional temperature of from ⁇ 80° C. to the refluxing temperature of the reaction mixture, and is preferably within a range of from 0° C. to the refluxing temperature of the reaction mixture.
  • the reaction time varies depending upon the concentration of the reaction substrate and the reaction temperature, and is optionally set usually within a range of from 5 minutes to 100 hours, and is preferably from 1 to 48 hours.
  • the compound (3D-e) may be used in an amount of from 0.5 to 50 equivalent amount, preferably from 1 to 20 equivalent amount based on the compound (2Q1-c).
  • step [B] of Process 1 the compound represented by the formula (4-c) is subjected to dehydration condensation in accordance with the method disclosed in step [B] of Process 1 to produce a compound represented by the formula (1-u) (wherein A 1a , A 4 , A 5 , R 1 , R 2 , R 3 , D and n are the same as defined above).
  • the compound represented by the formula (3D-e) may be prepared, for example, in accordance with the after-mentioned Reaction Scheme 8.
  • a compound represented by the formula (50) (wherein R 2 , R 3 , A 1a , A 4 and A 5 are the same as defined above, and X 12 is a chlorine atom, a bromine atom or an iodine atom) and a compound represented by the formula (5-a) (wherein G 1 , G 2 , G 3 and G 4 are the same as defined above) are reacted in accordance with the method disclosed in Process 6 to produce a compound represented by the formula (51) (wherein R 2 , R 3 , A 1a , A 4 , A 5 , G 1 , G 2 , G 3 and G 4 are the same as defined above).
  • step [C] of Process 3 the compound represented by the formula (51) and the compound represented by the formula (9) are reacted in accordance with the method disclosed in step [C] of Process 3 to produce a compound represented by the formula (1-v) (wherein R 1 , R 2 , R 3 , A 1a , A 4 , A 5 , G 1 , G 2 , G 3 and G 4 are the same as defined above).
  • step [D] of Process 3 the compound represented by the formula (51) and a halogenating agent are reacted in accordance with the method disclosed in step [D] of Process 3 to produce a compound represented by the formula (52) (wherein R 2 , R 3 , A 1a , A 4 , A 5 , G 1 , G 2 , G 3 , G 4 and X 10 are the same as defined above).
  • the compound represented by the formula (1-v) may be produced by reacting the compound represented by the formula (52) and the compound represented by the formula (9) in accordance with the method disclosed in step [E] of Process 3.
  • the compound represented by the formula (50) may be prepared, for example, in accordance with the after-mentioned Reaction Scheme 9.
  • the solvent used may be any solvent which is inert to the reaction, and for example, water, a lower alcohol such as methanol or ethanol, an ether such as diethyl ether, tetrahydrofuran, 1,4-dioxane or 1,2-dimethoxyethane, an aromatic hydrocarbon such as benzene, chlorobenzene, bromobenzene, xylene or toluene, an aliphatic hydrocarbon such as pentane, hexane or cyclohexane, a halogenated hydrocarbon such as dichloromethane, chloroform or 1,2-dichloroethane, a nitrile such as acetonitrile or propionitrile, an amide such as N,N-dimethylformamide, N,N-dimethylacetamide, N-methylpyrrolidone or N,N′-dimethylimidazolidinone, a sulfate, a sulfam
  • the reaction may be carried out in the presence of a base.
  • the base to be used may, for example, be an organic base such as pyridine, 2,6-lutidine, 4-dimethylaminopyridine, triethylamine, diisopropylethylamine, tributylamine, 4-(dimethylamino)pyridine, 1,4-diazabicyclo[2.2.2]octane (DABCO), 1,8-diazabicyclo[5.4.0]-7-undecene (DBU) or 1,5-diazabicyclo[4.3.0]-5-nonene (DBN), or an inorganic base such as sodium hydroxide, potassium hydroxide, sodium hydride, sodium hydrogen carbonate, potassium carbonate or cesium carbonate.
  • the equivalent amount of the base used is from 0.1 to 100 equivalent amount, preferably from 1 to 20 equivalent amount based on the compound represented by the formula (50).
  • the reaction temperature may be set at an optional temperature of from ⁇ 80° C. to the refluxing temperature of the reaction mixture, and is preferably within a range of from 0° C. to the refluxing temperature of the reaction mixture.
  • the reaction time varies depending upon the concentration of the reaction substrate and the reaction temperature, and is optionally set usually within a range of from 5 minutes to 100 hours, and is preferably from 1 to 48 hours.
  • the compound (9) may be used in an amount of from 0.5 to 50 equivalent amount, preferably from 1 to 20 equivalent amount based on the compound (50).
  • the solvent used may be any solvent which is inert to the reaction, and for example, water, an aliphatic acid such as acetic acid, a lower alcohol such as methanol or ethanol, an ether such as diethyl ether, tetrahydrofuran, 1,4-dioxane or 1,2-dimethoxyethane, an aromatic hydrocarbon such as benzene, chlorobenzene, bromobenzene, xylene or toluene, an aliphatic hydrocarbon such as pentane, hexane or cyclohexane, a halogenated hydrocarbon such as dichloromethane, chloroform or 1,2-dichloroethane, a nitrile such as acetonitrile or propionitrile, an amide such as N,N-dimethylformamide, N,N-dimethylacetamide, N-methylpyrrolidone or N,N′-di
  • the halogenating agent may, for example, be chlorine; bromine, iodine, N-chlorosuccinimide, N-bromosuccinimide, N-iodosuccinimide, 1,3-dichloro-5,5-dimethylhydantoin, 1,3-dibromo-5,5-dimethylhydantoin, 1,3-diiodo-5,5-dimethylhydantoin or trimethylphenylammonium tribromide.
  • the equivalent amount of the halogenating agent used is from 0.5 to 50 equivalent amount, preferably from 1 to 20 equivalent amount based on the compound represented by the formula (53).
  • the reaction may be carried out in the presence of a silylating agent.
  • the silylating agent to be used may, for example, be trimethylsilyl trifluoromethanesulfonate.
  • the equivalent amount of the silylating agent used is from 0.005 to 20 equivalent amount, preferably from 0.01 to 5 equivalent amount based on the compound represented by the formula (53).
  • the reaction may be carried out in the presence of a base.
  • the base to be used may, for example, be an organic base such as pyridine, 2,6-lutidine, 4-dimethylaminopyridine, triethylamine, diisopropylethylamine, tributylamine, 4-(dimethylamino)pyridine, 1,4-diazabicyclo[2.2.2]octane (DABCO), 1,8-diazabicyclo[5.4.0]-7-undecene (DBU) or 1,5-diazabicyclo[4.3.0]-5-nonene (DBN), or an inorganic base such as sodium hydroxide, potassium hydroxide, sodium hydride, sodium hydrogen carbonate, potassium carbonate, cesium carbonate or potassium phosphate.
  • the equivalent amount of the base used is from 0.1 to 100 equivalent amount, preferably from 1 to 20 equivalent amount based on the compound represented by the formula (53).
  • the reaction may be carried out in the presence of an acid.
  • the acid to be used may, for example, be hydrobromic acid or an acetic acid solution of hydrogen bromide.
  • the equivalent amount of the acid used is from 0.1 to 100 equivalent amount, preferably from 1 to 20 equivalent amount based on the compound represented by the formula (53).
  • the reaction temperature may be set at an optional temperature of from ⁇ 80° C. to the refluxing temperature of the reaction mixture, and is preferably within a range of from 0° C. to the refluxing temperature of the reaction mixture.
  • the reaction time varies depending upon the concentration of the reaction substrate and the reaction temperature, and is optionally set usually within a range of from 5 minutes to 100 hours, and is preferably from 1 to 48 hours.
  • the reaction mixture after the reaction can be worked up by an ordinary procedure such as direct concentration, concentration of a solution in an organic solvent after washing with water, pouring into ice-water or extraction with an organic solvent followed by concentration to obtain the desired compound of the present invention. Further, if necessary, the desired product may be isolated or purified by an optional purification method such as recrystallization, column chromatography, thin layer chromatography or liquid chromatography. Otherwise, the compound of the present invention may be subjected to the next step without isolation and purification.
  • step [A] of Process 1 in step [A] of Process 3
  • step [A] of Process 4 in step [A] of Process 5 and in step [A] of Process 14, and thus step [B] may be omitted.
  • the compound represented by the formula (5-a) is reacted with a compound represented by the formula (6) (wherein Ra is C 1 -C 6 alkyl) in accordance with the method disclosed in Process 6 to produce a compound represented by the formula (7-a) (wherein G 1 , G 2 , G 3 and G 4 are the same as defined above, and Ra is C 1 -C 6 alkyl).
  • the compound represented by the formula (10-a) is hydrolyzed in accordance with conventional methods disclosed in literature to produce a compound represented by the formula (3D-a1) (wherein G 1 , G 2 , G 3 , G 4 and R 1 are the same as defined above).
  • step [B] of Process 16 the compound represented by the formula (15) is reacted with a halogenating agent in accordance with the method disclosed in step [B] of Process 16 to produce a compound represented by the formula (3D-c1) (wherein G 1 , G 2 , G 3 , G 4 , R 1 , R 6 , X 2 and n′ are the same as defined above).
  • step [B] of Process 16 the compound represented by the formula (14) is reacted with a halogenating agent in accordance with the method disclosed in step [B] of Process 16 to produce a compound represented by the formula (3D-c2) (wherein G 1 , G 2 , G 3 , G 4 , R 1 , R 6 and X 2 are the same as defined above).
  • n is an integer of 0
  • Reaction Scheme 2 a compound represented by the formula (3D-a2) wherein n is an integer of 0 may be produced, for example, in accordance with the following Reaction Scheme 2.
  • the compound represented by the formula (10-a) used in Reaction Scheme 1 may be produced, for example, in accordance with the following Reaction Scheme 3.
  • a compound represented by the formula (2Q1-a-1) may be produced, for example, in accordance with the following Reaction Scheme 4.
  • a compound represented by the formula (25) (wherein R 2 , R 3 and A 5 are the same as defined above) is reacted with a brominating agent such as N-bromosuccinimide, for example, in accordance with the method disclosed in WO2007/093901 to produce a compound represented by the formula (26) (wherein R 2 , R 3 and A 5 are the same as defined above).
  • a brominating agent such as N-bromosuccinimide
  • the compound represented by the formula (27) is reacted with an aminating agent such as ammonia, aqueous ammonia or lithium amide in accordance with the method disclosed in e.g. WO2012/086848 to produce a compound represented by the formula (2Q1-a-1) (wherein R 2 , R 3 , A 1aa and A 5 are the same as defined above).
  • an aminating agent such as ammonia, aqueous ammonia or lithium amide
  • a compound represented by the formula (2Q2-a-1) may be produced, for example, in accordance with the following Reaction Scheme 5.
  • a compound represented by the formula (28) (wherein R 2 and R 3 are the same as defined above, and Rb is C 1 -C 6 alkyl) is reacted with a compound represented by the formula (29) (wherein Rc is C 1 -C 6 alkyl, and X 8 is a favorable leaving group such as a halogen atom, C 1 -C 4 alkylsulfonate (such as methanesulfonyloxy), C 1 -C 4 haloalkylsulfonate (such as trifluoromethanesulfonyloxy) or arylsulfonate (such as benzenesulfonyloxy or p-toluenesulfonyloxy)) for example in accordance with the method disclosed in e.g.
  • the compound represented by the formula (32) is reacted with a chlorinating agent such as phosphorus oxychloride, thionyl chloride or oxalyl chloride for example in accordance with e.g. WO2012/061337 or WO2005/033084 to produce a compound represented by the formula (33) (wherein R 2 , R 3 and R 5 are the same as defined above).
  • a chlorinating agent such as phosphorus oxychloride, thionyl chloride or oxalyl chloride for example in accordance with e.g. WO2012/061337 or WO2005/033084 to produce a compound represented by the formula (33) (wherein R 2 , R 3 and R 5 are the same as defined above).
  • the compound represented by the formula (33) is reacted with aqueous ammonia for example in accordance with the method disclosed in e.g. WO2012/061337 or WO2005/033084 to produce a compound represented by the formula (2Q2-a-1).
  • the compound represented by the formula (3D-d) used in Process 8 may be produced, for example, in accordance with the following Reaction Scheme 6.

Abstract

To provide novel pesticides, especially insecticides or acaricides.
A condensed heterocyclic compound represented by the formula (1) or its salt or an N-oxide thereof:
Figure US20210017194A1-20210121-C00001
wherein D substituted with —S(O)nR1 is a ring represented by any one of D1, D2 and D3, Q is a ring represented by any one of Q1, Q2, Q3 and Q4, R1 is C1-C6 alkyl, C1-C6 haloalkyl, (C1-C6) alkyl optionally substituted with R1a, C2-C6 alkenyl, C2-C6 haloalkenyl, C2-C6 alkynyl, C2-C6 haloalkynyl, C3-C6 cycloalkyl, C3-C6 halocycloalkyl, C3-C6 cycloalkyl (C1-C6) alkyl, C3-C6 halocycloalkyl (C1-C6) alkyl or hydroxy (C1-C6) alkyl, R1a is C1-C8 alkoxycarbonyl, and n is an integer of 0, 1 or 2.

Description

    TECHNICAL FIELD
  • The present invention relates to a novel condensed heterocyclic compound and its salt, and a pesticide containing the compound as an active ingredient.
  • BACKGROUND ART
  • For example, Patent Documents 1 to 31 disclose condensed heterocyclic compounds, however, they failed to disclose the condensed heterocyclic compounds of the present invention. Usefulness of the compounds as pesticides, especially, as insecticides, acaricides or parasiticides against internal or external parasites in or on a mammal or bird is not known at all.
  • PRIOR ART DOCUMENTS Patent Documents
  • Patent Document 1: WO2016/005263
  • Patent Document 2: WO2015/198859
  • Patent Document 3: WO2015/133603
  • Patent Document 4: WO2015/121136
  • Patent Document 5: WO2015/091945
  • Patent Document 6: WO2015/087458
  • Patent Document 7: WO2015/071180
  • Patent Document 8: WO2015/059088
  • Patent Document 9: WO2015/002211
  • Patent Document 10: WO2015/000715
  • Patent Document 11: WO2014/157600
  • Patent Document 12: WO2014/148451
  • Patent Document 13: WO2014/142292
  • Patent Document 14: WO2014/132972
  • Patent Document 15: WO2014/132971
  • Patent Document 16: WO2014/123206
  • Patent Document 17: WO2014/123205
  • Patent Document 18: WO2014/104407
  • Patent Document 19: WO2013/180194
  • Patent Document 20: WO2013/180193
  • Patent Document 21: WO2013/191113
  • Patent Document 22: WO2013/191189
  • Patent Document 23: WO2013/191112
  • Patent Document 24: WO2013/191188
  • Patent Document 25: WO2013/018928
  • Patent Document 26: WO2012/086848
  • Patent Document 27: WO2012/074135
  • Patent Document 28: WO2011/162364
  • Patent Document 29: WO2011/043404
  • Patent Document 30: WO2010/125985
  • Patent Document 31: WO2009/131237
  • DISCLOSURE OF INVENTION Technical Problem
  • With the advance of development of pesticides targeted at various pest insects such as agricultural pest insects, forest pest insects or hygienic pest insects, various pesticides have been put into practical use.
  • However, recently, control of pest insects with conventional insecticides or fungicides has become difficult in more and more cases, as pest insects acquire resistance to them over many years of their use. Problems of the high toxicity of some conventional pesticides and of the disturbance of the ecosystem by some conventional pesticides which remain in the environment for a long period are becoming apparent. Under these circumstances, development of novel pesticides with high pesticidal activity, low toxicity and low persistence is always expected.
  • It is an object of the present invention to provide a novel pesticide which has excellent pesticidal activities, which has low toxicity, for example, which has little harmful effect on non-target organisms such as mammals, fishes and useful insects, and which has low persistence.
  • Solution to Problems
  • The present inventors have conducted extensive studies to achieve the above object and as a result, found that a novel condensed heterocyclic compound represented by the following formula (1) of the present invention is a very useful compound which has excellent pesticidal activities particularly insecticidal and acaricidal activities, and which has little harmful effect on non-target organisms such as mammals, fishes and useful insects, and accomplished the present invention.
  • That is, the present invention relates to the following [1] to [167].
  • [1] A condensed heterocyclic compound represented by the formula (1) or its salt or an N-oxide thereof:
  • Figure US20210017194A1-20210121-C00002
  • wherein D substituted with —S(O)nR1 is a ring represented by any one of D1, D2 and D3:
  • Figure US20210017194A1-20210121-C00003
  • Q is a ring represented by any one of Q1, Q2, Q3 and Q4:
  • Figure US20210017194A1-20210121-C00004
  • G1 is a nitrogen atom or C(Y1),
  • G2 is a nitrogen atom or C(Y2),
  • G3 is a nitrogen atom or C(Y3),
  • G4 is a nitrogen atom or C(Y4),
  • G5 is a nitrogen atom or C(Y5),
  • T1 is N(T1a), an oxygen atom or a sulfur atom,
  • A1 is N(A1a), an oxygen atom or a sulfur atom,
  • A2 is a nitrogen atom or C(R2),
  • A3 is a nitrogen atom or C(R3),
  • A4 is a nitrogen atom or C(R4),
  • A5 is a nitrogen atom or C(R5),
  • A8 is a nitrogen atom or C(R8),
  • R1 is C1-C6 alkyl, C1-C6 haloalkyl, (C1-C6) alkyl optionally substituted with R1a, C2-C6 alkenyl, C2-C6 haloalkenyl, C2-C6 alkynyl, C2-C6 haloalkynyl, C3-C6 cycloalkyl, 03-C6 halocycloalkyl, C3-C6 cycloalkyl (C1-C6) alkyl, C3-C6 halocycloalkyl (C1-C6) alkyl or hydroxy (C1-C6) alkyl,
  • R1a is C1-C8 alkoxy, C1-C8 haloalkoxy, C1-C8 alkoxycarbonyl, C1-C6 alkylthio, C1-C6 haloalkylthio, C1-C6 alkylsulfinyl, C1-C6 haloalkylsulfinyl, C1-C6 alkylsulfonyl, C1-C6 haloalkylsulfonyl or cyano,
  • R2 is a hydrogen atom, a halogen atom, C1-C6 alkyl, C1-C6 haloalkyl, C1-C8 alkoxy, C1-C8 haloalkoxy, C3-C6 cycloalkyl, C3-C6 halocycloalkyl, C1-C6 alkylthio, C1-C6 haloalkylthio, C1-C6 alkylsulfinyl, C1-C6 haloalkylsulfinyl, C1-C6 alkylsulfonyl, C1-C6 haloalkylsulfonyl, —C(O)R20a, —C(O)OH, hydroxy, —NH2, —NHR20g, —N(R20h)R20g, mercapto, cyano or nitro,
  • R3 is a hydrogen atom, a halogen atom, C1-C6 alkyl, C1-C6 haloalkyl, C2-C6 haloalkenyl, C2-C6 haloalkynyl, C1-C8 alkoxy, C1-C8 haloalkoxy, C3-C6 cycloalkyl, C3-C6 halocycloalkyl, C1-C6 alkylthio, C1-C6 haloalkylthio, (C1-C6) alkylthio optionally substituted with R3a, C1-C6 alkylsulfinyl, C1-C6 haloalkylsulfinyl, C1-C6 alkylsulfonyl, C1-C6 haloalkylsulfonyl, —C(O)R30a, —C(O)OH, hydroxy, —OC(O)R30e, —OS(O)2R30f, —NH2, —NHR30g, —N(R30h)R30g, mercapto, —SC(O)R30i, —SF5, cyano, nitro, phenyl, phenyl optionally substituted with R3b, heterocyclyl or heterocyclyl optionally substituted with R3b,
  • R3a is C1-C8 alkoxycarbonyl,
  • R3b is a halogen atom, C1-C6 alkyl, C1-C6 haloalkyl, C1-C8 alkoxy, C1-C8 haloalkoxy, cyano or nitro,
  • R4 is a hydrogen atom, a halogen atom, C1-C6 alkyl, C1-C6 haloalkyl, C2-C6 haloalkenyl, C2-C6 haloalkynyl, C1-C8 alkoxy, C1-C8 haloalkoxy, C3-C6 cycloalkyl, C3-C6 halocycloalkyl, C1-C6 alkylthio, C1-C6 haloalkylthio, (C1-C6) alkylthio optionally substituted with R4a, C1-C6 alkylsulfinyl, C1-C6 haloalkylsulfinyl, C1-C6 alkylsulfonyl, C1-C6 haloalkylsulfonyl, —C(O)R40a, —C(O)OH, hydroxy, —OC(O)R40e, —OS(O)2R40f, —NH2, —NHR40g, —N(R40h)R40g, mercapto, —SC(O)R40i, —SF5, cyano, nitro, phenyl, phenyl optionally substituted with R4b, heterocyclyl or heterocyclyl optionally substituted with R4b,
  • R4a is C1-C8 alkoxycarbonyl,
  • R4b is a halogen atom, C1-C6 alkyl, C1-C6 haloalkyl, C1-C8 alkoxy, C1-C8 haloalkoxy, cyano or nitro,
  • R5 is a hydrogen atom, a halogen atom, C1-C6 alkyl, C1-C6 haloalkyl, C1-C8 alkoxy, C1-C8 haloalkoxy, C3-C6 cycloalkyl, C3-C6 halocycloalkyl, C1-C6 alkylthio, C1-C6 haloalkylthio, C1-C6 alkylsulfinyl, C1-C6 haloalkylsulfinyl, C1-C6 alkylsulfonyl, C1-C6 haloalkylsulfonyl, —C(O)R50a, —C(O)OH, hydroxy, —NH2, —NHR50g, —N(R50h)R50g, mercapto, cyano or nitro,
  • R6 is a hydrogen atom, a halogen atom, C1-C6 alkyl, C1-C6 haloalkyl, C1-C8 alkoxy, C1-C8 haloalkoxy, C3-C6 cycloalkyl, C3-C6 halocycloalkyl, C1-C6 alkylthio, C1-C6 haloalkylthio, C1-C6 alkylsulfinyl, C1-C6 haloalkylsulfinyl, C1-C6 alkylsulfonyl, C1-C6 haloalkylsulfonyl, —C(O)R60a, —C(O)OH, hydroxy, —NH2, —NHR60g, —N(R60h)R60g, mercapto, cyano or nitro,
  • R7 is a hydrogen atom, a halogen atom, C1-C6 alkyl, C1-C6 haloalkyl, C1-C8 alkoxy, C1-C8 haloalkoxy, C1-C6 alkylthio, C1-C6 haloalkylthio, C1-C6 alkylsulfinyl, C1-C6 haloalkylsulfinyl, C1-C6 alkylsulfonyl, C1-C6 haloalkylsulfonyl, mercapto, —SF5, cyano or nitro,
  • R8 is a hydrogen atom, a halogen atom, C1-C6 alkyl, C1-C6 haloalkyl, C1-C8 alkoxy, C1-C8 haloalkoxy or cyano,
  • A1a is a hydrogen atom, C1-C6 alkyl. C1-C6 haloalkyl, (C1-C6) alkyl optionally substituted with A1a-a, (C1-C6) haloalkyl optionally substituted with A1a-a, C2-C6 alkenyl, C2-C6 haloalkenyl, C2-C6 alkynyl, C2-C6 haloalkynyl, C1-C8 alkoxy, C1-C8 haloalkoxy, C3-C6 cycloalkyl, C3-C6 halocycloalkyl, C3-C6 cycloalkyl (C1-C6) alkyl, C3-C6 halocycloalkyl (C1-C6) alkyl, C1-C6 alkylthio, C1-C6 haloalkylthio, C1-C6 alkylsulfinyl, C1-C6 haloalkylsulfinyl, C1-C6 alkylsulfonyl, C1-C6 haloalkylsulfonyl, C(O)R10a, hydroxy or cyano,
  • A1a-a is C1-C5 alkoxy, C1-C8 haloalkoxy, C1-C8 alkoxycarbonyl, C1-C8 haloalkoxycarbonyl, C1-C6 alkylcarbonyl, C1-C6 haloalkylcarbonyl, C1-C6 alkylthio, C1-C6 haloalkylthio, C1-C6 alkylsulfinyl, C1-C6 haloalkylsulfinyl, C1-C6 alkylsulfonyl, C1-C6 haloalkylsulfonyl, hydroxy or cyano,
  • T1a is a hydrogen atom, C1-C6 alkyl, C1-C6 haloalkyl, C2-C6 alkenyl, C2-C6 haloalkenyl, C2-C6 alkynyl, C2-C6 haloalkynyl, C1-C8 alkoxy, C1-C8 haloalkoxy, C3-C6 cycloalkyl, C3-C6 halocycloalkyl, C3-C6 cycloalkyl (C1-C6) alkyl or C3-C6 halocycloalkyl (C1-C6) alkyl,
  • each of Y1, Y2, Y3 and Y4 is independently a hydrogen atom, a halogen atom, C1-C6 alkyl, C1-C6 haloalkyl, (C1-C6) alkyl optionally substituted with Ya, (C1-C6) haloalkyl optionally substituted with Ya, C2-C6 alkenyl, C2-C6 haloalkenyl, (C2-C6) alkenyl optionally substituted with Ya, C2-C6 alkynyl, C2-C6 haloalkynyl, (C2-C6) alkynyl optionally substituted with Yb, C1-C8 alkoxy, C1-C8 haloalkoxy, (C1-C8) alkoxy optionally substituted with Ya, C2-C6 alkenyloxy, C2-C6 haloalkenyloxy, (C2-C6) alkenyloxy optionally substituted with Ya, C2-C6 alkynyloxy, C2-C6 haloalkynyloxy, (C2-C6) alkynyloxy optionally substituted with Ya, C3-C6 cycloalkyl, C3-C6 halocycloalkyl, C3-C6 cycloalkyl (C1-C6) alkyl, C3-C6 halocycloalkyl (C1-C6) alkyl, C1-C6 alkylthio, C1-C6 haloalkylthio, (C1-C6) alkylthio optionally substituted with Ya, C2-C6 alkenylthio, C2-C6 haloalkenylthio, C2-C6 alkynylthio, C2-C6 haloalkynylthio, C1-C6 alkylsulfinyl, C1-C6 haloalkylsulfinyl, (C1-C6) alkylsulfinyl optionally substituted with Ya, C2-C6 alkenylsulfinyl, C2-C6 haloalkenylsulfinyl, C2-C6 alkynylsulfinyl, C2-C6 haloalkynylsulfinyl, C1-C6 alkylsulfonyl, C1-C6 haloalkylsulfonyl, (C1-C6) alkylsulfonyl optionally substituted with Ya, C2-C6 alkenylsulfonyl, C2-C6 haloalkenylsulfonyl, C2-C6 alkynylsulfonyl, C2-C6 haloalkynylsulfonyl, —C(O)R90a, —C(O)NHR90b, —C(O)N(R90c)R90b, —C(O)OH, —C(═NOR90d)R90a, —C(O)NH2, hydroxy, —OC(O)R90e, —OS(O)2R90f, —NH2, —NHR90g, —N(R90h)R90g, mercapto, —SC(O)R90i, —S(O)2NHR90j, —S(O)2N(R90k)R90j, —SF5, cyano, nitro, phenyl, phenyl optionally substituted with Yc, heterocyclyl or heterocyclyl optionally substituted with Yc,
  • each of Y5 and Y6 is independently a hydrogen atom, a halogen atom, C1-C6 alkyl, C1-C6 haloalkyl, C1-C8 alkoxy, C1-C8 haloalkoxy, C1-C6 alkylthio, C1-C6 haloalkylthio, C1-C6 alkylsulfinyl, C1-C6 haloalkylsulfinyl, C1-C6 alkylsulfonyl, C1-C6 haloalkylsulfonyl, mercapto, —SF5, cyano or nitro,
  • Ya is C1-C8 alkoxy, C1-C8 haloalkoxy, C1-C8 alkoxycarbonyl, C1-C8 haloalkoxycarbonyl, C1-C6 alkylcarbonyl, C1-C6 haloalkylcarbonyl, C1-C6 alkylthio, C1-C6 haloalkylthio, C1-C6 alkylsulfinyl, C1-C6 haloalkylsulfinyl, C1-C6 alkylsulfonyl, C1-C6 haloalkylsulfonyl, hydroxy or cyano,
  • Yb is C1-C6 alkyl, C3-C6 cycloalkyl, trimethylsilyl or phenyl,
  • Yc is a halogen atom, C1-C6 alkyl, C1-C6 haloalkyl, C1-C8 alkoxy, C1-C8 haloalkoxy, cyano or nitro,
  • each of R10a, R20a, R30a, R30e, R40a, R40e, R50a, R60a and R90a is independently a hydrogen atom, C1-C6 alkyl, C1-C6 haloalkyl, C1-C8 alkoxy or C1-C8 haloalkoxy,
  • each of R20g, R20h, R30f, R30g, R30h, R30i, R40f, R40g, R40h, R40i, R50g, R50h, R60g, R60h, R90b, R90c, R90i, R90j and R90k is independently C1-C6 alkyl or C1-C6 haloalkyl,
  • R90d is a hydrogen atom, C1-C6 alkyl or C1-C6 haloalkyl,
  • R90e is a hydrogen atom, C1-C6 alkyl, C1-C6 haloalkyl, C1-C8 alkoxy, C1-C8 haloalkoxy, C1-C6 alkylamino, C1-C6 haloalkylamino, di(C1-C6) alkylamino or di(C1-C6) haloalkylamino,
  • R90f is C1-C6 alkyl, C1-C6 haloalkyl, C1-C6 alkylamino, C1-C6 haloalkylamino, di(C1-C6) alkylamino or di(C1-C6) haloalkylamino,
  • each of R90g and R90h is independently C1-C6 alkyl, C1-C6 haloalkyl, C1-C6 alkylcarbonyl, C1-C6 haloalkylcarbonyl, C1-C8 alkoxycarbonyl, C1-C8 haloalkoxycarbonyl, C1-C6 alkylaminocarbonyl, C1-C6 haloalkylaminocarbonyl, C1-C6 alkylaminothiocarbonyl, C1-C6 haloalkylaminothiocarbonyl, phenylcarbonyl, C1-C6 alkylsulfonyl, C1-C6 haloalkylsulfonyl, C1-C6 alkylaminosulfonyl or di(C1-C6) alkylaminosulfonyl, and
  • n is an integer of 0, 1 or 2.
  • [2] The condensed heterocyclic compound or its salt or an N-oxide thereof according to the above [1], wherein
  • D substituted with —S(O)nR1 is a ring represented by D1,
  • G1 is C(Y1),
  • G2 is C(Y2),
  • G3 is C(Y3),
  • G4 is C(Y4),
  • A2 is C(R2),
  • A3 is C(R3),
  • R1 is C1-C6 alkyl, C1-C6 haloalkyl, C2-C6 alkenyl, C2-C6 haloalkenyl, C2-C6 alkynyl, C2-C6 haloalkynyl, C3-C6 cycloalkyl (C1-C6) alkyl or C3-C6 halocycloalkyl (C1-C6) alkyl,
  • R2 is a hydrogen atom, a halogen atom, C1-C6 alkyl or C1-C6 haloalkyl,
  • R3 is a hydrogen atom, a halogen atom, C1-C6 alkyl, C1-C6 haloalkyl, C1-C8 alkoxy, C1-C8 haloalkoxy, C1-C6 alkylthio, C1-C6 haloalkylthio, (C1-C6) alkylthio optionally substituted with R3a, C1-C6 alkylsulfinyl, C1-C6 haloalkylsulfinyl, C1-C6 alkylsulfonyl or C1-C6 haloalkylsulfonyl,
  • R4 is a hydrogen atom, a halogen atom, C1-C6 alkyl, C1-C6 haloalkyl, C1-C8 alkoxy, C1-C8 haloalkoxy, C1-C6 alkylthio, C1-C6 haloalkylthio. (C1-C6) alkylthio optionally substituted with R4a, C1-C6 alkylsulfinyl, C1-C6 haloalkylsulfinyl, C1-C6 alkylsulfonyl or C1-C6 haloalkylsulfonyl,
  • each of R5, R6 and R8 is independently a hydrogen atom, a halogen atom, C1-C6 alkyl or C1-C6 haloalkyl,
  • R7 is a hydrogen atom, a halogen atom or C1-C6 haloalkyl,
  • A1a is a hydrogen atom, C1-C6 alkyl, (C1-C6) alkyl optionally substituted with A1a-a, C2-C6 alkenyl, C2-C6 alkynyl, C1-C8 alkoxy, C3-C6 cycloalkyl or C(O)R10a,
  • A1a-a is C1-C8 alkoxy, C1-C6 alkylthio, C1-C6 alkylsulfinyl, C1-C6 alkylsulfonyl or cyano,
  • R10a is a hydrogen atom, C1-C6 alkyl or C1-C8 alkoxy,
  • each of Y1, Y2, Y3 and Y4 is independently a hydrogen atom, a halogen atom, C1-C6 alkyl, C1-C6 haloalkyl, C2-C6 alkenyl, C2-C6 alkynyl, (C2-C6) alkynyl optionally substituted with Yb, C1-C8 alkoxy, C1-C8 haloalkoxy, C1-C6 alkylthio, C1-C6 haloalkylthio, (C1-C6) alkylthio optionally substituted with Ya, C1-C6 alkylsulfinyl, C1-C6 haloalkylsulfinyl, C1-C6 alkylsulfonyl, C1-C6 haloalkylsulfonyl, —C(O)R90a, —C(O)NHR90b, —C(O)N(R90c)R90b, —C(O)OH, hydroxy, —OC(O)R90e, —OS(O)2R90f, —NH2, —NHR90g, —N(R90h)R90g, mercapto, —SC(O)R90i, —S(O)2NHR90j, —S(O)2N(R90k)R90j, —SF5, cyano, nitro, phenyl, phenyl optionally substituted with Yc, heterocyclyl or heterocyclyl optionally substituted with Yc, and
  • Ya is C1-C8 alkoxycarbonyl.
  • [3] The condensed heterocyclic compound or its salt or an N-oxide thereof according to the above [1], wherein
  • D substituted with —S(O)nR1 is a ring represented by D2,
  • Q is a ring represented by Q1,
  • A1 is N(A1a),
  • A2 is C(R2),
  • A3 is C(R3),
  • A4 is C(R4),
  • A5 is a nitrogen atom,
  • R1 is C1-C6 alkyl, C1-C6 haloalkyl, C2-C6 alkenyl, C2-C6 haloalkenyl, C2-C6 alkynyl, C2-C6 haloalkynyl, C3-C6 cycloalkyl (C1-C6) alkyl or C3-C6 halocycloalkyl (C1-C6) alkyl,
  • R2 is a hydrogen atom, a halogen atom, C1-C6 alkyl or C1-C6 haloalkyl,
  • R3 is a hydrogen atom, a halogen atom, C1-C6 alkyl, C1-C6 haloalkyl, C1-C8 alkoxy, C1-C8 haloalkoxy, C1-C6 alkylthio, C1-C6 haloalkylthio, (C1-C6) alkylthio optionally substituted with R3a, C1-C6 alkylsulfinyl, C1-C6 haloalkylsulfinyl, C1-C6 alkylsulfonyl or C1-C6 haloalkylsulfonyl,
  • R4 is a hydrogen atom, a halogen atom, C1-C6 alkyl, C1-C6 haloalkyl, C1-C8 alkoxy, C1-C8 haloalkoxy, C1-C6 alkylthio, C1-C6 haloalkylthio, (C1-C6) alkylthio optionally substituted with R4a, C1-C6 alkylsulfinyl, C1-C6 haloalkylsulfinyl, C1-C6 alkylsulfonyl or C1-C6 haloalkylsulfonyl,
  • A1a is a hydrogen atom, C1-C6 alkyl, (C1-C6) alkyl optionally substituted with A1a-a, C2-C6 alkenyl, C2-C6 alkynyl, C1-C8 alkoxy, C3-C6 cycloalkyl or C(O)R10a,
  • A1a-a is C1-C8 alkoxy, C1-C6 alkylthio, C1-C6 alkylsulfinyl, C1-C6 alkylsulfonyl or cyano,
  • R10a is a hydrogen atom, C1-C6 alkyl or C1-C8 alkoxy,
  • Y5 is a hydrogen atom, a halogen atom, C1-C6 alkyl or C1-C6 haloalkyl, and
  • Y6 is a hydrogen atom, a halogen atom or C1-C6 haloalkyl.
  • [4] The condensed heterocyclic compound or its salt or an N-oxide thereof according to the above [1], wherein
  • D substituted with —S(O)nR1 is a ring represented by D3,
  • Q is a ring represented by Q1,
  • G1 is C(Y1),
  • G2 is C(Y2),
  • G3 is C(Y3),
  • G4 is C(Y4),
  • T1 is N(T1a) or a sulfur atom,
  • A1 is N(A1a)
  • A2 is C(R2),
  • A3 is C(R3),
  • A4 is C(R4),
  • A5 is a nitrogen atom,
  • R1 is C1-C6 alkyl, C1-C6 haloalkyl, C2-C6 alkenyl, C2-C6 haloalkenyl, C2-C6 alkynyl, C2-C6 haloalkynyl, C3-C6 cycloalkyl (C1-C6) alkyl or C3-C6 halocycloalkyl (C1-C6) alkyl,
  • R2 is a hydrogen atom, a halogen atom, C1-C6 alkyl or C1-C6 haloalkyl,
  • R3 is a hydrogen atom, a halogen atom, C1-C6 alkyl, C1-C6 haloalkyl, C1-C8 alkoxy, C1-C8 haloalkoxy, C1-C6 alkylthio, C1-C6 haloalkylthio, (C1-C6) alkylthio optionally substituted with R3a, C1-C6 alkylsulfinyl, C1-C6 haloalkylsulfinyl, C1-C6 alkylsulfonyl or C1-C6 haloalkylsulfonyl,
  • R4 is a hydrogen atom, a halogen atom, C1-C6 alkyl, C1-C6 haloalkyl, C1-C8 alkoxy, C1-C8 haloalkoxy, C1-C6 alkylthio, C1-C6 haloalkylthio, (C1-C6) alkylthio optionally substituted with R4a, C1-C6 alkylsulfinyl, C1-C6 haloalkylsulfinyl, C1-C6 alkylsulfonyl or C1-C6 haloalkylsulfonyl,
  • A1a is a hydrogen atom, C1-C6 alkyl, (C1-C6) alkyl optionally substituted with A1a-a C2-C6 alkenyl, C2-C6 alkynyl, C1-C8 alkoxy, C3-C6 cycloalkyl or C(O)R10a,
  • A1a-a is C1-C8 alkoxy, C1-C6 alkylthio, C1-C6 alkylsulfinyl, C1-C6 alkylsulfonyl or cyano,
  • R10a is a hydrogen atom, C1-C6 alkyl or C1-C8 alkoxy,
  • T1a is a hydrogen atom or C1-C6 alkyl, and
  • each of Y1, Y2, Y3 and Y4 is independently a hydrogen atom, a halogen atom, C1-C6 alkyl, C1-C6 haloalkyl, C1-C8 alkoxy, C1-C8 haloalkoxy, C1-C6 alkylthio, C1-C6 haloalkylthio, C1-C6 alkylsulfinyl, C1-C6 haloalkylsulfinyl, C1-C6 alkylsulfonyl, C1-C6 haloalkylsulfonyl, cyano or nitro.
  • [5] The condensed heterocyclic compound or its salt or an N-oxide thereof according to the above [2], wherein
  • Q is a ring represented by Q1,
  • A1 is N(A1a),
  • R1 is C1-C6 alkyl,
  • R3 is a hydrogen atom, a halogen atom, C1-C6 haloalkyl, C1-C6 haloalkylthio, C6) alkylthio optionally substituted with R3a, C1-C6 haloalkylsulfinyl or C1-C6 haloalkylsulfonyl,
  • R4 is a hydrogen atom, a halogen atom, C1-C6 haloalkyl, C1-C6 haloalkylthio, (C1-C6) alkylthio optionally substituted with R4a, C1-C6 haloalkylsulfinyl or C1-C6 haloalkylsulfonyl, and
  • A1a is a hydrogen atom or C1-C6 alkyl.
  • [6] The condensed heterocyclic compound or its salt or an N-oxide thereof according to the above [5], wherein
  • A4 is C(R4), and
  • A5 is a nitrogen atom.
  • [7] The condensed heterocyclic compound or its salt or an N-oxide thereof according to the above [5] or [6], wherein
  • A4 is C(R4),
  • A5 is a nitrogen atom,
  • R2 is a hydrogen atom,
  • R4 is a hydrogen atom or C1-C6 haloalkyl,
  • Y1 is a hydrogen atom, C1-C6 alkyl or C1-C6 haloalkyl,
  • Y2 is a hydrogen atom, a halogen atom, C1-C6 alkyl, C1-C6 haloalkyl, C2-C6 alkenyl, (C2-C6) alkynyl optionally substituted with Yb, C1-C8 alkoxy, C1-C6 alkylthio, C1-C6 haloalkylthio, (C1-C6) alkylthio optionally substituted with Ya, C1-C6 alkylsulfinyl, C1-C6 alkylsulfonyl, —NH2, —NHR90g, nitro, phenyl, phenyl optionally substituted with Yc, thiophen-2-yl, pyridin-3-yl or pyridin-4-yl,
  • Y3 is a hydrogen atom, a halogen atom, C1-C6 alkyl, C1-C6 haloalkyl, C1-C8 alkoxy, C1-C6 alkylthio, (C1-C6) alkylthio optionally substituted with Ya, C1-C6 alkylsulfinyl, C1-C6 alkylsulfonyl, —C(O)R90a, —C(O)N(R90c)R90b, —C(O)OH, cyano or nitro,
  • Y4 is a hydrogen atom, a halogen atom, C1-C6 alkyl, C1-C6 haloalkyl, C1-C8 alkoxy, C1-C6 alkylthio, C1-C6 alkylsulfonyl, —N(R90h)R90g or cyano,
  • Ya is C1-C8 alkoxycarbonyl,
  • Yb is C3-C6 cycloalkyl or trimethylsilyl,
  • Yc is a halogen atom or C1-C6 haloalkyl,
  • R90a is C1-C8 alkoxy,
  • each of R90b and R90c is independently C1-C6 alkyl,
  • R90g is C1-C6 alkyl, C1-C6 haloalkylcarbonyl, C1-C8 alkoxycarbonyl or phenylcarbonyl, and
  • R90h is C1-C6 alkyl.
  • [8] The condensed heterocyclic compound or its salt or an N-oxide thereof according to the above [5], wherein
  • A4 is a nitrogen atom, and
  • A5 is C(R5).
  • [9] The condensed heterocyclic compound or its salt or an N-oxide thereof according to the above [5] or [8], wherein
  • A4 is a nitrogen atom,
  • A5 is C(R5),
  • R2 is a hydrogen atom,
  • R3 is C1-C6 haloalkyl,
  • R5 is a hydrogen atom or C1-C6 alkyl,
  • Y1 is a hydrogen atom,
  • Y2 is a hydrogen atom, a halogen atom or C1-C6 haloalkyl,
  • Y3 is a hydrogen atom, a halogen atom, C1-C6 haloalkyl or cyano, and
  • Y4 is a hydrogen atom, a halogen atom or C1-C8 alkoxy.
  • [10] The condensed heterocyclic compound or its salt or an N-oxide thereof according to the above [2], wherein
  • Q is a ring represented by Q2,
  • A4 is a nitrogen atom or C(R4),
  • A5 is a nitrogen atom or C(R5),
  • (excluding a case where both A4 and A5 are nitrogen atoms)
  • R1 is C1-C6 alkyl,
  • R2 is a hydrogen atom,
  • R3 is a hydrogen atom, a halogen atom, C1-C6 haloalkyl, C1-C6 haloalkylthio, (C1-C6) alkylthio optionally substituted with R3a, C1-C6 haloalkylsulfinyl or C1-C6 haloalkylsulfonyl, and
  • R4 is a hydrogen atom, a halogen atom, C1-C6 haloalkyl, C1-C6 haloalkylthio, (C1-C6) alkylthio optionally substituted with R4a, C1-C6 haloalkylsulfinyl or C1-C6 haloalkylsulfonyl.
  • [11] The condensed heterocyclic compound or its salt or an N-oxide thereof according to the above [10], wherein
  • A4 is C(R4), and
  • A5 is C(R5).
  • [12] The condensed heterocyclic compound or its salt or an N-oxide thereof according to the above [10], wherein
  • A4 is C(R4), and
  • A5 is a nitrogen atom.
  • [13] The condensed heterocyclic compound or its salt or an N-oxide thereof according to the above [10], wherein
  • A4 is a nitrogen atom, and
  • A5 is C(R5).
  • [14] The condensed heterocyclic compound or its salt or an N-oxide thereof according to the above [10] or [13], wherein
  • A4 is a nitrogen atom,
  • A5 is C(R5),
  • R3 is C1-C6 haloalkyl,
  • R5 is a hydrogen atom or C1-C6 alkyl,
  • R6 is a hydrogen atom, a halogen atom or C1-C6 alkyl,
  • each of Y1 and Y4 is a hydrogen atom,
  • Y2 is a hydrogen atom, a halogen atom or C1-C6 haloalkyl, and
  • Y3 is a hydrogen atom or C1-C6 haloalkyl.
  • [15] The condensed heterocyclic compound or its salt or an N-oxide thereof according to the above [2], wherein
  • Q is a ring represented by Q3,
  • A4 is a nitrogen atom or C(R4),
  • A5 is a nitrogen atom or C(R5),
  • (excluding a case where both A4 and A5 are nitrogen atoms),
  • R1 is C1-C6 alkyl,
  • R2 is a hydrogen atom,
  • R3 is a hydrogen atom, a halogen atom, C1-C6 haloalkyl, C1-C6 haloalkylthio, (C1-C6)alkylthio optionally substituted with R3a, C1-C6 haloalkylsulfinyl or C1-C6 haloalkylsulfonyl, and
  • R4 is a hydrogen atom, a halogen atom, C1-C6 haloalkyl, C1-C6 haloalkylthio, (C1-C6) alkylthio optionally substituted with R4a, C1-C6 haloalkylsulfinyl or C1-C6 haloalkylsulfonyl.
  • [16] The condensed heterocyclic compound or its salt or an N-oxide thereof according to the above [15], wherein
  • A4 is C(R4), and
  • A5 is C(R5).
  • [17] The condensed heterocyclic compound or its salt or an N-oxide thereof according to the above [15], wherein
  • A4 is C(R4), and
  • A5 is a nitrogen atom.
  • [18] The condensed heterocyclic compound or its salt or an N-oxide thereof according to the above [15], wherein
  • A4 is a nitrogen atom, and
  • A5 is C(R5).
  • [19] The condensed heterocyclic compound or its salt or an N-oxide thereof according to the above [15] or [18], wherein
  • A4 is a nitrogen atom,
  • A5 is C(R5),
  • R3 is C1-C6 haloalkyl,
  • R5 is a hydrogen atom,
  • R6 is a hydrogen atom,
  • Y1 is a hydrogen atom,
  • each of Y2 and Y3 is independently a hydrogen atom, a halogen atom or C1-C6 haloalkyl, and
  • Y4 is a hydrogen atom or a halogen atom.
  • [20] The condensed heterocyclic compound or its salt or an N-oxide thereof according to the above [2], wherein Q is a ring represented by Q4.
    [21] The condensed heterocyclic compound or its salt or an N-oxide thereof according to the above [20], wherein
  • A8 is a nitrogen atom.
  • [22] The condensed heterocyclic compound or its salt or an N-oxide thereof according to the above [20], wherein
  • A8 is C(R8).
  • [23] The condensed heterocyclic compound or its salt or an N-oxide thereof according to the above [20], [21] or [22], wherein
  • R1 is C1-C6 alkyl,
  • R6 is a hydrogen atom,
  • R7 is C1-C6 haloalkyl,
  • R8 is a hydrogen atom or C1-C6 alkyl,
  • each of Y1 and Y4 is a hydrogen atom,
  • Y2 is a hydrogen atom, a halogen atom or C1-C6 haloalkyl, and
  • Y3 is a hydrogen atom or C1-C6 haloalkyl.
  • [24] The condensed heterocyclic compound or its salt or an N-oxide thereof according to the above [3], wherein
  • R1 is C1-C6 alkyl,
  • R2 is a hydrogen atom,
  • R3 is C1-C6 haloalkyl,
  • R4 is a hydrogen atom,
  • A1a is C1-C6 alkyl,
  • Y5 is a hydrogen atom, and
  • Y6 is C1-C6 haloalkyl.
  • [25] The condensed heterocyclic compound or its salt or an N-oxide thereof according to the above [4], wherein
  • R1 is C1-C6 alkyl,
  • R2 is a hydrogen atom,
  • R3 is C1-C6 haloalkyl,
  • R4 is a hydrogen atom,
  • A1a is C1-C6 alkyl,
  • T1a is C1-C6 alkyl,
  • each of Y1, Y3 and Y4 is a hydrogen atom, and
  • Y2 is C1-C6 haloalkyl.
  • [26] The condensed heterocyclic compound or its salt or an N-oxide thereof according to the above [2], wherein
  • A1 is N(A1a) or an oxygen atom,
  • R2 is a hydrogen atom,
  • R3 is C1-C6 haloalkyl, C1-C6 haloalkylthio, C1-C6 haloalkylsulfinyl or C1-C6 haloalkylsulfonyl,
  • R4 is a hydrogen atom,
  • R5 is a hydrogen atom or C1-C6 alkyl,
  • R6 is a hydrogen atom,
  • A1a is C1-C6 alkyl,
  • each of Y1 and Y4 is a hydrogen atom, and
  • each of Y2 and Y3 is independently a hydrogen atom or C1-C6 haloalkyl.
  • [27] The condensed heterocyclic compound or its salt or an N-oxide thereof according to the above [1] or [2], wherein the formula (1) is the following formula (1-A-A1), (1-A-B1), (1-A-C1), (1-A-D1), (1-A-E1), (1-A-F1), (1-A-G1), (1-A-H1), (1-A-I1), (1-A-J1), (1-A-K1), (1-A-L1), (1-A-M1) or (1-A-N1):
  • Figure US20210017194A1-20210121-C00005
    Figure US20210017194A1-20210121-C00006
  • [28] The condensed heterocyclic compound or its salt or an N-oxide thereof according to the above [1] or [3], wherein the formula (1) is the following formula (1-B-A1):
  • Figure US20210017194A1-20210121-C00007
  • [29] The condensed heterocyclic compound or its salt or an N-oxide thereof according to the above [1] or [4], wherein the formula (1) is the following formula (1-C-A1):
  • Figure US20210017194A1-20210121-C00008
  • [30] The condensed heterocyclic compound or its salt or an N-oxide thereof according to the above [1], wherein the formula (1) is the following formula (1-d-A1):
  • Figure US20210017194A1-20210121-C00009
  • wherein
  • R1 is C1-C6 alkyl, C1-C6 haloalkyl, C2-C6 alkenyl, C2-C6 haloalkenyl, C2-C6 alkynyl or C2-C6 haloalkynyl,
  • R3 is a hydrogen atom, a halogen atom, C1-C6 alkyl, C1-C6 haloalkyl, C1-C8 alkoxy, C1-C8 haloalkoxy, C1-C6 alkylthio, C1-C6 haloalkylthio, C1-C6 alkylsulfinyl, C1-C6 haloalkylsulfinyl, C1-C6 alkylsulfonyl or C1-C6 haloalkylsulfonyl,
  • A1a is a hydrogen atom, C1-C6 alkyl, C2-C6 alkenyl or C2-C6 alkynyl, and
  • each of R2, R4, Y2, Y3 and Y4 is independently a hydrogen atom, a halogen atom, C1-C6 alkyl or C1-C6 haloalkyl.
  • [31] The condensed heterocyclic compound or its salt or an N-oxide thereof according to the above [30], wherein
  • each of R′ and A1a is independently C1-C6 alkyl,
  • each of R3 and Y3 is independently C1-C6 haloalkyl, and
  • each of R2, R4, Y2 and Y4 is a hydrogen atom.
  • [32] The condensed heterocyclic compound or its salt or an N-oxide thereof according to the above [1], wherein the formula (1) is the following formula (1-e-A1):
  • Figure US20210017194A1-20210121-C00010
  • wherein
  • R1 is C1-C6 alkyl, C1-C6 haloalkyl, C2-C6 alkenyl, C2-C6 haloalkenyl, C2-C6 alkynyl or C2-C6 haloalkynyl,
  • R3 is a hydrogen atom, a halogen atom, C1-C6 alkyl, C1-C6 haloalkyl, C1-C8 alkoxy, C1-C8 haloalkoxy, C1-C6 alkylthio, C1-C6 haloalkylthio, C1-C6 alkylsulfinyl, C1-C6 haloalkylsulfinyl, C1-C6 alkylsulfonyl or C1-C6 haloalkylsulfonyl,
  • A1a is a hydrogen atom, C1-C6 alkyl, C2-C6 alkenyl or C2-C6 alkynyl, and
  • each of R2, R4, Y1, Y3 and Y4 is independently a hydrogen atom, a halogen atom, C1-C6 alkyl or C1-C6 haloalkyl.
  • [33] The condensed heterocyclic compound or its salt or an N-oxide thereof according to the above [32], wherein
  • each of R1 and A1a is independently C1-C6 alkyl,
  • each of R3 and Y3 is independently C1-C6 haloalkyl, and
  • each of R2, R4, Y1 and Y4 is a hydrogen atom.
  • [34] The condensed heterocyclic compound or its salt or an N-oxide thereof according to the above [1], wherein the formula (1) is the following formula (1-f-A1):
  • Figure US20210017194A1-20210121-C00011
  • wherein
  • R1 is C1-C6 alkyl, C1-C6 haloalkyl, C2-C6 alkenyl, C2-C6 haloalkenyl, C2-C6 alkynyl or C2-C6 haloalkynyl,
  • R3 is a hydrogen atom, a halogen atom, C1-C6 alkyl, C1-C6 haloalkyl, C1-C8 alkoxy, C1-C8 haloalkoxy, C1-C6 alkylthio, C1-C6 haloalkylthio, C1-C6 alkylsulfinyl, C1-C6 haloalkylsulfinyl, C1-C6 alkylsulfonyl or C1-C6 haloalkylsulfonyl,
  • A1a is a hydrogen atom, C1-C6 alkyl, C2-C6 alkenyl or C2-C6 alkynyl, and
  • each of R2, R4, Y1, Y2 and Y4 is independently a hydrogen atom, a halogen atom, C1-C6 alkyl or C1-C6 haloalkyl.
  • [35] The condensed heterocyclic compound or its salt or an N-oxide thereof according to the above [34], wherein
  • each of R1 and A1a is independently C1-C6 alkyl,
  • R3 is C1-C6 haloalkyl,
  • each of R2, R4, Y1 and Y4 is a hydrogen atom, and
  • Y2 is a hydrogen atom or a halogen atom.
  • [36] The condensed heterocyclic compound or its salt or an N-oxide thereof according to the above [1], wherein the formula (1) is the following formula (1-g-A1):
  • Figure US20210017194A1-20210121-C00012
  • wherein
  • R1 is C1-C6 alkyl, C1-C6 haloalkyl, C2-C6 alkenyl, C2-C6 haloalkenyl, C2-C6 alkynyl or C2-C6 haloalkynyl,
  • R3 is a hydrogen atom, a halogen atom, C1-C6 alkyl, C1-C6 haloalkyl, C1-C8 alkoxy, C1-C8 haloalkoxy, C1-C6 alkylthio, C1-C6 haloalkylthio, C1-C6 alkylsulfinyl, C1-C6 haloalkylsulfinyl, C1-C6 alkylsulfonyl or C1-C6 haloalkylsulfonyl,
  • A1a is a hydrogen atom, C1-C6 alkyl, C2-C6 alkenyl or C2-C6 alkynyl, and
  • each of R2, R4, Y1, Y2 and Y3 is independently a hydrogen atom, a halogen atom, C1-C6 alkyl or C1-C6 haloalkyl.
  • [37] The condensed heterocyclic compound or its salt or an N-oxide thereof according to the above [36], wherein
  • each of R1 and A1a is independently C1-C6 alkyl,
  • R3 is C1-C6 haloalkyl,
  • each of R2, R4, Y1 and Y3 is a hydrogen atom, and
  • Y2 is a halogen atom or C1-C6 haloalkyl.
  • [38] The condensed heterocyclic compound or its salt or an N-oxide thereof according to the above [1], wherein the formula (1) is the following formula (1-a-G1):
  • Figure US20210017194A1-20210121-C00013
  • wherein
  • R1 is C1-C6 alkyl, C1-C6 haloalkyl, C2-C6 alkenyl, C2-C6 haloalkenyl, C2-C6 alkynyl or C2-C6 haloalkynyl,
  • R3 is a hydrogen atom, a halogen atom, C1-C6 alkyl, C1-C6 haloalkyl, C1-C8 alkoxy, C1-C8 haloalkoxy, C1-C6 alkylthio, C1-C6 haloalkylthio, C1-C6 alkylsulfinyl, C1-C6 haloalkylsulfinyl, C1-C6 alkylsulfonyl or C1-C6 haloalkylsulfonyl,
  • A1a is a hydrogen atom, C1-C6 alkyl, C2-C6 alkenyl or C2-C6 alkynyl, and
  • each of R4, R5, Y1, Y2, Y3 and Y4 is independently a hydrogen atom, a halogen atom, C1-C6 alkyl or C1-C6 haloalkyl.
  • [39] The condensed heterocyclic compound or its salt or an N-oxide thereof according to the above [38], wherein
  • each of R1 and A1a is independently C1-C6 alkyl,
  • each of R3 and Y3 is independently C1-C6 haloalkyl, and
  • each of R4, R5, Y1, Y2 and Y4 is a hydrogen atom.
  • [40] The condensed heterocyclic compound or its salt or an N-oxide thereof according to the above [1], wherein the formula (1) is the following formula (1-a-I1):
  • Figure US20210017194A1-20210121-C00014
  • wherein
  • R1 is C1-C6 alkyl, C1-C6 haloalkyl, C2-C6 alkenyl, C2-C6 haloalkenyl, C2-C6 alkynyl or C2-C6 haloalkynyl,
  • R4 is a hydrogen atom, a halogen atom, C1-C6 alkyl, C1-C6 haloalkyl, C1-C8 alkoxy, C1-C8 haloalkoxy, C1-C6 alkylthio, C1-C6 haloalkylthio, C1-C6 alkylsulfinyl, C1-C6 haloalkylsulfinyl, C1-C6 alkylsulfonyl or C1-C6 haloalkylsulfonyl,
  • A1a is a hydrogen atom, C1-C6 alkyl, C2-C6 alkenyl or C2-C6 alkynyl, and
  • each of R2, R5, Y1, Y2, Y3 and Y4 is independently a hydrogen atom, a halogen atom, C1-C6 alkyl or C1-C6 haloalkyl.
  • [41] The condensed heterocyclic compound or its salt or an N-oxide thereof according to the above [40], wherein
  • each of R1 and A1a is independently C1-C6 alkyl,
  • R4 is C1-C6 haloalkyl,
  • Y2 is a hydrogen atom or C1-C6 haloalkyl,
  • Y3 is a hydrogen atom, a halogen atom or C1-C6 haloalkyl, and
  • each of R2, R5, Y1 and Y4 is a hydrogen atom.
  • [42] The condensed heterocyclic compound or its salt or an N-oxide thereof according to the above [1], wherein the formula (1) is the following formula (1-a-F1):
  • Figure US20210017194A1-20210121-C00015
  • wherein
  • R1 is C1-C6 alkyl, C1-C6 haloalkyl, C2-C6 alkenyl, C2-C6 haloalkenyl, C2-C6 alkynyl or C2-C6 haloalkynyl,
  • R4 is a hydrogen atom, a halogen atom, C1-C6 alkyl, C1-C6 haloalkyl, C1-C8 alkoxy, C1-C8 haloalkoxy, C1-C6 alkylthio, C1-C6 haloalkylthio, C1-C6 alkylsulfinyl, C1-C6 haloalkylsulfinyl, C1-C6 alkylsulfonyl or C1-C6 haloalkylsulfonyl, and
  • each of R2, R5, R6, Y1, Y2, Y3 and Y4 is independently a hydrogen atom, a halogen atom, C1-C6 alkyl or C1-C6 haloalkyl.
  • [43] The condensed heterocyclic compound or its salt or an N-oxide thereof according to the above [42], wherein
  • R1 is C1-C6 alkyl,
  • R4 is C1-C6 haloalkyl,
  • each of Y2 and Y3 is independently a hydrogen atom or C1-C6 haloalkyl, and
  • each of R2, R5, R6, Y1 and Y4 is a hydrogen atom.
  • [44] The condensed heterocyclic compound or its salt or an N-oxide thereof according to the above [1], wherein the formula (1) is the following formula (1-a-O1):
  • Figure US20210017194A1-20210121-C00016
  • wherein
  • R1 is C1-C6 alkyl, C1-C6 haloalkyl, C2-C6 alkenyl, C2-C6 haloalkenyl, C2-C6 alkynyl or C2-C6 haloalkynyl,
  • R4 is a hydrogen atom, a halogen atom, C1-C6 alkyl, C1-C6 haloalkyl, C1-C8 alkoxy, C1-C8 haloalkoxy, C1-C6 alkylthio, C1-C6 haloalkylthio, C1-C6 alkylsulfinyl, C1-C6 haloalkylsulfinyl, C1-C6 alkylsulfonyl or C1-C6 haloalkylsulfonyl, and
  • each of R3, R5, R6, Y1, Y2, Y3 and Y4 is independently a hydrogen atom, a halogen atom, C1-C6 alkyl or C1-C6 haloalkyl.
  • [45] The condensed heterocyclic compound or its salt or an N-oxide thereof according to the above [44], wherein
  • R1 is C1-C6 alkyl,
  • R4 is C1-C6 haloalkyl,
  • each of R6 and Y2 is independently a halogen atom, and
  • each of R3, R5, Y1, Y3 and Y4 is a hydrogen atom.
  • [46] The condensed heterocyclic compound or its salt or an N-oxide thereof according to the above [1] or [2], wherein the formula (1) is the following formula (1-a-b1):
  • Figure US20210017194A1-20210121-C00017
  • wherein
  • R1 is C1-C6 alkyl, C1-C6 haloalkyl, C2-C6 alkenyl, C2-C6 haloalkenyl, C2-C6 alkynyl or C2-C6 haloalkynyl,
  • each of R3 and R4 is independently a hydrogen atom, a halogen atom, C1-C6 alkyl, C1-C6 haloalkyl, C1-C8 alkoxy, C1-C8 haloalkoxy, C1-C6 alkylthio, C1-C6 haloalkylthio, C1-C6 alkylsulfinyl, C1-C6 haloalkylsulfinyl, C1-C6 alkylsulfonyl or C1-C6 haloalkylsulfonyl, and
  • each of R2, R5, Y1, Y2, Y3 and Y4 is independently a hydrogen atom, a halogen atom, C1-C6 alkyl or C1-C6 haloalkyl.
  • [47] The condensed heterocyclic compound or its salt or an N-oxide thereof according to the above [46], wherein
  • R1 is C1-C6 alkyl,
  • R3 is C1-C6 haloalkylthio, C1-C6 haloalkylsulfinyl or C1-C6 haloalkylsulfonyl,
  • each of Y2 and Y3 is independently a hydrogen atom or C1-C6 haloalkyl, and
  • each of R2, R4, R5, Y1 and Y4 is a hydrogen atom.
  • [48] The condensed heterocyclic compound or its salt or an N-oxide thereof according to the above [1] or [2], wherein the formula (1) is the following formula (1-a-b2):
  • Figure US20210017194A1-20210121-C00018
  • wherein
  • R1 is C1-C6 alkyl, C1-C6 haloalkyl, C2-C6 alkenyl, C2-C6 haloalkenyl, C2-C6 alkynyl or C2-C6 haloalkynyl,
  • each of R3 and R4 is independently a hydrogen atom, a halogen atom, C1-C6 alkyl, C1-C6 haloalkyl, C1-C8 alkoxy, C1-C8 haloalkoxy, C1-C6 alkylthio, C1-C6 haloalkylthio, C1-C6 alkylsulfinyl, C1-C6 haloalkylsulfinyl, C1-C6 alkylsulfonyl or C1-C6 haloalkylsulfonyl, and
  • each of R2, Y1, Y2, Y3 and Y4 is independently a hydrogen atom, a halogen atom, C1-C6 alkyl or C1-C6 haloalkyl.
  • [49] The condensed heterocyclic compound or its salt or an N-oxide thereof according to the above [48], wherein
  • R1 is C1-C6 alkyl,
  • each of R3 and Y3 is independently C1-C6 haloalkyl, and
  • each of R2, R4, Y1, Y2 and Y4 is a hydrogen atom.
  • [50] The condensed heterocyclic compound or its salt or an N-oxide thereof according to the above [1] or [2], wherein the formula (1) is the following formula (1-a-m2):
  • Figure US20210017194A1-20210121-C00019
  • wherein
  • R1 is C1-C6 alkyl, C1-C6 haloalkyl, C2-C6 alkenyl, C2-C6 haloalkenyl, C2-C6 alkynyl or C2-C6 haloalkynyl,
  • R3 is a hydrogen atom, a halogen atom, C1-C6 alkyl, C1-C6 haloalkyl, C1-C8 alkoxy, C1-C8 haloalkoxy, C1-C6 alkylthio, C1-C6 haloalkylthio, C1-C6 alkylsulfinyl, C1-C6 haloalkylsulfinyl, C1-C6 alkylsulfonyl or C1-C6 haloalkylsulfonyl, and
  • each of R2, R4, Y1, Y2, Y3 and Y4 is independently a hydrogen atom, a halogen atom, C1-C6 alkyl or C1-C6 haloalkyl.
  • [51] The condensed heterocyclic compound or its salt or an N-oxide thereof according to the above [50], wherein
  • R1 is C1-C6 alkyl,
  • each of R3 and Y3 is independently C1-C6 haloalkyl, and
  • each of R2, R4, Y1, Y2 and Y4 is a hydrogen atom.
  • [52] The condensed heterocyclic compound or its salt or an N-oxide thereof according to the above [1], [2] or [5], wherein the formula (1) is the following formula (1-a-p1):
  • Figure US20210017194A1-20210121-C00020
  • wherein
  • R1 is C1-C6 alkyl,
  • R3 is a hydrogen atom, a halogen atom, C1-C6 haloalkyl, C1-C6 haloalkylthio, C1-C6 haloalkylsulfinyl or C1-C6 haloalkylsulfonyl,
  • R4 is a hydrogen atom, a halogen atom or C1-C6 haloalkyl,
  • A1a is a hydrogen atom or C1-C6 alkyl, and
  • each of R2, R5, Y1, Y2, Y3 and Y4 is independently a hydrogen atom, a halogen atom, C1-C6 alkyl or C1-C6 haloalkyl.
  • [53] The condensed heterocyclic compound or its salt or an N-oxide thereof according to the above [52], wherein
  • each of R2 and R5 is independently a hydrogen atom or a halogen atom,
  • each of R3 and R4 is independently a hydrogen atom or C1-C6 haloalkyl,
  • Y3 is C1-C6 haloalkyl, and
  • each of Y1, Y2 and Y4 is a hydrogen atom.
  • [54] The condensed heterocyclic compound or its salt or an N-oxide thereof according to the above [1], [2] or [5], wherein the formula (1) is the following formula (1-a-q1):
  • Figure US20210017194A1-20210121-C00021
  • wherein
  • R1 is C1-C6 alkyl,
  • R3 is a hydrogen atom, a halogen atom, C1-C6 haloalkyl, C1-C6 haloalkylthio, C1-C6 haloalkylsulfinyl or C1-C6 haloalkylsulfonyl,
  • A1a is a hydrogen atom or C1-C6 alkyl, and
  • each of R2, Y1, Y2, Y3 and Y4 is independently a hydrogen atom, a halogen atom, C1-C6 alkyl or C1-C6 haloalkyl.
  • [55] The condensed heterocyclic compound or its salt or an N-oxide thereof according to the above [54], wherein
  • each of R3 and Y2 is independently C1-C6 haloalkyl,
  • A1a is C1-C6 alkyl, and
  • each of R2, Y1, Y3 and Y4 is a hydrogen atom.
  • [56] The condensed heterocyclic compound or its salt or an N-oxide thereof according to the above [1], [2], [10] or [11], wherein the formula (1) is the following formula (1-a-E1):
  • Figure US20210017194A1-20210121-C00022
  • wherein
  • R1 is C1-C6 alkyl,
  • R2 is a hydrogen atom,
  • R3 is a hydrogen atom, a halogen atom, C1-C6 haloalkyl, C1-C6 haloalkylthio, C1-C6 haloalkylsulfinyl or C1-C6 haloalkylsulfonyl,
  • R4 is a hydrogen atom, a halogen atom or C1-C6 haloalkyl, and
  • each of R5, R6, Y1, Y2, Y3 and Y4 is independently a hydrogen atom, a halogen atom, C1-C6 alkyl or C1-C6 haloalkyl.
  • [57] The condensed heterocyclic compound or its salt or an N-oxide thereof according to the above [56], wherein
  • each of R3, R4, Y2 and Y3 is independently a hydrogen atom or C1-C6 haloalkyl, and
  • each of R5, R6, Y1 and Y4 is a hydrogen atom.
  • [58] The condensed heterocyclic compound or its salt or an N-oxide thereof according to the above [1], [2], [10] or [12], wherein the formula (1) is the following formula (1-a-D1):
  • Figure US20210017194A1-20210121-C00023
  • wherein
  • R1 is C1-C6 alkyl,
  • R2 is a hydrogen atom,
  • R3 is a hydrogen atom, a halogen atom, C1-C6 haloalkyl, C1-C6 haloalkylthio, C1-C6 haloalkylsulfinyl or C1-C6 haloalkylsulfonyl,
  • R4 is a hydrogen atom, a halogen atom or C1-C6 haloalkyl, and
  • each of R6, Y1, Y2, Y3 and Y4 is independently a hydrogen atom, a halogen atom, C1-C6 alkyl or C1-C6 haloalkyl.
  • [59] The condensed heterocyclic compound or its salt or an N-oxide thereof according to the above [58], wherein
  • R3 is C1-C6 haloalkyl,
  • Y2 is a hydrogen atom, a halogen atom or C1-C6 haloalkyl,
  • Y3 is a hydrogen atom or C1-C6 haloalkyl, and
  • each of R4, R6, Y1 and Y4 is a hydrogen atom.
  • [60] The condensed heterocyclic compound or its salt or an N-oxide thereof according to the above [1], [2], [15] or [16], wherein the formula (1) is the following formula (1-a j1):
  • Figure US20210017194A1-20210121-C00024
  • wherein
  • R1 is C1-C6 alkyl,
  • R2 is a hydrogen atom,
  • R3 is a hydrogen atom, a halogen atom, C1-C6 haloalkyl, C1-C6 haloalkylthio, C1-C6 haloalkylsulfinyl or C1-C6 haloalkylsulfonyl,
  • R4 is a hydrogen atom, a halogen atom or C1-C6 haloalkyl, and
  • each of R5, R6, Y1, Y2, Y3 and Y4 is independently a hydrogen atom, a halogen atom, C1-C6 alkyl or C1-C6 haloalkyl.
  • [61] The condensed heterocyclic compound or its salt or an N-oxide thereof according to the above [60], wherein
  • each of R3 and Y3 is independently C1-C6 haloalkyl, and
  • each of R4, R5, R6, Y1, Y2 and Y4 is a hydrogen atom.
  • [62] The condensed heterocyclic compound or its salt or an N-oxide thereof according to the above [1], [2], [15] or [17], wherein the formula (1) is the following formula (1-a-j2):
  • Figure US20210017194A1-20210121-C00025
  • wherein
  • R1 is C1-C6 alkyl,
  • R2 is a hydrogen atom,
  • R3 is a hydrogen atom, a halogen atom, C1-C6 haloalkyl, C1-C6 haloalkylthio, C1-C6 haloalkylsulfinyl or C1-C6 haloalkylsulfonyl,
  • R4 is a hydrogen atom, a halogen atom or C1-C6 haloalkyl, and
  • each of R6, Y1, Y2, Y3 and Y4 is independently a hydrogen atom, a halogen atom, C1-C6 alkyl or C1-C6 haloalkyl.
  • [63] The condensed heterocyclic compound or its salt or an N-oxide thereof according to the above [62], wherein
  • R3 is C1-C6 haloalkyl,
  • Y2 is a hydrogen atom or a halogen atom,
  • Y3 is a hydrogen atom or C1-C6 haloalkyl, and
  • each of R4, R6, Y1 and Y4 is a hydrogen atom.
  • [64] The condensed heterocyclic compound or its salt or an N-oxide thereof according to the above [1], wherein
  • D substituted with —S(O)nR1 is a ring represented by either D1 or D2,
  • Q is a ring represented by either Q1 or Q2,
  • R1a is C1-C8 alkoxycarbonyl,
  • R2 is a hydrogen atom, a halogen atom, C1-C6 alkyl, C1-C6 haloalkyl, C1-C8 alkoxy or C1-C8 haloalkoxy,
  • each of R3 and R4 is independently a hydrogen atom, a halogen atom, C1-C6 alkyl, haloalkyl, C1-C8 alkoxy, C1-C8 haloalkoxy, C1-C6 alkylthio, C1-C6 haloalkylthio, C1-C6 alkylsulfinyl, C1-C6 haloalkylsulfinyl, C1-C6 alkylsulfonyl, C1-C6 haloalkylsulfonyl, mercapto, cyano or nitro,
  • R5 is a hydrogen atom, a halogen atom, C1-C6 alkyl or C1-C6 haloalkyl,
  • R6 is a hydrogen atom, a halogen atom or C1-C6 alkyl,
  • A1a is a hydrogen atom, C1-C6 alkyl, C1-C6 haloalkyl, C2-C6 alkenyl, C2-C6 haloalkenyl, C2-C6 alkynyl, C2-C6 haloalkynyl, C3-C6 cycloalkyl (C1-C6) alkyl or C3-C6 halocycloalkyl (C1-C6) alkyl, and
  • each of Y1, Y2, Y3, Y4, Y5 and Y6 is independently a hydrogen atom, a halogen atom, C1-C6 alkyl, C1-C6 haloalkyl, C1-C8 alkoxy, C1-C8 haloalkoxy, cyano or nitro.
  • [65] The condensed heterocyclic compound or its salt or an N-oxide thereof according to the above [2], wherein
  • D substituted with —S(O)nR1 is a ring represented by D1,
  • G1 is C(Y1),
  • G2 is C(Y2),
  • G3 is C(Y3),
  • G4 is C(Y4),
  • A1 is N(A1a) or an oxygen atom,
  • A2 is C(R2),
  • A3 is C(R3),
  • each of R1 and A1a is independently C1-C6 alkyl,
  • R3 is C1-C6 haloalkyl, C1-C6 haloalkylthio, C1-C6 haloalkylsulfinyl or C1-C6 haloalkylsulfonyl,
  • R5 is a hydrogen atom or C1-C6 alkyl,
  • each of Y2 and Y3 is independently a hydrogen atom or C1-C6 haloalkyl, and
  • each of R2, R4, R6, Y1 and Y4 is a hydrogen atom.
  • [66] The condensed heterocyclic compound or its salt or an N-oxide thereof according to the above [3], wherein
  • D substituted with —S(O)nR1 is a ring represented by D2,
  • Q is a ring represented by Q1,
  • G5 is C(Y5),
  • A1 is N(A1a),
  • A2 is C(R2),
  • A3 is C(R3),
  • A4 is C(R4),
  • A5 is a nitrogen atom,
  • each of R1 and A1a is independently C1-C6 alkyl,
  • each of R2, R4 and Y5 is a hydrogen atom, and
  • each of R3 and Y6 is independently C1-C6 haloalkyl.
  • [67] The condensed heterocyclic compound or its salt or an N-oxide thereof according to any one of the above [1] to [66], wherein
  • R1 is C1-C6 alkyl, C1-C6 haloalkyl, C2-C6 alkenyl, C2-C6 haloalkenyl, C2-C6 alkynyl, C2-C6 haloalkynyl, C3-C6 cycloalkyl (C1-C6) alkyl or C3-C6 halocycloalkyl (C1-C6) alkyl.
  • [68] The condensed heterocyclic compound or its salt or an N-oxide thereof according to any one of the above [1] to [66], wherein
  • R1 is C1-C6 alkyl, C1-C6 haloalkyl or C3-C6 cycloalkyl (C1-C6) alkyl.
  • [69] The condensed heterocyclic compound or its salt or an N-oxide thereof according to any one of the above [1] to [66], wherein
  • R1 is C1-C6 alkyl or C1-C6 haloalkyl.
  • [70] The condensed heterocyclic compound or its salt or an N-oxide thereof according to any one of the above [1] to [66], wherein
  • R1 is C1-C6 alkyl.
  • [71] The condensed heterocyclic compound or its salt or an N-oxide thereof according to any one of the above [1] to [66], wherein
  • R1 is C1-C6 haloalkyl.
  • [72] The condensed heterocyclic compound or its salt or an N-oxide thereof according to any one of the above [1] to [71], wherein
  • R1a is C1-C8 alkoxy, C1-C8 alkoxycarbonyl or cyano.
  • [73] The condensed heterocyclic compound or its salt or an N-oxide thereof according to any one of the above [1] to [71], wherein
  • R1a is C1-C8 alkoxycarbonyl.
  • [74] The condensed heterocyclic compound or its salt or an N-oxide thereof according to any one of the above [1] to [73], wherein
  • R2 is a hydrogen atom, a halogen atom, C1-C6 alkyl or C1-C6 haloalkyl.
  • [75] The condensed heterocyclic compound or its salt or an N-oxide thereof according to any one of the above [1] to [73], wherein
  • R2 is a hydrogen atom.
  • [76] The condensed heterocyclic compound or its salt or an N-oxide thereof according to any one of the above [1] to [75], wherein
  • R3 is a hydrogen atom, a halogen atom, C1-C6 alkyl. C1-C6 haloalkyl, C1-C8 alkoxy, C1-C8 haloalkoxy, C1-C6 alkylthio, C1-C6 haloalkylthio, (C1-C6) alkylthio optionally substituted with R3a alkylsulfinyl, C1-C6 haloalkylsulfinyl, C1-C6 alkylsulfonyl or C1-C6 haloalkylsulfonyl.
  • [77] The condensed heterocyclic compound or its salt or an N-oxide thereof according to any one of the above [1] to [75], wherein
  • R3 is a hydrogen atom, a halogen atom, C1-C6 haloalkyl, C1-C6 alkylthio, (C1-C6) alkylthio optionally substituted with R3a, C1-C6 haloalkylthio, C1-C6 haloalkylsulfinyl or C1-C6 haloalkylsulfonyl.
  • [78] The condensed heterocyclic compound or its salt or an N-oxide thereof according to any one of the above [1] to [75], wherein
  • R3 is a hydrogen atom, a halogen atom, C1-C6 haloalkyl, C1-C6 haloalkylthio,
  • C1-C6 haloalkylsulfinyl or C1-C6 haloalkylsulfonyl.
  • [79] The condensed heterocyclic compound or its salt or an N-oxide thereof according to any one of the above [1] to [75], wherein
  • R3 is C1-C6 haloalkylthio, C1-C6 haloalkylsulfinyl or C1-C6 haloalkylsulfonyl.
  • [80] The condensed heterocyclic compound or its salt or an N-oxide thereof according to any one of the above [1] to [75], wherein
  • R3 is a halogen atom.
  • [81] The condensed heterocyclic compound or its salt or an N-oxide thereof according to any one of the above [1] to [75], wherein
  • R3 is C1-C6 haloalkyl.
  • [82] The condensed heterocyclic compound or its salt or an N-oxide thereof according to any one of the above [1] to [75], wherein
  • R3 is C1-C6 haloalkylthio.
  • [83] The condensed heterocyclic compound or its salt or an N-oxide thereof according to any one of the above [1] to [75], wherein
  • R3 is C1-C6 haloalkylsulfinyl.
  • [84] The condensed heterocyclic compound or its salt or an N-oxide thereof according to any one of the above [1] to [75], wherein
  • R3 is C1-C6 haloalkylsulfonyl.
  • [85] The condensed heterocyclic compound or its salt or an N-oxide thereof according to any one of the above [1] to [84], wherein
  • R4 is a hydrogen atom, a halogen atom, C1-C6 alkyl. C1-C6 haloalkyl, C1-C8 alkoxy, haloalkoxy, alkylthio, C1-C6 haloalkylthio, (C1-C6) alkylthio optionally substituted with R4a, C1-C6 alkylsulfinyl, C1-C6 haloalkylsulfinyl, C1-C6 alkylsulfonyl or C1-C6 haloalkylsulfonyl.
  • [86] The condensed heterocyclic compound or its salt or an N-oxide thereof according to any one of the above [1] to [84], wherein
  • R4 is a hydrogen atom, a halogen atom, C1-C6 haloalkyl, C1-C6 alkylthio, (C1-C6) alkylthio optionally substituted with R4a, C1-C6 haloalkylthio, C1-C6 haloalkylsulfinyl or C1-C6 haloalkylsulfonyl.
  • [87] The condensed heterocyclic compound or its salt or an N-oxide thereof according to any one of the above [1] to [84], wherein
  • R4 is a hydrogen atom, a halogen atom, C1-C6 haloalkyl, C1-C6 haloalkylthio, C1-C6 haloalkylsulfinyl or C1-C6 haloalkylsulfonyl.
  • [88] The condensed heterocyclic compound or its salt or an N-oxide thereof according to any one of the above [1] to [84], wherein
  • R4 is a hydrogen atom.
  • [89] The condensed heterocyclic compound or its salt or an N-oxide thereof according to any one of the above [1] to [84], wherein
  • R4 is a halogen atom.
  • [90] The condensed heterocyclic compound or its salt or an N-oxide thereof according to any one of the above [1] to [84], wherein
  • R4 is C1-C6 haloalkylthio, C1-C6 haloalkylsulfinyl or C1-C6 haloalkylsulfonyl.
  • [91] The condensed heterocyclic compound or its salt or an N-oxide thereof according to any one of the above [1] to [84], wherein
  • R4 is C1-C6 haloalkyl.
  • [92] The condensed heterocyclic compound or its salt or an N-oxide thereof according to any one of the above [1] to [91], wherein
  • R5 is a hydrogen atom, a halogen atom, C1-C6 alkyl or C1-C6 haloalkyl.
  • [93] The condensed heterocyclic compound or its salt or an N-oxide thereof according to any one of the above [1] to [91], wherein
  • R5 is a halogen atom.
  • [94] The condensed heterocyclic compound or its salt or an N-oxide thereof according to any one of the above [1] to [91], wherein
  • R5 is a hydrogen atom.
  • [95] The condensed heterocyclic compound or its salt or an N-oxide thereof according to any one of the above [1] to [91], wherein
  • R5 is C1-C6 alkyl.
  • [96] The condensed heterocyclic compound or its salt or an N-oxide thereof according to any one of the above [1] to [95], wherein
  • R6 is a hydrogen atom, a halogen atom, C1-C6 alkyl or C1-C6 haloalkyl.
  • [97] The condensed heterocyclic compound or its salt or an N-oxide thereof according to any one of the above [1] to [95], wherein
  • R6 is a hydrogen atom.
  • [98] The condensed heterocyclic compound or its salt or an N-oxide thereof according to any one of the above [1] to [95], wherein
  • R6 is a halogen atom.
  • [99] The condensed heterocyclic compound or its salt or an N-oxide thereof according to any one of the above [1] to [95], wherein
  • R6 is C1-C6 alkyl.
  • [100] The condensed heterocyclic compound or its salt or an N-oxide thereof according to any one of the above [1] to [99], wherein
  • R7 is a hydrogen atom, a halogen atom or C1-C6 haloalkyl.
  • [101] The condensed heterocyclic compound or its salt or an N-oxide thereof according to any one of the above [1] to [99], wherein
  • R7 is C1-C6 haloalkyl.
  • [102] The condensed heterocyclic compound or its salt or an N-oxide thereof according to any one of the above [1] to [101], wherein
  • R8 is a hydrogen atom, a halogen atom, C1-C6 alkyl or C1-C6 haloalkyl.
  • [102] The condensed heterocyclic compound or its salt or an N-oxide thereof according to any one of the above [1] to [101], wherein
  • R8 is C1-C6 alkyl.
  • [104] The condensed heterocyclic compound or its salt or an N-oxide thereof according to any one of the above [1] to [103], wherein
  • A1a is a hydrogen atom, C1-C6 alkyl, (C1-C6) alkyl optionally substituted with A1a-a, C2-C6 alkenyl, C2-C6 alkynyl, C1-C8 alkoxy, C3-C6 cycloalkyl or C(O)R10a.
  • [105] The condensed heterocyclic compound or its salt or an N-oxide thereof according to any one of the above [1] to [103], wherein
  • A1a is a hydrogen atom, C1-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl or C3-C6 cycloalkyl.
  • [106] The condensed heterocyclic compound or its salt or an N-oxide thereof according to any one of the above [1] to [103], wherein
  • A1a is a hydrogen atom.
  • [107] The condensed heterocyclic compound or its salt or an N-oxide thereof according to any one of the above [1] to [103], wherein
  • A1a is C1-C6 alkyl.
  • [108] The condensed heterocyclic compound or its salt or an N-oxide thereof according to any one of the above [1] to [107], wherein
  • each of Y1, Y2, Y3 and Y4 is independently a hydrogen atom, a halogen atom, C1-C6 alkyl, C1-C6 haloalkyl, C2-C6 alkenyl, C2-C6 alkynyl, (C2-C6) alkynyl optionally substituted with Yb, C1-C8 alkoxy, C1-C8 haloalkoxy, C1-C6 alkylthio, C1-C6 haloalkylthio, (C1-C6) alkylthio optionally substituted with Ya, C1-C6 alkylsulfinyl, C1-C6 haloalkylsulfinyl, C1-C6 alkylsulfonyl, C1-C6 haloalkylsulfonyl, —C(O)R90a, —C(O)NHR90b, —C(O)N(R90c)R90b, —C(O)OH, hydroxy, —OC(O)R90e, —OS(O)2R90f, —NH2, —NHR90g, —N(R90h)R90g, mercapto, —SC(O)R90i, —S(O)2NHR90j, —S(O)2N(R90k)R90j, —SF5, cyano, nitro, phenyl, phenyl optionally substituted with Yc, heterocyclyl or heterocyclyl optionally substituted with Yc.
  • [109] The condensed heterocyclic compound or its salt or an N-oxide thereof according to any one of the above [1] to [107], wherein
  • each of Y1, Y2, Y3 and Y4 is independently a hydrogen atom, a halogen atom, C1-C6 alkyl, C1-C6 haloalkyl, C2-C6 alkenyl, (C2-C6) alkynyl optionally substituted with Yb, C1-C8 alkoxy, C1-C6 alkylthio, C1-C6 haloalkylthio, (C1-C6) alkylthio optionally substituted with Ya, C1-C6 alkylsulfinyl, C1-C6 alkylsulfonyl, —C(O)R90a, —C(O)N(R90c)R90b, —C(O)OH, —NH2, —NHR90g, —N(R90h)R90g, mercapto, cyano, nitro, phenyl, phenyl optionally substituted with Yc, heterocyclyl or heterocyclyl optionally substituted with Yc.
  • [110] The condensed heterocyclic compound or its salt or an N-oxide thereof according to any one of the above [1] to [109], wherein
  • Y1 is a hydrogen atom, a halogen atom, C1-C6 alkyl or C1-C6 haloalkyl.
  • [111] The condensed heterocyclic compound or its salt or an N-oxide thereof according to any one of the above [1] to [109], wherein
  • Y1 is a hydrogen atom.
  • [112] The condensed heterocyclic compound or its salt or an N-oxide thereof according to any one of the above [1] to [109], wherein
  • Y1 is a halogen atom.
  • [113] The condensed heterocyclic compound or its salt or an N-oxide thereof according to any one of the above [1] to [109], wherein
  • Y1 is C1-C6 alkyl.
  • [114] The condensed heterocyclic compound or its salt or an N-oxide thereof according to any one of the above [1] to [109], wherein
  • Y1 is C1-C6 haloalkyl.
  • [115] The condensed heterocyclic compound or its salt or an N-oxide thereof according to any one of the above [1] to [114], wherein
  • Y2 is a hydrogen atom, a halogen atom, C1-C6 alkyl, C1-C6 haloalkyl, C2-C6 alkenyl, (C2-C6) alkynyl optionally substituted with Yb, C1-C8 alkoxy, C1-C6 alkylthio, C1-C6 haloalkylthio, (C1-C6) alkylthio optionally substituted with Ya, C1-C6 alkylsulfinyl, C1-C6 alkylsulfonyl, —NH2, —NHR90g, nitro, phenyl, phenyl optionally substituted with Yc or heterocyclyl.
  • [116] The condensed heterocyclic compound or its salt or an N-oxide thereof according to any one of the above [1] to [114], wherein
  • Y2 is a hydrogen atom, a halogen atom, C1-C6 alkyl or C1-C6 haloalkyl.
  • [117] The condensed heterocyclic compound or its salt or an N-oxide thereof according to any one of the above [1] to [114], wherein
  • Y2 is a hydrogen atom.
  • [118] The condensed heterocyclic compound or its salt or an N-oxide thereof according to any one of the above [1] to [114], wherein
  • Y2 is a halogen atom.
  • [119] The condensed heterocyclic compound or its salt or an N-oxide thereof according to any one of the above [1] to [114], wherein
  • Y2 is C1-C6 alkyl.
  • [120] The condensed heterocyclic compound or its salt or an N-oxide thereof according to any one of the above [1] to [114], wherein
  • Y2 is C1-C6 haloalkyl.
  • [121] The condensed heterocyclic compound or its salt or an N-oxide thereof according to any one of the above [1] to [120], wherein
  • Y3 is a hydrogen atom, a halogen atom, C1-C6 alkyl, C1-C6 haloalkyl, C1-C8 alkoxy, C1-C6 alkylthio, (C1-C6) alkylthio optionally substituted with Ya, C1-C6 alkylsulfinyl, C1-C6 alkylsulfonyl, —C(O)R90a, —C(O)N(R90c)R90b, —C(O)OH, cyano or nitro.
  • [122] The condensed heterocyclic compound or its salt or an N-oxide thereof according to any one of the above [1] to [120], wherein
  • Y3 is a hydrogen atom, a halogen atom, C1-C6 alkyl or C1-C6 haloalkyl.
  • [123] The condensed heterocyclic compound or its salt or an N-oxide thereof according to any one of the above [1] to [120], wherein
  • Y3 is a hydrogen atom.
  • [124] The condensed heterocyclic compound or its salt or an N-oxide thereof according to any one of the above [1] to [120], wherein
  • Y3 is a halogen atom.
  • [125] The condensed heterocyclic compound or its salt or an N-oxide thereof according to any one of the above [1] to [120], wherein
  • Y3 is C1-C6 alkyl.
  • [126] The condensed heterocyclic compound or its salt or an N-oxide thereof according to any one of the above [1] to [120], wherein
  • Y3 is C1-C6 haloalkyl.
  • [127] The condensed heterocyclic compound or its salt or an N-oxide thereof according to any one of the above [1] to [126], wherein
  • Y4 is a hydrogen atom, a halogen atom, C1-C6 alkyl, C1-C6 haloalkyl, C1-C8 alkoxy, alkylthio, C1-C6 alkylsulfonyl, —N(R90h)R90g or cyano.
  • [128] The condensed heterocyclic compound or its salt or an N-oxide thereof according to any one of the above [1] to [126], wherein
  • Y4 is C1-C8 alkoxy, C1-C6 alkylthio, C1-C6 alkylsulfonyl, —N(R90h)R90g or cyano.
  • [129] The condensed heterocyclic compound or its salt or an N-oxide thereof according to any one of the above [1] to [126], wherein
  • Y4 is a hydrogen atom, a halogen atom, C1-C6 alkyl or C1-C6 haloalkyl.
  • [130] The condensed heterocyclic compound or its salt or an N-oxide thereof according to any one of the above [1] to [126], wherein
  • Y4 is a hydrogen atom.
  • [131] The condensed heterocyclic compound or its salt or an N-oxide thereof according to any one of the above [1] to [126], wherein
  • Y4 is a halogen atom.
  • [132] The condensed heterocyclic compound or its salt or an N-oxide thereof according to any one of the above [1] to [126], wherein
  • Y4 is C1-C6 alkyl.
  • [133] The condensed heterocyclic compound or its salt or an N-oxide thereof according to any one of the above [1] to [126], wherein
  • Y4 is C1-C6 haloalkyl.
  • [134] The condensed heterocyclic compound or its salt or an N-oxide thereof according to any one of the above [1] to [133], wherein
  • Ya is C1-C8 alkoxycarbonyl or C1-C6 alkylcarbonyl.
  • [135] The condensed heterocyclic compound or its salt or an N-oxide thereof according to any one of the above [1] to [133], wherein
  • Ya is C1-C8 alkoxycarbonyl.
  • [136] The condensed heterocyclic compound or its salt or an N-oxide thereof according to any one of the above [1] to [135], wherein
  • Yb is C1-C6 alkyl, C3-C6 cycloalkyl, trimethylsilyl or phenyl.
  • [137] The condensed heterocyclic compound or its salt or an N-oxide thereof according to any one of the above [1] to [135], wherein
  • Yb is C3-C6 cycloalkyl or trimethylsilyl.
  • [138] The condensed heterocyclic compound or its salt or an N-oxide thereof according to any one of the above [1] to [135], wherein
  • Yb is C3-C6 cycloalkyl.
  • [139] The condensed heterocyclic compound or its salt or an N-oxide thereof according to any one of the above [1] to [135], wherein
  • Yb is trimethylsilyl.
  • [140] The condensed heterocyclic compound or its salt or an N-oxide thereof according to any one of the above [1] to [139], wherein
  • Yc is a halogen atom, C1-C6 alkyl, C1-C6 haloalkyl, C1-C8 alkoxy, C1-C8 haloalkoxy, cyano or nitro.
  • [141] The condensed heterocyclic compound or its salt or an N-oxide thereof according to any one of the above [1] to [139], wherein
  • Yc is a halogen atom or C1-C6 haloalkyl.
  • [142] The condensed heterocyclic compound or its salt or an N-oxide thereof according to any one of the above [1] to [139], wherein Yc is a halogen atom.
    [143] The condensed heterocyclic compound or its salt or an N-oxide thereof according to any one of the above [1] to [139], wherein
  • Yc is C1-C6 haloalkyl.
  • [144] The condensed heterocyclic compound or its salt or an N-oxide thereof according to any one of the above [1] to [143], wherein
  • each of R10a, R20a, R30a, R40a, R40e, R50a, R60a and R90a is independently a hydrogen atom, C1-C6 alkyl, C1-C6 haloalkyl, C1-C8 alkoxy or C1-C8 haloalkoxy.
  • [145] The condensed heterocyclic compound or its salt or an N-oxide thereof according to any one of the above [1] to [143], wherein
  • each of R10a, R20a, R30a, R30e, R40a, R40e, R50a, R60a and R90a is independently a hydrogen atom, C1-C6 alkyl or C1-C8 alkoxy.
  • [146] The condensed heterocyclic compound or its salt or an N-oxide thereof according to any one of the above [1] to [143], wherein
  • each of R10a, R20a, R30a, R30e, R40a, R40e, R50a, R60a and R90a is a hydrogen atom.
  • [147] The condensed heterocyclic compound or its salt or an N-oxide thereof according to any one of the above [1] to [143], wherein
  • each of R10a, R20a, R30a, R30e, R40a, R40e, R50a, R60a and R90a is independently C1-C6 alkyl.
  • [148] The condensed heterocyclic compound or its salt or an N-oxide thereof according to any one of the above [1] to [143], wherein
  • each of R10a, R20a, R30a, R30e, R40a, R50a, R60a, and R90a is independently C1-C8 alkoxy.
  • [149] The condensed heterocyclic compound or its salt or an N-oxide thereof according to any one of the above [1] to [148], wherein
  • each of R20g, R20h, R30f, R30g, R30h, R30i, R40f, R40g, R40h, R40i, R50g, R50h, R60g, R60h, R90b, R90c, R90i, R90j and R90k is independently C1-C6 alkyl or C1-C6 haloalkyl.
  • [150] The condensed heterocyclic compound or its salt or an N-oxide thereof according to any one of the above [1] to [148], wherein
  • each of R20g, R20h, R30f, R30g, R30h, R30i, R40f, R40g, R40h, R40i, R50g, R50h, R60g, R60h, R90b, R90c, R90i, R90j and R90k is independently C1-C6 alkyl.
  • [151] The condensed heterocyclic compound or its salt or an N-oxide thereof according to any one of the above [1] to [150], wherein
  • each of R90g and R90h is independently C1-C6 alkyl, C1-C6 haloalkyl, C1-C6 alkylcarbonyl, C1-C6 haloalkylcarbonyl, alkoxycarbonyl, C1-C6 haloalkoxycarbonyl, C1-C6 alkylaminocarbonyl, C1-C6 haloalkylaminocarbonyl, C1-C6 alkylaminothiocarbonyl, haloalkylaminothiocarbonyl, phenylcarbonyl, C1-C6 alkylsulfonyl, C1-C6 haloalkylsulfonyl, C1-C6 alkylaminosulfonyl or di(C1-C6) alkylaminosulfonyl.
  • [152] The condensed heterocyclic compound or its salt or an N-oxide thereof according to any one of the above [1] to [151], wherein
  • R99g is C1-C6 alkyl, C1-C6 haloalkylcarbonyl, C1-C8 alkoxycarbonyl or phenylcarbonyl.
  • [153] The condensed heterocyclic compound or its salt or an N-oxide thereof according to any one of the above [1] to [151], wherein
  • R90g is C1-C6 alkyl.
  • [154] The condensed heterocyclic compound or its salt or an N-oxide thereof according to any one of the above [1] to [151], wherein
  • R90g is C1-C6 haloalkylcarbonyl.
  • [155] The condensed heterocyclic compound or its salt or an N-oxide thereof according to any one of the above [1] to [151], wherein
  • R90g is C1-C8 alkoxycarbonyl.
  • [156] The condensed heterocyclic compound or its salt or an N-oxide thereof according to any one of the above [1] to [151], wherein
  • R90g is phenylcarbonyl.
  • [157] The condensed heterocyclic compound or its salt or an N-oxide thereof according to any one of the above [1] to [156], wherein
  • R90h is C1-C6 alkyl.
  • [158] The condensed heterocyclic compound or its salt or an N-oxide thereof according to any one of the above [1] to [157], wherein
  • T1 is a sulfur atom.
  • [159] The condensed heterocyclic compound or its salt or an N-oxide thereof according to any one of the above [1] to [157], wherein
  • T1 is N(T1a).
  • [160] The condensed heterocyclic compound or its salt or an N-oxide thereof according to any one of the above [1] to [159], wherein
  • T1a is a hydrogen atom.
  • [161] The condensed heterocyclic compound or its salt or an N-oxide thereof according to any one of the above [1] to [159], wherein
  • T1a is C1-C6 alkyl.
  • [162] A pesticide containing one or more members selected from the condensed heterocyclic compounds and their salts as defined in the above [1] to [161] as active ingredient(s).
    [163] An agricultural chemical containing one or more members selected from the condensed heterocyclic compounds and their salts as defined in the above [1] to [161] as active ingredient(s).
    [164] A parasiticide against internal or external parasites in or on a mammal or bird, containing one or more members selected from the condensed heterocyclic compounds and their salts as defined in the above [1] to [161] as active ingredient(s).
    [165] The parasiticide according to the above [164], wherein the external parasites are Siphonaptera or ticks.
    [166] An insecticide or acaricide containing one or more members selected from the condensed heterocyclic compounds and their salts as defined in the above [1] to [161] as active ingredient(s).
    [167] A seed treatment agent containing one or more members selected from the condensed heterocyclic compounds and their salts as defined in the above [1] to [161] as active ingredient(s).
    [168] The seed treatment agent according to the above [167], which is used to treat seeds by dipping.
    [169] A soil treatment agent containing one or more members selected from the condensed heterocyclic compounds as defined in the above [1] to [161] as active ingredient(s).
    [170] The soil treatment agent according to the above [169], which is used to treat soil by irrigation.
  • Advantageous Effects of Invention
  • The compounds of the present invention have excellent insecticidal and acaricidal activities on many agricultural pest insects, spider mites, internal or external parasites in or on a mammal or bird and have sufficient controlling effect on pest insects which have acquired resistance to conventional insecticides. The compounds of the present invention have little harmful effect on mammals, fish and beneficial insects, show low persistence and are environmentally friendly. Thus, the present invention can provide useful novel pesticides.
  • DESCRIPTION OF EMBODIMENTS
  • The compounds of the present invention can have geometrical isomers such as E-isomers and Z-isomers, depending on the types of substituents in them, and the present invention covers both E-isomers and Z-isomers and mixtures containing them in any ratios.
  • The compounds of the present invention can have optically active isomers due to the presence of one or more asymmetric carbon atoms or asymmetric sulfur atoms, and the present invention covers any optically active isomers and any racemates.
  • Further, the compounds of the present invention can have tautomers depending on the type of substituents in them, and the present invention covers all tautomers and mixtures containing them in any ratios.
  • Some of the compounds of the present invention can be converted, by ordinary methods, to salts with hydrogen halides such as hydrofluoric acid, hydrochloric acid, hydrobromic acid and hydroiodic acid, with inorganic acids such as nitric acid, sulfuric acid, phosphoric acid, chloric acid and perchloric acid, with sulfonic acids such as methanesulfonic acid, ethanesulfonic acid, trifluoromethanesulfonic acid, benzenesulfonic acid and p-toluenesulfonic acid, with carboxylic acids such as formic acid, acetic acid, propionic acid, trifluoroacetic acid, fumaric acid, tartaric acid, oxalic acid, maleic acid, malic acid, succinic acid, benzoic acid, mandelic acid, ascorbic acid, lactic acid, gluconic acid and citric acid, with amino acids such as glutamic acid and aspartic acid, with alkali metals such as lithium, sodium and potassium, with alkaline earth metals such as calcium, barium and magnesium, with aluminum, and with quaternary ammonium such as tetramethylammonium, tetrabutylammonium and benzyltrimethylammonium.
  • In the present invention, the N-oxide is a compound having a nitrogen atom constituting the ring in the heterocyclic group oxidized. A heterocyclic group which may constitute an N-oxide may, for example, be a condensed ring containing a pyridine ring, a condensed ring containing a pyrazine ring, a condensed ring containing a pyridazine ring or a condensed ring containing a pyrimidine ring.
  • Next, specific examples of each substituent used herein will be given below. n-denotes normal, i-iso, s-secondary, and tert-tertiary.
  • As a “halogen atom” in the compounds of the present invention, a fluorine atom, a chlorine atom, a bromine atom or an iodine atom may be mentioned. Herein, the expression “halo” also means such a halogen atom.
  • The expression “Ca-Cb alkyl” herein means a linear or branched hydrocarbon group containing from a to b carbon atoms such as methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, s-butyl, tert-butyl, n-pentyl, 1,1-dimethylpropyl or n-hexyl, and those within the designated carbon number range are selected.
  • The expression “Ca-Cb haloalkyl” herein means a linear or branched hydrocarbon group containing from a to b carbon atoms in which hydrogen atom(s) on carbon atom(s) are optionally substituted with halogen atom(s) which may be identical with or different from one another if two or more halogen atoms are present, such as fluoromethyl, chloromethyl, bromomethyl, iodomethyl, difluoromethyl, dichloromethyl, trifluoromethyl, chlorodifluoromethyl, trichloromethyl, bromodifluoromethyl, 1-fluoroethyl, 2-fluoroethyl, 2-chloroethyl, 2-bromoethyl, 2,2-difluoroethyl, 2,2,2-trifluoroethyl, 2-chloro-2,2-difluoroethyl, 2,2,2-trichloroethyl, 2-bromo-2,2-difluoroethyl, 1,1,2,2-tetrafluoroethyl, 2-chloro-1,1,2-trifluoroethyl, 2-chloro-1,1,2,2-tetrafluoroethyl, pentafluoroethyl, 2,2-difluoropropyl, 3,3,3-trifluoropropyl, 3-bromo-3,3-difluoropropyl, 2,2,3,3-tetrafluoropropyl, 2,2,3,3,3-pentafluoropropyl, 1,1,2,3,3,3-hexafluoropropyl, heptafluoropropyl, 2,2,2-trifluoro-1-(methyl)ethyl, 2,2,2-trifluoro-1-(trifluoromethyl)ethyl, 1,2,2,2-tetrafluoro-1-(trifluoromethyl)ethyl, 2,2,3,4,4,4-hexafluorobutyl, 2,2,3,3,4,4,4-heptafluorobutyl and nonafluorobutyl, and those within the designated carbon number range are selected.
  • The expression “Ca-Cb alkenyl” herein means a linear or branched unsaturated hydrocarbon group containing from a to b carbon atoms and having one or more double bonds in the molecule, such as vinyl, 1-propenyl, 2-propenyl, 1-methylethenyl, 2-butenyl, 2-methyl-2-propenyl, 3-methyl-2-butenyl or 1,1-dimethyl-2-propenyl, and those within the designated carbon number range are selected.
  • The expression “Ca-Cb haloalkenyl” herein means a linear or branched unsaturated hydrocarbon group containing from a to b carbon atoms and having one or more double bonds in the molecule, in which hydrogen atom(s) on carbon atom(s) are optionally substituted with halogen atom(s) which may be identical with or different from one another if two or more halogen atoms are present, such as 2,2-dichlorovinyl, 2-fluoro-2-propenyl, 2-chloro-2-propenyl, 3-chloro-2-propenyl, 2-bromo-2-propenyl, 3,3-difluoro-2-propenyl, 2,3-dichloro-2-propenyl, 3,3-dichloro-2-propenyl, 2,3,3-trifluoro-2-propenyl, 2,3,3-trichloro-2-propenyl, 1-(trifluoromethyl)ethenyl, 4,4-difluoro-3-butenyl, 3,4,4-trifluoro-3-butenyl or 3-chloro-4,4,4-trifluoro-2-butenyl, and those within the designated carbon number range are selected.
  • The expression “Ca-Cb alkynyl” herein means a linear or branched unsaturated hydrocarbon group containing from a to b carbon atoms and having one or more triple bonds in the molecule, such as ethynyl, propargyl, 2-butynyl, 3-butynyl, 1-pentynyl, 1-hexynyl or 4,4,4-trifluoro-2-butynyl, and those within the designated carbon number range are selected.
  • The expression “Ca-Cb haloalkynyl” herein means a linear or branched unsaturated hydrocarbon group containing from a to b carbon atoms and having one or more triple bonds in the molecule, in which hydrogen atom(s) on carbon atom(s) are optionally substituted with halogen atom(s) which may be identical with or different from one another if two or more halogen atoms are present, such as 2-chloroethynyl, 2-bromoethynyl, 2-iodoethynyl, 3-chloro-2-propynyl, 3-bromo-2-propynyl or 3-iodo-2-propynyl, and those within the designated carbon number range are selected.
  • The expression “Ca-Cb cycloalkyl” herein means a cyclic hydrocarbon group containing from a to b carbon atoms in the form of a 3- to 6-membered monocyclic or polycyclic ring which may optionally be substituted with an alkyl group as long as the number of carbon atoms does not exceed the designated carbon number range, such as cyclopropyl, 1-methylcyclopropyl, 2-m ethylcyclopropyl, 2,2-dimethylcyclopropyl, cyclobutyl, cyclopentyl or cyclohexyl, and those within the designated carbon number range are selected.
  • The expression “Ca-Cb halocycloalkyl” herein means a cyclic hydrocarbon group containing from a to b carbon atoms in the form of a 3- to 6-membered monocyclic or polycyclic ring which may optionally be substituted with an alkyl group as long as the number of carbon atoms does not exceed the designated carbon number range, in which hydrogen atom(s) on carbon atom(s) in a ring moiety and/or in a side chain are optionally substituted with halogen atom(s) which may be identical with or different from one another if two or more halogen atoms are present, such as 2,2-difluorocyclopropyl, 2,2-dichlorocyclopropyl, 2,2-dibromocyclopropyl, 2,2-difluoro-1-methylcyclopropyl, 2,2-dichloro-1-methylcyclopropyl, 2,2-dibromo-1-methylcyclopropyl or 2,2,3,3-tetrafluorocyclobutyl, and those within the designated carbon number range are selected.
  • The expression “Ca-Cb alkoxy” herein means an alkyl-O— group in which the alkyl is a previously mentioned alkyl group containing from a to b carbon atoms, such as methoxy, ethoxy, n-propyloxy, i-propyloxy, n-butyloxy, i-butyloxy, s-butyloxy, tert-butyloxy or 2-ethylhexyloxy, and those within the designated carbon number range are selected.
  • The expression “Ca-Cb haloalkoxy” herein means a haloalkyl-O— group in which the haloalkyl is a previously mentioned haloalkyl group containing from a to b carbon atoms, such as difluoromethoxy, trifluoromethoxy, chlorodifluoromethoxy, bromodifluoromethoxy, 2-fluoroethoxy, 2-chloroethoxy, 2,2,2-trifluoroethoxy, 1,1,2,2,-tetrafluoroethoxy, 2-chloro-1,1,2-trifluoroethoxy or 1,1,2,3,3,3-hexafluoropropyloxy, and those within the designated carbon number range are selected.
  • The expression “Ca-Cb alkenyloxy” herein means an alkenyl-O— group in which the alkenyl is a previously mentioned alkenyl group containing from a to b carbon atoms, such as 2-propenyloxy, 2-butenyloxy, 2-methyl-2-propenyloxy or 3-methyl-2-butenyloxy, and those within the designated carbon number range are selected.
  • The expression “Ca-Cb haloalkenyloxy” herein means a haloalkenyl-O— group in which the haloalkenyl is a previously mentioned haloalkenyl group containing from a to b carbon atoms, such as 3,3-difluoroallyloxy or 3,3-dichloroallyloxy, and those within the designated carbon number range are selected.
  • The expression “Ca-Cb alkynyloxy” herein means an alkynyl-O— group in which the alkynyl is a previously mentioned alkynyl group containing from a to b carbon atoms, such as ethynyloxy, propargyloxy, 2-butynyloxy, 1-pentynyloxy or 1-hexynyloxy, and those within the designated carbon number range are selected.
  • The expression “Ca-Cb haloalkynyloxy” herein means a haloalkynyl-O— group in which the haloalkynyl is a previously mentioned haloalkynyl group containing from a to b carbon atoms, such as 3-chloro-2-propynyloxy, 3-bromo-2-propynyloxy or 3-iodo-2-propynyloxy, and those within the designated carbon number range are selected.
  • The expression “Ca-Cb alkylthio” herein means an alkyl-S— group in which the alkyl is a previously mentioned alkyl group containing from a to b carbon atoms, such as methylthio, ethylthio, n-propylthio, i-propylthio, n-butylthio, i-butylthio, s-butylthio or tert-butylthio, and those within the designated carbon number range are selected.
  • The expression “Ca-Cb haloalkylthio” herein means a haloalkyl-S— group in which the haloalkyl is a previously mentioned haloalkyl group containing from a to b carbon atoms, such as difluoromethylthio, trifluoromethylthio, chlorodifluoromethylthio, bromodifluoromethylthio, 2,2,2-trifluoroethylthio, 1,1,2,2-tetrafluoroethylthio, 2-chloro-1,1,2-trifluoroethylthio, pentafluoroethylthio, 1,1,2,3,3,3-hexafluoropropylthio, heptafluoropropylthio, 1,2,2,2-tetrafluoro-1-(trifluoromethyl)ethylthio or nonafluorobutylthio, and those within the designated carbon number range are selected.
  • The expression “Ca-Cb alkenylthio” herein means an alkenyl-S— group in which the alkenyl is a previously mentioned alkenyl group containing from a to b carbon atoms, such as 2-propenylthio, 2-butenylthio, 2-methyl-2-propenylthio or 3-methyl-2-butenylthio, and those within the designated carbon number range are selected.
  • The expression “Ca-Cb haloalkenylthio” herein means a haloalkenyl-S— group in which the haloalkenyl is a previously mentioned haloalkenyl group containing from a to b carbon atoms, such as 2-fluoro-2-propenylthio, 2-chloro-2-propenylthio, 3,3-difluoro-2-propenylthio, 3,3-dichloro-2-propenylthio, 2,3,3-trifluoro-2-propenylthio, 4,4-difluoro-3-butenylthio or 3,4,4-trifluoro-3-butenylthio, and those within the designated carbon number range are selected.
  • The expression “Ca-Cb alkynylthio” herein means an alkynyl-S— group in which the alkynyl is a previously mentioned alkynyl group containing from a to b carbon atoms, such as propynylthio, butynylthio, pentynylthio or hexynylthio, and those within the designated carbon number range are selected.
  • The expression “Ca-Cb haloalkynylthio” herein means a haloalkynyl-S— group in which the haloalkynyl is a previously mentioned haloalkynyl group containing from a to b carbon atoms, such as 3-chloro-2-propynylthio, 3-bromo-2-propynylthio or 3-iodo-2-propynylthio, and those within the designated carbon number range are selected.
  • The expression “Ca-Cb alkylsulfinyl” herein means an alkyl-S(O)— group in which the alkyl is a previously mentioned alkyl group containing from a to b carbon atoms, such as methylsulfinyl, ethylsulfinyl, n-propylsulfinyl, i-propylsulfinyl, n-butylsulfinyl, i-butylsulfinyl, s-butylsulfinyl or tert-butylsulfinyl, and those within the designated carbon number range are selected.
  • The expression “Ca-Cb haloalkylsulfinyl” herein means a haloalkyl-S(O)— group in which the haloalkyl is a previously mentioned haloalkyl group containing from a to b carbon atoms, such as difluoromethylsulfinyl, trifluoromethylsulfinyl, chlorodifluoromethylsulfinyl, bromodifluoromethylsulfinyl, 2,2,2-trifluoroethylsulfinyl, 1,2,2,2-tetrafluoro-1-(trifluoromethyl)ethylsulfinyl or nonafluorobutylsulfinyl, and those within the designated carbon number range are selected.
  • The expression “Ca-Cb alkenylsulfinyl” herein means an alkenyl-S(O)— group in which the alkenyl is a previously mentioned alkenyl group containing from a to b carbon atoms, such as 2-propenylsulfinyl, 2-butenylsulfinyl, 2-methyl-2-propenylsulfinyl or 3-methyl-2-butenylsulfinyl, and those within the designated carbon number range are selected.
  • The expression “Ca-Cb haloalkenylsulfinyl” herein means a haloalkenyl-S(O)— group in which the haloalkenyl is a previously mentioned haloalkenyl group containing from a to b carbon atoms, such as 2-fluoro-2-propenylsulfinyl, 2-chloro-2-propenylsulfinyl, 3,3-difluoro-2-propenylsulfinyl, 3,3-dichloro-2-propenylsulfinyl, 4,4-difluoro-3-butenylsulfinyl or 3,4,4-trifluoro-3-butenylsulfinyl, and those within the designated carbon number range are selected.
  • The expression “Ca-Cb alkynylsulfinyl” herein means an alkynyl-S(O)— group in which the alkynyl is a previously mentioned alkynyl group containing from a to b carbon atoms, such as 2-propynylsulfinyl or 2-butynylsulfinyl, and those within the designated carbon number range are selected.
  • The expression “Ca-Cb haloalkynylsulfinyl” herein means a haloalkynyl-S(O)— group in which the haloalkynyl is a previously mentioned haloalkynyl group containing from a to b carbon atoms, such as 3-chloro-2-propynylsulfinyl, 3-bromo-2-propynylsulfinyl or 3-iodo-2-propynylsulfinyl, and those within the designated carbon number range are selected.
  • The expression “Ca-Cb alkylsulfonyl” herein means an alkyl-S02-group in which the alkyl is a previously mentioned alkyl group containing from a to b carbon atoms, such as methylsulfonyl, ethylsulfonyl, n-propylsulfonyl, i-propylsulfonyl, n-butylsulfonyl, i-butylsulfonyl, s-butylsulfonyl or tert-butylsulfonyl, and those within the designated carbon number range are selected.
  • The expression “Ca-Cb haloalkylsulfonyl” herein means a haloalkyl-SO2— group in which the haloalkyl is a previously mentioned haloalkyl group containing from a to b carbon atoms, such as difluoromethylsulfonyl, trifluoromethylsulfonyl, chlorodifluoromethylsulfonyl, bromodifluoromethylsulfonyl, 2,2,2-trifluoroethylsulfonyl, 1,1,2,2-tetrafluoroethylsulfonyl or 2-chloro-1,1,2-trifluoroethylsulfonyl, and those within the designated carbon number range are selected.
  • The expression “Ca-Cb alkenylsulfonyl” herein means an alkenyl-SO2— group in which the alkenyl is a previously mentioned alkenyl group containing from a to b carbon atoms, such as 2-propenylsulfonyl, 2-butenylsulfonyl, 2-methyl-2-propenylsulfonyl or 3-methyl-2-butenylsulfonyl, and those within the designated carbon number range are selected.
  • The expression “Ca-Cb haloalkenylsulfonyl” herein means a haloalkenyl-SO2— group in which the haloalkenyl is a previously mentioned haloalkenyl group containing from a to b carbon atoms, such as 2-fluoro-2-propenylsulfonyl, 2-chloro-2-propenylsulfonyl, 3,3-difluoro-2-propenylsulfonyl, 3,3-dichloro-2-propenylsulfonyl, 4,4-difluoro-3-butenylsulfonyl or 3,4,4-trifluoro-3-butenylsulfonyl, and those within the designated carbon number range are selected.
  • The expression “Ca-Cb alkynylsulfonyl” herein means an alkynyl-SO2— group in which the alkynyl is a previously mentioned alkynyl group containing from a to b carbon atoms, such as 2-propynylsulfonyl or 2-butynylsulfonyl, and those within the designated carbon number range are selected.
  • The expression “Ca-Cb haloalkynylsulfonyl” herein means a haloalkynyl-SO2— group in which the haloalkynyl is a previously mentioned haloalkynyl group containing from a to b carbon atoms, such as 3-chloro-2-propynylsulfonyl, 3-bromo-2-propynylsulfonyl or 3-iodo-2-propynylsulfonyl, and those within the designated carbon number range are selected.
  • The expression “Ca-Cb alkylamino” herein means an amino group in which either hydrogen atom is replaced with a previously mentioned alkyl group containing from a to b carbon atoms, such as methylamino, ethylamino, n-propylamino, i-propylamino, n-butylamino, i-butylamino or tert-butylamino, and those within the designated carbon number range are selected.
  • The expression “Ca-Cb haloalkylamino” herein means an amino group in which either hydrogen atom is replaced with a previously mentioned haloalkyl group containing from a to b carbon atoms, such as 2,2,2-trifluoroethylamino, 2-chloro-2,2-difluoroethylamino or 3,3,3-trifluoropropylamino, and those within the designated carbon number range are selected.
  • The expression “di(Ca-Cb) alkylamino” herein means an amino group in which both hydrogen atoms are replaced with previously mentioned alkyl groups containing from a to b carbon atoms which may be identical with or different from each other, such as dimethylamino, ethyl(methyl)amino, diethylamino, n-propyl(methyl)amino, i-propyl(methyl)amino, di(n-propyl)amino or di(n-butyl)amino, and those within the designated carbon number range are selected.
  • The expression “di(Ca-Cb) haloalkylamino” herein means an amino group in which both hydrogen atoms are replaced with previously mentioned haloalkyl groups containing from a to b carbon atoms which may be identical with or different from each other, such as bis(2,2,2-trifluoroethyl)amino, and those within the designated carbon number range are selected.
  • The expression “Ca-Cb alkylcarbonyl” herein means an alkyl-C(O)— group in which the alkyl means a previously mentioned alkyl group containing from a to b carbon atoms, such as acetyl, propionyl, butyryl, isobutyryl, valeryl, isovaleryl, 2-methylbutanoyl, pivaloyl, hexanoyl or heptanoyl, and those within the designated carbon number range are selected.
  • The expression “Ca-Cb haloalkylcarbonyl” herein means a haloalkyl-C(O)— group in which the haloalkyl means a previously mentioned haloalkyl group containing from a to b carbon atoms, such as fluoroacetyl, chloroacetyl, difluoroacetyl, dichloroacetyl, trifluoroacetyl, chlorodifluoroacetyl, bromodifluoroacetyl, trichloroacetyl, pentafluoropropionyl, heptafluorobutanoyl or 3-chloro-2,2-dimethylpropanoyl, and those within the designated carbon number range are selected.
  • The expression “Ca-Cb alkoxycarbonyl” herein means an alkyl-O—C(O)— group in which the alkyl means a previously mentioned alkyl group containing from a to b carbon atoms, such as methoxycarbonyl, ethoxycarbonyl, n-propyloxycarbonyl, propyloxycarbonyl, n-butoxycarbonyl, i-butoxycarbonyl, s-butoxycarbonyl, tert-butoxycarbonyl or 2-ethylhexyloxycarbonyl, and those within the designated carbon number range are selected.
  • The expression “Ca-Cb haloalkoxycarbonyl” herein means a haloalkyl-O—C(O)— group in which the haloalkyl means a previously mentioned haloalkyl group containing from a to b carbon atoms, such as chloromethoxycarbonyl, 2-chloroethoxycarbonyl, 2,2-d ifluoroethoxycarbonyl, 2,2,2-trifluoroethoxycarbonyl or 2,2,2-trichloroethoxycarbonyl, and those within the designated carbon number range are selected.
  • The expression “Ca-Cb alkylaminocarbonyl” herein means a carbamoyl group in which either hydrogen atom is replaced with a previously mentioned alkyl group containing from a to b carbon atoms, such as methylcarbamoyl, ethylcarbamoyl, n-propylcarbamoyl, i-propylcarbamoyl, n-butylcarbamoyl, i-butylcarbamoyl, s-butylcarbamoyl or tert-butylcarbamoyl, and those within the designated carbon number range are selected.
  • The expression “Ca-Cb haloalkylaminocarbonyl” herein means a carbamoyl group in which either hydrogen atom is replaced with a previously mentioned haloalkyl group containing from a to b carbon atoms, such as 2-fluoroethylcarbamonyl, 2-chloroethylcarbamoyl, 2,2-difluoroethylcarbamoyl or 2-trifluoroethylcarbamoyl, and those within the designated carbon number range are selected.
  • The expression “Ca-Cb alkylaminothiocarbonyl” herein means an amino-C(═S)— group in which either hydrogen atom is replaced with a previously mentioned alkyl group containing from a to b carbon atoms, such as methylthiocarbamoyl, ethylthiocarbamoyl, n-propylthiocarbamoyl, i-propylthiocarbamoyl, n-butylthiocarbamoyl, i-butylthiocarbamoyl, s-butylthiocarbamoyl or tert-butylthiocarbamoyl, and those within the designated carbon number range are selected.
  • The expression “Ca-Cb haloalkylaminothiocarbonyl” herein means an amino-C(═S)— group in which either hydrogen atom is replaced with a previously mentioned haloalkyl group containing from a to b carbon atoms, such as 2-fluoroethylthiocarbamoyl, 2-chloroethylthiocarbamoyl, 2,2-difluoroethylthiocarbamoyl or 2-trifluoroethylthiocarbamoyl, and those within the designated carbon number range are selected.
  • The expression “Ca-Cb alkylaminosulfonyl” herein means a sulfamoyl group in which either hydrogen atom is replaced with a previously mentioned alkyl group containing from a to b carbon atoms, such as methylsulfamoyl, ethylsulfamoyl, n-propylsulfamoyl, i-propylsulfamoyl, n-butylsulfamoyl, i-butylsulfamoyl, s-butylsulfamoyl or tert-butylsulfamoyl, and those within the designated carbon number range are selected.
  • The expression “di(Ca-Cb) alkylaminosulfonyl” herein means a sulfamoyl group in which both hydrogen atoms are replaced with previously mentioned alkyl groups containing from a to b carbon atoms which may be identical with or different from each other, such as N,N-dimethylsulfamoyl, N-ethyl-N-methylsulfamoyl, N,N-diethylsulfamoyl, N,N-di(n-propyl)sulfamoyl or N,N-di(n-butyl)sulfamoyl, and those within the designated carbon number range are selected.
  • The expression “heterocyclyl” herein may, for example, be specifically thiophen-2-yl, thiophen-3-yl, furan-2-yl, furan-3-yl, pyrrol-1-yl, pyrrol-2-yl, pyrrol-3-yl, oxazol-2-yl, oxazol-4-yl, oxazol-5-yl, isoxazol-3-yl, isoxazol-4-yl, isoxazol-5-yl, isoxazolin-3-yl, isoxazolin-4-yl, isoxazolin-5-yl, thiazol-2-yl, thiazol-4-yl, thiazol-5-yl, isothiazol-3-yl, isothiazol-4-yl, isothiazol-5-yl, pyrazol-1-yl, pyrazol-3-yl, pyrazol-4-yl, pyrazol-5-yl, imidazol-1-yl, imidazol-2-yl, imidazol-4-yl, 1,3,4-oxadiazol-2-yl, 1,2,4-oxadiazol-3-yl, 1,2,4-oxadiazol-5-yl, 1,3,4-thiadiazol-2-yl, 1,2,4-thiadiazol-3-yl, 1,2,4-thiadiazol-5-yl, 1,2,4-triazol-1-yl, 1,2,4-triazol-3-yl, 1,2,4-triazol-5-yl, 1,2,3-thiadiazol-4-yl, 1,2,3-thiadiazol-5-yl, 1,2,3-triazol-1-yl, 1,2,3-triazol-2-yl, 1,2,3-triazol-4-yl, 1,2,3,4-tetrazol-1-yl, 1,2,3,4-tetrazol-2-yl, 1,2,3,4-tetrazol-5-yl, pyridin-2-yl, pyridin-3-yl, pyridin-4-yl, pyrimidin-2-yl, pyrimidin-4-yl, pyrimidin-5-yl, pyrazin-2-yl, pyridazin-3-yl, pyridazin-4-yl, 1,3,5-triazin-2-yl, 1,2,4-triazin-3-yl, 1,2,4-triazin-5-yl, 1,2,4-triazin-6-yl, benzothiophen-2-yl, benzothiophen-3-yl, benzothiophen-4-yl, benzothiophen-5-yl, benzothiophen-6-yl, benzothiophen-7-yl, benzofuran-2-yl, benzofuran-3-yl, benzofuran-4-yl, benzofuran-5-yl, benzofuran-6-yl, benzofuran-7-yl, indol-1-yl, indol-2-yl, indol-3-yl, indol-4-yl, indol-5-yl, indol-6-yl, indol-7-yl, benzothiazol-2-yl, benzothiazol-4-yl, benzothiazol-5-yl, benzothiazol-6-yl, benzothiazol-7-yl, benzimidazol-1-yl, benzimidazol-2-yl, benzimidazol-4-yl, benzimidazol-5-yl, benzimidazol-6-yl, benzimidazol-7-yl, benzisoxazol-3-yl, benzisoxazol-4-yl, benzisoxazol-5-yl, benzisoxazol-6-yl, benzisoxazol-7-yl, benzisothiazol-3-yl, benzisothiazol-4-yl, benzisothiazol-5-yl, benzisothiazol-6-yl, benzisothiazol-7-yl, indazol-1-yl, indazol-3-yl, indazol-4-yl, indazol-5-yl, indazol-6-yl, indazol-7-yl, benzoxazol-2-yl, benzoxazol-4-yl, benzoxazol-5-yl, benzoxazol-6-yl, benzoxazol-7-yl, quinolin-2-yl, quinolin-3-yl, quinolin-4-yl, quinolin-5-yl, quinolin-6-yl, quinolin-7-yl, quinolin-8-yl, isoquinolin-1-yl, isoquinolin-3-yl, isoquinolin-4-yl, isoquinolin-5-yl, isoquinolin-6-yl, isoquinolin-7-yl, isoquinolin-8-yl, quinoxalin-2-yl, quinoxalin-3-yl, quinoxalin-5-yl, quinoxalin-6-yl, quinoxalin-7-yl, quinoxalin-8-yl, phthalazin-1-yl, phthalazin-4-yl, phthalazin-5-yl, phthalazin-6-yl, phthalazin-7-yl, phthalazin-8-yl, cinnolin-3-yl, cinnolin-4-yl, cinnolin-5-yl, cinnolin-6-yl, cinnolin-7-yl, cinnolin-8-yl, quinazolin-2-yl, quinazolin-4-yl, quinazolin-5-yl, quinazolin-6-yl, quinazolin-7-yl or quinazolin-8-yl.
  • The expression such as “Ca-Cb cycloalkyl (Cd-Ce) alkyl”, “Ca-Cb halocycloalkyl (Cd-Ce) alkyl” or “hydroxy (Cd-Ce) alkyl” herein means a previously mentioned alkyl group containing from d to e carbon atoms in which hydrogen atom(s) on carbon atom(s) are optionally substituted with an optional previously mentioned Ca-Cb cycloalkyl, Ca-Cb halocycloalkyl or hydroxy, and those within the designated carbon number range are selected.
  • The expression such as “(Ca-Cb) alkyl optionally substituted with R1a”, “(C1-C6) alkyl optionally substituted with A1a-a” or “(C1-C6) alkyl optionally substituted with Ya” herein means a previously mentioned alkyl group having from a to b carbon atoms in which hydrogen atom(s) on carbon(s) are optionally substituted with optional R1a, A1a-a or Ya, and those within the designated carbon number range are selected. When there are two or more R1a's, A1a-a's or Ya's on (Ca-Cb) alkyl, each R1a, A1a-a or Ya may be identical with or different from one another.
  • The expression such as “(Ca-Cb) haloalkyl optionally substituted with A1a-a” or “(Ca—Cb) haloalkyl optionally substituted with ye” herein means a previously mentioned haloalkyl group having from a to b carbon atoms in which hydrogen atom(s) or halogen atom(s) on carbon atom(s) are optionally substituted with optional A1a-a or Ya, and those within the designated carbon number range are selected. When there are two or more A1a-a's or Ya's on (Ca-Cb) haloalkyl, each A1a-a or Ya may be identical with or different from one another.
  • The expression such as “(Ca-Cb) alkenyl optionally substituted with Ya” herein means a previously mentioned alkenyl group having from a to b carbon atoms in which hydrogen atom(s) on carbon atom(s) are optionally substituted with optional ye, and those within the designated carbon number range are selected. When there are two or more Ya's on (Ca-Cb) alkenyl, each Ya may be identical with or different from one another.
  • The expression such as “(Ca-Cb) alkynyl optionally substituted with Yb” herein means a previously mentioned alkynyl group having from a to b carbon atoms in which hydrogen atom(s) on carbon atom(s) are optionally substituted with optional Yb, and those within the designated carbon number range are selected. When there are two or more Yb's on (Ca-Cb) alkynyl, each Yb may be identical with or different from one another.
  • The expression such as “(Ca-Cb) alkoxy optionally substituted with Ya” herein means a previously mentioned alkoxy group having from a to b carbon atoms in which hydrogen atom(s) on carbon atom(s) are optionally substituted with optional Ya, and those within the designated carbon number range are selected. When there are two or more Ya's on (Ca-Cb) alkoxy, each Ya may be identical with or different from one another.
  • The expression such as “(Ca-Cb) alkenyloxy optionally substituted with Ya” herein means a previously mentioned alkenyloxy group having from a to b carbon atoms in which hydrogen atom(s) on carbon atom(s) are optionally substituted with optional Ya, and those within the designated carbon number range are selected. When there are two or more Ya's on (Ca-Cb) alkenyloxy, each Ya may be identical with or different from one another.
  • The expression such as “(Ca-Cb) alkynyloxy optionally substituted with Ya” herein means a previously mentioned alkynyloxy group having from a to b carbon atoms in which hydrogen atom(s) on carbon atom(s) are optionally substituted with optional Ya, and those within the designated carbon number range are selected. When there are two or more Ya's on (Ca-Cb) alkynyloxy, each Ya may be identical with or different from one another.
  • The expression “(Ca-Cb) alkylthio optionally substituted with R3a”, “(Ca-Cb) alkylthio optionally substituted with R4a” or “(Ca-Cb) alkylthio optionally substituted with Ya” herein means a previously mentioned alkylthio group having from a to b carbon atoms in which hydrogen atom(s) on carbon atom(s) are optionally substituted with optional R3a, R4a or Ya, and those within the designated carbon number range are selected. When there are two or more R3a's, R4a's or Ya's on (Ca-Cb) alkylthio, each R3a, R4a or Ya may be identical with or different from one another.
  • The expression such as “(Ca-Cb) alkylsulfinyl optionally substituted with Ya” herein means a previously mentioned alkylsulfinyl group having from a to b carbon atoms in which hydrogen atom(s) on carbon atom(s) are optionally substituted with optional Ya, and those within the designated carbon number range are selected. When there are two or more Ya's on (Ca-Cb) alkylsulfinyl, each Ya may be identical with or different from one another.
  • The expression such as “(Ca-Cb) alkylsulfonyl optionally substituted with Ya” herein means a previously mentioned alkylsulfonyl group having from a to b carbon atoms in which hydrogen atom(s) on carbon atom(s) are optionally substituted with optional Ya, and those within the designated carbon number range are selected. When there are two or more Ya's on (Ca-Cb) alkylsulfonyl, each Ya may be identical with or different from one another.
  • The expression “phenyl optionally substituted with R3b”, “phenyl optionally substituted with R4b” or “phenyl optionally substituted with Yc” herein means a previously mentioned phenyl in which hydrogen atom(s) on carbon atoms) are optionally substituted with optional R3b, R4b or Yc. When there are two or more R3b's, R4b's or Yc's on phenyl, each R3b, R4b or Yc may be identical with or different from one another.
  • The expression such as “heterocyclyl optionally substituted with R3b”, “heterocyclyl optionally substituted with R4b” or “heterocyclyl optionally substituted with Yc” herein means a heterocyclic group in which hydrogen atom(s) on carbon atom(s) or nitrogen atom(s) are optionally substituted with optional R3b, R4b or Yc. When there are two or more R3b's, R4b's or Yc's, each R3b, R4b or Yc may be identical with or different from one another.
  • Now, a process for producing the compound of the present invention represented by the above formula (1) will be described below.
  • The compounds of the present invention may be produced, for example, by the following Processes 1 to 17.
  • Process 1
  • Figure US20210017194A1-20210121-C00026
  • A compound represented by the formula (2Q1-a) (wherein A1a, A2, A3, A4 and A5 are the same as defined above) and a compound represented by the formula (3D-a) (wherein R1, D and n are the same as defined above) are reacted in a solvent or without solvent, as the case requires, in the presence of a dehydration condensation agent, and as the case requires, in the presence of a catalyst to produce a compound represented by the formula (4-a) (wherein R1, A1a, A2, A3, A4, A5, D and n are the same as defined above). In a case where a solvent is used, the solvent used may be any solvent which is inert to the reaction, and for example, water, a lower alcohol such as methanol or ethanol, an ether such as diethyl ether, tetrahydrofuran, 1,4-dioxane or 1,2-dimethoxyethane, an aromatic hydrocarbon such as benzene, chlorobenzene, bromobenzene, xylene or toluene, an aliphatic hydrocarbon such as pentane, hexane or cyclohexane, a halogenated hydrocarbon such as dichloromethane, chloroform or 1,2-dichloroethane, a nitrile such as acetonitrile or propionitrile, an amide such as N,N-dimethylformamide, N,N-dimethylacetamide, N-methylpyrrolidone or N,N′-dimethylimidazolidinone, a sulfoxide such as dimethyl sulfoxide, a nitrogen-containing aromatic compound such as pyridine or quinoline, or a mixture thereof may be mentioned.
  • The reaction may be carried out in the presence of a dehydration condensation agent. The dehydration condensation agent to be used may, for example, be 1H-benzotriazol-1-yloxytris(dimethylamino)phosphonium hexafluorophosphate, N,N′-dicyclohexylcarbodiimide, 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride or 2-chloro-1-methylpyridinium iodide. The equivalent amount of the hehydration condensation agent used is from 0.1 to 100 equivalent amount, preferably from 1 to 20 equivalent amount based on the compound represented by the formula (2Q1-a).
  • The reaction may be carried out in the presence of a catalyst. The catalyst to be used may, for example, be 1-hydroxybenzotriazole or 4-(dimethylamino)pyridine. The equivalent amount of the catalyst used is from 0.005 to 20 equivalent amount, preferably from 0.1 to 5 equivalent amount based on the compound represented by the formula (2Q1-a).
  • The reaction temperature may be set at an optional temperature of from −80° C. to the refluxing temperature of the reaction mixture, and is preferably within a range of from 0° C. to the refluxing temperature of the reaction mixture.
  • The reaction time varies depending upon the concentration of the reaction substrate and the reaction temperature, and is optionally set usually within a range of from 5 minutes to 100 hours, and is preferably from 1 to 48 hours.
  • With respect to the equivalent amount of the reaction substrate, the compound (3D-a) may be used in an amount of from 0.5 to 50 equivalent amount, preferably from 1 to 20 equivalent amount based on the compound (2Q1-a).
  • Further, the compound represented by the formula (4-a) may be produced by reacting the compound represented by the formula (201-a) and a compound represented by the formula (3D-b) (wherein R1, D and n are the same as defined above) in a solvent or without solvent, and as the case requires, in the presence of a base. In a case where a solvent is used, the solvent used may be any solvent which is inert to the reaction, and for example, water, a lower alcohol such as methanol or ethanol, an ether such as diethyl ether, tetrahydrofuran, 1,4-dioxane or 1,2-dimethoxyethane, an aromatic hydrocarbon such as benzene, chlorobenzene, bromobenzene, xylene or toluene, an aliphatic hydrocarbon such as pentane, hexane or cyclohexane, a halogenated hydrocarbon such as dichloromethane, chloroform or 1,2-dichloroethane, a nitrile such as acetonitrile or propionitrile, an amide such as N,N-dimethylformamide, N,N-dimethylacetamide, N-methylpyrrolidone or N,N′-dimethylimidazolidinone, a sulfoxide such as dimethyl sulfoxide, a nitrogen-containing aromatic compound such as pyridine or quinoline, or a mixture thereof may be mentioned.
  • The reaction may be carried out in the presence of a base. The base to be used may, for example, be an organic base such as pyridine, 2,6-lutidine, 4-dimethylaminopyridine, triethylamine, diisopropylethylamine, tributylamine, 4-(dimethylamino)pyridine, 1,4-diazabicyclo[2.2.2]octane (DABCO), 1,8-diazabicyclo[5.4.0]-7-undecene (DBU) or 1,5-diazabicyclo[4.3.0]-5-nonene (DBN), or an inorganic base such as sodium hydroxide, potassium hydroxide, sodium hydride, sodium hydrogen carbonate, potassium carbonate or cesium carbonate. The equivalent amount of the base used is from 0.1 to 100 equivalent amount, preferably from 1 to 20 equivalent amount based on the compound represented by the formula (2Q1-a).
  • The reaction temperature may be set at an optional temperature of from −80° C. to the refluxing temperature of the reaction mixture, and is preferably within a range of from 0° C. to the refluxing temperature of the reaction mixture.
  • The reaction time varies depending upon the concentration of the reaction substrate and the reaction temperature, and is optionally set usually within a range of from 5 minutes to 100 hours, and is preferably from 1 to 48 hours.
  • With respect to the equivalent amount of the reaction substrate, the compound (3D-b) may be used in an amount of from 0.5 to 50 equivalent amount, preferably from 1 to 20 equivalent amount based on the compound (2Q1-a).
  • Then, the compound represented by the formula (4-a) is subjected to dehydration condensation in a solvent or without solvent, as the case requires, in the presence of an acid, and as the case requires, in the presence of a dehydration agent to produce a compound represented by the formula (1-a) (wherein R1, A1a, A2, A3, A4, A5, D and n are the same as defined above). In a case where a solvent is used, the solvent used may be any solvent which is inert to the reaction, and for example, water, a lower alcohol such as methanol or ethanol, an ether such as diethyl ether, tetrahydrofuran, 1,4-dioxane or 1,2-dimethoxyethane, an aromatic hydrocarbon such as benzene, chlorobenzene, bromobenzene, xylene or toluene, an aliphatic hydrocarbon such as pentane, hexane or cyclohexane, a halogenated hydrocarbon such as dichloromethane, chloroform or 1,2-dichloroethane, a nitrile such as acetonitrile or propionitrile, an amide such as N,N-dimethylformamide, N,N-dimethylacetamide, N-methylpyrrolidone or N,N′-dimethylimidazolidinone, a sulfoxide such as dimethyl sulfoxide, a nitrogen-containing aromatic compound such as pyridine or quinoline, or a mixture thereof may be mentioned.
  • The reaction may be carried out in the presence of an acid. The acid to be used may, for example, be p-toluenesulfonic acid, polyphosphoric acid, acetic acid or propionic acid. The equivalent amount of the acid used is from 0.1 to 1,000 equivelent amount, preferably from 1 to 500 equivalent amount based on the compound represented by the formula (4-a).
  • The reaction may be carried out in the presence of a dehydration agent. The dehydration agent to be used may, for example, be phosphorus oxychloride or acetic anhydride. The equivalent amount of the dehydration agent used is from 0.5 to 50 equivalent amount, preferably from 1 to 20 equivalent amount based on the compound represented by the formula (4-a).
  • The reaction temperature may be set at an optional temperature of from −80° C. to the refluxing temperature of the reaction mixture, and is preferably within a range of from 0° C. to the refluxing temperature of the reaction mixture.
  • The reaction time varies depending upon the concentration of the reaction substrate and the reaction temperature, and is optionally set usually within a range of from 5 minutes to 100 hours, and is preferably from 1 to 48 hours.
  • Some of compounds represented by the formula (201-a) are known compounds, and some of them are commercially available. The rest of them may be prepared, for example, in accordance with the after-mentioned Reaction Scheme 4.
  • The compound represented by the formula (3D-a) may be prepared, for example, in accordance with the after-mentioned Reaction Scheme 1 or Reaction Scheme 2.
  • The compound represented by the formula (3D-b) may be prepared, for example, in accordance with the after-mentioned Reaction Scheme 1.
  • Process 2
  • Figure US20210017194A1-20210121-C00027
  • A compound represented by the formula (1-f) (wherein R1, A2, A3, A4, A5, D and n are the same as defined above) and a compound represented by the formula (16) (wherein A1aa is C1-C6 alkyl, and X1 is a leaving group such as a halogen atom, C1-C4 alkylsulfonate (such as methanesulfonyloxy), C1-C4 haloalkylsulfonate (such as trifluoromethanesulfonyloxy) or arylsulfonate (such as benzenesulfonyloxy or p-toluenesulfonyloxy)) are reacted in a solvent or without solvent, and as the case requires, in the presence of a base, to produce a compound represented by the formula (1-g) (wherein R1, A1aa, A2, A3, A4, A5, D and n are the same as defined above). In a case where a solvent is used, the solvent used may be any solvent which is inert to the reaction, and for example, water, a lower alcohol such as methanol or ethanol, an ether such as diethyl ether, tetrahydrofuran, 1,4-dioxane or 1,2-dimethoxyethane, an aromatic hydrocarbon such as benzene, chlorobenzene, bromobenzene, xylene or toluene, an aliphatic hydrocarbon such as pentane, hexane or cyclohexane, a halogenated hydrocarbon such as dichloromethane, chloroform or 1,2-dichloroethane, a nitrile such as acetonitrile or propionitrile, an amide such as N,N-dimethylformamide, N,N-dimethylacetamide, N-methylpyrrolidone or N,N′-dimethylimidazolidinone, a sulfoxide such as dimethyl sulfoxide, a nitrogen-containing aromatic compound such as pyridine or quinoline, or a mixture thereof may be mentioned.
  • The reaction may be carried out in the presence of a base. The base to be used may, for example, be an organic base such as pyridine, 2,6-lutidine, 4-dimethylaminopyridine, triethylamine, diisopropylethylamine, tributylamine, 4-(dimethylamino)pyridine, 1,4-diazabicyclo[2.2.2]octane (DABCO), 1,8-diazabicyclo[5.4.0]-7-undecene (DBU) or 1,5-diazabicyclo[4.3.0]-5-nonene (DBN), or an inorganic base such as sodium hydroxide, potassium hydroxide, sodium hydride, sodium hydrogen carbonate, potassium carbonate or cesium carbonate. The equivalent amount of the base used is from 0.1 to 100 equivalent amount, preferably from 1 to 20 equivalent amount based on the compound represented by the formula (1-f).
  • The reaction temperature may be set at an optional temperature of from −80° C. to the refluxing temperature of the reaction mixture, and is preferably within a range of from 0° C. to the refluxing temperature of the reaction mixture.
  • The reaction time varies depending upon the concentration of the reaction substrate and the reaction temperature, and is optionally set usually within a range of from 5 minutes to 100 hours, and is preferably from 1 to 48 hours.
  • With respect to the equivalent amount of the reaction substrate, the compound (16) may be used in an amount of from 0.5 to 50 equivalent amount, preferably from 1 to 20 equivalent amount based on the compound (1-f).
  • The compound represented by the formula (1-f) may be prepared in accordance with Process 1.
  • Some of the compounds represented by the formula (16) are known compounds, and some of them are commercially available.
  • Process 3
  • Figure US20210017194A1-20210121-C00028
  • The compound represented by the formula (2Q1-a) and a compound represented by the formula (17-a) (wherein G1, G2, G3 and G4 are the same as defined above) are reacted in accordance with the method disclosed in step [A] of Process 1 to produce a compound represented by the formula (18-a) (wherein A1a, A2, A3, A4, A5, G1, G2, G3 and G4 are the same as defined above).
  • Further, the compound represented by the formula (18-a) may be produced by reacting the compound represented by the formula (2Q1-a) and a compound represented by the formula (17-b) (wherein G1, G2, G3 and G4 are the same as defined above) in accordance with the method disclosed in step [A] of Process 1.
  • Then, the compound represented by the formula (18-a) is subjected to dehydration condensation in accordance with the method disclosed in step [B] of Process 1 to produce a compound represented by the formula (19-a) (wherein A1a, A2, A3, A4, A5, G1, G2, G3 and G4 are the same as defined above).
  • Then, the compound represented by the formula (19-a) is reacted with a compound represented by the formula (9) (wherein R1 is the same as defined above) and a halogenating agent in a solvent or without solvent to produce a compound represented by the formula (1-h) (wherein R1, A1a, A2, A3, A4, A5, G1, G2, G3 and G4 are the same as defined above). In a case where a solvent is used, the solvent used may be any solvent which is inert to the reaction, and for example, water, a lower alcohol such as methanol or ethanol, an ether such as diethyl ether, tetrahydrofuran, 1,4-dioxane or 1,2-dimethoxyethane, an aromatic hydrocarbon such as benzene, chlorobenzene, bromobenzene, xylene or toluene, an aliphatic hydrocarbon such as pentane, hexane or cyclohexane, a halogenated hydrocarbon such as dichloromethane, chloroform or 1,2-dichloroethane, a nitrile such as acetonitrile or propionitrile, an amide such as N,N-dimethylformamide, N,N-dimethylacetamide, N-methylpyrrolidone or N,N′-dimethylimidazolidinone, a sulfoxide such as dimethyl sulfoxide, a nitrogen-containing aromatic compound such as pyridine or quinoline, or a mixture thereof may be mentioned.
  • The halogenating agent may, for example, be chlorine, bromine, iodine, N-chlorosuccinimide, N-bromosuccinimide, N-iodosuccinimide, 1,3-dichloro-5,5-dimethylhydantoin, 1,3-dibromo-5,5-dimethylhydantoin or 1,3-diiodo-5,5-dimethylhydantoin. The equivalent amount of the halogenating agent used is from 0.5 to 50 equivalent amount, preferably from 1 to 20 equivalent amount based on the compound represented by the formula (19-a).
  • The reaction temperature may be set at an optional temperature of from −80° C. to the refluxing temperature of the reaction mixture, and is preferably within a range of from 0° C. to the refluxing temperature of the reaction mixture.
  • The reaction time varies depending upon the concentration of the reaction substrate and the reaction temperature, and is optionally set usually within a range of from 5 minutes to 100 hours, and is preferably from 1 to 48 hours.
  • With respect to the equivalent amount of the reaction substrate, the compound (9) may be used in an amount of from 0.5 to 50 equivalent amount, preferably from 1 to 20 equivalent amount based on the compound (19-a).
  • Further, the compound represented by the formula (19-a) and a halogenating agent are reacted in a solvent or without solvent to produce a compound represented by the formula (23-a) (wherein A1a, A2, A3, A4, A5, G1, G2, G3 and G4 are the same as defined above, and X10 is a chlorine atom, a bromine atom or an iodine atom). In a case where a solvent is used, the solvent used may be any solvent which is inert to the reaction, and for example, water, a lower alcohol such as methanol or ethanol, an ether such as diethyl ether, tetrahydrofuran, 1,4-dioxane or 1,2-dimethoxyethane, an aromatic hydrocarbon such as benzene, chlorobenzene, bromobenzene, xylene or toluene, an aliphatic hydrocarbon such as pentane, hexane or cyclohexane, a halogenated hydrocarbon such as dichloromethane, chloroform or 1,2-dichloroethane, a nitrile such as acetonitrile or propionitrile, an amide such as N,N-dimethylformamide, N,N-dimethylacetamide, N-methylpyrrolidone or N,N′-dimethylimidazolidinone, a sulfoxide such as dimethyl sulfoxide, a nitrogen-containing aromatic compound such as pyridine or quinoline, or a mixture thereof may be mentioned.
  • The halogenating agent may, for example, be chlorine, bromine, iodine, N-chlorosuccinimide, N-bromosuccinimide, N-iodosuccinimide, 1,3-dichloro-5,5-dimethylhydantoin, 1,3-dibromo-5,5-dimethylhydantoin or 1,3-diiodo-5,5-dimethylhydantoin. The equivalent amount of the halogenating agent used is from 0.5 to 50 equivalent amount, preferably from 1 to 20 equivalent amount based on the compound represented by the formula (19-a).
  • The reaction temperature may be set at an optional temperature of from −80° C. to the refluxing temperature of the reaction mixture, and is preferably within a range of from 0° C. to the refluxing temperature of the reaction mixture.
  • The reaction time varies depending upon the concentration of the reaction substrate and the reaction temperature, and is optionally set usually within a range of from 5 minutes to 100 hours, and is preferably from 1 to 48 hours.
  • Then, the compound represented by the formula (23-a) and a compound represented by the formula (24) (wherein R1 is the same as defined above) are reacted in a solvent or without solvent, and as the case requires, in the presence of a base, to produce a compound represented by the formula (1-h) (wherein R1, A1a, A2, A3, A4, A5, G1, G2, G3 and G4 are the same as defined above). In a case where a solvent is used, the solvent used may be any solvent which is inert to the reaction, and for example, water, a lower alcohol such as methanol or ethanol, an ether such as diethyl ether, tetrahydrofuran, 1,4-dioxane or 1,2-dimethoxyethane, an aromatic hydrocarbon such as benzene, chlorobenzene, bromobenzene, xylene or toluene, an aliphatic hydrocarbon such as pentane, hexane or cyclohexane, a halogenated hydrocarbon such as dichloromethane, chloroform or 1,2-dichloroethane, a nitrile such as acetonitrile or propionitrile, an amide such as N,N-dimethylformamide, N,N-dimethylacetamide, N-methylpyrrolidone or N,N′-dimethylimidazolidinone, a sulfoxide such as dimethyl sulfoxide, a nitrogen-containing aromatic compound such as pyridine or quinoline, or a mixture thereof may be mentioned.
  • The reaction may be carried out in the presence of a base. The base to be used may, for example, be an organic base such as pyridine, 2,6-lutidine, 4-dimethylaminopyridine, triethylamine, diisopropylethylamine, tributylamine, 4-(dimethylamino)pyridine, 1,4-diazabicyclo[2.2.2]octane (DABCO), 1,8-diazabicyclo[5.4.0]-7-undecene (DBU) or 1,5-diazabicyclo[4.3.0]-5-nonene (DBN), or an inorganic base such as sodium hydroxide, potassium hydroxide, sodium hydride, sodium hydrogen carbonate, potassium carbonate or cesium carbonate. The equivalent amount of the base used is from 0.1 to 100 equivalent amount, preferably from 1 to 20 equivalent amount based on the compound represented by the formula (23-a).
  • The reaction temperature may be set at an optional temperature of from −80° C. to the refluxing temperature of the reaction mixture, and is preferably within a range of from 0° C. to the refluxing temperature of the reaction mixture.
  • The reaction time varies depending upon the concentration of the reaction substrate and the reaction temperature, and is optionally set usually within a range of from 5 minutes to 100 hours, and is preferably from 1 to 48 hours.
  • With respect to the equivalent amount of the reaction substrate, the compound (24) may be used in an amount of from 0.5 to 50 equivalent amount, preferably from 1 to 20 equivalent amount based on the compound (23-a).
  • Further, the compound represented by the formula (1-h) may be produced by reacting the compound represented by the formula (23-a) and the compound represented by the formula (9) in a solvent or without solvent, as the case requires, in the presence of a base, as the case requires, in the presence of a palladium catalyst, and as the case requires, in the presence of a ligand. In a case where a solvent is used, the solvent used may be any solvent which is inert to the reaction, and for example, water, a lower alcohol such as methanol or ethanol, an ether such as diethyl ether, tetrahydrofuran, 1,4-dioxane or 1,2-dimethoxyethane, an aromatic hydrocarbon such as benzene, chlorobenzene, bromobenzene, xylene or toluene, an aliphatic hydrocarbon such as pentane, hexane or cyclohexane, a halogenated hydrocarbon such as dichloromethane, chloroform or 1,2-dichloroethane, a nitrile such as acetonitrile or propionitrile, an amide such as N,N-dimethylformamide, N,N-dimethylacetamide, N-methylpyrrolidone or N N′-dimethylimidazolidinone, a sulfoxide such as dimethyl sulfoxide, a nitrogen-containing aromatic compound such as pyridine or quinoline, or a mixture thereof may be mentioned.
  • The reaction may be carried out in the presence of a base. The base to be used may, for example, be an organic base such as pyridine, 2,6-lutidine, 4-dimethylaminopyridine, triethylamine, diisopropylethylamine, tributylamine, 4-(dimethylamino)pyridine, 1,4-diazabicyclo[2.2.2]octane (DABCO), 1,8-diazabicyclo[5.4.0]-7-undecene (DBU) or 1,5-diazabicyclo[4.3.0]-5-nonene (DBN), or an inorganic base such as sodium hydroxide, potassium hydroxide, sodium hydride, sodium hydrogen carbonate, potassium carbonate or cesium carbonate. The equivalent amount of the base used is from 0.1 to 100 equivalent amount, preferably from 1 to 20 equivalent amount based on the compound represented by the formula (23-a).
  • The reaction may be carried out in the presence of a palladium catalyst. The palladium catalyst to be used may, for example, be palladium-carbon, palladium(II) chloride, palladium(II) acetate, bis(triphenylphosphine) palladium(II) dichloride, tetrakis(triphenylphosphine) palladium(0), bis(dibenzylideneacetone) palladium(0) or tris(dibenzylideneacetone) dipalladium(0). The equivalent amount of the palladium catalyst used may be from 0.005 to 20 equivalent amount, preferably from 0.01 to 5 equivalent amount based on the compound (23-a).
  • The reaction may be carried out in the presence of a ligand. The ligand to be used may, for example, be 4,5′-bis(diphenylphosphino)-9,9′-dimethylxanthene or 1,10-phenanthroline. The equivalent amount of the ligand used may be from 0.005 to 20 equivalent amount, preferably from 0.01 to 5 equivalent amount based on the compound (23-a).
  • The reaction temperature may be set at an optional temperature of from −80° C. to the refluxing temperature of the reaction mixture, and is preferably within a range of from 0° C. to the refluxing temperature of the reaction mixture.
  • The reaction time varies depending upon the concentration of the reaction substrate and the reaction temperature, and is optionally set usually within a range of from 5 minutes to 100 hours, and is preferably from 1 to 48 hours.
  • With respect to the equivalent amount of the reaction substrate, the compound (9) may be used in an amount of from 0.5 to 50 equivalent amount, preferably from 1 to 20 equivalent amount based on the compound (23-a).
  • Some of the compounds represented by the formula (17-a) are known compounds, and some of them are commercially available.
  • Some of the compounds represented by the formula (17-b) are known compounds, and some of them are commercially available.
  • Some of the compounds represented by the formula (9) are known compounds, and some of them are commercially available.
  • Some of the compounds represented by the formula (24) are known compounds, and some of them are commercially available.
  • Process 4
  • Figure US20210017194A1-20210121-C00029
  • The compound represented by the formula (2Q1-a) is reacted with a compound represented by the formula (20-a) (wherein T1, G1, G2, G3 and G4 are the same as defined above) in accordance with the method disclosed in step [A] of Process 1 to produce a compound represented by the formula (21-a) (wherein A1a, A2, A3, A4, A5, T1, G1, G2, G3 and G4 are the same as defined above).
  • Further, the compound represented by the formula (21-a) may be produced by reacting the compound represented by the formula (2Q1-a) and a compound represented by the formula (20-b) (wherein T1, G1, G2, G3 and G4 are the same as defined above) in accordance with the method disclosed in step [A] of Process 1.
  • Then, the compound represented by the formula (21-a) is subjected to hydration condensation in accordance with the method disclosed in step [B] of Process 1 to produce a compound represented by the formula (22-a) (wherein A1a, A2, A3, A4, A5, G1, G2, G3 and G4 are the same as defined above).
  • Then, the compound represented by the formula (22-a) is reacted in accordance with the method disclosed in step [C] of Process 3 or the method disclosed in steps [D] and [E] of Process 3 to produce a compound represented by the formula (1-i) (wherein R1, A1a, A2, A3, A4, A5, T1, G1, G2, G3 and G4 are the same as defined above).
  • Some of the compounds represented by the formula (20-a) are known compounds, and some of them are commercially available.
  • Some of the compounds represented by the formula (20-b) are known compounds, and some of them are commercially available.
  • Process 5
  • Figure US20210017194A1-20210121-C00030
  • A compound represented by the formula (2Q1-b) (wherein A2, A3, A4 and A5 are the same as defined above, and A1b is an oxygen atom or a sulfur atom) and a compound represented by the formula (3D-a) are reacted in accordance with the method disclosed in step [A] of Process 1 to produce a compound represented by the formula (4-b) (wherein A1b, R1, A2, A3, A4, A5, D and n are the same as defined above).
  • Further, the compound represented by the formula (4-b) may be produced by reacting the compound represented by the formula (2Q1-b) and the compound represented by the formula (3D-b) in accordance with the method disclosed in step [A] of Process 1.
  • Then, the compound represented by the formula (4-b) is reacted in a solvent or without solvent, as the case requires, in the presence of an acid, and as the case requires, in the presence of a dehydration condensation agent to produce a compound represented by the formula (1-b) (wherein A1b, R1, A2, A3, A4, A5, D and n are the same as defined above). In a case where a solvent is used, the solvent used may be any solvent which is inert to the reaction, and for example, water, a lower alcohol such as methanol or ethanol, an ether such as diethyl ether, tetrahydrofuran, 1,4-dioxane or 1,2-dimethoxyethane, an aromatic hydrocarbon such as benzene, chlorobenzene, bromobenzene, xylene or toluene, an aliphatic hydrocarbon such as pentane, hexane or cyclohexane, a halogenated hydrocarbon such as dichloromethane, chloroform or 1,2-dichloroethane, a nitrile such as acetonitrile or propionitrile, an amide such as N,N-dimethylformamide, N,N-dimethylacetamide, N-methylpyrrolidone or N,N′-dimethylimidazolidinone, a sulfoxide such as dimethyl sulfoxide, a nitrogen-containing aromatic compound such as pyridine or quinoline, or a mixture thereof may be mentioned.
  • The reaction may be carried out in the presence of an acid. The acid to be used may, for example, be p-toluenesulfonic acid, polyphosphoric acid, acetic acid or propionic acid. The equivalent amount of the acid used is from 0.1 to 1,000 equivelent amount, preferably from 1 to 500 equivalent amount based on the compound represented by the formula (4-b).
  • The reaction may be carried out in the presence of a dehydration condensation agent. The dehydration condensation agent to be used may, for example, be a mixture of triphenylphosphine and bis(2-methoxyethyl) azodicarboxylate.
  • The equivalent amount of triphenylphosphine used is from 0.5 to 50 equivalent amount, preferably from 1 to 20 equivalent amount based on the compound represented by the formula (4-b).
  • The equivalent amount of bis(2-methoxyethyl) azodicarboxylate used is from 0.5 to 50 equivalent amount, preferably from 1 to 20 equivalent amount based on the compound represented by the formula (4-b).
  • The reaction temperature may be set at an optional temperature of from −80° C. to the refluxing temperature of the reaction mixture, and is preferably within a range of from 0° C. to the refluxing temperature of the reaction mixture.
  • The reaction time varies depending upon the concentration of the reaction substrate and the reaction temperature, and is optionally set usually within a range of from 5 minutes to 100 hours, and is preferably from 1 to 48 hours.
  • Some of the compounds represented by the formula (2Q1-b) are known compounds, and some of them are commercially available.
  • Process 6
  • Figure US20210017194A1-20210121-C00031
  • A compound represented by the formula (2Q2-a) (wherein A2, A3, A4 and A5 are the same as defined above) and a compound represented by the formula (3D-c) (wherein R1, R6, D and n are the same as defined above, and X2 is a chlorine atom, a bromine atom or an iodine atom) are reacted in the presence of a solvent or without solvent, and as the case requires, in the presence of a base to produce a compound represented by the formula (1-c) (wherein R1, R6, A2, A3, A4, A5 D and n are the same as defined above). In a case where a solvent is used, the solvent used may be any solvent which is inert to the reaction, and for example, water, a lower alcohol such as methanol or ethanol, an ether such as diethyl ether, tetrahydrofuran, 1,4-dioxane or 1,2-dimethoxyethane, an aromatic hydrocarbon such as benzene, chlorobenzene, bromobenzene, xylene or toluene, an aliphatic hydrocarbon such as pentane, hexane or cyclohexane, a halogenated hydrocarbon such as dichloromethane, chloroform or 1,2-dichloroethane, a nitrile such as acetonitrile or propionitrile, an amide such as N,N-dimethylformamide, N,N-dimethylacetamide, N-methylpyrrolidone or N,N′-dimethylimidazolidinone, a sulfoxide such as dimethyl sulfoxide, a nitrogen-containing aromatic compound such as pyridine or quinoline, or a mixture thereof may be mentioned.
  • The reaction may be carried out in the presence of a base. The base to be used may, for example, be an organic base such as pyridine, 2,6-lutidine, 4-dimethylaminopyridine, triethylamine, diisopropylethylamine, tributylamine, 4-(dimethylamino)pyridine, 1,4-diazabicyclo[2.2.2]octane (DABCO), 1,8-diazabicyclo[5.4.0]-7-undecene (DBU) or 1,5-diazabicyclo[4.3.0]-5-nonene (DBN), or an inorganic base such as sodium hydroxide, potassium hydroxide, sodium hydride, sodium hydrogen carbonate, potassium carbonate or cesium carbonate. The equivalent amount of the base used is from 0.1 to 100 equivalent amount, preferably from 1 to 20 equivalent amount based on the compound represented by the formula (2Q2-a).
  • The reaction temperature may be set at an optional temperature of from −80° C. to the refluxing temperature of the reaction mixture, and is preferably within a range of from 0° C. to the refluxing temperature of the reaction mixture.
  • The reaction time varies depending upon the concentration of the reaction substrate and the reaction temperature, and is optionally set usually within a range of from 5 minutes to 100 hours, and is preferably from 1 to 48 hours.
  • Some of the compounds represented by the formula (2Q2-a) are known compounds, and some of them are commercially available. The rest of them may be prepared, for example, in accordance with the after-mentioned Reaction Scheme 5.
  • The compound represented by the formula (3D-c) may be prepared, for example, in accordance with the after-mentioned Reaction Scheme 1.
  • Process 7
  • Figure US20210017194A1-20210121-C00032
  • A compound represented by the formula (1-j) (wherein R1, A2, A3, A4, A5, D and n are the same as defined above) and a halogenating agent are reacted in a solvent or without solvent to produce a compound represented by the formula (1-k) (wherein R1, A2, A3, A4, A5, D and n are the same as defined above, and X4 is a chlorine atom, a bromine atom or an iodine atom). In a case where a solvent is used, the solvent used may be any solvent which is inert to the reaction, and for example, water, a lower alcohol such as methanol or ethanol, an ether such as diethyl ether, tetrahydrofuran, 1,4-dioxane or 1,2-dimethoxyethane, an aromatic hydrocarbon such as benzene, chlorobenzene, bromobenzene, xylene or toluene, an aliphatic hydrocarbon such as pentane, hexane or cyclohexane, a halogenated hydrocarbon such as dichloromethane, chloroform or 1,2-dichloroethane, a nitrile such as acetonitrile or propionitrile, an amide such as N,N-dimethylformamide, N,N-dimethylacetamide, N-methylpyrrolidone or N,N′-dimethylimidazolidinone, a sulfoxide such as dimethyl sulfoxide, a nitrogen-containing aromatic compound such as pyridine or quinoline, or a mixture thereof may be mentioned.
  • The halogenating agent may, for example, be chlorine, bromine, iodine, N-chlorosuccinimide, N-bromosuccinimide, N-iodosuccinimide, 1,3-dichloro-5,5-dimethylhydantoin, 1,3-dibromo-5,5-dimethylhydantoin or 1,3-diiodo-5,5-dimethylhydantoin. The equivalent amount of the halogenating agent used is from 0.5 to 50 equivalent amount, preferably from 1 to 20 equivalent amount based on the compound represented by the formula (1-j).
  • The reaction temperature may be set at an optional temperature of from −80° C. to the refluxing temperature of the reaction mixture, and is preferably within a range of from 0° C. to the refluxing temperature of the reaction mixture.
  • The reaction time varies depending upon the concentration of the reaction substrate and the reaction temperature, and is optionally set usually within a range of from 5 minutes to 100 hours, and is preferably from 1 to 48 hours.
  • The compound represented by the formula (1-j) may be prepared in accordance with the method disclosed in Process 6.
  • Process 8
  • Figure US20210017194A1-20210121-C00033
  • A compound represented by the formula (2Q3-a) (wherein R2, R3, A4 and A5 are the same as defined above) and a compound represented by the formula (3D-d) (wherein R1, D and n are the same as defined above) are reacted in a solvent or without solvent, and as the case requires, in the presence of an acid to produce a compound represented by the formula (40) (wherein R1, R2, R3, A4, A5, D and n are the same as defined above). In a case where a solvent is used, the solvent used may be any solvent which is inert to the reaction, and for example, water, a lower alcohol such as methanol or ethanol, an ether such as diethyl ether, tetrahydrofuran, 1,4-dioxane or 1,2-dimethoxyethane, an aromatic hydrocarbon such as benzene, chlorobenzene, bromobenzene, xylene or toluene, an aliphatic hydrocarbon such as pentane, hexane or cyclohexane, a halogenated hydrocarbon such as dichloromethane, chloroform or 1,2-dichloroethane, a nitrile such as acetonitrile or propionitrile, an amide such as N,N-dimethylformamide, N,N-dimethylacetamide, N-methylpyrrolidone or N,N′-dimethylimidazolidinone, a sulfoxide such as dimethyl sulfoxide, a nitrogen-containing aromatic compound such as pyridine or quinoline, or a mixture thereof may be mentioned.
  • The reaction may be carried out in the presence of an acid. The acid to be used may, for example, be acetic acid, formic acid or p-toluenesulfonic acid. The equivalent amount of the acid used is from 0.1 to 100 equivalent amount, preferably from 1 to 20 equivalent amount based on the compound represented by the formula (2Q3-a).
  • The reaction temperature may be set at an optional temperature of from −80° C. to the refluxing temperature of the reaction mixture, and is preferably within a range of from 0° C. to the refluxing temperature of the reaction mixture.
  • The reaction time varies depending upon the concentration of the reaction substrate and the reaction temperature, and is optionally set usually within a range of from 5 minutes to 100 hours, and is preferably from 1 to 48 hours.
  • With respect to the equivalent amount of the reaction substrate, the compound (3D-d) may be used in an amount of from 0.5 to 50 equivalent amount, preferably from 1 to 20 equivalent amount based on the compound (2Q3-a).
  • Then, the compound represented by the formula (40) and a phosphite are reacted in a solvent or without solvent to produce a compound represented by the formula (1-I) (wherein R1, R2, R3, A4, A5, D and n are the same as defined above). In a case where a solvent is used, the solvent used may be any solvent which is inert to the reaction, and for example, water, a lower alcohol such as methanol or ethanol, an ether such as diethyl ether, tetrahydrofuran, 1,4-dioxane or 1,2-dimethoxyethane, an aromatic hydrocarbon such as benzene, chlorobenzene, bromobenzene, xylene or toluene, an aliphatic hydrocarbon such as pentane, hexane or cyclohexane, a halogenated hydrocarbon such as dichloromethane, chloroform or 1,2-dichloroethane, a nitrile such as acetonitrile or propionitrile, an amide such as N,N-dimethylformamide, N,N-dimethylacetamide, N-methylpyrrolidone or N,N′-dimethylimidazolidinone, a sulfoxide such as dimethyl sulfoxide, a nitrogen-containing aromatic compound such as pyridine or quinoline, or a mixture thereof may be mentioned.
  • The phosphite may, for example, be trimethyl phosphite or triethyl phosphite. The equivalent amount of the phosphite used is from 0.5 to 50 equivalent amount, preferably from 1 to 20 equivalent amount based on the compound represented by the formula (40).
  • The reaction temperature may be set at an optional temperature of from −80° C. to the refluxing temperature of the reaction mixture, and is preferably within a range of from 0° C. to the refluxing temperature of the reaction mixture.
  • The reaction time varies depending upon the concentration of the reaction substrate and the reaction temperature, and is optionally set usually within a range of from 5 minutes to 100 hours, and is preferably from 1 to 48 hours.
  • Some of the compounds represented by the formula (2Q3-a) are known compounds, and some of them are commercially available. The rest of them may be prepared from known compounds in accordance with conventional methods disclosed in literature, for example, in accordance with the reaction conditions disclosed in Journal of Medicinal Chemistry, 2008, Vol. 50, p. 2468, WO2011/075628 or the like.
  • Some of the compounds represented by the formula (3D-d) are known compounds, and some of them are commercially available. The rest of them may be prepared, for example, in accordance with the after-mentioned Reaction Scheme 6.
  • Process 9
  • Figure US20210017194A1-20210121-C00034
  • A compound represented by the formula (2Q3-b) (wherein R2, R3, A4 and A5 are the same as defined above, and X3 is a fluorine atom, a chlorine atom, a bromine atom or an iodine atom) and sodium azide are reacted in a solvent or without solvent to produce a compound represented by the formula (2Q3-c) (wherein R2, R3, A4 and A5 are the same as defined above). In a case where a solvent is used, the solvent used may be any solvent which is inert to the reaction, and for example, water, a lower alcohol such as methanol or ethanol, an ether such as diethyl ether, tetrahydrofuran, 1,4-dioxane or 1,2-dimethoxyethane, an aromatic hydrocarbon such as benzene, chlorobenzene, bromobenzene, xylene or toluene, an aliphatic hydrocarbon such as pentane, hexane or cyclohexane, a halogenated hydrocarbon such as dichloromethane, chloroform or 1,2-dichloroethane, a nitrile such as acetonitrile or propionitrile, an amide such as N,N-dimethylformamide, N,N-dimethylacetamide, N-methylpyrrolidone or N,N′-dimethylimidazolidinone, a sulfoxide such as dimethyl sulfoxide, a nitrogen-containing aromatic compound such as pyridine or quinoline, or a mixture thereof may be mentioned.
  • The reaction temperature may be set at an optional temperature of from −80° C. to the refluxing temperature of the reaction mixture, and is preferably within a range of from 0° C. to the refluxing temperature of the reaction mixture.
  • The reaction time varies depending upon the concentration of the reaction substrate and the reaction temperature, and is optionally set usually within a range of from 5 minutes to 100 hours, and is preferably from 1 to 48 hours.
  • With respect to the equivalent amount of the reaction substrate, sodium azide may be used in an amount of from 0.5 to 50 equivalent amount, preferably from 1 to 20 equivalent amount based on the compound (2Q3-b).
  • Then, the compound represented by the formula (2Q3-c) and the compound represented by the formula (3D-d) are reacted in a solvent or without solvent, as the case requires, in the presence of a base, and as the case requires, in the presence of a catalyst to produce a compound represented by the formula (41) (wherein R1, R2, R3, A4, A5, D and n are the same as defined above). In a case where a solvent is used, the solvent used may be any solvent which is inert to the reaction, and for example, water, a lower alcohol such as methanol or ethanol, an ether such as diethyl ether, tetrahydrofuran, 1,4-dioxane or 1,2-dimethoxyethane, an aromatic hydrocarbon such as benzene, chlorobenzene, bromobenzene, xylene or toluene, an aliphatic hydrocarbon such as pentane, hexane or cyclohexane, a halogenated hydrocarbon such as dichloromethane, chloroform or 1,2-dichloroethane, a nitrile such as acetonitrile or propionitrile, an amide such as N,N-dimethylformamide, N,N-dimethylacetamide, N-methylpyrrolidone or N,N′-dimethylimidazolidinone, a sulfoxide such as dimethyl sulfoxide, a nitrogen-containing aromatic compound such as pyridine or quinoline, or a mixture thereof may be mentioned.
  • The reaction may be carried out in the presence of a base. The base to be used may, for example, be an organic base such as pyridine, 2,6-lutidine, 4-dimethylaminopyridine, triethylamine, diisopropylethylamine, tributylamine, 4-(dimethylamino)pyridine, 1,4-diazabicyclo[2.2.2]octane (DABCO), 1,8-diazabicyclo[5.4.0]-7-undecene (DBU) or 1,5-diazabicyclo[4.3.0]-5-nonene (DBN), or an inorganic base such as sodium hydroxide, potassium hydroxide, sodium hydride, sodium hydrogen carbonate, potassium carbonate or cesium carbonate. The equivalent amount of the base used is from 0.1 to 100 equivalent amount, preferably from 1 to 20 equivalent amount based on the compound represented by the formula (2Q3-c).
  • The reaction may be carried out in the presence of a catalyst. The catalyst to be used may, for example, be titanium tetrachloride. The equivalent amount of the catalyst used is from 0.005 to 20 equivalent amount, preferably from 0.1 to 5 equivalent amount based on the compound represented by the formula (2Q3-c).
  • The reaction temperature may be set at an optional temperature of from −80° C. to the refluxing temperature of the reaction mixture, and is preferably within a range of from 0° C. to the refluxing temperature of the reaction mixture.
  • The reaction time varies depending upon the concentration of the reaction substrate and the reaction temperature, and is optionally set usually within a range of from 5 minutes to 100 hours, and is preferably from 1 to 48 hours.
  • With respect to the equivalent amount of the reaction substrate, the compound (3D-d) may be used in an amount of from 0.5 to 50 equivalent amount, preferably from 1 to 20 equivalent amount based on the compound (2Q3-c).
  • Then, the compound represented by the formula (41) is cyclized in a solvent or without solvent to produce a compound represented by the formula (1-m) (wherein R1, R2, R3, A4, A5, D and n are the same as defined above).
  • In a case where a solvent is used, the solvent used may be any solvent which is inert to the reaction, and for example, water, a lower alcohol such as methanol or ethanol, an ether such as diethyl ether, tetrahydrofuran, 1,4-dioxane or 1,2-dimethoxyethane, an aromatic hydrocarbon such as benzene, chlorobenzene, bromobenzene, xylene or toluene, an aliphatic hydrocarbon such as pentane, hexane or cyclohexane, a halogenated hydrocarbon such as dichloromethane, chloroform or 1,2-dichloroethane, a nitrile such as acetonitrile or propionitrile, an amide such as N,N-dimethylformamide, N,N-dimethylacetamide, N-methylpyrrolidone or N,N′-dimethylimidazolidinone, a sulfoxide such as dimethyl sulfoxide, a nitrogen-containing aromatic compound such as pyridine or quinoline, or a mixture thereof may be mentioned.
  • The reaction temperature may be set at an optional temperature of from −80° C. to the refluxing temperature of the reaction mixture, and is preferably within a range of from 0° C. to the refluxing temperature of the reaction mixture.
  • The reaction time varies depending upon the concentration of the reaction substrate and the reaction temperature, and is optionally set usually within a range of from 5 minutes to 100 hours, and is preferably from 1 to 48 hours.
  • Some of the compounds represented by the formula (2Q3-b) are known compounds, and some of them are commercially available. The rest of them may be prepared, for example, in accordance with the after-mentioned Reaction Scheme 7.
  • Process 10
  • Figure US20210017194A1-20210121-C00035
  • A compound represented by the formula (2Q4-a) (wherein R7 and A8 are the same as defined above) is reacted with the compound represented by the formula (3D-c) in accordance with the method disclosed in Process 6 to produce a compound represented by the formula (1-n) (wherein R1, R6, R7, A8, D and n are the same as defined above).
  • Some of the compounds represented by the formula (2Q4-a) are known compounds, and some of them are commercially available. The rest of them may be prepared from known compounds in accordance with conventional methods disclosed in literature, for example, in accordance with the reaction conditions disclosed in Journal of Fluorine Chemistry, 2012, Vol. 133, p. 115, CN101768135, CN101885708 or the like.
  • Process 11
  • Figure US20210017194A1-20210121-C00036
  • A compound represented by the formula (1-d) (wherein R1, Q and D are the same as defined above) and an oxidizing agent are reacted in a solvent or without solvent, and as the case requires, in the presence of a catalyst to produce a compound represented by the formula (1-e) (wherein R1, Q and D are the same as defined above, and n′ is an integer of 1 or 2). In a case where a solvent is used, the solvent used may be any solvent which is inert to the reaction, and for example, water, a lower alcohol such as methanol or ethanol, an ether such as diethyl ether, tetrahydrofuran, 1,4-dioxane or 1,2-dimethoxyethane, an aromatic hydrocarbon such as benzene, chlorobenzene, bromobenzene, xylene or toluene, an aliphatic hydrocarbon such as pentane, hexane or cyclohexane, a halogenated hydrocarbon such as dichloromethane, chloroform or 1,2-dichloroethane, a nitrile such as acetonitrile or propionitrile, an amide such as N,N-dimethylformamide, N,N-dimethylacetamide, N-methylpyrrolidone or N,N′-dimethylimidazolidinone, a sulfoxide such as dimethyl sulfoxide, a nitrogen-containing aromatic compound such as pyridine or quinoline, acetic acid, or a mixture thereof may be mentioned.
  • The oxidizing agent may, for example, be a peracid such as m-chloroperbenzoic acid or peracetic acid, hydrogen peroxide or OXONE (registered trademark by E. I. duPont, potassium peroxymonosulfate). The equivalent amount of the oxidizing agent used is from 0.1 to 100 equivalent amount, preferably from 1 to 20 equivalent amount based on the compound represented by the formula (1-d).
  • The reaction may be carried out in the presence of a catalyst. The catalyst used may, for example, be sodium tungstate. The equivalent amount of the catalyst used is from 0.005 to 20 equivalent amount, preferably from 0.1 to 5 equivalent amount based on the compound represented by the formula (1-d).
  • The reaction temperature may be set at an optional temperature of from −80° C. to the refluxing temperature of the reaction mixture, and is preferably within a range of from 0° C. to the refluxing temperature of the reaction mixture.
  • The reaction time varies depending upon the concentration of the reaction substrate and the reaction temperature, and is optionally set usually within a range of from 5 minutes to 100 hours, and is preferably from 1 to 48 hours.
  • The compound represented by the formula (1-d) may be prepared in accordance with the methods in Processes 1 to 10 or the following Processes 14 to 17.
  • Process 12
  • Figure US20210017194A1-20210121-C00037
  • A compound represented by the formula (1-o) (wherein R1, R2, R3, R4, A1, D and n are the same as defined above) is reacted with an oxidizing agent in accordance with the method disclosed in Process 11 to produce a compound represented by the formula (1-p) (wherein R1, R2, R3, R4, A1 and D are the same as defined above).
  • The compound represented by the formula (1-0) may be prepared in accordance with the method disclosed in Processes 1 to 5.
  • Process 13
  • Figure US20210017194A1-20210121-C00038
  • A compound represented by the formula (1-q) (wherein R1, A1, A2, A4, A5, D and n are the same as defined above, and X9 is a chlorine atom, a bromine atom or an iodine atom) is reacted with a thiolating agent such as 2-ethylhexyl 3-mercaptopropionate, sodium hydrogen sulfide or sodium sulfide, for example, in accordance with the method disclosed in Organic Lett. 2007, Vol. 9, p. 3687, Tetrahedron 1998, Vol. 44, p. 1187, WO2011/159839 or the like to produce a compound represented by the formula (1-r) (wherein R1, A1, A2, A4, A5, D and n are the same as defined above).
  • Then, the compound represented by the formula (1-r) is reacted with a trifluoromethylating agent such as Umemoto reagent (5-(trifluoromethyl)dibenzothiophenium trifluoromethanesulfonate) or Togni reagent (1-trifluoromethyl-3,3-dimethyl-1,2-benziodoxole), for example, in accordance with the method disclosed in WO2013/043962, WO2013/040863, WO2012/082566 or the like, to produce a compound represented by the formula (1-s) (wherein R1, A1, A2, A4, A5, D and n are the same as defined above).
  • Then, the compound represented by the formula (1-s) is reacted with an oxidizing agent in accordance with the method disclosed in Process 11 to produce a compound represented by the formula (1-t) (wherein R1, A1, A2, A4, A5, D and n are the same as defined above, and n″ is an integer of 1 or 2).
  • The compound represented by the formula (1-q) may be prepared in accordance with the method disclosed in Processes 1 to 5.
  • Process 14
  • Figure US20210017194A1-20210121-C00039
  • A compound represented by the formula (2Q1-c) (wherein A1a, A4, A5, R2 and R3 are the same as defined above, and X11 is a chlorine atom, a bromine atom or an iodine atom) and a compound represented by the formula (3D-e) (wherein R1, D and n are the same as defined above) are reacted in a solvent or without solvent, as the case requires, in the presence of a copper catalyst, as the case requires, in the presence of a base, and as the case requires, in the presence of a ligand. In a case where a solvent is used, the solvent used may be any solvent which is inert to the reaction, and for example, water, a lower alcohol such as methanol or ethanol, an ether such as diethyl ether, tetrahydrofuran, 1,4-dioxane or 1,2-dimethoxyethane, an aromatic hydrocarbon such as benzene, chlorobenzene, bromobenzene, xylene or toluene, an aliphatic hydrocarbon such as pentane, hexane or cyclohexane, a halogenated hydrocarbon such as dichloromethane, chloroform or 1,2-dichloroethane, a nitrile such as acetonitrile or propionitrile, an amide such as N,N-dimethylformamide, N,N-dimethylacetamide, N-methylpyrrolidone or N,N′-dimethylimidazolidinone, a sulfoxide such as dimethyl sulfoxide, a nitrogen-containing aromatic compound such as pyridine or quinoline, or a mixture thereof may be mentioned.
  • The reaction may be carried out in the presence of a copper catalyst. The copper catalyst to be used may, for example, be copper(I) iodide. The equivalent amount of the copper catalyst used is from 0.005 to 20 equivalent amount, preferably from 0.01 to 5 equivalent amount based on the compound (2Q1-c).
  • The reaction may be carried out in the presence of a base. The base to be used may, for example, be an organic base such as pyridine, 2,6-lutidine, 4-dimethylaminopyridine, triethylamine, diisopropylethylamine, tributylamine, 4-(dimethylamino)pyridine, 1,4-diazabicyclo[2.2.2]octane (DABCO), 1,8-diazabicyclo[5.4.0]-7-undecene (DBU) or 1,5-diazabicyclo[4.3.0]-5-nonene (DBN), or an inorganic base such as sodium hydroxide, potassium hydroxide, sodium hydride, sodium hydrogen carbonate, potassium carbonate, cesium carbonate or potassium phosphate. The equivalent amount of the base used is from 0.1 to 100 equivalent amount, preferably from 1 to 20 equivalent amount based on the compound represented by the formula (2Q1-c).
  • The reaction may be carried out in the presence of a ligand. The ligand to be used may, for example, be 1,10-phenanthroline, 1,2-diaminoethane or N,N′-dimethylethylenediamine. The equivalent amount of the ligand used is from 0.005 to 20 equivalent amount, preferably from 0.01 to 5 equivalent amount based on the compound (2Q1-c).
  • The reaction temperature may be set at an optional temperature of from −80° C. to the refluxing temperature of the reaction mixture, and is preferably within a range of from 0° C. to the refluxing temperature of the reaction mixture.
  • The reaction time varies depending upon the concentration of the reaction substrate and the reaction temperature, and is optionally set usually within a range of from 5 minutes to 100 hours, and is preferably from 1 to 48 hours.
  • With respect to the equivalent amount of the reaction substrate, the compound (3D-e) may be used in an amount of from 0.5 to 50 equivalent amount, preferably from 1 to 20 equivalent amount based on the compound (2Q1-c).
  • Then, the compound represented by the formula (4-c) is subjected to dehydration condensation in accordance with the method disclosed in step [B] of Process 1 to produce a compound represented by the formula (1-u) (wherein A1a, A4, A5, R1, R2, R3, D and n are the same as defined above).
  • Some of the compounds represented by the formula (2Q1-c) are known compounds, and some of them are commercially available. The rest of them may be prepared, for example, in accordance with the after-mentioned Reaction Scheme 4.
  • The compound represented by the formula (3D-e) may be prepared, for example, in accordance with the after-mentioned Reaction Scheme 8.
  • Process 15
  • Figure US20210017194A1-20210121-C00040
  • A compound represented by the formula (50) (wherein R2, R3, A1a, A4 and A5 are the same as defined above, and X12 is a chlorine atom, a bromine atom or an iodine atom) and a compound represented by the formula (5-a) (wherein G1, G2, G3 and G4 are the same as defined above) are reacted in accordance with the method disclosed in Process 6 to produce a compound represented by the formula (51) (wherein R2, R3, A1a, A4, A5, G1, G2, G3 and G4 are the same as defined above).
  • Then, the compound represented by the formula (51) and the compound represented by the formula (9) are reacted in accordance with the method disclosed in step [C] of Process 3 to produce a compound represented by the formula (1-v) (wherein R1, R2, R3, A1a, A4, A5, G1, G2, G3 and G4 are the same as defined above).
  • Further, the compound represented by the formula (51) and a halogenating agent are reacted in accordance with the method disclosed in step [D] of Process 3 to produce a compound represented by the formula (52) (wherein R2, R3, A1a, A4, A5, G1, G2, G3, G4 and X10 are the same as defined above).
  • Then, the compound represented by the formula (52) and a compound represented by the formula (24) are reacted in accordance with the method disclosed in step [E] of Process 3 to produce a compound represented by the formula (1-v).
  • Further, the compound represented by the formula (1-v) may be produced by reacting the compound represented by the formula (52) and the compound represented by the formula (9) in accordance with the method disclosed in step [E] of Process 3.
  • The compound represented by the formula (50) may be prepared, for example, in accordance with the after-mentioned Reaction Scheme 9.
  • Some of the compounds represented by the formula (5-a) are known compounds, and some of them are commercially available.
  • Process 16
  • Figure US20210017194A1-20210121-C00041
  • The compound represented by the formula (50) and the compound represented by the formula (9) are reacted in a solvent or without solvent, and as the case requires, in the presence of a base to produce a compound represented by the formula (53) (wherein R1, R2, R3, A1a, A4 and A5 are the same as defined above). In a case where a solvent is used, the solvent used may be any solvent which is inert to the reaction, and for example, water, a lower alcohol such as methanol or ethanol, an ether such as diethyl ether, tetrahydrofuran, 1,4-dioxane or 1,2-dimethoxyethane, an aromatic hydrocarbon such as benzene, chlorobenzene, bromobenzene, xylene or toluene, an aliphatic hydrocarbon such as pentane, hexane or cyclohexane, a halogenated hydrocarbon such as dichloromethane, chloroform or 1,2-dichloroethane, a nitrile such as acetonitrile or propionitrile, an amide such as N,N-dimethylformamide, N,N-dimethylacetamide, N-methylpyrrolidone or N,N′-dimethylimidazolidinone, a sulfoxide such as dimethyl sulfoxide, a nitrogen-containing aromatic compound such as pyridine or quinoline, or a mixture thereof may be mentioned.
  • The reaction may be carried out in the presence of a base. The base to be used may, for example, be an organic base such as pyridine, 2,6-lutidine, 4-dimethylaminopyridine, triethylamine, diisopropylethylamine, tributylamine, 4-(dimethylamino)pyridine, 1,4-diazabicyclo[2.2.2]octane (DABCO), 1,8-diazabicyclo[5.4.0]-7-undecene (DBU) or 1,5-diazabicyclo[4.3.0]-5-nonene (DBN), or an inorganic base such as sodium hydroxide, potassium hydroxide, sodium hydride, sodium hydrogen carbonate, potassium carbonate or cesium carbonate. The equivalent amount of the base used is from 0.1 to 100 equivalent amount, preferably from 1 to 20 equivalent amount based on the compound represented by the formula (50).
  • The reaction temperature may be set at an optional temperature of from −80° C. to the refluxing temperature of the reaction mixture, and is preferably within a range of from 0° C. to the refluxing temperature of the reaction mixture.
  • The reaction time varies depending upon the concentration of the reaction substrate and the reaction temperature, and is optionally set usually within a range of from 5 minutes to 100 hours, and is preferably from 1 to 48 hours.
  • With respect to the equivalent amount of the reaction substrate, the compound (9) may be used in an amount of from 0.5 to 50 equivalent amount, preferably from 1 to 20 equivalent amount based on the compound (50).
  • Then, the compound represented by the formula (53) and a halogenating agent are reacted in a solvent or without solvent, as the case requires, in the presence of a silylating agent, as the case requires, in the presence of a base, as the case requires, in the presence of an acid to produce a compound represented by the formula (54) (wherein R1, R2, R3, A1a, A4 and A5 are the same as defined above, and X13 is a chlorine atom, a bromine atom or an iodine atom). In a case where a solvent is used, the solvent used may be any solvent which is inert to the reaction, and for example, water, an aliphatic acid such as acetic acid, a lower alcohol such as methanol or ethanol, an ether such as diethyl ether, tetrahydrofuran, 1,4-dioxane or 1,2-dimethoxyethane, an aromatic hydrocarbon such as benzene, chlorobenzene, bromobenzene, xylene or toluene, an aliphatic hydrocarbon such as pentane, hexane or cyclohexane, a halogenated hydrocarbon such as dichloromethane, chloroform or 1,2-dichloroethane, a nitrile such as acetonitrile or propionitrile, an amide such as N,N-dimethylformamide, N,N-dimethylacetamide, N-methylpyrrolidone or N,N′-dimethylimidazolidinone, a sulfoxide such as dimethyl sulfoxide, a nitrogen-containing aromatic compound such as pyridine or quinoline, or a mixture thereof may be mentioned.
  • The halogenating agent may, for example, be chlorine; bromine, iodine, N-chlorosuccinimide, N-bromosuccinimide, N-iodosuccinimide, 1,3-dichloro-5,5-dimethylhydantoin, 1,3-dibromo-5,5-dimethylhydantoin, 1,3-diiodo-5,5-dimethylhydantoin or trimethylphenylammonium tribromide. The equivalent amount of the halogenating agent used is from 0.5 to 50 equivalent amount, preferably from 1 to 20 equivalent amount based on the compound represented by the formula (53).
  • The reaction may be carried out in the presence of a silylating agent. The silylating agent to be used may, for example, be trimethylsilyl trifluoromethanesulfonate. The equivalent amount of the silylating agent used is from 0.005 to 20 equivalent amount, preferably from 0.01 to 5 equivalent amount based on the compound represented by the formula (53).
  • The reaction may be carried out in the presence of a base. The base to be used may, for example, be an organic base such as pyridine, 2,6-lutidine, 4-dimethylaminopyridine, triethylamine, diisopropylethylamine, tributylamine, 4-(dimethylamino)pyridine, 1,4-diazabicyclo[2.2.2]octane (DABCO), 1,8-diazabicyclo[5.4.0]-7-undecene (DBU) or 1,5-diazabicyclo[4.3.0]-5-nonene (DBN), or an inorganic base such as sodium hydroxide, potassium hydroxide, sodium hydride, sodium hydrogen carbonate, potassium carbonate, cesium carbonate or potassium phosphate. The equivalent amount of the base used is from 0.1 to 100 equivalent amount, preferably from 1 to 20 equivalent amount based on the compound represented by the formula (53).
  • The reaction may be carried out in the presence of an acid. The acid to be used may, for example, be hydrobromic acid or an acetic acid solution of hydrogen bromide. The equivalent amount of the acid used is from 0.1 to 100 equivalent amount, preferably from 1 to 20 equivalent amount based on the compound represented by the formula (53).
  • The reaction temperature may be set at an optional temperature of from −80° C. to the refluxing temperature of the reaction mixture, and is preferably within a range of from 0° C. to the refluxing temperature of the reaction mixture.
  • The reaction time varies depending upon the concentration of the reaction substrate and the reaction temperature, and is optionally set usually within a range of from 5 minutes to 100 hours, and is preferably from 1 to 48 hours.
  • Then, the compound represented by the formula (54) and the compound represented by the formula (5-a) are reacted in accordance with the method disclosed in Process 6 to produce a compound represented by the formula (1-v).
  • Process 17
  • Figure US20210017194A1-20210121-C00042
  • The compound represented by the formula (54) and a compound represented by the formula (5-b) (wherein G5 and Y6 are the same as defined above) are reacted in accordance with the method disclosed in Process 6 to produce a compound represented by the formula (1-w) (wherein R1, R2, R3, A1a, A4, A5, G5 and Y6 are the same as defined above).
  • In Processes 1 to 17, the reaction mixture after the reaction can be worked up by an ordinary procedure such as direct concentration, concentration of a solution in an organic solvent after washing with water, pouring into ice-water or extraction with an organic solvent followed by concentration to obtain the desired compound of the present invention. Further, if necessary, the desired product may be isolated or purified by an optional purification method such as recrystallization, column chromatography, thin layer chromatography or liquid chromatography. Otherwise, the compound of the present invention may be subjected to the next step without isolation and purification. In some cases, the dehydration condensation reaction as the subsequent step proceeds in step [A] of Process 1, in step [A] of Process 3, in step [A] of Process 4, in step [A] of Process 5 and in step [A] of Process 14, and thus step [B] may be omitted.
  • Among the compounds represented by the formulae (3D-a) and (3D-b) used in Processes 1 and 5, compounds represented by the formulae (3D-a1) and (3D-b1) wherein n is an integer of 0, and among the compounds represented by the formula (3D-c) used in Processes 6 and 10, a compound represented by the formula (3D-c1) wherein n is an integer of 1 or 2 and a compound represented by the formula (3D-c2) wherein n is an integer of 0, may be produced, for example, in accordance with the following Reaction Scheme 1.
  • Figure US20210017194A1-20210121-C00043
    Figure US20210017194A1-20210121-C00044
  • The compound represented by the formula (5-a) is reacted with a compound represented by the formula (6) (wherein Ra is C1-C6 alkyl) in accordance with the method disclosed in Process 6 to produce a compound represented by the formula (7-a) (wherein G1, G2, G3 and G4 are the same as defined above, and Ra is C1-C6 alkyl).
  • Then, the compound represented by the formula (7-a) is reacted with a halogenating agent in accordance with the method disclosed in Process 7 to produce a compound represented by the formula (8-a) (wherein G1, G2, G3 and G4 are the same as defined above, Ra is C1-C6 alkyl, and X5 is a chlorine atom, a bromine atom or an iodine atom).
  • Then, the compound represented by the formula (8-a) is reacted with a compound represented by the formula (9) (wherein R1 is the same as defined above) in accordance with the method disclosed in step [E] of Process 3 to produce a compound represented by the formula (10-a) (wherein G1, G2, G3, G4 and R1 are the same as defined above, and Ra is C1-C6 alkyl).
  • Then, the compound represented by the formula (10-a) is hydrolyzed in accordance with conventional methods disclosed in literature to produce a compound represented by the formula (3D-a1) (wherein G1, G2, G3, G4 and R1 are the same as defined above).
  • Then, the compound represented by the formula (3D-a1) is reacted with a chlorinating agent in accordance with conventional methods disclosed in literature to produce a compound represented by the formula (3D-b1) (wherein G1, G2, G3, G4 and R1 are the same as defined above).
  • Then, the compound represented by the formula (3D-b1) and N,O-dimethylhydroxylamine represented by the formula (11) or its hydrochloride are reacted, as the case requires, in the presence of a base to produce a compound represented by the formula (12) (wherein G1, G2, G3, G4 and R1 are the same as defined above).
  • Then, the compound represented by the formula (12) and a Grignard reagent represented by the formula (13) (wherein R6 is the same as defined above, and X7 is a chlorine atom, a bromine atom or an iodine atom) are reacted in accordance with conventional methods disclosed in literature to produce a compound represented by the formula (14) (wherein G1, G2, G3, G4, R1 and R6 are the same as defined above).
  • Then, the compound represented by the formula (14) and an oxidizing agent are reacted in accordance with the method disclosed in Process 11 to produce a compound represented by the formula (15) (wherein G1, G2, G3, G4, R1, R6 and n′ are the same as defined above).
  • Then, the compound represented by the formula (15) is reacted with a halogenating agent in accordance with the method disclosed in step [B] of Process 16 to produce a compound represented by the formula (3D-c1) (wherein G1, G2, G3, G4, R1, R6, X2 and n′ are the same as defined above).
  • Further, the compound represented by the formula (14) is reacted with a halogenating agent in accordance with the method disclosed in step [B] of Process 16 to produce a compound represented by the formula (3D-c2) (wherein G1, G2, G3, G4, R1, R6 and X2 are the same as defined above).
  • Some of the compounds represented by the formula (5-a) are known compounds, and some of them are commercially available.
  • Some of the compounds represented by the formula (6) are known compounds, and some of them are commercially available.
  • Some of the compounds represented by the formula (13) are known compounds, and some of them are commercially available.
  • Among the compounds represented by the formula (3D-a) used in Process 1, a compound represented by the formula (3D-a2) wherein n is an integer of 0 may be produced, for example, in accordance with the following Reaction Scheme 2.
  • Figure US20210017194A1-20210121-C00045
  • The compound represented by the formula (5-b) is reacted with the compound represented by the formula (6) in accordance with the method disclosed in Process 6 to produce a compound represented by the formula (7-b) (wherein G5, Y6 and Ra are the same as defined above).
  • Then, the compound represented by the formula (7-b) is reacted with a halogenating agent in accordance with the method disclosed in Process 7 to produce a compound represented by the formula (8-b) (wherein G5, Y6 and Ra are the same as defined above, and X6 is a chlorine atom, a bromine atom or an iodine atom).
  • Then, the compound represented by the formula (8-b) is reacted with the compound represented by the formula (9) in accordance with the method disclosed in step [E] of Process 3 to produce a compound represented by the formula (10-b) (wherein G5, Y6, R1 and Ra are the same as defined above).
  • Then, the compound represented by the formula (10-b) is hydrolyzed in accordance with conventional methods disclosed in literature to produce a compound represented by the formula (3D-a2) (wherein G5, Y6 and R1 are the same as defined above).
  • Some of the compounds represented by the formula (5-b) are known compounds, and some of them are commercially available.
  • The compound represented by the formula (10-a) used in Reaction Scheme 1 may be produced, for example, in accordance with the following Reaction Scheme 3.
  • Figure US20210017194A1-20210121-C00046
  • The compound represented by the formula (7-a) is reacted with the compound represented by the formula (9) and a halogenating agent in accordance with the method disclosed in step [C] of Process 3 to produce a compound represented by the formula (10-a).
  • Among the compounds represented by the formula (2Q1-a) used in Process 1, a compound represented by the formula (2Q1-a-1) may be produced, for example, in accordance with the following Reaction Scheme 4.
  • Figure US20210017194A1-20210121-C00047
  • A compound represented by the formula (25) (wherein R2, R3 and A5 are the same as defined above) is reacted with a brominating agent such as N-bromosuccinimide, for example, in accordance with the method disclosed in WO2007/093901 to produce a compound represented by the formula (26) (wherein R2, R3 and A5 are the same as defined above).
  • Then, the compound represented by the formula (26) is reacted with the compound represented by the formula (16) in accordance with the method disclosed in Process 2 to produce a compound represented by the formula (27) (wherein R2, R3, A1aa and A5 are the same as defined above).
  • Then, the compound represented by the formula (27) is reacted with an aminating agent such as ammonia, aqueous ammonia or lithium amide in accordance with the method disclosed in e.g. WO2012/086848 to produce a compound represented by the formula (2Q1-a-1) (wherein R2, R3, A1aa and A5 are the same as defined above).
  • Some of the compounds represented by the formula (25) are known compounds, and some of them are commercially available.
  • Among the compounds represented by the formula (202-a) used in Process 6, a compound represented by the formula (2Q2-a-1) may be produced, for example, in accordance with the following Reaction Scheme 5.
  • Figure US20210017194A1-20210121-C00048
  • A compound represented by the formula (28) (wherein R2 and R3 are the same as defined above, and Rb is C1-C6 alkyl) is reacted with a compound represented by the formula (29) (wherein Rc is C1-C6 alkyl, and X8 is a favorable leaving group such as a halogen atom, C1-C4 alkylsulfonate (such as methanesulfonyloxy), C1-C4 haloalkylsulfonate (such as trifluoromethanesulfonyloxy) or arylsulfonate (such as benzenesulfonyloxy or p-toluenesulfonyloxy)) for example in accordance with the method disclosed in e.g. Journal of Fluorine Chemistry, 1989, Vol. 44, p. 361, Journal of Heterocyclic Chemistry, 1993, Vol. 33, p. 49, or Synthesis 2000, p. 1078 to produce a compound represented by the formula (30) (wherein R2, R3, Rb and Rc are the same as defined above).
  • Then, the compound represented by the formula (30) is reacted with a compound represented by the formula (31) (wherein R5 is the same as defined above) in accordance with e.g. Bioorganic & Medicinal Chemistry Letters, 2011, Vol. 21, p. 1601 to produce a compound represented by the formula (32) (wherein R2, R3 and R5 are the same as defined above).
  • Then, the compound represented by the formula (32) is reacted with a chlorinating agent such as phosphorus oxychloride, thionyl chloride or oxalyl chloride for example in accordance with e.g. WO2012/061337 or WO2005/033084 to produce a compound represented by the formula (33) (wherein R2, R3 and R5 are the same as defined above).
  • Then, the compound represented by the formula (33) is reacted with aqueous ammonia for example in accordance with the method disclosed in e.g. WO2012/061337 or WO2005/033084 to produce a compound represented by the formula (2Q2-a-1).
  • Some of the compounds represented by the formula (28) are known compounds, and some of them are commercially available.
  • Some of the compounds represented by the formula (29) are known compounds, and some of them are commercially available.
  • Some of the compounds represented by the formula (31) are known compounds, and some of them are commercially available.
  • The compound represented by the formula (3D-d) used in Process 8 may be produced, for example, in accordance with the following Reaction Scheme 6.
  • Figure US20210017194A1-20210121-C00049
  • The compound represented by the formula (3D-a) is reacted with diphenylphosphoryl azide (DPPA) and a compound represented by the formula (34) (wherein Rd is C1-C6 alkyl) for example in accordance with the method disclosed in e.g. WO2012/174312 or WO2013/018021 to produce a compound represented by the formula (3D-d-1) (wherein R1, Rd, D and n are the same as defined above).
  • Then, the compound represented by the formula (3D-d-1) is reacted with an acid for example in accordance with the method disclosed in e.g. WO2012/174312 or WO2003/018021 to produce a compound represented by the formula (3D-d).
  • Among the compounds represented by the formula (2Q3-b) used in Process 9, a compound represented by the formula (2Q3-b-1) may be produced, for example, in accordance with the following Reaction Scheme 7.
  • Figure US20210017194A1-20210121-C00050
  • A compound represented by the formula (35) (wherein R2, R3 and R5 are the same as defined above) is halogenated by using a halogenating agent for example in accordance with the method disclosed in e.g. WO2013/064460 or WO2013/064461 to produce a compound represented by the formula (36) (wherein R2, R3, R5 and X3 are the same as defined above).
  • Then, the compound represented by the formula (36) is reduced for example in accordance with the method disclosed in e.g. WO2013/064460 or WO2013/064461 to produce a compound represented by the formula (37) (wherein R2, R3, R5 and X3 are the same as defined above).
  • Then, the compound represented by the formula (37) is oxidized for example in accordance with the method disclosed in e.g. WO2013/064460 or WO2013/064461 to produce a compound represented by the formula (2Q3-b-1) (wherein R2, R3, R5 and X3 are the same as defined above).
  • Some of the compounds represented by the formula (35) are known compounds, and some of them are commercially available. The rest of them may be prepared from known compounds in accordance with conventional methods disclosed in literature, for example, in accordance with the reaction conditions disclosed in e.g. WO2000/039094.
  • Among the compounds represented by the formula (3D-e) used in Process 14, a compound represented by the formula (3D-e1) wherein n is an integer of 0 may be produced, for example, in accordance with the following Reaction Scheme 8.
  • Figure US20210017194A1-20210121-C00051
  • The compound represented by the formula (3D-b1) is reacted with aqueous ammonia for example in accordance with the method disclosed in e.g. JP-A-2009-108046 to produce a compound represented by the formula (3D-e1) (wherein R1, G1, G2, G3 and G4 are the same as defined above).
  • The compound represented by the formula (50) used in Processes 15 and 16 may be produced, for example, in accordance with the following Reaction Scheme 9.
  • Figure US20210017194A1-20210121-C00052
  • A compound represented by the formula (2Q1-d) is reacted with compound represented by the formula (55) in accordance with the method disclosed in step [A] of Process 1 to produce a compound represented by the formula (56) (wherein R2, R3, A1a, A4 and A5 are the same as defined above).
  • Then, the compound represented by the formula (56) is subjected to deacetylation for example in accordance with the method disclosed in e.g. Synthesis, 1991, p. 465 to produce a compound represented by the formula (57) (wherein R2, R3, A1a, A4 and A5 are the same as defined above).
  • Then, the compound represented by the formula (57) is subjected to dehydration condensation in accordance with the method disclosed in step [B] of Process 1 to produce a compound represented by the formula (58) (wherein R2, R3, A1a, A4 and A5 are the same as defined above).
  • Then, the compound represented by the formula (58) and an oxidizing agent are reacted for example in accordance with the method disclosed in e.g. Journal of Medicinal Chemistry, 1998, Vol. 31, p. 545 to produce a compound represented by the formula (59) (wherein R2, R3, A1a, A4 and A5 are the same as defined above).
  • Then, the compound represented by the formula (59) and a halogenating agent are reacted in accordance with the method disclosed in step [B] of Process 16 or in accordance with the method disclosed in e.g. Journal of Medicinal Chemistry, 1988, Vol. 31, p. 656 or Journal of Medicinal Chemistry, 2005, Vol. 48, p. 7658 to produce a compound represented by the formula (50).
  • The compound represented by the formula (55) is a known compound and is commercially available. Further, the compound represented by the formula (55) has optically active isomers due to the presence of an asymmetric carbon atom, and the present invention covers any optical isomers and any racemates.
  • In each reaction, after the reaction, an ordinary post treatment is carried out to obtain respective production intermediates to be raw material compounds in Processes 1 to 17.
  • Further, each production intermediate produced by the above methods may be used for the reaction in the subsequent step as it is without isolation nor purification. In some cases, the dehydration condensation reaction as the subsequent step proceeds, in step [B] of Reaction Scheme 9, and thus step [C] may be omitted.
  • As the condensed heterocyclic compounds represented by the formula (1) of the present invention, which can be produced by the above methods, compounds represented by the following Tables 1 to 5 may be mentioned. However, the compounds shown in the following Tables 1 to 5 merely exemplify the present invention, and the present invention is by no means restricted thereto.
  • In Tables, Me represents methyl, and similarly, Et represents ethyl, nPr represents normal propyl, and iPr represents isopropyl.
  • TABLE 1
    Figure US20210017194A1-20210121-C00053
    Figure US20210017194A1-20210121-C00054
    Figure US20210017194A1-20210121-C00055
    Figure US20210017194A1-20210121-C00056
    Figure US20210017194A1-20210121-C00057
    Figure US20210017194A1-20210121-C00058
    Figure US20210017194A1-20210121-C00059
    Figure US20210017194A1-20210121-C00060
    Figure US20210017194A1-20210121-C00061
    Figure US20210017194A1-20210121-C00062
    Figure US20210017194A1-20210121-C00063
    Figure US20210017194A1-20210121-C00064
    Figure US20210017194A1-20210121-C00065
    Figure US20210017194A1-20210121-C00066
    Figure US20210017194A1-20210121-C00067
    Figure US20210017194A1-20210121-C00068
    Figure US20210017194A1-20210121-C00069
    Figure US20210017194A1-20210121-C00070
    Figure US20210017194A1-20210121-C00071
    Figure US20210017194A1-20210121-C00072
    Figure US20210017194A1-20210121-C00073
    Figure US20210017194A1-20210121-C00074
    Figure US20210017194A1-20210121-C00075
    Figure US20210017194A1-20210121-C00076
    Figure US20210017194A1-20210121-C00077
    Figure US20210017194A1-20210121-C00078
    Figure US20210017194A1-20210121-C00079
    Figure US20210017194A1-20210121-C00080
    Figure US20210017194A1-20210121-C00081
    Figure US20210017194A1-20210121-C00082
    Figure US20210017194A1-20210121-C00083
    Figure US20210017194A1-20210121-C00084
    Figure US20210017194A1-20210121-C00085
    Figure US20210017194A1-20210121-C00086
    Figure US20210017194A1-20210121-C00087
    Figure US20210017194A1-20210121-C00088
    Figure US20210017194A1-20210121-C00089
    Figure US20210017194A1-20210121-C00090
    Figure US20210017194A1-20210121-C00091
    Figure US20210017194A1-20210121-C00092
    Figure US20210017194A1-20210121-C00093
    Figure US20210017194A1-20210121-C00094
    Figure US20210017194A1-20210121-C00095
    Figure US20210017194A1-20210121-C00096
    Figure US20210017194A1-20210121-C00097
    Figure US20210017194A1-20210121-C00098
    Figure US20210017194A1-20210121-C00099
    Figure US20210017194A1-20210121-C00100
    Figure US20210017194A1-20210121-C00101
    Figure US20210017194A1-20210121-C00102
    Figure US20210017194A1-20210121-C00103
    Figure US20210017194A1-20210121-C00104
    Figure US20210017194A1-20210121-C00105
    Figure US20210017194A1-20210121-C00106
    Figure US20210017194A1-20210121-C00107
    Figure US20210017194A1-20210121-C00108
    Figure US20210017194A1-20210121-C00109
    Figure US20210017194A1-20210121-C00110
    Figure US20210017194A1-20210121-C00111
    Figure US20210017194A1-20210121-C00112
    Figure US20210017194A1-20210121-C00113
    Figure US20210017194A1-20210121-C00114
    Figure US20210017194A1-20210121-C00115
    Figure US20210017194A1-20210121-C00116
    W1 R1 Y1 Y2 Y3 Y4 n
    CF3 Me H H H H 0
    CF3 Me H H H H 1
    CF3 Me H H H H 2
    CF3 Me F H H H 0
    CF3 Me F H H H 1
    CF3 Me F H H H 2
    CF3 Me Cl H H H 0
    CF3 Me Cl H H H 1
    CF3 Me Cl H H H 2
    CF3 Me Br H H H 0
    CF3 Me Br H H H 1
    CF3 Me Br H H H 2
    CF3 Me I H H H 0
    CF3 Me I H H H 1
    CF3 Me I H H H 2
    CF3 Me Me H H H 0
    CF3 Me Me H H H 1
    CF3 Me Me H H H 2
    CF3 Me CF3 H H H 0
    CF3 Me CF3 H H H 1
    CF3 Me CF3 H H H 2
    CF3 Me H F H H 0
    CF3 Me H F H H 1
    CF3 Me H F H H 2
    CF3 Me H Cl H H 0
    CF3 Me H Cl H H 1
    CF3 Me H Cl H H 2
    CF3 Me H Br H H 0
    CF3 Me H Br H H 1
    CF3 Me H Br H H 2
    CF3 Me H I H H 0
    CF3 Me H I H H 1
    CF3 Me H I H H 2
    CF3 Me H Me H H 0
    CF3 Me H Me H H 1
    CF3 Me H Me H H 2
    CF3 Me H CF3 H H 0
    CF3 Me H CF3 H H 1
    CF3 Me H CF3 H H 2
    CF3 Me H CF2CF3 H H 0
    CF3 Me H CF2CF3 H H 1
    CF3 Me H CF2CF3 H H 2
    CF3 Me H CF(CF3)2 H H 0
    CF3 Me H CF(CF3)2 H H 1
    CF3 Me H CF(CF3)2 H H 2
    CF3 Me H SMe H H 0
    CF3 Me H SMe H H 1
    CF3 Me H SMe H H 2
    CF3 Me H SOMe H H 0
    CF3 Me H SOMe H H 1
    CF3 Me H SOMe H H 2
    CF3 Me H SO2Me H H 0
    CF3 Me H SO2Me H H 1
    CF3 Me H SO2Me H H 2
    CF3 Me H OMe H H 0
    CF3 Me H OMe H H 1
    CF3 Me H OMe H H 2
    CF3 Me H OCF3 H H 0
    CF3 Me H OCF3 H H 1
    CF3 Me H OCF3 H H 2
    CF3 Me H NO2 H H 0
    CF3 Me H NO2 H H 1
    CF3 Me H NO2 H H 2
    CF3 Me H CN H H 0
    CF3 Me H CN H H 1
    CF3 Me H CN H H 2
    CF3 Me H H F H 0
    CF3 Me H H F H 1
    CF3 Me H H F H 2
    CF3 Me H H Cl H 0
    CF3 Me H H Cl H 1
    CF3 Me H H Cl H 2
    CF3 Me H H Br H 0
    CF3 Me H H Br H 1
    CF3 Me H H Br H 2
    CF3 Me H H I H 0
    CF3 Me H H I H 1
    CF3 Me H H I H 2
    CF3 Me H H Me H 0
    CF3 Me H H Me H 1
    CF3 Me H H Me H 2
    CF3 Me H H CF3 H 0
    CF3 Me H H CF3 H 1
    CF3 Me H H CF3 H 2
    CF3 Me H H CF2CF3 H 0
    CF3 Me H H CF2CF3 H 1
    CF3 Me H H CF2CF3 H 2
    CF3 Me H H CF(CF3)2 H 0
    CF3 Me H H CF(CF3)2 H 1
    CF3 Me H H CF(CF3)2 H 2
    CF3 Me H H SMe H 0
    CF3 Me H H SMe H 1
    CF3 Me H H SMe H 2
    CF3 Me H H SOMe H 0
    CF3 Me H H SOMe H 1
    CF3 Me H H SOMe H 2
    CF3 Me H H SO2Me H 0
    CF3 Me H H SO2Me H 1
    CF3 Me H H SO2Me H 2
    CF3 Me H H OMe H 0
    CF3 Me H H OMe H 1
    CF3 Me H H OMe H 2
    CF3 Me H H OCF3 H 0
    CF3 Me H H OCF3 H 1
    CF3 Me H H OCF3 H 2
    CF3 Me H H NO2 H 0
    CF3 Me H H NO2 H 1
    CF3 Me H H NO2 H 2
    CF3 Me H H CN H 0
    CF3 Me H H CN H 1
    CF3 Me H H CN H 2
    CF3 Me H H H F 0
    CF3 Me H H H F 1
    CF3 Me H H H F 2
    CF3 Me H H H Cl 0
    CF3 Me H H H Cl 1
    CF3 Me H H H Cl 2
    CF3 Me H H H Br 0
    CF3 Me H H H Br 1
    CF3 Me H H H Br 2
    CF3 Me H H H I 0
    CF3 Me H H H I 1
    CF3 Me H H H I 2
    CF3 Me H H H Me 0
    CF3 Me H H H Me 1
    CF3 Me H H H Me 2
    CF3 Me H H H CF3 0
    CF3 Me H H H CF3 1
    CF3 Me H H H CF3 2
    CF3 Me H H H CF2CF3 0
    CF3 Me H H H CF2CF3 1
    CF3 Me H H H CF2CF3 2
    CF3 Me H H H CF(CF3)2 0
    CF3 Me H H H CF(CF3)2 1
    CF3 Me H H H CF(CF3)2 2
    CF3 Me H H H SMe 0
    CF3 Me H H H SMe 1
    CF3 Me H H H SMe 2
    CF3 Me H H H SOMe 0
    CF3 Me H H H SOMe 1
    CF3 Me H H H SOMe 2
    CF3 Me H H H SO2Me 0
    CF3 Me H H H SO2Me 1
    CF3 Me H H H SO2Me 2
    CF3 Me H H H OMe 0
    CF3 Me H H H OMe 1
    CF3 Me H H H OMe 2
    CF3 Me H H H OCF3 0
    CF3 Me H H H OCF3 1
    CF3 Me H H H OCF3 2
    CF3 Me H H H NO2 0
    CF3 Me H H H NO2 1
    CF3 Me H H H NO2 2
    CF3 Me H H H CN 0
    CF3 Me H H H CN 1
    CF3 Me H H H CN 2
    CF3 Me H F H F 0
    CF3 Me H F H F 1
    CF3 Me H F H F 2
    CF3 Me H Cl H Cl 0
    CF3 Me H Cl H Cl 1
    CF3 Me H Cl H Cl 2
    CF3 Me H Br H Br 0
    CF3 Me H Br H Br 1
    CF3 Me H Br H Br 2
    CF3 Me H I H I 0
    CF3 Me H I H I 1
    CF3 Me H I H I 2
    CF3 Me H F H Cl 0
    CF3 Me H F H Cl 1
    CF3 Me H F H Cl 2
    CF3 Me H F H Br 0
    CF3 Me H F H Br 1
    CF3 Me H F H Br 2
    CF3 Me H F H I 0
    CF3 Me H F H I 1
    CF3 Me H F H I 2
    CF3 Me H Cl H F 0
    CF3 Me H Cl H F 1
    CF3 Me H Cl H F 2
    CF3 Me H Cl H Br 0
    CF3 Me H Cl H Br 1
    CF3 Me H Cl H Br 2
    CF3 Me H Cl H I 0
    CF3 Me H Cl H I 1
    CF3 Me H Cl H I 2
    CF3 Me H Br H F 0
    CF3 Me H Br H F 1
    CF3 Me H Br H F 2
    CF3 Me H Br H Cl 0
    CF3 Me H Br H Cl 1
    CF3 Me H Br H Cl 2
    CF3 Me H Br H I 0
    CF3 Me H Br H I 1
    CF3 Me H Br H I 2
    CF3 Me H I H F 0
    CF3 Me H I H F 1
    CF3 Me H I H F 2
    CF3 Me H I H Cl 0
    CF3 Me H I H Cl 1
    CF3 Me H I H Cl 2
    CF3 Me H I H Br 0
    CF3 Me H I H Br 1
    CF3 Me H I H Br 2
    CF3 Me H F H CN 0
    CF3 Me H F H CN 1
    CF3 Me H F H CN 2
    CF3 Me H Cl H CN 0
    CF3 Me H Cl H CN 1
    CF3 Me H Cl H CN 2
    CF3 Me H Br H CN 0
    CF3 Me H Br H CN 1
    CF3 Me H Br H CN 2
    CF3 Me H I H CN 0
    CF3 Me H I H CN 1
    CF3 Me H I H CN 2
    CF3 Me H CF3 H F 0
    CF3 Me H CF3 H F 1
    CF3 Me H CF3 H F 2
    CF3 Me H CF3 H Cl 0
    CF3 Me H CF3 H Cl 1
    CF3 Me H CF3 H Cl 2
    CF3 Me H CF3 H Br 0
    CF3 Me H CF3 H Br 1
    CF3 Me H CF3 H Br 2
    CF3 Me H CF3 H I 0
    CF3 Me H CF3 H I 1
    CF3 Me H CF3 H I 2
    CF3 Me H CF3 H CN 0
    CF3 Me H CF3 H CN 1
    CF3 Me H CF3 H CN 2
    CF3 Me H F F H 0
    CF3 Me H F F H 1
    CF3 Me H F F H 2
    CF3 Me H Cl Cl H 0
    CF3 Me H Cl Cl H 1
    CF3 Me H Cl Cl H 2
    CF3 Me H Br Br H 0
    CF3 Me H Br Br H 1
    CF3 Me H Br Br H 2
    CF3 Me H I I H 0
    CF3 Me H I I H 1
    CF3 Me H I I H 2
    CF3 Me H F Cl H 0
    CF3 Me H F Cl H 1
    CF3 Me H F Cl H 2
    CF3 Me H F Br H 0
    CF3 Me H F Br H 1
    CF3 Me H F Br H 2
    CF3 Me H F I H 0
    CF3 Me H F I H 1
    CF3 Me H F I H 2
    CF3 Me H Cl F H 0
    CF3 Me H Cl F H 1
    CF3 Me H Cl F H 2
    CF3 Me H Cl Br H 0
    CF3 Me H Cl Br H 1
    CF3 Me H Cl Br H 2
    CF3 Me H Cl I H 0
    CF3 Me H Cl I H 1
    CF3 Me H Cl I H 2
    CF3 Me H Br F H 0
    CF3 Me H Br F H 1
    CF3 Me H Br F H 2
    CF3 Me H Br Cl H 0
    CF3 Me H Br Cl H 1
    CF3 Me H Br Cl H 2
    CF3 Me H Br I H 0
    CF3 Me H Br I H 1
    CF3 Me H Br I H 2
    CF3 Me H I F H 0
    CF3 Me H I F H 1
    CF3 Me H I F H 2
    CF3 Me H I Cl H 0
    CF3 Me H I Cl H 1
    CF3 Me H I Cl H 2
    CF3 Me H I Br H 0
    CF3 Me H I Br H 1
    CF3 Me H I Br H 2
    CF3 Me H F CN H 0
    CF3 Me H F CN H 1
    CF3 Me H F CN H 2
    CF3 Me H Cl CN H 0
    CF3 Me H Cl CN H 1
    CF3 Me H Cl CN H 2
    CF3 Me H Br CN H 0
    CF3 Me H Br CN H 1
    CF3 Me H Br CN H 2
    CF3 Me H I CN H 0
    CF3 Me H I CN H 1
    CF3 Me H I CN H 2
    CF3 Me H CF3 F H 0
    CF3 Me H CF3 F H 1
    CF3 Me H CF3 F H 2
    CF3 Me H CF3 Cl H 0
    CF3 Me H CF3 Cl H 1
    CF3 Me H CF3 Cl H 2
    CF3 Me H CF3 Br H 0
    CF3 Me H CF3 Br H 1
    CF3 Me H CF3 Br H 2
    CF3 Me H CF3 I H 0
    CF3 Me H CF3 I H 1
    CF3 Me H CF3 I H 2
    CF3 Me H CF3 CN H 0
    CF3 Me H CF3 CN H 1
    CF3 Me H CF3 CN H 2
    CF3 Et H H H H 0
    CF3 Et H H H H 1
    CF3 Et H H H H 2
    CF3 Et F H H H 0
    CF3 Et F H H H 1
    CF3 Et F H H H 2
    CF3 Et Cl H H H 0
    CF3 Et Cl H H H 1
    CF3 Et Cl H H H 2
    CF3 Et Br H H H 0
    CF3 Et Br H H H 1
    CF3 Et Br H H H 2
    CF3 Et I H H H 0
    CF3 Et I H H H 1
    CF3 Et I H H H 2
    CF3 Et Me H H H 0
    CF3 Et Me H H H 1
    CF3 Et Me H H H 2
    CF3 Et CF3 H H H 0
    CF3 Et CF3 H H H 1
    CF3 Et CF3 H H H 2
    CF3 Et H F H H 0
    CF3 Et H F H H 1
    CF3 Et H F H H 2
    CF3 Et H Cl H H 0
    CF3 Et H Cl H H 1
    CF3 Et H Cl H H 2
    CF3 Et H Br H H 0
    CF3 Et H Br H H 1
    CF3 Et H Br H H 2
    CF3 Et H I H H 0
    CF3 Et H I H H 1
    CF3 Et H I H H 2
    CF3 Et H Me H H 0
    CF3 Et H Me H H 1
    CF3 Et H Me H H 2
    CF3 Et H CF3 H H 0
    CF3 Et H CF3 H H 1
    CF3 Et H CF3 H H 2
    CF3 Et H CF2CF3 H H 0
    CF3 Et H CF2CF3 H H 1
    CF3 Et H CF2CF3 H H 2
    CF3 Et H CF(CF3)2 H H 0
    CF3 Et H CF(CF3)2 H H 1
    CF3 Et H CF(CF3)2 H H 2
    CF3 Et H SMe H H 0
    CF3 Et H SMe H H 1
    CF3 Et H SMe H H 2
    CF3 Et H SOMe H H 0
    CF3 Et H SOMe H H 1
    CF3 Et H SOMe H H 2
    CF3 Et H SO2Me H H 0
    CF3 Et H SO2Me H H 1
    CF3 Et H SO2Me H H 2
    CF3 Et H OMe H H 0
    CF3 Et H OMe H H 1
    CF3 Et H OMe H H 2
    CF3 Et H OCF3 H H 0
    CF3 Et H OCF3 H H 1
    CF3 Et H OCF3 H H 2
    CF3 Et H NO2 H H 0
    CF3 Et H NO2 H H 1
    CF3 Et H NO2 H H 2
    CF3 Et H CN H H 0
    CF3 Et H CN H H 1
    CF3 Et H CN H H 2
    CF3 Et H H F H 0
    CF3 Et H H F H 1
    CF3 Et H H F H 2
    CF3 Et H H Cl H 0
    CF3 Et H H Cl H 1
    CF3 Et H H Cl H 2
    CF3 Et H H Br H 0
    CF3 Et H H Br H 1
    CF3 Et H H Br H 2
    CF3 Et H H I H 0
    CF3 Et H H I H 1
    CF3 Et H H I H 2
    CF3 Et H H Me H 0
    CF3 Et H H Me H 1
    CF3 Et H H Me H 2
    CF3 Et H H CF3 H 0
    CF3 Et H H CF3 H 1
    CF3 Et H H CF3 H 2
    CF3 Et H H CF2CF3 H 0
    CF3 Et H H CF2CF3 H 1
    CF3 Et H H CF2CF3 H 2
    CF3 Et H H CF(CF3)2 H 0
    CF3 Et H H CF(CF3)2 H 1
    CF3 Et H H CF(CF3)2 H 2
    CF3 Et H H SMe H 0
    CF3 Et H H SMe H 1
    CF3 Et H H SMe H 2
    CF3 Et H H SOMe H 0
    CF3 Et H H SOMe H 1
    CF3 Et H H SOMe H 2
    CF3 Et H H SO2Me H 0
    CF3 Et H H SO2Me H 1
    CF3 Et H H SO2Me H 2
    CF3 Et H H OMe H 0
    CF3 Et H H OMe H 1
    CF3 Et H H OMe H 2
    CF3 Et H H OCF3 H 0
    CF3 Et H H OCF3 H 1
    CF3 Et H H OCF3 H 2
    CF3 Et H H NO2 H 0
    CF3 Et H H NO2 H 1
    CF3 Et H H NO2 H 2
    CF3 Et H H CN H 0
    CF3 Et H H CN H 1
    CF3 Et H H CN H 2
    CF3 Et H H H F 0
    CF3 Et H H H F 1
    CF3 Et H H H F 2
    CF3 Et H H H Cl 0
    CF3 Et H H H Cl 1
    CF3 Et H H H Cl 2
    CF3 Et H H H Br 0
    CF3 Et H H H Br 1
    CF3 Et H H H Br 2
    CF3 Et H H H I 0
    CF3 Et H H H I 1
    CF3 Et H H H I 2
    CF3 Et H H H Me 0
    CF3 Et H H H Me 1
    CF3 Et H H H Me 2
    CF3 Et H H H CF3 0
    CF3 Et H H H CF3 1
    CF3 Et H H H CF3 2
    CF3 Et H H H CF2CF3 0
    CF3 Et H H H CF2CF3 1
    CF3 Et H H H CF2CF3 2
    CF3 Et H H H CF(CF3)2 0
    CF3 Et H H H CF(CF3)2 1
    CF3 Et H H H CF(CF3)2 2
    CF3 Et H H H SMe 0
    CF3 Et H H H SMe 1
    CF3 Et H H H SMe 2
    CF3 Et H H H SOMe 0
    CF3 Et H H H SOMe 1
    CF3 Et H H H SOMe 2
    CF3 Et H H H SO2Me 0
    CF3 Et H H H SO2Me 1
    CF3 Et H H H SO2Me 2
    CF3 Et H H H OMe 0
    CF3 Et H H H OMe 1
    CF3 Et H H H OMe 2
    CF3 Et H H H OCF3 0
    CF3 Et H H H OCF3 1
    CF3 Et H H H OCF3 2
    CF3 Et H H H NO2 0
    CF3 Et H H H NO2 1
    CF3 Et H H H NO2 2
    CF3 Et H H H CN 0
    CF3 Et H H H CN 1
    CF3 Et H H H CN 2
    CF3 Et H F H F 0
    CF3 Et H F H F 1
    CF3 Et H F H F 2
    CF3 Et H Cl H Cl 0
    CF3 Et H Cl H Cl 1
    CF3 Et H Cl H Cl 2
    CF3 Et H Br H Br 0
    CF3 Et H Br H Br 1
    CF3 Et H Br H Br 2
    CF3 Et H I H I 0
    CF3 Et H I H I 1
    CF3 Et H I H I 2
    CF3 Et H F H Cl 0
    CF3 Et H F H Cl 1
    CF3 Et H F H Cl 2
    CF3 Et H F H Br 0
    CF3 Et H F H Br 1
    CF3 Et H F H Br 2
    CF3 Et H F H I 0
    CF3 Et H F H I 1
    CF3 Et H F H I 2
    CF3 Et H Cl H F 0
    CF3 Et H Cl H F 1
    CF3 Et H Cl H F 2
    CF3 Et H Cl H Br 0
    CF3 Et H Cl H Br 1
    CF3 Et H Cl H Br 2
    CF3 Et H Cl H I 0
    CF3 Et H Cl H I 1
    CF3 Et H Cl H I 2
    CF3 Et H Br H F 0
    CF3 Et H Br H F 1
    CF3 Et H Br H F 2
    CF3 Et H Br H Cl 0
    CF3 Et H Br H Cl 1
    CF3 Et H Br H Cl 2
    CF3 Et H Br H I 0
    CF3 Et H Br H I 1
    CF3 Et H Br H I 2
    CF3 Et H I H F 0
    CF3 Et H I H F 1
    CF3 Et H I H F 2
    CF3 Et H I H Cl 0
    CF3 Et H I H Cl 1
    CF3 Et H I H Cl 2
    CF3 Et H I H Br 0
    CF3 Et H I H Br 1
    CF3 Et H I H Br 2
    CF3 Et H F H CN 0
    CF3 Et H F H CN 1
    CF3 Et H F H CN 2
    CF3 Et H Cl H CN 0
    CF3 Et H Cl H CN 1
    CF3 Et H Cl H CN 2
    CF3 Et H Br H CN 0
    CF3 Et H Br H CN 1
    CF3 Et H Br H CN 2
    CF3 Et H I H CN 0
    CF3 Et H I H CN 1
    CF3 Et H I H CN 2
    CF3 Et H CF3 H F 0
    CF3 Et H CF3 H F 1
    CF3 Et H CF3 H F 2
    CF3 Et H CF3 H Cl 0
    CF3 Et H CF3 H Cl 1
    CF3 Et H CF3 H Cl 2
    CF3 Et H CF3 H Br 0
    CF3 Et H CF3 H Br 1
    CF3 Et H CF3 H Br 2
    CF3 Et H CF3 H I 0
    CF3 Et H CF3 H I 1
    CF3 Et H CF3 H I 2
    CF3 Et H CF3 H CN 0
    CF3 Et H CF3 H CN 1
    CF3 Et H CF3 H CN 2
    CF3 Et H F F H 0
    CF3 Et H F F H 1
    CF3 Et H F F H 2
    CF3 Et H Cl Cl H 0
    CF3 Et H Cl Cl H 1
    CF3 Et H Cl Cl H 2
    CF3 Et H Br Br H 0
    CF3 Et H Br Br H 1
    CF3 Et H Br Br H 2
    CF3 Et H I I H 0
    CF3 Et H I I H 1
    CF3 Et H I I H 2
    CF3 Et H F Cl H 0
    CF3 Et H F Cl H 1
    CF3 Et H F Cl H 2
    CF3 Et H F Br H 0
    CF3 Et H F Br H 1
    CF3 Et H F Br H 2
    CF3 Et H F I H 0
    CF3 Et H F I H 1
    CF3 Et H F I H 2
    CF3 Et H Cl F H 0
    CF3 Et H Cl F H 1
    CF3 Et H Cl F H 2
    CF3 Et H Cl Br H 0
    CF3 Et H Cl Br H 1
    CF3 Et H Cl Br H 2
    CF3 Et H Cl I H 0
    CF3 Et H Cl I H 1
    CF3 Et H Cl I H 2
    CF3 Et H Br F H 0
    CF3 Et H Br F H 1
    CF3 Et H Br F H 2
    CF3 Et H Br Cl H 0
    CF3 Et H Br Cl H 1
    CF3 Et H Br Cl H 2
    CF3 Et H Br I H 0
    CF3 Et H Br I H 1
    CF3 Et H Br I H 2
    CF3 Et H I F H 0
    CF3 Et H I F H 1
    CF3 Et H I F H 2
    CF3 Et H I Cl H 0
    CF3 Et H I Cl H 1
    CF3 Et H I Cl H 2
    CF3 Et H I Br H 0
    CF3 Et H I Br H 1
    CF3 Et H I Br H 2
    CF3 Et H F CN H 0
    CF3 Et H F CN H 1
    CF3 Et H F CN H 2
    CF3 Et H Cl CN H 0
    CF3 Et H Cl CN H 1
    CF3 Et H Cl CN H 2
    CF3 Et H Br CN H 0
    CF3 Et H Br CN H 1
    CF3 Et H Br CN H 2
    CF3 Et H I CN H 0
    CF3 Et H I CN H 1
    CF3 Et H I CN H 2
    CF3 Et H CF3 F H 0
    CF3 Et H CF3 F H 1
    CF3 Et H CF3 F H 2
    CF3 Et H CF3 Cl H 0
    CF3 Et H CF3 Cl H 1
    CF3 Et H CF3 Cl H 2
    CF3 Et H CF3 Br H 0
    CF3 Et H CF3 Br H 1
    CF3 Et H CF3 Br H 2
    CF3 Et H CF3 I H 0
    CF3 Et H CF3 I H 1
    CF3 Et H CF3 I H 2
    CF3 Et H CF3 CN H 0
    CF3 Et H CF3 CN H 1
    CF3 Et H CF3 CN H 2
    CF3 nPr H H H H 0
    CF3 nPr H H H H 1
    CF3 nPr H H H H 2
    CF3 nPr F H H H 0
    CF3 nPr F H H H 1
    CF3 nPr F H H H 2
    CF2 nPr Cl H H H 0
    CF3 nPr Cl H H H 1
    CF3 nPr Cl H H H 2
    CF3 nPr Br H H H 0
    CF3 nPr Br H H H 1
    CF3 nPr Br H H H 2
    CF3 nPr I H H H 0
    CF3 nPr I H H H 1
    CF3 nPr I H H H 2
    CF3 nPr Me H H H 0
    CF3 nPr Me H H H 1
    CF3 nPr Me H H H 2
    CF3 nPr CF3 H H H 0
    CF3 nPr CF3 H H H 1
    CF3 nPr CF3 H H H 2
    CF3 nPr H F H H 0
    CF3 nPr H F H H 1
    CF3 nPr H F H H 2
    CF3 nPr H Cl H H 0
    CF3 nPr H Cl H H 1
    CF3 nPr H Cl H H 2
    CF3 nPr H Br H H 0
    CF3 nPr H Br H H 1
    CF3 nPr H Br H H 2
    CF3 nPr H I H H 0
    CF3 nPr H I H H 1
    CF3 nPr H I H H 2
    CF3 nPr H Me H H 0
    CF3 nPr H Me H H 1
    CF3 nPr H Me H H 2
    CF3 nPr H CF3 H H 0
    CF3 nPr H CF3 H H 1
    CF3 nPr H CF3 H H 2
    CF3 nPr H CF2CF3 H H 0
    CF3 nPr H CF2CF3 H H 1
    CF3 nPr H CF2CF3 H H 2
    CF3 nPr H CF(CF3)2 H H 0
    CF3 nPr H CF(CF3)2 H H 1
    CF3 nPr H CF(CF3)2 H H 2
    CF3 nPr H SMe H H 0
    CF3 nPr H SMe H H 1
    CF3 nPr H SMe H H 2
    CF3 nPr H SOMe H H 0
    CF3 nPr H SOMe H H 1
    CF3 nPr H SOMe H H 2
    CF3 nPr H SO2Me H H 0
    CF3 nPr H SO2Me H H 1
    CF3 nPr H SO2Me H H 2
    CF3 nPr H OMe H H 0
    CF3 nPr H OMe H H 1
    CF3 nPr H OMe H H 2
    CF3 nPr H OCF3 H H 0
    CF3 nPr H OCF3 H H 1
    CF3 nPr H OCF3 H H 2
    CF3 nPr H NO2 H H 0
    CF3 nPr H NO2 H H 1
    CF3 nPr H NO2 H H 2
    CF3 nPr H CN H H 0
    CF3 nPr H CN H H 1
    CF3 nPr H CN H H 2
    CF3 nPr H H F H 0
    CF3 nPr H H F H 1
    CF3 nPr H H F H 2
    CF3 nPr H H Cl H 0
    CF3 nPr H H Cl H 1
    CF3 nPr H H Cl H 2
    CF3 nPr H H Br H 0
    CF3 nPr H H Br H 1
    CF3 nPr H H Br H 2
    CF3 nPr H H I H 0
    CF3 nPr H H I H 1
    CF3 nPr H H I H 2
    CF3 nPr H H Me H 0
    CF3 nPr H H Me H 1
    CF3 nPr H H Me H 2
    CF3 nPr H H CF3 H 0
    CF3 nPr H H CF3 H 1
    CF3 nPr H H CF3 H 2
    CF3 nPr H H CF2CF3 H 0
    CF3 nPr H H CF3CF3 H 1
    CF3 nPr H H CF2CF3 H 2
    CF3 nPr H H CF(CF3)2 H 0
    CF3 nPr H H CF(CF3)2 H 1
    CF3 nPr H H CF(CF3)2 H 2
    CF3 nPr H H SMe H 0
    CF3 nPr H H SMe H 1
    CF3 nPr H H SMe H 2
    CF3 nPr H H SOMe H 0
    CF3 nPr H H SOMe H 1
    CF3 nPr H H SOMe H 2
    CF3 nPr H H SO2Me H 0
    CF3 nPr H H SO2Me H 1
    CF3 nPr H H SO2Me H 2
    CF3 nPr H H OMe H 0
    CF3 nPr H H OMe H 1
    CF3 nPr H H OMe H 2
    CF3 nPr H H OCF3 H 0
    CF3 nPr H H OCF3 H 1
    CF3 nPr H H OCF3 H 2
    CF3 nPr H H NO2 H 0
    CF3 nPr H H NO2 H 1
    CF3 nPr H H NO2 H 2
    CF3 nPr H H CN H 0
    CF3 nPr H H CN H 1
    CF3 nPr H H CN H 2
    CF3 nPr H H H F 0
    CF3 nPr H H H F 1
    CF3 nPr H H H F 2
    CF3 nPr H H H Cl 0
    CF3 nPr H H H Cl 1
    CF3 nPr H H H Cl 2
    CF3 nPr H H H Br 0
    CF3 nPr H H H Br 1
    CF3 nPr H H H Br 2
    CF3 nPr H H H I 0
    CF3 nPr H H H I 1
    CF3 nPr H H H I 2
    CF3 nPr H H H Me 0
    CF3 nPr H H H Me 1
    CF3 nPr H H H Me 2
    CF3 nPr H H H CF3 0
    CF3 nPr H H H CF3 1
    CF3 nPr H H H CF3 2
    CF3 nPr H H H CF2CF3 0
    CF3 nPr H H H CF2CF3 1
    CF3 nPr H H H CF2CF3 2
    CF3 nPr H H H CF(CF3)2 0
    CF3 nPr H H H CF(CF3)2 1
    CF3 nPr H H H CF(CF3)2 2
    CF3 nPr H H H SMe 0
    CF3 nPr H H H SMe 1
    CF3 nPr H H H SMe 2
    CF3 nPr H H H SOMe 0
    CF3 nPr H H H SOMe 1
    CF3 nPr H H H SOMe 2
    CF3 nPr H H H SO2Me 0
    CF3 nPr H H H SO2Me 1
    CF3 nPr H H H SO2Me 2
    CF3 nPr H H H OMe 0
    CF3 nPr H H H OMe 1
    CF3 nPr H H H OMe 2
    CF3 nPr H H H OCF3 0
    CF3 nPr H H H OCF3 1
    CF3 nPr H H H OCF3 2
    CF3 nPr H H H NO2 0
    CF3 nPr H H H NO2 1
    CF3 nPr H H H NO2 2
    CF3 nPr H H H CN 0
    CF3 nPr H H H CN 1
    CF3 nPr H H H CN 2
    CF3 nPr H F H F 0
    CF3 nPr H F H F 1
    CF3 nPr H F H F 2
    CF3 nPr H Cl H Cl 0
    CF3 nPr H Cl H Cl 1
    CF3 nPr H Cl H Cl 2
    CF3 nPr H Br H Br 0
    CF3 nPr H Br H Br 1
    CF3 nPr H Br H Br 2
    CF3 nPr H I H I 0
    CF3 nPr H I H I 1
    CF3 nPr H I H I 2
    CF3 nPr H F H Cl 0
    CF3 nPr H F H Cl 1
    CF3 nPr H F H Cl 2
    CF3 nPr H F H Br 0
    CF3 nPr H F H Br 1
    CF3 nPr H F H Br 2
    CF3 nPr H F H I 0
    CF3 nPr H F H I 1
    CF3 nPr H F H I 2
    CF3 nPr H Cl H F 0
    CF3 nPr H Cl H F 1
    CF3 nPr H Cl H F 2
    CF3 nPr H Cl H Br 0
    CF3 nPr H Cl H Br 1
    CF3 nPr H Cl H Br 2
    CF3 nPr H Cl H I 0
    CF3 nPr H Cl H I 1
    CF3 nPr H Cl H I 2
    CF3 nPr H Br H F 0
    CF3 nPr H Br H F 1
    CF3 nPr H Br H F 2
    CF3 nPr H Br H Cl 0
    CF3 nPr H Br H Cl 1
    CF3 nPr H Br H Cl 2
    CF3 nPr H Br H I 0
    CF3 nPr H Br H I 1
    CF3 nPr H Br H I 2
    CF3 nPr H I H F 0
    CF3 nPr H I H F 1
    CF3 nPr H I H F 2
    CF3 nPr H I H Cl 0
    CF3 nPr H I H Cl 1
    CF3 nPr H I H Cl 2
    CF3 nPr H I H Br 0
    CF3 nPr H I H Br 1
    CF3 nPr H I H Br 2
    CF3 nPr H F H CN 0
    CF3 nPr H F H CN 1
    CF3 nPr H F H CN 2
    CF3 nPr H Cl H CN 0
    CF3 nPr H Cl H CN 1
    CF3 nPr H Cl H CN 2
    CF3 nPr H Br H CN 0
    CF3 nPr H Br H CN 1
    CF3 nPr H Br H CN 2
    CF3 nPr H I H CN 0
    CF3 nPr H I H CN 1
    CF3 nPr H I H CN 2
    CF3 nPr H CF3 H F 0
    CF3 nPr H CF3 H F 1
    CF3 nPr H CF3 H F 2
    CF3 nPr H CF3 H Cl 0
    CF3 nPr H CF3 H Cl 1
    CF3 nPr H CF3 H Cl 2
    CF3 nPr H CF3 H Br 0
    CF3 nPr H CF3 H Br 1
    CF3 nPr H CF3 H Br 2
    CF3 nPr H CF3 H I 0
    CF3 nPr H CF3 H I 1
    CF3 nPr H CF3 H I 2
    CF3 nPr H CF3 H CN 0
    CF3 nPr H CF3 H CN 1
    CF3 nPr H CF3 H CN 2
    CF3 nPr H F F H 0
    CF3 nPr H F F H 1
    CF3 nPr H F F H 2
    CF3 nPr H Cl Cl H 0
    CF3 nPr H Cl Cl H 1
    CF3 nPr H Cl Cl H 2
    CF3 nPr H Br Br H 0
    CF3 nPr H Br Br H 1
    CF3 nPr H Br Br H 2
    CF3 nPr H I I H 0
    CF3 nPr H I I H 1
    CF3 nPr H I I H 2
    CF3 nPr H F Cl H 0
    CF3 nPr H F Cl H 1
    CF3 nPr H F Cl H 2
    CF3 nPr H F Br H 0
    CF3 nPr H F Br H 1
    CF3 nPr H F Br H 2
    CF3 nPr H F I H 0
    CF3 nPr H F I H 1
    CF3 nPr H F I H 2
    CF3 nPr H Cl F H 0
    CF3 nPr H Cl F H 1
    CF3 nPr H Cl F H 2
    CF3 nPr H Cl Br H 0
    CF3 nPr H Cl Br H 1
    CF3 nPr H Cl Br H 2
    CF3 nPr H Cl I H 0
    CF3 nPr H Cl I H 1
    CF3 nPr H Cl I H 2
    CF3 nPr H Br F H 0
    CF3 nPr H Br F H 1
    CF3 nPr H Br F H 2
    CF3 nPr H Br Cl H 0
    CF3 nPr H Br Cl H 1
    CF3 nPr H Br Cl H 2
    CF3 nPr H Br I H 0
    CF3 nPr H Br I H 1
    CF3 nPr H Br I H 2
    CF3 nPr H I F H 0
    CF3 nPr H I F H 1
    CF3 nPr H I F H 2
    CF3 nPr H I Cl H 0
    CF3 nPr H I Cl H 1
    CF3 nPr H I Cl H 2
    CF3 nPr H I Br H 0
    CF3 nPr H I Br H 1
    CF3 nPr H I Br H 2
    CF3 nPr H F CN H 0
    CF3 nPr H F CN H 1
    CF3 nPr H F CN H 2
    CF3 nPr H Cl CN H 0
    CF3 nPr H Cl CN H 1
    CF3 nPr H Cl CN H 2
    CF3 nPr H Br CN H 0
    CF3 nPr H Br CN H 1
    CF3 nPr H Br CN H 2
    CF3 nPr H I CN H 0
    CF3 nPr H I CN H 1
    CF3 nPr H I CN H 2
    CF3 nPr H CF3 F H 0
    CF3 nPr H CF3 F H 1
    CF3 nPr H CF3 F H 2
    CF3 nPr H CF3 Cl H 0
    CF3 nPr H CF3 Cl H 1
    CF3 nPr H CF3 Cl H 2
    CF3 nPr H CF3 Br H 0
    CF3 nPr H CF3 Br H 1
    CF3 nPr H CF3 Br H 2
    CF3 nPr H CF3 I H 0
    CF3 nPr H CF3 I H 1
    CF3 nPr H CF3 I H 2
    CF3 nPr H CF3 CN H 0
    CF3 nPr H CF3 CN H 1
    CF3 nPr H CF3 CN H 2
    CF3 iPr H H H H 0
    CF3 iPr H H H H 1
    CF3 iPr H H H H 2
    CF3 iPr F H H H 0
    CF3 iPr F H H H 1
    CF3 iPr F H H H 2
    CF3 iPr Cl H H H 0
    CF3 iPr Cl H H H 1
    CF3 iPr Cl H H H 2
    CF3 iPr Br H H H 0
    CF3 iPr Br H H H 1
    CF3 iPr Br H H H 2
    CF3 iPr I H H H 0
    CF3 iPr I H H H 1
    CF3 iPr I H H H 2
    CF3 iPr Me H H H 0
    CF3 iPr Me H H H 1
    CF3 iPr Me H H H 2
    CF3 iPr CF3 H H H 0
    CF3 iPr CF3 H H H 1
    CF3 iPr CF3 H H H 2
    CF3 iPr H F H H 0
    CF3 iPr H F H H 1
    CF3 iPr H F H H 2
    CF3 iPr H Cl H H 0
    CF3 iPr H Cl H H 1
    CF3 iPr H Cl H H 2
    CF3 iPr H Br H H 0
    CF3 iPr H Br H H 1
    CF3 iPr H Br H H 2
    CF3 iPr H I H H 0
    CF3 iPr H I H H 1
    CF3 iPr H I H H 2
    CF3 iPr H Me H H 0
    CF3 iPr H Me H H 1
    CF3 iPr H Me H H 2
    CF3 iPr H CF3 H H 0
    CF3 iPr H CF3 H H 1
    CF3 iPr H CF3 H H 2
    CF3 iPr H CF2CF3 H H 0
    CF3 iPr H CF2CF3 H H 1
    CF3 iPr H CF2CF3 H H 2
    CF3 iPr H CF(CF3)2 H H 0
    CF3 iPr H CF(CF3)2 H H 1
    CF3 iPr H CF(CF3)2 H H 2
    CF3 iPr H SMe H H 0
    CF3 iPr H SMe H H 1
    CF3 iPr H SMe H H 2
    CF3 iPr H SOMe H H 0
    CF3 iPr H SOMe H H 1
    CF3 iPr H SOMe H H 2
    CF3 iPr H SO2Me H H 0
    CF3 iPr H SO2Me H H 1
    CF3 iPr H SO2Me H H 2
    CF3 iPr H OMe H H 0
    CF3 iPr H OMe H H 1
    CF3 iPr H OMe H H 2
    CF3 iPr H OCF3 H H 0
    CF3 iPr H OCF3 H H 1
    CF3 iPr H OCF3 H H 2
    CF3 iPr H NO2 H H 0
    CF3 iPr H NO2 H H 1
    CF3 iPr H NO2 H H 2
    CF3 iPr H CN H H 0
    CF3 iPr H CN H H 1
    CF3 iPr H CN H H 2
    CF3 iPr H H F H 0
    CF2 iPr H H F H 1
    CF3 iPr H H F H 2
    CF3 iPr H H Cl H 0
    CF2 iPr H H Cl H 1
    CF3 iPr H H Cl H 2
    CF2 iPr H H Br H 0
    CF3 iPr H H Br H 1
    CF3 iPr H H Br H 2
    CF3 iPr H H I H 0
    CF3 iPr H H I H 1
    CF3 iPr H H I H 2
    CF3 iPr H H Me H 0
    CF3 iPr H H Me H 1
    CF3 iPr H H Me H 2
    CF3 iPr H H CF3 H 0
    CF3 iPr H H CF3 H 1
    CF3 iPr H H CF3 H 2
    CF3 iPr H H CF2CF3 H 0
    CF3 iPr H H CF2CF3 H 1
    CF3 iPr H H CF2CF3 H 2
    CF2 iPr H H CF(CF3)2 H 0
    CF3 iPr H H CF(CF3)2 H 1
    CF3 iPr H H CF(CF3)2 H 2
    CF3 iPr H H SMe H 0
    CF3 iPr H H SMe H 1
    CF3 iPr H H SMe H 2
    CF3 iPr H H SOMe H 0
    CF3 iPr H H SOMe H 1
    CF3 iPr H H SOMe H 2
    CF3 iPr H H SO2Me H 0
    CF3 iPr H H SO2Me H 1
    CF3 iPr H H SO2Me H 2
    CF3 iPr H H OMe H 0
    CF3 iPr H H OMe H 1
    CF3 iPr H H OMe H 2
    CF3 iPr H H OCF3 H 0
    CF3 iPr H H OCF3 H 1
    CF3 iPr H H OCF3 H 2
    CF3 iPr H H NO2 H 0
    CF3 iPr H H NO2 H 1
    CF3 iPr H H NO2 H 2
    CF3 iPr H H CN H 0
    CF3 iPr H H CN H 1
    CF3 iPr H H CN H 2
    CF3 iPr H H H F 0
    CF3 iPr H H H F 1
    CF3 iPr H H H F 2
    CF3 iPr H H H Cl 0
    CF3 iPr H H H Cl 1
    CF3 iPr H H H Cl 2
    CF3 iPr H H H Br 0
    CF3 iPr H H H Br 1
    CF3 iPr H H H Br 2
    CF3 iPr H H H I 0
    CF3 iPr H H H I 1
    CF3 iPr H H H I 2
    CF3 iPr H H H Me 0
    CF3 iPr H H H Me 1
    CF3 iPr H H H Me 2
    CF3 iPr H H H CF3 0
    CF3 iPr H H H CF3 1
    CF3 iPr H H H CF3 2
    CF3 iPr H H H CF2CF3 0
    CF3 iPr H H H CF2CF3 1
    CF3 iPr H H H CF2CF3 2
    CF3 iPr H H H CF(CF3)2 0
    CF3 iPr H H H CF(CF3)2 1
    CF3 iPr H H H CF(CF3)2 2
    CF3 iPr H H H SMe 0
    CF3 iPr H H H SMe 1
    CF3 iPr H H H SMe 2
    CF3 iPr H H H SOMe 0
    CF3 iPr H H H SOMe 1
    CF3 iPr H H H SOMe 2
    CF3 iPr H H H SO2Me 0
    CF3 iPr H H H SO2Me 1
    CF3 iPr H H H SO2Me 2
    CF3 iPr H H H OMe 0
    CF3 iPr H H H OMe 1
    CF3 iPr H H H OMe 2
    CF3 iPr H H H OCF3 0
    CF3 iPr H H H OCF3 1
    CF3 iPr H H H OCF3 2
    CF3 iPr H H H NO2 0
    CF3 iPr H H H NO2 1
    CF3 iPr H H H NO2 2
    CF3 iPr H H H CN 0
    CF3 iPr H H H CN 1
    CF3 iPr H H H CN 2
    CF3 iPr H F H F 0
    CF3 iPr H F H F 1
    CF3 iPr H F H F 2
    CF3 iPr H Cl H Cl 0
    CF3 iPr H Cl H Cl 1
    CF3 iPr H Cl H Cl 2
    CF3 iPr H Br H Br 0
    CF3 iPr H Br H Br 1
    CF3 iPr H Br H Br 2
    CF3 iPr H I H I 0
    CF3 iPr H I H I 1
    CF3 iPr H I H I 2
    CF3 iPr H F H Cl 0
    CF3 iPr H F H Cl 1
    CF3 iPr H F H Cl 2
    CF3 iPr H F H Br 0
    CF3 iPr H F H Br 1
    CF3 iPr H F H Br 2
    CF3 iPr H F H I 0
    CF3 iPr H F H I 1
    CF3 iPr H F H I 2
    CF3 iPr H Cl H F 0
    CF3 iPr H Cl H F 1
    CF3 iPr H Cl H F 2
    CF3 iPr H Cl H Br 0
    CF3 iPr H Cl H Br 1
    CF3 iPr H Cl H Br 2
    CF3 iPr H Cl H I 0
    CF3 iPr H Cl H I 1
    CF3 iPr H Cl H I 2
    CF3 iPr H Br H F 0
    CF3 iPr H Br H F 1
    CF3 iPr H Br H F 2
    CF3 iPr H Br H Cl 0
    CF3 iPr H Br H Cl 1
    CF3 iPr H Br H Cl 2
    CF3 iPr H Br H I 0
    CF3 iPr H Br H I 1
    CF3 iPr H Br H I 2
    CF3 iPr H I H F 0
    CF3 iPr H I H F 1
    CF3 iPr H I H F 2
    CF3 iPr H I H Cl 0
    CF3 iPr H I H Cl 1
    CF3 iPr H I H Cl 2
    CF3 iPr H I H Br 0
    CF3 iPr H I H Br 1
    CF3 iPr H I H Br 2
    CF3 iPr H F H CN 0
    CF3 iPr H F H CN 1
    CF3 iPr H F H CN 2
    CF3 iPr H Cl H CN 0
    CF3 iPr H Cl H CN 1
    CF3 iPr H Cl H CN 2
    CF3 iPr H Br H CN 0
    CF3 iPr H Br H CN 1
    CF3 iPr H Br H CN 2
    CF3 iPr H I H CN 0
    CF3 iPr H I H CN 1
    CF3 iPr H I H CN 2
    CF3 iPr H CF3 H F 0
    CF3 iPr H CF3 H F 1
    CF3 iPr H CF3 H F 2
    CF3 iPr H CF3 H Cl 0
    CF3 iPr H CF3 H Cl 1
    CF3 iPr H CF3 H Cl 2
    CF3 iPr H CF3 H Br 0
    CF3 iPr H CF3 H Br 1
    CF3 iPr H CF3 H Br 2
    CF3 iPr H CF3 H I 0
    CF3 iPr H CF3 H I 1
    CF3 iPr H CF3 H I 2
    CF3 iPr H CF3 H CN 0
    CF3 iPr H CF3 H CN 1
    CF3 iPr H CF3 H CN 2
    CF3 iPr H F F H 0
    CF3 iPr H F F H 1
    CF3 iPr H F F H 2
    CF3 iPr H Cl Cl H 0
    CF3 iPr H Cl Cl H 1
    CF3 iPr H Cl Cl H 2
    CF3 iPr H Br Br H 0
    CF3 iPr H Br Br H 1
    CF3 iPr H Br Br H 2
    CF3 iPr H I I H 0
    CF3 iPr H I I H 1
    CF3 iPr H I I H 2
    CF3 iPr H F Cl H 0
    CF3 iPr H F Cl H 1
    CF3 iPr H F Cl H 2
    CF3 iPr H F Br H 0
    CF3 iPr H F Br H 1
    CF3 iPr H F Br H 2
    CF3 iPr H F I H 0
    CF3 iPr H F I H 1
    CF3 iPr H F I H 2
    CF3 iPr H Cl F H 0
    CF3 iPr H Cl F H 1
    CF3 iPr H Cl F H 2
    CF3 iPr H Cl Br H 0
    CF3 iPr H Cl Br H 1
    CF3 iPr H Cl Br H 2
    CF3 iPr H Cl I H 0
    CF3 iPr H Cl I H 1
    CF3 iPr H Cl I H 2
    CF3 iPr H Br F H 0
    CF3 iPr H Br F H 1
    CF3 iPr H Br F H 2
    CF3 iPr H Br Cl H 0
    CF3 iPr H Br Cl H 1
    CF3 iPr H Br Cl H 2
    CF3 iPr H Br I H 0
    CF3 iPr H Br I H 1
    CF3 iPr H Br I H 2
    CF3 iPr H I F H 0
    CF3 iPr H I F H 1
    CF3 Pr H I F H 2
    CF3 iPr H I Cl H 0
    CF3 Pr H I Cl H 1
    CF3 iPr H I Cl H 2
    CF3 iPr H I Br H 0
    CF3 iPr H I Br H 1
    CF3 iPr H I Br H 2
    CF3 iPr H F CN H 0
    CF3 iPr H F CN H 1
    CF3 iPr H F CN H 2
    CF3 iPr H Cl CN H 0
    CF3 iPr H Cl CN H 1
    CF3 iPr H Cl CN H 2
    CF3 iPr H Br CN H 0
    CF3 iPr H Br CN H 1
    CF3 iPr H Br CN H 2
    CF3 iPr H I CN H 0
    CF3 iPr H I CN H 1
    CF3 iPr H I CN H 2
    CF3 iPr H CF3 F H 0
    CF3 iPr H CF3 F H 1
    CF3 iPr H CF3 F H 2
    CF3 iPr H CF3 Cl H 0
    CF3 iPr H CF3 Cl H 1
    CF3 iPr H CF3 Cl H 2
    CF3 iPr H CF3 Br H 0
    CF3 iPr H CF3 Br H 1
    CF3 iPr H CF3 Br H 2
    CF3 iPr H CF3 I H 0
    CF3 iPr H CF3 I H 1
    CF3 iPr H CF3 I H 2
    CF3 iPr H CF3 CN H 0
    CF3 iPr H CF3 CN H 1
    CF3 iPr H CF3 CN H 2
    CF3 CH2CF3 H H H H 0
    CF3 CH2CF3 H H H H 1
    CF3 CH2CF3 H H H H 2
    CF3 CH2CF3 F H H H 0
    CF3 CH2CF3 F H H H 1
    CF3 CH2CF3 F H H H 2
    CF3 CH2CF3 Cl H H H 0
    CF3 CH2CF3 Cl H H H 1
    CF3 CH3CF3 Cl H H H 2
    CF3 CH2CF3 Br H H H 0
    CF3 CH2CF3 Br H H H 1
    CF3 CH2CF3 Br H H H 2
    CF3 CH2CF3 I H H H 0
    CF3 CH2CF3 I H H H 1
    CF3 CH2CF3 I H H H 2
    CF3 CH2CF3 Me H H H 0
    CF3 CH2CF3 Me H H H 1
    CF3 CH2CF3 Me H H H 2
    CF3 CH2CF3 CF3 H H H 0
    CF3 CH2CF3 CF3 H H H 1
    CF3 CH2CF3 CF3 H H H 2
    CF3 CH2CF3 H F H H 0
    CF3 CH2CF3 H F H H 1
    CF3 CH2CF3 H F H H 2
    CF3 CH2CF3 H Cl H H 0
    CF3 CH2CF3 H Cl H H 1
    CF3 CH2CF3 H Cl H H 2
    CF3 CH2CF3 H Br H H 0
    CF3 CH2CF3 H Br H H 1
    CF3 CH2CF3 H Br H H 2
    CF3 CH2CF3 H I H H 0
    CF3 CH2CF3 H I H H 1
    CF3 CH2CF3 H I H H 2
    CF3 CH2CF3 H Me H H 0
    CF3 CH3CF3 H Me H H 1
    CF3 CH2CF3 H Me H H 2
    CF3 CH2CF3 H CF3 H H 0
    CF3 CH2CF3 H CF3 H H 1
    CF3 CH2CF3 H CF3 H H 2
    CF3 CH2CF3 H CF2CF3 H H 0
    CF3 CH2CF3 H CF2CF3 H H 1
    CF3 CH2CF3 H CF2CF3 H H 2
    CF3 CH2CF3 H CF(CF3)2 H H 0
    CF3 CH2CF3 H CF(CF3)2 H H 1
    CF3 CH2CF3 H CF(CF3)2 H H 2
    CF3 CH2CF3 H SMe H H 0
    CF3 CH2CF3 H SMe H H 1
    CF3 CH2CF3 H SMe H H 2
    CF3 CH2CF3 H SOMe H H 0
    CF3 CH2CF3 H SOMe H H 1
    CF3 CH2CF3 H SOMe H H 2
    CF3 CH2CF3 H SO2Me H H 0
    CF3 CH2CF3 H SO2Me H H 1
    CF3 CH2CF3 H SO2Me H H 2
    CF3 CH2CF3 H OMe H H 0
    CF3 CH2CF3 H OMe H H 1
    CF3 CH2CF3 H OMe H H 2
    CF3 CH2CF3 H OCF3 H H 0
    CF3 CH2CF3 H OCF3 H H 1
    CF3 CH2CF3 H OCF3 H H 2
    CF3 CH2CF3 H NO2 H H 0
    CF3 CH2CF3 H NO2 H H 1
    CF3 CH2CF3 H NO2 H H 2
    CF3 CH2CF3 H CN H H 0
    CF3 CH2CF3 H CN H H 1
    CF3 CH2CF3 H CN H H 2
    CF3 CH2CF3 H H F H 0
    CF3 CH2CF3 H H F H 1
    CF3 CH2CF3 H H F H 2
    CF3 CH2CF3 H H Cl H 0
    CF3 CH2CF3 H H Cl H 1
    CF3 CH2CF3 H H Cl H 2
    CF3 CH2CF3 H H Br H 0
    CF3 CH2CF3 H H Br H 1
    CF3 CH2CF3 H H Br H 2
    CF3 CH2CF3 H H I H 0
    CF3 CH2CF3 H H I H 1
    CF3 CH2CF3 H H I H 2
    CF3 CH2CF3 H H Me H 0
    CF3 CH2CF3 H H Me H 1
    CF3 CH2CF3 H H Me H 2
    CF3 CH2CF3 H H CF3 H 0
    CF3 CH2CF3 H H CF3 H 1
    CF3 CH2CF3 H H CF3 H 2
    CF3 CH2CF3 H H CF2CF3 H 0
    CF3 CH2CF3 H H CF2CF3 H 1
    CF3 CH2CF3 H H CF2CF3 H 2
    CF3 CH2CF3 H H CF(CF3)2 H 0
    CF3 CH2CF3 H H CF(CF3)2 H 1
    CF3 CH2CF3 H H CF(CF3)2 H 2
    CF3 CH2CF3 H H SMe H 0
    CF3 CH2CF3 H H SMe H 1
    CF3 CH2CF3 H H SMe H 2
    CF3 CH2CF3 H H SOMe H 0
    CF3 CH2CF3 H H SOMe H 1
    CF3 CH2CF3 H H SOMe H 2
    CF3 CH2CF3 H H SO2Me H 0
    CF3 CH2CF3 H H SO2Me H 1
    CF3 CH2CF3 H H SO2Me H 2
    CF3 CH2CF3 H H OMe H 0
    CF3 CH2CF3 H H OMe H 1
    CF3 CH2CF3 H H OMe H 2
    CF3 CH2CF3 H H OCF3 H 0
    CF3 CH2CF3 H H OCF3 H 1
    CF3 CH2CF3 H H OCF3 H 2
    CF3 CH2CF3 H H NO2 H 0
    CF3 CH2CF3 H H NO2 H 1
    CF3 CH2CF3 H H NO2 H 2
    CF3 CH2CF3 H H CN H 0
    CF3 CH2CF3 H H CN H 1
    CF3 CH2CF3 H H CN H 2
    CF3 CH2CF3 H H H F 0
    CF3 CH2CF3 H H H F 1
    CF3 CH2CF3 H H H F 2
    CF3 CH2CF3 H H H Cl 0
    CF3 CH2CF3 H H H Cl 1
    CF3 CH2CF3 H H H Cl 2
    CF3 CH2CF3 H H H Br 0
    CF3 CH2CF3 H H H Br 1
    CF3 CH2CF3 H H H Br 2
    CF3 CH2CF3 H H H I 0
    CF3 CH2CF3 H H H I 1
    CF3 CH2CF3 H H H I 2
    CF3 CH2CF3 H H H Me 0
    CF3 CH2CF3 H H H Me 1
    CF3 CH2CF3 H H H Me 2
    CF3 CH2CF3 H H H CF3 0
    CF3 CH2CF3 H H H CF3 1
    CF3 CH2CF3 H H H CF3 2
    CF3 CH2CF3 H H H CF2CF3 0
    CF3 CH2CF3 H H H CF2CF3 1
    CF3 CH2CF3 H H H CF2CF3 2
    CF3 CH2CF3 H H H CF(CF3)2 0
    CF3 CH2CF3 H H H CF(CF3)2 1
    CF3 CH2CF3 H H H CF(CF3)2 2
    CF3 CH2CF3 H H H SMe 0
    CF3 CH2CF3 H H H SMe 1
    CF3 CH2CF3 H H H SMe 2
    CF3 CH2CF3 H H H SOMe 0
    CF3 CH2CF3 H H H SOMe 1
    CF3 CH2CF3 H H H SOMe 2
    CF3 CH2CF3 H H H SO2Me 0
    CF3 CH2CF3 H H H SO2Me 1
    CF3 CH2CF3 H H H SO2Me 2
    CF3 CH2CF3 H H H OMe 0
    CF3 CH2CF3 H H H OMe 1
    CF3 CH2CF3 H H H OMe 2
    CF3 CH2CF3 H H H OCF3 0
    CF3 CH2CF3 H H H OCF3 1
    CF3 CH2CF3 H H H OCF3 2
    CF3 CH2CF3 H H H NO2 0
    CF3 CH2CF3 H H H NO2 1
    CF3 CH2CF3 H H H NO2 2
    CF3 CH2CF3 H H H CN 0
    CF3 CH2CF3 H H H CN 1
    CF3 CH2CF3 H H H CN 2
    CF3 CH2CF3 H F H F 0
    CF3 CH2CF3 H F H F 1
    CF3 CH2CF3 H F H F 2
    CF3 CH2CF3 H Cl H Cl 0
    CF3 CH2CF3 H Cl H Cl 1
    CF3 CH2CF3 H Cl H Cl 2
    CF3 CH2CF3 H Br H Br 0
    CF3 CH2CF3 H Br H Br 1
    CF3 CH2CF3 H Br H Br 2
    CF3 CH2CF3 H I H I 0
    CF3 CH2CF3 H I H I 1
    CF3 CH2CF3 H I H I 2
    CF3 CH2CF3 H F H Cl 0
    CF3 CH2CF3 H F H Cl 1
    CF3 CH2CF3 H F H Cl 2
    CF3 CH2CF3 H F H Br 0
    CF3 CH2CF3 H F H Br 1
    CF3 CH2CF3 H F H Br 2
    CF3 CH2CF3 H F H I 0
    CF3 CH2CF3 H F H I 1
    CF3 CH2CF3 H F H I 2
    CF3 CH2CF3 H Cl H F 0
    CF3 CH2CF3 H Cl H F 1
    CF3 CH2CF3 H Cl H F 2
    CF3 CH2CF3 H Cl H Br 0
    CF3 CH2CF3 H Cl H Br 1
    CF3 CH2CF3 H Cl H Br 2
    CF3 CH2CF3 H Cl H I 0
    CF3 CH2CF3 H Cl H I 1
    CF3 CH2CF3 H Cl H I 2
    CF3 CH2CF3 H Br H F 0
    CF3 CH2CF3 H Br H F 1
    CF3 CH2CF3 H Br H F 2
    CF3 CH2CF3 H Br H Cl 0
    CF3 CF2CF3 H Br H Cl 1
    CF3 CH2CF3 H Br H Cl 2
    CF3 CH2CF3 H Br H I 0
    CF3 CH2CF3 H Br H I 1
    CF3 CH2CF3 H Br H I 2
    CF3 CH2CF3 H I H F 0
    CF3 CH2CF3 H I H F 1
    CF3 CH2CF3 H I H F 2
    CF3 CH2CF3 H I H Cl 0
    CF3 CH2CF3 H I H Cl 1
    CF3 CH2CF3 H I H Cl 2
    CF3 CH2CF3 H I H Br 0
    CF3 CH2CF3 H I H Br 1
    CF3 CH2CF3 H I H Br 2
    CF3 CH2CF3 H F H CN 0
    CF3 CH2CF3 H F H CN 1
    CF3 CH2CF3 H F H CN 2
    CF3 CH2CF3 H Cl H CN 0
    CF3 CH2CF3 H Cl H CN 1
    CF3 CH2CF3 H Cl H CN 2
    CF3 CH2CF3 H Br H CN 0
    CF3 CH2CF3 H Br H CN 1
    CF3 CH2CF3 H Br H CN 2
    CF3 CH2CF3 H I H CN 0
    CF3 CH2CF3 H I H CN 1
    CF3 CH2CF3 H I H CN 2
    CF3 CH2CF3 H CF3 H F 0
    CF3 CH2CF3 H CF3 H F 1
    CF3 CH2CF3 H CF3 H F 2
    CF3 CH2CF3 H CF3 H Cl 0
    CF3 CH2CF3 H CF3 H Cl 1
    CF3 CH2CF3 H CF3 H Cl 2
    CF3 CH2CF3 H CF3 H Br 0
    CF3 CH2CF3 H CF3 H Br 1
    CF3 CH2CF3 H CF3 H Br 2
    CF3 CH2CF3 H CF3 H I 0
    CF3 CH2CF3 H CF3 H I 1
    CF3 CH2CF3 H CF3 H I 2
    CF3 CH2CF3 H CF3 H CN 0
    CF3 CH2CF3 H CF3 H CN 1
    CF3 CH2CF3 H CF3 H CN 2
    CF3 CH2CF3 H F F H 0
    CF3 CH2CF3 H F F H 1
    CF3 CH2CF3 H F F H 2
    CF3 CH2CF3 H Cl Cl H 0
    CF3 CH2CF3 H Cl Cl H 1
    CF3 CH2CF3 H Cl Cl H 2
    CF3 CH2CF3 H Br Br H 0
    CF3 CH2CF3 H Br Br H 1
    CF3 CH2CF3 H Br Br H 2
    CF3 CH2CF3 H I I H 0
    CF3 CH2CF3 H I I H 1
    CF3 CH2CF3 H I I H 2
    CF3 CH2CF3 H F Cl H 0
    CF3 CH2CF3 H F Cl H 1
    CF3 CH2CF3 H F Cl H 2
    CF3 CH2CF3 H F Br H 0
    CF3 CH2CF3 H F Br H 1
    CF3 CH2CF3 H F Br H 2
    CF3 CH2CF2 H F I H 0
    CF3 CH2CF3 H F I H 1
    CF3 CH2CF3 H F I H 2
    CF3 CH2CF2 H Cl F H 0
    CF3 CH2CF3 H Cl F H 1
    CF3 CH2CF3 H Cl F H 2
    CF3 CH2CF3 H Cl Br H 0
    CF3 CH2CF3 H Cl Br H 1
    CF3 CH2CF3 H Cl Br H 2
    CF3 CH2CF3 H Cl I H 0
    CF3 CH2CF3 H Cl I H 1
    CF3 CH2CF3 H Cl I H 2
    CF3 CH2CF3 H Br F H 0
    CF3 CH2CF3 H Br F H 1
    CF3 CH2CF3 H Br F H 2
    CF3 CH2CF3 H Br Cl H 0
    CF3 CH2CF3 H Br Cl H 1
    CF3 CH2CF3 H Br Cl H 2
    CF3 CH2CF3 H Br I H 0
    CF3 CH2CF3 H Br I H 1
    CF3 CH2CF3 H Br I H 2
    CF3 CH2CF3 H I F H 0
    CF3 CH2CF3 H I F H 1
    CF3 CH2CF3 H I F H 2
    CF3 CH2CF3 H I Cl H 0
    CF3 CH2CF3 H I Cl H 1
    CF3 CH2CF3 H I Cl H 2
    CF3 CH2CF3 H I Br H 0
    CF3 CH2CF3 H I Br H 1
    CF3 CH2CF3 H I Br H 2
    CF3 CH2CF3 H F CN H 0
    CF3 CH2CF3 H F CN H 1
    CF3 CH2CF3 H F CN H 2
    CF3 CH2CF3 H Cl CN H 0
    CF3 CH2CF3 H Cl CN H 1
    CF3 CH2CF3 H Cl CN H 2
    CF3 CH2CF3 H Br CN H 0
    CF3 CH2CF3 H Br CN H 1
    CF3 CH2CF3 H Br CN H 2
    CF3 CH2CF3 H I CN H 0
    CF3 CH2CF3 H I CN H 1
    CF3 CH2CF3 H I CN H 2
    CF3 CH2CF3 H CF3 F H 0
    CF3 CH2CF3 H CF3 F H 1
    CF3 CH2CF3 H CF3 F H 2
    CF3 CH2CF3 H CF3 Cl H 0
    CF3 CH2CF3 H CF3 Cl H 1
    CF3 CH2CF3 H CF3 Cl H 2
    CF3 CH2CF3 H CF3 Br H 0
    CF3 CH2CF3 H CF3 Br H 1
    CF3 CH2CF3 H CF3 Br H 2
    CF3 CH2CF3 H CF3 I H 0
    CF3 CH2CF3 H CF3 I H 1
    CF3 CH2CF3 H CF3 I H 2
    CF3 CH2CF3 H CF3 CN H 0
    CF3 CH2CF3 H CF3 CN H 1
    CF3 CH2CF3 H CF3 CN H 2
    CF2CF3 Me H H H H 0
    CF2CF3 Me H H H H 1
    CF2CF3 Me H H H H 2
    CF2CF3 Me F H H H 0
    CF2CF2 Me F H H H 1
    CF2CF3 Me F H H H 2
    CF2CF3 Me Cl H H H 0
    CF2CF3 Me Cl H H H 1
    CF2CF3 Me Cl H H H 2
    CF2CF3 Me Br H H H 0
    CF2CF3 Me Br H H H 1
    CF2CF3 Me Br H H H 2
    CF2CF3 Me I H H H 0
    CF2CF3 Me I H H H 1
    CF2CF3 Me I H H H 2
    CF2CF3 Me Me H H H 0
    CF2CF3 Me Me H H H 1
    CF2CF3 Me Me H H H 2
    CF2CF3 Me CF3 H H H 0
    CF2CF3 Me CF3 H H H 1
    CF2CF3 Me CF3 H H H 2
    CF2CF3 Me H F H H 0
    CF2CF3 Me H F H H 1
    CF2CF3 Me H F H H 2
    CF2CF3 Me H Cl H H 0
    CF2CF3 Me H Cl H H 1
    CF2CF3 Me H Cl H H 2
    CF2CF3 Me H Br H H 0
    CF2CF3 Me H Br H H 1
    CF2CF3 Me H Br H H 2
    CF2CF3 Me H I H H 0
    CF2CF3 Me H I H H 1
    CF2CF3 Me H I H H 2
    CF2CF3 Me H Me H H 0
    CF2CF3 Me H Me H H 1
    CF2CF3 Me H Me H H 2
    CF2CF3 Me H CF3 H H 0
    CF2CF3 Me H CF3 H H 1
    CF2CF3 Me H CF3 H H 2
    CF2CF3 Me H CF2CF3 H H 0
    CF2CF3 Me H CF2CF3 H H 1
    CF2CF3 Me H CF2CF3 H H 2
    CF2CF3 Me H CF(CF3)2 H H 0
    CF2CF3 Me H CF(CF3)2 H H 1
    CF2CF3 Me H CF(CF3)2 H H 2
    CF2CF3 Me H SMe H H 0
    CF2CF3 Me H SMe H H 1
    CF2CF3 Me H SMe H H 2
    CF2CF3 Me H SOMe H H 0
    CF2CF3 Me H SOMe H H 1
    CF2CF3 Me H SOMe H H 2
    CF2CF3 Me H SO2Me H H 0
    CF2CF3 Me H SO2Me H H 1
    CF2CF3 Me H SO2Me H H 2
    CF2CF3 Me H OMe H H 0
    CF2CF3 Me H OMe H H 1
    CF2CF3 Me H OMe H H 2
    CF2CF3 Me H OCF3 H H 0
    CF2CF3 Me H OCF3 H H 1
    CF2CF3 Me H OCF3 H H 2
    CF2CF3 Me H NO2 H H 0
    CF2CF3 Me H NO2 H H 1
    CF2CF3 Me H NO2 H H 2
    CF2CF3 Me H CN H H 0
    CF2CF3 Me H CN H H 1
    CF2CF3 Me H CN H H 2
    CF2CF3 Me H H F H 0
    CF2CF3 Me H H F H 1
    CF2CF3 Me H H F H 2
    CF2CF3 Me H H Cl H 0
    CF2CF3 Me H H Cl H 1
    CF2CF3 Me H H Cl H 2
    CF2CF3 Me H H Br H 0
    CF3CF3 Me H H Br H 1
    CF2CF3 Me H H Br H 2
    CF2CF3 Me H H I H 0
    CF2CF3 Me H H I H 1
    CF2CF3 Me H H I H 2
    CF2CF3 Me H H Me H 0
    CF2CF3 Me H H Me H 1
    CF2CF3 Me H H Me H 2
    CF2CF3 Me H H CF3 H 0
    CF2CF3 Me H H CF3 H 1
    CF2CF3 Me H H CF3 H 2
    CF2CF3 Me H H CF2CF3 H 0
    CF,CF3 Me H H CF2CF3 H 1
    CF2CF3 Me H H CF2CF3 H 2
    CF2CF3 Me H H CF(CF3)2 H 0
    CF2CF3 Me H H CF(CF3)2 H 1
    CF2CF3 Me H H CF(CF3)2 H 2
    CF2CF3 Me H H SMe H 0
    CF2CF3 Me H H SMe H 1
    CF2CF3 Me H H SMe H 2
    CF2CF3 Me H H SOMe H 0
    CF2CF3 Me H H SOMe H 1
    CF2CF3 Me H H SOMe H 2
    CF2CF3 Me H H SO2Me H 0
    CF2CF3 Me H H SO2Me H 1
    CF2CF3 Me H H SO2Me H 2
    CF2CF3 Me H H OMe H 0
    CF2CF3 Me H H OMe H 1
    CF2CF3 Me H H OMe H 2
    CF2CF3 Me H H OCF3 H 0
    CF2CF3 Me H H OCF3 H 1
    CF2CF3 Me H H OCF3 H 2
    CF2CF3 Me H H NO2 H 0
    CF2CF3 Me H H NO2 H 1
    CF2CF3 Me H H NO2 H 2
    CF2CF3 Me H H CN H 0
    CF2CF3 Me H H CN H 1
    CF2CF3 Me H H CN H 2
    CF2CF3 Me H H H F 0
    CF2CF3 Me H H H F 1
    CF2CF3 Me H H H F 2
    CF2CF3 Me H H H Cl 0
    CF2CF3 Me H H H Cl 1
    CF2CF3 Me H H H Cl 2
    CF2CF3 Me H H H Br 0
    CF2CF3 Me H H H Br 1
    CF2CF3 Me H H H Br 2
    CF2CF3 Me H H H I 0
    CF2CF3 Me H H H I 1
    CF2CF3 Me H H H I 2
    CF2CF3 Me H H H Me 0
    CF2CF3 Me H H H Me 1
    CF2CF3 Me H H H Me 2
    CF2CF3 Me H H H CF3 0
    CF2CF3 Me H H H CF3 1
    CF2CF3 Me H H H CF3 2
    CF2CF3 Me H H H CF2CF3 0
    CF2CF3 Me H H H CF2CF3 1
    CF2CF3 Me H H H CF2CF3 2
    CF2CF3 Me H H H CF(CF3)2 0
    CF2CF3 Me H H H CF(CF3)2 1
    CF2CF3 Me H H H CF(CF3)2 2
    CF2CF3 Me H H H SMe 0
    CF2CF3 Me H H H SMe 1
    CF2CF3 Me H H H SMe 2
    CF2CF3 Me H H H SOMe 0
    CF2CF3 Me H H H SOMe 1
    CF2CF3 Me H H H SOMe 2
    CF2CF3 Me H H H SO2Me 0
    CF2CF3 Me H H H SO2Me 1
    CF2CF3 Me H H H SO2Me 2
    CF2CF3 Me H H H OMe 0
    CF2CF3 Me H H H OMe 1
    CF2CF3 Me H H H OMe 2
    CF2CF3 Me H H H OCF3 0
    CF2CF3 Me H H H OCF3 1
    CF2CF2 Me H H H OCF3 2
    CF2CF3 Me H H H NO2 0
    CF2CF3 Me H H H NO2 1
    CF2CF3 Me H H H NO2 2
    CF2CF3 Me H H H CN 0
    CF2CF3 Me H H H CN 1
    CF2CF3 Me H H H CN 2
    CF2CF3 Me H F H F 0
    CF2CF3 Me H F H F 1
    CF2CF3 Me H F H F 2
    CF2CF3 Me H Cl H Cl 0
    CF2CF3 Me H Cl H Cl 1
    CF2CF3 Me H Cl H Cl 2
    CF2CF3 Me H Br H Br 0
    CF2CF3 Me H Br H Br 1
    CF2CF3 Me H Br H Br 2
    CF2CF3 Me H I H I 0
    CF2CF3 Me H I H I 1
    CF2CF3 Me H I H I 2
    CF2CF3 Me H F H Cl 0
    CF2CF3 Me H F H Cl 1
    CF2CF3 Me H F H Cl 2
    CF2CF3 Me H F H Br 0
    CF2CF3 Me H F H Br 1
    CF2CF3 Me H F H Br 2
    CF2CF3 Me H F H I 0
    CF2CF3 Me H F H I 1
    CF2CF3 Me H F H I 2
    CF2CF3 Me H Cl H F 0
    CF2CF3 Me H Cl H F 1
    CF2CF3 Me H Cl H F 2
    CF2CF3 Me H Cl H Br 0
    CF2CF3 Me H Cl H Br 1
    CF2CF3 Me H Cl H Br 2
    CF2CF3 Me H Cl H I 0
    CF2CF3 Me H Cl H I 1
    CF2CF3 Me H Cl H I 2
    CF2CF3 Me H Br H F 0
    CF2CF3 Me H Br H F 1
    CF2CF3 Me H Br H F 2
    CF2CF3 Me H Br H Cl 0
    CF2CF3 Me H Br H Cl 1
    CF2CF3 Me H Br H Cl 2
    CF2CF3 Me H Br H I 0
    CF2CF3 Me H Br H I 1
    CF2CF3 Me H Br H I 2
    CF2CF3 Me H I H F 0
    CF2CF3 Me H I H F 1
    CF2CF3 Me H I H F 2
    CF2CF3 Me H I H Cl 0
    CF2CF3 Me H I H Cl 1
    CF2CF3 Me H I H Cl 2
    CF2CF3 Me H I H Br 0
    CF2CF3 Me H I H Br 1
    CF2CF3 Me H I H Br 2
    CF2CF3 Me H F H CN 0
    CF2CF3 Me H F H CN 1
    CF2CF3 Me H F H CN 2
    CF2CF3 Me H Cl H CN 0
    CF2CF3 Me H Cl H CN 1
    CF2CF3 Me H Cl H CN 2
    CF2CF3 Me H Br H CN 0
    CF2CF3 Me H Br H CN 1
    CF2CF3 Me H Br H CN 2
    CF2CF3 Me H I H CN 0
    CF2CF3 Me H I H CN 1
    CF2CF3 Me H I H CN 2
    CF2CF3 Me H CF3 H F 0
    CF2CF3 Me H CF3 H F 1
    CF2CF3 Me H CF3 H F 2
    CF2CF3 Me H CF3 H Cl 0
    CF2CF3 Me H CF3 H Cl 1
    CF2CF3 Me H CF3 H Cl 2
    CF2CF3 Me H CF3 H Br 0
    CF2CF3 Me H CF3 H Br 1
    CF2CF3 Me H CF3 H Br 2
    CF2CF3 Me H CF3 H I 0
    CF2CF3 Me H CF3 H I 1
    CF2CF3 Me H CF3 H I 2
    CF2CF3 Me H CF3 H CN 0
    CF2CF3 Me H CF3 H CN 1
    CF2CF3 Me H CF3 H CN 2
    CF2CF3 Me H F F H 0
    CF2CF3 Me H F F H 1
    CF2CF3 Me H F F H 2
    CF2CF3 Me H Cl Cl H 0
    CF2CF3 Me H Cl Cl H 1
    CF2CF3 Me H Cl Cl H 2
    CF2CF3 Me H Br Br H 0
    CF2CF3 Me H Br Br H 1
    CF2CF3 Me H Br Br H 2
    CF2CF3 Me H I I H 0
    CF2CF3 Me H I I H 1
    CF2CF3 Me H I I H 2
    CF2CF3 Me H F Cl H 0
    CF2CF3 Me H F Cl H 1
    CF2CF3 Me H F Cl H 2
    CF2CF3 Me H F Br H 0
    CF2CF3 Me H F Br H 1
    CF2CF3 Me H F Br H 2
    CF2CF3 Me H F I H 0
    CF2CF3 Me H F I H 1
    CF2CF3 Me H F I H 2
    CF2CF3 Me H Cl F H 0
    CF2CF3 Me H Cl F H 1
    CF2CF3 Me H Cl F H 2
    CF2CF3 Me H Cl Br H 0
    CF2CF3 Me H Cl Br H 1
    CF2CF3 Me H Cl Br H 2
    CF2CF3 Me H Cl I H 0
    CF2CF3 Me H Cl I H 1
    CF2CF3 Me H Cl I H 2
    CF2CF3 Me H Br F H 0
    CF3CF2 Me H Br F H 1
    CF2CF3 Me H Br F H 2
    CF2CF3 Me H Br Cl H 0
    CF2CF3 Me H Br Cl H 1
    CF2CF3 Me H Br Cl H 2
    CF2CF3 Me H Br I H 0
    CF2CF3 Me H Br I H 1
    CF2CF3 Me H Br I H 2
    CF2CF3 Me H I F H 0
    CF2CF3 Me H I F H 1
    CF2CF3 Me H I F H 2
    CF2CF3 Me H I Cl H 0
    CF2CF3 Me H I Cl H 1
    CF2CF3 Me H I Cl H 2
    CF2CF3 Me H I Br H 0
    CF2CF3 Me H I Br H 1
    CF2CF3 Me H I Br H 2
    CF2CF3 Me H F CN H 0
    CF2CF3 Me H F CN H 1
    CF2CF3 Me H F CN H 2
    CF2CF3 Me H Cl CN H 0
    CF2CF3 Me H Cl CN H 1
    CF2CF3 Me H Cl CN H 2
    CF2CF3 Me H Br CN H 0
    CF2CF3 Me H Br CN H 1
    CF2CF3 Me H Br CN H 2
    CF2CF3 Me H I CN H 0
    CF2CF3 Me H I CN H 1
    CF2CF3 Me H I CN H 2
    CF2CF3 Me H CF3 F H 0
    CF2CF3 Me H CF3 F H 1
    CF2CF3 Me H CF3 F H 2
    CF2CF3 Me H CF3 Cl H 0
    CF2CF3 Me H CF3 Cl H 1
    CF2CF3 Me H CF3 Cl H 2
    CF2CF3 Me H CF3 Br H 0
    CF2CF3 Me H CF3 Br H 1
    CF2CF3 Me H CF3 Br H 2
    CF2CF3 Me H CF3 I H 0
    CF2CF3 Me H CF3 I H 1
    CF2CF3 Me H CF3 I H 2
    CF2CF3 Me H CF3 CN H 0
    CF2CF3 Me H CF3 CN H 1
    CF2CF3 Me H CF3 CN H 2
    CF2CF3 Et H H H H 0
    CF2CF3 Et H H H H 1
    CF2CF3 Et H H H H 2
    CF2CF3 Et F H H H 0
    CF2CF3 Et F H H H 1
    CF2CF3 Et F H H H 2
    CF2CF3 Et Cl H H H 0
    CF2CF3 Et Cl H H H 1
    CF2CF3 Et Cl H H H 2
    CF2CF3 Et Br H H H 0
    CF2CF3 Et Br H H H 1
    CF2CF3 Et Br H H H 2
    CF2CF3 Et I H H H 0
    CF2CF3 Et I H H H 1
    CF2CF3 Et I H H H 2
    CF2CF3 Et Me H H H 0
    CF2CF3 Et Me H H H 1
    CF2CF3 Et Me H H H 2
    CF2CF3 Et CF3 H H H 0
    CF2CF3 Et CF3 H H H 1
    CF2CF3 Et CF3 H H H 2
    CF2CF3 Et H F H H 0
    CF2CF3 Et H F H H 1
    CF2CF3 Et H F H H 2
    CF2CF3 Et H Cl H H 0
    CF2CF3 Et H Cl H H 1
    CF2CF3 Et H Cl H H 2
    CF2CF3 Et H Br H H 0
    CF2CF3 Et H Br H H 1
    CF2CF3 Et H Br H H 2
    CF2CF3 Et H I H H 0
    CF2CF3 Et H I H H 1
    CF2CF3 Et H I H H 2
    CF2CF3 Et H Me H H 0
    CF2CF3 Et H Me H H 1
    CF2CF3 Et H Me H H 2
    CF2CF3 Et H CF3 H H 0
    CF2CF3 Et H CF3 H H 1
    CF2CF3 Et H CF3 H H 2
    CF2CF3 Et H CF2CF3 H H 0
    CF2CF3 Et H CF2CF3 H H 1
    CF2CF3 Et H CF2CF3 H H 2
    CF2CF3 Et H CF(CF3)2 H H 0
    CF2CF3 Et H CF(CF3)2 H H 1
    CF2CF3 Et H CF(CF3)2 H H 2
    CF2CF3 Et H SMe H H 0
    CF2CF3 Et H SMe H H 1
    CF2CF3 Et H SMe H H 2
    CF2CF3 Et H SOMe H H 0
    CF2CF3 Et H SOMe H H 1
    CF2CF3 Et H SOMe H H 2
    CF2CF3 Et H SO2Me H H 0
    CF2CF3 Et H SO2Me H H 1
    CF2CF3 Et H SO2Me H H 2
    CF2CF3 Et H OMe H H 0
    CF2CF3 Et H OMe H H 1
    CF2CF3 Et H OMe H H 2
    CF2CF3 Et H OCF3 H H 0
    CF2CF3 Et H OCF3 H H 1
    CF2CF3 Et H OCF3 H H 2
    CF2CF3 Et H NO2 H H 0
    CF2CF3 Et H NO2 H H 1
    CF2CF3 Et H NO2 H H 2
    CF2CF3 Et H CN H H 0
    CF2CF3 Et H CN H H 1
    CF2CF3 Et H CN H H 2
    CF2CF3 Et H H F H 0
    CF2CF3 Et H H F H 1
    CF2CF3 Et H H F H 2
    CF2CF3 Et H H Cl H 0
    CF2CF3 Et H H Cl H 1
    CF2CF3 Et H H Cl H 2
    CF2CF3 Et H H Br H 0
    CF2CF3 Et H H Br H 1
    CF2CF3 Et H H Br H 2
    CF2CF3 Et H H I H 0
    CF2CF3 Et H H I H 1
    CF2CF3 Et H H I H 2
    CF2CF3 Et H H Me H 0
    CF2CF3 Et H H Me H 1
    CF2CF3 Et H H Me H 2
    CF2CF3 Et H H CF3 H 0
    CF2CF3 Et H H CF3 H 1
    CF2CF3 Et H H CF3 H 2
    CF2CF3 Et H H CF2CF3 H 0
    CF2CF3 Et H H CF2CF3 H 1
    CF2CF3 Et H H CF2CF3 H 2
    CF2CF3 Et H H CF(CF3)2 H 0
    CF2CF3 Et H H CF(CF3)2 H 1
    CF2CF3 Et H H CF(CF3)2 H 2
    CF2CF3 Et H H SMe H 0
    CF2CF3 Et H H SMe H 1
    CF2CF3 Et H H SMe H 2
    CF2CF3 Et H H SOMe H 0
    CF2CF3 Et H H SOMe H 1
    CF2CF3 Et H H SOMe H 2
    CF2CF3 Et H H SO2Me H 0
    CF2CF3 Et H H SO2Me H 1
    CF2CF3 Et H H SO2Me H 2
    CF2CF3 Et H H OMe H 0
    CF2CF3 Et H H OMe H 1
    CF2CF3 Et H H OMe H 2
    CF2CF3 Et H H OCF3 H 0
    CF2CF3 Et H H OCF3 H 1
    CF2CF3 Et H H OCF3 H 2
    CF2CF3 Et H H NO2 H 0
    CF2CF3 Et H H NO2 H 1
    CF2CF3 Et H H NO2 H 2
    CF2CF3 Et H H CN H 0
    CF2CF3 Et H H CN H 1
    CF2CF3 Et H H CN H 2
    CF2CF3 Et H H H H 0
    CF2CF3 Et H H H F 1
    CF2CF3 Et H H H F 2
    CF2CF3 Et H H H Cl 0
    CF2CF3 Et H H H Cl 1
    CF2CF3 Et H H H Cl 2
    CF2CF3 Et H H H Br 0
    CF2CF3 Et H H H Br 1
    CF2CF3 Et H H H Br 2
    CF2CF3 Et H H H I 0
    CF2CF3 Et H H H I 1
    CF2CF3 Et H H H I 2
    CF2CF2 Et H H H Me 0
    CF2CF3 Et H H H Me 1
    CF2CF3 Et H H H Me 2
    CF2CF3 Et H H H CF3 0
    CF2CF3 Et H H H CF3 1
    CF2CF3 Et H H H CF3 2
    CF2CF3 Et H H H CF2CF3 0
    CF2CF3 Et H H H CF2CF3 1
    CF2CF3 Et H H H CF2CF3 2
    CF2CF3 Et H H H CF(CF3)2 0
    CF2CF3 Et H H H CF(CF3)2 1
    CF2CF3 Et H H H CF(CF3)2 2
    CF2CF3 Et H H H SMe 0
    CF2CF3 Et H H H SMe 1
    CF2CF3 Et H H H SMe 2
    CF2CF3 Et H H H SOMe 0
    CF2CF3 Et H H H SOMe 1
    CF2CF3 Et H H H SOMe 2
    CF2CF3 Et H H H SO2Me 0
    CF2CF3 Et H H H SO2Me 1
    CF2CF3 Et H H H SO2Me 2
    CF2CF3 Et H H H OMe 0
    CF2CF3 Et H H H OMe 1
    CF2CF3 Et H H H OMe 2
    CF2CF3 Et H H H OCF3 0
    CF2CF3 Et H H H OCF3 1
    CF2CF3 Et H H H OCF3 2
    CF2CF3 Et H H H NO2 0
    CF2CF3 Et H H H NO2 1
    CF2CF3 Et H H H NO2 2
    CF2CF3 Et H H H CN 0
    CF2CF3 Et H H H CN 1
    CF2CF3 Et H H H CN 2
    CF2CF3 Et H F H F 0
    CF2CF3 Et H F H F 1
    CF2CF2 Et H F H F 2
    CF2CF3 Et H Cl H Cl 0
    CF2CF3 Et H Cl H Cl 1
    CF2CF3 Et H Cl H Cl 2
    CF2CF3 Et H Br H Br 0
    CF2CF3 Et H Br H Br 1
    CF2CF3 Et H Br H Br 2
    CF2CF3 Et H I H I 0
    CF2CF3 Et H I H I 1
    CF2CF3 Et H I H I 2
    CF2CF3 Et H F H Cl 0
    CF2CF3 Et H F H Cl 1
    CF2CF3 Et H F H Cl 2
    CF2CF3 Et H F H Br 0
    CF2CF3 Et H F H Br 1
    CF2CF3 Et H F H Br 2
    CF2CF3 Et H F H I 0
    CF2CF3 Et H F H I 1
    CF2CF3 Et H F H I 2
    CF2CF3 Et H Cl H F 0
    CF2CF3 Et H Cl H F 1
    CF2CF3 Et H Cl H F 2
    CF2CF3 Et H Cl H Br 0
    CF2CF3 Et H Cl H Br 1
    CF2CF3 Et H Cl H Br 2
    CF2CF3 Et H Cl H I 0
    CF2CF3 Et H Cl H I 1
    CF2CF3 Et H Cl H I 2
    CF2CF3 Et H Br H F 0
    CF2CF2 Et H Br H F 1
    CF2CF3 Et H Br H F 2
    CF2CF3 Et H Br H Cl 0
    CF2CF2 Et H Br H Cl 1
    CF2CF3 Et H Br H Cl 2
    CF2CF2 Et H Br H I 0
    CF2CF3 Et H Br H I 1
    CF2CF3 Et H Br H I 2
    CF2CF3 Et H I H F 0
    CF2CF3 Et H I H F 1
    CF2CF3 Et H I H F 2
    CF2CF3 Et H I H Cl 0
    CF2CF3 Et H I H Cl 1
    CF2CF3 Et H I H Cl 2
    CF2CF2 Et H I H Br 0
    CF2CF3 Et H I H Br 1
    CF2CF3 Et H I H Br 2
    CF2CF3 Et H F H CN 0
    CF2CF3 Et H F H CN 1
    CF2CF3 Et H F H CN 2
    CF2CF3 Et H Cl H CN 0
    CF2CF3 Et H Cl H CN 1
    CF2CF3 Et H Cl H CN 2
    CF2CF3 Et H Br H CN 0
    CF2CF3 Et H Br H CN 1
    CF2CF3 Et H Br H CN 2
    CF2CF3 Et H I H CN 0
    CF2CF3 Et H I H CN 1
    CF2CF3 Et H I H CN 2
    CF2CF3 Et H CF3 H F 0
    CF2CF3 Et H CF3 H F 1
    CF2CF3 Et H CF3 H F 2
    CF2CF3 Et H CF3 H Cl 0
    CF2CF3 Et H CF3 H Cl 1
    CF2CF3 Et H CF3 H Cl 2
    CF2CF3 Et H CF3 H Br 0
    CF2CF3 Et H CF3 H Br 1
    CF2CF3 Et H CF3 H Br 2
    CF2CF3 Et H CF3 H I 0
    CF2CF3 Et H CF3 H I 1
    CF2CF3 Et H CF3 H I 2
    CF2CF3 Et H CF3 H CN 0
    CF2CF3 Et H CF3 H CN 1
    CF2CF3 Et H CF3 H CN 2
    CF2CF3 Et H F F H 0
    CF2CF3 Et H F F H 1
    CF2CF3 Et H F F H 2
    CF2CF3 Et H Cl Cl H 0
    CF2CF3 Et H Cl Cl H 1
    CF2CF3 Et H Cl Cl H 2
    CF2CF3 Et H Br Br H 0
    CF2CF3 Et H Br Br H 1
    CF2CF3 Et H Br Br H 2
    CF2CF3 Et H I I H 0
    CF2CF3 Et H I I H 1
    CF2CF3 Et H I I H 2
    CF2CF3 Et H F Cl H 0
    CF2CF3 Et H F Cl H 1
    CF2CF3 Et H F Cl H 2
    CF2CF3 Et H F Br H 0
    CF3CF3 Et H F Br H 1
    CF2CF3 Et H F Br H 2
    CF3CF3 Et H F I H 0
    CF2CF3 Et H F I H 1
    CF2CF3 Et H F I H 2
    CF2CF3 Et H Cl F H 0
    CF2CF3 Et H Cl F H 1
    CF2CF3 Et H Cl F H 2
    CF2CF3 Et H Cl Br H 0
    CF2CF3 Et H Cl Br H 1
    CF2CF3 Et H Cl Br H 2
    CF2CF3 Et H Cl I H 0
    CF2CF3 Et H Cl I H 1
    CF2CF3 Et H Cl I H 2
    CF2CF3 Et H Br F H 0
    CF2CF3 Et H Br F H 1
    CF2CF3 Et H Br F H 2
    CF2CF3 Et H Br Cl H 0
    CF2CF3 Et H Br Cl H 1
    CF2CF3 Et H Br Cl H 2
    CF2CF3 Et H Br I H 0
    CF2CF3 Et H Br I H 1
    CF2CF3 Et H Br I H 2
    CF2CF3 Et H I F H 0
    CF2CF3 Et H I F H 1
    CF2CF3 Et H I F H 2
    CF2CF3 Et H I Cl H 0
    CF2CF3 Et H I Cl H 1
    CF2CF3 Et H I Cl H 2
    CF2CF3 Et H I Br H 0
    CF2CF3 Et H I Br H 1
    CF2CF3 Et H I Br H 2
    CF2CF3 Et H F CN H 0
    CF2CF3 Et H F CN H 1
    CF2CF3 Et H F CN H 2
    CF2CF3 Et H Cl CN H 0
    CF2CF3 Et H Cl CN H 1
    CF2CF3 Et H Cl CN H 2
    CF2CF3 Et H Br CN H 0
    CF2CF3 Et H Br CN H 1
    CF2CF3 Et H Br CN H 2
    CF2CF3 Et H I CN H 0
    CF2CF3 Et H I CN H 1
    CF2CF3 Et H I CN H 2
    CF2CF3 Et H CF3 F H 0
    CF2CF3 Et H CF3 F H 1
    CF2CF3 Et H CF3 F H 2
    CF2CF3 Et H CF3 Cl H 0
    CF2CF3 Et H CF3 Cl H 1
    CF2CF3 Et H CF3 Cl H 2
    CF2CF3 Et H CF3 Br H 0
    CF2CF3 Et H CF3 Br H 1
    CF2CF3 Et H CF3 Br H 2
    CF2CF3 Et H CF3 I H 0
    CF2CF3 Et H CF3 I H 1
    CF2CF3 Et H CF3 I H 2
    CF2CF3 Et H CF3 CN H 0
    CF2CF3 Et H CF3 CN H 1
    CF2CF3 Et H CF3 CN H 2
    CF2CF3 nPr H H H H 0
    CF2CF3 nPr H H H H 1
    CF2CF3 nPr H H H H 2
    CF2CF3 nPr F H H H 0
    CF2CF3 nPr F H H H 1
    CF2CF3 nPr F H H H 2
    CF2CF3 nPr Cl H H H 0
    CF2CF3 nPr Cl H H H 1
    CF2CF3 nPr Cl H H H 2
    CF2CF3 nPr Br H H H 0
    CF2CF3 nPr Br H H H 1
    CF2CF3 nPr Br H H H 2
    CF2CF3 nPr I H H H 0
    CF2CF3 nPr I H H H 1
    CF2CF3 nPr I H H H 2
    CF2CF3 nPr Me H H H 0
    CF2CF3 nPr Me H H H 1
    CF2CF3 nPr Me H H H 2
    CF2CF3 nPr CF3 H H H 0
    CF2CF3 nPr CF3 H H H 1
    CF2CF3 nPr CF3 H H H 2
    CF2CF3 nPr H F H H 0
    CF2CF3 nPr H F H H 1
    CF2CF3 nPr H F H H 2
    CF2CF3 nPr H Cl H H 0
    CF2CF3 nPr H Cl H H 1
    CF2CF3 nPr H Cl H H 2
    CF2CF3 nPr H Br H H 0
    CF2CF3 nPr H Br H H 1
    CF2CF3 nPr H Br H H 2
    CF2CF3 nPr H I H H 0
    CF2CF3 nPr H I H H 1
    CF2CF3 nPr H I H H 2
    CF2CF3 nPr H Me H H 0
    CF2CF3 nPr H Me H H 1
    CF2CF3 nPr H Me H H 2
    CF2CF3 nPr H CF3 H H 0
    CF2CF3 nPr H CF3 H H 1
    CF2CF3 nPr H CF3 H H 2
    CF2CF3 nPr H CF2CF3 H H 0
    CF2CF3 nPr H CF2CF3 H H 1
    CF2CF3 nPr H CF2CF3 H H 2
    CF2CF3 nPr H CF(CF3)2 H H 0
    CF2CF3 nPr H CF(CF3)2 H H 1
    CF2CF3 nPr H CF(CF3)2 H H 2
    CF2CF3 nPr H SMe H H 0
    CF2CF3 nPr H SMe H H 1
    CF2CF3 nPr H SMe H H 2
    CF2CF3 nPr H SOMe H H 0
    CF2CF3 nPr H SOMe H H 1
    CF2CF3 nPr H SOMe H H 2
    CF2CF3 nPr H SO2Me H H 0
    CF2CF3 nPr H SO2Me H H 1
    CF2CF3 nPr H SO2Me H H 2
    CF2CF3 nPr H OMe H H 0
    CF2CF3 nPr H OMe H H 1
    CF2CF3 nPr H OMe H H 2
    CF2CF3 nPr H OCF3 H H 0
    CF2CF3 nPr H OCF3 H H 1
    CF2CF3 nPr H OCF3 H H 2
    CF2CF3 nPr H NO2 H H 0
    CF2CF3 nPr H NO2 H H 1
    CF2CF3 nPr H NO2 H H 2
    CF2CF3 nPr H CN H H 0
    CF2CF3 nPr H CN H H 1
    CF2CF3 nPr H CN H H 2
    CF2CF3 nPr H H F H 0
    CF2CF3 nPr H H F H 1
    CF2CF3 nPr H H F H 2
    CF2CF3 nPr H H Cl H 0
    CF2CF3 nPr H H Cl H 1
    CF2CF3 nPr H H Cl H 2
    CF2CF3 nPr H H Br H 0
    CF3CF3 nPr H H Br H 1
    CF2CF3 nPr H H Br H 2
    CF2CF3 nPr H H I H 0
    CF2CF3 nPr H H I H 1
    CF2CF3 nPr H H I H 2
    CF2CF3 nPr H H Me H 0
    CF2CF3 nPr H H Me H 1
    CF2CF3 nPr H H Me H 2
    CF2CF3 nPr H H CF3 H 0
    CF2CF3 nPr H H CF3 H 1
    CF2CF3 nPr H H CF3 H 2
    CF2CF3 nPr H H CF2CF3 H 0
    CF2CF3 nPr H H CF2CF3 H 1
    CF2CF3 nPr H H CF2CF3 H 2
    CF2CF3 nPr H H CF(CF3)2 H 0
    CF2CF3 nPr H H CF(CF3)2 H 1
    CF2CF3 nPr H H CF(CF3)2 H 2
    CF2CF3 nPr H H SMe H 0
    CF2CF3 nPr H H SMe H 1
    CF2CF3 nPr H H SMe H 2
    CF2CF3 nPr H H SOMe H 0
    CF2CF3 nPr H H SOMe H 1
    CF2CF3 nPr H H SOMe H 2
    CF2CF3 nPr H H SO2Me H 0
    CF2CF3 nPr H H SO2Me H 1
    CF2CF3 nPr H H SO2Me H 2
    CF2CF3 nPr H H OMe H 0
    CF2CF3 nPr H H OMe H 1
    CF2CF3 nPr H H OMe H 2
    CF2CF3 nPr H H OCF3 H 0
    CF2CF3 nPr H H OCF3 H 1
    CF2CF3 nPr H H OCF3 H 2
    CF2CF3 nPr H H NO2 H 0
    CF2CF3 nPr H H NO2 H 1
    CF2CF3 nPr H H NO2 H 2
    CF2CF3 nPr H H CN H 0
    CF2CF3 nPr H H CN H 1
    CF2CF3 nPr H H CN H 2
    CF2CF3 nPr H H H F 0
    CF2CF3 nPr H H H F 1
    CF2CF3 nPr H H H F 2
    CF2CF3 nPr H H H Cl 0
    CF2CF3 nPr H H H Cl 1
    CF2CF3 nPr H H H Cl 2
    CF2CF3 nPr H H H Br 0
    CF2CF3 nPr H H H Br 1
    CF2CF3 nPr H H H Br 2
    CF2CF3 nPr H H H I 0
    CF2CF3 nPr H H H I 1
    CF2CF3 nPr H H H I 2
    CF2CF3 nPr H H H Me 0
    CF2CF3 nPr H H H Me 1
    CF2CF3 nPr H H H Me 2
    CF2CF3 nPr H H H CF3 0
    CF2CF3 nPr H H H CF3 1
    CF2CF3 nPr H H H CF3 2
    CF2CF3 nPr H H H CF2CF3 0
    CF2CF3 nPr H H H CF2CF3 1
    CF2CF3 nPr H H H CF2CF3 2
    CF2CF3 nPr H H H CF(CF3)2 0
    CF2CF3 nPr H H H CF(CF3)2 1
    CF2CF3 nPr H H H CF(CF3)2 2
    CF2CF3 nPr H H H SMe 0
    CF2CF3 nPr H H H SMe 1
    CF2CF3 nPr H H H SMe 2
    CF2CF3 nPr H H H SOMe 0
    CF2CF3 nPr H H H SOMe 1
    CF2CF3 nPr H H H SOMe 2
    CF2CF3 nPr H H H SO2Me 0
    CF2CF3 nPr H H H SO2Me 1
    CF2CF3 nPr H H H SO2Me 2
    CF2CF3 nPr H H H OMe 0
    CF2CF3 nPr H H H OMe 1
    CF2CF3 nPr H H H OMe 2
    CF2CF3 nPr H H H OCF3 0
    CF2CF3 nPr H H H OCF3 1
    CF2CF3 nPr H H H OCF3 2
    CF2CF3 nPr H H H NO2 0
    CF2CF3 nPr H H H NO2 1
    CF2CF3 nPr H H H NO2 2
    CF2CF3 nPr H H H CN 0
    CF2CF3 nPr H H H CN 1
    CF2CF3 nPr H H H CN 2
    CF2CF3 nPr H F H F 0
    CF2CF3 nPr H F H F 1
    CF2CF3 nPr H F H F 2
    CF2CF3 nPr H Cl H Cl 0
    CF2CF3 nPr H Cl H Cl 1
    CF2CF3 nPr H Cl H Cl 2
    CF2CF3 nPr H Br H Br 0
    CF2CF3 nPr H Br H Br 1
    CF2CF3 nPr H Br H Br 2
    CF2CF3 nPr H I H I 0
    CF2CF3 nPr H I H I 1
    CF2CF3 nPr H I H I 2
    CF2CF3 nPr H F H Cl 0
    CF2CF3 nPr H F H Cl 1
    CF2CF3 nPr H F H Cl 2
    CF2CF3 nPr H F H Br 0
    CF2CF3 nPr H F H Br 1
    CF2CF3 nPr H F H Br 2
    CF2CF3 nPr H F H I 0
    CF2CF3 nPr H F H I 1
    CF2CF3 nPr H F H I 2
    CF2CF3 nPr H Cl H F 0
    CF2CF3 nPr H Cl H F 1
    CF2CF3 nPr H Cl H F 2
    CF2CF3 nPr H Cl H Br 0
    CF2CF3 nPr H Cl H Br 1
    CF2CF3 nPr H Cl H Br 2
    CF2CF3 nPr H Cl H I 0
    CF2CF3 nPr H C1 H I 1
    CF2CF3 nPr H Cl H I 2
    CF2CF3 nPr H Br H F 0
    CF2CF3 nPr H Br H F 1
    CF2CF3 nPr H Br H F 2
    CF2CF3 nPr H Br H Cl 0
    CF2CF3 nPr H Br H Cl 1
    CF3CF3 nPr H Br H Cl 2
    CF2CF3 nPr H Br H I 0
    CF2CF3 nPr H Br H I 1
    CF2CF3 nPr H Br H I 2
    CF2CF3 nPr H I H F 0
    CF2CF3 nPr H I H F 1
    CF2CF3 nPr H I H F 2
    CF2CF3 nPr H I H Cl 0
    CF2CF3 nPr H I H Cl 1
    CF2CF3 nPr H I H Cl 2
    CF2CF3 nPr H I H Br 0
    CF2CF3 nPr H I H Br 1
    CF2CF3 nPr H I H Br 2
    CF2CF3 nPr H F H CN 0
    CF2CF3 nPr H F H CN 1
    CF2CF3 nPr H F H CN 2
    CF2CF3 nPr H Cl H CN 0
    CF2CF3 nPr H Cl H CN 1
    CF2CF3 nPr H Cl H CN 2
    CF2CF3 nPr H Br H CN 0
    CF2CF3 nPr H Br H CN 1
    CF2CF3 nPr H Br H CN 2
    CF2CF3 nPr H I H CN 0
    CF2CF3 nPr H I H CN 1
    CF2CF3 nPr H I H CN 2
    CF2CF3 nPr H CF3 H F 0
    CF2CF3 nPr H CF3 H F 1
    CF2CF3 nPr H CF3 H F 2
    CF2CF3 nPr H CF3 H Cl 0
    CF2CF3 nPr H CF3 H Cl 1
    CF2CF3 nPr H CF3 H Cl 2
    CF2CF3 nPr H CF3 H Br 0
    CF2CF3 nPr H CF3 H Br 1
    CF2CF3 nPr H CF3 H Br 2
    CF2CF3 nPr H CF3 H I 0
    CF2CF3 nPr H CF3 H I 1
    CF2CF3 nPr H CF3 H I 2
    CF2CF3 nPr H CF3 H CN 0
    CF2CF3 nPr H CF3 H CN 1
    CF2CF3 nPr H CF3 H CN 2
    CF2CF3 nPr H F F H 0
    CF2CF3 nPr H F F H 1
    CF2CF3 nPr H F F H 2
    CF2CF3 nPr H Cl Cl H 0
    CF2CF3 nPr H Cl Cl H 1
    CF2CF3 nPr H Cl Cl H 2
    CF2CF3 nPr H Br Br H 0
    CF2CF3 nPr H Br Br H 1
    CF2CF3 nPr H Br Br H 2
    CF2CF3 nPr H I I H 0
    CF2CF3 nPr H I I H 1
    CF2CF3 nPr H I I H 2
    CF2CF3 nPr H F Cl H 0
    CF2CF3 nPr H F Cl H 1
    CF2CF3 nPr H F Cl H 2
    CF2CF3 nPr H F Br H 0
    CF2CF3 nPr H F Br H 1
    CF2CF3 nPr H F Br H 2
    CF2CF3 nPr H F I H 0
    CF2CF3 nPr H F I H 1
    CF2CF3 nPr H F I H 2
    CF2CF3 nPr H Cl F H 0
    CF2CF3 nPr H Cl F H 1
    CF2CF3 nPr H Cl F H 2
    CF2CF3 nPr H Cl Br H 0
    CF2CF3 nPr H Cl Br H 1
    CF2CF3 nPr H Cl Br H 2
    CF2CF3 nPr H Cl I H 0
    CF2CF3 nPr H Cl I H 1
    CF2CF3 nPr H Cl I H 2
    CF2CF3 nPr H Br F H 0
    CF2CF3 nPr H Br F H 1
    CF2CF3 nPr H Br F H 2
    CF2CF3 nPr H Br Cl H 0
    CF2CF3 nPr H Br Cl H 1
    CF2CF3 nPr H Br Cl H 2
    CF2CF3 nPr H Br I H 0
    CF2CF3 nPr H Br I H 1
    CF2CF3 nPr H Br I H 2
    CF2CF3 nPr H I F H 0
    CF2CF3 nPr H I F H 1
    CF2CF3 nPr H I F H 2
    CF2CF3 nPr H I Cl H 0
    CF2CF3 nPr H I Cl H 1
    CF2CF3 nPr H I Cl H 2
    CF2CF3 nPr H I Br H 0
    CF2CF3 nPr H I Br H 1
    CF2CF3 nPr H I Br H 2
    CF2CF3 nPr H F CN H 0
    CF2CF3 nPr H F CN H 1
    CF2CF3 nPr H F CN H 2
    CF2CF3 nPr H Cl CN H 0
    CF2CF3 nPr H Cl CN H 1
    CF2CF3 nPr H Cl CN H 2
    CF2CF3 nPr H Br CN H 0
    CF2CF3 nPr H Br CN H 1
    CF2CF3 nPr H Br CN H 2
    CF2CF3 nPr H I CN H 0
    CF2CF3 nPr H I CN H 1
    CF2CF3 nPr H I CN H 2
    CF2CF3 nPr H CF3 F H 0
    CF2CF3 nPr H CF3 F H 1
    CF2CF3 nPr H CF3 F H 2
    CF2CF3 nPr H CF3 Cl H 0
    CF2CF3 nPr H CF3 Cl H 1
    CF2CF3 nPr H CF3 Cl H 2
    CF2CF3 nPr H CF3 Br H 0
    CF2CF3 nPr H CF3 Br H 1
    CF2CF3 nPr H CF3 Br H 2
    CF2CF3 nPr H CF3 I H 0
    CF2CF3 nPr H CF3 I H 1
    CF2CF3 nPr H CF3 I H 2
    CF2CF3 nPr H CF3 CN H 0
    CF2CF3 nPr H CF3 CN H 1
    CF2CF3 nPr H CF3 CN H 2
    CF2CF3 iPr H H H H 0
    CF2CF3 iPr H H H H 1
    CF2CF3 iPr H H H H 2
    CF2CF3 iPr F H H H 0
    CF2CF3 iPr F H H H 1
    CF2CF3 iPr F H H H 2
    CF2CF3 iPr Cl H H H 0
    CF2CF3 iPr Cl H H H 1
    CF2CF3 iPr Cl H H H 2
    CF2CF3 iPr Br H H H 0
    CF2CF3 iPr Br H H H 1
    CF2CF3 iPr Br H H H 2
    CF3CF3 iPr I H H H 0
    CF2CF3 iPr I H H H 1
    CF2CF3 iPr I H H H 2
    CF2CF3 iPr Me H H H 0
    CF3CF3 iPr Me H H H 1
    CF2CF3 iPr Me H H H 2
    CF2CF3 iPr CF3 H H H 0
    CF2CF3 iPr CF3 H H H 1
    CF2CF3 iPr CF3 H H H 2
    CF2CF3 iPr H F H H 0
    CF2CF3 iPr H F H H 1
    CF2CF3 iPr H F H H 2
    CF2CF3 iPr H Cl H H 0
    CF2CF3 iPr H Cl H H 1
    CF2CF3 iPr H Cl H H 2
    CF2CF3 iPr H Br H H 0
    CF2CF3 iPr H Br H H 1
    CF2CF3 iPr H Br H H 2
    CF2CF3 iPr H I H H 0
    CF3CF3 iPr H I H H 1
    CF3CF3 iPr H I H H 2
    CF2CF3 iPr H Me H H 0
    CF2CF3 iPr H Me H H 1
    CF2CF3 iPr H Me H H 2
    CF2CF3 iPr H CF3 H H 0
    CF2CF3 iPr H CF3 H H 1
    CF2CF3 iPr H CF3 H H 2
    CF2CF3 iPr H CF2CF3 H H 0
    CF2CF3 iPr H CF2CF3 H H 1
    CF2CF3 iPr H CF2CF3 H H 2
    CF2CF3 iPr H CF(CF3)2 H H 0
    CF2CF3 iPr H CF(CF3)2 H H 1
    CF2CF3 iPr H CF(CF3)2 H H 2
    CF2CF3 iPr H SMe H H 0
    CF2CF3 iPr H SMe H H 1
    CF2CF3 iPr H SMe H H 2
    CF2CF3 iPr H SOMe H H 0
    CF2CF3 iPr H SOMe H H 1
    CF2CF3 iPr H SOMe H H 2
    CF2CF3 iPr H SO2Me H H 0
    CF2CF3 iPr H SO2Me H H 1
    CF2CF3 iPr H SO2Me H H 2
    CF2CF3 iPr H OMe H H 0
    CF2CF3 iPr H OMe H H 1
    CF2CF3 iPr H OMe H H 2
    CF2CF3 iPr H OCF3 H H 0
    CF2CF3 iPr H OCF3 H H 1
    CF2CF3 iPr H OCF3 H H 2
    CF2CF3 iPr H NO2 H H 0
    CF2CF3 iPr H NO2 H H 1
    CF2CF3 iPr H NO2 H H 2
    CF2CF3 iPr H CN H H 0
    CF2CF3 iPr H CN H H 1
    CF2CF3 iPr H CN H H 2
    CF2CF3 iPr H H F H 0
    CF2CF3 iPr H H F H 1
    CF2CF3 iPr H H F H 2
    CF2CF3 iPr H H Cl H 0
    CF2CF3 iPr H H Cl H 1
    CF2CF3 iPr H H Cl H 2
    CF2CF3 iPr H H Br H 0
    CF2CF3 iPr H H Br H 1
    CF2CF3 iPr H H Br H 2
    CF2CF3 iPr H H I H 0
    CF3CF3 iPr H H I H 1
    CF2CF3 iPr H H I H 2
    CF2CF3 iPr H H Me H 0
    CF2CF3 iPr H H Me H 1
    CF2CF3 iPr H H Me H 2
    CF2CF3 iPr H H CF3 H 0
    CF2CF3 iPr H H CF3 H 1
    CF2CF3 iPr H H CF3 H 2
    CF2CF3 iPr H H CF2CF3 H 0
    CF2CF3 iPr H H CF2CF3 H 1
    CF2CF3 iPr H H CF2CF3 H 2
    CF2CF3 iPr H H CF(CF3)2 H 0
    CF2CF3 iPr H H CF(CF3)2 H 1
    CF2CF3 iPr H H CF(CF3)2 H 2
    CF2CF3 iPr H H SMe H 0
    CF2CF3 iPr H H SMe H 1
    CF2CF3 iPr H H SMe H 2
    CF2CF3 iPr H H SOMe H 0
    CF2CF3 iPr H H SOMe H 1
    CF3CF3 iPr H H SOMe H 2
    CF2CF3 iPr H H SO2Me H 0
    CF3CF3 iPr H H SO2Me H 1
    CF2CF3 iPr H H SO2Me H 2
    CF2CF3 iPr H H OMe H 0
    CF2CF3 iPr H H OMe H 1
    CF2CF3 iPr H H OMe H 2
    CF2CF3 iPr H H OCF3 H 0
    CF2CF3 iPr H H OCF3 H 1
    CF2CF3 iPr H H OCF3 H 2
    CF2CF3 iPr H H NO2 H 0
    CF2CF3 iPr H H NO2 H 1
    CF2CF3 iPr H H NO2 H 2
    CF2CF3 iPr H H CN H 0
    CF2CF3 iPr H H CN H 1
    CF2CF3 iPr H H CN H 2
    CF2CF3 iPr H H H F 0
    CF2CF3 iPr H H H F 1
    CF2CF3 iPr H H H F 2
    CF2CF3 iPr H H H Cl 0
    CF2CF3 iPr H H H Cl 1
    CF2CF3 iPr H H H Cl 2
    CF2CF3 iPr H H H Br 0
    CF2CF3 iPr H H H Br 1
    CF2CF3 iPr H H H Br 2
    CF2CF3 iPr H H H I 0
    CF2CF3 iPr H H H I 1
    CF2CF3 iPr H H H I 2
    CF2CF3 iPr H H H Me 0
    CF2CF3 iPr H H H Me 1
    CF2CF3 iPr H H H Me 2
    CF2CF3 iPr H H H CF3 0
    CF2CF3 iPr H H H CF3 1
    CF2CF3 iPr H H H CF3 2
    CF2CF3 iPr H H H CF2CF3 0
    CF2CF3 iPr H H H CF2CF3 1
    CF2CF3 iPr H H H CF2CF3 2
    CF2CF3 iPr H H H CF(CF3)2 0
    CF2CF3 iPr H H H CF(CF3)2 1
    CF2CF3 iPr H H H CF(CF3)2 2
    CF2CF3 iPr H H H SMe 0
    CF2CF3 iPr H H H SMe 1
    CF2CF3 iPr H H H SMe 2
    CF2CF3 iPr H H H SOMe 0
    CF2CF3 iPr H H H SOMe 1
    CF2CF3 iPr H H H SOMe 2
    CF2CF3 iPr H H H SO2Me 0
    CF2CF3 iPr H H H SO2Me 1
    CF2CF3 iPr H H H SO2Me 2
    CF2CF3 iPr H H H OMe 0
    CF2CF3 iPr H H H OMe 1
    CF2CF3 iPr H H H OMe 2
    CF2CF3 iPr H H H OCF3 0
    CF2CF3 iPr H H H OCF3 1
    CF2CF3 iPr H H H OCF3 2
    CF2CF3 iPr H H H NO2 0
    CF2CF3 iPr H H H NO2 1
    CF2CF3 iPr H H H NO2 2
    CF2CF3 iPr H H H CN 0
    CF2CF3 iPr H H H CN 1
    CF2CF3 iPr H H H CN 2
    CF2CF3 iPr H F H F 0
    CF2CF3 iPr H F H F 1
    CF2CF3 iPr H F H F 2
    CF2CF3 iPr H Cl H Cl 0
    CF2CF3 iPr H Cl H Cl 1
    CF2CF3 iPr H Cl H Cl 2
    CF2CF3 iPr H Br H Br 0
    CF2CF3 iPr H Br H Br 1
    CF2CF3 iPr H Br H Br 2
    CF2CF3 iPr H I H I 0
    CF2CF3 iPr H I H I 1
    CF2CF3 iPr H I H I 2
    CF2CF3 iPr H F H Cl 0
    CF2CF3 iPr H F H Cl 1
    CF2CF3 iPr H F H Cl 2
    CF2CF3 iPr H F H Br 0
    CF2CF3 iPr H F H Br 1
    CF2CF3 iPr H F H Br 2
    CF2CF3 iPr H F H I 0
    CF2CF3 iPr H F H I 1
    CF2CF3 iPr H F H I 2
    CF2CF3 iPr H Cl H F 0
    CF2CF3 iPr H Cl H F 1
    CF2CF3 iPr H Cl H F 2
    CF2CF3 iPr H Cl H Br 0
    CF2CF3 iPr H Cl H Br 1
    CF2CF3 iPr H Cl H Br 2
    CF2CF3 iPr H Cl H I 0
    CF2CF3 iPr H Cl H I 1
    CF2CF3 iPr H Cl H I 2
    CF2CF3 iPr H Br H F 0
    CF2CF2 iPr H Br H F 1
    CF2CF3 iPr H Br H F 2
    CF2CF3 iPr H Br H Cl 0
    CF2CF3 iPr H Br H Cl 1
    CF2CF3 iPr H Br H Cl 2
    CF2CF3 iPr H Br H I 0
    CF2CF3 iPr H Br H I 1
    CF2CF3 iPr H Br H I 2
    CF2CF3 iPr H I H F 0
    CF2CF3 iPr H I H F 1
    CF2CF3 iPr H I H F 2
    CF2CF3 iPr H I H Cl 0
    CF2CF3 iPr H I H Cl 1
    CF2CF3 iPr H I H Cl 2
    CF2CF3 iPr H I H Br 0
    CF2CF3 iPr H I H Br 1
    CF2CF3 iPr H I H Br 2
    CF2CF3 iPr H F H CN 0
    CF2CF3 iPr H F H CN 1
    CF2CF3 iPr H F H CN 2
    CF2CF3 iPr H Cl H CN 0
    CF2CF3 iPr H Cl H CN 1
    CF2CF3 iPr H Cl H CN 2
    CF2CF3 iPr H Br H CN 0
    CF2CF3 iPr H Br H CN 1
    CF2CF3 iPr H Br H CN 2
    CF2CF3 iPr H I H CN 0
    CF2CF3 iPr H I H CN 1
    CF2CF3 iPr H I H CN 2
    CF2CF3 iPr H CF3 H F 0
    CF2CF3 iPr H CF3 H F 1
    CF2CF3 iPr H CF3 H F 2
    CF2CF3 iPr H CF3 H Cl 0
    CF2CF3 iPr H CF3 H Cl 1
    CF2CF3 iPr H CF3 H Cl 2
    CF2CF3 iPr H CF3 H Br 0
    CF2CF3 iPr H CF3 H Br 1
    CF2CF3 iPr H CF3 H Br 2
    CF2CF3 iPr H CF3 H I 0
    CF2CF3 iPr H CF3 H I 1
    CF2CF3 iPr H CF3 H I 2
    CF2CF3 iPr H CF3 H CN 0
    CF2CF3 iPr H CF3 H CN 1
    CF2CF3 iPr H CF3 H CN 2
    CF2CF3 iPr H F F H 0
    CF2CF3 iPr H F F H 1
    CF2CF3 iPr H F F H 2
    CF2CF3 iPr H Cl Cl H 0
    CF2CF3 iPr H Cl Cl H 1
    CF2CF3 iPr H Cl Cl H 2
    CF2CF3 iPr H Br Br H 0
    CF2CF3 iPr H Br Br H 1
    CF2CF3 iPr H Br Br H 2
    CF2CF3 iPr H I I H 0
    CF2CF3 iPr H I I H 1
    CF2CF3 iPr H I I H 2
    CF2CF3 iPr H F Cl H 0
    CF2CF3 iPr H F Cl H 1
    CF2CF3 iPr H F Cl H 2
    CF3CF3 iPr H F Br H 0
    CF2CF3 iPr H F Br H 1
    CF2CF3 iPr H F Br H 2
    CF2CF3 iPr H F I H 0
    CF2CF3 iPr H F I H 1
    CF2CF3 iPr H F I H 2
    CF2CF3 iPr H Cl F H 0
    CF2CF3 iPr H Cl F H 1
    CF2CF3 iPr H Cl F H 2
    CF2CF3 iPr H Cl Br H 0
    CF2CF3 iPr H Cl Br H 1
    CF2CF3 iPr H Cl Br H 2
    CF2CF3 iPr H Cl I H 0
    CF2CF3 iPr H Cl I H 1
    CF2CF3 iPr H Cl I H 2
    CF2CF3 iPr H Br F H 0
    CF2CF3 iPr H Br F H 1
    CF2CF3 iPr H Br F H 2
    CF2CF3 iPr H Br Cl H 0
    CF2CF3 iPr H Br Cl H 1
    CF2CF3 iPr H Br Cl H 2
    CF2CF3 iPr H Br I H 0
    CF2CF3 iPr H Br I H 1
    CF2CF3 iPr H Br I H 2
    CF2CF3 iPr H I F H 0
    CF2CF3 iPr H I F H 1
    CF2CF3 iPr H I F H 2
    CF2CF3 iPr H I Cl H 0
    CF2CF3 iPr H I Cl H 1
    CF2CF3 iPr H I Cl H 2
    CF2CF3 iPr H I Br H 0
    CF2CF3 iPr H I Br H 1
    CF2CF3 iPr H I Br H 2
    CF2CF3 iPr H F CN H 0
    CF2CF3 iPr H F CN H 1
    CF2CF3 iPr H F CN H 2
    CF2CF3 iPr H Cl CN H 0
    CF2CF3 iPr H Cl CN H 1
    CF2CF3 iPr H Cl CN H 2
    CF2CF3 iPr H Br CN H 0
    CF2CF3 iPr H Br CN H 1
    CF2CF3 iPr H Br CN H 2
    CF2CF3 iPr H I CN H 0
    CF2CF3 iPr H I CN H 1
    CF2CF3 iPr H I CN H 2
    CF2CF3 iPr H CF3 F H 0
    CF2CF3 iPr H CF3 F H 1
    CF2CF3 iPr H CF3 F H 2
    CF2CF3 iPr H CF3 Cl H 0
    CF2CF3 iPr H CF3 Cl H 1
    CF2CF3 iPr H CF3 Cl H 2
    CF2CF3 iPr H CF3 Br H 0
    CF2CF3 iPr H CF3 Br H 1
    CF2CF3 iPr H CF3 Br H 2
    CF2CF3 iPr H CF3 I H 0
    CF2CF3 iPr H CF3 I H 1
    CF2CF3 iPr H CF3 I H 2
    CF2CF3 iPr H CF3 CN H 0
    CF2CF3 iPr H CF3 CN H 1
    CF2CF3 iPr H CF3 CN H 2
    CF2CF3 CH2CF3 H H H H 0
    CF2CF3 CH2CF3 H H H H 1
    CF2CF3 CH2CF3 H H H H 2
    CF2CF3 CH2CF3 F H H H 0
    CF2CF3 CH2CF3 F H H H 1
    CF2CF3 CH3CF3 F H H H 2
    CF2CF3 CH2CF3 Cl H H H 0
    CF2CF3 CH2CF3 Cl H H H 1
    CF2CF3 CH2CF3 Cl H H H 2
    CF2CF3 CH2CF3 Br H H H 0
    CF2CF3 CH2CF3 Br H H H 1
    CF2CF3 CH2CF3 Br H H H 2
    CF2CF3 CH2CF3 I H H H 0
    CF2CF3 CH2CF3 I H H H 1
    CF2CF3 CH2CF3 I H H H 2
    CF2CF3 CH2CF3 Me H H H 0
    CF2CF3 CH2CF3 Me H H H 1
    CF2CF3 CH2CF3 Me H H H 2
    CF2CF3 CH2CF3 CF3 H H H 0
    CF2CF3 CH2CF3 CF3 H H H 1
    CF2CF3 CH2CF3 CF3 H H H 2
    CF2CF3 CH2CF3 H F H H 0
    CF2CF3 CH2CF3 H F H H 1
    CF2CF3 CH2CF3 H F H H 2
    CF2CF3 CH2CF3 H Cl H H 0
    CF2CF3 CH2CF3 H Cl H H 1
    CF2CF3 CH2CF3 H Cl H H 2
    CF2CF3 CH2CF3 H Br H H 0
    CF2CF3 CH2CF3 H Br H H 1
    CF2CF3 CH2CF3 H Br H H 2
    CF2CF3 CH2CF3 H I H H 0
    CF2CF3 CH2CF3 H I H H 1
    CF2CF3 CH2CF3 H I H H 2
    CF2CF3 CH2CF3 H Me H H 0
    CF2CF3 CH2CF3 H Me H H 1
    CF2CF3 CH2CF3 H Me H H 2
    CF2CF3 CH2CF3 H CF3 H H 0
    CF2CF3 CH2CF3 H CF3 H H 1
    CF2CF3 CH2CF3 H CF3 H H 2
    CF2CF3 CH2CF3 H CF2CF3 H H 0
    CF2CF3 CH2CF3 H CF2CF3 H H 1
    CF2CF3 CH2CF3 H CF2CF3 H H 2
    CF2CF3 CH2CF3 H CF(CF3)2 H H 0
    CF2CF3 CH2CF3 H CF(CF3)2 H H 1
    CF2CF3 CH2CF3 H CF(CF3)2 H H 2
    CF2CF3 CH2CF3 H SMe H H 0
    CF2CF3 CH2CF3 H SMe H H 1
    CF2CF3 CH2CF3 H SMe H H 2
    CF2CF3 CH2CF3 H SOMe H H 0
    CF2CF3 CH2CF3 H SOMe H H 1
    CF2CF3 CH2CF3 H SOMe H H 2
    CF2CF3 CH2CF3 H SO2Me H H 0
    CF2CF3 CH2CF3 H SO2Me H H 1
    CF2CF3 CH2CF3 H SO2Me H H 2
    CF2CF3 CH2CF3 H OMe H H 0
    CF2CF3 CH2CF3 H OMe H H 1
    CF2CF3 CH2CF3 H OMe H H 2
    CF2CF3 CH2CF3 H OCF3 H H 0
    CF2CF3 CH2CF3 H OCF3 H H 1
    CF2CF3 CH2CF3 H OCF3 H H 2
    CF2CF3 CH2CF3 H NO2 H H 0
    CF2CF3 CH2CF3 H NO2 H H 1
    CF2CF3 CF2CF3 H NO2 H H 2
    CF2CF3 CH2CF3 H CN H H 0
    CF2CF3 CH2CF3 H CN H H 1
    CF2CF3 CH2CF3 H CN H H 2
    CF2CF3 CH2CF3 H H F H 0
    CF2CF3 CH2CF3 H H F H 1
    CF2CF3 CH2CF3 H H F H 2
    CF2CF3 CH2CF3 H H Cl H 0
    CF2CF3 CH2CF3 H H Cl H 1
    CF2CF3 CH2CF3 H H Cl H 2
    CF2CF3 CH2CF3 H H Br H 0
    CF2CF3 CH2CF3 H H Br H 1
    CF2CF3 CH2CF3 H H Br H 2
    CF2CF3 CH2CF3 H H I H 0
    CF2CF3 CH2CF3 H H I H 1
    CF2CF3 CH2CF3 H H I H 2
    CF2CF3 CH2CF3 H H Me H 0
    CF2CF3 CH2CF3 H H Me H 1
    CF2CF3 CH2CF3 H H Me H 2
    CF2CF3 CH3CF3 H H CF3 H 0
    CF2CF3 CH2CF3 H H CF3 H 1
    CF2CF3 CH2CF3 H H CF3 H 2
    CF2CF3 CH2CF3 H H CF2CF3 H 0
    CF2CF3 CH2CF3 H H CF2CF3 H 1
    CF2CF3 CH2CF3 H H CF2CF3 H 2
    CF2CF3 CH2CF3 H H CF(CF3)2 H 0
    CF2CF3 CH2CF3 H H CF(CF3)2 H 1
    CF2CF3 CH2CF3 H H CF(CF3)2 H 2
    CF2CF3 CH2CF3 H H SMe H 0
    CF2CF3 CH2CF3 H H SMe H 1
    CF2CF3 CH2CF3 H H SMe H 2
    CF2CF3 CH2CF3 H H SOMe H 0
    CF2CF3 CH2CF3 H H SOMe H 1
    CF2CF3 CH2CF3 H H SOMe H 2
    CF2CF3 CH2CF3 H H SO2Me H 0
    CF2CF3 CH2CF3 H H SO2Me H 1
    CF2CF3 CH2CF3 H H SO2Me H 2
    CF2CF3 CH2CF3 H H OMe H 0
    CF2CF3 CH2CF3 H H OMe H 1
    CF2CF3 CH2CF3 H H OMe H 2
    CF2CF3 CH2CF3 H H OCF3 H 0
    CF2CF3 CH2CF3 H H OCF3 H 1
    CF2CF3 CH2CF3 H H OCF3 H 2
    CF2CF3 CH2CF3 H H NO2 H 0
    CF2CF3 CH2CF3 H H NO2 H 1
    CF2CF3 CH2CF3 H H NO2 H 2
    CF2CF3 CH2CF3 H H CN H 0
    CF2CF3 CH2CF3 H H CN H 1
    CF2CF3 CH2CF3 H H CN H 2
    CF2CF3 CH2CF3 H H H F 0
    CF2CF3 CH2CF3 H H H F 1
    CF2CF3 CH2CF3 H H H F 2
    CF2CF3 CH2CF3 H H H Cl 0
    CF2CF3 CH2CF3 H H H Cl 1
    CF2CF3 CH2CF3 H H H Cl 2
    CF2CF3 CH2CF3 H H H Br 0
    CF2CF3 CH2CF3 H H H Br 1
    CF2CF3 CH2CF3 H H H Br 2
    CF2CF3 CH2CF3 H H H I 0
    CF2CF3 CH2CF3 H H H I 1
    CF2CF3 CH2CF3 H H H I 2
    CF2CF3 CH2CF3 H H H Me 0
    CF2CF3 CH2CF3 H H H Me 1
    CF2CF3 CH2CF3 H H H Me 2
    CF2CF3 CH2CF3 H H H CF3 0
    CF2CF3 CH2CF3 H H H CF3 1
    CF2CF3 CH2CF3 H H H CF3 2
    CF2CF3 CH2CF3 H H H CF2CF3 0
    CF2CF3 CH2CF3 H H H CF2CF3 1
    CF2CF3 CH2CF3 H H H CF2CF3 2
    CF2CF3 CH2CF3 H H H CF(CF3)2 0
    CF2CF3 CH2CF3 H H H CF(CF3)2 1
    CF2CF3 CH2CF3 H H H CF(CF3)2 2
    CF2CF3 CH2CF3 H H H SMe 0
    CF2CF3 CH2CF3 H H H SMe 1
    CF2CF3 CH2CF3 H H H SMe 2
    CF2CF3 CH2CF3 H H H SOMe 0
    CF2CF3 CH2CF3 H H H SOMe 1
    CF2CF3 CH2CF3 H H H SOMe 2
    CF2CF3 CH2CF3 H H H SO2Me 0
    CF2CF3 CH2CF3 H H H SO2Me 1
    CF2CF3 CH2CF3 H H H SO2Me 2
    CF2CF3 CH2CF3 H H H OMe 0
    CF2CF2 CH2CF3 H H H OMe 1
    CF2CF3 CH2CF3 H H H OMe 2
    CF2CF3 CH2CF3 H H H OCF3 0
    CF2CF3 CH2CF3 H H H OCF3 1
    CF2CF3 CH2CF3 H H H OCF3 2
    CF2CF3 CH2CF3 H H H NO2 0
    CF2CF3 CH2CF3 H H H NO2 1
    CF2CF3 CH2CF3 H H H NO2 2
    CF2CF3 CH2CF3 H H H CN 0
    CF2CF3 CH2CF3 H H H CN 1
    CF2CF3 CH2CF3 H H H CN 2
    CF2CF3 CH2CF3 H F H F 0
    CF2CF3 CH2CF3 H F H F 1
    CF2CF3 CH2CF3 H F H F 2
    CF2CF3 CH2CF3 H Cl H Cl 0
    CF2CF3 CH2CF3 H Cl H Cl 1
    CF2CF3 CH2CF3 H Cl H Cl 2
    CF2CF3 CH2CF3 H Br H Br 0
    CF2CF3 CH2CF3 H Br H Br 1
    CF2CF3 CH2CF3 H Br H Br 2
    CF2CF3 CH2CF3 H I H I 0
    CF2CF3 CH2CF3 H I H I 1
    CF2CF3 CH2CF3 H I H I 2
    CF2CF3 CH2CF3 H F H Cl 0
    CF2CF3 CH2CF3 H F H Cl 1
    CF2CF3 CH2CF3 H F H Cl 2
    CF2CF3 CH2CF3 H F H Br 0
    CF2CF3 CH2CF3 H F H Br 1
    CF2CF3 CH2CF3 H F H Br 2
    CF2CF3 CH2CF3 H F H I 0
    CF2CF3 CH2CF3 H F H I 1
    CF2CF3 CH2CF3 H F H I 2
    CF2CF3 CH2CF3 H Cl H F 0
    CF2CF3 CH2CF3 H Cl H F 1
    CF2CF3 CH2CF3 H Cl H F 2
    CF2CF3 CH2CF3 H Cl H Br 0
    CF2CF3 CH2CF3 H Cl H Br 1
    CF2CF3 CH2CF3 H Cl H Br 2
    CF2CF3 CH2CF3 H Cl H I 0
    CF2CF3 CH2CF3 H Cl H I 1
    CF2CF3 CH2CF3 H Cl H I 2
    CF2CF3 CH2CF3 H Br H F 0
    CF2CF3 CH2CF3 H Br H F 1
    CF2CF3 CH2CF3 H Br H F 2
    CF2CF3 CH2CF3 H Br H Cl 0
    CF2CF3 CH2CF3 H Br H Cl 1
    CF2CF3 CH2CF3 H Br H Cl 2
    CF2CF3 CH2CF3 H Br H I 0
    CF2CF3 CH2CF3 H Br H I 1
    CF2CF3 CH2CF3 H Br H I 2
    CF2CF3 CH2CF3 H I H F 0
    CF2CF3 CH2CF3 H I H F 1
    CF2CF3 CH2CF3 H I H F 2
    CF2CF3 CH2CF3 H I H Cl 0
    CF2CF3 CH2CF3 H I H Cl 1
    CF2CF3 CH2CF3 H I H Cl 2
    CF2CF3 CH2CF3 H I H Br 0
    CF2CF3 CH2CF3 H I H Br 1
    CF2CF3 CH2CF3 H I H Br 2
    CF2CF3 CH2CF3 H F H CN 0
    CF2CF3 CH2CF3 H F H CN 1
    CF2CF3 CH2CF2 H F H CN 2
    CF2CF3 CH2CF3 H Cl H CN 0
    CF2CF3 CH2CF3 H Cl H CN 1
    CF2CF3 CH2CF2 H Cl H CN 2
    CF2CF3 CH2CF3 H Br H CN 0
    CF2CF3 CH2CF3 H Br H CN 1
    CF2CF3 CH2CF3 H Br H CN 2
    CF2CF3 CH2CF3 H I H CN 0
    CF2CF3 CH2CF3 H I H CN 1
    CF2CF3 CH2CF3 H I H CN 2
    CF2CF3 CH2CF3 H CF3 H F 0
    CF2CF3 CH2CF3 H CF3 H F 1
    CF2CF3 CH2CF3 H CF3 H F 2
    CF2CF3 CH2CF3 H CF3 H Cl 0
    CF2CF3 CH2CF3 H CF3 H Cl 1
    CF2CF3 CH2CF3 H CF3 H Cl 2
    CF2CF3 CH2CF3 H CF3 H Br 0
    CF2CF3 CH2CF3 H CF3 H Br 1
    CF2CF3 CH2CF3 H CF3 H Br 2
    CF2CF3 CH2CF3 H CF3 H I 0
    CF2CF3 CH2CF3 H CF3 H I 1
    CF2CF3 CH2CF3 H CF3 H I 2
    CF2CF3 CH2CF3 H CF3 H CN 0
    CF2CF3 CH2CF3 H CF3 H CN 1
    CF2CF3 CH2CF3 H CF3 H CN 2
    CF2CF3 CH2CF3 H F F H 0
    CF2CF3 CH2CF3 H F F H 1
    CF2CF3 CH2CF3 H F F H 2
    CF2CF3 CH2CF3 H Cl Cl H 0
    CF2CF3 CH2CF3 H Cl Cl H 1
    CF2CF3 CH2CF3 H Cl Cl H 2
    CF2CF3 CH2CF3 H Br Br H 0
    CF2CF3 CH2CF3 H Br Br H 1
    CF2CF3 CH2CF3 H Br Br H 2
    CF2CF3 CH2CF3 H I I H 0
    CF2CF3 CH2CF3 H I I H 1
    CF2CF3 CH2CF3 H I I H 2
    CF2CF3 CH2CF3 H F Cl H 0
    CF2CF3 CH2CF3 H F Cl H 1
    CF2CF3 CH2CF3 H F Cl H 2
    CF2CF3 CH2CF3 H F Br H 0
    CF2CF3 CH2CF3 H F Br H 1
    CF2CF3 CH2CF3 H F Br H 2
    CF2CF3 CH2CF3 H F I H 0
    CF2CF3 CH2CF3 H F I H 1
    CF2CF3 CH2CF3 H F I H 2
    CF2CF3 CH2CF3 H Cl F H 0
    CF3CF2 CH2CF3 H Cl F H 1
    CF2CF3 CH2CF3 H Cl F H 2
    CF2CF3 CH2CF3 H Cl Br H 0
    CF2CF3 CH2CF3 H Cl Br H 1
    CF2CF3 CH2CF3 H Cl Br H 2
    CF2CF3 CH2CF3 H Cl I H 0
    CF2CF3 CH2CF3 H Cl I H 1
    CF2CF3 CH2CF3 H Cl I H 2
    CF2CF3 CH2CF3 H Br F H 0
    CF2CF3 CH2CF3 H Br F H 1
    CF2CF3 CH2CF3 H Br F H 2
    CF2CF3 CH2CF3 H Br Cl H 0
    CF2CF3 CH2CF3 H Br Cl H 1
    CF2CF3 CH2CF3 H Br Cl H 2
    CF2CF3 CH2CF3 H Br I H 0
    CF2CF3 CH2CF3 H Br I H 1
    CF2CF3 CH2CF3 H Br I H 2
    CF2CF3 CH2CF3 H I F H 0
    CF2CF3 CH2CF3 H I F H 1
    CF2CF3 CH2CF3 H I F H 2
    CF2CF3 CH2CF3 H I Cl H 0
    CF2CF3 CH2CF3 H I Cl H 1
    CF2CF3 CH2CF3 H I Cl H 2
    CF2CF3 CH2CF3 H I Br H 0
    CF2CF3 CH2CF3 H I Br H 1
    CF2CF3 CH2CF3 H I Br H 2
    CF2CF3 CH2CF3 H F CN H 0
    CF2CF3 CH2CF3 H F CN H 1
    CF2CF3 CH2CF3 H F CN H 2
    CF2CF3 CH2CF3 H Cl CN H 0
    CF2CF3 CH2CF3 H Cl CN H 1
    CF2CF3 CH2CF3 H Cl CN H 2
    CF2CF3 CH2CF3 H Br CN H 0
    CF2CF3 CH2CF3 H Br CN H 1
    CF2CF3 CH2CF3 H Br CN H 2
    CF2CF3 CH2CF3 H I CN H 0
    CF2CF3 CH2CF3 H I CN H 1
    CF2CF3 CH2CF3 H I CN H 2
    CF2CF3 CH2CF3 H CF3 F H 0
    CF2CF3 CH2CF3 H CF3 F H 1
    CF2CF3 CH2CF3 H CF3 F H 2
    CF2CF3 CH2CF3 H CF3 Cl H 0
    CF2CF3 CH2CF3 H CF3 Cl H 1
    CF2CF3 CH2CF3 H CF3 Cl H 2
    CF2CF3 CH2CF3 H CF3 Br H 0
    CF2CF3 CH2CF3 H CF3 Br H 1
    CF2CF3 CH2CF3 H CF3 Br H 2
    CF2CF3 CH2CF3 H CF3 I H 0
    CF2CF3 CH2CF3 H CF3 I H 1
    CF2CF3 CH2CF3 H CF3 I H 2
    CF2CF3 CH2CF3 H CF3 CN H 0
    CF2CF3 CH2CF3 H CF3 CN H 1
    CF2CF3 CH2CF3 H CF3 CN H 2
    SCF3 Me H H H H 0
    SCF3 Me H H H H 1
    SCF3 Me H H H H 2
    SCF3 Me F H H H 0
    SCF3 Me F H H H 1
    SCF3 Me F H H H 2
    SCF3 Me Cl H H H 0
    SCF3 Me Cl H H H 1
    SCF3 Me Cl H H H 2
    SCF3 Me Br H H H 0
    SCF3 Me Br H H H 1
    SCF3 Me Br H H H 2
    SCF3 Me I H H H 0
    SCF3 Me I H H H 1
    SCF3 Me I H H H 2
    SCF3 Me Me H H H 0
    SCF3 Me Me H H H 1
    SCF3 Me Me H H H 2
    SCF3 Me CF3 H H H 0
    SCF3 Me CF3 H H H 1
    SCF3 Me CF3 H H H 2
    SCF3 Me H F H H 0
    SCF3 Me H F H H 1
    SCF3 Me H F H H 2
    SCF3 Me H Cl H H 0
    SCF3 Me H Cl H H 1
    SCF3 Me H Cl H H 2
    SCF3 Me H Br H H 0
    SCF3 Me H Br H H 1
    SCF3 Me H Br H H 2
    SCF3 Me H I H H 0
    SCF3 Me H I H H 1
    SCF3 Me H I H H 2
    SCF3 Me H Me H H 0
    SCF3 Me H Me H H 1
    SCF3 Me H Me H H 2
    SCF3 Me H CF3 H H 0
    SCF3 Me H CF3 H H 1
    SCF3 Me H CF3 H H 2
    SCF3 Me H CF2CF3 H H 0
    SCF3 Me H CF2CF3 H H 1
    SCF3 Me H CF2CF3 H H 2
    SCF3 Me H CF(CF3)2 H H 0
    SCF3 Me H CF(CF3)2 H H 1
    SCF3 Me H CF(CF3)2 H H 2
    SCF3 Me H SMe H H 0
    SCF3 Me H SMe H H 1
    SCF3 Me H SMe H H 2
    SCF3 Me H SOMe H H 0
    SCF3 Me H SOMe H H 1
    SCF3 Me H SOMe H H 2
    SCF3 Me H SO2Me H H 0
    SCF3 Me H SO2Me H H 1
    SCF3 Me H SO2Me H H 2
    SCF3 Me H OMe H H 0
    SCF3 Me H OMe H H 1
    SCF3 Me H OMe H H 2
    SCF3 Me H OCF3 H H 0
    SCF3 Me H OCF3 H H 1
    SCF3 Me H OCF3 H H 2
    SCF3 Me H NO2 H H 0
    SCF3 Me H NO2 H H 1
    SCF3 Me H NO2 H H 2
    SCF3 Me H CN H H 0
    SCF3 Me H CN H H 1
    SCF3 Me H CN H H 2
    SCF3 Me H H F H 0
    SCF3 Me H H F H 1
    SCF3 Me H H F H 2
    SCF3 Me H H Cl H 0
    SCF3 Me H H Cl H 1
    SCF3 Me H H Cl H 2
    SCF3 Me H H Br H 0
    SCF3 Me H H Br H 1
    SCF3 Me H H Br H 2
    SCF3 Me H H I H 0
    SCF3 Me H H I H 1
    SCF3 Me H H I H 2
    SCF3 Me H H Me H 0
    SCF3 Me H H Me H 1
    SCF3 Me H H Me H 2
    SCF3 Me H H CF3 H 0
    SCF3 Me H H CF3 H 1
    SCF3 Me H H CF3 H 2
    SCF3 Me H H CF2CF3 H 0
    SCF3 Me H H CF2CF3 H 1
    SCF3 Me H H CF2CF3 H 2
    SCF3 Me H H CF(CF3)2 H 0
    SCF3 Me H H CF(CF3)2 H 1
    SCF3 Me H H CF(CF3)2 H 2
    SCF3 Me H H SMe H 0
    SCF3 Me H H SMe H 1
    SCF3 Me H H SMe H 2
    SCF3 Me H H SOMe H 0
    SCF3 Me H H SOMe H 1
    SCF3 Me H H SOMe H 2
    SCF3 Me H H SO2Me H 0
    SCF3 Me H H SO2Me H 1
    SCF3 Me H H SO2Me H 2
    SCF3 Me H H OMe H 0
    SCF3 Me H H OMe H 1
    SCF3 Me H H OMe H 2
    SCF3 Me H H OCF3 H 0
    SCF3 Me H H OCF3 H 1
    SCF3 Me H H OCF3 H 2
    SCF3 Me H H NO2 H 0
    SCF3 Me H H NO2 H 1
    SCF3 Me H H NO2 H 2
    SCF3 Me H H CN H 0
    SCF3 Me H H CN H 1
    SCF3 Me H H CN H 2
    SCF3 Me H H H F 0
    SCF3 Me H H H F 1
    SCF3 Me H H H F 2
    SCF3 Me H H H Cl 0
    SCF3 Me H H H Cl 1
    SCF3 Me H H H Cl 2
    SCF3 Me H H H Br 0
    SCF3 Me H H H Br 1
    SCF3 Me H H H Br 2
    SCF3 Me H H H I 0
    SCF3 Me H H H I 1
    SCF3 Me H H H I 2
    SCF3 Me H H H Me 0
    SCF3 Me H H H Me 1
    SCF3 Me H H H Me 2
    SCF3 Me H H H CF3 0
    SCF3 Me H H H CF3 1
    SCF3 Me H H H CF3 2
    SCF3 Me H H H CF2CF3 0
    SCF3 Me H H H CF2CF3 1
    SCF3 Me H H H CF2CF3 2
    SCF3 Me H H H CF(CF3)2 0
    SCF3 Me H H H CF(CF3)2 1
    SCF3 Me H H H CF(CF3)2 2
    SCF3 Me H H H SMe 0
    SCF3 Me H H H SMe 1
    SCF3 Me H H H SMe 2
    SCF3 Me H H H SOMe 0
    SCF3 Me H H H SOMe 1
    SCF3 Me H H H SOMe 2
    SCF3 Me H H H SO2Me 0
    SCF3 Me H H H SO2Me 1
    SCF3 Me H H H SO2Me 2
    SCF3 Me H H H OMe 0
    SCF3 Me H H H OMe 1
    SCF3 Me H H H OMe 2
    SCF3 Me H H H OCF3 0
    SCF3 Me H H H OCF3 1
    SCF3 Me H H H OCF3 2
    SCF3 Me H H H NO2 0
    SCF3 Me H H H NO2 1
    SCF3 Me H H H NO2 2
    SCF3 Me H H H CN 0
    SCF3 Me H H H CN 1
    SCF3 Me H H H CN 2
    SCF3 Me H F H F 0
    SCF3 Me H F H F 1
    SCF3 Me H F H F 2
    SCF3 Me H Cl H Cl 0
    SCF3 Me H Cl H Cl 1
    SCF3 Me H Cl H Cl 2
    SCF3 Me H Br H Br 0
    SCF3 Me H Br H Br 1
    SCF3 Me H Br H Br 2
    SCF3 Me H I H I 0
    SCF3 Me H I H I 1
    SCF3 Me H I H I 2
    SCF3 Me H F H Cl 0
    SCF3 Me H F H Cl 1
    SCF3 Me H F H Cl 2
    SCF3 Me H F H Br 0
    SCF3 Me H F H Br 1
    SCF3 Me H F H Br 2
    SCF3 Me H F H I 0
    SCF3 Me H F H I 1
    SCF3 Me H F H I 2
    SCF3 Me H Cl H F 0
    SCF3 Me H Cl H F 1
    SCF3 Me H Cl H F 2
    SCF3 Me H Cl H Br 0
    SCF3 Me H Cl H Br 1
    SCF3 Me H Cl H Br 2
    SCF3 Me H Cl H I 0
    SCF3 Me H Cl H I 1
    SCF3 Me H Cl H I 2
    SCF3 Me H Br H F 0
    SCF3 Me H Br H F 1
    SCF3 Me H Br H F 2
    SCF3 Me H Br H Cl 0
    SCF3 Me H Br H Cl 1
    SCF3 Me H Br H Cl 2
    SCF3 Me H Br H I 0
    SCF3 Me H Br H I 1
    SCF3 Me H Br H I 2
    SCF3 Me H I H F 0
    SCF3 Me H I H F 1
    SCF3 Me H I H F 2
    SCF3 Me H I H Cl 0
    SCF3 Me H I H Cl 1
    SCF3 Me H I H Cl 2
    SCF3 Me H I H Br 0
    SCF3 Me H I H Br 1
    SCF3 Me H I H Br 2
    SCF3 Me H F H CN 0
    SCF3 Me H F H CN 1
    SCF3 Me H F H CN 2
    SCF3 Me H Cl H CN 0
    SCF3 Me H Cl H CN 1
    SCF3 Me H Cl H CN 2
    SCF3 Me H Br H CN 0
    SCF3 Me H Br H CN 1
    SCF3 Me H Br H CN 2
    SCF3 Me H I H CN 0
    SCF3 Me H I H CN 1
    SCF3 Me H I H CN 2
    SCF3 Me H CF3 H F 0
    SCF3 Me H CF3 H F 1
    SCF3 Me H CF3 H F 2
    SCF3 Me H CF3 H Cl 0
    SCF3 Me H CF3 H Cl 1
    SCF3 Me H CF3 H Cl 2
    SCF3 Me H CF3 H Br 0
    SCF3 Me H CF3 H Br 1
    SCF3 Me H CF3 H Br 2
    SCF3 Me H CF3 H I 0
    SCF3 Me H CF3 H I 1
    SCF3 Me H CF3 H I 2
    SCF3 Me H CF3 H CN 0
    SCF3 Me H CF3 H CN 1
    SCF3 Me H CF3 H CN 2
    SCF3 Me H F F H 0
    SCF3 Me H F F H 1
    SCF3 Me H F F H 2
    SCF3 Me H Cl Cl H 0
    SCF3 Me H Cl Cl H 1
    SCF3 Me H Cl Cl H 2
    SCF3 Me H Br Br H 0
    SCF3 Me H Br Br H 1
    SCF3 Me H Br Br H 2
    SCF3 Me H I I H 0
    SCF3 Me H I I H 1
    SCF3 Me H I I H 2
    SCF3 Me H F Cl H 0
    SCF3 Me H F Cl H 1
    SCF3 Me H F Cl H 2
    SCF3 Me H F Br H 0
    SCF3 Me H F Br H 1
    SCF3 Me H F Br H 2
    SCF3 Me H F I H 0
    SCF3 Me H F I H 1
    SCF3 Me H F I H 2
    SCF3 Me H Cl F H 0
    SCF3 Me H Cl F H 1
    SCF3 Me H Cl F H 2
    SCF3 Me H Cl Br H 0
    SCF3 Me H Cl Br H 1
    SCF3 Me H Cl Br H 2
    SCF3 Me H Cl I H 0
    SCF3 Me H Cl I H 1
    SCF3 Me H Cl I H 2
    SCF3 Me H Br F H 0
    SCF3 Me H Br F H 1
    SCF3 Me H Br F H 2
    SCF3 Me H Br Cl H 0
    SCF3 Me H Br Cl H 1
    SCF3 Me H Br Cl H 2
    SCF3 Me H Br I H 0
    SCF3 Me H Br I H 1
    SCF3 Me H Br I H 2
    SCF3 Me H I F H 0
    SCF3 Me H I F H 1
    SCF3 Me H I F H 2
    SCF3 Me H I Cl H 0
    SCF3 Me H I Cl H 1
    SCF3 Me H I Cl H 2
    SCF3 Me H I Br H 0
    SCF3 Me H I Br H 1
    SCF3 Me H I Br H 2
    SCF3 Me H F CN H 0
    SCF3 Me H F CN H 1
    SCF3 Me H F CH H 2
    SCF3 Me H Cl CN H 0
    SCF3 Me H Cl CN H 1
    SCF3 Me H Cl CN H 2
    SCF3 Me H Br CN H 0
    SCF3 Me H Br CN H 1
    SCF3 Me H Br CN H 2
    SCF3 Me H I CN H 0
    SCF3 Me H I CN H 1
    SCF3 Me H I CN H 2
    SCF3 Me H CF3 F H 0
    SCF3 Me H CF3 F H 1
    SCF3 Me H CF3 F H 2
    SCF3 Me H CF3 Cl H 0
    SCF3 Me H CF3 Cl H 1
    SCF3 Me H CF3 Cl H 2
    SCF3 Me H CF3 Br H 0
    SCF3 Me H CF3 Br H 1
    SCF3 Me H CF3 Br H 2
    SCF3 Me H CF3 I H 0
    SCF3 Me H CF3 I H 1
    SCF3 Me H CF3 I H 2
    SCF3 Me H CF3 CN H 0
    SCF3 Me H CF3 CN H 1
    SCF3 Me H CF3 CN H 2
    SCF3 Et H H H H 0
    SCF3 Et H H H H 1
    SCF3 Et H H H H 2
    SCF3 Et F H H H 0
    SCF3 Et F H H H 1
    SCF3 Et F H H H 2
    SCF3 Et Cl H H H 0
    SCF3 Et Cl H H H 1
    SCF3 Et Cl H H H 2
    SCF3 Et Br H H H 0
    SCF3 Et Br H H H 1
    SCF3 Et Br H H H 2
    SCF3 Et I H H H 0
    SCF3 Et I H H H 1
    SCF3 Et I H H H 2
    SCF3 Et Me H H H 0
    SCF3 Et Me H H H 1
    SCF3 Et Me H H H 2
    SCF3 Et CF3 H H H 0
    SCF3 Et CF3 H H H 1
    SCF3 Et CF3 H H H 2
    SCF3 Et H F H H 0
    SCF3 Et H F H H 1
    SCF3 Et H F H H 2
    SCF2 Et H Cl H H 0
    SCF3 Et H Cl H H 1
    SCF3 Et H Cl H H 2
    SCF3 Et H Br H H 0
    SCF3 Et H Br H H 1
    SCF3 Et H Br H H 2
    SCF3 Et H I H H 0
    SCF3 Et H I H H 1
    SCF3 Et H I H H 2
    SCF3 Et H Me H H 0
    SCE3 Et H Me H H 1
    SCF3 Et H Me H H 2
    SCF3 Et H CF3 H H 0
    SCE3 Et H CF3 H H 1
    SCF3 Et H CF3 H H 2
    SCF3 Et H CF2CF3 H H 0
    SCF3 Et H CF2CF3 H H 1
    SCF3 Et H CF2CF3 H H 2
    SCF3 Et H CF(CF3)2 H H 0
    SCF3 Et H CF(CF3)2 H H 1
    SCF2 Et H CF(CF3)2 H H 2
    SCF3 Et H SMe H H 0
    SCF3 Et H SMe H H 1
    SCF2 Et H SMe H H 2
    SCF3 Et H SOMe H H 0
    SCF3 Et H SOMe H H 1
    SCF3 Et H SOMe H H 2
    SCF3 Et H SO2Me H H 0
    SCF2 Et H SO2Me H H 1
    SCF3 Et H SO2Me H H 2
    SCF3 Et H OMe H H 0
    SCF3 Et H OMe H H 1
    SCF3 Et H OMe H H 2
    SCF3 Et H OCF3 H H 0
    SCF3 Et H OCF3 H H 1
    SCF3 Et H OCF3 H H 2
    SCF3 Et H NO2 H H 0
    SCF3 Et H NO2 H H 1
    SCF3 Et H NO2 H H 2
    SCF3 Et H CN H H 0
    SCF3 Et H CN H H 1
    SCF3 Et H CN H H 2
    SCF3 Et H H F H 0
    SCF3 Et H H F H 1
    SCF3 Et H H F H 2
    SCF3 Et H H Cl H 0
    SCF3 Et H H Cl H 1
    SCF3 Et H H Cl H 2
    SCF3 Et H H Br H 0
    SCF3 Et H H Br H 1
    SCF3 Et H H Br H 2
    SCF3 Et H H I H 0
    SCF3 Et H H I H 1
    SCF3 Et H H I H 2
    SCF3 Et H H Me H 0
    SCF3 Et H H Me H 1
    SCF3 Et H H Me H 2
    SCF3 Et H H CF3 H 0
    SCF3 Et H H CF3 H 1
    SCF3 Et H H CF3 H 2
    SCF3 Et H H CF2CF3 H 0
    SCF3 Et H H CF2CF3 H 1
    SCF3 Et H H CF2CF3 H 2
    SCF3 Et H H CF(CF3)2 H 0
    SCF3 Et H H CF(CF3)2 H 1
    SCF3 Et H H CF(CF3)2 H 2
    SCF3 Et H H SMe H 0
    SCF3 Et H H SMe H 1
    SCF3 Et H H SMe H 2
    SCF3 Et H H SOMe H 0
    SCF3 Et H H SOMe H 1
    SCF3 Et H H SOMe H 2
    SCF3 Et H H SO2Me H 0
    SCF3 Et H H SO2Me H 1
    SCF3 Et H H SO2Me H 2
    SCF3 Et H H OMe H 0
    SCF3 Et H H OMe H 1
    SCF3 Et H H OMe H 2
    SCF3 Et H H OCF3 H 0
    SCF3 Et H H OCF3 H 1
    SCF3 Et H H OCF3 H 2
    SCF3 Et H H NO2 H 0
    SCF3 Et H H NO2 H 1
    SCF3 Et H H NO2 H 2
    SCF3 Et H H CN H 0
    SCF3 Et H H CN H 1
    SCF3 Et H H CN H 1
    SCF3 Et H H H F 0
    SCF3 Et H H H F 1
    SCF3 Et H H H F 2
    SCF3 Et H H H Cl 0
    SCF3 Et H H H Cl 1
    SCF3 Et H H H Cl 2
    SCF3 Et H H H Br 0
    SCF3 Et H H H Br 1
    SCF3 Et H H H Br 2
    SCF3 Et H H H I 0
    SCF3 Et H H H I 1
    SCF3 Et H H H I 2
    SCF3 Et H H H Me 0
    SCF3 Et H H H Me 1
    SCF3 Et H H H Me 2
    SCF3 Et H H H CF3 0
    SCF3 Et H H H CF3 1
    SCF3 Et H H H CF3 2
    SCF3 Et H H H CF2CF3 0
    SCF3 Et H H H CF2CF3 1
    SCF3 Et H H H CF2CF3 2
    SCF3 Et H H H CF(CF3)2 0
    SCF3 Et H H H CF(CF3)2 1
    SCF3 Et H H H CF(CF3)2 2
    SCF3 Et H H H SMe 0
    SCF3 Et H H H SMe 1
    SCF3 Et H H H SMe 2
    SCF3 Et H H H SOMe 0
    SCF3 Et H H H SOMe 1
    SCF3 Et H H H SOMe 2
    SCF3 Et H H H SO2Me 0
    SCF3 Et H H H SO2Me 1
    SCF3 Et H H H SO2Me 2
    SCF3 Et H H H OMe 0
    SCF3 Et H H H OMe 1
    SCF3 Et H H H OMe 2
    SCF3 Et H H H OCF3 0
    SCF3 Et H H H OCF3 1
    SCF3 Et H H H OCF3 2
    SCF3 Et H H H NO2 0
    SCF3 Et H H H NO2 1
    SCF3 Et H H H NO2 2
    SCF3 Et H H H CN 0
    SCF3 Et H H H CN 1
    SCF3 Et H H H CN 2
    SCF3 Et H F H F 0
    SCF3 Et H F H F 1
    SCF3 Et H F H F 2
    SCF3 Et H Cl H Cl 0
    SCF3 Et H Cl H Cl 1
    SCF3 Et H Cl H Cl 2
    SCF3 Et H Br H Br 0
    SCF3 Et H Br H Br 1
    SCF3 Et H Br H Br 2
    SCF3 Et H I H I 0
    SCF3 Et H I H I 1
    SCF3 Et H I H I 2
    SCF3 Et H F H Cl 0
    SCF3 Et H F H Cl 1
    SCF3 Et H F H Cl 2
    SCF3 Et H F H Br 0
    SCF3 Et H F H Br 1
    SCF3 Et H F H Br 2
    SCF3 Et H F H I 0
    SCF3 Et H F H I 1
    SCF3 Et H F H I 2
    SCF3 Et H Cl H F 0
    SCF3 Et H Cl H F 1
    SCF3 Et H Cl H F 2
    SCF3 Et H Cl H Br 0
    SCF3 Et H Cl H Br 1
    SCF3 Et H Cl H Br 2
    SCF3 Et H Cl H I 0
    SCF3 Et H Cl H I 1
    SCF3 Et H Cl H I 2
    SCF3 Et H Br H F 0
    SCF3 Et H Br H F 1
    SCF3 Et H Br H F 2
    SCF3 Et H Br H Cl 0
    SCF3 Et H Br H Cl 1
    SCF3 Et H Br H Cl 2
    SCF3 Et H Br H I 0
    SCF3 Et H Br H I 1
    SCF3 Et H Br H I 2
    SCF3 Et H I H F 0
    SCF3 Et H I H F 1
    SCF3 Et H I H F 2
    SCF3 Et H I H Cl 0
    SCF3 Et H I H Cl 1
    SCF3 Et H I H Cl 2
    SCF3 Et H I H Br 0
    SCF3 Et H I H Br 1
    SCF3 Et H I H Br 2
    SCF3 Et H F H CN 0
    SCF3 Et H F H CN 1
    SCF3 Et H F H CN 2
    SCF3 Et H Cl H CN 0
    SCF3 Et H Cl H CN 1
    SCF3 Et H Cl H CN 2
    SCF3 Et H Br H CN 0
    SCF3 Et H Br H CN 1
    SCF3 Et H Br H CN 2
    SCF3 Et H I H CN 0
    SCF3 Et H I H CN 1
    SCF3 Et H I H CN 2
    SCF3 Et H CF3 H F 0
    SCF3 Et H CF3 H F 1
    SCF3 Et H CF3 H F 2
    SCF3 Et H CF3 H Cl 0
    SCF3 Et H CF3 H Cl 1
    SCF3 Et H CF3 H Cl 2
    SCF3 Et H CF3 H Br 0
    SCF3 Et H CF3 H Br 1
    SCF3 Et H CF3 H Br 2
    SCF3 Et H CF3 H I 0
    SCF3 Et H CF3 H I 1
    SCF3 Et H CF3 H I 2
    SCF3 Et H CF3 H CN 0
    SCF3 Et H CF3 H CN 1
    SCF3 Et H CF3 H CN 2
    SCF3 Et H F F H 0
    SCF3 Et H F F H 1
    SCF3 Et H F F H 2
    SCF3 Et H Cl Cl H 0
    SCF3 Et H Cl Cl H 1
    SCF3 Et H Cl Cl H 2
    SCF3 Et H Br Br H 0
    SCF3 Et H Br Br H 1
    SCF3 Et H Br Br H 2
    SCF3 Et H I I H 0
    SCF3 Et H I I H 1
    SCF3 Et H I I H 2
    SCF3 Et H F Cl H 0
    SCF3 Et H F Cl H 1
    SCF3 Et H F Cl H 2
    SCF3 Et H F Br H 0
    SCF3 Et H F Br H 1
    SCF3 Et H F Br H 2
    SCF3 Et H F I H 0
    SCF3 Et H F I H 1
    SCF3 Et H F I H 2
    SCF3 Et H Cl F H 0
    SCF3 Et H Cl F H 1
    SCF3 Et H Cl F H 2
    SCF3 Et H Cl Br H 0
    SCF3 Et H Cl Br H 1
    SCF3 Et H Cl Br H 2
    SCF3 Et H Cl I H 0
    SCF3 Et H Cl I H 1
    SCF3 Et H Cl I H 2
    SCF3 Et H Br F H 0
    SCF3 Et H Br F H 1
    SCF3 Et H Br F H 2
    SCF3 Et H Br Cl H 0
    SCF3 Et H Br Cl H 1
    SCF3 Et H Br Cl H 2
    SCF3 Et H Br I H 0
    SCF3 Et H Br I H 1
    SCF3 Et H Br I H 2
    SCF3 Et H I F H 0
    SCF3 Et H I F H 1
    SCF3 Et H I F H 2
    SCF3 Et H I Cl H 0
    SCF3 Et H I Cl H 1
    SCF3 Et H I Cl H 2
    SCF3 Et H I Br H 0
    SCF3 Et H I Br H 1
    SCF3 Et H I Br H 2
    SCF3 Et H F CN H 0
    SCF3 Et H F CN H 1
    SCF3 Et H F CN H 2
    SCF3 Et H Cl CN H 0
    SCF3 Et H Cl CN H 1
    SCF3 Et H Cl CN H 2
    SCF3 Et H Br CN H 0
    SCF3 Et H Br CN H 1
    SCF3 Et H Br CN H 2
    SCF3 Et H I CN H 0
    SCF3 Et H I CN H 1
    SCF3 Et H I CN H 2
    SCF3 Et H CF3 F H 0
    SCF3 Et H CF3 F H 1
    SCF3 Et H CF3 F H 2
    SCF3 Et H CF3 Cl H 0
    SCF3 Et H CF3 Cl H 1
    SCF3 Et H CF3 Cl H 2
    SCF3 Et H CF3 Br H 0
    SCF3 Et H CF3 Br H 1
    SCF3 Et H CF3 Br H 2
    SCF3 Et H CF3 I H 0
    SCF3 Et H CF3 I H 1
    SCF3 Et H CF3 I H 2
    SCF3 Et H CF3 CN H 0
    SCF3 Et H CF3 CN H 1
    SCF3 Et H CF3 CN H 2
    SCF3 nPr H H H H 0
    SCF3 nPr H H H H 1
    SCF3 nPr H H H H 2
    SCF3 nPr F H H H 0
    SCF3 nPr F H H H 1
    SCF3 nPr F H H H 2
    SCF3 nPr Cl H H H 0
    SCF3 nPr Cl H H H 1
    SCF3 nPr Cl H H H 2
    SCF3 nPr Br H H H 0
    SCF3 nPr Br H H H 1
    SCF3 nPr Br H H H 2
    SCF3 nPr I H H H 0
    SCF3 nPr I H H H 1
    SCF3 nPr I H H H 2
    SCF3 nPr Me H H H 0
    SCF3 nPr Me H H H 1
    SCF3 nPr Me H H H 2
    SCF3 nPr CF3 H H H 0
    SCF3 nPr CF3 H H H 1
    SCF3 nPr CF3 H H H 2
    SCF3 nPr H F H H 0
    SCF3 nPr H F H H 1
    SCF3 nPr H F H H 2
    SCF3 nPr H Cl H H 0
    SCF3 nPr H Cl H H 1
    SCF3 nPr H Cl H H 2
    SCF3 nPr H Br H H 0
    SCF3 nPr H Br H H 1
    SCF3 nPr H Br H H 2
    SCF3 nPr H I H H 0
    SCF3 nPr H I H H 1
    SCF3 nPr H I H H 2
    SCF3 nPr H Me H H 0
    SCF3 nPr H Me H H 1
    SCF3 nPr H Me H H 2
    SCF3 nPr H CF3 H H 0
    SCF3 nPr H CF3 H H 1
    SCF3 nPr H CF3 H H 2
    SCF3 nPr H CF2CF3 H H 0
    SCF3 nPr H CF2CF3 H H 1
    SCF3 nPr H CF2CF3 H H 2
    SCF3 nPr H CF(CF3)2 H H 0
    SCF3 nPr H CF(CF3)2 H H 1
    SCF3 nPr H CF(CF3)2 H H 2
    SCF3 nPr H SMe H H 0
    SCF3 nPr H SMe H H 1
    SCF3 nPr H SMe H H 2
    SCF3 nPr H SOMe H H 0
    SCF3 nPr H SOMe H H 1
    SCF3 nPr H SOMe H H 2
    SCF3 nPr H SO2Me H H 0
    SCF3 nPr H SO2Me H H 1
    SCF3 nPr H SO2Me H H 2
    SCF3 nPr H OMe H H 0
    SCF3 nPr H OMe H H 1
    SCF3 nPr H OMe H H 2
    SCF3 nPr H OCF3 H H 0
    SCF3 nPr H OCF3 H H 1
    SCF3 nPr H OCF3 H H 2
    SCF3 nPr H NO2 H H 0
    SCF3 nPr H NO2 H H 1
    SCF3 nPr H NO2 H H 2
    SCF3 nPr H CN H H 0
    SCF3 nPr H CN H H 1
    SCF3 nPr H CN H H 2
    SCF3 nPr H H F H 0
    SCF3 nPr H H F H 1
    SCF3 nPr H H F H 2
    SCF3 nPr H H Cl H 0
    SCF3 nPr H H Cl H 1
    SCF3 nPr H H Cl H 2
    SCF3 nPr H H Br H 0
    SCF3 nPr H H Br H 1
    SCF3 nPr H H Br H 2
    SCF3 nPr H H I H 0
    SCF3 nPr H H I H 1
    SCF3 nPr H H I H 2
    SCF3 nPr H H Me H 0
    SCF3 nPr H H Me H 1
    SCF3 nPr H H Me H 2
    SCF3 nPr H H CF3 H 0
    SCF3 nPr H H CF3 H 1
    SCF3 nPr H H CF3 H 2
    SCF3 nPr H H CF2CF3 H 0
    SCF3 nPr H H CF2CF3 H 1
    SCF3 nPr H H CF2CF3 H 2
    SCF3 nPr H H CF(CF3)2 H 0
    SCF3 nPr H H CF(CF3)2 H 1
    SCF3 nPr H H CF(CF3)2 H 2
    SCF3 nPr H H SMe H 0
    SCF3 nPr H H SMe H 1
    SCF3 nPr H H SMe H 2
    SCF3 nPr H H SOMe H 0
    SCF3 nPr H H SOMe H 1
    SCF3 nPr H H SOMe H 2
    SCF3 nPr H H SO2Me H 0
    SCF3 nPr H H SO2Me H 1
    SCF3 nPr H H SO2Me H 2
    SCF3 nPr H H OMe H 0
    SCF3 nPr H H OMe H 1
    SCF3 nPr H H OMe H 2
    SCF3 nPr H H OCF3 H 0
    SCF3 nPr H H OCF3 H 1
    SCF3 nPr H H OCF3 H 2
    SCF3 nPr H H NO2 H 0
    SCF3 nPr H H NO2 H 1
    SCF3 nPr H H NO2 H 2
    SCF3 nPr H H CN H 0
    SCF3 nPr H H CN H 1
    SCF3 nPr H H CN H 2
    SCF3 nPr H H H F 0
    SCF3 nPr H H H F 1
    SCF3 nPr H H H F 2
    SCF3 nPr H H H Cl 0
    SCF3 nPr H H H Cl 1
    SCF3 nPr H H H Cl 2
    SCF3 nPr H H H Br 0
    SCF3 nPr H H H Br 1
    SCF3 nPr H H H Br 2
    SCF3 nPr H H H I 0
    SCF3 nPr H H H I 1
    SCF3 nPr H H H I 2
    SCF3 nPr H H H Me 0
    SCF3 nPr H H H Me 1
    SCF3 nPr H H H Me 2
    SCF3 nPr H H H CF3 0
    SCF3 nPr H H H CF3 1
    SCF3 nPr H H H CF3 2
    SCF3 nPr H H H CF2CF3 0
    SCF3 nPr H H H CF3CF3 1
    SCF3 nPr H H H CF2CF3 2
    SCF3 nPr H H H CF(CF3)2 0
    SCF3 nPr H H H CF(CF3)2 1
    SCF3 nPr H H H CF(CF3)2 2
    SCF3 nPr H H H SMe 0
    SCF3 nPr H H H SMe 1
    SCF3 nPr H H H SMe 2
    SCF3 nPr H H H SOMe 0
    SCF3 nPr H H H SOMe 1
    SCF3 nPr H H H SOMe 2
    SCF3 nPr H H H SO2Me 0
    SCF3 nPr H H H SO2Me 1
    SCF3 nPr H H H SO2Me 2
    SCF3 nPr H H H OMe 0
    SCF3 nPr H H H OMe 1
    SCF3 nPr H H H OMe 2
    SCF3 nPr H H H OCF3 0
    SCF3 nPr H H H OCF3 1
    SCF3 nPr H H H OCF3 2
    SCF3 nPr H H H NO2 0
    SCF3 nPr H H H NO2 1
    SCF3 nPr H H H NO2 2
    SCF3 nPr H H H CN 0
    SCF3 nPr H H H CN 1
    SCF3 nPr H H H CN 2
    SCF3 nPr H F H F 0
    SCF3 nPr H F H F 1
    SCF3 nPr H F H F 2
    SCF3 nPr H Cl H Cl 0
    SCF3 nPr H Cl H Cl 1
    SCF3 nPr H Cl H Cl 2
    SCF3 nPr H Br H Br 0
    SCF3 nPr H Br H Br 1
    SCF3 nPr H Br H Br 2
    SCF3 nPr H I H I 0
    SCF3 nPr H I H I 1
    SCF3 nPr H I H I 2
    SCF3 nPr H F H Cl 0
    SCF3 nPr H F H Cl 1
    SCF3 nPr H F H Cl 2
    SCF3 nPr H F H Br 0
    SCF3 nPr H F H Br 1
    SCF3 nPr H F H Br 2
    SCF3 nPr H F H I 0
    SCF3 nPr H F H I 1
    SCF3 nPr H F H I 2
    SCF3 nPr H Cl H F 0
    SCF3 nPr H Cl H F 1
    SCF3 nPr H Cl H F 2
    SCF3 nPr H Cl H Br 0
    SCF3 nPr H Cl H Br 1
    SCF3 nPr H Cl H Br 2
    SCF3 nPr H Cl H I 0
    SCF3 nPr H Cl H I 1
    SCF3 nPr H Cl H I 2
    SCF3 nPr H Br H F 0
    SCF3 nPr H Br H F 1
    SCF3 nPr H Br H F 2
    SCF3 nPr H Br H Cl 0
    SCF3 nPr H Br H Cl 1
    SCF3 nPr H Br H Cl 2
    SCF3 nPr H Br H I 0
    SCF3 nPr H Br H I 1
    SCF nPr H Br H I 2
    SCF3 nPr H I H F 0
    SCF3 nPr H I H F 1
    SCF3 nPr H I H F 2
    SCF3 nPr H I H Cl 0
    SCF3 nPr H I H Cl 1
    SCF3 nPr H I H Cl 2
    SCF3 nPr H I H Br 0
    SCF3 nPr H I H Br 1
    SCF3 nPr H I H Br 2
    &SF, nPr H F H CN 0
    SCF3 nPr H F H CN 1
    SCF3 nPr H F H CN 2
    SCF3 nPr H Cl H CN 0
    SCF3 nPr H Cl H CN 1
    SCF3 nPr H Cl H CN 2
    SCF3 nPr H Br H CN 0
    SCF3 nPr H Br H CN 1
    SCF3 nPr H Br H CN 2
    SCF3 nPr H I H CN 0
    SCF3 nPr H I H CN 1
    SCF3 nPr H I H CN 2
    SCF3 nPr H CF3 H F 0
    SCF3 nPr H CF3 H F 1
    SCF3 nPr H CF3 H F 2
    SCF3 nPr H CF3 H Cl 0
    SCF3 nPr H CF3 H Cl 1
    SCF3 nPr H CF3 H Cl 2
    SCF3 nPr H CF3 H Br 0
    SCF3 nPr H CF3 H Br 1
    SCF3 nPr H CF3 H Br 2
    SCF3 nPr H CF3 H I 0
    SCF3 nPr H CF3 H I 1
    SCF3 nPr H CF3 H I 2
    SCF3 nPr H CF3 H CN 0
    SCF3 nPr H CF3 H CN 1
    SCF3 nPr H CF3 H CN 2
    SCF3 nPr H F F H 0
    SCF3 nPr H F F H 1
    SCF3 nPr H F F H 2
    SCF3 nPr H Cl Cl H 0
    SCF3 nPr H Cl Cl H 1
    SCF3 nPr H Cl Cl H 2
    SCF3 nPr H Br Br H 0
    SCF3 nPr H Br Br H 1
    SCF3 nPr H Br Br H 2
    SCF3 nPr H I I H 0
    SCF3 nPr H I I H 1
    SCF3 nPr H I I H 2
    SCF3 nPr H F Cl H 0
    SCF3 nPr H F Cl H 1
    SCF3 nPr H F Cl H 2
    SCF3 nPr H F Br H 0
    SCF3 nPr H F Br H 1
    SCF3 nPr H F Br H 2
    SCF3 nPr H F I H 0
    SCF3 nPr H F I H 1
    SCF3 nPr H F I H 2
    SCF3 nPr H Cl F H 0
    SCF3 nPr H Cl F H 1
    SCF3 nPr H Cl F H 2
    SCF3 nPr H Cl Br H 0
    SCF3 nPr H Cl Br H 1
    SCF3 nPr H Cl Br H 2
    SCF3 nPr H Cl I H 0
    SCF3 nPr H Cl I H 1
    SCF3 nPr H Cl I H 2
    SCF3 nPr H Br F H 0
    SCF3 nPr H Br F H 1
    SCF3 nPr H Br F H 2
    SCF3 nPr H Br Cl H 0
    SCF3 nPr H Br Cl H 1
    SCF3 nPr H Br Cl H 2
    SCF3 nPr H Br I H 0
    SCF3 nPr H Br I H 1
    SCF3 nPr H Br I H 2
    SCF3 nPr H I F H 0
    SCF3 nPr H I F H 1
    SCF3 nPr H I F H 2
    SCF3 nPr H I Cl H 0
    SCF3 nPr H I Cl H 1
    SCF3 nPr H I Cl H 2
    SCF3 nPr H I Br H 0
    SCF3 nPr H I Br H 1
    SCF3 nPr H I Br H 2
    SCF3 nPr H F CN H 0
    SCF3 nPr H F CN H 1
    SCF3 nPr H F CN H 2
    SCF3 nPr H Cl CN H 0
    SCF3 nPr H Cl CN H 1
    SCF3 nPr H Cl CN H 2
    SCF3 nPr H Br CN H 0
    SCF3 nPr H Br CN H 1
    SCF3 nPr H Br CN H 2
    SCF3 nPr H I CN H 0
    SCF3 nPr H I CN H 1
    SCF3 nPr H I CN H 2
    SCF3 nPr H CF3 F H 0
    SCF3 nPr H CF3 F H 1
    SCF3 nPr H CF3 F H 2
    SCF3 nPr H CF3 Cl H 0
    SCF3 nPr H CF3 Cl H 1
    SCF3 nPr H CF3 Cl H 2
    SCF3 nPr H CF3 Br H 0
    SCF3 nPr H CF3 Br H 1
    SCF3 nPr H CF3 Br H 2
    SCF3 nPr H CF3 I H S
    SCF3 nPr H CF3 I H 1
    SCF3 nPr H CF3 I H 2
    SCF3 nPr H CF3 CN H 0
    SCF3 nPr H CF3 CN H 1
    SCF3 nPr H CF3 CN H 2
    SCF3 iPr H H H H 0
    SCF3 iPr H H H H 1
    SCF3 iPr H H H H 2
    SCF3 iPr F H H H 0
    SCF3 iPr F H H H 1
    SCF3 iPr F H H H 2
    SCF3 iPr Cl H H H 0
    SCF3 iPr Cl H H H 1
    SCF3 iPr Cl H H H 2
    SCF3 iPr Br H H H 0
    SCF3 iPr Br H H H 1
    SCF3 iPr Br H H H 2
    SCF3 iPr I H H H 0
    SCF3 iPr I H H H 1
    SCF3 iPr I H H H 2
    SCF3 iPr Me H H H 0
    SCF3 iPr Me H H H 1
    SCF3 iPr Me H H H 2
    SCF3 iPr CF3 H H H 0
    SCF3 iPr CF3 H H H 1
    SCF3 iPr CF3 H H H 2
    SCF3 iPr H F H H 0
    SCF3 iPr H F H H 1
    SCF3 iPr H F H H 2
    SCF3 iPr H Cl H H 0
    SCF3 iPr H Cl H H 1
    SCF3 iPr H Cl H H 2
    SCF3 iPr H Br H H 0
    SCF3 iPr H Br H H 1
    SCF3 iPr H Br H H 2
    SCF3 iPr H I H H 0
    SCF3 iPr H I H H 1
    SCF3 iPr H I H H 2
    SCF3 iPr H Me H H 0
    SCF3 iPr H Me H H 1
    SCF3 iPr H Me H H 2
    SCF3 iPr H CF3 H H 0
    SCF3 iPr H CF3 H H 1
    SCF3 iPr H CF3 H H 2
    SCF3 iPr H CF2CF3 H H 0
    SCF3 iPr H CF2CF3 H H 1
    SCF3 iPr H CF2CF3 H H 2
    SCF3 iPr H CF(CF3)2 H H 0
    SCF3 iPr H CF(CF3)2 H H 1
    SCF3 iPr H CF(CF3)2 H H 2
    SCF3 iPr H SMe H H 0
    SCF3 iPr H SMe H H 1
    SCF3 iPr H SMe H H 2
    SCF3 iPr H SOMe H H 0
    SCF3 iPr H SOMe H H 1
    SCF3 iPr H SOMe H H 2
    SCF3 iPr H SO2Me H H 0
    SCF3 iPr H SO2Me H H 1
    SCF3 iPr H SO2Me H H 2
    SCF3 iPr H OMe H H 0
    SCF3 iPr H OMe H H 1
    SCF3 iPr H OMe H H 2
    SCF3 iPr H OCF3 H H 0
    SCF3 iPr H OCF3 H H 1
    SCF3 iPr H OCF3 H H 2
    SCF3 iPr H NO2 H H 0
    SCF3 iPr H NO2 H H 1
    SCF3 iPr H NO2 H H 2
    SCF3 iPr H CN H H 0
    SCF3 iPr H CN H H 1
    SCF3 iPr H CN H H 2
    SCF3 iPr H H F H 0
    SCF3 iPr H H F H 1
    SCF3 iPr H H F H 2
    SCF3 iPr H H Cl H 0
    SCF3 iPr H H Cl H 1
    SCF3 iPr H H Cl H 2
    SCF3 iPr H H Br H 0
    SCF3 iPr H H Br H 1
    SCF3 iPr H H Br H 2
    SCF3 iPr H H I H 0
    SCF3 iPr H H I H 1
    SCF3 iPr H H I H 2
    SCF3 iPr H H Me H 0
    SCF3 iPr H H Me H 1
    SCF3 iPr H H Me H 2
    SCF3 iPr H H CF3 H 0
    SCF3 iPr H H CF3 H 1
    SCF3 iPr H H CF3 H 2
    SCF3 iPr H H CF2CF3 H 0
    SCF3 iPr H H CF2CF3 H 1
    SCF3 iPr H H CF2CF3 H 2
    SCF3 iPr H H CF(CF3)2 H 0
    SCF3 iPr H H CF(CF3)2 H 1
    SCF3 iPr H H CF(CF3)2 H 2
    SCF3 iPr H H SMe H 0
    SCF3 iPr H H SMe H 1
    SCF3 iPr H H SMe H 2
    SCF3 iPr H H SOMe H 0
    SCF3 iPr H H SOMe H 1
    SCF3 iPr H H SOMe H 2
    SCF3 iPr H H SO2Me H 0
    SCF3 iPr H H SO2Me H 1
    SCF3 iPr H H SO2Me H 2
    SCF3 iPr H H OMe H 0
    SCF3 iPr H H OMe H 1
    SCF3 iPr H H OMe H 2
    SCF3 iPr H H OCF3 H 0
    SCF3 iPr H H OCF3 H 1
    SCF3 iPr H H OCF3 H 2
    SCF3 iPr H H NO2 H 0
    SCF3 iPr H H NO2 H 1
    SCF3 iPr H H NO2 H 2
    SCF3 iPr H H CN H 0
    SCF3 iPr H H CN H 1
    SCF3 iPr H H CN H 2
    SCF3 iPr H H H F 0
    SCF3 iPr H H H F 1
    SCF3 iPr H H H F 2
    SCF3 iPr H H H Cl 0
    SCF3 iPr H H H Cl 1
    SCF3 iPr H H H Cl 2
    SCF3 iPr H H H Br 0
    SCF3 iPr H H H Br 1
    SCF3 iPr H H H Br 2
    SCF3 iPr H H H I 0
    SCF3 iPr H H H I 1
    SCF3 iPr H H H I 2
    SCF3 iPr H H H Me 0
    SCF3 iPr H H H Me 1
    SCF3 iPr H H H Me 2
    SCF3 iPr H H H CF3 0
    SCF3 iPr H H H CF3 1
    SCF3 iPr H H H CF3 2
    SCF3 iPr H H H CF2CF3 0
    SCF3 iPr H H H CF2CF3 1
    SCF3 iPr H H H CF2CF3 2
    SCF3 iPr H H H CF(CF3)2 0
    SCF3 iPr H H H CF(CF3)2 1
    SCF3 iPr H H H CF(CF3)2 2
    SCF3 iPr H H H SMe 0
    SCF3 iPr H H H SMe 1
    SCF3 iPr H H H SMe 2
    SCF3 iPr H H H SOMe 0
    SCF3 iPr H H H SOMe 1
    SCF3 iPr H H H SOMe 2
    SCF3 iPr H H H SO2Me 0
    SCF3 iPr H H H SO2Me 1
    SCF3 iPr H H H SO2Me 2
    SCF3 iPr H H H OMe 0
    SCF3 iPr H H H OMe 1
    SCF3 iPr H H H OMe 2
    SCF3 iPr H H H OCF3 0
    SCF3 iPr H H H OCF3 1
    SCF3 iPr H H H OCF3 2
    SCF3 iPr H H H NO2 0
    SCF3 iPr H H H NO2 1
    SCF3 iPr H H H NO2 2
    SCF3 iPr H H H CN 0
    SCF3 iPr H H H CN 1
    SCF3 iPr H H H CN 2
    SCF3 iPr H F H F 0
    SCF3 iPr H F H F 1
    SCF3 iPr H F H F 2
    SCF3 iPr H Cl H Cl 0
    SCF3 iPr H Cl H Cl 1
    SCF3 iPr H Cl H Cl 2
    SCF3 iPr H Br H Br 0
    SCF3 iPr H Br H Br 1
    SCF3 iPr H Br H Br 2
    SCF3 iPr H I H I 0
    SCF3 iPr H I H I 1
    SCF3 iPr H I H I 2
    SCF3 iPr H F H Cl 0
    SCF3 iPr H F H Cl 1
    SCF3 iPr H F H Cl 2
    SCF3 iPr H F H Br 0
    SCF3 iPr H F H Br 1
    SCF3 iPr H F H Br 2
    SCF3 iPr H F H I 0
    SCF3 iPr H F H I 1
    SCF3 iPr H F H I 2
    SCF3 iPr H Cl H F 0
    SCF3 iPr H Cl H F 1
    SCF3 iPr H Cl H F 2
    SCF3 iPr H Cl H Br 0
    SCF3 iPr H Cl H Br 1
    SCF3 iPr H Cl H Br 2
    SCF3 iPr H Cl H I 0
    SCF3 iPr H Cl H I 1
    SCF3 iPr H Cl H I 2
    SCF3 iPr H Br H F 0
    SCF3 iPr H Br H F 1
    SCF3 iPr H Br H F 2
    SCF3 iPr H Br H Cl 0
    SCF3 iPr H Br H Cl 1
    SCF3 iPr H Br H Cl 2
    SCF3 iPr H Br H I 0
    SCF3 iPr H Br H I 1
    SCF3 iPr H Br H I 2
    SCF3 iPr H I H F 0
    SCF3 iPr H I H F 1
    SCF3 iPr H I H F 2
    SCF3 iPr H I H Cl 0
    SCF3 iPr H I H Cl 1
    SCF3 iPr H I H Cl 2
    SCF3 iPr H I H Br 0
    SCF3 iPr H I H Br 1
    SCF3 iPr H I H Br 2
    SCF3 iPr H F H CN 0
    SCF3 iPr H F H CN 1
    SCF3 iPr H F H CN 2
    SCF3 iPr H Cl H CN 0
    SCF3 iPr H Cl H CN 1
    SCF3 iPr H Cl H CN 2
    SCF3 iPr H Br H CN 0
    SCF3 iPr H Br H CN 1
    SCF3 iPr H Br H CN 2
    SCF3 iPr H I H CN 0
    SCF3 iPr H I H CN 1
    SCF3 iPr H I H CN 2
    SCF3 iPr H CF3 H F 0
    SCF3 iPr H CF3 H F 1
    SCF3 iPr H CF3 H F 2
    SCF3 iPr H CF3 H Cl 0
    SCF3 iPr H CF3 H Cl 1
    SCF3 iPr H CF3 H Cl 2
    SCF3 iPr H CF3 H Br 0
    SCF3 iPr H CF3 H Br 1
    SCF3 iPr H CF3 H Br 2
    SCF3 iPr H CF3 H I 0
    SCF3 iPr H CF3 H I 1
    SCF3 iPr H CF3 H I 2
    SCF3 iPr H CF3 H CN 0
    SCF3 iPr H CF3 H CN 1
    SCF3 iPr H CF3 H CN 2
    SCF3 iPr H F F H 0
    SCF3 iPr H F F H 1
    SCF3 iPr H F F H 2
    SCF3 iPr H Cl Cl H 0
    SCF3 iPr H Cl Cl H 1
    SCF3 iPr H Cl Cl H 2
    SCF3 iPr H Br Br H 0
    SCF3 iPr H Br Br H 1
    SCF3 iPr H Br Br H 2
    SCF3 iPr H I I H 0
    SCF3 iPr H I I H 1
    SCF3 iPr H I I H 2
    SCF3 iPr H F Cl H 0
    SCF3 iPr H F Cl H 1
    SCF3 iPr H F Cl H 2
    SCF3 iPr H F Br H 0
    SCF3 iPr H F Br H 1
    SCF3 iPr H F Br H 2
    SCF3 iPr H F I H 0
    SCF3 iPr H F I H 1
    SCF3 iPr H F I H 2
    SCF3 iPr H Cl F H 0
    SCF3 iPr H Cl F H 1
    SCF3 iPr H Cl F H 2
    SCF3 iPr H Cl Br H 0
    SCF3 iPr H Cl Br H 1
    SCF3 iPr H Cl Br H 2
    SCF3 iPr H Cl I H 0
    SCF3 iPr H Cl I H 1
    SCF3 iPr H Cl I H 2
    SCF3 iPr H Br F H 0
    SCF3 iPr H Br F H 1
    SCF3 iPr H Br F H 2
    SCF3 iPr H Br Cl H 0
    SCF3 iPr H Br Cl H 1
    SCF3 iPr H Br Cl H 2
    SCF3 iPr H Br I H 0
    SCF3 iPr H Br I H 1
    SCF3 iPr H Br I H 2
    SCF3 iPr H I F H 0
    SCF3 iPr H I F H 1
    SCF3 iPr H I F H 2
    SCF3 iPr H I Cl H 0
    SCF3 iPr H I Cl H 1
    SCF3 iPr H I Cl H 2
    SCF3 iPr H I Br H 0
    SCF3 iPr H I Br H 1
    SCF3 iPr H I Br H 2
    SCF3 iPr H F CN H 0
    SCF3 iPr H F CN H 1
    SCF3 iPr H F CN H 2
    SCF3 iPr H Cl CN H 0
    SCF3 iPr H Cl CN H 1
    SCF3 iPr H Cl CN H 2
    SCF3 iPr H Br CN H 0
    SCF3 iPr H Br CN H 1
    SCF3 iPr H Br CN H 2
    SCF3 iPr H I CN H 0
    SCF3 iPr H I CN H 1
    SCF3 iPr H I CN H 2
    SCF3 iPr H CF3 F H 0
    SCF3 iPr H CF3 F H 1
    SCF3 iPr H CF3 F H 2
    SCF3 iPr H CF3 Cl H 0
    SCF3 iPr H CF3 Cl H 1
    SCF3 iPr H CF3 Cl H 2
    SCF3 iPr H CF3 Br H 0
    SCF3 iPr H CF3 Br H 1
    SCF3 iPr H CF3 Br H 2
    SCF3 iPr H CF3 I H 0
    SCF3 iPr H CF3 I H 1
    SCF3 iPr H CF3 I H 2
    SCF3 iPr H CF3 CN H 0
    SCF3 iPr H CF3 CN H 1
    SCF3 iPr H CF3 CN H 2
    SCF3 CH2CF3 H H H H 0
    SCF3 CH2CF3 H H H H 1
    SCF3 CH2CF3 H H H H 2
    SCF3 CH2CF3 F H H H 0
    SCF3 CH2CF3 F H H H 1
    SCF3 CH2CF3 F H H H 2
    SCF3 CH2CF3 Cl H H H 0
    SCF3 CH2CF3 Cl H H H 1
    SCF3 CH2CF3 Cl H H H 2
    SCF3 CH2CF3 Br H H H 0
    SCF3 CH2CF3 Br H H H 1
    SCF3 CH2CF3 Br H H H 2
    SCF3 CH2CF3 I H H H 0
    SCF3 CH2CF3 I H H H 1
    SCF3 CH2CF3 I H H H 2
    SCF3 CH2CF3 Me H H H 0
    SCF3 CH2CF3 Me H H H 1
    SCF3 CH2CF3 Me H H H 2
    SCF3 CH2CF3 CF3 H H H 0
    SCF3 CH2CF3 CF3 H H H 1
    SCF3 CH2CF3 CF3 H H H 2
    SCF3 CH2CF3 H F H H 0
    SCF3 CH2CF3 H F H H 1
    SCF3 CH2CF3 H F H H 2
    SCF3 CH2CF3 H Cl H H 0
    SCF3 CH2CF3 H Cl H H 1
    SCF3 CH2CF3 H Cl H H 2
    SCF3 CH2CF3 H Br H H 0
    SCF3 CH2CF3 H Br H H 1
    SCF3 CH2CF3 H Br H H 2
    SCF3 CH2CF3 H I H H 0
    SCF3 CH2CF3 H I H H 1
    SCF3 CH2CF3 H I H H 2
    SCF3 CH2CF3 H Me H H 0
    SCF3 CH2CF3 H Me H H 1
    SCF3 CH2CF3 H Me H H 2
    SCF3 CH2CF3 H CF3 H H 0
    SCF3 CH2CF3 H CF3 H H 1
    SCF3 CH2CF3 H CF3 H H 2
    SCF3 CH2CF3 H CF2CF3 H H 0
    SCF3 CH2CF3 H CF2CF3 H H 1
    SCF3 CH2CF3 H CF2CF3 H H 2
    SCF3 CH2CF3 H CF(CF3)2 H H 0
    SCF3 CH2CF3 H CF(CF3)2 H H 1
    SCF3 CH2CF3 H CF(CF3)2 H H 2
    SCF3 CH2CF3 H SMe H H 0
    SCF3 CH2CF3 H SMe H H 1
    SCF3 CH2CF3 H SMe H H 2
    SCF3 CH2CF3 H SOMe H H 0
    SCF3 CH2CF3 H SOMe H H 1
    SCF3 CH2CF3 H SOMe H H 2
    SCF3 CH2CF3 H SO2Me H H 0
    SCF3 CH2CF3 H SO2Me H H 1
    SCF3 CH2CF3 H SO2Me H H 2
    SCF3 CH2CF3 H OMe H H 0
    SCF3 CH2CF3 H OMe H H 1
    SCF3 CH2CF3 H OMe H H 2
    SCF3 CH2CF3 H OCF3 H H 0
    SCF3 CH2CF3 H OCF3 H H 1
    SCF3 CH2CF3 H OCF3 H H 2
    SCF3 CH2CF3 H NO2 H H 0
    SCF3 CH2CF3 H NO2 H H 1
    SCF3 CH2CF3 H NO2 H H 2
    SCF3 CH2CF3 H CN H H 0
    SCF3 CH2CF3 H CN H H 1
    SCF3 CH2CF3 H CN H H 2
    SCF3 CH2CF3 H H F H 0
    SCF3 CH2CF3 H H F H 1
    SCF3 CH2CF3 H H F H 2
    SCF3 CH2CF3 H H Cl H 0
    SCF3 CH2CF3 H H Cl H 1
    SCF3 CH2CF3 H H Cl H 2
    SCF3 CH2CF3 H H Br H 0
    SCF3 CH2CF3 H H Br H 1
    SCF3 CH2CF3 H H Br H 2
    SCF3 CH2CF3 H H I H 0
    SCF3 CH2CF3 H H I H 1
    SCF3 CH2CF3 H H I H 2
    SCF3 CH2CF3 H H Me H 0
    SCF3 CH2CF3 H H Me H 1
    SCF3 CH2CF3 H H Me H 2
    SCF3 CH2CF3 H H CF3 H 0
    SCF3 CH2CF3 H H CF3 H 1
    SCF3 CH2CF3 H H CF3 H 2
    SCF3 CH2CF3 H H CF2CF3 H 0
    SCF3 CH2CF3 H H CF2CF3 H 1
    SCF3 CH2CF3 H H CF2CF3 H 2
    SCF3 CH2CF3 H H CF(CF3)2 H 0
    SCF3 CH2CF3 H H CF(CF3)2 H 1
    SCF3 CH2CF3 H H CF(CF3)2 H 2
    SCF3 CH2CF3 H H SMe H 0
    SCF3 CH2CF3 H H SMe H 1
    SCF3 CH2CF3 H H SMe H 2
    SCF3 CH2CF3 H H SOMe H 0
    SCF3 CH2CF3 H H SOMe H 1
    SCF3 CH2CF3 H H SOMe H 2
    SCF3 CH2CF3 H H SO2Me H 0
    SCF3 CH2CF3 H H SO2Me H 1
    SCF3 CH2CF3 H H SO2Me H 2
    SCF3 CH2CF3 H H OMe H 0
    SCF3 CH2CF3 H H OMe H 1
    SCF3 CH2CF3 H H OMe H 2
    SCF3 CH2CF3 H H OCF3 H 0
    SCF3 CH2CF3 H H OCF3 H 1
    SCF3 CH2CF3 H H OCF3 H 2
    SCF3 CH2CF3 H H NO2 H 0
    SCF3 CH2CF3 H H NO2 H 1
    SCF3 CH2CF3 H H NO2 H 2
    SCF3 CH2CF3 H H CN H 0
    SCF3 CH2CF3 H H CN H 1
    SCF3 CH2CF3 H H CN H 2
    SCF3 CH2CF3 H H H F 0
    SCF3 CH2CF3 H H H F 1
    SCF3 CH2CF3 H H H F 2
    SCF3 CH2CF3 H H H Cl 0
    SCF3 CH2CF3 H H H Cl 1
    SCF3 CH2CF3 H H H Cl 2
    SCF3 CH2CF3 H H H Br 0
    SCF3 CH2CF3 H H H Br 1
    SCF3 CH2CF3 H H H Br 2
    SCF3 CH2CF3 H H H I 0
    SCF3 CH2CF3 H H H I 1
    SCF3 CH2CF3 H H H I 2
    SCF3 CH2CF3 H H H Me 0
    SCF3 CH2CF3 H H H Me 1
    SCF3 CH2CF3 H H H Me 2
    SCF3 CH2CF3 H H H CF3 0
    SCF3 CH2CF3 H H H CF3 1
    SCF3 CH2CF3 H H H CF3 2
    SCF3 CH2CF3 H H H CF2CF3 0
    SCF3 CH2CF3 H H H CF2CF3 1
    SCF3 CH2CF3 H H H CF2CF3 2
    SCF3 CH2CF3 H H H CF(CF3)2 0
    SCF3 CH2CF3 H H H CF(CF3)2 1
    SCF3 CH2CF3 H H H CF(CF3)2 2
    SCF3 CH2CF3 H H H SMe 0
    SCF3 CH2CF3 H H H SMe 1
    SCF3 CH2CF3 H H H SMe 2
    SCF3 CH2CF3 H H H SOMe 0
    SCF3 CH2CF3 H H H SOMe 1
    SCF3 CH2CF3 H H H SOMe 2
    SCF3 CH2CF3 H H H SO2Me 0
    SCF3 CH2CF3 H H H SO2Me 1
    SCF3 CH2CF3 H H H SO2Me 2
    SCF3 CH2CF3 H H H OMe 0
    SCF3 CH2CF3 H H H OMe 1
    SCF3 CH2CF3 H H H OMe 2
    SCF3 CH2CF3 H H H OCF3 0
    SCF3 CH2CF3 H H H OCF3 1
    SCF3 CH2CF3 H H H OCF3 2
    SCF3 CH2CF3 H H H NO2 0
    SCF3 CH2CF3 H H H NO2 1
    SCF3 CH2CF3 H H H NO2 2
    SCF3 CH2CF3 H H H CN 0
    SCF3 CH2CF3 H H H CN 1
    SCF3 CH2CF3 H H H CN 2
    SCF3 CH2CF3 H F H F 0
    SCF3 CH2CF3 H F H F 1
    SCF3 CH2CF3 H F H F 2
    SCF3 CH2CF3 H Cl H Cl 0
    SCF3 CH2CF3 H Cl H Cl 1
    SCF3 CH2CF3 H Cl H Cl 2
    SCF3 CH2CF3 H Br H Br 0
    SCF3 CH2CF3 H Br H Br 1
    SCF3 CH2CF3 H Br H Br 2
    SCF3 CH2CF3 H I H I 0
    SCF3 CH2CF3 H I H I 1
    SCF3 CH2CF3 H I H I 2
    SCF3 CH2CF3 H F H Cl 0
    SCF3 CH2CF3 H F H Cl 1
    SCF3 CH2CF3 H F H Cl 2
    SCF3 CH2CF3 H F H Br 0
    SCF3 CH2CF3 H F H Br 1
    SCF3 CH2CF3 H F H Br 2
    SCF3 CH2CF3 H F H I 0
    SCF3 CH2CF3 H F H I 1
    SCF3 CH2CF3 H F H I 2
    SCF3 CH2CF3 H Cl H F 0
    SCF3 CH2CF3 H Cl H F 1
    SCF3 CH2CF3 H Cl H F 2
    SCF3 CH2CF3 H Cl H Br 0
    SCF3 CH2CF3 H Cl H Br 1
    SCF3 CH2CF3 H Cl H Br 2
    SCF3 CH2CF3 H Cl H I 0
    SCF3 CH2CF3 H Cl H I 1
    SCF3 CH2CF3 H Cl H I 2
    SCF3 CH2CF3 H Br H F 0
    SCF3 CH2CF3 H Br H F 1
    SCF3 CH2CF3 H Br H F 2
    SCF3 CH2CF3 H Br H Cl 0
    SCF3 CH2CF3 H Br H Cl 1
    SCF3 CH2CF3 H Br H Cl 2
    SCF3 CH2CF3 H Br H I 0
    SCF3 CH2CF3 H Br H I 1
    SCF3 CH2CF3 H Br H I 2
    SCF3 CH2CF3 H I H F 0
    SCF3 CH2CF3 H I H F 1
    SCF3 CH2CF3 H I H F 2
    SCF3 CH2CF3 H I H Cl 0
    SCF3 CH2CF3 H I H Cl 1
    SCF3 CH2CF3 H I H Cl 2
    SCF3 CH2CF3 H I H Br 0
    SCF3 CH2CF3 H I H Br 1
    SCF3 CH2CF3 H I H Br 2
    SCF3 CH2CF3 H F H CN 0
    SCF3 CH2CF3 H F H CN 1
    SCF3 CH2CF3 H F H CN 2
    SCF3 CH2CF3 H Cl H CN 0
    SCF3 CH2CF3 H Cl H CN 1
    SCF3 CH2CF3 H Cl H CN 2
    SCF3 CH2CF3 H Br H CN 0
    SCF3 CH2CF3 H Br H CN 1
    SCF3 CH2CF3 H Br H CN 2
    SCF3 CH2CF3 H I H CN 0
    SCF3 CH2CF3 H I H CN 1
    SCF3 CH2CF3 H I H CN 2
    SCF3 CH2CF3 H CF3 H F 0
    SCF3 CH2CF3 H CF3 H F 1
    SCF3 CH2CF3 H CF3 H F 2
    SCF3 CH2CF3 H CF3 H Cl 0
    SCF3 CH2CF3 H CF3 H Cl 1
    SCF3 CH2CF3 H CF3 H Cl 2
    SCF3 CH2CF3 H CF3 H Br 0
    SCF3 CH2CF3 H CF3 H Br 1
    SCF3 CH2CF3 H CF3 H Br 2
    SCF3 CH2CF3 H CF3 H I 0
    SCF3 CH2CF3 H CF3 H I 1
    SCF3 CH2CF3 H CF3 H I 2
    SCF3 CH2CF3 H CF3 H CN 0
    SCF3 CH2CF3 H CF3 H CN 1
    SCF3 CH2CF3 H CF3 H CN 2
    SCF3 CH2CF3 H CF3 H H 0
    SCF3 CH2CF3 H F F H 1
    SCF3 CH2CF3 H F F H 2
    SCF3 CH2CF3 H Cl Cl H 0
    SCF3 CH2CF3 H Cl Cl H 1
    SCF3 CH2CF3 H Cl Cl H 2
    SCF3 CH2CF3 H Br Br H 0
    SCF3 CH2CF3 H Br Br H 1
    SCF3 CH2CF3 H Br Br H 2
    SCF3 CH2CF3 H I I H 0
    SCF3 CH2CF3 H I I H 1
    SCF3 CH2CF3 H I I H 2
    SCF3 CH2CF3 H F Cl H 0
    SCF3 CH2CF3 H F Cl H 1
    SCF3 CH2CF3 H F Cl H 2
    SCF2 CH2CF3 H F Br H 0
    SCF3 CH2CF3 H F Br H 1
    SCF3 CH2CF3 H F Br H 2
    SCF3 CH2CF3 H F I H 0
    SCF3 CH2CF3 H F I H 1
    SCF3 CH2CF3 H F I H 2
    SCF3 CH3CF2 H Cl F H 0
    SCF3 CH2CF3 H Cl F H 1
    SCF3 CH2CF3 H Cl F H 2
    SCF3 CH2CF3 H Cl Br H 0
    SCF3 CH2CF3 H Cl Br H 1
    SCF3 CH2CF3 H Cl Br H 2
    SCF3 CH2CF3 H Cl I H 0
    SCF3 CH2CF3 H Cl I H 1
    SCF3 CH2CF3 H Cl I H 2
    SCF3 CH2CF3 H Br F H 0
    SCF3 CH2CF3 H Br F H 1
    SCF3 CH2CF3 H Br F H 2
    SCF3 CH2CF3 H Br Cl H 0
    SCF3 CH2CF3 H Br Cl H 1
    SCF3 CH2CF3 H Br Cl H 2
    SCF3 CH2CF3 H Br I H 0
    SCF3 CH2CF3 H Br I H 1
    SCF3 CH2CF3 H Br I H 2
    SCF3 CH2CF3 H I F H 0
    SCF3 CH2CF3 H I F H 1
    SCF3 CH2CF3 H I F H 2
    SCF3 CH2CF3 H I Cl H 0
    SCF3 CH2CF3 H I Cl H 1
    SCF3 CH2CF3 H I Cl H 2
    SCF3 CH2CF3 H I Br H 0
    SCF3 CH2CF3 H I Br H 1
    SCF3 CH2CF3 H I Br H 2
    SCF3 CH2CF3 H F CN H 0
    SCF3 CH2CF3 H F CN H 1
    SCF3 CH2CF3 H F CN H 2
    SCF3 CH2CF3 H Cl CN H 0
    SCF3 CH2CF3 H Cl CN H 1
    SCF3 CH2CF3 H Cl CN H 2
    SCF3 CH2CF3 H Br CN H 0
    SCF3 CH2CF3 H Br CN H 1
    SCF3 CH2CF3 H Br CN H 2
    SCF3 CH2CF3 H I CN H 0
    SCF3 CH2CF3 H I CN H 1
    SCF3 CH2CF3 H I CN H 2
    SCF3 CH2CF3 H CF3 F H 0
    SCF3 CH2CF3 H CF3 F H 1
    SCF3 CH2CF3 H CF3 F H 2
    SCF3 CH2CF3 H CF3 Cl H 0
    SCF3 CH2CF3 H CF3 Cl H 1
    SCF3 CH2CF3 H CF3 Cl H 2
    SCF3 CH2CF3 H CF3 Br H 0
    SCF3 CH2CF3 H CF3 Br H 1
    SCF3 CH2CF3 H CF3 Br H 2
    SCF3 CH2CF3 H CF3 I H 0
    SCF3 CH2CF3 H CF3 I H 1
    SCF3 CH2CF3 H CF3 I H 2
    SCF3 CH2CF3 H CF3 CN H 0
    SCF3 CH2CF3 H CF3 CN H 1
    SCF3 CH2CF3 H CF3 CN H 2
    SOCF3 Me H H H H 0
    SOCF3 Me H H H H 1
    SOCF3 Me H H H H 2
    SOCF3 Me F H H H 0
    SOCF3 Me F H H H 1
    SOCF3 Me F H H H 2
    SOCF3 Me Cl H H H 0
    SOCF3 Me Cl H H H 1
    SOCF3 Me Cl H H H 2
    SOCF3 Me Br H H H 0
    SOCF3 Me Br H H H 1
    SOCF3 Me Br H H H 2
    SOCF3 Me I H H H 0
    SOCF3 Me I H H H 1
    SOCF3 Me I H H H 2
    SOCF3 Me Me H H H 0
    SOCF3 Me Me H H H 1
    SOCF3 Me Me H H H 2
    SOCF3 Me CF3 H H H 0
    SOCF3 Me CF3 H H H 1
    SOCF3 Me CF3 H H H 2
    SOCF3 Me H F H H 0
    SOCF3 Me H F H H 1
    SOCF3 Me H F H H 2
    SOCF3 Me H Cl H H 0
    SOCF3 Me H Cl H H 1
    SOCF3 Me H Cl H H 2
    SOCF3 Me H Br H H 0
    SOCF3 Me H Br H H 1
    SOCF3 Me H Br H H 2
    SOCF3 Me H I H H 0
    SOCF3 Me H I H H 1
    SOCF3 Me H I H H 2
    SOCF3 Me H Me H H 0
    SOCF3 Me H Me H H 1
    SOCF3 Me H Me H H 2
    SOCF3 Me H CF3 H H 0
    SOCF3 Me H CF3 H H 1
    SOCF3 Me H CF3 H H 2
    SOCF3 Me H CF2CF3 H H 0
    SOCF3 Me H CF2CF3 H H 1
    SOCF3 Me H CF2CF3 H H 2
    SOCF3 Me H CF(CF3)2 H H 0
    SOCF3 Me H CF(CF3)2 H H 1
    SOCF3 Me H CF(CF3)2 H H 2
    SOCF3 Me H SMe H H 0
    SOCF3 Me H SMe H H 1
    SOCF3 Me H SMe H H 2
    SOCF3 Me H SOMe H H 0
    SOCF3 Me H SOMe H H 1
    SOCF3 Me H SOMe H H 2
    SOCF3 Me H SO2Me H H 0
    SOCF3 Me H SO2Me H H 1
    SOCF3 Me H SO2Me H H 2
    SOCF3 Me H OMe H H 0
    SOCF3 Me H OMe H H 1
    SOCF3 Me H OMe H H 2
    SOCF3 Me H OCF3 H H 0
    SOCF3 Me H OCF3 H H 1
    SOCF3 Me H OCF3 H H 2
    SOCF3 Me H NO2 H H 0
    SOCF3 Me H NO2 H H 1
    SOCF3 Me H NO2 H H 2
    SOCF3 Me H CN H H 0
    SOCF3 Me H CN H H 1
    SOCF3 Me H CN H H 2
    SOCF3 Me H H F H 0
    SOCF3 Me H H F H 1
    SOCF3 Me H H F H 2
    SOCF3 Me H H Cl H 0
    SOCF3 Me H H Cl H 1
    SOCF3 Me H H Cl H 2
    SOCF3 Me H H Br H 0
    SOCF3 Me H H Br H 1
    SOCF3 Me H H Br H 2
    SOCF3 Me H H I H 0
    SOCF3 Me H H I H 1
    SOCF3 Me H H I H 2
    SOCF3 Me H H Me H 0
    SOCF3 Me H H Me H 1
    SOCF3 Me H H Me H 2
    SOCF3 Me H H CF3 H 0
    SOCF3 Me H H CF3 H 1
    SOCF3 Me H H CF3 H 2
    SOCF3 Me H H CF2CF3 H 0
    SOCF3 Me H H CF2CF3 H 1
    SOCF3 Me H H CF2CF3 H 2
    SOCF3 Me H H CF(CF3)2 H 0
    SOCF3 Me H H CF(CF3)2 H 1
    SOCF3 Me H H CF(CF3)2 H 2
    SOCF3 Me H H SMe H 0
    SOCF3 Me H H SMe H 1
    SOCF3 Me H H SMe H 2
    SOCF3 Me H H SOMe H 0
    SOCF3 Me H H SOMe H 1
    SOCF3 Me H H SOMe H 2
    SOCF3 Me H H SO2Me H 0
    SOCF3 Me H H SO2Me H 1
    SOCF3 Me H H SO2Me H 2
    SOCF3 Me H H OMe H 0
    SOCF3 Me H H OMe H 1
    SOCF3 Me H H OMe H 2
    SOCF3 Me H H OCF3 H 0
    SOCF3 Me H H OCF3 H 1
    SOCF3 Me H H OCF3 H 2
    SOCF3 Me H H NO2 H 0
    SOCF3 Me H H NO2 H 1
    SOCF3 Me H H NO2 H 2
    SOCF3 Me H H CN H 0
    SOCF3 Me H H CN H 1
    SOCF3 Me H H CN H 2
    SOCF3 Me H H H F 0
    SOCF3 Me H H H F 1
    SOCF3 Me H H H F 2
    SOCF3 Me H H H Cl 0
    SOCF3 Me H H H Cl 1
    SOCF3 Me H H H Cl 2
    SOCF3 Me H H H Br 0
    SOCF3 Me H H H Br 1
    SOCF3 Me H H H Br 2
    SOCF3 Me H H H I 0
    SOCF3 Me H H H I 1
    SOCF3 Me H H H I 2
    SOCF3 Me H H H Me 0
    SOCF3 Me H H H Me 1
    SOCF3 Me H H H Me 2
    SOCF3 Me H H H CF3 0
    SOCF3 Me H H H CF3 1
    SOCF3 Me H H H CF3 2
    SOCF3 Me H H H CF2CF3 0
    SOCF3 Me H H H CF2CF3 1
    SOCF3 Me H H H CF2CF3 2
    SOCF3 Me H H H CF(CF3)2 0
    SOCF3 Me H H H CF(CF3)2 1
    SOCF3 Me H H H CF(CF3)2 2
    SOCF3 Me H H H SMe 0
    SOCF3 Me H H H SMe 1
    SOCF3 Me H H H SMe 2
    SOCF3 Me H H H SOMe 0
    SOCF3 Me H H H SOMe 1
    SOCF3 Me H H H SOMe 2
    SOCF3 Me H H H SO2Me 0
    SOCF3 Me H H H SO2Me 1
    SOCF3 Me H H H SO2Me 2
    SOCF3 Me H H H OMe 0
    SOCF3 Me H H H OMe 1
    SOCF3 Me H H H OMe 2
    SOCF3 Me H H H OCF3 0
    SOCF3 Me H H H OCF3 1
    SOCF3 Me H H H OCF3 2
    SOCF3 Me H H H NO2 0
    SOCF3 Me H H H NO2 1
    SOCF3 Me H H H NO2 2
    SOCF3 Me H H H CN 0
    SOCF3 Me H H H CN 1
    SOCF3 Me H H H CN 2
    SOCF3 Me H F H F 0
    SOCF3 Me H F H F 1
    SOCF3 Me H F H F 2
    SOCF3 Me H Cl H Cl 0
    SOCF3 Me H Cl H Cl 1
    SOCF3 Me H Cl H Cl 2
    SOCF3 Me H Br H Br 0
    SOCF3 Me H Br H Br 1
    SOCF3 Me H Br H Br 2
    SOCF3 Me H I H I 0
    SOCF3 Me H I H I 1
    SOCF3 Me H I H I 2
    SOCF3 Me H F H Cl 0
    SOCF3 Me H F H Cl 1
    SOCF3 Me H F H Cl 2
    SOCF3 Me H F H Br 0
    SOCF3 Me H F H Br 1
    SOCF3 Me H F H Br 2
    SOCF3 Me H F H I 0
    SOCF3 Me H F H I 1
    SOCF3 Me H F H I 2
    SOCF3 Me H Cl H F 0
    SOCF3 Me H Cl H F 1
    SOCF3 Me H Cl H F 2
    SOCF3 Me H Cl H Br 0
    SOCF3 Me H Cl H Br 1
    SOCF3 Me H Cl H Br 2
    SOCF3 Me H Cl H I 0
    SOCF3 Me H Cl H I 1
    SOCF3 Me H Cl H I 2
    SOCF3 Me H Br H F 0
    SOCF3 Me H Br H F 1
    SOCF3 Me H Br H F 2
    SOCF3 Me H Br H Cl 0
    SOCF3 Me H Br H Cl 1
    SOCF3 Me H Br H Cl 2
    SOCF3 Me H Br H I 0
    SOCF3 Me H Br H I 1
    SOCF3 Me H Br H I 2
    SOCF3 Me H I H F 0
    SOCF3 Me H I H F 1
    SOCF3 Me H I H F 2
    SOCF3 Me H I H Cl 0
    SOCF3 Me H I H Cl 1
    SOCF3 Me H I H Cl 2
    SOCF3 Me H I H Br 0
    SOCF3 Me H I H Br 1
    SOCF3 Me H I H Br 2
    SOCF3 Me H F H CN 0
    SOCF3 Me H F H CN 1
    SOCF3 Me H F H CN 2
    SOCF3 Me H Cl H CN 0
    SOCF3 Me H Cl H CN 1
    SOCF3 Me H Cl H CN 2
    SOCF3 Me H Br H CN 0
    SOCF3 Me H Br H CN 1
    SOCF3 Me H Br H CN 2
    SOCF3 Me H I H CN 0
    SOCF3 Me H I H CN 1
    SOCF3 Me H I H CN 2
    SOCF3 Me H CF3 H F 0
    SOCF3 Me H CF3 H F 1
    SOCF3 Me H CF3 H F 2
    SOCF3 Me H CF3 H Cl 0
    SOCF3 Me H CF3 H Cl 1
    SOCF3 Me H CF3 H Cl 2
    SOCF3 Me H CF3 H Br 0
    SOCF3 Me H CF3 H Br 1
    SOCF3 Me H CF3 H Br 2
    SOCF3 Me H CF3 H I 0
    SOCF3 Me H CF3 H I 1
    SOCF3 Me H CF3 H I 2
    SOCF3 Me H CF3 H CN 0
    SOCF3 Me H CF3 H CN 1
    SOCF3 Me H CF3 H CN 2
    SOCF3 Me H F F H 0
    SOCF3 Me H F F H 1
    SOCF3 Me H F F H 2
    SOCF3 Me H Cl Cl H 0
    SOCF3 Me H Cl Cl H 1
    SOCF3 Me H Cl Cl H 2
    SOCF3 Me H Br Br H 0
    SOCF3 Me H Br Br H 1
    SOCF3 Me H Br Br H 2
    SOCF3 Me H I I H 0
    SOCF3 Me H I I H 1
    SOCF3 Me H I I H 2
    SOCF3 Me H F Cl H 0
    SOCF3 Me H F Cl H 1
    SOCF3 Me H F Cl H 2
    SOCF3 Me H F Br H 0
    SOCF3 Me H F Br H 1
    SOCF3 Me H F Br H 2
    SOCF3 Me H F I H 0
    SOCF3 Me H F I H 1
    SOCF3 Me H F I H 2
    SOCF3 Me H Cl F H 0
    SOCF3 Me H Cl F H 1
    SOCF3 Me H Cl F H 2
    SOCF3 Me H Cl Br H 0
    SOCF3 Me H Cl Br H 1
    SOCF3 Me H Cl Br H 2
    SOCF3 Me H Cl I H 0
    SOCF3 Me H Cl I H 1
    SOCF3 Me H Cl I H 2
    SOCF3 Me H Br F H 0
    SOCF3 Me H Br F H 1
    SOCF3 Me H Br F H 2
    SOCF3 Me H Br Cl H 0
    SOCF3 Me H Br Cl H 1
    SOCF3 Me H Br Cl H 2
    SOCF3 Me H Br I H 0
    SOCF3 Me H Br I H 1
    SOCF3 Me H Br I H 2
    SOCF3 Me H I F H 0
    SOCF3 Me H I F H 1
    SOCF3 Me H I F H 2
    SOCF3 Me H I Cl H 0
    SOCF3 Me H I Cl H 1
    SOCF3 Me H I Cl H 2
    SOCF3 Me H I Br H 0
    SOCF3 Me H I Br H 1
    SOCF3 Me H I Br H 2
    SOCF3 Me H F CN H 0
    SOCF3 Me H F CN H 1
    SOCF3 Me H F CN H 2
    SOCF3 Me H Cl CN H 0
    SOCF3 Me H Cl CN H 1
    SOCF3 Me H Cl CN H 2
    SOCF3 Me H Br CN H 0
    SOCF3 Me H Br CN H 1
    SOCF3 Me H Br CN H 2
    SOCF3 Me H I CN H 0
    SOCF3 Me H I CN H 1
    SOCF3 Me H I CN H 2
    SOCF3 Me H CF3 F H 0
    SOCF3 Me H CF3 F H 1
    SOCF3 Me H CF3 F H 2
    SOCF3 Me H CF3 Cl H 0
    SOCF3 Me H CF3 Cl H 1
    SOCF3 Me H CF3 Cl H 2
    SOCF3 Me H CF3 Br H 0
    SOCF3 Me H CF3 Br H 1
    SOCF3 Me H CF3 Br H 2
    SOCF3 Me H CF3 I H 0
    SOCF3 Me H CF3 I H 1
    SOCF3 Me H CF3 I H 2
    SOCF3 Me H CF3 CN H 0
    SOCF3 Me H CF3 CN H 1
    SOCF3 Me H CF3 CN H 2
    SOCF3 Et H H H H 0
    SOCF3 Et H H H H 1
    SOCF3 Et H H H H 2
    SOCF3 Et F H H H 0
    SOCF3 Et F H H H 1
    SOCF3 Et F H H H 2
    SOCF3 Et Cl H H H 0
    SOCF3 Et Cl H H H 1
    SOCF3 Et Cl H H H 2
    SOCF3 Et Br H H H 0
    SOCF3 Et Br H H H 1
    SOCF3 Et Br H H H 2
    SOCF3 Et I H H H 0
    SOCF3 Et I H H H 1
    SOCF3 Et I H H H 2
    SOCF3 Et Me H H H 0
    SOCF3 Et Me H H H 1
    SOCF3 Et Me H H H 2
    SOCF3 Et CF3 H H H 0
    SOCF3 Et CF3 H H H 1
    SOCF3 Et CF3 H H H 2
    SOCF3 Et H F H H 0
    SOCF3 Et H F H H 1
    SOCF3 Et H F H H 2
    SOCF3 Et H Cl H H 0
    SOCF3 Et H Cl H H 1
    SOCF3 Et H Cl H H 2
    SOCF3 Et H Br H H 0
    SOCF3 Et H Br H H 1
    SOCF3 Et H Br H H 2
    SOCF3 Et H I H H 0
    SOCF3 Et H I H H 1
    SOCF3 Et H I H H 2
    SOCF3 Et H Me H H 0
    SOCF3 Et H Me H H 1
    SOCF3 Et H Me H H 2
    SOCF3 Et H CF3 H H 0
    SOCF3 Et H CF3 H H 1
    SOCF3 Et H CF3 H H 2
    SOCF3 Et H CF2CF3 H H 0
    SOCF3 Et H CF2CF3 H H 1
    SOCF3 Et H CF2CF3 H H 2
    SOCF3 Et H CF(CF3)2 H H 0
    SOCF3 Et H CF(CF3)2 H H 1
    SOCF3 Et H CF(CF3)2 H H 2
    SOCF3 Et H SMe H H 0
    SOCF3 Et H SMe H H 1
    SOCF3 Et H SMe H H 2
    SOCF3 Et H SOMe H H 0
    SOCF3 Et H SOMe H H 1
    SOCF3 Et H SOMe H H 2
    SOCF3 Et H SO2Me H H 0
    SOCF3 Et H SO2Me H H 1
    SOCF3 Et H SO2Me H H 2
    SOCF3 Et H OMe H H 0
    SOCF3 Et H OMe H H 1
    SOCF3 Et H OMe H H 2
    SOCF3 Et H OCF3 H H 0
    SOCF3 Et H OCF3 H H 1
    SOCF3 Et H OCF3 H H 2
    SOCF3 Et H NO2 H H 0
    SOCF3 Et H NO2 H H 1
    SOCF3 Et H NO2 H H 2
    SOCF3 Et H CN H H 0
    SOCF3 Et H CN H H 1
    SOCF3 Et H CN H H 2
    SOCF3 Et H H F H 0
    SOCF3 Et H H F H 1
    SOCF3 Et H H F H 2
    SOCF3 Et H H Cl H 0
    SOCF3 Et H H Cl H 1
    SOCF3 Et H H Cl H 2
    SOCF3 Et H H Br H 0
    SOCF3 Et H H Br H 1
    SOCF3 Et H H Br H 2
    SOCF3 Et H H I H 0
    SOCF3 Et H H I H 1
    SOCF3 Et H H I H 2
    SOCF3 Et H H Me H 0
    SOCF3 Et H H Me H 1
    SOCF3 Et H H Me H 2
    SOCF3 Et H H CF3 H 0
    SOCF3 Et H H CF3 H 1
    SOCF3 Et H H CF3 H 2
    SOCF3 Et H H CF2CF3 H 0
    SOCF3 Et H H CF2CF3 H 1
    SOCF3 Et H H CF2CF3 H 2
    SOCF3 Et H H CF(CF3)2 H 0
    SOCF3 Et H H CF(CF3)2 H 1
    SOCF3 Et H H CF(CF3)2 H 2
    SOCF3 Et H H SMe H 0
    SOCF3 Et H H SMe H 1
    SOCF3 Et H H SMe H 2
    SOCF3 Et H H SOMe H 0
    SOCF3 Et H H SOMe H 1
    SOCF3 Et H H SOMe H 2
    SOCF3 Et H H SO2Me H 0
    SOCF3 Et H H SO2Me H 1
    SOCF3 Et H H SO2Me H 2
    SOCF3 Et H H OMe H 0
    SOCF3 Et H H OMe H 1
    SOCF3 Et H H OMe H 2
    SOCF3 Et H H OCF3 H 0
    SOCF3 Et H H OCF3 H 1
    SOCF3 Et H H OCF3 H 2
    SOCF3 Et H H NO2 H 0
    SOCF3 Et H H NO2 H 1
    SOCF3 Et H H NO2 H 2
    SOCF3 Et H H CN H 0
    SOCF3 Et H H CN H 1
    SOCF3 Et H H CN H 2
    SOCF3 Et H H H F 0
    SOCF3 Et H H H F 1
    SOCF3 Et H H H F 2
    SOCF3 Et H H H Cl 0
    SOCF3 Et H H H Cl 1
    SOCF3 Et H H H Cl 2
    SOCF3 Et H H H Br 0
    SOCF3 Et H H H Br 1
    SOCF3 Et H H H Br 2
    SOCF3 Et H H H I 0
    SOCF3 Et H H H I 1
    SOCF3 Et H H H I 2
    SOCF3 Et H H H Me 0
    SOCF3 Et H H H Me 1
    SOCF3 Et H H H Me 2
    SOCF3 Et H H H CF3 0
    SOCF3 Et H H H CF3 1
    SOCF3 Et H H H CF3 2
    SOCF3 Et H H H CF2CF3 0
    SOCF3 Et H H H CF2CF3 1
    SOCF3 Et H H H CF2CF3 2
    SOCF3 Et H H H CF(CF3)2 0
    SOCF3 Et H H H CF(CF3)2 1
    SOCF3 Et H H H CF(CF3)2 2
    SOCF3 Et H H H SMe 0
    SOCF3 Et H H H SMe 1
    SOCF3 Et H H H SMe 2
    SOCF3 Et H H H SOMe 0
    SOCF3 Et H H H SOMe 1
    SOCF3 Et H H H SOMe 2
    SOCF3 Et H H H SO2Me 0
    SOCF3 Et H H H SO2Me 1
    SOCF3 Et H H H SO2Me 2
    SOCF3 Et H H H OMe 0
    SOCF3 Et H H H OMe 1
    SOCF3 Et H H H OMe 2
    SOCF3 Et H H H OCF3 0
    SOCF3 Et H H H OCF3 1
    SOCF3 Et H H H OCF3 2
    SOCF3 Et H H H NO2 0
    SOCF3 Et H H H NO2 1
    SOCF3 Et H H H NO2 2
    SOCF3 Et H H H CN 0
    SOCF3 Et H H H CN 1
    SOCF3 Et H H H CN 2
    SOCF3 Et H F H F 0
    SOCF3 Et H F H F 1
    SOCF3 Et H F H F 2
    SOCF3 Et H Cl H Cl 0
    SOCF3 Et H Cl H Cl 1
    SOCF3 Et H Cl H Cl 2
    SOCF3 Et H Br H Br 0
    SOCF3 Et H Br H Br 1
    SOCF3 Et H Br H Br 2
    SOCF3 Et H I H I 0
    SOCF3 Et H I H I 1
    SOCF3 Et H I H I 2
    SOCF3 Et H F H Cl 0
    SOCF3 Et H F H Cl 1
    SOCF3 Et H F H Cl 2
    SOCF3 Et H F H Br 0
    SOCF3 Et H F H Br 1
    SOCF3 Et H F H Br 2
    SOCF3 Et H F H I 0
    SOCF3 Et H F H I 1
    SOCF3 Et H F H I 2
    SOCF3 Et H Cl H F 0
    SOCF3 Et H Cl H F 1
    SOCF3 Et H Cl H F 2
    SOCF3 Et H Cl H Br 0
    SOCF3 Et H Cl H Br 1
    SOCF3 Et H Cl H Br 2
    SOCF3 Et H Cl H I 0
    SOCF3 Et H Cl H I 1
    SOCF3 Et H Cl H I 2
    SOCF3 Et H Br H F 0
    SOCF3 Et H Br H F 1
    SOCF3 Et H Br H F 2
    SOCF3 Et H Br H Cl 0
    SOCF3 Et H Br H Cl 1
    SOCF3 Et H Br H Cl 2
    SOCF3 Et H Br H I 0
    SOCF3 Et H Br H I 1
    SOCF3 Et H Br H I 2
    SOCF3 Et H I H F 0
    SOCF3 Et H I H F 1
    SOCF3 Et H I H F 2
    SOCF3 Et H I H Cl 0
    SOCF3 Et H I H Cl 1
    SOCF3 Et H I H Cl 2
    SOCF3 Et H I H Br 0
    SOCF3 Et H I H Br 1
    SOCF3 Et H I H Br 2
    SOCF3 Et H F H CN 0
    SOCF3 Et H F H CN 1
    SOCF3 Et H F H CN 2
    SOCF3 Et H Cl H CN 0
    SOCF3 Et H Cl H CN 1
    SOCF3 Et H Cl H CN 2
    SOCF3 Et H Br H CN 0
    SOCF3 Et H Br H CN 1
    SOCF3 Et H Br H CN 2
    SOCF3 Et H I H CN 0
    SOCF3 Et H I H CN 1
    SOCF3 Et H I H CN 2
    SOCF3 Et H CF3 H F 0
    SOCF3 Et H CF3 H F 1
    SOCF3 Et H CF3 H F 2
    SOCF3 Et H CF3 H Cl 0
    SOCF3 Et H CF3 H Cl 1
    SOCF3 Et H CF3 H Cl 2
    SOCF3 Et H CF3 H Br 0
    SOCF3 Et H CF3 H Br 1
    SOCF3 Et H CF3 H Br 2
    SOCF3 Et H CF3 H I 0
    SOCF3 Et H CF3 H I 1
    SOCF3 Et H CF3 H I 2
    SOCF3 Et H CF3 H CN 0
    SOCF3 Et H CF3 H CN 1
    SOCF3 Et H CF3 H CN 2
    SOCF3 Et H F F H 0
    SOCF3 Et H F F H 1
    SOCF3 Et H F F H 2
    SOCF3 Et H Cl Cl H 0
    SOCF3 Et H Cl Cl H 1
    SOCF3 Et H Cl Cl H 2
    SOCF3 Et H Br Br H 0
    SOCF3 Et H Br Br H 1
    SOCF3 Et H Br Br H 2
    SOCF3 Et H I I H 0
    SOCF3 Et H I I H 1
    SOCF3 Et H I I H 2
    SOCF3 Et H F Cl H 0
    SOCF3 Et H F Cl H 1
    SOCF3 Et H F Cl H 2
    SOCF3 Et H F Br H 0
    SOCF3 Et H F Br H 1
    SOCF3 Et H F Br H 2
    SOCF3 Et H F I H 0
    SOCF3 Et H F I H 1
    SOCF3 Et H F I H 2
    SOCF3 Et H Cl F H 0
    SOCF3 Et H Cl F H 1
    SOCF3 Et H Cl F H 2
    SOCF3 Et H Cl Br H 0
    SOCF3 Et H Cl Br H 1
    SOCF3 Et H Cl Br H 2
    SOCF3 Et H Cl I H 0
    SOCF3 Et H Cl I H 1
    SOCF3 Et H Cl I H 2
    SOCF3 Et H Br F H 0
    SOCF3 Et H Br F H 1
    SOCF3 Et H Br F H 2
    SOCF3 Et H Br Cl H 0
    SOCF3 Et H Br Cl H 1
    SOCF3 Et H Br Cl H 2
    SOCF3 Et H Br I H 0
    SOCF3 Et H Br I H 1
    SOCF3 Et H Br I H 2
    SOCF3 Et H I F H 0
    SOCF3 Et H I F H 1
    SOCF3 Et H I F H 2
    SOCF3 Et H I Cl H 0
    SOCF3 Et H I Cl H 1
    SOCF3 Et H I Cl H 2
    SOCF3 Et H I Br H 0
    SOCF3 Et H I Br H 1
    SOCF3 Et H I Br H 2
    SOCF3 Et H F CN H 0
    SOCF3 Et H F CN H 1
    SOCF3 Et H F CN H 2
    SOCF3 Et H Cl CN H 0
    SOCF3 Et H Cl CN H 1
    SOCF3 Et H Cl CN H 2
    SOCF3 Et H Br CN H 0
    SOCF3 Et H Br CN H 1
    SOCF3 Et H Br CN H 2
    SOCF3 Et H I CN H 0
    SOCF3 Et H I CN H 1
    SOCF3 Et H I CN H 2
    SOCF3 Et H CF3 F H 0
    SOCF3 Et H CF3 F H 1
    SOCF3 Et H CF3 F H 2
    SOCF3 Et H CF3 Cl H 0
    SOCF3 Et H CF3 Cl H 1
    SOCF3 Et H CF3 Cl H 2
    SOCF3 Et H CF3 Br H 0
    SOCF3 Et H CF3 Br H 1
    SOCF3 Et H CF3 Br H 2
    SOCF3 Et H CF3 I H 0
    SOCF3 Et H CF3 I H 1
    SOCF3 Et H CF3 I H 2
    SOCF3 Et H CF3 CN H 0
    SOCF3 Et H CF3 CN H 1
    SOCF3 Et H CF3 CN H 2
    SOCF3 nPr H H H H 0
    SOCF3 nPr H H H H 1
    SOCF3 nPr H H H H 2
    SOCF3 nPr F H H H 0
    SOCF3 nPr F H H H 1
    SOCF3 nPr F H H H 2
    SOCF3 nPr Cl H H H 0
    SOCF3 nPr Cl H H H 1
    SOCF3 nPr Cl H H H 2
    SOCF3 nPr Br H H H 0
    SOCF3 nPr Br H H H 1
    SOCF3 nPr Br H H H 2
    SOCF3 nPr I H H H 0
    SOCF3 nPr I H H H 1
    SOCF3 nPr I H H H 2
    SOCF3 nPr Me H H H 0
    SOCF3 nPr Me H H H 1
    SOCF3 nPr Me H H H 2
    SOCF3 nPr CF3 H H H 0
    SOCF3 nPr CF3 H H H 1
    SOCF3 nPr CF3 H H H 2
    SOCF3 nPr H F H H 0
    SOCF3 nPr H F H H 1
    SOCF3 nPr H F H H 2
    SOCF3 nPr H Cl H H 0
    SOCF3 nPr H Cl H H 1
    SOCF3 nPr H Cl H H 2
    SOCF3 nPr H Br H H 0
    SOCF3 nPr H Br H H 1
    SOCF3 nPr H Br H H 2
    SOCF3 nPr H I H H 0
    SOCF3 nPr H I H H 1
    SOCF3 nPr H I H H 2
    SOCF3 nPr H Me H H 0
    SOCF3 nPr H Me H H 1
    SOCF3 nPr H Me H H 2
    SOCF3 nPr H CF3 H H 0
    SOCF3 nPr H CF3 H H 1
    SOCF3 nPr H CF3 H H 2
    SOCF3 nPr H CF2CF3 H H 0
    SOCF3 nPr H CF2CF3 H H 1
    SOCF3 nPr H CF2CF3 H H 2
    SOCF3 nPr H CF(CF3)2 H H 0
    SOCF3 nPr H CF(CF3)2 H H 1
    SOCF3 nPr H CF(CF3)2 H H 2
    SOCF3 nPr H SMe H H 0
    SOCF3 nPr H SMe H H 1
    SOCF3 nPr H SMe H H 2
    SOCF3 nPr H SOMe H H 0
    SOCF3 nPr H SOMe H H 1
    SOCF3 nPr H SOMe H H 2
    SOCF3 nPr H SO2Me H H 0
    SOCF3 nPr H SO2Me H H 1
    SOCF3 nPr H SO2Me H H 2
    SOCF3 nPr H OMe H H 0
    SOCF3 nPr H OMe H H 1
    SOCF3 nPr H OMe H H 2
    SOCF3 nPr H OCF3 H H 0
    SOCF3 nPr H OCF3 H H 1
    SOCF3 nPr H OCF3 H H 2
    SOCF3 nPr H NO2 H H 0
    SOCF3 nPr H NO2 H H 1
    SOCF3 nPr H NO2 H H 2
    SOCF3 nPr H CN H H 0
    SOCF3 nPr H CN H H 1
    SOCF3 nPr H CN H H 2
    SOCF3 nPr H H F H 0
    SOCF3 nPr H H F H 1
    SOCF3 nPr H H F H 2
    SOCF3 nPr H H Cl H 0
    SOCF3 nPr H H Cl H 1
    SOCF3 nPr H H Cl H 2
    SOCF3 nPr H H Br H 0
    SOCF3 nPr H H Br H 1
    SOCF3 nPr H H Br H 2
    SOCF3 nPr H H I H 0
    SOCF3 nPr H H I H 1
    SOCF3 nPr H H I H 2
    SOCF3 nPr H H Me H 0
    SOCF3 nPr H H Me H 1
    SOCF3 nPr H H Me H 2
    SOCF3 nPr H H CF3 H 0
    SOCF3 nPr H H CF3 H 1
    SOCF3 nPr H H CF3 H 2
    SOCF3 nPr H H CF2CF3 H 0
    SOCF3 nPr H H CF2CF3 H 1
    SOCF3 nPr H H CF2CF3 H 2
    SOCF3 nPr H H CF(CF3)2 H 0
    SOCF3 nPr H H CF(CF3)2 H 1
    SOCF3 nPr H H CF(CF3)2 H 2
    SOCF3 nPr H H SMe H 0
    SOCF3 nPr H H SMe H 1
    SOCF3 nPr H H SMe H 2
    SOCF3 nPr H H SOMe H 0
    SOCF3 nPr H H SOMe H 1
    SOCF3 nPr H H SOMe H 2
    SOCF3 nPr H H SO2Me H 0
    SOCF3 nPr H H SO2Me H 1
    SOCF3 nPr H H SO2Me H 2
    SOCF3 nPr H H OMe H 0
    SOCF3 nPr H H OMe H 1
    SOCF3 nPr H H OMe H 2
    SOCF3 nPr H H OCF3 H 0
    SOCF3 nPr H H OCF3 H 1
    SOCF3 nPr H H OCF3 H 2
    SOCF3 nPr H H NO2 H 0
    SOCF3 nPr H H NO2 H 1
    SOCF3 nPr H H NO2 H 2
    SOCF3 nPr H H CN H 0
    SOCF3 nPr H H CN H 1
    SOCF3 nPr H H CN H 2
    SOCF3 nPr H H H F 0
    SOCF3 nPr H H H F 1
    SOCF3 nPr H H H F 2
    SOCF3 nPr H H H Cl 0
    SOCF3 nPr H H H Cl 1
    SOCF3 nPr H H H Cl 2
    SOCF3 nPr H H H Br 0
    SOCF3 nPr H H H Br 1
    SOCF3 nPr H H H Br 2
    SOCF3 nPr H H H I 0
    SOCF3 nPr H H H I 1
    SOCF3 nPr H H H I 2
    SOCF3 nPr H H H Me 0
    SOCF3 nPr H H H Me 1
    SOCF3 nPr H H H Me 2
    SOCF3 nPr H H H CF3 0
    SOCF3 nPr H H H CF3 1
    SOCF3 nPr H H H CF3 2
    SOCF3 nPr H H H CF2CF3 0
    SOCF3 nPr H H H CF2CF3 1
    SOCF3 nPr H H H CF2CF3 2
    SOCF3 nPr H H H CF(CF3)2 0
    SOCF3 nPr H H H CF(CF3)2 1
    SOCF3 nPr H H H CF(CF3)2 2
    SOCF3 nPr H H H SMe 0
    SOCF3 nPr H H H SMe 1
    SOCF3 nPr H H H SMe 2
    SOCF3 nPr H H H SOMe 0
    SOCF3 nPr H H H SOMe 1
    SOCF3 nPr H H H SOMe 2
    SOCF3 nPr H H H SO2Me 0
    SOCF3 nPr H H H SO2Me 1
    SOCF3 nPr H H H SO2Me 2
    SOCF3 nPr H H H OMe 0
    SOCF3 nPr H H H OMe 1
    SOCF3 nPr H H H OMe 2
    SOCF3 nPr H H H OCF3 0
    SOCF3 nPr H H H OCF3 1
    SOCF3 nPr H H H OCF3 2
    SOCF3 nPr H H H NO2 0
    SOCF3 nPr H H H NO2 1
    SOCF3 nPr H H H NO2 2
    SOCF3 nPr H H H CN 0
    SOCF3 nPr H H H CN 1
    SOCF3 nPr H H H CN 2
    SOCF3 nPr H F H F 0
    SOCF3 nPr H F H F 1
    SOCF3 nPr H F H F 2
    SOCF3 nPr H Cl H Cl 0
    SOCF3 nPr H Cl H Cl 1
    SOCF3 nPr H Cl H Cl 2
    SOCF3 nPr H Br H Br 0
    SOCF3 nPr H Br H Br 1
    SOCF3 nPr H Br H Br 2
    SOCF3 nPr H I H I 0
    SOCF3 nPr H I H I 1
    SOCF3 nPr H I H I 2
    SOCF3 nPr H F H Cl 0
    SOCF3 nPr H F H Cl 1
    SOCF3 nPr H F H Cl 2
    SOCF3 nPr H F H Br 0
    SOCF3 nPr H F H Br 1
    SOCF3 nPr H F H Br 2
    SOCF3 nPr H F H I 0
    SOCF3 nPr H F H I 1
    SOCF3 nPr H F H I 2
    SOCF3 nPr H Cl H F 0
    SOCF3 nPr H Cl H F 1
    SOCF3 nPr H Cl H F 2
    SOCF3 nPr H Cl H Br 0
    SOCF3 nPr H Cl H Br 1
    SOCF3 nPr H Cl H Br 2
    SOCF3 nPr H Cl H I 0
    SOCF3 nPr H Cl H I 1
    SOCF3 nPr H Cl H I 2
    SOCF3 nPr H Br H F 0
    SOCF3 nPr H Br H F 1
    SOCF3 nPr H Br H F 2
    SOCF3 nPr H Br H Cl 0
    SOCF3 nPr H Br H Cl 1
    SOCF3 nPr H Br H Cl 2
    SOCF3 nPr H Br H I 0
    SOCF3 nPr H Br H I 1
    SOCF3 nPr H Br H I 2
    SOCF3 nPr H I H F 0
    SOCF3 nPr H I H F 1
    SOCF3 nPr H I H F 2
    SOCF3 nPr H I H Cl 0
    SOCF3 nPr H I H Cl 1
    SOCF3 nPr H I H Cl 2
    SOCF3 nPr H I H Br 0
    SOCF3 nPr H I H Br 1
    SOCF3 nPr H I H Br 2
    SOCF3 nPr H F H CN 0
    SOCF3 nPr H F H CN 1
    SOCF3 nPr H F H CN 2
    SOCF3 nPr H Cl H CN 0
    SOCF3 nPr H Cl H CN 1
    SOCF3 nPr H Cl H CN 2
    SOCF3 nPr H Br H CN 0
    SOCF3 nPr H Br H CN 1
    SOCF3 nPr H Br H CN 2
    SOCF3 nPr H I H CN 0
    SOCF3 nPr H I H CN 1
    SOCF3 nPr H I H CN 2
    SOCF3 nPr H CF3 H F 0
    SOCF3 nPr H CF3 H F 1
    SOCF3 nPr H CF3 H F 2
    SOCF3 nPr H CF3 H Cl 0
    SOCF3 nPr H CF3 H Cl 1
    SOCF3 nPr H CF3 H Cl 2
    SOCF3 nPr H CF3 H Br 0
    SOCF3 nPr H CF3 H Br 1
    SOCF3 nPr H CF3 H Br 2
    SOCF3 nPr H CF3 H I 0
    SOCF3 nPr H CF3 H I 1
    SOCF3 nPr H CF3 H I 2
    SOCF3 nPr H CF3 H CN 0
    SOCF3 nPr H CF3 H CN 1
    SOCF3 nPr H CF3 H CN 2
    SOCF3 nPr H F F H 0
    SOCF3 nPr H F F H 1
    SOCF3 nPr H F F H 2
    SOCF3 nPr H Cl Cl H 0
    SOCF3 nPr H Cl Cl H 1
    SOCF3 nPr H Cl Cl H 2
    SOCF3 nPr H Br Br H 0
    SOCF3 nPr H Br Br H 1
    SOCF3 nPr H Br Br H 2
    SOCF3 nPr H I I H 0
    SOCF3 nPr H I I H 1
    SOCF3 nPr H I I H 2
    SOCF3 nPr H F Cl H 0
    SOCF3 nPr H F Cl H 1
    SOCF3 nPr H F Cl H 2
    SOCF3 nPr H F Br H 0
    SOCF3 nPr H F Br H 1
    SOCF3 nPr H F Br H 2
    SOCF3 nPr H F I H 0
    SOCF3 nPr H F I H 1
    SOCF3 nPr H F I H 2
    SOCF3 nPr H Cl F H 0
    SOCF3 nPr H Cl F H 1
    SOCF3 nPr H Cl F H 2
    SOCF3 nPr H Cl Br H 0
    SOCF3 nPr H Cl Br H 1
    SOCF3 nPr H Cl Br H 2
    SOCF3 nPr H Cl I H 0
    SOCF3 nPr H Cl I H 1
    SOCF3 nPr H Cl I H 2
    SOCF3 nPr H Br F H 0
    SOCF3 nPr H Br F H 1
    SOCF3 nPr H Br F H 2
    SOCF3 nPr H Br Cl H 0
    SOCF3 nPr H Br Cl H 1
    SOCF3 nPr H Br Cl H 2
    SOCF3 nPr H Br I H 0
    SOCF3 nPr H Br I H 1
    SOCF3 nPr H Br I H 2
    SOCF3 nPr H I F H 0
    SOCF3 nPr H I F H 1
    SOCF3 nPr H I F H 2
    SOCF3 nPr H I Cl H 0
    SOCF3 nPr H I Cl H 1
    SOCF3 nPr H I Cl H 2
    SOCF3 nPr H I Br H 0
    SOCF3 nPr H I Br H 1
    SOCF3 nPr H I Br H 2
    SOCF3 nPr H F CN H 0
    SOCF3 nPr H F CN H 1
    SOCF3 nPr H F CN H 2
    SOCF3 nPr H Cl CN H 0
    SOCF3 nPr H Cl CN H 1
    SOCF3 nPr H Cl CN H 2
    SOCF3 nPr H Br CN H 0
    SOCF3 nPr H Br CN H 1
    SOCF3 nPr H Br CN H 2
    SOCF3 nPr H I CN H 0
    SOCF3 nPr H I CN H 1
    SOCF3 nPr H I CN H 2
    SOCF3 nPr H CF3 F H 0
    SOCF3 nPr H CF3 F H 1
    SOCF3 nPr H CF3 F H 2
    SOCF3 nPr H CF3 Cl H 0
    SOCF3 nPr H CF3 Cl H 1
    SOCF3 nPr H CF3 Cl H 2
    SOCF3 nPr H CF3 Br H 0
    SOCF3 nPr H CF3 Br H 1
    SOCF3 nPr H CF3 Br H 2
    SOCF3 nPr H CF3 I H 0
    SOCF3 nPr H CF3 I H 1
    SOCF3 nPr H CF3 I H 2
    SOCF3 nPr H CF3 CN H 0
    SOCF3 nPr H CF3 CN H 1
    SOCF3 nPr H CF3 CN H 2
    SOCF3 iPr H H H H 0
    SOCF3 iPr H H H H 1
    SOCF3 iPr H H H H 2
    SOCF3 iPr F H H H 0
    SOCF3 iPr F H H H 1
    SOCF3 iPr F H H H 2
    SOCF3 iPr Cl H H H 0
    SOCF3 iPr Cl H H H 1
    SOCF3 iPr Cl H H H 2
    SOCF3 iPr Br H H H 0
    SOCF3 iPr Br H H H 1
    SOCF3 iPr Br H H H 2
    SOCF3 iPr I H H H 0
    SOCF3 iPr I H H H 1
    SOCF3 iPr I H H H 2
    SOCF3 iPr Me H H H 0
    SOCF3 iPr Me H H H 1
    SOCF3 iPr Me H H H 2
    SOCF3 iPr CF3 H H H 0
    SOCF3 iPr CF3 H H H 1
    SOCF3 iPr CF3 H H H 2
    SOCF3 iPr H F H H 0
    SOCF3 iPr H F H H 1
    SOCF3 iPr H F H H 2
    SOCF3 iPr H Cl H H 0
    SOCF3 iPr H Cl H H 1
    SOCF3 iPr H Cl H H 2
    SOCF3 iPr H Br H H 0
    SOCF3 iPr H Br H H 1
    SOCF3 iPr H Br H H 2
    SOCF3 iPr H I H H 0
    SOCF3 iPr H I H H 1
    SOCF3 iPr H I H H 2
    SOCF3 iPr H Me H H 0
    SOCF3 iPr H Me H H 1
    SOCF3 iPr H Me H H 2
    SOCF3 iPr H CF3 H H 0
    SOCF3 iPr H CF3 H H 1
    SOCF3 iPr H CF3 H H 2
    SOCF3 iPr H CF2CF3 H H 0
    SOCF3 iPr H CF2CF3 H H 1
    SOCF3 iPr H CF2CF3 H H 2
    SOCF3 iPr H CF(CF3)2 H H 0
    SOCF3 iPr H CF(CF3)2 H H 1
    SOCF3 iPr H CF(CF3)2 H H 2
    SOCF3 iPr H SMe H H 0
    SOCF3 iPr H SMe H H 1
    SOCF3 iPr H SMe H H 2
    SOCF3 iPr H SOMe H H 0
    SOCF3 iPr H SOMe H H 1
    SOCF3 iPr H SOMe H H 2
    SOCF3 iPr H SO2Me H H 0
    SOCF3 iPr H SO2Me H H 1
    SOCF3 iPr H SO2Me H H 2
    SOCF3 iPr H OMe H H 0
    SOCF3 iPr H OMe H H 1
    SOCF3 iPr H OMe H H 2
    SOCF3 iPr H OCF3 H H 0
    SOCF3 iPr H OCF3 H H 1
    SOCF3 iPr H OCF3 H H 2
    SOCF3 iPr H NO2 H H 0
    SOCF3 iPr H NO2 H H 1
    SOCF3 iPr H NO2 H H 2
    SOCF3 iPr H CN H H 0
    SOCF3 iPr H CN H H 1
    SOCF3 iPr H CN H H 2
    SOCF3 iPr H H F H 0
    SOCF3 iPr H H F H 1
    SOCF3 iPr H H F H 2
    SOCF3 iPr H H Cl H 0
    SOCF3 iPr H H Cl H 1
    SOCF3 iPr H H Cl H 2
    SOCF3 iPr H H Br H 0
    SOCF3 iPr H H Br H 1
    SOCF3 iPr H H Br H 2
    SOCF3 iPr H H I H 0
    SOCF3 iPr H H I H 1
    SOCF3 iPr H H I H 2
    SOCF3 iPr H H Me H 0
    SOCF3 iPr H H Me H 1
    SOCF3 iPr H H Me H 2
    SOCF3 iPr H H CF3 H 0
    SOCF3 iPr H H CF3 H 1
    SOCF3 iPr H H CF3 H 2
    SOCF3 iPr H H CF2CF3 H 0
    SOCF3 iPr H H CF2CF3 H 1
    SOCF3 iPr H H CF2CF3 H 2
    SOCF3 iPr H H CF(CF3)2 H 0
    SOCF3 iPr H H CF(CF3)2 H 1
    SOCF3 iPr H H CF(CF3)2 H 2
    SOCF3 iPr H H SMe H 0
    SOCF3 iPr H H SMe H 1
    SOCF3 iPr H H SMe H 2
    SOCF3 iPr H H SOMe H 0
    SOCF3 iPr H H SOMe H 1
    SOCF3 iPr H H SOMe H 2
    SOCF3 iPr H H SO2Me H 0
    SOCF3 iPr H H SO2Me H 1
    SOCF3 iPr H H SO2Me H 2
    SOCF3 iPr H H OMe H 0
    SOCF3 iPr H H OMe H 1
    SOCF3 iPr H H OMe H 2
    SOCF3 iPr H H OCF3 H 0
    SOCF3 iPr H H OCF3 H 1
    SOCF3 iPr H H OCF3 H 2
    SOCF3 iPr H H NO2 H 0
    SOCF3 iPr H H NO2 H 1
    SOCF3 iPr H H NO2 H 2
    SOCF3 iPr H H CN H 0
    SOCF3 iPr H H CN H 1
    SOCF3 iPr H H CN H 2
    SOCF3 iPr H H H F 0
    SOCF3 iPr H H H F 1
    SOCF3 iPr H H H F 2
    SOCF3 iPr H H H Cl 0
    SOCF3 iPr H H H Cl 1
    SOCF3 iPr H H H Cl 2
    SOCF3 iPr H H H Br 0
    SOCF3 iPr H H H Br 1
    SOCF3 iPr H H H Br 2
    SOCF3 iPr H H H I 0
    SOCF3 iPr H H H I 1
    SOCF3 iPr H H H I 2
    SOCF3 iPr H H H Me 0
    SOCF3 iPr H H H Me 1
    SOCF3 iPr H H H Me 2
    SOCF3 iPr H H H CF3 0
    SOCF3 iPr H H H CF3 1
    SOCF3 iPr H H H CF3 2
    SOCF3 iPr H H H CF2CF3 0
    SOCF3 iPr H H H CF2CF3 1
    SOCF3 iPr H H H CF2CF3 2
    SOCF3 iPr H H H CF(CF3)2 0
    SOCF3 iPr H H H CF(CF3)2 1
    SOCF3 iPr H H H CF(CF3)2 2
    SOCF3 iPr H H H SMe 0
    SOCF3 iPr H H H SMe 1
    SOCF3 iPr H H H SMe 2
    SOCF3 iPr H H H SOMe 0
    SOCF3 iPr H H H SOMe 1
    SOCF3 iPr H H H SOMe 2
    SOCF3 iPr H H H SO2Me 0
    SOCF3 iPr H H H SO2Me 1
    SOCF3 iPr H H H SO2Me 2
    SOCF3 iPr H H H OMe 0
    SOCF3 iPr H H H OMe 1
    SOCF3 iPr H H H OMe 2
    SOCF3 iPr H H H OCF3 0
    SOCF3 iPr H H H OCF3 1
    SOCF3 iPr H H H OCF3 2
    SOCF3 iPr H H H NO2 0
    SOCF3 iPr H H H NO2 1
    SOCF3 iPr H H H NO2 2
    SOCF3 iPr H H H CN 0
    SOCF3 iPr H H H CN 1
    SOCF3 iPr H H H CN 2
    SOCF3 iPr H F H F 0
    SOCF3 iPr H F H F 1
    SOCF3 iPr H F H F 2
    SOCF3 iPr H Cl H Cl 0
    SOCF3 iPr H Cl H Cl 1
    SOCF3 iPr H Cl H Cl 2
    SOCF3 iPr H Br H Br 0
    SOCF3 iPr H Br H Br 1
    SOCF3 iPr H Br H Br 2
    SOCF3 iPr H I H I 0
    SOCF3 iPr H I H I 1
    SOCF3 iPr H I H I 2
    SOCF3 iPr H F H Cl 0
    SOCF3 iPr H F H Cl 1
    SOCF3 iPr H F H Cl 2
    SOCF3 iPr H F H Br 0
    SOCF3 iPr H F H Br 1
    SOCF3 iPr H F H Br 2
    SOCF3 iPr H F H I 0
    SOCF3 iPr H F H I 1
    SOCF3 iPr H F H I 2
    SOCF3 iPr H Cl H F 0
    SOCF3 iPr H Cl H F 1
    SOCF3 iPr H Cl H F 2
    SOCF3 iPr H Cl H Br 0
    SOCF3 iPr H Cl H Br 1
    SOCF3 iPr H Cl H Br 2
    SOCF3 iPr H Cl H I 0
    SOCF3 iPr H Cl H I 1
    SOCF3 iPr H Cl H I 2
    SOCF3 iPr H Br H F 0
    SOCF3 iPr H Br H F 1
    SOCF3 iPr H Br H F 2
    SOCF3 iPr H Br H Cl 0
    SOCF3 iPr H Br H Cl 1
    SOCF3 iPr H Br H Cl 2
    SOCF3 iPr H Br H I 0
    SOCF3 iPr H Br H I 1
    SOCF3 iPr H Br H I 2
    SOCF3 iPr H I H F 0
    SOCF3 iPr H I H F 1
    SOCF3 iPr H I H F 2
    SOCF3 iPr H I H Cl 0
    SOCF3 iPr H I H Cl 1
    SOCF3 iPr H I H Cl 2
    SOCF3 iPr H I H Br 0
    SOCF3 iPr H I H Br 1
    SOCF3 iPr H I H Br 2
    SOCF3 iPr H F H CN 0
    SOCF3 iPr H F H CN 1
    SOCF3 iPr H F H CN 2
    SOCF3 iPr H Cl H CN 0
    SOCF3 iPr H Cl H CN 1
    SOCF3 iPr H Cl H CN 2
    SOCF3 iPr H Br H CN 0
    SOCF3 iPr H Br H CN 1
    SOCF3 iPr H Br H CN 2
    SOCF3 iPr H I H CN 0
    SOCF3 iPr H I H CN 1
    SOCF3 iPr H I H CN 2
    SOCF3 iPr H CF3 H F 0
    SOCF3 iPr H CF3 H F 1
    SOCF3 iPr H CF3 H F 2
    SOCF3 iPr H CF3 H Cl 0
    SOCF3 iPr H CF3 H Cl 1
    SOCF3 iPr H CF3 H Cl 2
    SOCF3 iPr H CF3 H Br 0
    SOCF3 iPr H CF3 H Br 1
    SOCF3 iPr H CF3 H Br 2
    SOCF3 iPr H CF3 H I 0
    SOCF3 iPr H CF3 H I 1
    SOCF3 iPr H CF3 H I 2
    SOCF3 iPr H CF3 H CN 0
    SOCF3 iPr H CF3 H CN 1
    SOCF3 iPr H CF3 H CN 2
    SOCF3 iPr H F F H 0
    SOCF3 iPr H F F H 1
    SOCF3 iPr H F F H 2
    SOCF3 iPr H Cl Cl H 0
    SOCF3 iPr H Cl Cl H 1
    SOCF3 iPr H Cl Cl H 2
    SOCF3 iPr H Br Br H 0
    SOCF3 iPr H Br Br H 1
    SOCF3 iPr H Br Br H 2
    SOCF3 iPr H I I H 0
    SOCF3 iPr H I I H 1
    SOCF3 iPr H I I H 2
    SOCF3 iPr H F Cl H 0
    SOCF3 iPr H F Cl H 1
    SOCF3 iPr H F Cl H 2
    SOCF3 iPr H F Br H 0
    SOCF3 iPr H F Br H 1
    SOCF3 iPr H F Br H 2
    SOCF3 iPr H F I H 0
    SOCF3 iPr H F I H 1
    SOCF3 iPr H F I H 2
    SOCF3 iPr H Cl F H 0
    SOCF3 iPr H Cl F H 1
    SOCF3 iPr H Cl F H 2
    SOCF3 iPr H Cl Br H 0
    SOCF3 iPr H Cl Br H 1
    SOCF3 iPr H Cl Br H 2
    SOCF3 iPr H Cl I H 0
    SOCF3 iPr H Cl I H 1
    SOCF3 iPr H Cl I H 2
    SOCF3 iPr H Br F H 0
    SOCF3 iPr H Br F H 1
    SOCF3 iPr H Br F H 2
    SOCF3 iPr H Br Cl H 0
    SOCF3 iPr H Br Cl H 1
    SOCF3 iPr H Br Cl H 2
    SOCF3 iPr H Br I H 0
    SOCF3 iPr H Br I H 1
    SOCF3 iPr H Br I H 2
    SOCF3 iPr H I F H 0
    SOCF3 iPr H I F H 1
    SOCF3 iPr H I F H 2
    SOCF3 iPr H I Cl H 0
    SOCF3 iPr H I Cl H 1
    SOCF3 iPr H I Cl H 2
    SOCF3 iPr H I Br H 0
    SOCF3 iPr H I Br H 1
    SOCF3 iPr H I Br H 2
    SOCF3 iPr H F CN H 0
    SOCF3 iPr H F CN H 1
    SOCF3 iPr H F CN H 2
    SOCF3 iPr H Cl CN H 0
    SOCF3 iPr H Cl CN H 1
    SOCF3 iPr H Cl CN H 2
    SOCF3 iPr H Br CN H 0
    SOCF3 iPr H Br CN H 1
    SOCF3 iPr H Br CN H 2
    SOCF3 iPr H I CN H 0
    SOCF3 iPr H I CN H 1
    SOCF3 iPr H I CN H 2
    SOCF3 iPr H CF3 F H 0
    SOCF3 iPr H CF3 F H 1
    SOCF3 iPr H CF3 F H 2
    SOCF3 iPr H CF3 Cl H 0
    SOCF3 iPr H CF3 Cl H 1
    SOCF3 iPr H CF3 Cl H 2
    SOCF3 iPr H CF3 Br H 0
    SOCF3 iPr H CF3 Br H 1
    SOCF3 iPr H CF3 Br H 2
    SOCF3 iPr H CF3 I H 0
    SOCF3 iPr H CF3 I H 1
    SOCF3 iPr H CF3 I H 2
    SOCF3 iPr H CF3 CN H 0
    SOCF3 iPr H CF3 CN H 1
    SOCF3 iPr H CF3 CN H 2
    SOCF3 CH2CF3 H H H H 0
    SOCF3 CH2CF3 H H H H 1
    SOCF3 CH2CF3 H H H H 2
    SOCF3 CH2CF3 F H H H 0
    SOCF3 CH2CF3 F H H H 1
    SOCF3 CH2CF3 F H H H 2
    SOCF3 CH2CF3 Cl H H H 0
    SOCF3 CH2CF3 Cl H H H 1
    SOCF3 CH2CF3 Cl H H H 2
    SOCF3 CH2CF3 Br H H H 0
    SOCF3 CH2CF3 Br H H H 1
    SOCF3 CH2CF3 Br H H H 2
    SOCF3 CH2CF3 I H H H 0
    SOCF3 CH2CF3 I H H H 1
    SOCF3 CH2CF3 I H H H 2
    SOCF3 CH2CF3 Me H H H 0
    SOCF3 CH2CF3 Me H H H 1
    SOCF3 CH2CF3 Me H H H 2
    SOCF3 CH2CF3 CF3 H H H 0
    SOCF3 CH2CF3 CF3 H H H 1
    SOCF3 CH2CF3 CF3 H H H 2
    SOCF3 CH2CF3 H F H H 0
    SOCF3 CH2CF3 H F H H 1
    SOCF3 CH2CF3 H F H H 2
    SOCF3 CH2CF3 H Cl H H 0
    SOCF3 CH2CF3 H Cl H H 1
    SOCF3 CH2CF3 H Cl H H 2
    SOCF3 CH2CF3 H Br H H 0
    SOCF3 CH2CF3 H Br H H 1
    SOCF3 CH2CF3 H Br H H 2
    SOCF3 CH2CF3 H I H H 0
    SOCF3 CH2CF3 H I H H 1
    SOCF3 CH2CF3 H I H H 2
    SOCF3 CH2CF3 H Me H H 0
    SOCF3 CH2CF3 H Me H H 1
    SOCF3 CH2CF3 H Me H H 2
    SOCF3 CH2CF3 H CF3 H H 0
    SOCF3 CH2CF3 H CF3 H H 1
    SOCF3 CH2CF3 H CF3 H H 2
    SOCF3 CH2CF3 H CF2CF3 H H 0
    SOCF3 CH2CF3 H CF2CF3 H H 1
    SOCF3 CH2CF3 H CF2CF3 H H 2
    SOCF3 CH2CF3 H CF(CF3)2 H H 0
    SOCF3 CH2CF3 H CF(CF3)2 H H 1
    SOCF3 CH2CF3 H CF(CF3)2 H H 2
    SOCF3 CH2CF3 H SMe H H 0
    SOCF3 CH2CF3 H SMe H H 1
    SOCF3 CH2CF3 H SMe H H 2
    SOCF3 CH2CF3 H SOMe H H 0
    SOCF3 CH2CF3 H SOMe H H 1
    SOCF3 CH2CF3 H SOMe H H 2
    SOCF3 CH2CF3 H SO2Me H H 0
    SOCF3 CH2CF3 H SO2Me H H 1
    SOCF3 CH2CF3 H SO2Me H H 2
    SOCF3 CH2CF3 H OMe H H 0
    SOCF3 CH2CF3 H OMe H H 1
    SOCF3 CH2CF3 H OMe H H 2
    SOCF3 CH2CF3 H OCF3 H H 0
    SOCF3 CH2CF3 H OCF3 H H 1
    SOCF3 CH2CF3 H OCF3 H H 2
    SOCF3 CH2CF3 H NO2 H H 0
    SOCF3 CH2CF3 H NO2 H H 1
    SOCF3 CH2CF3 H NO2 H H 2
    SOCF3 CH2CF3 H CN H H 0
    SOCF3 CH2CF3 H CN H H 1
    SOCF3 CH2CF3 H CN H H 2
    SOCF3 CH2CF3 H H F H 0
    SOCF3 CH2CF3 H H F H 1
    SOCF3 CH2CF3 H H F H 2
    SOCF3 CH2CF3 H H Cl H 0
    SOCF3 CH2CF3 H H Cl H 1
    SOCF3 CH2CF3 H H Cl H 2
    SOCF3 CH2CF3 H H Br H 0
    SOCF3 CH2CF3 H H Br H 1
    SOCF3 CH2CF3 H H Br H 2
    SOCF3 CH2CF3 H H I H 0
    SOCF3 CH2CF3 H H I H 1
    SOCF3 CH2CF3 H H I H 2
    SOCF3 CH2CF3 H H Me H 0
    SOCF3 CH2CF3 H H Me H 1
    SOCF3 CH2CF3 H H Me H 2
    SOCF3 CH2CF3 H H CF3 H 0
    SOCF3 CH2CF3 H H CF3 H 1
    SOCF3 CH2CF3 H H CF3 H 2
    SOCF3 CH2CF3 H H CF2CF3 H 0
    SOCF3 CH2CF3 H H CF2CF3 H 1
    SOCF3 CH2CF3 H H CF2CF3 H 2
    SOCF3 CH2CF3 H H CF(CF3)2 H 0
    SOCF3 CH2CF3 H H CF(CF3)2 H 1
    SOCF3 CH2CF3 H H CF(CF3)2 H 2
    SOCF3 CH2CF3 H H SMe H 0
    SOCF3 CH2CF3 H H SMe H 1
    SOCF3 CH2CF3 H H SMe H 2
    SOCF3 CH2CF3 H H SOMe H 0
    SOCF3 CH2CF3 H H SOMe H 1
    SOCF3 CH2CF3 H H SOMe H 2
    SOCF3 CH2CF3 H H SO2Me H 0
    SOCF3 CH2CF3 H H SO2Me H 1
    SOCF3 CH2CF3 H H SO2Me H 2
    SOCF3 CH2CF3 H H OMe H 0
    SOCF3 CH2CF3 H H OMe H 1
    SOCF3 CH2CF3 H H OMe H 2
    SOCF3 CH2CF3 H H OCF3 H 0
    SOCF3 CH2CF3 H H OCF3 H 1
    SOCF3 CH2CF3 H H OCF3 H 2
    SOCF3 CH2CF3 H H NO2 H 0
    SOCF3 CH2CF3 H H NO2 H 1
    SOCF3 CH2CF3 H H NO2 H 2
    SOCF3 CH2CF3 H H CN H 0
    SOCF3 CH2CF3 H H CN H 1
    SOCF3 CH2CF3 H H CN H 2
    SOCF3 CH2CF3 H H H F 0
    SOCF3 CH2CF3 H H H F 1
    SOCF3 CH2CF3 H H H F 2
    SOCF3 CH2CF3 H H H Cl 0
    SOCF3 CH2CF3 H H H Cl 1
    SOCF3 CH2CF3 H H H Cl 2
    SOCF3 CH2CF3 H H H Br 0
    SOCF3 CH2CF3 H H H Br 1
    SOCF3 CH2CF3 H H H Br 2
    SOCF3 CH2CF3 H H H I 0
    SOCF3 CH2CF3 H H H I 1
    SOCF3 CH2CF3 H H H I 2
    SOCF3 CH2CF3 H H H Me 0
    SOCF3 CH2CF3 H H H Me 1
    SOCF3 CH2CF3 H H H Me 2
    SOCF3 CH2CF3 H H H CF3 0
    SOCF3 CH2CF3 H H H CF3 1
    SOCF3 CH2CF3 H H H CF3 2
    SOCF3 CH2CF3 H H H CF2CF3 0
    SOCF3 CH2CF3 H H H CF2CF3 1
    SOCF3 CH2CF3 H H H CF2CF3 2
    SOCF3 CH2CF3 H H H CF(CF3)2 0
    SOCF3 CH2CF3 H H H CF(CF3)2 1
    SOCF3 CH2CF3 H H H CF(CF3)2 2
    SOCF3 CH2CF3 H H H SMe 0
    SOCF3 CH2CF3 H H H SMe 1
    SOCF3 CH2CF3 H H H SMe 2
    SOCF3 CH2CF3 H H H SOMe 0
    SOCF3 CH2CF3 H H H SOMe 1
    SOCF3 CH2CF3 H H H SOMe 2
    SOCF3 CH2CF3 H H H SO2Me 0
    SOCF3 CH2CF3 H H H SO2Me 1
    SOCF3 CH2CF3 H H H SO2Me 2
    SOCF3 CH2CF3 H H H OMe 0
    SOCF3 CH2CF3 H H H OMe 1
    SOCF3 CH2CF3 H H H OMe 2
    SOCF3 CH2CF3 H H H OCF3 0
    SOCF3 CH2CF3 H H H OCF3 1
    SOCF3 CH2CF3 H H H OCF3 2
    SOCF3 CH2CF3 H H H NO2 0
    SOCF3 CH2CF3 H H H NO2 1
    SOCF3 CH2CF3 H H H NO2 2
    SOCF3 CH2CF3 H H H CN 0
    SOCF3 CH2CF3 H H H CN 1
    SOCF3 CH2CF3 H H H CN 2
    SOCF3 CH2CF3 H F H F 0
    SOCF3 CH2CF3 H F H F 1
    SOCF3 CH2CF3 H F H F 2
    SOCF3 CH2CF3 H Cl H Cl 0
    SOCF3 CH2CF3 H Cl H Cl 1
    SOCF3 CH2CF3 H Cl H Cl 2
    SOCF3 CH2CF3 H Br H Br 0
    SOCF3 CH2CF3 H Br H Br 1
    SOCF3 CH2CF3 H Br H Br 2
    SOCF3 CH2CF3 H I H I 0
    SOCF3 CH2CF3 H I H I 1
    SOCF3 CH2CF3 H I H I 2
    SOCF3 CH2CF3 H F H Cl 0
    SOCF3 CH2CF3 H F H Cl 1
    SOCF3 CH2CF3 H F H Cl 2
    SOCF3 CH2CF3 H F H Br 0
    SOCF3 CH2CF3 H F H Br 1
    SOCF3 CH2CF3 H F H Br 2
    SOCF3 CH2CF3 H F H I 0
    SOCF3 CH2CF3 H F H I 1
    SOCF3 CH2CF3 H F H I 2
    SOCF3 CH2CF3 H Cl H F 0
    SOCF3 CH2CF3 H Cl H F 1
    SOCF3 CH2CF3 H Cl H F 2
    SOCF3 CH2CF3 H Cl H Br 0
    SOCF3 CH2CF3 H Cl H Br 1
    SOCF3 CH2CF3 H Cl H Br 2
    SOCF3 CH2CF3 H Cl H I 0
    SOCF3 CH2CF3 H Cl H I 1
    SOCF3 CH2CF3 H Cl H I 2
    SOCF3 CH2CF3 H Br H F 0
    SOCF3 CH2CF3 H Br H F 1
    SOCF3 CH2CF3 H Br H F 2
    SOCF3 CH2CF3 H Br H Cl 0
    SOCF3 CH2CF3 H Br H Cl 1
    SOCF3 CH2CF3 H Br H Cl 2
    SOCF3 CH2CF3 H Br H I 0
    SOCF3 CH2CF3 H Br H I 1
    SOCF3 CH2CF3 H Br H I 2
    SOCF3 CH2CF3 H I H F 0
    SOCF3 CH2CF3 H I H F 1
    SOCF3 CH2CF3 H I H F 2
    SOCF3 CH2CF3 H I H Cl 0
    SOCF3 CH2CF3 H I H Cl 1
    SOCF3 CH2CF3 H I H Cl 2
    SOCF3 CH2CF3 H I H Br 0
    SOCF3 CH2CF3 H I H Br 1
    SOCF3 CH2CF3 H I H Br 2
    SOCF3 CH2CF3 H F H CN 0
    SOCF3 CH2CF3 H F H CN 1
    SOCF3 CH2CF3 H F H CN 2
    SOCF3 CH2CF3 H Cl H CN 0
    SOCF3 CH2CF3 H Cl H CN 1
    SOCF3 CH2CF3 H Cl H CN 2
    SOCF3 CH2CF3 H Br H CN 0
    SOCF3 CH2CF3 H Br H CN 1
    SOCF3 CH2CF3 H Br H CN 2
    SOCF3 CH2CF3 H I H CN 0
    SOCF3 CH2CF3 H I H CN 1
    SOCF3 CH2CF3 H I H CN 2
    SOCF3 CH2CF3 H CF3 H F 0
    SOCF3 CH2CF3 H CF3 H F 1
    SOCF3 CH2CF3 H CF3 H F 2
    SOCF3 CH2CF3 H CF3 H Cl 0
    SOCF3 CH2CF3 H CF3 H Cl 1
    SOCF3 CH2CF3 H CF3 H Cl 2
    SOCF3 CH2CF3 H CF3 H Br 0
    SOCF3 CH2CF3 H CF3 H Br 1
    SOCF3 CH2CF3 H CF3 H Br 2
    SOCF3 CH2CF3 H CF3 H I 0
    SOCF3 CH2CF3 H CF3 H I 1
    SOCF3 CH2CF3 H CF3 H I 2
    SOCF3 CH2CF3 H CF3 H CN 0
    SOCF3 CH2CF3 H CF3 H CN 1
    SOCF3 CH2CF3 H CF3 H CN 2
    SOCF3 CH2CF3 H F F H 0
    SOCF3 CH2CF3 H F F H 1
    SOCF3 CH2CF3 H F F H 2
    SOCF3 CH2CF3 H Cl Cl H 0
    SOCF3 CH2CF3 H Cl Cl H 1
    SOCF3 CH2CF3 H Cl Cl H 2
    SOCF3 CH2CF3 H Br Br H 0
    SOCF3 CH2CF3 H Br Br H 1
    SOCF3 CH2CF3 H Br Br H 2
    SOCF3 CH2CF3 H I I H 0
    SOCF3 CH2CF3 H I I H 1
    SOCF3 CH2CF3 H I I H 2
    SOCF3 CH2CF3 H F Cl H 0
    SOCF3 CH2CF3 H F Cl H 1
    SOCF3 CH2CF3 H F Cl H 2
    SOCF3 CH2CF3 H F Br H 0
    SOCF3 CH2CF3 H F Br H 1
    SOCF3 CH2CF3 H F Br H 2
    SOCF3 CH2CF3 H F I H 0
    SOCF3 CH2CF3 H F I H 1
    SOCF3 CH2CF3 H F I H 2
    SOCF3 CH2CF3 H Cl F H 0
    SOCF3 CH2CF3 H Cl F H 1
    SOCF3 CH2CF3 H Cl F H 2
    SOCF3 CH2CF3 H Cl Br H 0
    SOCF3 CH2CF3 H Cl Br H 1
    SOCF3 CH2CF3 H Cl Br H 2
    SOCF3 CH2CF3 H Cl I H 0
    SOCF3 CH2CF3 H Cl I H 1
    SOCF3 CH2CF3 H Cl I H 2
    SOCF3 CH2CF3 H Br F H 0
    SOCF3 CH2CF3 H Br F H 1
    SOCF3 CH2CF3 H Br F H 2
    SOCF3 CH2CF3 H Br Cl H 0
    SOCF3 CH2CF3 H Br Cl H 1
    SOCF3 CH2CF3 H Br Cl H 2
    SOCF3 CH2CF3 H Br I H 0
    SOCF3 CH2CF3 H Br I H 1
    SOCF3 CH2CF3 H Br I H 2
    SOCF3 CH2CF3 H I F H 0
    SOCF3 CH2CF3 H I F H 1
    SOCF3 CH2CF3 H I F H 2
    SOCF3 CH2CF3 H I Cl H 0
    SOCF3 CH2CF3 H I Cl H 1
    SOCF3 CH2CF3 H I Cl H 2
    SOCF3 CH2CF3 H I Br H 0
    SOCF3 CH2CF3 H I Br H 1
    SOCF3 CH2CF3 H I Br H 2
    SOCF3 CH2CF3 H F CN H 0
    SOCF3 CH2CF3 H F CN H 1
    SOCF3 CH2CF3 H F CN H 2
    SOCF3 CH2CF3 H Cl CN H 0
    SOCF3 CH2CF3 H Cl CN H 1
    SOCF3 CH2CF3 H Cl CN H 2
    SOCF3 CH2CF3 H Br CN H 0
    SOCF3 CH2CF3 H Br CN H 1
    SOCF3 CH2CF3 H Br CN H 2
    SOCF3 CH2CF3 H I CN H 0
    SOCF3 CH2CF3 H I CN H 1
    SOCF3 CH2CF3 H I CN H 2
    SOCF3 CH2CF3 H CF3 F H 0
    SOCF3 CH2CF3 H CF3 F H 1
    SOCF3 CH2CF3 H CF3 F H 2
    SOCF3 CH2CF3 H CF3 Cl H 0
    SOCF3 CH2CF3 H CF3 Cl H 1
    SOCF3 CH2CF3 H CF3 Cl H 2
    SOCF3 CH2CF3 H CF3 Br H 0
    SOCF3 CH2CF3 H CF3 Br H 1
    SOCF3 CH2CF3 H CF3 Br H 2
    SOCF3 CH2CF3 H CF3 I H 0
    SOCF3 CH2CF3 H CF3 I H 1
    SOCF3 CH2CF3 H CF3 I H 2
    SOCF3 CH2CF3 H CF3 CN H 0
    SOCF3 CH2CF3 H CF3 CN H 1
    SOCF3 CH2CF3 H CF3 CN H 2
    SO2CF3 Me H H H H 0
    SO2CF3 Me H H H H 1
    SO2CF3 Me H H H H 2
    SO2CF3 Me F H H H 0
    SO2CF3 Me F H H H 1
    SO2CF3 Me F H H H 2
    SO2CF3 Me Cl H H H 0
    SO2CF3 Me Cl H H H 1
    SO2CF3 Me Cl H H H 2
    SO2CF3 Me Br H H H 0
    SO2CF3 Me Br H H H 1
    SO2CF3 Me Br H H H 2
    SO2CF3 Me I H H H 0
    SO2CF3 Me I H H H 1
    SO2CF3 Me I H H H 2
    SO2CF3 Me Me H H H 0
    SO2CF3 Me Me H H H 1
    SO2CF3 Me Me H H H 2
    SO2CF3 Me CF3 H H H 0
    SO2CF3 Me CF3 H H H 1
    SO2CF3 Me CF3 H H H 2
    SO2CF3 Me H F H H 0
    SO2CF3 Me H F H H 1
    SO2CF3 Me H F H H 2
    SO2CF3 Me H Cl H H 0
    SO2CF3 Me H Cl H H 1
    SO2CF3 Me H Cl H H 2
    SO2CF3 Me H Br H H 0
    SO2CF3 Me H Br H H 1
    SO2CF3 Me H Br H H 2
    SO2CF3 Me H I H H 0
    SO2CF3 Me H I H H 1
    SO2CF3 Me H I H H 2
    SO2CF3 Me H Me H H 0
    SO2CF3 Me H Me H H 1
    SO2CF3 Me H Me H H 2
    SO2CF3 Me H CF3 H H 0
    SO2CF3 Me H CF3 H H 1
    SO2CF3 Me H CF3 H H 2
    SO2CF3 Me H CF2CF3 H H 0
    SO2CF3 Me H CF2CF3 H H 1
    SO2CF3 Me H CF2CF3 H H 2
    SO2CF3 Me H CF(CF3)2 H H 0
    SO2CF3 Me H CF(CF3)2 H H 1
    SO2CF3 Me H CF(CF3)2 H H 2
    SO2CF3 Me H SMe H H 0
    SO2CF3 Me H SMe H H 1
    SO2CF3 Me H SMe H H 2
    SO2CF3 Me H SOMe H H 0
    SO2CF3 Me H SOMe H H 1
    SO2CF3 Me H SOMe H H 2
    SO2CF3 Me H SO2Me H H 0
    SO2CF3 Me H SO2Me H H 1
    SO2CF3 Me H SO2Me H H 2
    SO2CF3 Me H OMe H H 0
    SO2CF3 Me H OMe H H 1
    SO2CF3 Me H OMe H H 2
    SO2CF3 Me H OCF3 H H 0
    SO2CF3 Me H OCF3 H H 1
    SO2CF3 Me H OCF3 H H 2
    SO2CF3 Me H NO2 H H 0
    SO2CF3 Me H NO2 H H 1
    SO2CF3 Me H NO2 H H 2
    SO2CF3 Me H CN H H 0
    SO2CF3 Me H CN H H 1
    SO2CF3 Me H CN H H 2
    SO2CF3 Me H H F H 0
    SO2CF3 Me H H F H 1
    SO2CF3 Me H H F H 2
    SO2CF3 Me H H Cl H 0
    SO2CF3 Me H H Cl H 1
    SO2CF3 Me H H Cl H 2
    SO2CF3 Me H H Br H 0
    SO2CF3 Me H H Br H 1
    SO2CF3 Me H H Br H 2
    SO2CF3 Me H H I H 0
    SO2CF3 Me H H I H 1
    SO2CF3 Me H H I H 2
    SO2CF3 Me H H Me H 0
    SO2CF3 Me H H Me H 1
    SO2CF2 Me H H Me H 2
    SO2CF3 Me H H CF3 H 0
    SO2CF3 Me H H CF3 H 1
    SO2CF3 Me H H CF3 H 2
    SO2CF3 Me H H CF2CF3 H 0
    SO2CF3 Me H H CF2CF3 H 1
    SO2CF3 Me H H CF2CF3 H 2
    SO2CF3 Me H H CF(CF3)2 H 0
    SO2CF3 Me H H CF(CF3)2 H 1
    SO2CF3 Me H H CF(CF3)2 H 2
    SO2CF3 Me H H SMe H 0
    SO2CF3 Me H H SMe H 1
    SO2CF3 Me H H SMe H 2
    SO2CF3 Me H H SOMe H 0
    SO2CF3 Me H H SOMe H 1
    SO2CF3 Me H H SOMe H 2
    SO2CF3 Me H H SO2Me H 0
    SO2CF3 Me H H SO2Me H 1
    SO2CF3 Me H H SO2Me H 2
    SO2CF3 Me H H OMe H 0
    SO2CF3 Me H H OMe H 1
    SO2CF3 Me H H OMe H 2
    SO2CF3 Me H H OCF3 H 0
    SO2CF3 Me H H OCF3 H 1
    SO2CF3 Me H H OCF3 H 2
    SO2CF3 Me H H NO2 H 0
    SO2CF3 Me H H NO2 H 1
    SO2CF3 Me H H NO2 H 2
    SO2CF3 Me H H CN H 0
    SO2CF3 Me H H CN H 1
    SO2CF3 Me H H CN H 2
    SO2CF3 Me H H H F 0
    SO2CF3 Me H H H F 1
    SO2CF3 Me H H H F 2
    SO2CF3 Me H H H Cl 0
    SO2CF3 Me H H H Cl 1
    SO2CF3 Me H H H Cl 2
    SO2CF3 Me H H H Br 0
    SO2CF3 Me H H H Br 1
    SO2CF3 Me H H H Br 2
    SO2CF3 Me H H H I 0
    SO2CF3 Me H H H I 1
    SO2CF3 Me H H H I 2
    SO2CF3 Me H H H Me 0
    SO2CF3 Me H H H Me 1
    SO2CF3 Me H H H Me 2
    SO2CF3 Me H H H CF3 0
    SO2CF3 Me H H H CF3 1
    SO2CF3 Me H H H CF3 2
    SO2CF3 Me H H H CF2CF3 0
    SO2CF3 Me H H H CF2CF3 1
    SO2CF3 Me H H H CF2CF3 2
    SO2CF3 Me H H H CF(CF3)2 0
    SO2CF3 Me H H H CF(CF3)2 1
    SO2CF3 Me H H H CF(CF3)2 2
    SO2CF3 Me H H H SMe 0
    SO2CF3 Me H H H SMe 1
    SO2CF3 Me H H H SMe 2
    SO2CF3 Me H H H SOMe 0
    SO2CF3 Me H H H SOMe 1
    SO2CF3 Me H H H SOMe 2
    SO2CF3 Me H H H SO2Me 0
    SO2CF3 Me H H H SO2Me 1
    SO2CF3 Me H H H SO2Me 2
    SO2CF3 Me H H H OMe 0
    SO2CF3 Me H H H OMe 1
    SO2CF3 Me H H H OMe 2
    SO2CF3 Me H H H OCF3 0
    SO2CF3 Me H H H OCF3 1
    SO2CF3 Me H H H OCF3 2
    SO2CF3 Me H H H NO2 0
    SO2CF3 Me H H H NO2 1
    SO2CF3 Me H H H NO2 2
    SO2CF3 Me H H H CN 0
    SO2CF3 Me H H H CN 1
    SO2CF3 Me H H H CN 2
    SO2CF3 Me H F H F 0
    SO2CF3 Me H F H F 1
    SO2CF3 Me H F H F 2
    SO2CF3 Me H Cl H Cl 0
    SO2CF3 Me H Cl H Cl 1
    SO2CF3 Me H Cl H Cl 2
    SO2CF3 Me H Br H Br 0
    SO2CF3 Me H Br H Br 1
    SO2CF3 Me H Br H Br 2
    SO2CF3 Me H I H I 0
    SO2CF3 Me H I H I 1
    SO2CF3 Me H I H I 2
    SO2CF3 Me H F H Cl 0
    SO2CF3 Me H F H Cl 1
    SO2CF3 Me H F H Cl 2
    SO2CF3 Me H F H Br 0
    SO2CF3 Me H F H Br 1
    SO2CF3 Me H F H Br 2
    SO2CF3 Me H F H I 0
    SO2CF3 Me H F H I 1
    SO2CF3 Me H F H I 2
    SO2CF3 Me H Cl H F 0
    SO2CF3 Me H Cl H F 1
    SO2CF3 Me H Cl H F 2
    SO2CF3 Me H Cl H Br 0
    SO2CF3 Me H Cl H Br 1
    SO2CF3 Me H Cl H Br 2
    SO2CF3 Me H Cl H I 0
    SO2CF3 Me H Cl H I 1
    SO2CF3 Me H Cl H I 2
    SO2CF3 Me H Br H F 0
    SO2CF3 Me H Br H F 1
    SO2CF3 Me H Br H F 2
    SO2CF3 Me H Br H Cl 0
    SO2CF3 Me H Br H Cl 1
    SO2CF3 Me H Br H Cl 2
    SO2CF3 Me H Br H I 0
    SO2CF3 Me H Br H I 1
    SO2CF3 Me H Br H I 2
    SO2CF3 Me H I H F 0
    SO2CF3 Me H I H F 1
    SO2CF3 Me H I H F 2
    SO2CF3 Me H I H Cl 0
    SO2CF3 Me H I H Cl 1
    SO2CF3 Me H I H Cl 2
    SO2CF3 Me H I H Br 0
    SO2CF3 Me H I H Br 1
    SO2CF3 Me H I H Br 2
    SO2CF3 Me H F H CN 0
    SO2CF3 Me H F H CN 1
    SO2CF3 Me H F H CN 2
    SO2CF3 Me H Cl H CN 0
    SO2CF3 Me H Cl H CN 1
    SO2CF3 Me H Cl H CN 2
    SO2CF3 Me H Br H CN 0
    SO2CF3 Me H Br H CN 1
    SO2CF3 Me H Br H CN 2
    SO2CF3 Me H I H CN 0
    SO2CF3 Me H I H CN 1
    SO2CF3 Me H I H CN 2
    SO2CF3 Me H CF3 H F 0
    SO2CF3 Me H CF3 H F 1
    SO2CF3 Me H CF3 H F 2
    SO2CF3 Me H CF3 H Cl 0
    SO2CF3 Me H CF3 H Cl 1
    SO2CF3 Me H CF3 H Cl 2
    SO2CF3 Me H CF3 H Br 0
    SO2CF3 Me H CF3 H Br 1
    SO2CF3 Me H CF3 H Br 2
    SO2CF3 Me H CF3 H I 0
    SO2CF3 Me H CF3 H I 1
    SO2CF3 Me H CF3 H I 2
    SO2CF3 Me H CF3 H CN 0
    SO2CF3 Me H CF3 H CN 1
    SO2CF3 Me H CF3 H CN 2
    SO2CF3 Me H F F H 0
    SO2CF3 Me H F F H 1
    SO2CF3 Me H F F H 2
    SO2CF3 Me H Cl Cl H 0
    SO2CF3 Me H Cl Cl H 1
    SO2CF3 Me H Cl Cl H 2
    SO2CF3 Me H Br Br H 0
    SO2CF3 Me H Br Br H 1
    SO2CF3 Me H Br Br H 2
    SO2CF3 Me H I I H 0
    SO2CF3 Me H I I H 1
    SO2CF3 Me H I I H 2
    SO2CF3 Me H F Cl H 0
    SO2CF3 Me H F Cl H 1
    SO2CF3 Me H F Cl H 2
    SO2CF3 Me H F Br H 0
    SO2CF3 Me H F Br H 1
    SO2CF3 Me H F Br H 2
    SO2CF3 Me H F I H 0
    SO2CF3 Me H F I H 1
    SO2CF3 Me H F I H 2
    SO2CF3 Me H Cl F H 0
    SO2CF3 Me H Cl F H 1
    SO2CF3 Me H Cl F H 2
    SO2CF3 Me H Cl Br H 0
    SO2CF3 Me H Cl Br H 1
    SO2CF3 Me H Cl Br H 2
    SO2CF3 Me H Cl I H 0
    SO2CF3 Me H Cl I H 1
    SO2CF3 Me H Cl I H 2
    SO2CF3 Me H Br F H 0
    SO2CF3 Me H Br F H 1
    SO2CF3 Me H Br F H 2
    SO2CF3 Me H Br Cl H 0
    SO2CF3 Me H Br Cl H 1
    SO2CF3 Me H Br Cl H 2
    SO2CF3 Me H Br I H 0
    SO2CF3 Me H Br I H 1
    SO2CF3 Me H Br I H 2
    SO2CF3 Me H I F H 0
    SO2CF3 Me H I F H 1
    SO2CF3 Me H I F H 2
    SO2CF3 Me H I Cl H 0
    SO2CF3 Me H I Cl H 1
    SO2CF3 Me H I Cl H 2
    SO2CF3 Me H I Br H 0
    SO2CF3 Me H I Br H 1
    SO2CF3 Me H I Br H 2
    SO2CF3 Me H F CN H 0
    SO2CF3 Me H F CN H 1
    SO2CF3 Me H F CN H 2
    SO2CF3 Me H Cl CN H 0
    SO2CF3 Me H Cl CN H 1
    SO2CF3 Me H Cl CN H 2
    SO2CF3 Me H Br CN H 0
    SO2CF3 Me H Br CN H 1
    SO2CF3 Me H Br CN H 2
    SO2CF3 Me H I CN H 0
    SO2CF3 Me H I CN H 1
    SO2CF3 Me H I CN H 2
    SO2CF3 Me H CF3 F H 0
    SO2CF3 Me H CF3 F H 1
    SO2CF3 Me H CF3 F H 2
    SO2CF3 Me H CF3 Cl H 0
    SO2CF3 Me H CF3 Cl H 1
    SO2CF3 Me H CF3 Cl H 2
    SO2CF3 Me H CF3 Br H 0
    SO2CF3 Me H CF3 Br H 1
    SO2CF3 Me H CF3 Br H 2
    SO2CF3 Me H CF3 I H 0
    SO2CF3 Me H CF3 I H 1
    SO2CF3 Me H CF3 I H 2
    SO2CF3 Me H CF3 CN H 0
    SO2CF3 Me H CF3 CN H 1
    SO2CF3 Me H CF3 CN H 2
    SO2CF3 Et H H H H 0
    SO2CF3 Et H H H H 1
    SO2CF3 Et H H H H 2
    SO2CF3 Et F H H H 0
    SO2CF3 Et F H H H 1
    SO2CF3 Et F H H H 2
    SO2CF3 Et Cl H H H 0
    SO2CF3 Et Cl H H H 1
    SO2CF3 Et Cl H H H 2
    SO2CF3 Et Br H H H 0
    SO2CF3 Et Br H H H 1
    SO2CF3 Et Br H H H 2
    SO2CF3 Et I H H H 0
    SO2CF3 Et I H H H 1
    SO2CF3 Et I H H H 2
    SO2CF3 Et Me H H H 0
    SO2CF3 Et Me H H H 1
    SO2CF3 Et Me H H H 2
    SO2CF3 Et CF3 H H H 0
    SO2CF3 Et CF3 H H H 1
    SO2CF3 Et CF3 H H H 2
    SO3CF2 Et H F H H 0
    SO2CF3 Et H F H H 1
    SO2CF3 Et H F H H 2
    SO2CF3 Et H Cl H H 0
    SO2CF3 Et H Cl H H 1
    SO2CF3 Et H Cl H H 2
    SO2CF3 Et H Br H H 0
    SO2CF3 Et H Br H H 1
    SO2CF3 Et H Br H H 2
    SO2CF3 Et H I H H 0
    SO2CF3 Et H I H H 1
    SO2CF3 Et H I H H 2
    SO2CF3 Et H Me H H 0
    SO2CF3 Et H Me H H 1
    SO2CF3 Et H Me H H 2
    SO2CF3 Et H CF3 H H 0
    SO2CF3 Et H CF3 H H 1
    SO2CF3 Et H CF3 H H 2
    SO2CF3 Et H CF2CF3 H H 0
    SO2CF3 Et H CF2CF3 H H 1
    SO2CF3 Et H CF2CF3 H H 2
    SO2CF3 Et H CF(CF3)2 H H 0
    SO2CF3 Et H CF(CF3)2 H H 1
    SO2CF3 Et H CF(CF3)2 H H 2
    SO2CF3 Et H SMe H H 0
    SO2CF3 Et H SMe H H 1
    SO2CF3 Et H SMe H H 2
    SO2CF3 Et H SOMe H H 0
    SO2CF3 Et H SOMe H H 1
    SO2CF3 Et H SOMe H H 2
    SO2CF3 Et H SO2Me H H 0
    SO2CF3 Et H SO2Me H H 1
    SO2CF3 Et H SO2Me H H 2
    SO2CF3 Et H OMe H H 0
    SO2CF3 Et H OMe H H 1
    SO2CF3 Et H OMe H H 2
    SO2CF3 Et H OCF3 H H 0
    SO2CF3 Et H OCF3 H H 1
    SO2CF3 Et H OCF3 H H 2
    SO2CF3 Et H NO2 H H 0
    SO2CF3 Et H NO2 H H 1
    SO2CF3 Et H NO2 H H 2
    SO2CF3 Et H CN H H 0
    SO2CF3 Et H CN H H 1
    SO2CF3 Et H CN H H 2
    SO2CF3 Et H H F H 0
    SO2CF3 Et H H F H 1
    SO2CF3 Et H H F H 2
    SO2CF3 Et H H Cl H 0
    SO2CF3 Et H H Cl H 1
    SO2CF3 Et H H Cl H 2
    SO2CF3 Et H H Br H 0
    SO2CF3 Et H H Br H 1
    SO2CF3 Et H H Br H 2
    SO2CF3 Et H H I H 0
    SO2CF3 Et H H I H 1
    SO2CF3 Et H H I H 2
    SO2CF3 Et H H Me H 0
    SO2CF3 Et H H Me H 1
    SO2CF3 Et H H Me H 2
    SO2CF3 Et H H CF3 H 0
    SO2CF3 Et H H CF3 H 1
    SO2CF3 Et H H CF3 H 2
    SO2CF3 Et H H CF2CF3 H 0
    SO2CF3 Et H H CF2CF3 H 1
    SO2CF3 Et H H CF2CF3 H 2
    SO2CF3 Et H H CF(CF3)2 H 0
    SO2CF3 Et H H CF(CF3)2 H 1
    SO2CF3 Et H H CF(CF3)2 H 2
    SO2CF3 Et H H SMe H 0
    SO2CF3 Et H H SMe H 1
    SO2CF3 Et H H SMe H 2
    SO2CF3 Et H H SOMe H 0
    SO2CF3 Et H H SOMe H 1
    SO2CF3 Et H H SOMe H 2
    SO2CF3 Et H H SO2Me H 0
    SO2CF3 Et H H SO2Me H 1
    SO2CF3 Et H H SO2Me H 2
    SO2CF3 Et H H OMe H 0
    SO2CF3 Et H H OMe H 1
    SO2CF3 Et H H OMe H 2
    SO2CF3 Et H H OCF3 H 0
    SO2CF3 Et H H OCF3 H 1
    SO2CF3 Et H H OCF3 H 2
    SO2CF3 Et H H NO2 H 0
    SO2CF3 Et H H NO2 H 1
    SO2CF3 Et H H NO2 H 2
    SO2CF3 Et H H CN H 0
    SO2CF3 Et H H CN H 1
    SO2CF3 Et H H CN H 2
    SO2CF3 Et H H H F 0
    SO2CF3 Et H H H F 1
    SO2CF3 Et H H H F 2
    SO2CF3 Et H H H Cl 0
    SO2CF3 Et H H H Cl 1
    SO2CF3 Et H H H Cl 2
    SO2CF3 Et H H H Br 0
    SO2CF3 Et H H H Br 1
    SO2CF3 Et H H H Br 2
    SO2CF3 Et H H H I 0
    SO2CF3 Et H H H I 1
    SO2CF3 Et H H H I 2
    SO2CF3 Et H H H Me 0
    SO2CF3 Et H H H Me 1
    SO2CF3 Et H H H Me 2
    SO2CF3 Et H H H CF3 0
    SO2CF3 Et H H H CF3 1
    SO2CF3 Et H H H CF3 2
    SO2CF3 Et H H H CF2CF3 0
    SO2CF3 Et H H H CF2CF3 1
    SO2CF3 Et H H H CF2CF3 2
    SO2CF3 Et H H H CF(CF3)2 0
    SO2CF3 Et H H H CF(CF3)2 1
    SO2CF3 Et H H H CF(CF3)2 2
    SO2CF3 Et H H H SMe 0
    SO2CF3 Et H H H SMe 1
    SO2CF3 Et H H H SMe 2
    SO2CF3 Et H H H SOMe 0
    SO2CF3 Et H H H SOMe 1
    SO2CF3 Et H H H SOMe 2
    SO2CF3 Et H H H SO2Me 0
    SO2CF3 Et H H H SO2Me 1
    SO2CF3 Et H H H SO2Me 2
    SO2CF3 Et H H H OMe 0
    SO2CF3 Et H H H OMe 1
    SO2CF3 Et H H H OMe 2
    SO2CF3 Et H H H OCF3 0
    SO2CF3 Et H H H OCF3 1
    SO2CF3 Et H H H OCF3 2
    SO2CF3 Et H H H NO2 0
    SO2CF3 Et H H H NO2 1
    SO2CF3 Et H H H NO2 2
    SO2CF3 Et H H H CN 0
    SO2CF3 Et H H H CN 1
    SO2CF3 Et H H H CN 2
    SO2CF3 Et H F H F 0
    SO2CF3 Et H F H F 1
    SO2CF3 Et H F H F 2
    SO2CF3 Et H Cl H Cl 0
    SO2CF3 Et H Cl H Cl 1
    SO2CF3 Et H Cl H Cl 2
    SO2CF3 Et H Br H Br 0
    SO2CF3 Et H Br H Br 1
    SO2CF3 Et H Br H Br 2
    SO2CF3 Et H I H I 0
    SO2CF3 Et H I H I 1
    SO2CF3 Et H I H I 2
    SO2CF3 Et H F H Cl 0
    SO2CF3 Et H F H Cl 1
    SO2CF3 Et H F H Cl 2
    SO2CF3 Et H F H Br 0
    SO2CF3 Et H F H Br 1
    SO2CF3 Et H F H Br 2
    SO2CF3 Et H F H I 0
    SO2CF3 Et H F H I 1
    SO2CF3 Et H F H I 2
    SO2CF3 Et H Cl H F 0
    SO2CF3 Et H Cl H F 1
    SO2CF3 Et H Cl H F 2
    SO2CF3 Et H Cl H Br 0
    SO2CF3 Et H Cl H Br 1
    SO2CF3 Et H Cl H Br 2
    SO2CF3 Et H Cl H I 0
    SO2CF3 Et H Cl H I 1
    SO2CF3 Et H Cl H I 2
    SO2CF3 Et H Br H F 0
    SO2CF3 Et H Br H F 1
    SO2CF3 Et H Br H F 2
    SO2CF3 Et H Br H Cl 0
    SO2CF3 Et H Br H Cl 1
    SO2CF3 Et H Br H Cl 2
    SO2CF3 Et H Br H I 0
    SO2CF3 Et H Br H I 1
    SO2CF3 Et H Br H I 2
    SO2CF3 Et H I H F 0
    SO2CF3 Et H I H F 1
    SO2CF3 Et H I H F 2
    SO2CF3 Et H I H Cl 0
    SO2CF3 Et H I H Cl 1
    SO2CF3 Et H I H Cl 2
    SO2CF3 Et H I H Br 0
    SO2CF3 Et H I H Br 1
    SO2CF3 Et H I H Br 2
    SO2CF3 Et H F H CN 0
    SO2CF3 Et H F H CN 1
    SO2CF3 Et H F H CN 2
    SO2CF3 Et H Cl H CN 0
    SO2CF3 Et H Cl H CN 1
    SO2CF3 Et H Cl H CN 2
    SO2CF3 Et H Br H CN 0
    SO2CF3 Et H Br H CN 1
    SO2CF3 Et H Br H CN 2
    SO2CF3 Et H I H CN 0
    SO2CF3 Et H I H CN 1
    SO2CF3 Et H I H CN 2
    SO2CF3 Et H CF3 H F 0
    SO2CF3 Et H CF3 H F 1
    SO2CF3 Et H CF3 H F 2
    SO2CF3 Et H CF3 H Cl 0
    SO2CF3 Et H CF3 H Cl 1
    SO2CF3 Et H CF3 H Cl 2
    SO2CF3 Et H CF3 H Br 0
    SO2CF3 Et H CF3 H Br 1
    SO2CF3 Et H CF3 H Br 2
    SO2CF3 Et H CF3 H I 0
    SO2CF3 Et H CF3 H I 1
    SO2CF3 Et H CF3 H I 2
    SO2CF3 Et H CF3 H CN 0
    SO2CF3 Et H CF3 H CN 1
    SO2CF3 Et H CF3 H CN 2
    SO2CF3 Et H F F H 0
    SO2CF3 Et H F F H 1
    SO2CF3 Et H F F H 2
    SO2CF3 Et H Cl Cl H 0
    SO2CF3 Et H Cl Cl H 1
    SO2CF3 Et H Cl Cl H 2
    SO2CF3 Et H Br Br H 0
    SO2CF3 Et H Br Br H 1
    SO2CF3 Et H Br Br H 2
    SO2CF3 Et H I I H 0
    SO2CF3 Et H I I H 1
    SO2CF3 Et H I I H 2
    SO2CF3 Et H F Cl H 0
    SO2CF3 Et H F Cl H 1
    SO2CF3 Et H F Cl H 2
    SO2CF3 Et H F Br H 0
    SO2CF3 Et H F Br H I
    SO2CF3 Et H F Br H 2
    SO2CF3 Et H F I H 0
    SO2CF3 Et H F I H 1
    SO2CF3 Et H F I H 2
    SO2CF3 Et H Cl F H 0
    SO2CF3 Et H Cl F H 1
    SO2CF3 Et H Cl F H 2
    SO2CF3 Et H Cl Br H 0
    SO2CF3 Et H Cl Br H 1
    SO2CF3 Et H Cl Br H 2
    SO2CF3 Et H Cl I H 0
    SO2CF3 Et H Cl I H 1
    SO2CF3 Et H Cl I H 2
    SO2CF3 Et H Br F H 0
    SO2CF3 Et H Br F H 1
    SO2CF3 Et H Br F H 2
    SO2CF3 Et H Br Cl H 0
    SO2CF3 Et H Br Cl H 1
    SO2CF3 Et H Br Cl H 2
    SO2CF3 Et H Br I H 0
    SO2CF3 Et H Br I H 1
    SO2CF3 Et H Br I H 2
    SO2CF2 Et H I F H 0
    SO2CF3 Et H I F H 1
    SO2CF3 Et H I F H 2
    SO2CF3 Et H I Cl H 0
    SO2CF3 Et H I Cl H 1
    SO2CF3 Et H I Cl H 2
    SO2CF3 Et H I Br H 0
    SO2CF3 Et H I Br H 1
    SO2CF3 Et H I Br H 2
    SO2CF3 Et H F CN H 0
    SO2CF3 Et H F CN H 1
    SO2CF3 Et H F CN H 2
    SO2CF3 Et H Cl CN H 0
    SO2CF3 Et H Cl CN H 1
    SO2CF3 Et H Cl CN H 2
    SO2CF3 Et H Br CN H 0
    SO2CF3 Et H Br CN H 1
    SO2CF3 Et H Br CN H 2
    SO2CF3 Et H I CN H 0
    SO2CF3 Et H I CN H 1
    SO2CF3 Et H I CN H 2
    SO2CF3 Et H CF3 F H 0
    SO2CF3 Et H CF3 F H 1
    SO2CF3 Et H CF3 F H 2
    SO2CF3 Et H CF3 Cl H 0
    SO2CF3 Et H CF3 Cl H 1
    SO2CF3 Et H CF3 Cl H 2
    SO2CF3 Et H CF3 Br H 0
    SO2CF3 Et H CF3 Br H 1
    SO2CF3 Et H CF3 Br H 2
    SO2CF3 Et H CF3 I H 0
    SO2CF3 Et H CF3 I H 1
    SO2CF3 Et H CF3 I H 2
    SO2CF3 Et H CF3 CN H 0
    SO2CF3 Et H CF3 CN H 1
    SO2CF3 Et H CF3 CN H 2
    SO2CF3 nPr H H H H 0
    SO2CF3 nPr H H H H 1
    SO2CF3 nPr H H H H 2
    SO2CF3 nPr F H H H 0
    SO2CF3 nPr F H H H 1
    SO2CF3 nPr F H H H 2
    SO2CF3 nPr Cl H H H 0
    SO2CF3 nPr Cl H H H 1
    SO2CF3 nPr Cl H H H 2
    SO2CF3 nPr Br H H H 0
    SO2CF3 nPr Br H H H 1
    SO2CF3 nPr Br H H H 2
    SO2CF3 nPr I H H H 0
    SO2CF3 nPr I H H H 1
    SO2CF3 nPr I H H H 2
    SO2CF3 nPr Me H H H 0
    SO2CF3 nPr Me H H H 1
    SO2CF3 nPr Me H H H 2
    SO2CF3 nPr CF3 H H H 0
    SO2CF3 nPr CF3 H H H 1
    SO2CF3 nPr CF3 H H H 2
    SO2CF3 nPr H F H H 0
    SO2CF3 nPr H F H H 1
    SO2CF3 nPr H F H H 2
    SO2CF3 nPr H Cl H H 0
    SO2CF3 nPr H Cl H H 1
    SO2CF3 nPr H Cl H H 2
    SO2CF3 nPr H Br H H 0
    SO2CF3 nPr H Br H H 1
    SO2CF3 nPr H Br H H 2
    SO2CF3 nPr H I H H 0
    SO2CF3 nPr H I H H 1
    SO2CF3 nPr H I H H 2
    SO2CF3 nPr H Me H H 0
    SO2CF3 nPr H Me H H 1
    SO2CF3 nPr H Me H H 2
    SO2CF3 nPr H CF3 H H 0
    SO2CF3 nPr H CF3 H H 1
    SO2CF3 nPr H CF3 H H 2
    SO2CF3 nPr H CF2CF3 H H 0
    SO2CF3 nPr H CF2CF3 H H 1
    SO2CF3 nPr H CF2CF3 H H 2
    SO2CF3 nPr H CF(CF3)2 H H 0
    SO2CF3 nPr H CF(CF3)2 H H 1
    SO2CF3 nPr H CF(CF3)2 H H 2
    SO2CF3 nPr H SMe H H 0
    SO2CF3 nPr H SMe H H 1
    SO2CF3 nPr H SMe H H 2
    SO2CF3 nPr H SOMe H H 0
    SO2CF3 nPr H SOMe H H 1
    SO2CF3 nPr H SOMe H H 2
    SO2CF3 nPr H SO2Me H H 0
    SO2CF3 nPr H SO2Me H H 1
    SO2CF3 nPr H SO2Me H H 2
    SO2CF3 nPr H OMe H H 0
    SO2CF3 nPr H OMe H H 1
    SO2CF3 nPr H OMe H H 2
    SO2CF3 nPr H OCF3 H H 0
    SO2CF3 nPr H OCF3 H H 1
    SO2CF3 nPr H OCF3 H H 2
    SO2CF3 nPr H NO2 H H 0
    SO2CF3 nPr H NO2 H H 1
    SO2CF3 nPr H NO2 H H 2
    SO2CF3 nPr H CN H H 0
    SO2CF3 nPr H CN H H 1
    SO2CF3 nPr H CN H H 2
    SO2CF3 nPr H H F H 0
    SO2CF3 nPr H H F H 1
    SO2CF3 nPr H H F H 2
    SO2CF3 nPr H H Cl H 0
    SO2CF3 nPr H H Cl H 1
    SO2CF3 nPr H H Cl H 2
    SO2CF3 nPr H H Br H 0
    SO2CF3 nPr H H Br H 1
    SO2CF3 nPr H H Br H 2
    SO2CF3 nPr H H I H 0
    SO2CF3 nPr H H I H 1
    SO2CF3 nPr H H I H 2
    SO2CF3 nPr H H Me H 0
    SO2CF3 nPr H H Me H 1
    SO2CF3 nPr H H Me H 2
    SO2CF3 nPr H H CF3 H 0
    SO2CF3 nPr H H CF3 H 1
    SO2CF3 nPr H H CF3 H 2
    SO2CF3 nPr H H CF2CF3 H 0
    SO2CF3 nPr H H CF2CF3 H 1
    SO2CF3 nPr H H CF2CF3 H 2
    SO2CF3 nPr H H CF(CF3)2 H 0
    SO2CF3 nPr H H CF(CF3)2 H 1
    SO2CF3 nPr H H CF(CF3)2 H 2
    SO2CF3 nPr H H SMe H 0
    SO2CF3 nPr H H SMe H 1
    SO2CF3 nPr H H SMe H 2
    SO2CF3 nPr H H SOMe H 0
    SO2CF3 nPr H H SOMe H 1
    SO2CF3 nPr H H SOMe H 2
    SO2CF3 nPr H H SO2Me H 0
    SO2CF3 nPr H H SO2Me H 1
    SO2CF3 nPr H H SO2Me H 2
    SO2CF3 nPr H H OMe H 0
    SO2CF3 nPr H H OMe H 1
    SO2CF3 nPr H H OMe H 2
    SO2CF3 nPr H H OCF3 H 0
    SO2CF3 nPr H H OCF3 H 1
    SO2CF3 nPr H H OCF3 H 2
    SO2CF3 nPr H H NO2 H 0
    SO2CF3 nPr H H NO2 H 1
    SO2CF3 nPr H H NO2 H 2
    SO2CF3 nPr H H CN H 0
    SO2CF3 nPr H H CN H 1
    SO2CF3 nPr H H CN H 2
    SO2CF3 nPr H H H F 0
    SO2CF3 nPr H H H F 1
    SO2CF3 nPr H H H F 2
    SO2CF3 nPr H H H Cl 0
    SO2CF3 nPr H H H Cl 1
    SO2CF3 nPr H H H Cl 2
    SO2CF3 nPr H H H Br 0
    SO2CF3 nPr H H H Br 1
    SO2CF3 nPr H H H Br 2
    SO2CF3 nPr H H H I 0
    SO2CF3 nPr H H H I 1
    SO2CF3 nPr H H H I 2
    SO2CF3 nPr H H H Me 0
    SO2CF3 nPr H H H Me 1
    SO2CF3 nPr H H H Me 2
    SO2CF3 nPr H H H CF3 0
    SO2CF3 nPr H H H CF3 1
    SO2CF3 nPr H H H CF3 2
    SO2CF3 nPr H H H CF2CF3 0
    SO2CF3 nPr H H H CF2CF3 1
    SO2CF3 nPr H H H CF2CF3 2
    SO2CF2 nPr H H H CF(CF3)2 0
    SO2CF3 nPr H H H CF(CF3)2 1
    SO2CF3 nPr H H H CF(CF3)2 2
    SO2CF3 nPr H H H SMe 0
    SO2CF3 nPr H H H SMe 1
    SO2CF3 nPr H H H SMe 2
    SO2CF3 nPr H H H SOMe 0
    SO2CF3 nPr H H H SOMe 1
    SO2CF3 nPr H H H SOMe 2
    SO2CF3 nPr H H H SO2Me 0
    SO2CF3 nPr H H H SO2Me 1
    SO2CF3 nPr H H H SO2Me 2
    SO2CF3 nPr H H H OMe 0
    SO2CF3 nPr H H H OMe 1
    SO2CF3 nPr H H H OMe 2
    SO2CF3 nPr H H H OCF3 0
    SO2CF3 nPr H H H OCF3 1
    SO2CF3 nPr H H H OCF3 2
    SO2CF3 nPr H H H NO2 0
    SO2CF3 nPr H H H NO2 1
    SO2CF3 nPr H H H NO2 2
    SO2CF3 nPr H H H CN 0
    SO2CF3 nPr H H H CN 1
    SO2CF3 nPr H H H CN 2
    SO2CF3 nPr H F H F 0
    SO2CF3 nPr H F H F 1
    SO2CF3 nPr H F H F 2
    SO2CF3 nPr H Cl H Cl 0
    SO2CF3 nPr H Cl H Cl 1
    SO2CF3 nPr H Cl H Cl 2
    SO2CF3 nPr H Br H Br 0
    SO2CF3 nPr H Br H Br 1
    SO2CF3 nPr H Br H Br 2
    SO2CF3 nPr H I H I 0
    SO2CF3 nPr H I H I 1
    SO2CF3 nPr H I H I 2
    SO2CF3 nPr H F H Cl 0
    SO2CF3 nPr H F H Cl 1
    SO2CF3 nPr H F H Cl 2
    SO2CF3 nPr H F H Br 0
    SO2CF3 nPr H F H Br 1
    SO2CF3 nPr H F H Br 2
    SO2CF3 nPr H F H I 0
    SO2CF3 nPr H F H I 1
    SO2CF3 nPr H F H I 2
    SO2CF3 nPr H Cl H F 0
    SO2CF3 nPr H Cl H F 1
    SO2CF3 nPr H Cl H F 2
    SO2CF3 nPr H Cl H Br 0
    SO2CF3 nPr H Cl H Br 1
    SO2CF3 nPr H Cl H Br 2
    SO2CF3 nPr H Cl H I 0
    SO2CF3 nPr H Cl H I 1
    SO2CF3 nPr H Cl H I 2
    SO2CF3 nPr H Br H F 0
    SO2CF3 nPr H Br H F 1
    SO2CF3 nPr H Br H F 2
    SO2CF3 nPr H Br H Cl 0
    SO2CF3 nPr H Br H Cl 1
    SO2CF3 nPr H Br H Cl 2
    SO2CF3 nPr H Br H I 0
    SO2CF3 nPr H Br H I 1
    SO2CF3 nPr H Br H I 2
    SO2CF3 nPr H I H F 0
    SO2CF3 nPr H I H F 1
    SO2CF3 nPr H I H F 2
    SO2CF3 nPr H I H Cl 0
    SO2CF3 nPr H I H Cl 1
    SO2CF3 nPr H I H Cl 2
    SO2CF3 nPr H I H Br 0
    SO2CF3 nPr H I H Br 1
    SO2CF3 nPr H I H Br 2
    SO2CF3 nPr H F H CN 0
    SO2CF3 nPr H F H CN 1
    SO2CF3 nPr H F H CN 2
    SO2CF3 nPr H Cl H CN 0
    SO2CF3 nPr H Cl H CN 1
    SO2CF3 nPr H Cl H CN 2
    SO2CF3 nPr H Br H CN 0
    SO2CF3 nPr H Br H CN 1
    SO2CF3 nPr H Br H CN 2
    SO2CF3 nPr H I H CN 0
    SO2CF3 nPr H I H CN 1
    SO2CF3 nPr H I H CN 2
    SO2CF3 nPr H CF3 H F 0
    SO2CF3 nPr H CF3 H F 1
    SO2CF3 nPr H CF3 H F 2
    SO2CF3 nPr H CF3 H Cl 0
    SO2CF3 nPr H CF3 H Cl 1
    SO2CF3 nPr H CF3 H Cl 2
    SO2CF3 nPr H CF3 H Br 0
    SO2CF3 nPr H CF3 H Br 1
    SO2CF3 nPr H CF3 H Br 2
    SO2CF3 nPr H CF3 H I 0
    SO2CF3 nPr H CF3 H I 1
    SO2CF3 nPr H CF3 H I 2
    SO2CF3 nPr H CF3 H CN 0
    SO2CF3 nPr H CF3 H CN 1
    SO2CF3 nPr H CF3 H CN 2
    SO2CF3 nPr H F F H 0
    SO2CF3 nPr H F F H 1
    SO2CF3 nPr H F F H 2
    SO2CF3 nPr H Cl Cl H 0
    SO2CF3 nPr H Cl Cl H 1
    SO2CF3 nPr H Cl Cl H 2
    SO2CF3 nPr H Br Br H 0
    SO2CF3 nPr H Br Br H 1
    SO2CF3 nPr H Br Br H 2
    SO2CF3 nPr H I I H 0
    SO2CF3 nPr H I I H 1
    SO2CF3 nPr H I I H 2
    SO2CF3 nPr H F Cl H 0
    SO2CF3 nPr H F Cl H 1
    SO2CF3 nPr H F Cl H 2
    SO2CF3 nPr H F Br H 0
    SO2CF3 nPr H F Br H 1
    SO2CF3 nPr H F Br H 2
    SO2CF3 nPr H F I H 0
    SO2CF3 nPr H F I H 1
    SO2CF3 nPr H F I H 2
    SO2CF3 nPr H Cl F H 0
    SO2CF3 nPr H Cl F H 1
    SO2CF3 nPr H Cl F H 2
    SO2CF3 nPr H Cl Br H 0
    SO2CF3 nPr H Cl Br H 1
    SO2CF3 nPr H Cl Br H 2
    SO2CF3 nPr H Cl I H 0
    SO2CF3 nPr H Cl I H 1
    SO2CF3 nPr H Cl I H 2
    SO2CF3 nPr H Br F H 0
    SO2CF3 nPr H Br F H 1
    SO2CF3 nPr H Br F H 2
    SO2CF3 nPr H Br Cl H 0
    SO2CF3 nPr H Br Cl H 1
    SO2CF3 nPr H Br Cl H 2
    SO2CF3 nPr H Br I H 0
    SO2CF3 nPr H Br I H 1
    SO2CF3 nPr H Br I H 2
    SO2CF3 nPr H I F H 0
    SO2CF3 nPr H I F H 1
    SO2CF3 nPr H I F H 2
    SO2CF3 nPr H I Cl H 0
    SO2CF3 nPr H I Cl H 1
    SO2CF3 nPr H I Cl H 2
    SO2CF3 nPr H I Br H 0
    SO2CF3 nPr H I Br H 1
    SO2CF3 nPr H I Br H 2
    SO2CF3 nPr H F CN H 0
    SO2CF3 nPr H F CN H 1
    SO2CF3 nPr H F CN H 2
    SO2CF3 nPr H Cl CN H 0
    SO2CF3 nPr H Cl CN H 1
    SO2CF3 nPr H Cl CN H 2
    SO2CF3 nPr H Br CN H 0
    SO2CF3 nPr H Br CN H 1
    SO2CF3 nPr H Br CN H 2
    SO2CF3 nPr H I CN H 0
    SO2CF3 nPr H I CN H 1
    SO2CF3 nPr H I CN H 2
    SO2CF3 nPr H CF3 F H 0
    SO2CF3 nPr H CF3 F H 1
    SO2CF3 nPr H CF3 F H 2
    SO2CF3 nPr H CF3 Cl H 0
    SO2CF3 nPr H CF3 Cl H 1
    SO2CF3 nPr H CF3 Cl H 2
    SO2CF3 nPr H CF3 Br H 0
    SO2CF3 nPr H CF3 Br H 1
    SO2CF3 nPr H CF3 Br H 2
    SO2CF3 nPr H CF3 I H 0
    SO2CF3 nPr H CF3 I H 1
    SO2CF3 nPr H CF3 I H 2
    SO2CF3 nPr H CF3 CN H 0
    SO2CF3 nPr H CF3 CN H 1
    SO2CF3 nPr H CF3 CN H 2
    SO2CF3 iPr H H H H 0
    SO2CF3 iPr H H H H 1
    SO2CF3 iPr H H H H 2
    SO2CF3 iPr F H H H 0
    SO2CF3 iPr F H H H 1
    SO2CF3 iPr F H H H 2
    SO2CF3 iPr Cl H H H 0
    SO2CF3 iPr Cl H H H 1
    SO2CF3 iPr Cl H H H 2
    SO2CF3 iPr Br H H H 0
    SO2CF3 iPr Br H H H 1
    SO2CF3 iPr Br H H H 2
    SO2CF3 iPr I H H H 0
    SO2CF3 iPr I H H H 1
    SO2CF3 iPr I H H H 2
    SO2CF3 iPr Me H H H 0
    SO2CF3 iPr Me H H H 1
    SO2CF3 iPr Me H H H 2
    SO2CF3 iPr CF3 H H H 0
    SO2CF3 iPr CF3 H H H 1
    SO2CF3 iPr CF3 H H H 2
    SO2CF3 iPr H F H H 0
    SO2CF3 iPr H F H H 1
    SO2CF3 iPr H F H H 2
    SO2CF3 iPr H Cl H H 0
    SO2CF3 iPr H Cl H H 1
    SO2CF3 iPr H Cl H H 2
    SO2CF3 iPr H Br H H 0
    SO2CF3 iPr H Br H H 1
    SO2CF3 iPr H Br H H 2
    SO2CF3 iPr H I H H 0
    SO2CF3 iPr H I H H 1
    SO2CF3 iPr H I H H 2
    SO2CF3 iPr H Me H H 0
    SO2CF3 iPr H Me H H 1
    SO2CF3 iPr H Me H H 2
    SO2CF3 iPr H CF3 H H 0
    SO2CF3 iPr H CF3 H H 1
    SO2CF3 iPr H CF3 H H 2
    SO2CF3 iPr H CF2CF3 H H 0
    SO2CF3 iPr H CF2CF3 H H 1
    SO2CF3 iPr H CF2CF3 H H 2
    SO2CF3 iPr H CF(CF3)2 H H 0
    SO2CF3 iPr H CF(CF3)2 H H 1
    SO2CF3 iPr H CF(CF3)2 H H 2
    SO2CF3 iPr H SMe H H 0
    SO2CF3 iPr H SMe H H 1
    SO2CF3 iPr H SMe H H 2
    SO2CF3 iPr H SOMe H H 0
    SO2CF3 iPr H SOMe H H 1
    SO2CF3 iPr H SOMe H H 2
    SO2CF3 iPr H SO2Me H H 0
    SO2CF3 iPr H SO2Me H H 1
    SO2CF3 iPr H SO2Me H H 2
    SO2CF3 iPr H OMe H H 0
    SO2CF3 iPr H OMe H H 1
    SO2CF3 iPr H OMe H H 2
    SO2CF3 iPr H OCF3 H H 0
    SO2CF3 iPr H OCF3 H H 1
    SO2CF3 iPr H OCF3 H H 2
    SO2CF3 iPr H NO2 H H 0
    SO2CF3 iPr H NO2 H H 1
    SO2CF3 iPr H NO2 H H 2
    SO2CF3 iPr H CN H H 0
    SO2CF3 iPr H CN H H 1
    SO2CF3 iPr H CN H H 2
    SO2CF3 iPr H H F H 0
    SO2CF3 iPr H H F H 1
    SO2CF3 iPr H H F H 2
    SO2CF3 iPr H H Cl H 0
    SO2CF3 iPr H H Cl H 1
    SO2CF3 iPr H H Cl H 2
    SO2CF3 iPr H H Br H 0
    SO2CF3 iPr H H Br H I
    SO2CF3 iPr H H Br H 2
    SO2CF3 iPr H H I H 0
    SO2CF3 iPr H H I H 1
    SO2CF3 iPr H H I H 2
    SO2CF3 iPr H H Me H 0
    SO2CF3 iPr H H Me H 1
    SO2CF3 iPr H H Me H 2
    SO2CF3 iPr H H CF3 H 0
    SO2CF3 iPr H H CF3 H 1
    SO2CF3 iPr H H CF3 H 2
    SO2CF3 iPr H H CF2CF3 H 0
    SO2CF3 iPr H H CF2CF3 H 1
    SO2CF3 iPr H H CF2CF3 H 2
    SO2CF3 iPr H H CF(CF3)2 H 0
    SO2CF3 iPr H H CF(CF3)2 H 1
    SO2CF3 iPr H H CF(CF3)2 H 2
    SO2CF3 iPr H H SMe H 0
    SO2CF3 iPr H H SMe H 1
    SO2CF3 iPr H H SMe H 2
    SO2CF3 iPr H H SOMie H 0
    SO2CF3 iPr H H SOMe H 1
    SO2CF3 iPr H H SOMe H 2
    SO2CF3 iPr H H SO2Me H 0
    SO2CF3 iPr H H SO2Me H 1
    SO2CF3 iPr H H SO2Me H 2
    SO2CF3 iPr H H OMe H 0
    SO2CF3 iPr H H OMe H 1
    SO2CF3 iPr H H OMe H 2
    SO2CF3 iPr H H OCF3 H 0
    SO2CF3 iPr H H OCF3 H 1
    SO2CF3 iPr H H OCF3 H 2
    SO2CF3 iPr H H NO2 H 0
    SO2CF3 iPr H H NO2 H 1
    SO2CF3 iPr H H NO2 H 2
    SO2CF3 iPr H H CN H 0
    SO2CF3 iPr H H CN H 1
    SO2CF3 iPr H H CN H 2
    SO2CF3 iPr H H H F 0
    SO2CF3 iPr H H H F 1
    SO2CF3 iPr H H H F 2
    SO2CF3 iPr H H H Cl 0
    SO2CF3 iPr H H H Cl 1
    SO2CF3 iPr H H H Cl 2
    SO2CF3 iPr H H H Br 0
    SO2CF3 iPr H H H Br 1
    SO2CF3 iPr H H H Br 2
    SO2CF3 iPr H H H I 0
    SO2CF3 iPr H H H I 1
    SO2CF3 iPr H H H I 2
    SO2CF3 iPr H H H Me 0
    SO2CF3 iPr H H H Me 1
    SO2CF3 iPr H H H Me 2
    SO2CF3 iPr H H H CF3 0
    SO2CF3 iPr H H H CF3 1
    SO2CF3 iPr H H H CF3 2
    SO2CF3 iPr H H H CF2CF3 0
    SO2CF3 iPr H H H CF2CF3 1
    SO2CF3 iPr H H H CF2CF3 2
    SO2CF3 iPr H H H CF(CF3)2 0
    SO2CF3 iPr H H H CF(CF3)2 1
    SO2CF3 iPr H H H CF(CF3)2 2
    SO2CF3 iPr H H H SMe 0
    SO2CF3 iPr H H H SMe 1
    SO2CF3 iPr H H H SMe 2
    SO2CF3 iPr H H H SOMe 0
    SO2CF3 iPr H H H SOMe 1
    SO2CF3 iPr H H H SOMe 2
    SO2CF3 iPr H H H SO2Me 0
    SO2CF3 iPr H H H SO2Me 1
    SO2CF3 iPr H H H SO2Me 2
    SO2CF3 iPr H H H OMe 0
    SO2CF3 iPr H H H OMe 1
    SO2CF3 iPr H H H OMe 2
    SO2CF3 iPr H H H OCF3 0
    SO2CF3 iPr H H H OCF3 1
    SO2CF3 iPr H H H OCF3 2
    SO2CF3 iPr H H H NO2 0
    SO2CF3 iPr H H H NO2 1
    SO2CF3 iPr H H H NO2 2
    SO2CF3 iPr H H H CN 0
    SO2CF3 iPr H H H CN 1
    SO2CF3 iPr H H H CN 2
    SO2CF3 iPr H F H F 0
    SO2CF3 iPr H F H F 1
    SO2CF3 iPr H F H F 2
    SO2CF3 iPr H Cl H Cl 0
    SO2CF3 iPr H Cl H Cl 1
    SO2CF3 iPr H Cl H Cl 2
    SO2CF3 iPr H Br H Br 0
    SO2CF3 iPr H Br H Br 1
    SO2CF3 iPr H Br H Br 2
    SO2CF3 iPr H I H I 0
    SO2CF3 iPr H I H I 1
    SO2CF3 iPr H I H I 2
    SO2CF3 iPr H F H Cl 0
    SO2CF3 iPr H F H Cl 1
    SO2CF3 iPr H F H Cl 2
    SO2CF3 iPr H F H Br 0
    SO2CF3 iPr H F H Br 1
    SO2CF3 iPr H F H Br 2
    SO2CF3 iPr H F H I 0
    SO2CF3 iPr H F H I 1
    SO2CF3 iPr H F H I 2
    SO2CF3 iPr H Cl H F 0
    SO2CF3 iPr H Cl H F 1
    SO2CF3 iPr H Cl H F 2
    SO2CF3 iPr H Cl H Br 0
    SO2CF3 iPr H Cl H Br 1
    SO2CF3 iPr H Cl H Br 2
    SO2CF3 iPr H Cl H I 0
    SO2CF3 iPr H Cl H I 1
    SO2CF3 iPr H Cl H I 2
    SO2CF3 iPr H Br H F 0
    SO2CF3 iPr H Br H F 1
    SO2CF3 iPr H Br H F 2
    SO2CF3 iPr H Br H Cl 0
    SO2CF3 iPr H Br H Cl 1
    SO2CF3 iPr H Br H Cl 2
    SO2CF3 iPr H Br H I 0
    SO2CF3 iPr H Br H I 1
    SO2CF3 iPr H Br H I 2
    SO2CF3 iPr H I H F 0
    SO2CF3 iPr H I H F 1
    SO2CF3 iPr H I H F 2
    SO2CF3 iPr H I H Cl 0
    SO2CF3 iPr H I H Cl 1
    SO2CF3 iPr H I H Cl 2
    SO2CF3 iPr H I H Br 0
    SO2CF3 iPr H I H Br 1
    SO2CF3 iPr H I H Br 2
    SO2CF3 iPr H F H CN 0
    SO2CF3 iPr H F H CN 1
    SO2CF3 iPr H F H CN 2
    SO2CF3 iPr H Cl H CN 0
    SO2CF3 iPr H Cl H CN 1
    SO2CF3 iPr H Cl H CN 2
    SO2CF3 iPr H Br H CN 0
    SO2CF3 iPr H Br H CN 1
    SO2CF3 iPr H Br H CN 2
    SO2CF3 iPr H I H CN 0
    SO2CF3 iPr H I H CN 1
    SO2CF3 iPr H I H CN 2
    SO2CF3 iPr H CF3 H F 0
    SO2CF3 iPr H CF3 H F 1
    SO2CF3 iPr H CF3 H F 2
    SO2CF3 iPr H CF3 H Cl 0
    SO2CF3 iPr H CF3 H Cl 1
    SO2CF3 iPr H CF3 H Cl 2
    SO2CF3 iPr H CF3 H Br 0
    SO2CF3 iPr H CF3 H Br 1
    SO2CF3 iPr H CF3 H Br 2
    SO2CF3 iPr H CF3 H I 0
    SO2CF3 iPr H CF3 H I 1
    SO2CF3 iPr H CF3 H I 2
    SO2CF3 iPr H CF3 H CN 0
    SO2CF3 iPr H CF3 H CN 1
    SO2CF3 iPr H CF3 H CN 2
    SO2CF3 iPr H F F H 0
    SO2CF3 iPr H F F H 1
    SO2CF3 iPr H F F H 2
    SO2CF3 iPr H Cl Cl H 0
    SO2CF3 iPr H Cl Cl H 1
    SO2CF3 iPr H Cl Cl H 2
    SO2CF3 iPr H Br Br H 0
    SO2CF3 iPr H Br Br H 1
    SO2CF3 iPr H Br Br H 2
    SO2CF3 iPr H I I H 0
    SO2CF3 iPr H I I H 1
    SO2CF3 iPr H I I H 2
    SO2CF3 iPr H F Cl H 0
    SO2CF3 iPr H F Cl H 1
    SO2CF3 iPr H F Cl H 2
    SO2CF3 iPr H F Br H 0
    SO2CF3 iPr H F Br H 1
    SO2CF3 iPr H F Br H 2
    SO2CF3 iPr H F I H 0
    SO2CF3 iPr H F I H 1
    SO2CF3 iPr H F I H 2
    SO2CF3 iPr H Cl F H 0
    SO2CF3 iPr H Cl F H 1
    SO2CF3 iPr H Cl F H 2
    SO2CF3 iPr H Cl Br H 0
    SO2CF3 iPr H Cl Br H 1
    SO2CF3 iPr H Cl Br H 2
    SO2CF3 iPr H Cl I H 0
    SO2CF3 iPr H Cl I H 1
    SO2CF3 iPr H Cl I H 2
    SO2CF3 iPr H Br F H 0
    SO2CF3 iPr H Br F H 1
    SO2CF3 iPr H Br F H 2
    SO2CF3 iPr H Br Cl H 0
    SO2CF3 iPr H Br Cl H 1
    SO2CF3 iPr H Br Cl H 2
    SO2CF3 iPr H Br I H 0
    SO2CF3 iPr H Br I H 1
    SO2CF3 iPr H Br I H 2
    SO2CF3 iPr H I F H 0
    SO2CF3 iPr H I F H 1
    SO2CF3 iPr H I F H 2
    SO2CF3 iPr H I Cl H 0
    SO2CF3 iPr H I Cl H 1
    SO2CF3 iPr H I Cl H 2
    SO2CF3 iPr H I Br H 0
    SO2CF3 iPr H I Br H 1
    SO2CF3 iPr H I Br H 2
    SO2CF2 iPr H F CN H 0
    SO2CF3 iPr H F CN H 1
    SO2CF3 iPr H F CN H 2
    SO2CF3 iPr H Cl CN H 0
    SO2CF3 iPr H Cl CN H 1
    SO2CF3 iPr H Cl CN H 2
    SO2CF3 iPr H Br CN H 0
    SO2CF3 iPr H Br CN H 1
    SO2CF3 iPr H Br CN H 2
    SO2CF3 iPr H I CN H 0
    SO2CF3 iPr H I CN H 1
    SO2CF3 iPr H I CN H 2
    SO2CF3 iPr H CF3 F H 0
    SO2CF3 iPr H CF3 F H 1
    SO2CF3 iPr H CF3 F H 2
    SO2CF3 iPr H CF3 Cl H 0
    SO2CF3 iPr H CF3 Cl H 1
    SO2CF3 iPr H CF3 Cl H 2
    SO2CF3 iPr H CF3 Br H 0
    SO2CF3 iPr H CF3 Br H 1
    SO2CF3 iPr H CF3 Br H 2
    SO2CF3 iPr H CF3 I H 0
    SO2CF3 iPr H CF3 I H 1
    SO2CF3 iPr H CF3 I H 2
    SO2CF3 iPr H CF3 CN H 0
    SO2CF3 iPr H CF3 CN H 1
    SO2CF3 iPr H CF3 CN H 2
    SO2CF3 CH2CF3 H H H H 0
    SO2CF3 CH2CF3 H H H H 1
    SO2CF3 CH2CF3 H H H H 2
    SO2CF3 CH2CF3 F H H H 0
    SO2CF3 CH2CF3 F H H H 1
    SO2CF3 CH2CF3 F H H H 2
    SO2CF3 CH2CF3 Cl H H H 0
    SO2CF3 CH2CF3 Cl H H H 1
    SO2CF3 CH2CF3 Cl H H H 2
    SO2CF3 CH2CF3 Br H H H 0
    SO2CF3 CH2CF3 Br H H H 1
    SO2CF3 CH2CF3 Br H H H 2
    SO2CF3 CH2CF3 I H H H 0
    SO2CF3 CH2CF3 I H H H 1
    SO2CF3 CH2CF3 I H H H 2
    SO2CF3 CH2CF3 Me H H H 0
    SO2CF3 CH2CF3 Me H H H 1
    SO2CF3 CH2CF3 Me H H H 2
    SO2CF3 CH2CF3 CF3 H H H 0
    SO2CF3 CH2CF3 CF3 H H H 1
    SO2CF3 CH2CF3 CF3 H H H 2
    SO2CF3 CH2CF3 H F H H 0
    SO2CF3 CH2CF3 H F H H 1
    SO2CF3 CH2CF3 H F H H 2
    SO2CF3 CH2CF3 H Cl H H 0
    SO2CF3 CH2CF3 H Cl H H 1
    SO2CF3 CH2CF3 H Cl H H 2
    SO2CF3 CH2CF3 H Br H H 0
    SO2CF3 CH2CF3 H Br H H 1
    SO2CF3 CH2CF3 H Br H H 2
    SO2CF3 CH2CF3 H I H H 0
    SO2CF3 CH2CF3 H I H H 1
    SO2CF3 CH2CF3 H I H H 2
    SO2CF3 CH2CF3 H Me H H 0
    SO2CF3 CH2CF3 H Me H H 1
    SO2CF3 CH2CF3 H Me H H 2
    SO2CF3 CH2CF3 H CF3 H H 0
    SO2CF3 CH2CF3 H CF3 H H 1
    SO2CF3 CH2CF3 H CF3 H H 2
    SO2CF3 CH2CF3 H CF2CF3 H H 0
    SO2CF3 CH2CF3 H CF2CF3 H H 1
    SO2CF3 CH2CF3 H CF2CF3 H H 2
    SO2CF3 CH2CF3 H CF(CF3)2 H H 0
    SO2CF3 CH2CF3 H CF(CF3)2 H H 1
    SO2CF3 CH2CF3 H CF(CF3)2 H H 2
    SO2CF3 CH2CF3 H SMe H H 0
    SO2CF3 CH2CF3 H SMe H H 1
    SO2CF3 CH2CF3 H SMe H H 2
    SO2CF3 CH2CF3 H SOMe H H 0
    SO2CF3 CH2CF3 H SOMe H H 1
    SO2CF3 CH2CF3 H SOMe H H 2
    SO2CF3 CH2CF3 H SO2Me H H 0
    SO2CF3 CH2CF3 H SO2Me H H 1
    SO2CF3 CH2CF3 H SO2Me H H 2
    SO2CF3 CH2CF3 H OMe H H 0
    SO2CF3 CH2CF3 H OMe H H 1
    SO2CF3 CH2CF3 H OMe H H 2
    SO2CF3 CH2CF3 H OCF3 H H 0
    SO2CF3 CH2CF3 H OCF3 H H 1
    SO2CF3 CH2CF3 H OCF3 H H 2
    SO2CF3 CH2CF3 H NO2 H H 0
    SO2CF3 CH2CF3 H NO2 H H 1
    SO2CF3 CH2CF3 H NO2 H H 2
    SO2CF3 CH2CF3 H CN H H 0
    SO2CF3 CH2CF3 H CN H H 1
    SO2CF3 CH2CF3 H CN H H 2
    SO2CF3 CH2CF3 H H F H 0
    SO2CF3 CH2CF3 H H F H 1
    SO2CF3 CH2CF3 H H F H 2
    SO2CF3 CH2CF3 H H Cl H 0
    SO2CF3 CH2CF3 H H Cl H 1
    SO2CF3 CH2CF3 H H Cl H 2
    SO2CF3 CH2CF3 H H Br H 0
    SO2CF3 CH2CF3 H H Br H 1
    SO2CF3 CH2CF3 H H Br H 2
    SO2CF3 CH2CF3 H H I H 0
    SO2CF3 CH2CF3 H H I H 1
    SO2CF3 CH2CF3 H H I H 2
    SO2CF3 CH2CF3 H H Me H 0
    SO2CF3 CH2CF3 H H Me H 1
    SO2CF3 CH2CF3 H H Me H 2
    SO2CF3 CH2CF3 H H CF3 H 0
    SO2CF3 CH2CF3 H H CF3 H 1
    SO2CF3 CH2CF3 H H CF3 H 2
    SO2CF3 CH2CF3 H H CF2CF3 H 0
    SO2CF3 CH2CF3 H H CF2CF3 H 1
    SO2CF3 CH2CF3 H H CF2CF3 H 2
    SO2CF3 CH2CF3 H H CF(CF3)2 H 0
    SO2CF3 CH2CF3 H H CF(CF3)2 H 1
    SO2CF3 CH2CF3 H H CF(CF3)2 H 2
    SO2CF3 CH2CF3 H H SMe H 0
    SO2CF3 CH2CF3 H H SMe H 1
    SO2CF3 CH2CF3 H H SMe H 2
    SO2CF3 CH2CF3 H H SOMe H 0
    SO2CF3 CH2CF3 H H SOMe H 1
    SO2CF3 CH2CF3 H H SOMe H 2
    SO2CF3 CH2CF3 H H SO2Me H 0
    SO2CF3 CH2CF3 H H SO2Me H 1
    SO2CF3 CH2CF3 H H SO2Me H 2
    SO2CF3 CH2CF3 H H OMe H 0
    SO2CF3 CH2CF3 H H OMe H 1
    SO2CF3 CH2CF3 H H OMe H 2
    SO2CF3 CH2CF3 H H OCF3 H 0
    SO2CF3 CH2CF3 H H OCF3 H 1
    SO2CF3 CH2CF3 H H OCF3 H 2
    SO2CF3 CH2CF3 H H NO2 H 0
    SO2CF3 CH2CF3 H H NO2 H 1
    SO2CF3 CH2CF3 H H NO2 H 2
    SO2CF3 CH2CF3 H H CN H 0
    SO2CF3 CH2CF3 H H CN H 1
    SO2CF3 CH2CF3 H H CN H 2
    SO2CF3 CH2CF3 H H H F 0
    SO2CF3 CH2CF3 H H H F 1
    SO2CF3 CH2CF3 H H H F 2
    SO2CF3 CH2CF3 H H H Cl 0
    SO2CF3 CH2CF3 H H H Cl 1
    SO2CF3 CH2CF3 H H H Cl 2
    SO2CF3 CH2CF3 H H H Br 0
    SO2CF3 CH2CF3 H H H Br 1
    SO2CF3 CH2CF3 H H H Br 2
    SO2CF3 CH2CF3 H H H I 0
    SO2CF3 CH2CF3 H H H I 1
    SO2CF3 CH2CF3 H H H I 2
    SO2CF3 CH2CF3 H H H Me 0
    SO2CF3 CH2CF3 H H H Me 1
    SO2CF3 CH2CF3 H H H Me 2
    SO2CF3 CH2CF3 H H H CF3 0
    SO2CF3 CH2CF3 H H H CF3 1
    SO2CF3 CH2CF3 H H H CF3 2
    SO2CF3 CH2CF3 H H H CF2CF3 0
    SO2CF3 CH2CF3 H H H CF2CF3 1
    SO2CF3 CH2CF3 H H H CF2CF3 2
    SO2CF3 CH2CF3 H H H CF(CF3)2 0
    SO2CF3 CH2CF3 H H H CF(CF3)2 1
    SO2CF3 CH2CF3 H H H CF(CF3)2 2
    SO2CF3 CH2CF3 H H H SMe 0
    SO2CF3 CH2CF3 H H H SMe 1
    SO2CF3 CH2CF3 H H H SMe 2
    SO2CF3 CH2CF3 H H H SOMe 0
    SO2CF3 CH2CF3 H H H SOMe 1
    SO2CF3 CH2CF3 H H H SOMe 2
    SO2CF3 CH2CF3 H H H SO2Me 0
    SO2CF3 CH2CF3 H H H SO2Me 1
    SO2CF2 CH2CF3 H H H SO2Me 2
    SO2CF3 CH2CF3 H H H OMe 0
    SO2CF3 CH2CF3 H H H OMe 1
    SO2CF3 CH2CF3 H H H OMe 2
    SO2CF3 CH2CF3 H H H OCF3 0
    SO2CF3 CH2CF3 H H H OCF3 1
    SO2CF3 CH2CF3 H H H OCF3 2
    SO2CF3 CH2CF3 H H H NO2 0
    SO2CF3 CH2CF3 H H H NO2 1
    SO2CF3 CH2CF3 H H H NO2 2
    SO2CF3 CH2CF3 H H H CN 0
    SO2CF3 CH2CF3 H H H CN 1
    SO2CF3 CH2CF3 H H H CN 2
    SO2CF3 CH2CF3 H F H F 0
    SO2CF3 CH2CF3 H F H F 1
    SO2CF3 CH2CF3 H F H F 2
    SO2CF3 CH2CF3 H Cl H Cl 0
    SO2CF3 CH2CF3 H Cl H Cl 1
    SO2CF3 CH2CF3 H Cl H Cl 2
    SO2CF3 CH2CF3 H Br H Br 0
    SO2CF3 CH2CF3 H Br H Br 1
    SO2CF3 CH2CF3 H Br H Br 2
    SO2CF3 CH2CF3 H I H I 0
    SO2CF3 CH2CF3 H I H I 1
    SO2CF3 CH2CF3 H I H I 2
    SO2CF3 CH2CF3 H F H Cl 0
    SO2CF3 CH2CF3 H F H Cl 1
    SO2CF3 CH2CF3 H F H Cl 2
    SO2CF3 CH2CF3 H F H Br 0
    SO2CF3 CH2CF3 H F H Br 1
    SO2CF3 CH2CF3 H F H Br 2
    SO2CF3 CH2CF3 H F H I 0
    SO2CF3 CH2CF3 H F H I 1
    SO2CF3 CH2CF3 H F H I 2
    SO2CF3 CH2CF3 H Cl H F 0
    SO2CF3 CH2CF3 H Cl H F 1
    SO2CF3 CH2CF3 H Cl H F 2
    SO2CF3 CH2CF3 H Cl H Br 0
    SO2CF3 CH2CF3 H Cl H Br 1
    SO2CF3 CH2CF3 H Cl H Br 2
    SO2CF3 CH2CF3 H Cl H I 0
    SO2CF3 CH2CF3 H Cl H I 1
    SO2CF3 CH2CF3 H Cl H I 2
    SO2CF3 CH2CF3 H Br H F 0
    SO2CF3 CH2CF3 H Br H F 1
    SO2CF3 CH2CF3 H Br H F 2
    SO2CF3 CH2CF3 H Br H Cl 0
    SO2CF3 CH2CF3 H Br H Cl 1
    SO2CF3 CH2CF3 H Br H Cl 2
    SO2CF3 CH2CF3 H Br H I 0
    SO2CF3 CH2CF3 H Br H I 1
    SO2CF3 CH2CF3 H Br H I 2
    SO2CF3 CH2CF3 H I H F 0
    SO2CF3 CH2CF3 H I H F 1
    SO2CF3 CH2CF3 H I H F 2
    SO2CF3 CH2CF3 H I H Cl 0
    SO2CF3 CH2CF3 H I H Cl 1
    SO2CF3 CH2CF3 H I H Cl 2
    SO2CF3 CH2CF3 H I H Br 0
    SO2CF3 CH2CF3 H I H Br 1
    SO2CF3 CH2CF3 H I H Br 2
    SO2CF3 CH2CF3 H F H CN 0
    SO2CF3 CH2CF3 H F H CN 1
    SO2CF3 CH2CF3 H F H CN 2
    SO2CF3 CH2CF3 H Cl H CN 0
    SO2CF3 CH2CF3 H Cl H CN 1
    SO2CF3 CH2CF3 H Cl H CN 2
    SO2CF3 CH2CF3 H Br H CN 0
    SO2CF3 CH2CF3 H Br H CN 1
    SO2CF3 CH2CF3 H Br H CN 2
    SO2CF3 CH2CF3 H I H CN 0
    SO2CF3 CH2CF3 H I H CN 1
    SO2CF3 CH2CF3 H I H CN 2
    SO2CF3 CH2CF3 H CF3 H F 0
    SO2CF3 CH2CF3 H CF3 H F 1
    SO2CF3 CH2CF3 H CF3 H F 2
    SO2CF3 CH2CF3 H CF3 H Cl 0
    SO2CF3 CH2CF3 H CF3 H Cl 1
    SO2CF3 CH2CF3 H CF3 H Cl 2
    SO2CF3 CH2CF3 H CF3 H Br 0
    SO2CF3 CH2CF3 H CF3 H Br 1
    SO2CF3 CH2CF3 H CF3 H Br 2
    SO2CF3 CH2CF3 H CF3 H I 0
    SO2CF3 CH2CF3 H CF3 H I 1
    SO2CF3 CH2CF3 H CF3 H I 2
    SO2CF3 CH2CF3 H CF3 H CN 0
    SO2CF3 CH2CF3 H CF3 H CN 1
    SO2CF3 CH2CF3 H CF3 H CN 2
    SO2CF3 CH2CF3 H F F H 0
    SO2CF3 CH2CF3 H F F H 1
    SO2CF3 CH2CF3 H F F H 2
    SO2CF3 CH2CF3 H Cl Cl H 0
    SO2CF3 CH2CF3 H Cl Cl H 1
    SO2CF3 CH2CF3 H Cl Cl H 2
    SO2CF3 CH2CF3 H Br Br H 0
    SO2CF3 CH2CF3 H Br Br H 1
    SO2CF3 CH2CF3 H Br Br H 2
    SO2CF3 CH2CF3 H I I H 0
    SO2CF3 CH2CF3 H I I H 1
    SO2CF3 CH2CF3 H I I H 2
    SO2CF3 CH2CF3 H F Cl H 0
    SO2CF3 CH2CF3 H F Cl H 1
    SO2CF3 CH3CF3 H F Cl H 2
    SO2CF3 CH2CF3 H F Br H 0
    SO2CF3 CH2CF3 H F Br H 1
    SO2CF3 CH2CF3 H F Br H 2
    SO2CF3 CH2CF3 H F I H 0
    SO2CF3 CH2CF3 H F I H 1
    SO2CF3 CH2CF3 H F I H 2
    SO2CF3 CH2CF3 H Cl F H 0
    SO2CF3 CH2CF3 H Cl F H 1
    SO2CF3 CH2CF3 H Cl F H 2
    SO2CF3 CH2CF3 H Cl Br H 0
    SO2CF3 CH2CF3 H Cl Br H 1
    SO2CF3 CH2CF3 H Cl Br H 2
    SO2CF3 CH2CF3 H Cl I H 0
    SO2CF3 CH2CF3 H Cl I H 1
    SO2CF3 CH2CF3 H Cl I H 2
    SO2CF3 CH2CF3 H Br F H 0
    SO2CF3 CH2CF3 H Br F H I
    SO2CF3 CH2CF3 H Br F H 2
    SO2CF3 CH2CF3 H Br Cl H 0
    SO2CF3 CH2CF3 H Br Cl H 1
    SO2CF3 CH2CF3 H Br Cl H 2
    SO2CF3 CH2CF3 H Br I H 0
    SO2CF3 CH2CF3 H Br I H 1
    SO2CF3 CH2CF3 H Br I H 2
    SO2CF3 CH2CF3 H I F H 0
    SO2CF3 CH2CF3 H I F H 1
    SO2CF3 CH2CF3 H I F H 2
    SO2CF3 CH2CF3 H I Cl H 0
    SO2CF3 CH2CF3 H I Cl H 1
    SO2CF3 CH2CF3 H I Cl H 2
    SO2CF3 CH2CF3 H I Br H 0
    SO2CF3 CH2CF3 H I Br H 1
    SO2CF3 CH2CF3 H I Br H 2
    SO2CF3 CH2CF3 H F CN H 0
    SO2CF3 CH2CF3 H F CN H 1
    SO2CF3 CH2CF3 H F CN H 2
    SO2CF3 CH2CF3 H Cl CN H 0
    SO2CF3 CH2CF3 H Cl CN H 1
    SO2CF3 CH2CF3 H Cl CN H 2
    SO2CF3 CH2CF3 H Br CN H 0
    SO2CF3 CH2CF3 H Br CN H 1
    SO2CF3 CH2CF3 H Br CN H 2
    SO2CF3 CH2CF3 H I CN H 0
    SO2CF3 CH2CF3 H I CN H 1
    SO2CF3 CH2CF3 H I CN H 2
    SO2CF3 CH2CF3 H CF3 F H 0
    SO2CF3 CH2CF3 H CF3 F H 1
    SO2CF3 CH2CF3 H CF3 F H 2
    SO2CF3 CH2CF3 H CF3 Cl H 0
    SO2CF3 CH2CF3 H CF3 Cl H 1
    SO2CF3 CH2CF3 H CF3 Cl H 2
    SO2CF3 CH2CF3 H CF3 Br H 0
    SO2CF3 CH2CF3 H CF3 Br H 1
    SO2CF3 CH2CF3 H CF3 Br H 2
    SO2CF3 CH2CF3 H CF3 I H 0
    SO2CF3 CH2CF3 H CF3 I H 1
    SO2CF3 CH2CF3 H CF3 I H 2
    SO2CF3 CH2CF3 H CF3 CN H 0
    SO2CF3 CH2CF3 H CF3 CN H 1
    SO2CF3 CH2CF3 H CF3 CN H 2
  • TABLE 2
    Figure US20210017194A1-20210121-C00117
    Figure US20210017194A1-20210121-C00118
    Figure US20210017194A1-20210121-C00119
    Figure US20210017194A1-20210121-C00120
    Figure US20210017194A1-20210121-C00121
    Figure US20210017194A1-20210121-C00122
    Figure US20210017194A1-20210121-C00123
    Figure US20210017194A1-20210121-C00124
    Figure US20210017194A1-20210121-C00125
    Figure US20210017194A1-20210121-C00126
    Figure US20210017194A1-20210121-C00127
    Figure US20210017194A1-20210121-C00128
    Figure US20210017194A1-20210121-C00129
    Figure US20210017194A1-20210121-C00130
    Figure US20210017194A1-20210121-C00131
    Figure US20210017194A1-20210121-C00132
    Figure US20210017194A1-20210121-C00133
    Figure US20210017194A1-20210121-C00134
    Figure US20210017194A1-20210121-C00135
    Figure US20210017194A1-20210121-C00136
    Figure US20210017194A1-20210121-C00137
    Figure US20210017194A1-20210121-C00138
    Figure US20210017194A1-20210121-C00139
    Figure US20210017194A1-20210121-C00140
    Figure US20210017194A1-20210121-C00141
    Figure US20210017194A1-20210121-C00142
    Figure US20210017194A1-20210121-C00143
    Figure US20210017194A1-20210121-C00144
    Figure US20210017194A1-20210121-C00145
    Figure US20210017194A1-20210121-C00146
    Figure US20210017194A1-20210121-C00147
    Figure US20210017194A1-20210121-C00148
    Figure US20210017194A1-20210121-C00149
    Figure US20210017194A1-20210121-C00150
    Figure US20210017194A1-20210121-C00151
    Figure US20210017194A1-20210121-C00152
    Figure US20210017194A1-20210121-C00153
    Figure US20210017194A1-20210121-C00154
    Figure US20210017194A1-20210121-C00155
    Figure US20210017194A1-20210121-C00156
    Figure US20210017194A1-20210121-C00157
    Figure US20210017194A1-20210121-C00158
    Figure US20210017194A1-20210121-C00159
    Figure US20210017194A1-20210121-C00160
    Figure US20210017194A1-20210121-C00161
    Figure US20210017194A1-20210121-C00162
    Figure US20210017194A1-20210121-C00163
    Figure US20210017194A1-20210121-C00164
    Figure US20210017194A1-20210121-C00165
    Figure US20210017194A1-20210121-C00166
    Figure US20210017194A1-20210121-C00167
    Figure US20210017194A1-20210121-C00168
    Figure US20210017194A1-20210121-C00169
    Figure US20210017194A1-20210121-C00170
    Figure US20210017194A1-20210121-C00171
    Figure US20210017194A1-20210121-C00172
    Figure US20210017194A1-20210121-C00173
    Figure US20210017194A1-20210121-C00174
    Figure US20210017194A1-20210121-C00175
    Figure US20210017194A1-20210121-C00176
    Figure US20210017194A1-20210121-C00177
    Figure US20210017194A1-20210121-C00178
    Figure US20210017194A1-20210121-C00179
    Figure US20210017194A1-20210121-C00180
    Figure US20210017194A1-20210121-C00181
    Figure US20210017194A1-20210121-C00182
    Figure US20210017194A1-20210121-C00183
    Figure US20210017194A1-20210121-C00184
    Figure US20210017194A1-20210121-C00185
    Figure US20210017194A1-20210121-C00186
    Figure US20210017194A1-20210121-C00187
    Figure US20210017194A1-20210121-C00188
    Figure US20210017194A1-20210121-C00189
    Figure US20210017194A1-20210121-C00190
    Figure US20210017194A1-20210121-C00191
    Figure US20210017194A1-20210121-C00192
    Figure US20210017194A1-20210121-C00193
    Figure US20210017194A1-20210121-C00194
    Figure US20210017194A1-20210121-C00195
    Figure US20210017194A1-20210121-C00196
    Figure US20210017194A1-20210121-C00197
    Figure US20210017194A1-20210121-C00198
    Figure US20210017194A1-20210121-C00199
    Figure US20210017194A1-20210121-C00200
    Figure US20210017194A1-20210121-C00201
    Figure US20210017194A1-20210121-C00202
    Figure US20210017194A1-20210121-C00203
    Figure US20210017194A1-20210121-C00204
    Figure US20210017194A1-20210121-C00205
    Figure US20210017194A1-20210121-C00206
    Figure US20210017194A1-20210121-C00207
    Figure US20210017194A1-20210121-C00208
    Figure US20210017194A1-20210121-C00209
    Figure US20210017194A1-20210121-C00210
    Figure US20210017194A1-20210121-C00211
    Figure US20210017194A1-20210121-C00212
    Figure US20210017194A1-20210121-C00213
    Figure US20210017194A1-20210121-C00214
    Figure US20210017194A1-20210121-C00215
    Figure US20210017194A1-20210121-C00216
    Figure US20210017194A1-20210121-C00217
    Figure US20210017194A1-20210121-C00218
    Figure US20210017194A1-20210121-C00219
    Figure US20210017194A1-20210121-C00220
    Figure US20210017194A1-20210121-C00221
    Figure US20210017194A1-20210121-C00222
    Figure US20210017194A1-20210121-C00223
    Figure US20210017194A1-20210121-C00224
    Figure US20210017194A1-20210121-C00225
    Figure US20210017194A1-20210121-C00226
    Figure US20210017194A1-20210121-C00227
    Figure US20210017194A1-20210121-C00228
    Figure US20210017194A1-20210121-C00229
    Figure US20210017194A1-20210121-C00230
    Figure US20210017194A1-20210121-C00231
    Figure US20210017194A1-20210121-C00232
    Figure US20210017194A1-20210121-C00233
    Figure US20210017194A1-20210121-C00234
    Figure US20210017194A1-20210121-C00235
    Figure US20210017194A1-20210121-C00236
    Figure US20210017194A1-20210121-C00237
    Figure US20210017194A1-20210121-C00238
    Figure US20210017194A1-20210121-C00239
    Figure US20210017194A1-20210121-C00240
    Figure US20210017194A1-20210121-C00241
    Figure US20210017194A1-20210121-C00242
    Figure US20210017194A1-20210121-C00243
    Figure US20210017194A1-20210121-C00244
    Figure US20210017194A1-20210121-C00245
    Figure US20210017194A1-20210121-C00246
    Figure US20210017194A1-20210121-C00247
    Figure US20210017194A1-20210121-C00248
    Figure US20210017194A1-20210121-C00249
    Figure US20210017194A1-20210121-C00250
    Figure US20210017194A1-20210121-C00251
    Figure US20210017194A1-20210121-C00252
    Figure US20210017194A1-20210121-C00253
    Figure US20210017194A1-20210121-C00254
    Figure US20210017194A1-20210121-C00255
    Figure US20210017194A1-20210121-C00256
    Figure US20210017194A1-20210121-C00257
    Figure US20210017194A1-20210121-C00258
    Figure US20210017194A1-20210121-C00259
    Figure US20210017194A1-20210121-C00260
    Figure US20210017194A1-20210121-C00261
    Figure US20210017194A1-20210121-C00262
    Figure US20210017194A1-20210121-C00263
    Figure US20210017194A1-20210121-C00264
    Figure US20210017194A1-20210121-C00265
    Figure US20210017194A1-20210121-C00266
    Figure US20210017194A1-20210121-C00267
    Figure US20210017194A1-20210121-C00268
    Figure US20210017194A1-20210121-C00269
    Figure US20210017194A1-20210121-C00270
    Figure US20210017194A1-20210121-C00271
    Figure US20210017194A1-20210121-C00272
    Figure US20210017194A1-20210121-C00273
    Figure US20210017194A1-20210121-C00274
    Figure US20210017194A1-20210121-C00275
    Figure US20210017194A1-20210121-C00276
    Figure US20210017194A1-20210121-C00277
    Figure US20210017194A1-20210121-C00278
    Figure US20210017194A1-20210121-C00279
    Figure US20210017194A1-20210121-C00280
    Figure US20210017194A1-20210121-C00281
    Figure US20210017194A1-20210121-C00282
    Figure US20210017194A1-20210121-C00283
    Figure US20210017194A1-20210121-C00284
    Figure US20210017194A1-20210121-C00285
    Figure US20210017194A1-20210121-C00286
    Figure US20210017194A1-20210121-C00287
    Figure US20210017194A1-20210121-C00288
    Figure US20210017194A1-20210121-C00289
    Figure US20210017194A1-20210121-C00290
    Figure US20210017194A1-20210121-C00291
    Figure US20210017194A1-20210121-C00292
    Figure US20210017194A1-20210121-C00293
    Figure US20210017194A1-20210121-C00294
    Figure US20210017194A1-20210121-C00295
    Figure US20210017194A1-20210121-C00296
    Figure US20210017194A1-20210121-C00297
    Figure US20210017194A1-20210121-C00298
    Figure US20210017194A1-20210121-C00299
    Figure US20210017194A1-20210121-C00300
    Figure US20210017194A1-20210121-C00301
    Figure US20210017194A1-20210121-C00302
    Figure US20210017194A1-20210121-C00303
    Figure US20210017194A1-20210121-C00304
    Figure US20210017194A1-20210121-C00305
    Figure US20210017194A1-20210121-C00306
    Figure US20210017194A1-20210121-C00307
    Figure US20210017194A1-20210121-C00308
    Figure US20210017194A1-20210121-C00309
    Figure US20210017194A1-20210121-C00310
    Figure US20210017194A1-20210121-C00311
    Figure US20210017194A1-20210121-C00312
    Figure US20210017194A1-20210121-C00313
    Figure US20210017194A1-20210121-C00314
    Figure US20210017194A1-20210121-C00315
    Figure US20210017194A1-20210121-C00316
    Figure US20210017194A1-20210121-C00317
    Figure US20210017194A1-20210121-C00318
    Figure US20210017194A1-20210121-C00319
    Figure US20210017194A1-20210121-C00320
    Figure US20210017194A1-20210121-C00321
    Figure US20210017194A1-20210121-C00322
    Figure US20210017194A1-20210121-C00323
    Figure US20210017194A1-20210121-C00324
    Figure US20210017194A1-20210121-C00325
    Figure US20210017194A1-20210121-C00326
    Figure US20210017194A1-20210121-C00327
    Figure US20210017194A1-20210121-C00328
    Figure US20210017194A1-20210121-C00329
    Figure US20210017194A1-20210121-C00330
    Figure US20210017194A1-20210121-C00331
    Figure US20210017194A1-20210121-C00332
    Figure US20210017194A1-20210121-C00333
    Figure US20210017194A1-20210121-C00334
    Figure US20210017194A1-20210121-C00335
    Figure US20210017194A1-20210121-C00336
    Figure US20210017194A1-20210121-C00337
    Figure US20210017194A1-20210121-C00338
    Figure US20210017194A1-20210121-C00339
    Figure US20210017194A1-20210121-C00340
    Figure US20210017194A1-20210121-C00341
    Figure US20210017194A1-20210121-C00342
    Figure US20210017194A1-20210121-C00343
    Figure US20210017194A1-20210121-C00344
    Figure US20210017194A1-20210121-C00345
    Figure US20210017194A1-20210121-C00346
    Figure US20210017194A1-20210121-C00347
    Figure US20210017194A1-20210121-C00348
    Figure US20210017194A1-20210121-C00349
    Figure US20210017194A1-20210121-C00350
    Figure US20210017194A1-20210121-C00351
    Figure US20210017194A1-20210121-C00352
    Figure US20210017194A1-20210121-C00353
    Figure US20210017194A1-20210121-C00354
    Figure US20210017194A1-20210121-C00355
    Figure US20210017194A1-20210121-C00356
    Figure US20210017194A1-20210121-C00357
    Figure US20210017194A1-20210121-C00358
    Figure US20210017194A1-20210121-C00359
    Figure US20210017194A1-20210121-C00360
    Figure US20210017194A1-20210121-C00361
    Figure US20210017194A1-20210121-C00362
    Figure US20210017194A1-20210121-C00363
    Figure US20210017194A1-20210121-C00364
    Figure US20210017194A1-20210121-C00365
    Figure US20210017194A1-20210121-C00366
    Figure US20210017194A1-20210121-C00367
    Figure US20210017194A1-20210121-C00368
    Figure US20210017194A1-20210121-C00369
    Figure US20210017194A1-20210121-C00370
    Figure US20210017194A1-20210121-C00371
    Figure US20210017194A1-20210121-C00372
    Figure US20210017194A1-20210121-C00373
    Figure US20210017194A1-20210121-C00374
    Figure US20210017194A1-20210121-C00375
    Figure US20210017194A1-20210121-C00376
    Figure US20210017194A1-20210121-C00377
    Figure US20210017194A1-20210121-C00378
    Figure US20210017194A1-20210121-C00379
    Figure US20210017194A1-20210121-C00380
    Figure US20210017194A1-20210121-C00381
    Figure US20210017194A1-20210121-C00382
    Figure US20210017194A1-20210121-C00383
    Figure US20210017194A1-20210121-C00384
    Figure US20210017194A1-20210121-C00385
    Figure US20210017194A1-20210121-C00386
    Figure US20210017194A1-20210121-C00387
    Figure US20210017194A1-20210121-C00388
    Figure US20210017194A1-20210121-C00389
    Figure US20210017194A1-20210121-C00390
    Figure US20210017194A1-20210121-C00391
    Figure US20210017194A1-20210121-C00392
    Figure US20210017194A1-20210121-C00393
    Figure US20210017194A1-20210121-C00394
    Figure US20210017194A1-20210121-C00395
    Figure US20210017194A1-20210121-C00396
    Figure US20210017194A1-20210121-C00397
    Figure US20210017194A1-20210121-C00398
    Figure US20210017194A1-20210121-C00399
    Figure US20210017194A1-20210121-C00400
    Figure US20210017194A1-20210121-C00401
    Figure US20210017194A1-20210121-C00402
    Figure US20210017194A1-20210121-C00403
    Figure US20210017194A1-20210121-C00404
    Figure US20210017194A1-20210121-C00405
    Figure US20210017194A1-20210121-C00406
    Figure US20210017194A1-20210121-C00407
    Figure US20210017194A1-20210121-C00408
    Figure US20210017194A1-20210121-C00409
    Figure US20210017194A1-20210121-C00410
    Figure US20210017194A1-20210121-C00411
    Figure US20210017194A1-20210121-C00412
    Figure US20210017194A1-20210121-C00413
    Figure US20210017194A1-20210121-C00414
    W1 R1 W2 W3 W4 n
    CF3 Et H H H 0
    CF3 Et H H H 1
    CF3 Et H H H 2
    CF3 Et F H H 0
    CF3 Et F H H 1
    CF3 Et F H H 2
    CF3 Et Cl H H 0
    CF3 Et Cl H H 1
    CF3 Et Cl H H 2
    CF3 Et Br H H 0
    CF3 Et Br H H 1
    CF3 Et Br H H 2
    CF3 Et I H H 0
    CF3 Et I H H 1
    CF3 Et I H H 2
    CF3 Et Me H H 0
    CF3 Et Me H H 1
    CF3 Et Me H H 2
    CF3 Et CF3 H H 0
    CF3 Et CF3 H H 1
    CF3 Et CF3 H H 2
    CF3 Et CF2CF3 H H 0
    CF3 Et CF2CF3 H H 1
    CF3 Et CF2CF3 H H 2
    CF3 Et CF(CF3)2 H H 0
    CF3 Et CF(CF3)2 H H 1
    CF3 Et CF(CF3)2 H H 2
    CF3 Et SMe H H 0
    CF3 Et SMe H H 1
    CF3 Et SMe H H 2
    CF3 Et SOMe H H 0
    CF3 Et SOMe H H 1
    CF3 Et SOMe H H 2
    CF3 Et SO2Me H H 0
    CF3 Et SO2Me H H 1
    CF3 Et SO2Me H H 2
    CF3 Et OMe H H 0
    CF3 Et OMe H H 1
    CF3 Et OMe H H 2
    CF3 Et OCF3 H H 0
    CF3 Et OCF3 H H 1
    CF3 Et OCF3 H H 2
    CF3 Et NO2 H H 0
    CF3 Et NO2 H H 1
    CF3 Et NO2 H H 2
    CF3 Et CN H H 0
    CF3 Et CN H H 1
    CF3 Et CN H H 2
    CF3 Et H F H 0
    CF3 Et H F H 1
    CF3 Et H F H 2
    CF3 Et H Cl H 0
    CF3 Et H Cl H 1
    CF3 Et H Cl H 2
    CF3 Et H Br H 0
    CF3 Et H Br H 1
    CF3 Et H Br H 2
    CF3 Et H I H 0
    CF3 Et H I H 1
    CF3 Et H I H 2
    CF3 Et H Me H 0
    CF3 Et H Me H 1
    CF3 Et H Me H 2
    CF3 Et H CF3 H 0
    CF3 Et H CF3 H 1
    CF3 Et H CF3 H 2
    CF3 Et H CF2CF3 H 0
    CF3 Et H CF2CF3 H 1
    CF3 Et H CF2CF3 H 2
    CF3 Et H CF(CF3)2 H 0
    CF3 Et H CF(CF3)2 H 1
    CF3 Et H CF(CF3)2 H 2
    CF3 Et H SMe H 0
    CF3 Et H SMe H 1
    CF3 Et H SMe H 2
    CF3 Et H SOMe H 0
    CF3 Et H SOMe H 1
    CF3 Et H SOMe H 2
    CF3 Et H SO2Me H 0
    CF3 Et H SO2Me H 1
    CF3 Et H SO2Me H 2
    CF3 Et H OMe H 0
    CF3 Et H OMe H 1
    CF3 Et H OMe H 2
    CF3 Et H OCF3 H 0
    CF3 Et H OCF3 H I
    CF3 Et H OCF3 H 2
    CF3 Et H NO2 H 0
    CF3 Et H NO2 H 1
    CF3 Et H NO2 H 2
    CF3 Et H CN H 0
    CF3 Et H CN H 1
    CF3 Et H CN H 2
    CF3 Et H H F 0
    CF3 Et H H F 1
    CF3 Et H H F 2
    CF3 Et H H Cl 0
    CF3 Et H H Cl 1
    CF3 Et H H Cl 2
    CF3 Et H H Br 0
    CF3 Et H H Br 1
    CF3 Et H H Br 2
    CF3 Et H H I 0
    CF3 Et H H I 1
    CF3 Et H H I 2
    CF3 Et H H Me 0
    CF3 Et H H Me 1
    CF3 Et H H Me 2
    CF3 Et H H CF3 0
    CF3 Et H H CF3 1
    CF3 Et H H CF3 2
    CF3 Et H H CF2CF3 0
    CF3 Et H H CF2CF3 1
    CF3 Et H H CF2CF3 2
    CF3 Et H H CF(CF3)2 0
    CF3 Et H H CF(CF3)2 1
    CF3 Et H H CF(CF3)2 2
    CF3 Et H H SMe 0
    CF3 Et H H SMe 1
    CF3 Et H H SMe 2
    CF3 Et H H SOMe 0
    CF3 Et H H SOMe 1
    CF3 Et H H SOMe 2
    CF3 Et H H SO2Me 0
    CF3 Et H H SO2Me 1
    CF3 Et H H SO2Me 2
    CF3 Et H H OMe 0
    CF3 Et H H OMe 1
    CF3 Et H H OMe 2
    CF3 Et H H OCF3 0
    CF3 Et H H OCF3 1
    CF3 Et H H OCF3 2
    CF3 Et H H NO2 0
    CF3 Et H H NO2 1
    CF3 Et H H NO2 2
    CF3 Et H H CN 0
    CF3 Et H H CN 1
    CF3 Et H H CN 2
    CF2CF3 Et H H H 0
    CF2CF3 Et H H H 1
    CF2CF3 Et H H H 2
    CF2CF3 Et F H H 0
    CF2CF3 Et F H H 1
    CF2CF3 Et F H H 2
    CF2CF3 Et Cl H H 0
    CF2CF3 Et Cl H H 1
    CF2CF3 Et Cl H H 2
    CF2CF3 Et Br H H 0
    CF2CF3 Et Br H H 1
    CF2CF3 Et Br H H 2
    CF2CF3 Et I H H 0
    CF2CF3 Et I H H 1
    CF2CF3 Et I H H 2
    CF2CF3 Et Me H H 0
    CF2CF3 Et Me H H 1
    CF2CF3 Et Me H H 2
    CF2CF3 Et CF3 H H 0
    CF2CF3 Et CF3 H H 1
    CF2CF3 Et CF3 H H 2
    CF2CF3 Et CF2CF3 H H 0
    CF2CF3 Et CF2CF3 H H 1
    CF2CF3 Et CF2CF3 H H 2
    CF2CF3 Et CF(CF3)2 H H 0
    CF2CF3 Et CF(CF3)2 H H 1
    CF2CF3 Et CF(CF3)2 H H 2
    CF2CF3 Et SMe H H 0
    CF2CF3 Et SMe H H 1
    CF2CF3 Et SMe H H 2
    CF2CF3 Et SOMe H H 0
    CF2CF3 Et SOMe H H 1
    CF2CF3 Et SOMe H H 2
    CF2CF3 Et SO2Me H H 0
    CF2CF3 Et SO2Me H H 1
    CF2CF3 Et SO2Me H H 2
    CF2CF3 Et OMe H H 0
    CF2CF3 Et OMe H H 1
    CF2CF3 Et OMe H H 2
    CF2CF3 Et OCF3 H H 0
    CF2CF3 Et OCF3 H H 1
    CF2CF3 Et OCF3 H H 2
    CF2CF3 Et NO2 H H 0
    CF2CF3 Et NO2 H H 1
    CF2CF3 Et NO2 H H 2
    CF2CF3 Et CN H H 0
    CF2CF3 Et CN H H 1
    CF2CF3 Et CN H H 2
    CF2CF3 Et H F H 0
    CF2CF3 Et H F H 1
    CF2CF3 Et H F H 2
    CF2CF3 Et H Cl H 0
    CF2CF3 Et H Cl H 1
    CF2CF3 Et H Cl H 2
    CF2CF3 Et H Br H 0
    CF2CF3 Et H Br H 1
    CF2CF3 Et H Br H 2
    CF2CF3 Et H I H 0
    CF2CF3 Et H I H 1
    CF2CF3 Et H I H 2
    CF2CF3 Et H Me H 0
    CF2CF3 Et H Me H 1
    CF2CF3 Et H Me H 2
    CF2CF3 Et H CF3 H 0
    CF2CF3 Et H CF3 H 1
    CF2CF3 Et H CF3 H 2
    CF2CF3 Et H CF2CF3 H 0
    CF2CF3 Et H CF2CF3 H 1
    CF2CF3 Et H CF2CF3 H 2
    CF2CF3 Et H CF(CF3)2 H 0
    CF2CF3 Et H CF(CF3)2 H 1
    CF2CF3 Et H CF(CF3)2 H 2
    CF2CF3 Et H SMe H 0
    CF2CF3 Et H SMe H 1
    CF2CF3 Et H SMe H 2
    CF2CF3 Et H SOMe H 0
    CF2CF3 Et H SOMe H 1
    CF2CF3 Et H SOMe H 2
    CF2CF3 Et H SO2Me H 0
    CF2CF3 Et H SO2Me H 1
    CF2CF3 Et H SO2Me H 2
    CF2CF3 Et H OMe H 0
    CF2CF3 Et H OMe H 1
    CF2CF3 Et H OMe H 2
    CF2CF3 Et H OCF3 H 0
    CF2CF3 Et H OCF3 H I
    CF2CF3 Et H OCF3 H 2
    CF2CF3 Et H NO2 H 0
    CF2CF3 Et H NO2 H 1
    CF2CF3 Et H NO2 H 2
    CF2CF3 Et H CN H 0
    CF2CF3 Et H CN H 1
    CF2CF3 Et H CN H 2
    CF2CF3 Et H H F 0
    CF2CF3 Et H H F 1
    CF2CF3 Et H H F 2
    CF2CF3 Et H H Cl 0
    CF2CF3 Et H H Cl 1
    CF2CF3 Et H H Cl 2
    CF2CF3 Et H H Br 0
    CF2CF3 Et H H Br 1
    CF2CF3 Et H H Br 2
    CF2CF3 Et H H I 0
    CF2CF3 Et H H I 1
    CF2CF3 Et H H I 2
    CF2CF3 Et H H Me 0
    CF2CF3 Et H H Me 1
    CF2CF3 Et H H Me 2
    CF2CF3 Et H H CF3 0
    CF2CF3 Et H H CF3 1
    CF2CF3 Et H H CF3 2
    CF2CF3 Et H H CF2CF3 0
    CF2CF3 Et H H CF2CF3 1
    CF2CF3 Et H H CF2CF3 2
    CF2CF3 Et H H CF(CF3)2 0
    CF2CF3 Et H H CF(CF3)2 1
    CF2CF3 Et H H CF(CF3)2 2
    CF2CF3 Et H H SMe 0
    CF2CF3 Et H H SMe 1
    CF2CF3 Et H H SMe 2
    CF2CF3 Et H H SOMe 0
    CF2CF3 Et H H SOMe 1
    CF2CF3 Et H H SOMe 2
    CF2CF3 Et H H SO2Me 0
    CF2CF3 Et H H SO2Me 1
    CF2CF3 Et H H SO2Me 2
    CF2CF3 Et H H OMe 0
    CF2CF3 Et H H OMe 1
    CF2CF3 Et H H OMe 2
    CF2CF3 Et H H OCF3 0
    CF2CF3 Et H H OCF3 1
    CF2CF3 Et H H OCF3 2
    CF2CF3 Et H H NO2 0
    CF2CF3 Et H H NO2 1
    CF2CF3 Et H H NO2 2
    CF2CF3 Et H H CN 0
    CF2CF3 Et H H CN 1
    CF2CF3 Et H H CN 2
  • TABLE 3
    Figure US20210017194A1-20210121-C00415
    Figure US20210017194A1-20210121-C00416
    Figure US20210017194A1-20210121-C00417
    Figure US20210017194A1-20210121-C00418
    Figure US20210017194A1-20210121-C00419
    Figure US20210017194A1-20210121-C00420
    Figure US20210017194A1-20210121-C00421
    Figure US20210017194A1-20210121-C00422
    Figure US20210017194A1-20210121-C00423
    Figure US20210017194A1-20210121-C00424
    Figure US20210017194A1-20210121-C00425
    Figure US20210017194A1-20210121-C00426
    Figure US20210017194A1-20210121-C00427
    Figure US20210017194A1-20210121-C00428
    Figure US20210017194A1-20210121-C00429
    Figure US20210017194A1-20210121-C00430
    Figure US20210017194A1-20210121-C00431
    Figure US20210017194A1-20210121-C00432
    Figure US20210017194A1-20210121-C00433
    Figure US20210017194A1-20210121-C00434
    Figure US20210017194A1-20210121-C00435
    Figure US20210017194A1-20210121-C00436
    Figure US20210017194A1-20210121-C00437
    Figure US20210017194A1-20210121-C00438
    Figure US20210017194A1-20210121-C00439
    Figure US20210017194A1-20210121-C00440
    Figure US20210017194A1-20210121-C00441
    Figure US20210017194A1-20210121-C00442
    Figure US20210017194A1-20210121-C00443
    Figure US20210017194A1-20210121-C00444
    Figure US20210017194A1-20210121-C00445
    Figure US20210017194A1-20210121-C00446
    Figure US20210017194A1-20210121-C00447
    Figure US20210017194A1-20210121-C00448
    Figure US20210017194A1-20210121-C00449
    Figure US20210017194A1-20210121-C00450
    Figure US20210017194A1-20210121-C00451
    Figure US20210017194A1-20210121-C00452
    Figure US20210017194A1-20210121-C00453
    Figure US20210017194A1-20210121-C00454
    Figure US20210017194A1-20210121-C00455
    Figure US20210017194A1-20210121-C00456
    Figure US20210017194A1-20210121-C00457
    Figure US20210017194A1-20210121-C00458
    Figure US20210017194A1-20210121-C00459
    Figure US20210017194A1-20210121-C00460
    Figure US20210017194A1-20210121-C00461
    Figure US20210017194A1-20210121-C00462
    Figure US20210017194A1-20210121-C00463
    Figure US20210017194A1-20210121-C00464
    Figure US20210017194A1-20210121-C00465
    Figure US20210017194A1-20210121-C00466
    Figure US20210017194A1-20210121-C00467
    Figure US20210017194A1-20210121-C00468
    Figure US20210017194A1-20210121-C00469
    Figure US20210017194A1-20210121-C00470
    Figure US20210017194A1-20210121-C00471
    Figure US20210017194A1-20210121-C00472
    Figure US20210017194A1-20210121-C00473
    Figure US20210017194A1-20210121-C00474
    Figure US20210017194A1-20210121-C00475
    Figure US20210017194A1-20210121-C00476
    Figure US20210017194A1-20210121-C00477
    W1 R1 Y5 Y6 n
    CF3 Et H H 0
    CF3 Et H H 1
    CF3 Et H H 2
    CF3 Et H F 0
    CF3 Et H F 1
    CF3 Et H F 2
    CF3 Et H Cl 0
    CF3 Et H Cl 1
    CF3 Et H Cl 2
    CF3 Et H Br 0
    CF3 Et H Br 1
    CF3 Et H Br 2
    CF3 Et H I 0
    CF3 Et H I 1
    CF3 Et H I 2
    CF3 Et H Me 0
    CF3 Et H Me 1
    CF3 Et H Me 2
    CF3 Et H CF3 0
    CF3 Et H CF3 1
    CF3 Et H CF3 2
    CF3 Et H CF2CF3 0
    CF3 Et H CF2CF3 1
    CF3 Et H CF2CF3 2
    CF3 Et H CF(CF3)2 0
    CF3 Et H CF(CF3)2 1
    CF3 Et H CF(CF3)2 2
    CF3 Et H SMe 0
    CF3 Et H SMe 1
    CF3 Et H SMe 2
    CF3 Et H SOMe 0
    CF3 Et H SOMe 1
    CF3 Et H SOMe 2
    CF3 Et H SO2Me 0
    CF3 Et H SO2Me 1
    CF3 Et H SO2Me 2
    CF3 Et H OMe 0
    CF3 Et H OMe 1
    CF3 Et H OMe 2
    CF3 Et H OCF3 0
    CF3 Et H OCF3 1
    CF3 Et H OCF3 2
    CF3 Et H NO2 0
    CF3 Et H NO2 1
    CF3 Et H NO2 2
    CF3 Et H CN 0
    CF3 Et H CN 1
    CF3 Et H CN 2
    CF2CF3 Et H H 0
    CF2CF3 Et H H 1
    CF2CF3 Et H H 2
    CF2CF3 Et H F 0
    CF2CF3 Et H F 1
    CF2CF3 Et H F 2
    CF2CF3 Et H Cl 0
    CF2CF3 Et H Cl 1
    CF2CF3 Et H Cl 2
    CF2CF3 Et H Br 0
    CF2CF3 Et H Br 1
    CF2CF3 Et H Br 2
    CF2CF3 Et H I 0
    CF2CF3 Et H I 1
    CF2CF3 Et H I 2
    CF2CF3 Et H Me 0
    CF2CF3 Et H Me 1
    CF2CF3 Et H Me 2
    CF2CF3 Et H CF3 0
    CF2CF3 Et H CF3 1
    CF2CF3 Et H CF3 2
    CF2CF3 Et H CF2CF3 0
    CF2CF3 Et H CF2CF3 1
    CF2CF3 Et H CF2CF3 2
    CF2CF3 Et H CF(CF3)2 0
    CF2CF3 Et H CF(CF3)2 1
    CF2CF3 Et H CF(CF3)2 2
    CF2CF3 Et H SMe 0
    CF2CF3 Et H SMe 1
    CF2CF3 Et H SMe 2
    CF2CF3 Et H SOMe 0
    CF2CF3 Et H SOMe 1
    CF2CF3 Et H SOMe 2
    CF2CF3 Et H SO2Me 0
    CF2CF3 Et H SO2Me 1
    CF2CF3 Et H SO2Me 2
    CF2CF3 Et H OMe 0
    CF2CF3 Et H OMe 1
    CF2CF3 Et H OMe 2
    CF2CF3 Et H OCF3 0
    CF2CF3 Et H OCF3 1
    CF2CF3 Et H OCF3 2
    CF2CF3 Et H NO2 0
    CF2CF3 Et H NO2 1
    CF2CF3 Et H NO2 2
    CF2CF3 Et H CN 0
    CF2CF3 Et H CN 1
    CF2CF3 Et H CN 2
  • TABLE 4
    Figure US20210017194A1-20210121-C00478
    Figure US20210017194A1-20210121-C00479
    Figure US20210017194A1-20210121-C00480
    Figure US20210017194A1-20210121-C00481
    Figure US20210017194A1-20210121-C00482
    Figure US20210017194A1-20210121-C00483
    Figure US20210017194A1-20210121-C00484
    Figure US20210017194A1-20210121-C00485
    Figure US20210017194A1-20210121-C00486
    Figure US20210017194A1-20210121-C00487
    Figure US20210017194A1-20210121-C00488
    Figure US20210017194A1-20210121-C00489
    Figure US20210017194A1-20210121-C00490
    Figure US20210017194A1-20210121-C00491
    Figure US20210017194A1-20210121-C00492
    Figure US20210017194A1-20210121-C00493
    Figure US20210017194A1-20210121-C00494
    Figure US20210017194A1-20210121-C00495
    Figure US20210017194A1-20210121-C00496
    Figure US20210017194A1-20210121-C00497
    Figure US20210017194A1-20210121-C00498
    Figure US20210017194A1-20210121-C00499
    Figure US20210017194A1-20210121-C00500
    Figure US20210017194A1-20210121-C00501
    Figure US20210017194A1-20210121-C00502
    Figure US20210017194A1-20210121-C00503
    Figure US20210017194A1-20210121-C00504
    Figure US20210017194A1-20210121-C00505
    Figure US20210017194A1-20210121-C00506
    Figure US20210017194A1-20210121-C00507
    Figure US20210017194A1-20210121-C00508
    Figure US20210017194A1-20210121-C00509
    Figure US20210017194A1-20210121-C00510
    Figure US20210017194A1-20210121-C00511
    Figure US20210017194A1-20210121-C00512
    Figure US20210017194A1-20210121-C00513
    Figure US20210017194A1-20210121-C00514
    Figure US20210017194A1-20210121-C00515
    Figure US20210017194A1-20210121-C00516
    Figure US20210017194A1-20210121-C00517
    Figure US20210017194A1-20210121-C00518
    Figure US20210017194A1-20210121-C00519
    Figure US20210017194A1-20210121-C00520
    Figure US20210017194A1-20210121-C00521
    Figure US20210017194A1-20210121-C00522
    Figure US20210017194A1-20210121-C00523
    Figure US20210017194A1-20210121-C00524
    Figure US20210017194A1-20210121-C00525
    Figure US20210017194A1-20210121-C00526
    Figure US20210017194A1-20210121-C00527
    Figure US20210017194A1-20210121-C00528
    Figure US20210017194A1-20210121-C00529
    Figure US20210017194A1-20210121-C00530
    Figure US20210017194A1-20210121-C00531
    Figure US20210017194A1-20210121-C00532
    Figure US20210017194A1-20210121-C00533
    Figure US20210017194A1-20210121-C00534
    Figure US20210017194A1-20210121-C00535
    Figure US20210017194A1-20210121-C00536
    Figure US20210017194A1-20210121-C00537
    Figure US20210017194A1-20210121-C00538
    Figure US20210017194A1-20210121-C00539
    Figure US20210017194A1-20210121-C00540
    Figure US20210017194A1-20210121-C00541
    Figure US20210017194A1-20210121-C00542
    Figure US20210017194A1-20210121-C00543
    Figure US20210017194A1-20210121-C00544
    Figure US20210017194A1-20210121-C00545
    Figure US20210017194A1-20210121-C00546
    Figure US20210017194A1-20210121-C00547
    Figure US20210017194A1-20210121-C00548
    Figure US20210017194A1-20210121-C00549
    Figure US20210017194A1-20210121-C00550
    Figure US20210017194A1-20210121-C00551
    Figure US20210017194A1-20210121-C00552
    Figure US20210017194A1-20210121-C00553
    Figure US20210017194A1-20210121-C00554
    Figure US20210017194A1-20210121-C00555
    W1 R1 Y6 n
    CF3 Et H 0
    CF3 Et H 1
    CF3 Et H 2
    CF3 Et F 0
    CF3 Et F 1
    CF3 Et F 2
    CF3 Et Cl 0
    CF3 Et Cl 1
    CF3 Et Cl 2
    CF3 Et Br 0
    CF3 Et Br 1
    CF3 Et Br 2
    CF3 Et I 0
    CF3 Et I 1
    CF3 Et I 2
    CF3 Et Me 0
    CF3 Et Me 1
    CF3 Et Me 2
    CF3 Et CF3 0
    CF3 Et CF3 1
    CF3 Et CF3 2
    CF3 Et CF2CF3 0
    CF3 Et CF2CF3 1
    CF3 Et CF2CF3 2
    CF3 Et CF(CF3)2 0
    CF3 Et CF(CF3)2 1
    CF3 Et CF(CF3)2 2
    CF3 Et SMe 0
    CF3 Et SMe 1
    CF3 Et SMe 2
    CF3 Et SOMe 0
    CF3 Et SOMe 1
    CF3 Et SOMe 2
    CF3 Et SO2Me 0
    CF3 Et SO2Me 1
    CF3 Et SO2Me 2
    CF3 Et OMe 0
    CF3 Et OMe 1
    CF3 Et OMe 2
    CF3 Et OCF3 0
    CF3 Et OCF3 1
    CF3 Et OCF3 2
    CF3 Et NO2 0
    CF3 Et NO2 1
    CF3 Et NO2 2
    CF3 Et CN 0
    CF3 Et CN 1
    CF3 Et CN 2
    CF2CF3 Et H 0
    CF2CF3 Et H 1
    CF2CF3 Et H 2
    CF2CF3 Et F 0
    CF2CF3 Et F 1
    CF2CF3 Et F 2
    CF2CF3 Et Cl 0
    CF2CF3 Et Cl 1
    CF2CF3 Et Cl 2
    CF2CF3 Et Br 0
    CF2CF3 Et Br 1
    CF2CF3 Et Br 2
    CF2CF3 Et I 0
    CF2CF3 Et I 1
    CF2CF3 Et I 2
    CF2CF3 Et Me 0
    CF2CF3 Et Me 1
    CF2CF3 Et Me 2
    CF2CF3 Et CF3 0
    CF2CF3 Et CF3 1
    CF2CF3 Et CF3 2
    CF2CF3 Et CF2CF3 0
    CF2CF3 Et CF2CF3 1
    CF2CF3 Et CF2CF3 2
    CF2CF3 Et CF(CF3)2 0
    CF2CF3 Et CF(CF3)2 1
    CF2CF3 Et CF(CF3)2 2
    CF2CF3 Et SMe 0
    CF2CF3 Et SMe 1
    CF2CF3 Et SMe 2
    CF2CF3 Et SOMe 0
    CF2CF3 Et SOMe 1
    CF2CF3 Et SOMe 2
    CF2CF3 Et SO2Me 0
    CF2CF3 Et SO2Me 1
    CF2CF3 Et SO2Me 2
    CF2CF3 Et OMe 0
    CF2CF3 Et OMe 1
    CF2CF3 Et OMe 2
    CF2CF3 Et OCF3 0
    CF2CF3 Et OCF3 1
    CF2CF3 Et OCF3 2
    CF2CF3 Et NO2 0
    CF2CF3 Et NO2 1
    CF2CF3 Et NO2 2
    CF2CF3 Et CN 0
    CF2CF3 Et CN 1
    CF2CF3 Et CN 2
  • TABLE 5
    Figure US20210017194A1-20210121-C00556
    Figure US20210017194A1-20210121-C00557
    Figure US20210017194A1-20210121-C00558
    Figure US20210017194A1-20210121-C00559
    Figure US20210017194A1-20210121-C00560
    Figure US20210017194A1-20210121-C00561
    Figure US20210017194A1-20210121-C00562
    Figure US20210017194A1-20210121-C00563
    Figure US20210017194A1-20210121-C00564
    Figure US20210017194A1-20210121-C00565
    Figure US20210017194A1-20210121-C00566
    Figure US20210017194A1-20210121-C00567
    Figure US20210017194A1-20210121-C00568
    Figure US20210017194A1-20210121-C00569
    Figure US20210017194A1-20210121-C00570
    Figure US20210017194A1-20210121-C00571
    Figure US20210017194A1-20210121-C00572
    Figure US20210017194A1-20210121-C00573
    Figure US20210017194A1-20210121-C00574
    Figure US20210017194A1-20210121-C00575
    Figure US20210017194A1-20210121-C00576
    Figure US20210017194A1-20210121-C00577
    Figure US20210017194A1-20210121-C00578
    Figure US20210017194A1-20210121-C00579
    Figure US20210017194A1-20210121-C00580
    Figure US20210017194A1-20210121-C00581
    Figure US20210017194A1-20210121-C00582
    Figure US20210017194A1-20210121-C00583
    Figure US20210017194A1-20210121-C00584
    Figure US20210017194A1-20210121-C00585
    Figure US20210017194A1-20210121-C00586
    Figure US20210017194A1-20210121-C00587
    Figure US20210017194A1-20210121-C00588
    Figure US20210017194A1-20210121-C00589
    Figure US20210017194A1-20210121-C00590
    Figure US20210017194A1-20210121-C00591
    Figure US20210017194A1-20210121-C00592
    Figure US20210017194A1-20210121-C00593
    Figure US20210017194A1-20210121-C00594
    Figure US20210017194A1-20210121-C00595
    Figure US20210017194A1-20210121-C00596
    Figure US20210017194A1-20210121-C00597
    Figure US20210017194A1-20210121-C00598
    Figure US20210017194A1-20210121-C00599
    Figure US20210017194A1-20210121-C00600
    Figure US20210017194A1-20210121-C00601
    Figure US20210017194A1-20210121-C00602
    Figure US20210017194A1-20210121-C00603
    Figure US20210017194A1-20210121-C00604
    Figure US20210017194A1-20210121-C00605
    Figure US20210017194A1-20210121-C00606
    Figure US20210017194A1-20210121-C00607
    Figure US20210017194A1-20210121-C00608
    Figure US20210017194A1-20210121-C00609
    Figure US20210017194A1-20210121-C00610
    Figure US20210017194A1-20210121-C00611
    Figure US20210017194A1-20210121-C00612
    Figure US20210017194A1-20210121-C00613
    Figure US20210017194A1-20210121-C00614
    Figure US20210017194A1-20210121-C00615
    Figure US20210017194A1-20210121-C00616
    Figure US20210017194A1-20210121-C00617
    Figure US20210017194A1-20210121-C00618
    Figure US20210017194A1-20210121-C00619
    Figure US20210017194A1-20210121-C00620
    Figure US20210017194A1-20210121-C00621
    Figure US20210017194A1-20210121-C00622
    Figure US20210017194A1-20210121-C00623
    Figure US20210017194A1-20210121-C00624
    Figure US20210017194A1-20210121-C00625
    Figure US20210017194A1-20210121-C00626
    Figure US20210017194A1-20210121-C00627
    Figure US20210017194A1-20210121-C00628
    Figure US20210017194A1-20210121-C00629
    Figure US20210017194A1-20210121-C00630
    Figure US20210017194A1-20210121-C00631
    Figure US20210017194A1-20210121-C00632
    Figure US20210017194A1-20210121-C00633
    Figure US20210017194A1-20210121-C00634
    Figure US20210017194A1-20210121-C00635
    Figure US20210017194A1-20210121-C00636
    Figure US20210017194A1-20210121-C00637
    Figure US20210017194A1-20210121-C00638
    Figure US20210017194A1-20210121-C00639
    Figure US20210017194A1-20210121-C00640
    Figure US20210017194A1-20210121-C00641
    Figure US20210017194A1-20210121-C00642
    Figure US20210017194A1-20210121-C00643
    Figure US20210017194A1-20210121-C00644
    Figure US20210017194A1-20210121-C00645
    Figure US20210017194A1-20210121-C00646
    Figure US20210017194A1-20210121-C00647
    Figure US20210017194A1-20210121-C00648
    Figure US20210017194A1-20210121-C00649
    Figure US20210017194A1-20210121-C00650
    Figure US20210017194A1-20210121-C00651
    Figure US20210017194A1-20210121-C00652
    Figure US20210017194A1-20210121-C00653
    Figure US20210017194A1-20210121-C00654
    Figure US20210017194A1-20210121-C00655
    Figure US20210017194A1-20210121-C00656
    Figure US20210017194A1-20210121-C00657
    Figure US20210017194A1-20210121-C00658
    Figure US20210017194A1-20210121-C00659
    Figure US20210017194A1-20210121-C00660
    Figure US20210017194A1-20210121-C00661
    Figure US20210017194A1-20210121-C00662
    Figure US20210017194A1-20210121-C00663
    Figure US20210017194A1-20210121-C00664
    Figure US20210017194A1-20210121-C00665
    Figure US20210017194A1-20210121-C00666
    Figure US20210017194A1-20210121-C00667
    Figure US20210017194A1-20210121-C00668
    Figure US20210017194A1-20210121-C00669
    Figure US20210017194A1-20210121-C00670
    Figure US20210017194A1-20210121-C00671
    Figure US20210017194A1-20210121-C00672
    Figure US20210017194A1-20210121-C00673
    Figure US20210017194A1-20210121-C00674
    Figure US20210017194A1-20210121-C00675
    Figure US20210017194A1-20210121-C00676
    Figure US20210017194A1-20210121-C00677
    Figure US20210017194A1-20210121-C00678
    Figure US20210017194A1-20210121-C00679
    Figure US20210017194A1-20210121-C00680
    Figure US20210017194A1-20210121-C00681
    Figure US20210017194A1-20210121-C00682
    Figure US20210017194A1-20210121-C00683
    Figure US20210017194A1-20210121-C00684
    Figure US20210017194A1-20210121-C00685
    Figure US20210017194A1-20210121-C00686
    Figure US20210017194A1-20210121-C00687
    Figure US20210017194A1-20210121-C00688
    Figure US20210017194A1-20210121-C00689
    Figure US20210017194A1-20210121-C00690
    Figure US20210017194A1-20210121-C00691
    Figure US20210017194A1-20210121-C00692
    Figure US20210017194A1-20210121-C00693
    Figure US20210017194A1-20210121-C00694
    Figure US20210017194A1-20210121-C00695
    Figure US20210017194A1-20210121-C00696
    W1 R1 Y1 Y2 Y3 Y4 n
    CF3 Et H H H H 0
    CF3 Et H H H H 1
    CF3 Et H H H H 2
    CF3 Et F H H H 0
    CF3 Et F H H H 1
    CF3 Et F H H H 2
    CF3 Et Cl H H H 0
    CF3 Et Cl H H H 1
    CF3 Et Cl H H H 2
    CF3 Et Br H H H 0
    CF3 Et Br H H H 1
    CF3 Et Br H H H 2
    CF3 Et I H H H 0
    CF3 Et I H H H 1
    CF3 Et I H H H 2
    CF3 Et Me H H H 0
    CF3 Et Me H H H 1
    CF3 Et Me H H H 2
    CF3 Et CF3 H H H 0
    CF3 Et CF3 H H H 1
    CF3 Et CF3 H H H 2
    CF3 Et H F H H 0
    CF3 Et H F H H 1
    CF3 Et H F H H 2
    CF3 Et H Cl H H 0
    CF3 Et H Cl H H 1
    CF3 Et H Cl H H 2
    CF3 Et H Br H H 0
    CF3 Et H Br H H 1
    CF3 Et H Br H H 2
    CF3 Et H I H H 0
    CF3 Et H I H H 1
    CF3 Et H I H H 2
    CF3 Et H Me H H 0
    CF3 Et H Me H H 1
    CF3 Et H Me H H 2
    CF3 Et H CF3 H H 0
    CF3 Et H CF3 H H 1
    CF3 Et H CF3 H H 2
    CF3 Et H CF2CF3 H H 0
    CF3 Et H CF2CF3 H H 1
    CF3 Et H CF2CF3 H H 2
    CF3 Et H CF(CF3)2 H H 0
    CF3 Et H CF(CF3)2 H H 1
    CF3 Et H CF(CF3)2 H H 2
    CF3 Et H SMe H H 0
    CF3 Et H SMe H H 1
    CF3 Et H SMe H H 2
    CF3 Et H SOMe H H 0
    CF3 Et H SOMe H H 1
    CF3 Et H SOMe H H 2
    CF3 Et H SO2Me H H 0
    CF3 Et H SO2Me H H 1
    CF3 Et H SO2Me H H 2
    CF3 Et H OMe H H 0
    CF3 Et H OMe H H 1
    CF3 Et H OMe H H 2
    CF3 Et H OCF3 H H 0
    CF3 Et H OCF3 H H 1
    CF3 Et H OCF3 H H 2
    CF3 Et H NO2 H H 0
    CF3 Et H NO2 H H 1
    CF3 Et H NO2 H H 2
    CF3 Et H CN H H 0
    CF3 Et H CN H H 1
    CF3 Et H CN H H 2
    CF3 Et H H F H 0
    CF3 Et H H F H 1
    CF3 Et H H F H 2
    CF3 Et H H Cl H 0
    CF3 Et H H Cl H 1
    CF3 Et H H Cl H 2
    CF3 Et H H Br H 0
    CF3 Et H H Br H 1
    CF3 Et H H Br H 2
    CF3 Et H H I H 0
    CF3 Et H H I H 1
    CF3 Et H H I H 2
    CF3 Et H H Me H 0
    CF3 Et H H Me H 1
    CF3 Et H H Me H 2
    CF3 Et H H CF3 H 0
    CF3 Et H H CF3 H 1
    CF3 Et H H CF3 H 2
    CF3 Et H H CF2CF3 H 0
    CF3 Et H H CF2CF3 H 1
    CF3 Et H H CF2CF3 H 2
    CF3 Et H H CF(CF3)2 H 0
    CF3 Et H H CF(CF3)2 H 1
    CF3 Et H H CF(CF3)2 H 2
    CF3 Et H H SMe H 0
    CF3 Et H H SMe H 1
    CF3 Et H H SMe H 2
    CF3 Et H H SOMe H 0
    CF3 Et H H SOMe H 1
    CF3 Et H H SOMe H 2
    CF3 Et H H SO2Me H 0
    CF3 Et H H SO2Me H 1
    CF3 Et H H SO2Me H 2
    CF3 Et H H OMe H 0
    CF3 Et H H OMe H 1
    CF3 Et H H OMe H 2
    CF3 Et H H OCF3 H 0
    CF3 Et H H OCF3 H 1
    CF3 Et H H OCF3 H 2
    CF3 Et H H NO2 H 0
    CF3 Et H H NO2 H 1
    CF3 Et H H NO2 H 2
    CF3 Et H H CN H 0
    CF3 Et H H CN H 1
    CF3 Et H H CN H 2
    CF3 Et H H H F 0
    CF3 Et H H H F 1
    CF3 Et H H H F 2
    CF3 Et H H H Cl 0
    CF3 Et H H H Cl 1
    CF3 Et H H H Cl 2
    CF3 Et H H H Br 0
    CF3 Et H H H Br 1
    CF3 Et H H H Br 2
    CF3 Et H H H I 0
    CF3 Et H H H I 1
    CF3 Et H H H I 2
    CF3 Et H H H Me 0
    CF3 Et H H H Me 1
    CF3 Et H H H Me 2
    CF3 Et H H H CF3 0
    CF3 Et H H H CF3 1
    CF3 Et H H H CF3 2
    CF3 Et H H H CF2CF3 0
    CF3 Et H H H CF2CF3 1
    CF3 Et H H H CF2CF3 2
    CF3 Et H H H CF(CF3)2 0
    CF3 Et H H H CF(CF3)2 1
    CF3 Et H H H CF(CF3)2 2
    CF3 Et H H H SMe 0
    CF3 Et H H H SMe 1
    CF3 Et H H H SMe 2
    CF3 Et H H H SOMe 0
    CF3 Et H H H SOMe 1
    CF3 Et H H H SOMe 2
    CF3 Et H H H SO2Me 0
    CF3 Et H H H SO2Me 1
    CF3 Et H H H SO2Me 2
    CF3 Et H H H OMe 0
    CF3 Et H H H OMe 1
    CF3 Et H H H OMe 2
    CF3 Et H H H OCF3 0
    CF3 Et H H H OCF3 1
    CF3 Et H H H OCF3 2
    CF3 Et H H H NO2 0
    CF3 Et H H H NO2 1
    CF3 Et H H H NO2 2
    CF3 Et H H H CN 0
    CF3 Et H H H CN 1
    CF3 Et H H H CN 2
    CF2CF3 Et H H H H 0
    CF2CF3 Et H H H H 1
    CF2CF3 Et H H H H 2
    CF2CF3 Et F H H H 0
    CF2CF3 Et F H H H 1
    CF2CF3 Et F H H H 2
    CF2CF3 Et Cl H H H 0
    CF2CF3 Et Cl H H H 1
    CF2CF3 Et Cl H H H 2
    CF2CF3 Et Br H H H 0
    CF2CF3 Et Br H H H 1
    CF2CF3 Et Br H H H 2
    CF2CF3 Et I H H H 0
    CF2CF3 Et I H H H 1
    CF2CF3 Et I H H H 2
    CF2CF3 Et Me H H H 0
    CF2CF3 Et Me H H H 1
    CF2CF3 Et Me H H H 2
    CF2CF3 Et CF3 H H H 0
    CF2CF3 Et CF3 H H H 1
    CF2CF3 Et CF3 H H H 2
    CF2CF3 Et H F H H 0
    CF2CF3 Et H F H H 1
    CF2CF3 Et H F H H 2
    CF2CF3 Et H Cl H H 0
    CF2CF3 Et H Cl H H 1
    CF2CF3 Et H Cl H H 2
    CF2CF3 Et H Br H H 0
    CF2CF3 Et H Br H H 1
    CF2CF3 Et H Br H H 2
    CF2CF3 Et H I H H 0
    CF2CF3 Et H I H H 1
    CF2CF3 Et H I H H 2
    CF2CF3 Et H Me H H 0
    CF2CF3 Et H Me H H 1
    CF2CF3 Et H Me H H 2
    CF2CF3 Et H CF3 H H 0
    CF2CF3 Et H CF3 H H 1
    CF2CF3 Et H CF3 H H 2
    CF2CF3 Et H CF2CF3 H H 0
    CF2CF3 Et H CF2CF3 H H 1
    CF2CF3 Et H CF2CF3 H H 2
    CF2CF3 Et H CF(CF3)2 H H 0
    CF2CF3 Et H CF(CF3)2 H H 1
    CF2CF3 Et H CF(CF3)2 H H 2
    CF2CF3 Et H SMe H H 0
    CF2CF3 Et H SMe H H 1
    CF2CF3 Et H SMe H H 2
    CF2CF3 Et H SOMe H H 0
    CF2CF3 Et H SOMe H H 1
    CF2CF3 Et H SOMe H H 2
    CF2CF3 Et H SO2Me H H 0
    CF2CF3 Et H SO2Me H H 1
    CF2CF3 Et H SO2Me H H 2
    CF2CF3 Et H OMe H H 0
    CF2CF3 Et H OMe H H 1
    CF2CF3 Et H OMe H H 2
    CF2CF3 Et H OCF3 H H 0
    CF2CF3 Et H OCF3 H H 1
    CF2CF3 Et H OCF3 H H 2
    CF2CF3 Et H NO2 H H 0
    CF2CF3 Et H NO2 H H 1
    CF2CF3 Et H NO2 H H 2
    CF2CF3 Et H CN H H 0
    CF2CF3 Et H CN H H 1
    CF2CF3 Et H CN H H 2
    CF2CF3 Et H H F H 0
    CF2CF3 Et H H F H 1
    CF2CF3 Et H H F H 2
    CF2CF3 Et H H Cl H 0
    CF2CF3 Et H H Cl H 1
    CF2CF3 Et H H Cl H 2
    CF2CF3 Et H H Br H 0
    CF2CF3 Et H H Br H 1
    CF2CF3 Et H H Br H 2
    CF2CF3 Et H H I H 0
    CF2CF3 Et H H I H 1
    CF2CF3 Et H H I H 2
    CF2CF3 Et H H Me H 0
    CF2CF3 Et H H Me H 1
    CF2CF3 Et H H Me H 2
    CF2CF3 Et H H CF3 H 0
    CF2CF3 Et H H CF3 H 1
    CF2CF3 Et H H CF3 H 2
    CF2CF3 Et H H CF2CF3 H 0
    CF2CF3 Et H H CF2CF3 H 1
    CF2CF3 Et H H CF2CF3 H 2
    CF2CF3 Et H H CF(CF3)2 H 0
    CF2CF3 Et H H CF(CF3)2 H 1
    CF2CF3 Et H H CF(CF3)2 H 2
    CF2CF3 Et H H SMe H 0
    CF2CF3 Et H H SMe 11 1
    CF2CF3 Et H H SMe H 2
    CF2CF3 Et H H SOMe H 0
    CF2CF3 Et H H SOMe H 1
    CF2CF3 Et H H SOMe H 2
    CF2CF3 Et H H SO2Me H 0
    CF2CF3 Et H H SO2Me H 1
    CF2CF3 Et H H SO2Me H 2
    CF2CF3 Et H H OMe H 0
    CF2CF3 Et H H OMe H 1
    CF2CF3 Et H H OMe H 2
    CF2CF3 Et H H OCF3 H 0
    CF2CF3 Et H H OCF3 H 1
    CF2CF3 Et H H OCF3 H 2
    CF2CF3 Et H H NO2 H 0
    CF2CF3 Et H H NO2 H 1
    CF2CF3 Et H H NO2 H 2
    CF2CF3 Et H H CN H 0
    CF2CF3 Et H H CN H 1
    CF2CF3 Et H H CN H 2
    CF2CF3 Et H H H F 0
    CF2CF3 Et H H H F 1
    CF2CF3 Et H H H F 2
    CF2CF3 Et H H H Cl 0
    CF2CF3 Et H H H Cl 1
    CF2CF3 Et H H H Cl 2
    CF2CF3 Et H H H Br 0
    CF2CF3 Et H H H Br 1
    CF2CF3 Et H H H Br 2
    CF2CF3 Et H H H I 0
    CF2CF3 Et H H H I 1
    CF2CF3 Et H H H I 2
    CF2CF3 Et H H H Me 0
    CF2CF3 Et H H H Me 1
    CF2CF3 Et H H H Me 2
    CF2CF3 Et H H H CF3 0
    CF2CF3 Et H H H CF3 1
    CF2CF3 Et H H H CF3 2
    CF2CF3 Et H H H CF2CF3 0
    CF2CF3 Et H H H CF2CF3 1
    CF2CF3 Et H H H CF2CF3 2
    CF2CF3 Et H H H CF(CF3)2 0
    CF2CF3 Et H H H CF(CF3)2 1
    CF2CF3 Et H H H CF(CF3)2 2
    CF2CF3 Et H H H SMe 0
    CF2CF3 Et H H H SMe 1
    CF2CF3 Et H H H SMe 2
    CF2CF3 Et H H H SOMe 0
    CF2CF3 Et H H H SOMe 1
    CF2CF3 Et H H H SOMe 2
    CF2CF3 Et H H H SO2Me 0
    CF2CF3 Et H H H SO2Me 1
    CF2CF3 Et H H H SO2Me 2
    CF2CF3 Et H H H OMe 0
    CF2CF3 Et H H H OMe 1
    CF2CF3 Et H H H OMe 2
    CF2CF3 Et H H H OCF3 0
    CF2CF3 Et H H H OCF3 1
    CF2CF3 Et H H H OCF3 2
    CF2CF3 Et H H H NO2 0
    CF2CF3 Et H H H NO2 1
    CF2CF3 Et H H H NO2 2
    CF2CF3 Et H H H CN 0
    CF2CF3 Et H H H CN 1
    CF2CF3 Et H H H CN 2
  • The pesticides herein mean pesticides for controlling harmful arthropods in agricultural fields or in zootechnical/hygienic fields (internal/external parasites in or on mammals and birds as livestock and pets, and domestic or industrial hygienic insects/nuisance insects). Further, the agricultural chemicals herein mean insecticides/acaricides, nematicides, herbicides and fungicides in agricultural fields.
  • The insects, mites, crustaceans, mollusks and nematodes that the compounds of the present invention can control specifically include the following organisms, but the present invention is not restricted thereto.
  • Insects of the order Lepidoptera such as Adoxophyes honmai, Adoxophyes orana faciata, Archips breviplicanus, Archips fuscocupreanus, Grapholita molesta, Homona magnanima, Leguminivora qlycinivorella, Matsumuraeses phaseoli, Pandemis heparana, Bucculatrix pyrivorella, Lyonetia clerkella, Lyonetia prunifoliella malinella, Caloptilia theivora, Phyllonorycter ringoniella, Phyllocnistis citrella, Acrolepiopsis sapporensis, Acrolepiopsis suzukiella, Plutella xylostella, Stathmopoda masinissa, Helcystogramma triannulella, Pectinophora gossypiella, Carposina sasakii, Cydla pomonella, Chilo suppressalis, Cnaphalocrocis medinalis, Conogethes punctiferalis, Diaphania indica, Etiella zinckenella, Glyphodes pyloalis, Hellula undalis, Ostrinia furnacalis Ostrinia scapulalis, Ostrinia nubilalis, Parapediasia teterrella, Parnara quttata, Pieris brassicae, Pieris rapae crucivora, Ascotis selenaria, Pseudoplusia includens, Euproctis pseudoconspersa. Lymantria dispar, Orgyia thyellina, Hyphantria cunea, Lemyra imparilis, Adris tyrannus, Aedia leucomelas, Agrotis ipsilon, Agrotis segetum, Autographa nigrisigna, Ctenoplusia agnata, Helicoverpa armigera, Helicoverpa assulta, Helicoverpa zea, Heliothis virescens, Mamestra brassicae, Mythimna separata, Naranga aenescens, Spodoptera eridania, Spodoptera exigua, Spodoptera frugiperda, Spodoptera littoralis, Spodoptera litura, Spodoptera depravata, Trichoplusia ni, Endopiza viteana, Manduca quinquemaculata and Manduca sexta.
  • Insects of the order Thysanoptera such as Frankliniella intonsa, Frankliniella occidentalis, Heliothrips haemorrhoidalis, Scirtothrips dorsalis, Thrips palmi, Thrips tabaci and Ponticulothrips diospyrosi.
  • Insects of the order Hemiptera such as Dolycoris baccarum, Eurydema rugosum, Eysarcoris aeneus, Eysarcoris lewisi, Eysarcoris ventralis, Glaucias subpunctatus, Halyomorpha halys, Nezara antennata, Nezara viridula, Piezodorus hybneri, Plautia crossota, Scotinophora lurida, Cletus punctiger, Leptocorisa chinensis, Riptortus clavatus, Rhopalus msculatus, Cavelerius saccharivorus, Togo hemipterus, Dysdercus cingulatus, Stephanitis pyrioides, Halticus insularis, Lygus lineolaris, Stenodema sibiricum, Stenotus rubrovittatus, Trigonotylus caelestialium, Arboridia apicalis, Balclutha saltuella, Epiacanthus stramineus, Empoasca fabae, Empoasca nipponica, Empoasca onukii, Empoasca sakaii, Macrosteles striifrons, Nephotettix cinctinceps, Psuedatomoscelis seriatus, Laodelphax striatella, Nilaparvata lugens, Sogatella furcifera, Diaphorina citri, Psylla pyrisuga, Aleurocanthus spiniferus, Bemisia argentifolii, Bemisia tabaci, Dialeurodes citri, Trialeurodes vaporariorum, Viteus vitifolii, Aphis gossypii, Aphis spiraecola, Myzus persicae, Toxoptera aurantii, Drosicha corpulenta, Icerya purchasi, Phenacoccus solani, Planococcus citri, Planococcus kuraunhiae, Pseudococcus comstocki, Ceroplastes ceriferus, Ceroplastes rubens, Aonidiella aurantii, Comstockaspis perniciosa, Fiorinia theae, Pseudaonidia paeoniae, Pseudaulacaspis pentagona, Pseudaulacaspis prunicola, Unaspis euonymi, Unaspis yanonensis and Cimex lectularius.
  • Insects of the order Coleoptera such as Anomala cuprea, Anomala rufocuprea, Gametis jucunda, Heptophylla picea, Popillia japonica, Lepinotarsa decemlineata, Melanotus fortnumi, Melanotus tamsuyensis, Lasioderma serricorne, Epuraea domina, Epilachna varivestis, Epilachna vigintioctopunctata, Tenebrio molitor, Tribolium castaneum, Anoplophora malasiaca, Monochamus alternatus, Psacothea hilaris, Xylotrechus pyrrhoderus, Callosobruchus chinensis, Aulacophora femoralis, Chaetocnema concinna, Diabrotica undecimpunctata, Diabrotica virgifera, Diabrotica barberi, Oulema oryzae, Phyllotreta striolata, Psylliodes angusticollis, Rhynchites heros, Cylas formicarius, Anthonomus grandis, Echinocnemus squameus, Euscepes postfasciatus, Hypera postica, Lissohoptrus oryzophilus, Otiorhynchus sulcatus, Sitophilus granarius, Sitophilus zeamais, Sphenophorus venatus vestitus and Paederus fuscipes.
  • Insects of the order Diptera such as Asphondylia yushimai, Sitodiplosis mosellana, Bactrocera cucurbitae, Bactrocera dorsalis, Ceratitis capitata, Hydrellia griseola, Drosophila suzukii, Agromyza oryzae, Chromatomyia horticola, Liriomyza bryoniae, Liriomyza chinensis, Liriomyza sativae, Liriomyza trifolii, Delia platura, Pegomya cunicularia, Rhagoletis pomonella, Mayetiola destructor, Musca domestica, Stomoxys calcitrans, Melophagus ovinus, Hypoderma bovis, Hypoderma lineatum, Oestrus ovis, Glossina palpalis, Glossina morsitans, Prosimulium yezoensis, Tabanus trigonus, Telmatoscopus albipunctatus, Leptoconops nipponensis, Culex pipiens pallens, Aedes aegypti, Aedes albopicutus and Anopheles hyracanus sinesis.
  • Insects of the order Hymenoptera such as Apethymus kuri, Athalia rosae, Arge pagana, Neodiprion sertifer, Dryocosmus kuriphilus, Eciton burchelli, Eciton schmitti, Camponotus japonicus, Vespa mandarina, Myrmecia spp., Solenopsis spp. and Monomorium pharaonis.
  • Insects of the order Orthoptera such as Teleogryllus emma, Gryllotalpa orientalis, Locusta migratoria, Oxya yezoensis and Schistocerca gregaria.
  • Insects of the order Collembola such as Onychiurus folsomi, Onychiurus sibiricus and Bourletiella hortensis.
  • Insects of the order Dictyoptera such as Periplaneta fuliginosa, Periplaneta japonica and Blattella germanica.
  • Insects of the order Isoptera such as Coptotermes formosanus, Reticulitermes speratus and Odontotermes formosanus.
  • Insects of the order Siphonaptera such as Ctenocephalidae fells, Ctenocephalides canis, Echidnophaqa gallinacea, Pulex irritans and Xenopsylla cheopis.
  • Insects of the order Mallophaga such as Menacanthus stramineus and Bovicola bovis.
  • Insects of the order Anoplura such as Haematopinus eurysternus, Haematopinus suis, Linognathus vituli and Solenopotes capillatus.
  • Tarsonemidae mites such as Phytonemus pallidus, Polyphagotarsonemus latus and Tarsonemus bilobatus.
  • Eupodidae mites such as Penthaleus erythrocephalus and Penthaleus major.
  • Tetranychidae mites such as Oligonychus shinkajii, Panonychus citri, Panonychus mori, Panonychus ulmi, Tetranychus kanzawai and Tetranychus urticae.
  • Eriophyidae mites such as Acaphylla theavagrans, Aceria tulipae, Aculops lycopersici, Aculops pelekassi, Aculus schlechtendali, Eriophyes chibaensis and Phyllocoptruta oleivora.
  • Acaridae mites such as Rhizoglyphus robini, Tyrophaqus putrescentiae and Tyrophaqus similis.
  • Bee mites such as Varroa jacobsoni.
  • Ticks such as Boophilus microplus, Rhipicephalus sanguineus, Haemaphysalis longicornis, Haemophysalis flava, Haemophysalis campanulata, Ixodes ovatus, Ixodes persulcatus, Amblyomma spp. and Dermacentor spp.
  • Mites of the suborder Mesostigmata such as red mite (Dermanyssus gallinae), tropical rat mite (Ornithonyssus bacoti) and northern fowl mite (Ornithonyssus sylviarum).
  • Cheyletidae mites such as Cheyletiella yasguri and Cheyletiella blakei.
  • Demodicidae mites such as Demodex canis and Demodex cati.
  • Psoroptidae mites such as Psoroptes ovis.
  • Sarcoptidae mites such as Sarcoptes scabiei, Notoedres cati and Knemidocoptes spp.
  • Crustaceans such as Armadillidium vulgare.
  • Gastropods such as Pomacea canaliculata, Achatina fulica, Meghimatium bilineatum, Limax Valentiana, Acusta despecta sieboldiana and Euhadra peliomphala.
  • Nematodes such as Prathylenchus coffeae, Prathylenchus penetrans, Prathylenchus vulnus, Globodera rostochiensis, Heterodera glycines, Meloidogyne hapla, Meloidogyne incognita, Aphelenchoides besseyi and Bursaphelenchus xylophilus.
  • Adult flies such as horn fly (Haematobia irritans), horse fly (Tabanus spp.), Stomoxys calcitrans, blackfly (Simulium spp.), deer fly (Chrysops spp.), louse fly (Melophagus ovinus) and tsetse fly (Glossina spp.).
  • Parasitic worms such as sheep bot fly (Oestrus ovis, Cuterebra spp.), blowfly (Phaenicia spp.), screwworm (Cochliomyia hominivorax), warble fly (Hypoderma spp.), fleeceworm and Gastrophilus.
  • Mosquitoes such as Culex spp., Anopheles spp. and Aedes spp.
  • The internal, livestock, poultry or pet parasites that the compounds of the present invention can control specifically include the following internal pests, but the present invention is not restricted thereto.
  • Nematodes of the genera Haemonchus, Trichostronqylus, Ostertagia, Nematodirus, Cooperia, Ascaris, Bunostomum, Oesophagostomum, Chabertia, Trichuris, Storongylus, Trichonema, Dictyocaulus, Capillaria, Heterakis, Toxocara, Ascaridia, Oxyuris, Ancylostoma, Uncinaria, Toxascaris, Parascaris, and the like.
  • Nematodes of the family Filariidae such as the genera Wuchereria, Brugia, Onchoceca, Dirofilaria, Loa, and the like.
  • Nematodes of the family Dracunculidae such as the genus Dracunculus.
  • Cestodes such as Dipylidium caninum, Taenia taeniaeformis, Taenia solium, Taenia saginata, Hymenolepis diminuta, Moniezia benedeni, Diphyllobothrium latum, Diphyllobothrium erinacei, Echinococcus granulosus and Echinococcus multilocularis.
  • Trematodes such as Fasciola hepatica, F. gigantica, Paragonimus westermanii, Fasciolopsic bruski, Eurytrema pancreaticum, E. coelomaticum, Clonorchis sinensis, Schistosoma japonicum, Schistosoma haematobium and Schistosoma mansoni.
  • Eimeria spp. such as Eimeria tenella, Eimeria acervulina, Eimeria brunetti, Eimeria maxima, Eimeria necatrix, Eimeria bovis and Eimeria ovinoidalis.
  • Trypanosomsa cruzi, Leishmania spp., Plasmodium spp., Babesis spp., Trichomonadidae spp., Histomanas spp., Giardia spp., Toxoplasma spp., Entamoeba histolytica and Theileria spp.
  • The compounds of the present invention are effective against pests that have acquired resistance to conventional insecticides such as organic phosphorus compounds, carbamate compounds or pyrethroid compounds.
  • That is, the compounds of the present invention can effectively control pests such as insects of the order Collembola, the order Dictyoptera, the order Orthoptera, the order Isoptera, the order Thysanoptera, the order Hem iptera, the order Lepidoptera, the order Coleoptera, the order Hymenoptera, the order Diptera, the order Aphaniptera, the order Anoplura, Acari, gastropods and nematodes at low doses. On the other hand, the compounds of the present invention have a quite advantageous feature that they are almost harmless to mammals, fishes, crustaceans and beneficial insects (useful insects such as honey bees and bumblebees and natural enemies such as aphelinids, Aphidiinae, tachina flies, Orius spp., Phytoseiidae spp. etc.).
  • The compounds of the present invention may be used in any dosage form such as a soluble concentrate, an emulsifiable concentrate, a wettable powder, a water soluble powder, a water dispersible granule, a water soluble granule, a suspension concentrate, a concentrated emulsion, a suspoemulsion, a microemulsion, a dustable powder, a granule, a tablet or an emulsifiable gel usually after mixed with an appropriate solid carrier or liquid carrier, and if necessary, with a surfactant, a penetrant, a spreader, a thickener, an anti-freezing agent, a binder, an anti-caking agent, a disintegrant, an antifoaming agent, a preservative, a stabilizer or the like. A formulation in an arbitrary dosage form may be sealed in water-soluble packaging such as a water-soluble capsule or a water-soluble film, for labor saving or improved safety.
  • As solid carriers, natural minerals such as quartz, calcite, meerschaum, dolomite, chalk, kaolinite, pyrophyllite, sericite, halloysite, methahalloysite, kibushi clay, gairome clay, pottery stone, zeeklite, allophane, Shirasu, mica, talc, bentonite, activated clay, acid clay, pumice, attapulgite, zeolite and diatomaceous earth; calcined natural minerals such as calcined clay, pearlite, Shirasu-balloons, vermiculite, attapulgus clay and calcined diatomaceous earth; inorganic salts such as magnesium carbonate, calcium carbonate, sodium carbonate, sodium hydrogen carbonate, ammonium sulfate, sodium sulfate, magnesium sulfate, diammonium hydrogen phosphate, ammonium dihydrogen phosphate and potassium chloride, saccharides such as glucose, fructose, sucrose and lactose; polysaccharides such as starch, cellulose powder and dextrin; organic substances such as urea, urea derivatives, benzoic acid and benzoic acid salts; plants such as wood flour, powdered cork, corncob, walnut shell and tobacco stems, fly ash, white carbon (such as hydrated synthetic silica, anhydrous synthetic silica and hydrous synthetic silicate), fertilizers and the like may be mentioned.
  • As liquid carriers, aromatic hydrocarbons such as xylene, alkyl (C9 or C10 etc.) benzene, phenylxylylethane and alkyl (C1 or C3 etc.) naphthalene; aliphatic hydrocarbons such as machine oil, normal paraffin, isoparaffin and naphthene; mixtures of aromatic hydrocarbons and aliphatic hydrocarbons such as kerosene; alcohols such as ethanol, isopropanol, cyclohexanol, phenoxyethanol and benzyl alcohol; polyhydric alcohols such as ethylene glycol, propylene glycol, diethylene glycol, hexylene glycol, polyethylene glycol and polypropylene glycol; ethers such as propyl cellosolve, butyl cellosolve, phenyl cellosolve, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monopropyl ether, propylene glycol monobutyl ether and propylene glycol monophenyl ether; ketones such as acetophenone, cyclohexanone and y-butyrolactone; esters such as fatty acid methyl esters, dialkyl succinates, dialkyl glutamate, dialkyl adipates and dialkyl phthalates; acid amides such as N-alkyl (C1, C8 or C12 etc.) pyrrolidone; fats and oils such as soybean oil, linseed oil, rapeseed oil, coconut oil, cottonseed oil and castor oil; dimethyl sulfoxide; water and the like may be mentioned.
  • These solid and liquid carriers may be used alone or in combinations of two or more.
  • As surfactants, nonionic surfactants such as polyoxyethylene alkyl ether, polyoxyethylene alkyl (mono or di) phenyl ether, polyoxyethylene(mono, di or tri)styrylphenyl ether, polyoxyethylenepolyoxypropylene block copolymers, polyoxyethylene fatty acid (mono or di) ester, sorbitan fatty acid ester, polyoxyethylene sorbitan fatty acid ester, ethylene oxide adducts of castor oil, acetylene glycol, acetylene alcohol, ethylene oxide adducts of acetylene glycol, ethylene oxide adducts of acetylene alcohol and alkyl glycosides; anionic surfactants such as alkyl sulfate salts, alkylbenzenesulfonic acid salts, lignin sulfonate, alkylsulfosuccinic acid salts, naphthalenesulfonic acid salts, alkylnaphthalenesulfonic acid salts, salts of naphthalenesulfonic acid-formalin condensates, salts of alkylnaphthalenesulfonic acid-formalin condensates, polyoxyethylene alkyl ether sulfate or phosphate salts, polyoxyethylene (mono or di) alkylphenyl ether sulfate or phosphate salts, polyoxyethylene (mono, di or tri) styrylphenyl ether sulfate or phosphate salts, polycarboxylic acid salts (such as polyacrylates, polymaleates and copolymers of maleic acid and an olefin) and polystyrenesulfonic acid salts; cationic surfactants such as alkylamine salts and alkyl quaternary ammonium salts; amphoteric surfactants such as amino acid types and betaine types, silicone surfactants; and fluorine surfactants may be mentioned.
  • The amount of these surfactants is usually preferably from 0.05 to 20 parts by weight per 100 parts by weight of the agent of the present invention, though there is no particular restrictions. These surfactants may be used alone or in combination of two or more.
  • The suitable application dose of the compounds of the present invention is generally about from 0.005 to 50 kg per hectare (ha) in terms of the active ingredient, though it varies depending on the application situation, the application season, the application method and the cultivated crop.
  • When the compounds of the present invention are used to control external or internal parasites in or on mammals and birds as farm animals/poultry and pet animals, the compounds of the present invention may be administered in an effective amount together with pharmaceutically acceptable additives orally, parenterally by injection (intramuscular, subcutaneously, intravenously or intraperitoneally); percutaneously by dipping, spraying, bathing, washing, pouring-on and spotting-on and dusting, or intranasally. The compounds of the present invention may be administered through molded articles such as chips, plates, bands, collars, ear marks, limb bands and ID tags.
  • The compounds of the present invention are administered in an arbitrary dosage form suitable for the administration route.
  • In a case where the compounds of the present invention are used to control external or internal parasites, the suitable application dose of the compound of the present invention represented by the formula (1) as an active ingredient is generally from 0.01 to 100 mg/kg body weight, preferably from 0.01 to 50 mg/kg body weight of a target animal, though it varies depending on e.g. the type of pests to be controlled, the type of the target animal, or the application method. Particularly with respect to application to a dog, the suitable application dose is generally from 1 to 5,000 mg/kg body weight, preferably from 1 to 100 mg/g body weight of a target dog, though it varies depending on the type or the age of the target dog, or the external parasites to be controlled.
  • In a case where the compounds of the present invention are used to control external or internal parasites, the application interval may be optionally set usually within a range of from daily to annually, though it varies dependeing on e.g. the type of pests to be controlled, the type of the target animal, or the application method. The application interval is preferably from once a week to every six months, more preferably daily (every 24 hours), monthly, once a month, every two months, or every three months.
  • In a case where the compounds of the present invention are used to control external paracites on a dog, with respect to the timing of application of the compound of the present invention to the dog, the compound of the present invention may be orally administered to the dog 30 minutes before start of feeding or 120 minutes after completion of feeding. “30 minutes before start of feeding or 120 minutes after completion of feeding” here is based on an action of the dog to take nutritious food. For example, in a case where the dog feeding time is 20 minutes, the time specified is 30 minutes before start of feeding to 120 minutes after completion of feeding, that is, 170 minutes in total. A case where feeding is suspended, the compound of the present invention is orally administered and feeding is restarted, is included. In this specification, feeding means an action of an animal to take food.
  • The number of feeding of a dug is usually three to four times a day in the case of a dog of less than six months old, twice to three times a day in the case of a dog of six months to less than one year old, twice a day in the case of an adult dog of about one to five years old, and twice to three times a day in the case of an old dog of 6 years old or older, though it varies depending on the type or the age of the dog or the habit. In the present invention, feeding means an action of an animal to take nutritious food, and does not include an action to give food and the like to a dog for training or breeding.
  • The dosage form may be a solid preparation such as dusts, granules, wettable powders, pellets, tablets, boluses, capsules and a molded article containing an active ingredient; a liquid preparation such as an injection fluid, an oral liquid, a liquid preparation applied to the skin or coelom; a solution preparation such as a pour-on preparation, a spot-on preparation, flowables and emulsions; and a semisolid preparation such as an ointment and gels.
  • In a case where the compounds of the present invention are orally administered, the dosage form may, for example, be a solid preparation such as tablets, chewables, capsules, pills, boluses, granules and powders; a semisolid preparation such as pastes and gels; and a liquid preparation such as drinks.
  • In the case of percutaneous administeration, the dosage form may, for example, be a solid preparation such as powders; a semisolid preparation such as a cream, a salve and ointment, pastes and gels; and a liquid preparation such as a spary, aerosols, solutions and emulsions, suspensions, and lotions.
  • Further, in the case of administration by injection, the dosage form may, for example, be a liquid preparation such as solutions and emulsions, and suspensions, and in the case of intranasal administration, the dosage form may, for example, be a liquid preparation such as aerosols. In the case of spraying over an environment where animals are bred, such as a stable, the dosage form may, for example, be a solid preparation such as wettale powders, dusts or granules; and a liquid preparation such as emulsions and suspension concentrates.
  • The formulation to be used for parasiticides of the present invention is not limited to such dosage forms.
  • The solid preparation may be orally administered as it is, or may be percutaneously administered or sprayed over an environment where animals are bred, such as a stable, after dilution with water.
  • The solid preparation to be orally administered, may be prepared by mixing the compound represented by the formula (1) or its salt and one or more vehicles or binders suitable for oral administration, and as the case requires, physiologically acceptable additives such as a lubricant, a disintegrant, a dye and a pigment, and forming the mixture into a desired shape.
  • The vehicle and the binder may, for example, be a saccharide or saccharide derivative such as lactose, sucrose, mannitol or sorbitol; a starch such as corn starch, wheat startch, rice starch or potato starch; a cellulse or cellulose derivative such as methyl cellulose, carboxymethyl cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose or hydroxypropylmethyl cellulose; a protein or protein derivative such as zein or gelatin; honey, gum arabic glue, or a synthetic polymer compound such as polyvinyl alcohol or polyvinyl pyrolidone.
  • The lubricant may, for example, be magnesium stearate, and the disintegrant may, for example, be cellulose, agar, alginic acid, crosslinked polyvinyl pyrrolidone or a carbonate.
  • Among solid preparations to be orally administered, in the case of a solid formulation such as chewables, additives which impart a taste, texture or flavor desired by animals to which the preparation is to be administered, may be used. The carriers and addtives to be used for the solid preparation of the parasiticidal composition of the present invention are not limited thereto.
  • The liquid preparation may be administered percutaneously or by injection as it is, or may be administered orally by being mixed with food, percutaneously administered after being diluted with water, or sprayed to an enviorment where animals are bred, such as a stable.
  • An injection fluid may be administered intravenously, intramuscularly or subcutaneously. An injection fluid can be prepared by dissolving an active ingredient in an appropriate solvent and, if necessary, adding additives such as a solubilizer, an acid, a base, a buffering salt, an antioxidant and a protectant.
  • As appropriate solvents, water, ethanol, butanol, benzyl alcohol, glycerin, propylene glycol, polyethylene glycol, N-methylpyrrolidone and mixtures thereof, physiologically acceptable vegetable oils, and synthetic oils suitable for injection may be mentioned.
  • As solubilizers, polyvinylpyrrolidone, polyoxyethylated castor oil, polyoxyethylated sorbitan ester and the like may be mentioned.
  • As protectants, benzyl alcohol, trichlorobutanol, p-hydroxybenzoic acid esters, n-butanol and the like may be mentioned.
  • An oral liquid may be administered directly or after dilution and can be prepared in the same manner as an injection fluid.
  • A flowable, an emulsion or the like may be administered directly or after dilution percutaneously or by environmental application.
  • A liquid preparation applied to the skin is administered by dripping, spreading, rubbing, spraying, sprinkling or dipping (soaking, bathing or washing) and can be prepared in the same manner as an injection fluid.
  • A pour-on preparation and a spot-on preparation are dripped or sprayed to a limited area of the skin so that they permeate through the skin and act systemically. A pour-on preparation and a spot-on preparation can be prepared by dissolving, suspending or emulsifying an active ingredient in an appropriate skin-friendly solvent or solvent mixture. If necessary, additives such as a surfactant, a colorant, an absorbefacient, an antioxidant, a light stabilizer and an adhesive may be added.
  • As appropriate solvents, water, alkanol, glycol, polyethylene glycol, polypropylene glycol, glycerin, benzyl alcohol, phenylethanol, phenoxyethanol, ethyl acetate, butyl acetate, benzyl benzoate, dipropylene glycol monomethyl ether, diethylene glycol monobutyl ether, acetone, methyl ethyl ketone, aromatic and/or aliphatic hydrocarbons, vegetable or synthetic oils, DMF (N,N-dimethylformamide), liquid paraffin, light liquid paraffin, silicone, dimethylacetamide, N-methylpyrrolidone or 2,2-dimethyl-4-oxy-methylene-1,3-dioxolane may be mentioned.
  • As absorbefacients, DMSO (dimethyl sulfoxide), isopropyl myristate, pelargonic acid dipropylene glycol, silicone oil, fatty acid esters, triglycerides and aliphatic alcohols may be mentioned.
  • As antioxidants, sulfites, metabisulfites, ascorbic acid, butylhydroxytoluene, butylhydroxyanisole and tocopherol may be mentioned.
  • An emulsion may be administered orally, percutaneously or by injection. An emulsion can be prepared by dissolving an active ingredient in a hydrophobic phase or a hydrophilic phase and homogenizing the resulting solution with another liquid phase together with an appropriate emulsifier, and further if necessary with additives such as a colorant, an absorbefacient, a protectant, an antioxidant, a light screen and a thickner.
  • As hydrophobic phases (oils), paraffin oil, silicone oil, sesame oil, almond oil, castor oil, synthetic triglycerides, ethyl stearate, di-n-butyryl adipate, hexyl laurate, pelargonic acid dipropylene glycol, esters of branched short-chain fatty acids with C16-C18 saturated fatty acids, isopropyl myristate, isopropyl palmitate, esters of C12-C18 saturated alcohols with caprylic/capric acid, isopropyl stearate, oleyl oleate, decyl oleate, ethyl oleate, ethyl lactate, fatty acid ester waxes, dibutyl phthalate, diisopropyl adipate, isotridecyl alcohol, 2-octyldodecanol, cetylstearyl alcohol and oleyl alcohol may be mentioned.
  • As hydrophilic phases, water, propylene glycol, glycerin and sorbitol may be mentioned.
  • As emulsifiers, nonionic surfactants such as polyoxyethylated castor oil, polyoxyethylated sorbitan monoolefinic acid, sorbitan monostearate, glycerin monostearate, polyoxyethyl stearate and alkyl phenol polyglycol ether; amphoteric surfactants such as disodium N-lauryl-β-iminodipropionate and lecithin; anionic surfactants such as sodium lauryl sulfate, aliphatic alcohol sulfate ether and mono/dialkylpolyglycol orthophosphate monoethanolamine salt; and cationic surfactants such as cetyltrimethylammonium chloride may, for example, be mentioned.
  • As other additives, carboxymethylcellulose, methylcellulose, polyacrylate, alginate, gelatin, gum arabic, polyvinylpyrrolidone, polyvinyl alcohol, methyl vinyl ether, maleic anhydride copolymers, polyethylene glycol, waxes and colloidal silica may be mentioned.
  • A semisolid preparation is administered by applying or spreading onto the skin or introducing into the coelom. A gel can be prepared by adding a thickener to a solution prepared in the same manner as an injection fluid sufficiently to give a transparent viscous substance like an ointment.
  • Next, Formulation Examples of preparations using the compounds of the present invention are given below. However, formulations of the present invention are by no means restricted thereto. In the following Formulation Examples, “parts” means parts by weight.
  • [Wettable powder]
  • Compound of the present invention 0.1 to 80 parts
    Solid carrier   5 to 98.9 parts
    Surfactant   1 to 10 parts
    Others   0 to 5 parts
  • As the others, an anti-caking agent, a stabilizer and the like may be mentioned.
  • [Emulsifiable Concentrate]
  • Compound of the present invention 0.1 to 30 parts
    Liquid carrier  45 to 95 parts
    Surfactant 4.9 to 15 parts
    Others   0 to 10 parts
  • As the others, a spreader, a stabilizer and the like may be mentioned.
  • [Suspension Concentrate]
  • Compound of the present invention  0.1 to 70 parts
    Liquid carrier   15 to 98.89 parts
    Surfactant   1 to 12 parts
    Others 0.01 to 30 parts
  • As the others, an anti-freezing agent, a thickener and the like may be mentioned.
  • [Water Dispersible Granule]
  • Compound of the present invention 0.1 to 90 parts
    Solid carrier   0 to 98.9 parts
    Surfactant   1 to 20 parts
    Others   0 to 10 parts
  • As the others, a binder, a stabilizer and the like may be mentioned.
  • [Soluble Concentrate]
  • Compound of the present invention 0.01 to 70 parts
    Liquid carrier   20 to 99.99 parts
    Others   0 to 10 parts
  • As the others, an anti-freezing agent, a spreader and the like may be mentioned.
  • [Granule]
  • Compound of the present invention  0.01 to 80 parts
    Solid carrier 10 to 99.99 parts
    Others    0 to 10 parts
  • As the others, a binder, a stabilizer and the like may be mentioned.
  • [Dustable Powder]
  • Compound of the present invention  0.01 to 30 parts
    Solid carrier 65 to 99.99 parts
    Others    0 to 5 parts
  • As the others, an anti-drift agent, a stabilizer and the like may be mentioned.
  • Next, more specific Formulation Examples of preparations containing the compounds of the present invention as an active ingredient are given below. However, the present invention is by no means restricted thereto.
  • In the following Formulation Examples, “parts” means parts by weight.
  • [Formulation Example 1] Wettable Powder
  • Compound No. 1-1-001a of the present 20 parts
    invention
    Pyrophyllite 74 parts
    Sorpol 5039  4 parts
    (tradename for a mixture of a nonionic
    surfactant and an anionic surfactant:
    manufactured by TOHO Chemical Industry
    Co., Ltd.)
    CARPLEX #80D  2 parts

    (tradename for hydrous synthetic silicic acid: manufactured by Shionogi & Co., Ltd.)
  • The above ingredients are mixed and pulverized homogenously to obtain a wettable powder.
  • [Formulation Example 2] Emulsifiable Concentrate
  • Compound No. 1-1-001a of the present  5 parts
    invention
    Xylene 75 parts
    N-methylpyrrolidone 15 parts
    Sorpol 2680  5 parts

    (tradename for a mixture of a nonionic surfactant and an anionic surfactant: manufactured by TOHO Chemical Industry Co., Ltd.)
  • The above ingredients are mixed homogenously to obtain an emulsifiable concentrate.
  • [Formulation Example 3] Suspension Concentrate
  • Compound No. 1-1-001a 25 parts
    AGRISOL S-710 10 parts
    (tradename for a nonionic surfactant: manufactured
    by Kao Corporation)
    Runox 1000C 0.5 part
    (tradename for an anionic surfactant: manufactured
    by TOHO Chemical Industry Co., Ltd.)
    Xanthan gum 0.2 part
    Water 64.3 parts
  • The above ingredients are mixed homogenously and wet-pulverized to obtain a suspension concentration.
  • [Formulation Example 4] Water Dispersible Granule
  • Compound No. 1-1-001a of the present invention 75 parts
    HITENOL NE-15  5 parts
    (tradename for an anionic surfactant: manufactured
    by DKS Co., Ltd.)
    VANILLEX N 10 parts
    (tradename for an anionic surfactant: manufactured
    by Nippon Paper Industries Co., Ltd.)
    CARPLEX #80D 10 parts

    (tradename for hydrous synthetic silicic acid: manufactured by Shionogi & Co., Ltd.)
  • The above ingredients are mixed and pulverized homogenously, then kneaded with a small amount of water, granulated through an extrusion granulator and dried to obtain a water dispersible granule.
  • [Formulation Example 5] Granule
  • Compound No. 1-1-001a of the present  5 parts
    invention
    Bentonite 50 parts
    Talc 45 parts
  • The above ingredients are mixed and pulverized homogenously, then kneaded with a small amount of water, granulated through an extrusion granulator and dried to obtain a granule.
  • [Formulation Example 6] Dustable Powder
  • Compound No. 1-1-001a of the present 3 parts
    invention
    CARPLEX #80D 0.5 part
    (tradename for a hydrous synthetic silicic acid:
    manufactured by Shionogi & Co., Ltd.)
    Kaolinite 95 parts
    Diisopropyl phosphate 1.5 parts
  • The above ingredients are mixed and pulverized homogeneously to obtain a dustable powder.
  • It is applied after diluted with water by a factor of from 1 to 10000 or directly without dilution.
  • [Formulation Example 7] Wettable Powder Preparation
  • Compound No. 1-1-001a of the present 25 parts
    invention
    Sodium diisobutylnaphthalenesulfonate 1 part
    Calcium n-dodecylbenzenesulfonate 10 parts
    Alkyl aryl polyglycol ether 12 parts
    Naphthalenesulfonic acid-formalin 3 parts
    condensate sodium salt
    Silicone emulsion 1 part
    Silicon dioxide 3 parts
    Kaolin 45 parts
  • [Formulation Example 8] Water-Soluble Concentrate Preparation
  • Compound No. 1-1-001a of the present   20 parts
    invention
    Polyoxyethylenelauryl ether   3 parts
    Sodium dioctylsulfosuccinate  3.5 parts
    Dimethyl sulfoxide   37 parts
    2-Propanol 36.5 parts
  • [Formulation Example 9] Liquid Preparation for Spraying
  • Compound No. 1-1-001a of the present  2 parts
    invention
    Dimethyl sulfoxide 10 parts
    2-Propanol 35 parts
    Acetone 53 parts
  • [Formulation Example 10] Liquid Preparation for Percutaneous Administration
  • Compound No. 1-1-001a of the present  5 parts
    invention
    Hexylene glycol 50 parts
    Isopropanol 45 parts
  • [Formulation Example 11] Liquid Preparation for Percutaneous Administration
  • Compound No. 1-1-001a of the present  5 parts
    invention
    Propylene glycol monomethyl ether 50 parts
    Dipropylene glycol 45 parts
  • [Formulation Example 12] Liquid Preparation for Percutaneous Administration (by Dripping)
  • Compound No. 1-1-001a of the present invention  2 parts
    Light liquid paraffin 98 parts
  • [Formulation Example 13] Liquid Preparation for Percutaneous Administration (by Dripping)
  • Compound No. 1-1-001a of the present 2 parts
    invention
    Light liquid paraffin 58 parts
    Olive oil 30 parts
    ODO-H 9 parts
    Shin-etsu silicone 1 part
  • For use as agricultural chemicals, the compounds of the present invention may be mixed with other herbicides, insecticides, acaricides, nematocides, fungicides, plant growth regulators, synergists, fertilizers, soil conditioners and the like at the time of formulation or application.
  • Particularly, the combined use with other agricultural chemicals or plant hormone is expected to reduce the cost by enabling control at lower doses, to broaden the insecticidal spectrum by the synergistic effect of the other agrochemicals, and to achieve a higher pesticidal effect. In such cases, they may be combined with a plurality of known agricultural chemicals.
  • The agricultural chemicals to be used in combination with the compounds of the present invention include, for example, the compounds disclosed in e.g. The Pesticide Manual, 15th edition, 2009, having the generic names listed below, but are not necessarily restricted thereto.
  • Fungicides: acibenzolar-S-methyl, acylaminobenzamide, acypetacs, aldimorph, ametoctradin, amisulbrom, amobam, ampropyfos, anilazine, azaconazole, azithiram, azoxystrobin, barium polysulfide, benalaxyl, benalaxyl-M, benodanil, benomyl, benquinox, bentaluron, benthiavalicarb-isopropyl, benthiazole, benzamacril, benzamorf, benzovindiflupyr, bethoxazine, binapacryl, biphenyl, bitertanol, blasticidin-S, bixafen, bordeaux mixture, boscalid, bromuconazole, bupirimate, buthiobate, calcium polysulfide, calcium polysulfide, captafol, captan, carpropamid, carbamorph, carbendazim, carboxin, carvone, cheshunt mixture, chinomethionat, chlobenthiazone, chloraniformethane, chloranil, chlorfenazol, chloroneb, chloropicrin, chlorothalonil, chlorquinox, chlozolinate, climbazole, clotrimazole, copper acetate, copper carbonate, basic, copper hydroxide, copper naphthenate, copper oleate, copper oxychloride, copper sulfate, copper sulfate, basic, copper zinc chromate, cufraneb, coumoxystrobin, cuprobam, cyazofamid, cyclafuram id, cycloheximide, cyflufenam id, cymoxanil, cypendazole, cyproconazol, cyprodinil, cyprofuram, dazomet, debacarb, decafentin, dehydroacetic acid, dichlofluanid, dichlone, dichlorophen, dichlozoline, diclobutrazol, diclocymet, diclomedine, dicloran, etc.
  • Fungicides (continued): diethofencarb, difenoconazole, diflumetorim, dimethirimol, dimethomorph, dimoxystrobin, diniconazole, diniconazole-M, dinobuton, dinocap, dinocap-4, dinocap-6, dinocton, dinosulfon, dinoterbon, diphenylamine, dipymetitrone, dipyrithione, ditalimfos, dithianon, dodemorph-acetate, dodine, drazoxolon, edifenphos, enestrobin, enoxastrobin, epoxiconazole, etaconazole, ethaboxam, etem, ethirimol, ethoxyquin, etridiazole, famoxadone, fenarimol, fenbuconazole, fenamidone, fenaminosulf, fenaminstrobin, fenapanil, fendazosulam, fenfuram, fenhexamid, fenitropan, fenoxanil, fenpiclonil, fenpropidin, fenpyrazamine, fenpropimorph, fentin, ferbam, ferimzone, fluazinam, fludioxonil, flufenoxystrobin, flumetover, flumorph, fluopicolide, fluopyram, fluoroimide, fluotrimazole, fluoxastrobin, fluquinconazole, flusilazole, flusulfamide, flutianil, flutolanil, flutriafol, fluxapyroxad, folpet, fosetyl-aluminium, fuberidazole, furalaxyl, furametpyr, furcarbanil, furconazole, furconazole-cis, furmecyclox, furphanate, glyodin, griseofulvin, guazatine, halacrinate, hexachlorobenzene, hexaconazole, hexylthiofos, 8-hydroxyquinoline sulfate, hymexazol, imazalil, imibenconazole, iminoctadine-albesilate, iminoctadine-triacetate, ipconazole, iprobenfos, iprodione, iprovalicarb, isofetamid, isoprothiolane, isopyrazam, isotianil, isovaledione, etc.
  • Fungicides (continued): kasugamycin, kresoxim-methyl, laminarin, mancopper, mancozeb, mandestrobin, mandipropam id, maneb, mebenil, mecarbinzid, mepanipyrim, meptyldinocap, mepronil, metalaxyl, metalaxyl-M, metam, metazoxolon, metconazole, methasulfocarb, methfuroxam, methyl isothiocyanate, metiram, metominostrobin, metrafenone, metsulfovax, milneb, myclobutanil, myclozolin, nabam, natamycin, nickel bis(dimethyldithiocarbamate), nitrostyrene, nitrothal-isopropyl, nuarimol, OCH, octhilinone, ofurace, orysastrobin, oxathiapiprolin, oxadixyl, oxine copper, oxycarboxin, oxpoconazole fumarate, pefurzoate, penconazole, penflufen, pencycuron, penthiopyrad, o-phenylphenol, phosdiphen, phthalide, picarbutrazox, picoxystrobin, piperalin, polycarbannate, polyoxins, polyoxorim, potassium azide, potassium hydrogen carbonate, proquinazid, probenazole, prochloraz, procymidone, propamocarb hydrochloride, propiconazole, propineb, prothiocarb, prothioconazole, pydiflumetofen, pyracarbolid, pyraclostrobin, pyrannetostrobin, pyraoxystrobin, pyraziflurnid, pyrazophos, pyribencarb-methyl, pyridinitril, pyrifenox, pyrimethanil, pyriminostrobin, pyrimorph, pyriofenone, pyrisoxazole, pyroquilon, pyroxychlor, pyroxyfur, quinomethionate, quinoxyfen, quintozene, quinacetol-sulfate, quinazamid, quinconazole, rabenzazole, Bacillus subtilis (Strain: D747, FZB24, GBO3, HAI0404, MBI600, QST713, Y1336, etc.), etc.
  • Fungicides (continued): sedaxane, sodium azide, sodium hydrogen carbonate, sodium hypochlorite, sulfur, spiroxamine, salycylanilide, silthiofam, simeconazole, tebuconazole, tebufloquin, tecnazene, tecoram, tetraconazole, thiabendazole, thiadifluor, thicyofen, thifluzamide, thiochlorfenphim, thiophanate, thiophanate-methyl, thioquinox, thiram, tiadinil, tioxymid, tolclofos-methyl, tolprocarb, tolylfluanid, triadimefon, toriadimenol, triamiphos, triarimol, triazoxide, triazbutil, tributyltin oxide, trichlamide, tricyclazole, tridennorph, trifloxystrobin, triflumizole, triforine, triclopyricarb, triticonazole, validamycin, valifenalate, vinclozolin, zarilamide, zinc sulfate, zineb, ziram, zoxamide, shiitake mushroom mycelium extracts, shiitake mushroom fruiting body extracts, ZF-9646 (test name), NF-180 (test name), MIF-1002 (test name), S-2399 (test name), AKD-5195 (test name), NNF-0721 (test name), etc.
  • Bactericides: benzalkonium chloride, bithionol, bronopol, cresol, formaldehyde, nitrapyrin, oxolinic acid, oxyterracycline, streptomycin, tecloftalam, etc.
  • Nematicides: aldoxycarb, benclothiaz, cadusafos, DBCP, dichlofenthion, DSP, ethoprophos, fenamiphos, fensulfothion, fluazaindolizine, fluensulfone, fosthiazate, fosthietan, imicyafos, isamidofos, isazofos, oxamyl, thiaxazafen, thionazin, tioxazafen, BYI-1921 (test name), MAI-08015 (test name), etc.
  • Acaricides: acequinocyl, acrinathrin, amidoflumet, amitraz, azocyclotin, BCI-033 (test name), benzoximate, bifenazate, bromopropylate, chinomethionat, chlorobezilate, clofentezine, cyenopyrafen, cyflumetofen, cyhexatine, dicofol, dienochlor, diflovidazin, DNOC, etoxazole, fenazaquin, fenbutatin oxide, fenothiocarb, fenpropathrin, fenpyroximate, fluacrypyrim, halfenprox, hexythiazox, milbemectin, propargite, pyflubumide, pyridaben, pyrimidifen, S-1870 (test name), spirodiclofen, spyromesifen, CL900167 (test name), tebufenpyrad, NA-89 (test name), etc.
  • Insecticides: abamectin, acephate, acetamipirid, afidopyropen, afoxolaner, alanycarb, aldicarb, allethrin, azamethiphos, azinphos-ethyl, azinphos-methyl, Bacillus thuringiensis, bendiocarb, benfluthrin, benfuracarb, bensultap, bifenthrin, bioallethrin, bioresmethrin, bistrifluron, broflanilide, buprofezin, butocarboxim, carbaryl, carbofuran, carbosulfan, cartap, chlorantraniliprole, chlorethxyfos, chlorfenapyr, chlorfenvinphos, chlorfluazuron, chlormephos, chloroprallethrin, chlorpyrifos, chlorpyrifos-methyl, chromafenozide, clothianidin, cyanophos, cyantraniliprole, cyclaniliprole, cycloprothrin, cyflumetofen, cyfluthrin, beta-cyfluthrin, cyhalodiamide, cyhalothrin, lambda-cyhalothrin, cypermethrin, alpha-cypermethrin, beta-cypermethrin, zeta-cypermethrin, cyphenothrin, cyromazine, deltamethrin, diacloden, diafenthiuron, diazinon, dicloromezotiaz, dichlorvos, diflubenzuron, dimefluthrin, dimethylvinphos, dinotefuran, diofenolan, disulfoton, dimethoate, emamectin-benzoate, empenthrin, endosulfan, alpha-endosulfan, EPN, esfenvalerate, ethiofencarb, ethiprole, etofenprox, etrimfos, fenitrothion, fenobucarb, fenoxycarb, fenpropathrin, fenthion, fenvalerate, fipronil, flonicamid, fluazuron, flubendiamide, flucycloxuron, flucythrinate, flufenerim, flufenoxuron, flufenprox, flumethrin, fluralaner, fluvalinate, tau-fluvalinate, fonophos, formetanate, formothion, furathiocarb, flufiprole, fluhexafon, flupyradifurone, flometoquin, etc.
  • Insecticides (continued): gamma-cyhalothrin, halofenozide, heptafluthrin, hexaflumuron, hydramethylnon, imidacloprid, imiprothrin, isofenphos, indoxacarb, indoxacarb-M P, isoprocarb, isoxathion, kappa-bifenthrin, kappa-tefluthrin, lepimectin, lufenuron, malathion, meperfluthrin, metaflumizone, metaldehyde, methamidophos, methidathion, methacrifos, metalcarb, methomyl, methoprene, methoxychlor, methoxyfenozide, methyl bromide, epsilon-metofluthrin, metofluthrin, momfluorothrin, epsilon-momfluorothrin, monocrotophos, muscalure, nitenpyram, novaluron, noviflumuron, omethoate, oxamyl, oxydemeton-methyl, oxydeprofos, parathion, parathion-methyl, pentachlorophenol (PCP), permethrin, phenothrin, phenthoate, phoxim, phorate, phosalone, phosmet, phosphamidon, pirimicarb, pirimiphos-methyl, profenofos, profluthrin, prothiofos, propaphos, protrifenbute, pymetrozine, pyraclofos, pyrethrins, pyridalyl, pyrifluquinazon, pyriprole, pyrafluprole, pyriproxyfen, resmethrin, rotenone, SI-0405 (test name), sulprofos, silafluofen, spinetoram, spinosad, spiromesifen, spirotetramat, sulfoxaflor, sulfotep, SYJ-159 (test name), tebfenozide, teflubenzuron, tefluthorin, terbufos, tetrachlorvinphos, tetramethrin, d-tetramethrin, tetramethylfluthrin, tetraniliprole, thiacloprid, thiocyclam, thiodicarb, thiamethoxam, thiofanox, thiometon, tolfenpyrad, tralomethrin, transfluthrin, triazamate, trichlorfon, triazuron, triflumezopyrim, triflumuron, vamidothion, fluxametamide, MIE-1209 (test name), ME5382 (test name), etc.
  • EXAMPLES
  • Now, the present invention will be described in further detail with reference to Examples of synthesis of and tests on the compounds of the present invention. However, the present invention is by no means restricted thereto.
  • For the preparative medium pressure liquid chromatography described in Synthetic Examples and Reference Examples, a preparative medium pressure chromatograph YFLC-Wprep manufactured by Yamazen Science, Inc. (flow rate: 18 ml/min, 40-μm silica gel column) was used.
  • Chemical shift values of proton nuclear magnetic resonance (NMR) in Synthetic Examples and Reference Examples were measured by using Me4Si (tetramethylsilane) as a standard substance at 300 MHz (ECX300 or ECP300 manufactured by JEOL Ltd.).
  • Reference symbols in proton nuclear magnetic resonance chemical shift values have the following meanings.
  • s: singlet, brs: broad singlet, d: doublet, dd: double doublet, t: triplet, q: quartet, and m: multiplet.
  • Solvents used for NMR measurement are represented in brackets in the chemical shift value data.
  • Synthetic Example 1: Synthesis of 2-[3-(ethylsulfonyl)-7-(trifluoromethyl)imidazo[1,2-a]pyridin-2-yl]-7-(trifluoromethyl)imidazo[1,2-c]pyrimidine (Compound No. 1-3-001a of the Present Invention)
  • 82 mg of 6-(trifluoromethyl)pyrimidin-4-amine was dissolved in 5 ml of chlorobenzene, and 200 mg of 2-bromo-1-[3-(ethylsulfonyl)-7-(trifluoromethyl)imidazo[1,2-a]pyridin-2-yl]ethanone was added at room temperature. After the addition, the reaction mixture was stirred under reflux with heating for 9 hours. After the reaction, the reaction mixture was mixed with 10 ml of a 1M sodium hydroxide aqueous solution and extracted with ethyl acetate (10 ml×2). The resulting organic layer was dehydrated with saturated aqueous sodium chloride and dried over anhydrous sodium sulfate, and the solvent was evaporated under reduced pressure. The resulting residue was purified by preparative medium pressure liquid chromatography using n-hexane/ethyl acetate [with a gradient of from 100:0 to 0:100 (volume ratio, the same applies hereinafter)] as the eluent to obtain 163.5 mg of the desired product as a flesh-colored solid.
  • Melting point: 235-237° C.
  • 1H-NMR (CDCl3): δ9.38 (d, J=7.5 Hz, 1H), 9.19 (s, 1H), 8.63 (s, 1H), 8.12-8.09 (m, 1H), 8.02-8.00 (m, 1H), 7.28-7.23 (m, 1H), 3.73 (q, J=7.4 Hz, 2H), 1.34 (t, J=7.4 Hz, 3H).
  • Synthetic Example 2: Synthesis of 2-[3-(ethylthio)-7-(trifluoromethyl)imidazo[1,2-a]pyridin-2-yl]-3-methyl-6-(trifluoromethyl)-3H-imidazo[4,5-b]pyridine (Compound No. 1-1-002b of the Present Invention) and 2-[3-(ethylsulfonyl)-7-(trifluoromethyl)imidazo[1,2-a]pyridin-2-yl]-3-methyl-6-(trifluoromethyl)-3H-imidazo[4,5-b]pyridine (Compound No. 1-1-002a of the Present Invention) Step 1: Synthesis of 3-(ethylthio)-N-[2-(methylamino)-5-(trifluoromethyl)pyridin-3-yl]-7-(trifluoromethyl)imidazo[1,2-a]pyridine-2-carboxamide
  • 856 mg of N2-methyl-5-(trifluoromethyl)pyridine-2,3-diamine was dissolved in 20 ml of pyridine, and 1.00 g of 3-(ethylthio)-7-(trifluoromethyl)imidazo[1,2-a]pyridine-2-carboxylic acid, 1.32 g of 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride and 42 mg of 4-(dimethylamino)pyridine were added at room temperature. After the addition, the reaction mixture was stirred for 6 hours at room temperature. After the reaction, the solvent was evaporated under reduced pressure. The resulting residue was mixed with 10 ml of water and extracted with ethyl acetate (10 ml×2). The resulting organic layer was washed with a 1M hydrochloric acid aqueous solution, and dehydrated with saturated aqueous sodium chloride and dried over anhydrous sodium sulfate, and the solvent was evaporated under reduced pressure to obtain 1.40 g of the desired crude product. The crude product was used in the next step without further purification.
  • Step 2: Synthesis of 2-[3-(ethylthio)-7-(trifluoromethyl)imidazo[1,2-a]pyridin-2-yl]-3-methyl-6-(trifluoromethyl)-3H-imidazo[4,5-b]pyridine (Compound No. 1-1-002b of the Present Invention)
  • 1.40 g of the crude 3-(ethylthio)-N-[2-(methylamino)-5-(trifluoromethyl)pyridin-3-yl]-7-(trifluoromethyl)imidazo[1,2-a]pyridine-2-carboxamide obtained in Step 1 was dissolved in 15 ml of acetic acid, and the solution was stirred under reflux with heating for 2 hours. After the stirring, the reaction mixture was stirred at room temperature overnight. After the stirring, the solid precipitated in the reaction mixture was collected by filtration. The obtained solid was washed with di isopropyl ether to obtain 645 mg of the desired product as a white solid.
  • Melting point: 199-202° C.
  • 1H-NMR (CDCl3): δ8.78 (d, J=7.2 Hz, 1H), 8.73 (d, J=1.5 Hz, 1H), 8.40 (d, J=2.0 Hz, 1H), 8.06-8.04 (m, 1H), 7.21 (dd, J=7.2, 1.5 Hz, 1H), 4.33 (s, 3H), 3.15 (q, J=7.4 Hz, 2H), 1.22 (t, J=7.4 Hz, 3H).
  • Step 3: Synthesis of 2-[3-(ethylsulfonyl)-7-(trifluoromethyl)imidazo[1,2-a]pyridin-2-yl]-3-methyl-6-(trifluoromethyl)-3H-imidazo[4,5-b]pyridine (Compound No. 1-1-002a of the Present Invention)
  • To a solution of 645 mg of 2-[3-(ethylthio)-7-(trifluoromethyl)imidazo[1,2-a]pyridin-2-yl]-3-methyl-6-(trifluoromethyl)-3H-imidazo[4,5-b]pyridine in 15 ml of chloroform, 961 mg of 65 weight % m-chloroperbenzoic acid (containing about 30 weight % of water) was added under cooling with ice. After the addition, the reaction mixture was stirred at room temperature for 2.5 hours. After the reaction, the reaction mixture was mixed with a saturated sodium thiosulfate aqueous solution and extracted with chloroform (10 ml). The resulting organic layer was washed with a 1M sodium hydroxide aqueous solution and dried over anhydrous sodium sulfate, and the solvent was evaporated under reduced pressure. The resulting residue was purified by preparative medium pressure liquid chromatograph using n-hexane/ethyl acetate (with a gradient of from 100:0 to 50:50) as the eluent to obtain 660 mg of the desired product as a white solid.
  • Melting point: 203-205° C.
  • 1H-NMR (CDCl3): δ9.42 (d, J=7.5 Hz, 1H), 8.77 (s, 1H), 8.36 (d, J=1.7 Hz, 1H), 8.16 (s, 1H), 7.32 (dd, J=7.5, 1.7 Hz, 1H), 4.18 (s, 3H), 4.11 (q, J=7.5 Hz, 2H), 1.47 (t, J=7.5 Hz, 3H).
  • Synthetic Example 3: Synthesis of 2-[3-(ethylthio)-6-(trifluoromethyl)imidazo[1,2-a]pyridin-2-yl]-5-[(trifluoromethyl)thio]benz[d]oxazole (Compound No. 1-2-003b of the Present Invention), 2-[3-(ethylsulfonyl)-6-(trifluoromethyl)imidazo[1,2-a]pyridin-2-yl]-5-[(trifluoromethyl)sulfinyl]benz[d]oxazole (Compound No. 1-2-002a of the Present Invention) and 2-[3-(ethylsulfonyl)-6-(trifluoromethyl)imidazo[1,2-a]pyridin-2-yl]-5-[(trifluoromethyl)sulfonyl]benz[d]oxazole (Compound No. 1-2-001a of the Present Invention) Step 1: Synthesis of 3-(ethylthio)-N-{2-hydroxy-5-[(trifluoromethyl)thio]phenyl}-6-(trifluoromethyl)imidazo[1,2-a]pyridine-2-carboxamide
  • 466 mg of 2-amino-4-[(trifluoromethyl)thio]phenol was dissolved in 10 ml of pyridine, and 356 mg of 3-(ethylthio)-6-(trifluoromethyl)imidazo[1,2-a]pyridine-2-carboxylic acid, 471 mg of 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride and 75 mg of 4-(dimethylamino)pyridine were added. After the addition, the reaction mixture was stirred at room temperature overnight. After the reaction, the solvent was evaporated under reduced pressure. The resulting residue was purified by preparative medium pressure liquid chromatography using n-hexane/ethyl acetate (with a gradient of from 100:0 to 0:100) as the eluent to obtain 100 mg of the desired product as a reddish brown solid.
  • Step 2: Synthesis of 2-[3-(ethylthio)-6-(trifluoromethyl)imidazo[1,2-a]pyridin-2-yl]-5-[(trifluoromethyl)thio]benz[d]oxazole (Compound No. 1-2-003b of the Present Invention)
  • A solution of 89 mg of 3-(ethylthio)-N-{2-hydroxy-5-[(trifluoromethyl)thio]phenyl}-6-(trifluoromethyl)imidazo[1,2-a]pyridine-2-carboxamide in 5 ml of tetrahydrofuran was warmed to 50° C., and 65 mg of bis(2-methoxyethyl) azodicarboxylate and 73 mg of triphenylphosphine were added.
  • After the addition, the reaction mixture was stirred at 50° C. for 3 hours. After the stirring, the reaction mixture was stirred at room temperature overnight. After the reaction, the reaction mixture was mixed with 10 ml of water and extracted with ethyl acetate (10 ml×2). The resulting organic layer was dehydrated with saturated aqueous sodium chloride and dried over anhydrous sodium sulfate, and the solvent was evaporated under reduced pressure. The resulting residue was purified by preparative medium pressure liquid chromatography using n-hexane/ethyl acetate (with a gradient of from 85:15 to 0:100) as the eluent to obtain 21 mg of the desired product as a pale brown solid.
  • 1H-NMR (CDCl3): δ8.96 (s, 1H), 8.23 (s, 1H), 8.00-7.45 (m, 4H), 3.11 (q, J=7.4 Hz, 2H), 1.26 (t, J=7.4 Hz, 3H).
  • Step 3: Synthesis of 2-[3-(ethylsulfonyl)-6-(trifluoromethyl)imidazo[1,2-a]pyridin-2-yl]-5-[(trifluoromethyl)sulfinyl]benz[d]oxazole (Compound No. 1-2-002a of the Present Invention) and 2-[3-(ethylsulfonyl)-6-(trifluoromethyl)imidazo[1,2-a]pyridin-2-yl]-5-[(trifluoromethyl)sulfonyl]benz[d]oxazole (Compound No. 1-2-001a of the Present Invention)
  • To a solution of 21 mg of 2-[3-(ethylthio)-6-(trifluoromethyl)imidazo[1,2-a]pyridin-2-yl]-5-[(trifluoromethyl)thio]benz[d]oxazole in 5 ml of chloroform, 67 mg of 65 weight % m-chloroperbenzoic acid (containing about 30 weight % of water) was added. After the addition, the reaction mixture was stirred at room temperature overnight. After the stirring, the reaction mixture was stirred under reflux with heating for another 2 hours. After the reaction, the reaction mixture was mixed with a saturated sodium thiosulfate aqueous solution and extracted with chloroform (10 ml). The resulting organic layer was washed with a saturated sodium hydrogen carbonate aqueous solution and dried over anhydrous sodium sulfate, and the solvent was evaporated under reduced pressure. The resulting residue was purified by preparative medium pressure liquid chromatography using n-hexane/ethyl acetate (with a gradient of from 100:0 to 50:50) as the eluent to obtain 5 mg of the desired 2-[3-(ethylsulfonyl)-6-(trifluoromethyl)imidazo[1,2-a]pyridin-2-yl]-5-[(trifluoromethyl)sulfinyl]benz[d]oxazole as a desired product and 13 mg of the desired 2-[3-(ethylsulfonyl)-6-(trifluoromethyl)imidazo[1,2-a]pyridin-2-yl]-5-[(trifluoromethyl)sulfonyl]benz[d]oxazole respectively as a pale brown solid.
  • 1H-NMR (CDCl3) of 2-[3-(ethylsulfonyl)-6-(trifluoromethyl)imidazo[1,2-a]pyridin-2-yl]-5-[(trifluoromethyl)sulfinyl]benz[d]oxazole: δ9.75 (s, 1H), 8.37 (s, 1H), 8.05-7.35 (m, 4H), 4.09 (q, J=7.5 Hz, 2H), 1.48 (t, J=7.5 Hz, 3H).
  • 1H-NMR (CDCl3) of 2-[3-(ethylsulfonyl)-6-(trifluoromethyl)imidazo[1,2-a]pyridin-2-yl]-5-[(trifluoromethyl)sulfonyl]benz[d]oxazole: 69.74 (s, 1H), 8.62 (s, 1H), 8.25-7.40 (m, 4H), 4.07 (q, J=7.5 Hz, 2H), 1.50 (t, J=7.5 Hz, 3H).
  • Synthetic Example 4: Synthesis of 5-(ethylthio)-6-[3-methyl-6-(trifluoromethyl)-3H-imidazo[4,5-b]pyridin-2-yl]-2-[(trifluoromethyl)imidazo[2,1-b]thiazole (Compound No. 2-1-001b of the Present Invention) and 5-(ethylsulfonyl)-6-[3-methyl-6-(trifluoromethyl)-3H-imidazo[4,5-b]pyridin-2-yl]-2-(trifluoromethyl)imidazo[2,1-b]thiazole (Compound No. 2-1-001a of the Present Invention) Step 1: Synthesis of 5-(ethylthio)-N-[2-(methylamino)-5-(trifluoromethyl)pyridin-3-yl]-2-(trifluoromethyl)imidazo[2,1-b]thiazole-6-carboxamide
  • 242 mg of N2-methyl-5-(trifluoromethyl)pyridine-2,3-diamine was dissolved in 10 ml of pyridine, and 250 mg of 5-(ethylthio)-2-(trifluoromethyl)imidazo[2,1-b]thiazole-6-carboxylic acid, 322 mg of 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride and 10 mg of 4-(dimethylamino)pyridine were added at room temperature. After the addition, the reaction mixture was stirred at room temperature overnight. After the reaction, the solvent was evaporated under reduced pressure. The resulting residue was mixed with 10 ml of water and extracted with ethyl acetate (10 ml×2). The resulting organic layer was washed with a 1M hydrochloric acid aqueous solution, and dehydrated with saturated aqueous sodium chloride and dried over anhydrous sodium sulfate, and the solvent was evaporated under reduced pressure to obtain crude 5-(ethylthio)-N-[2-(methylamino)-5-(trifluoromethyl)pyridin-3-yl]-2-(trifluoromethyl)imidazo[2,1-b]thiazole-6-carboxamide as the desired product. The crude product was used in the next step without further purification.
  • Step 2: Synthesis of 5-(ethylthio)-6-[3-methyl-6-(trifluoromethyl)-3H-imidazo[4,5-b]pyridin-2-yl]-2-(trifluoromethyl)imidazo[2,1-b]thiazole (Compound No. 2-1-001b of the Present Invention)
  • The crude 5-(ethylthio)-N-[2-(methylamino)-5-(trifluoromethyl)pyridin-3-yl]-2-(trifluoromethyl)imidazo[2,1-b]thiazole-6-carboxamide obtained in Step 1 was dissolved in 10 ml of acetic acid, and the solution was stirred under reflux with heating for 4.5 hours. After the reaction, the solvent was evaporated under reduced pressure. The resulting residue was mixed with 10 ml of a 1M hydrochloric acid aqueous solution and extracted with ethyl acetate (10 ml×2). The resulting organic layer was dehydrated with saturated aqueous sodium chloride and dried over anhydrous sodium sulfate, and the solvent was evaporated under reduced pressure. The precipitated solid was collected by filtration. The obtained solid was washed with diisopropyl ether to obtain 332 mg of the desired product as a white solid.
  • Melting point: 200-203° C.
  • 1H-NMR (CDCl3): δ8.72-8.67 (m, 1H), 8.37-8.33 (m, 1H), 8.12-8.08 (m, 1H), 4.25 (s, 3H), 3.14 (q, J=7.5 Hz, 2H), 1.25 (t, J=7.5 Hz, 3H).
  • Step 3: Synthesis of 5-(ethylsulfonyl)-6-[3-methyl-6-(trifluoromethyl)-3H-imidazo[4,5-b]pyridin-2-yl]-2-(trifluoromethyl)imidazo[2,1-b]thiazole (Compound No. 2-1-001a of the Present Invention)
  • To a solution of 132 mg of 5-(ethylthio)-6-[3-methyl-6-(trifluoromethyl)-3H-imidazo[4,5-b]pyridin-2-yl]-2-(trifluoromethyl)imidazo[2,1-b]thiazole in 3 ml of chloroform, 155 mg of 65 weight % m-chloroperbenzoic acid (containing about 30 weight % of water) was added under cooling with ice. After the addition, the reaction mixture was stirred at room temperature for 1.5 hours. After the reaction, the reaction mixture was mixed with a saturated sodium thiosulfate aqueous solution and extracted with chloroform (10 ml). The resulting organic layer was washed with a 1M sodium hydroxide aqueous solution and dried over anhydrous sodium sulfate, and the solvent was evaporated under reduced pressure. The resulting residue was purified by preparative medium pressure liquid chromatography using n-hexane/ethyl acetate (with a gradient of from 100:0 to 50:50) as the eluent to obtain 110 mg of the desired product as a white solid.
  • Melting point: 249-251° C.
  • 1H-NMR (CDCl3): δ8.76-8.71 (m, 1H), 8.71-8.66 (m, 1H), 8.36-8.32 (m, 1H), 4.23 (s, 3H), 4.19 (q, J=7.5 Hz, 2H), 1.45 (t, J=7.5 Hz, 3H).
  • Synthetic Example 5: Synthesis of 2-[3-(ethylsulfonyl)-7-(trifluoromethyl)imidazo[1,2-a]pyridin-2-yl]-7-(trifluoromethyl)imidazo[1,2-b]pyridazine (Compound No. 1-4-001a of the Present Invention)
  • 82 mg of 5-(trifluoromethyl)pyridazin-3-amine was dissolved in 5 ml of chlorobenzene, and 200 mg of 2-bromo-1-[3-(ethylsulfonyl)-7-(trifluoromethyl)imidazo[1,2-a]pyridin-2-yl]ethanone was added at room temperature. After the addition, the reaction mixture was stirred under reflux with heating for 3 hours. After the reaction, the reaction mixture was mixed with 10 ml of a 1M sodium hydroxide aqueous solution and extracted with ethyl acetate (10 ml×2). The obtained organic layer was dehydrated with saturated aqueous sodium chloride and dried over anhydrous sodium sulfate, and the solvent was evaporated under reduced pressure. The resulting residue was purified by preparative medium pressure liquid chromatography using n-hexane/ethyl acetate (with a gradient of from 100:0 to 0:100) as the eluent to obtain 142 mg of the desired product as a brown solid.
  • Melting point: 214-218° C.
  • 1H-NMR (CDCl3): δ9.40 (d, J=7.5 Hz, 1H), 8.94 (s, 1H), 8.58 (d, J=2.0 Hz, 1H), 8.34-8.30 (m, 1H), 8.11-8.09 (m, 1H), 7.24 (dd, J=7.5, 2.0 Hz, 1H), 3.79 (q, J=7.4 Hz, 2H), 1.36 (t, J=7.4 Hz, 3H).
  • Synthetic Example 6: Synthesis of 2-[3-(ethylthio)-6-(trifluoromethyl)imidazo[1,2-a]pyrazin-2-yl]-3-methyl-6-(trifluoromethyl)-3H-imidazo[4,5-b]pyridine (Compound No. 1-1-029b of the Present Invention) and 2-[3-(ethylsulfonyl)-6-(trifluoromethyl)imidazo[1,2-a]pyrazin-2-yl]-3-methyl-6-(trifluoromethyl)-3H-imidazo[4,5-b]pyridine (Compound No. 1-1-029a of the Present Invention) Step 1: Synthesis of 3-(ethylthio)-N-[2-(methylamino)-5-(trifluoromethyl)pyridin-3-yl]-6-(trifluoromethyl)imidazo[1,2-a]pyrazine-2-carboxamide
  • 271 mg of N2-methyl-5-(trifluoromethyl)pyridine-2,3-diamine was dissolved in 10 ml of pyridine, and 270 mg of 3-(ethylthio)-6-(trifluoromethyl)imidazo[1,2-a]pyrazine-2-carboxylic acid and 357 mg of 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydroxhloride were added. After the addition, the reaction mixture was stirred at room temperature for 2 hours. After the reaction, the solvent was evaporated under reduced pressure. The resulting residue was mixed with 10 ml of water and extracted with ethyl acetate (10 ml×2). The resulting organic layer was dehydrated with saturated aqueous sodium chloride and dried over anhydrous sodium sulfate, and the solvent was evaporated under reduce pressure to obtain crude 3-(ethylthio)-N-[2-(methylamino)-5-(trifluoromethyl)pyridin-3-yl]-6-(trifluoromethyl)imidazo[1,2-a]pyrazine-2-carboxamide. The crude product was used in the next step without further purification.
  • Step 2: Synthesis of 2-[3-(ethylthio)-6-(trifluoromethyl)imidazo[1,2-a]pyrazin-2-yl]-3-methyl-6-(trifluoromethyl)-3H-imidazo[4,5-b]pyridine (Compound No. 1-1-029b of the Present Invention)
  • The crude 3-(ethylthio)-N-[2-(methylamino)-5-(trifluoromethyl)pyridin-3-yl]-6-(trifluoromethyl)imidazo[1,2-a]pyrazine-2-carboxamide obtained in Step 1 was dissolved in 10 ml of acetic acid, and the solution was stirred under reflux with heating for 17 hours. After the reaction, the solvent was evaporated under reduced pressure. The resulting residue was mixed with 10 ml of water and extracted with ethyl acetate (10 ml×2). The resulting organic layer was dehydrated with saturated aqueous sodium chloride and dried over anhydrous sodium sulfate, and the solvent was evaporated under reduced pressure. The resulting residue was purified by preparative medium pressure liquid chlromatography using n-hexane/ethyl acetate (with a gradient of from 100:0 to 80:20) as the eluent to obtain 257 mg of the desired product as a white solid.
  • Melting point: 220-222° C.
  • 1H-NMR (CDCl3): δ9.24 (s, 1H), 8.99 (s, 1H), 8.76 (d, J=1.5 Hz, 1H), 8.42 (d, J=1.5 Hz, 1H), 4.37 (s, 3H), 3.26 (q, J=7.5 Hz, 2H), 1.25 (t, J=7.5 Hz, 3H).
  • Step 3: Synthesis of 2-[3-(ethylsulfonyl)-6-(trifluoromethyl)imidazo[1,2-a]pyrazin-2-yl]-3-methyl-6-(trifluoromethyl)-3H-imidazo[4,5-b]pyridine (Compound No. 1-1-029a of the Present Invention)
  • To a solution of 232 mg of 2-[3-(ethylthio)-6-(trifluoromethyl)imidazo[1,2-a]pyrazin-2-yl]-3-methyl-6-(trifluoromethyl)-3H-imidazo[4,5-b]pyridine in 5 ml of chloroform, 326 mg of 65 weight % m-chloroperbenzoic acid (containing about 30 weight % of water) was added under cooling with ice. After the addition, the reaction mixture was stirred at room temperature for 2 hours. After the reaction, the reaction mixture was mixed with a saturated sodium thiosulfate aqueous solution and extracted with chloroform (10 ml). The resulting organic layer was washed with a saturated sodium hydrogen carbonate aqueous solution and dried over anhydrous sodium sulfate, and the solvent was evaporated under reduced pressure. The obtained solid was mixed with 10 ml of diisopropyl ether, followed by filtration to obtain 203 mg of the desired product as a white solid.
  • Melting point: 234-236° C.
  • 1H-NMR (CDCl3): δ9.63 (s, 1H), 9.39 (s, 1H), 8.81-8.77 (m, 1H), 8.39-8.36 (m, 1H), 4.25 (s, 3H), 4.23 (q, J=7.5 Hz, 2H), 1.49 (t, J=7.5 Hz, 3H).
  • Synthetic Example 7: Synthesis of 2-[6-bromo-3-(ethylthio)-7-(trifluoromethyl)imidazo[1,2-a]pyridin-2-yl]-3-methyl-6-(trifluoromethyl)-3H-imidazo[4,5-b]pyridine (Compound No. 1-1-023b of the Present Invention) and 2-[6-bromo-3-(ethylsulfonyl)-7-(trifluoromethyl)imidazo[1,2-a]pyridin-2-yl]-3-methyl-6-(trifluoromethyl)-3H-imidazo[4,5-b]pyridine (Compound No. 1-1-023a of the Present Invention) Step 1: Synthesis of 6-bromo-N-[2-(methylamino)-5-(trifluoromethyl)pyridin-3-yl]-7-(trifluoromethyl)imidazo[1,2-a]pyridine-2-carboxamide
  • 1.51 g of N2-methyl-5-(trifluoromethyl)pyridine-2,3-diamine was dissolved in 20 ml of pyridine, and 2.04 g of 6-bromo-7-(trifluoromethyl)imidazo[1,2-a]pyridine-2-carboxylic acid and 2.53 g of 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride were added. After the addition, the reaction mixture was stirred at room temperature for 3 hours. After the reaction, 20 ml of water was added to the reaction mixture, and the precipitated solid was collected by filtration to obtain 2.98 g of desired product as a flesh-colored solid.
  • Melting point: 200-205° C.
  • 1H-NMR (CDCl3): δ8.77 (brs, 1H), 8.54 (s, 1H), 8.40-8.36 (m, 1H), 8.28 (s, 1H), 8.04 (s, 1H), 7.85 (d, J=2.0 Hz, 1H), 5.20 (brs, 1H), 3.10 (d, J=4.8 Hz, 3H).
  • Step 2: Synthesis of 2-[6-bromo-7-(trifluoromethyl)imidazo[1,2-a]pyridin-2-yl]-3-methyl-6-(trifluoromethyl)-3H-imidazo[4,5-b]pyridine
  • 2.93 g of 6-bromo-N-[2-(methylamino)-5-(trifluoromethyl)pyridin-3-yl]-7-(trifluoromethyl)imidazo[1,2-a]pyridine-2-carboxamide was dissolved in 15 ml of acetic acid, and the solution was stirred under reflux with heating for 2 hours. After the reaction, the solvent was evaporated under reduced pressure. The resulting residue was mixed with 10 ml of water and extracted with chloroform (10 ml×2). The resulting organic layer was dried over anhydrous sodium sulfate, and the solvent was evaporated under reduced pressure. The resulting residue was purified by preparative medium pressure liquid chromatography using n-hexane/ethyl acetate (with a gradient of from 100:0 to 0:100) as the eluent to obtain 2.82 g of the desired product as a pale brown solid.
  • Melting point: 220-225° C.
  • 1H-NMR (CDCl3): δ8.71 (d, J=1.4 Hz, 1H), 8.55 (s, 1H), 8.51 (s, 1H), 8.27 (d, J=1.4 Hz, 1H), 8.14 (s, 1H), 4.47 (s, 3H).
  • Step 3: Synthesis of 2-[6-bromo-3-(ethylthio)-7-(trifluoromethyl)imidazo[1,2-a]pyridin-2-yl]-3-methyl-6-(trifluoromethyl)-3H-imidazo[4,5-b]pyridine (Compound No. 1-1-023b of the Present Invention)
  • 518 mg of N-chlorosuccinimide was dissolved in 5 ml of 1,2-dichloroethane, and 321 mg of ethanethiol was added at −40° C. After the addition, the reaction mixture was stirred at room temperature for 30 minutes. After the stirring, to the reaction mixture, a solution of 300 mg of 2-[6-bromo-7-(trifluoromethyl)imidazo[1,2-a]pyridin-2-yl]-3-methyl-6-(trifluoromethyl)-3H-imidazo[4,5-b]pyridine in 2 ml of 1,2-dichloroethane was added at room temperature. After the addition, the reaction mixture was stirred under reflux with heating for 3 hours. After the stirring, to the reaction mixture, a solution of 1.04 g of N-chlorosuccinimide and 642 mg of ethanethiol in 5 ml of 1,2-dichloroethane prepared in a separate container was added at room temperature. After the addition, the reaction mixture was stirred under reflux with heating for 3 hours. After the reaction, the reaction mixture was mixed with 10 ml of water and extracted with chloroform (10 ml×2). The resulting organic layer was dried over anhydrous sodium sulfate, and the solvent was evaporated under reduced pressure. The resulting residue was purified by preparative medium pressure liquid chromatography using n-hexane/ethyl acetate (with a gradient of from 100:0 to 0:100) as the eluent to obtain 212 mg of the desired product as a white solid.
  • Melting point: 214-215° C.
  • 1H-NMR (CDCl3): δ8.93 (s, 1H), 8.74 (d, J=1.4 Hz, 1H), 8.40 (d, J=1.4 Hz, 1H), 8.13 (s, 1H), 4.33 (s, 3H), 3.18 (q, J=7.4 Hz, 2H), 1.24 (t, J=7.4 Hz, 3H).
  • Step 4: Synthesis of 2-[6-bromo-3-(ethylsulfonyl)-7-(trifluoromethyl)imidazo[1,2-a]pyridin-2-yl]-3-methyl-6-(trifluoromethyl)-3H-imidazo[4,5-b]pyridine (Compound No. 1-1-023a of the Present Invention)
  • To a solution of 150 mg of 2-[6-bromo-3-(ethylthio)-7-(trifluoromethyl)imidazo[1,2-a]pyridin-2-yl]-3-methyl-6-(trifluoromethyl)-3H-imidazo[4,5-b]pyridine in 5 ml of chloroform, 175 mg of 65 weight % m-chloroperbenzoic acid (containing about 30 weight % of water) was added under cooling with ice. After the addition, the reaction mixture was stirred at room temperature for 2 hours. After the reaction, the reaction mixture was mixed with a saturated sodium thiosulfate aqueous solution and extracted with chloroform (10 ml). The resulting organic layer was washed with a 1M sodium hydroxide aqueous solution and dried over anhydrous sodium sulfate, and the solvent was evaporated under reduced pressure. The resulting residue was purified by preparative medium pressure liquid chromatography using n-hexane/ethyl acetate (with a gradient of from 100:0 to 0:100) as the eluent to obtain 142 mg of the desired product as a white solid.
  • Melting point: 226-228° C.
  • 1H-NMR (CDCl3): δ9.60 (s, 1H), 8.77 (d, J=1.4 Hz, 1H), 8.36 (d, J=1.4 Hz, 1H), 8.23 (s, 1H), 4.19 (s, 3H), 4.15 (q, J=7.5 Hz, 2H), 1.49 (t, J=7.5 Hz, 3H).
  • Synthetic Example 8: Synthesis of 2-[3-(ethylthio)-7-(trifluoromethyl)imidazo[1,2-a]pyridin-2-yl]-5-(trifluoromethyl)-3H-imidazo[4,5-b]pyridine (Compound No. 1-1-031b of the Present Invention), 2-[3-(ethylthio)-7-(trifluoromethyl)imidazo[1,2-a]pyridin-2-yl]-1-methyl-5-(trifluoromethyl)-1H-imidazo[4,5-b]pyridine (Compound No. 1-7-001b of the Present Invention) and 2-[3-(ethylthio)-7-(trifluoromethyl)imidazo[1,2-a]pyridin-2-yl]-3-methyl-5-(trifluoromethyl)-3H-imidazo[4,5-b]pyridine (Compound No. 1-1-030b of the Present Invention) Step 1: Synthesis of N-[2-amino-6-(trifluoromethyl)pyridin-3-yl]-3-ethylthio-7-(trifluoromethyl)imidazo[1,2-a]pyridine-2-carboxamide
  • 712 mg of 6-(trifluoromethyl)pyridine-2,3-diamine was dissolved in 10 ml of pyridine, and 972 mg of 3-(ethylthio)-7-(trifluoromethyl)imidazo[1,2-a]pyridine-2-carboxylic acid and 1.32 g of 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride were added at room temperature. After the addition, the reaction mixture was stirred at room temperature overnight. After the reaction, 20 ml of water was added to the reaction mixture, and the precipitated solid was collected by filtration to obtain 1.20 g of the desired crude product as a reddish brown solid. The crude product was used in the next step without further purification.
  • Step 2: Synthesis of 2-[3-(ethylthio)-7-(trifluoromethyl)imidazo[1,2-a]pyridin-2-yl]-5-(trifluoromethyl)-3H-imidazo[4,5-b]pyridine (Compound No. 1-1-031b of the Present Invention)
  • 1.2 g of the crude N-[2-amino-6-(trifluoromethyl)pyridin-3-yl]-3-ethylthio-7-(trifluoromethyl)imidazo[1,2-a]pyridine-2-carboxamide obtained in Step 1 was dissolved in 10 ml of propionic acid, and the solution was stirred under reflux with heating for 3 hours. After the reaction, the solvent was evaporated under reduced pressure. The resulting residue was mixed with 10 ml of water and extracted with ethyl acetate (10 ml×2). The resulting organic layer was washed with a 1M sodium hydroxide aqueous solution and dried over anhydrous sodium sulfate, and the solvent was evaporated under reduced pressure to obtain 1.0 g of the desired product as a brown solid. The product was used in the next step without further purification.
  • 1H-NMR (CDCl3): δ8.59 (d, J=7.2 Hz, 1H), 8.03 (d, J=7.8 Hz, 1H), 7.83 (s, 1H), 7.36 (d, J=7.8 Hz, 1H), 7.04-6.98 (m, 1H), 3.02 (q, J=7.4 Hz, 2H), 1.05 (t, J=7.4 Hz, 3H) (no peak of proton of NH was observed).
  • Step 3: Synthesis of 2-[3-(ethylthio)-7-(trifluoromethyl)imidazo[1,2-a]pyridin-2-yl]-1-methyl-5-(trifluoromethyl)-1H-imidazo[4,5-b]pyridine (Compound No. 1-7-001b of the Present Invention) and 2-[3-(ethylthio)-7-(trifluoromethyl)imidazo[1,2-a]pyridin-2-yl]-3-methyl-5-(trifluoromethyl)-3H-imidazo[4,5-b]pyridine (Compound No. 1-1-030b of the Present Invention)
  • To a solution of 66 mg of 63 weight % sodium hydride (dispersed in mineral oil) in 3 ml of N,N-dimethylformamide, a solution of 500 mg of 2-[3-(ethylthio)-7-(trifluoromethyl)imidazo[1,2-a]pyridin-2-yl]-5-(trifluoromethyl)-3H-imidazo[4,5-b]pyridine in 7 ml of N,N-dimethylformamide was added under cooling with ice. After the addition, the reaction mixture was stirred under cooling with ice for 30 minutes. After the stirring, to the reaction mixture, 286 mg of methyl trifluoromethanesulfonate was added under cooling with ice. After the addition, the reaction mixture was stirred at room temperature for 1.5 hours. After the reaction, the reaction mixture was mixed with 10 ml of water and extracted with ethyl acetate (10 ml×2). The resulting organic layer was dehydrated with saturated aqueous sodium chloride and dried over anhydrous sodium sulfate, and the solvent was evaporated under reduced pressure. The resulting residue was purified by preparative medium pressure liquid chromatography using n-hexane/ethyl acetate (with a gradient of from 100:0 to 50:50) as the eluent to obtain 150 mg of the desired 2-[3-(ethylthio)-7-(trifluoromethyl)imidazo[1,2-a]pyridin-2-yl]-1-methyl-5-(trifluoromethyl)-1H-imidazo[4,5-b]pyridine and 218 mg of the desired 2-[3-(ethylthio)-7-(trifluoromethyl)imidazo[1,2-a]pyridin-2-yl]-3-methyl-5-(trifluoromethyl)-3H-imidazo[4,5-b]pyridine respectively as a brown solid and as a white solid.
  • Melting point of 2-[3-(ethylthio)-7-(trifluoromethyl)imidazo[1,2-a]pyridin-2-yl]-1-methyl-5-(trifluoromethyl)-1H-imidazo[4,5-b]pyridine: 164-166° C.
  • 1H-NMR (CDCl3): δ8.81 (d, J=7.5 Hz, 1H), 8.03 (s, 1H), 7.91 (d, J=8.2 Hz, 1H), 7.70 (d, J=8.2 Hz, 1H), 7.20 (dd, J=7.5, 1.7 Hz, 1H), 4.31 (s, 3H), 3.35 (q, J=7.4 Hz, 2H), 1.24 (t, J=7.4 Hz, 3H).
  • Melting point of 2-[3-(ethylthio)-7-(trifluoromethyl)imidazo[1,2-a]pyridin-2-yl]-3-methyl-5-(trifluoromethyl)-3H-imidazo[4,5-b]pyridine: 163-165° C.
  • 1H-NMR (CDCl3): δ8.77 (d, J=7.2 Hz, 1H), 8.26 (d, J=8.2 Hz, 1H), 8.06 (s, 1H), 7.68 (d, J=8.2 Hz, 1H), 7.21 (dd, J=7.2, 1.5 Hz, 1H), 4.33 (s, 3H), 3.12 (q, J=7.4 Hz, 2H), 1.20 (t, J=7.4 Hz, 3H).
  • Synthetic Example 9: Synthesis of 2-[3-(ethylthio)-7-(trifluoromethyl)imidazo[1,2-a]pyridin-2-yl]-3-methyl-6-(trifluoromethyl)-3H-imidazo[4,5-c]pyridine (Compound No. 1-8-005b of the Present Invention) and synthesis of 2-[3-(ethylsulfonyl)-7-(trifluoromethyl)imidazo[1,2-a]pyridin-2-yl]-3-methyl-6-(trifluoromethyl)-3H-imidazo[4,5-c]pyridine (Compound No. 1-8-005a of the Present Invention) Step 1: Synthesis of 3-(ethylthio)-N-[5-(methylamino)-2-(trifluoromethyl)pyridin-4-yl]-7-(trifluoromethyl)imidazo[1,2-a]pyridine-2-carboxamide
  • 303 mg of N3-methyl-6-(trifluoromethyl)pyridine-3,4-diamine was dissolved in 15 ml of pyridine, and 552 mg of 3-(ethylthio)-7-(trifluoromethyl)imidazo[1,2-a]pyridine-2-carboxylic acid and 732 mg of 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride were added at room temperature. After the addition, the reaction mixture was stirred at room temperature overnight. After the reaction, the solvent was evaporated under reduced pressure. The obtained residue was mixed with 10 ml of water and extracted with chloroform (10 ml×2). The resulting organic layer was dried over anhydrous sodium sulfate, and the solvent was evaporated under reduced pressure to obtain 986 mg of the desired crude product. The crude product was used in the next step without further purification.
  • Step 2: Synthesis of 2-[3-(ethylthio)-7-(trifluoromethyl)imidazo[1,2-a]pyridin-2-yl]-3-methyl-6-(trifluoromethyl)-3H-imidazo[4,5-c]pyridine (Compound No. 1-8-005b of the Present Invention)
  • 986 mg of the crude 3-(ethylthio)-N-[5-(methylamino)-2-(trifluoromethyl)pyridin-4-yl]-7-(trifluoromethyl)imidazo[1,2-a]pyridine-2-carboxamide obtained in Step 1 was dissolved in 15 ml of acetic acid, and the solution was stirred under reflux with heating for 22 hours. After the stirring, the reaction mixture was stirred at room temperature overnight. After the reaction, the solvent was evaporated under reduced pressure. The resulting residue was mixed with 10 ml of water and extracted with chloroform (10 ml×2). The resulting organic layer was dried over anhydrous sodium sulfate, and the solvent was evaporated under reduced pressure. The resulting residue was purified by preparative medium pressure liquid chromatography using n-hexane/ethyl acetate (with a gradient of from 100:0 to 70:30) as the eluent to obtain 358 mg of the desired product as a yellow solid.
  • Melting point: 217-219° C.
  • 1H-NMR (CDCl3): δ8.97 (s, 1H), 8.78 (d, J=7.2 Hz, 1H), 8.20 (s, 1H), 8.05 (s, 1H), 7.22 (d, J=7.2 Hz, 1H), 4.37 (s, 3H), 3.15 (q, J=7.5 Hz, 2H), 1.22 (t, J=7.5 Hz, 3H).
  • Step 3: Synthesis of 2-[3-(ethylsulfonyl)-7-(trifluoromethyl)imidazo[1,2-a]pyridin-2-yl]-3-methyl-6-(trifluoromethyl)-3H-imidazo[4,5-c]pyridine (Compound No. 1-8-005a of the Present Invention)
  • To a solution of 258 mg of 2-[3-(ethylthio)-7-(trifluoromethyl)imidazo[1,2-a]pyridin-2-yl]-3-methyl-6-(trifluoromethyl)-3H-imidazo[4,5-c]pyridine in 8 ml of chloroform, 323 mg of 65 weight % m-chloroperbenzoic acid (containing about 30 weight % of water) was added under cooling with ice. After the addition, the reaction mixture was stirred at room temperature for one hour. After the reaction, the reaction mixture was mixed with a saturated sodium thiosulfate aqueous solution and extracted with chloroform (10 ml). The resulting organic layer was washed with a saturated sodium hydrogen carbonate aqueous solution and dried over anhydrous sodium sulfate, and the solvent was evaporated under reduced pressure. The resulting residue was purified by preparative medium pressure liquid chromatography using n-hexane/ethyl acetate (with a gradient of from 100:0 to 50:50) as the eluent. 10 ml of diisopropyl ether was added to the obtained solid, followed by filtration to obtain 200 mg of the desired product as a yellow solid.
  • Melting point: 245-247° C.
  • 1H-NMR (CDCl3): δ9.39 (d, J=7.2 Hz, 1H), 9.00 (s, 1H), 8.14 (s, 2H), 7.33 (d, J=7.2 Hz, 1H), 4.20 (s, 3H), 4.07 (q, J=7.5 Hz, 2H), 1.46 (t, J=7.5 Hz, 3H).
  • Synthetic Example 10: Synthesis of 2-[3-(ethylthio)-6-(trifluoromethyl)imidazo[1,2-a]pyridin-2-yl]-3,4-dimethyl-6-(trifluoromethyl)-3H-imidazo[4,5-c]pyridine (Compound No. 1-8-003b of the Present Invention) and 2-[3-(ethylsulfonyl)-6-(trifluoromethyl)imidazo[1,2-a]pyridin-2-yl]-3,4-dimethyl-6-(trifluoromethyl)-3H-imidazo[4,5-c]pyridine (Compound No. 1-8-003a of the Present Invention) Step 1: Synthesis of 3-(ethylthio)-N-[2-methyl-3-(methylamino)-6-(trifluoromethyl)pyridin-4-yl]-6-(trifluoromethyl)imidazo[1,2-a]pyridine-2-carboxamide
  • 212 mg of N3,2-dimethyl-6-(trifluoromethyl)pyridine-3,4-diamine was dissolved in 10 ml of pyridine, and 200 mg of 3-(ethylthio)-6-(trifluoromethypimidazo[1,2-a]pyridine-2-carboxylic acid, 264 mg of 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride and 9 mg of 4-(dimethylamino)pyridine were added at room temperature. After the addition, the reaction mixture was stirred at room temperature overnight. After the reaction, the solvent was evaporated under reduced pressure. The resulting residue was mixed with 10 ml of water and extracted with ethyl acetate (10 ml×2). The resulting organic layer was dried over anhydrous sodium sulfate, and the solvent was evaporated under reduced pressure to obtain crude 3-(ethylthio)-N-[2-methyl-3-(methylamino)-6-(trifluoromethyl)pyridin-4-yl]-6-(trifluoromethyl)imidazo[1,2-a]pyridine-2-carboxamide. The crude product was used in the next step without further purification.
  • Step 2: Synthesis of 2-[3-(ethylthio)-6-(trifluoromethyl)imidazo[1,2-a]pyridin-2-yl]-3,4-dimethyl-6-(trifluoromethyl)-3H-imidazo[4,5-c]pyridine (Compound No. 1-8-003b of the Present Invention)
  • The crude 3-(ethylthio)-N-[2-methyl-3-(methylamino)-6-(trifluoromethyl)pyridin-4-yl]-6-(trifluoromethyl)imidazo[1,2-a]pyridine-2-carboxamide obtained in Step 1 was dissolved in 10 ml of acetic acid, and the solution was stirred under reflux with heating for 3 hours. After the reaction, the solvent was evaporated under reduced pressure. The resulting residue was mixed with 10 ml of water and extracted with ethyl acetate (10 ml×2). The resulting organic layer was dehydrated with saturated aqueous sodium chloride and dried over anhydrous sodium sulfate, and the solvent was evaporated under reduced pressure. The resulting residue was purified by preparative medium pressure liquid chromatography using n-hexane/ethyl acetate (with a gradient of from 100:0 to 70:30) as the eluent to obtain 85 mg of the desired product as a white solid.
  • Melting point: 169-171° C.
  • 1H-NMR (CDCl3): δ9.01 (s, 1H), 8.03 (s, 1H), 7.83 (d, J=9.3 Hz, 1H), 7.54 (dd, J=9.3, 1.8 Hz, 1H), 4.41 (s, 3H), 3.10 (q, J=7.5 Hz, 2H), 3.08 (s, 3H), 1.22 (t, J=7.5 Hz, 3H).
  • Step 3: Synthesis of 2-[3-(ethylsulfonyl)-6-(trifluoromethyl)imidazo[1,2-a]pyridin-2-yl]-3,4-dimethyl-6-(trifluoromethyl)-3H-imidazo[4,5-c]pyridine (Compound No. 1-8-003a of the Present Invention)
  • To a solution of 49 mg of 2-[3-(ethylthio)-6-(trifluoromethyl)imidazo[1,2-a]pyridin-2-yl]-3,4-dimethyl-6-(trifluoromethyl)-3H-imidazo[4,5-c]pyridine in 3 ml of chloroform, 57 mg of 65 weight % m-chloroperbenzoic acid (containing about 30 weight % of water) was added under cooling with ice. After the addition, the reaction mixture was stirred at room temperature for 2 hours. After the reaction, the reaction mixture was mixed with a saturated sodium thiosulfate aqueous solution and extracted with chloroform (10 ml). The resulting organic layer was washed with a saturated sodium hydrogen carbonate aqueous solution and dried over anhydrous sodium sulfate, and the solvent was evaporated under reduced pressure. The resulting residue was purified by preparative medium pressure liquid chromatography using n-hexane/ethyl acetate (with a gradient of from 100:0 to 50:50) as the eluent to obtain 37 mg of the desired product as a white solid.
  • Melting point: 200-205° C.
  • 1H-NMR (CDCl3): δ9.59 (s, 1H), 7.97 (s, 1H), 7.96 (d, J=9.6 Hz, 1H), 7.74 (dd, J=9.6, 1.5 Hz, 1H), 4.25 (s, 3H), 3.96 (q, J=7.5 Hz, 2H), 3.08 (s, 3H), 1.45 (t, J=7.5 Hz, 3H).
  • Synthetic Example 11: Synthesis of 3-(ethylsulfonyl)-6,7′-bis(trifluoromethyl)-2,2′-biimidazo[1,2-a]pyridine (Compound No. 1-5-002a of the Present Invention)
  • 102 mg of 4-(trifluoromethyl)pyridin-2-amine was dissolved in 4 ml of bromobenzene, and 300 mg of 2-bromo-1-[3-(ethylsulfonyl)-6-(trifluoromethyl)imidazo[1,2-a]pyridin-2-yl]ethanone was added at room temperature. After the addition, the reaction mixture was stirred under reflux with heating for 5 hours. After the reaction, the reaction mixture was mixed with 10 ml of a 1M sodium hydroxide aqueous solution and extracted with ethyl acetate (10 ml×2). The resulting organic layer was dehydrated with saturated aqueous sodium chloride and dried over anhydrous sodium sulfate, and the solvent was evaporated under reduced pressure. The resulting residue was purified by preparative medium pressure liquid chromatography using n-hexane/ethyl acetate (with a gradient of from 100:0 to 50:50) as the eluent to obtain 168 mg of the desired product as a white solid.
  • Melting point: 245-248° C.
  • 1H-NMR (CDCl3): δ9.65 (s, 1H), 8.57 (s, 1H), 8.30 (d, J=7.2 Hz, 1H), 8.01 (s, 1H), 7.90 (d, J=9.6 Hz, 1H), 7.63 (dd, J=9.6, 1.8 Hz, 1H), 7.03 (dd, J=7.2, 1.8 Hz, 1H), 3.73 (q, J=7.5 Hz, 2H), 1.33 (t, J=7.5 Hz, 3H).
  • Synthetic Example 12: Synthesis of 2-[3-(ethylsulfonyl)-6-(trifluoromethyl)imidazo[1,2-a]pyridin-2-yl]-7-(perfluoroethyl)imidazo[1,2-c]pyridine (Compound No. 1-3-008a of the Present Invention) and 3-bromo-2-[3-(ethylsulfonyl)-6-(trifluoromethyl)imidazo[1,2-a]pyridin-2-yl]-7-(perfluoroethyl)imidazo[1,2-c]pyrimidine (Compound No. 1-3-010a of the Present Invention) Step 1: Synthesis of 2-[3-(ethylsulfonyl)-6-(trifluoromethyl)imidazo[1,2-a]pyridin-2-yl]-7-(perfluoroethyl)imidazo[1,2-c]pyrimidine (Compound No. 1-3-008a of the Present Invention)
  • 800 mg of 6-(perfluoroethyl)pyrimidin-4-amine was dissolved in 10 ml of chlorobenzene, and 1,780 mg of 2-bromo-1-[3-(ethylsulfonyl)-6-(trifluoromethyl)imidazo[1,2-a]pyridin-2-yl]ethanone was added at room temperature. After the addition, the reaction mixture was stirred under reflux with heating for 3 hours. After the reaction, the reaction mixture was mixed with 10 ml of a 1M sodium hydroxide aqueous solution and extracted with ethyl acetate (10 ml×2). The resulting organic layer was dehydrated with saturated aqueous sodium chloride and dried over anhydrous sodium sulfate, and the solvent was evaporated under reduced pressure. The resulting residue was purified by preparative medium pressure liquid chromatography using n-hexane/ethyl acetate (with a gradient of from 100:0 to 50:50) as the eluent to obtain 926 mg of the desired product as a pale solid.
  • Melting point: 233-239° C.
  • 1H-NMR (CDCl3): δ9.63 (s, 1H), 9.19 (s, 1H), 8.64 (s, 1H), 8.05 (s, 1H), 7.92 (d, J=9.6 Hz, 1H), 7.66 (dd, J=9.6, 1.5 Hz, 1H), 3.72 (q, J=7.5 Hz, 2H), 1.35 (t, J=7.5 Hz, 3H).
  • Step 2: Synthesis of 3-bromo-2-[3-(ethylsulfonyl)-6-(trifluoromethyl)imidazo[1,2-a]pyridin-2-yl]-7-(perfluoroethyl)imidazo[1,2-c]pyrimidine (Compound No. 1-3-010a of the Present Invention)
  • To a solution of 150 mg of 2-[3-(ethylsulfonyl)-6-(trifluoromethyl)imidazo[1,2-a]pyridin-2-yl]-7-(perfluoroethyl)imidazo[1,2-c]pyrimidine in 2 ml of N,N-dimethylformamide, 57 mg of N-bromosuccinimide was added under cooling with ice. After the addition, the reaction mixture was stirred at room temperature for 2 hours. After the reaction, the reaction mixture was mixed with 10 ml of water and extracted with diethyl ether (10 ml×2). The resulting organic layer was washed with a saturated sodium thiosulfate aqueous solution and then with saturated sodium hydrogen carbonate, dehydrated with saturated aqueous sodium chloride and dried over anhydrous sodium sulfate, and the solvent was evaporated under reduced pressure. The resulting residue was purified by preparative medium pressure liquid chromatography using n-hexane/ethyl acetate (with a gradient of from 100:0 to 0:100) as the eluent to obtain 127 mg of the desired product as a white solid.
  • Melting point: 200-205° C.
  • 1H-NMR (CDCl3): δ9.61 (s, 1H), 9.20 (s, 1H), 7.99 (s, 1H), 7.96 (d, J=9.6 Hz, 1H), 7.68 (d, J=9.6 Hz, 1H), 4.00 (q, J=7.5 Hz, 2H), 1.46 (t, J=7.5 Hz, 3H).
  • Synthetic Example 13: Synthesis of 2-[3-(ethylsulfonyl)-6-(trifluoromethyl)imidazo[1,2-a]pyridin-2-yl]-5-methyl-7-(perfluoroethyl)imidazo[1,2-c]pyrimidine (Compound No. 1-3-007a of the Present Invention)
  • 143 mg of 2-methyl-6-(perfluoroethyl)pyrimidin-4-amine was dissolved in 4 ml of bromobenzene, and 300 mg of 2-bromo-1-[3-(ethylsulfonyl)-6-(trifluoromethyl)imidazo[1,2-a]pyridin-2-yl]ethanone was added at room temperature. After the addition, the reaction mixture was stirred under reflux with heating for 5 hours. After the reaction, the reaction mixture was mixed with 10 ml of a 1M sodium hydroxide aqueous solution and extracted with ethyl acetate (10 ml×2). The resulting organic layer was dehydrated with saturated aqueous sodium chloride and dried over anhydrous sodium sulfate, and the solvent was evaporated under reduced pressure. The resulting residue was purified by preparative medium pressure liquid chromatography using n-hexane/ethyl acetate (with a gradient of from 100:0 to 50:50) as the eluent to obtain 82 mg of the desired product as a pale yellow solid.
  • Melting point: 224-226° C.
  • 1H-NMR (CDCl3): δ9.66 (s, 1H), 8.46 (s, 1H), 7.94 (s, 1H), 7.90 (d, J=9.6 Hz, 1H), 7.66 (dd, J=9.6, 1.8 Hz, 1H), 3.85 (q, J=7.5 Hz, 2H), 2.97 (s, 3H), 1.37 (t, J=7.5 Hz, 3H).
  • Synthetic Example 14: Synthesis of 6-[3-(ethylsulfonyl)-6-(trifluoromethyl)imidazo[1,2-a]pyridin-2-yl]-2-(trifluoromethyl)imidazo[2,1-b]thiazole (Compound No. 1-12-001a of the Present Invention)
  • 106 mg of 5-(trifluoromethyl)thiazol-2-amine was dissolved in 4 ml of bromobenzene, and 300 mg of 2-bromo-1-[3-(ethylsulfonyl)-6-(trifluoromethyl)imidazo[1,2-a]pyridin-2-yl]ethanone was added at room temperature. After the addition, the reaction mixture was stirred under reflux with heating for 5 hours. After the reaction, the reaction mixture was mixed with 10 ml of a 1M sodium hydroxide aqueous solution and extracted with ethyl acetate (10 ml×2). The resulting organic layer was dehydrated with saturated aqueous sodium chloride and dried over anhydrous sodium sulfate, and the solvent was evaporated under reduced pressure. The resulting residue was purified by preparative medium pressure liquid chromatography using n-hexane/ethyl acetate (with a gradient of from 100:0 to 50:50) as the eluent to obtain 153 mg of the desired product as a white solid.
  • Melting point: 219-220° C.
  • 1H-NMR (CDCl3): δ9.60 (s, 1H), 8.44 (s, 1H), 7.97-7.94 (m, 1H), 7.87 (d, J=9.6 Hz, 1H), 7.62 (dd, J=9.6, 1.5 Hz, 1H), 3.59 (q, J=7.5 Hz, 2H), 1.30 (t, J=7.5 Hz, 3H).
  • Synthetic Example 15: Synthesis of 2-[3-(ethylthio)-1-methyl-5-(trifluoromethyl)-1H-indol-2-yl]-3-methyl-6-(trifluoromethyl)-3H-imidazo[4,5-b]pyridine (Compound No. 3-1-001b of the Present Invention) and 2-[3-(ethylsulfonyl)-1-methyl-5-(trifluoromethyl)-1H-indol-2-yl]-3-methyl-6-(trifluoromethyl)-3H-imidazo[4,5-b]pyridine (Compound No. 3-1-001a of the Present Invention) Step 1: Synthesis of 1-methyl-N-[2-(methylamino)-5-(trifluoromethyl)pyridin-3-yl]-5-(trifluoromethyl)-1H-indole-2-carboxamide
  • 573 mg of N2-methyl-5-(trifluoromethyl)pyridine-2,3-diamine was dissolved in 10 ml of pyridine, and 608 mg of 1-methyl-5-(trifluoromethyl)-1H-indole-2-carboxylic acid, 959 mg of 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride and 31 mg of 4-(dimethylamino)pyridine were added at room temperature. After the addition, the reaction mixture was stirred at room temperature overnight. After the reaction, 20 ml of water was added to the reaction mixture, and the precipitated solid was collected by filtration to obtain 1.02 g of the desired crude product as a gray solid. The crude product was used in the next step without further purification.
  • Step 2: Synthesis of 3-methyl-2-[1-methyl-5-(trifluoromethyl)-1H-indol-2-yl]-6-(trifluoromethyl)-3H-imidazo[4,5-b]pyridine
  • 968 mg of the crude 1-methyl-N-[2-(methylamino)-5-(trifluoromethyl)pyridin-3-yl]-5-(trifluoromethyl)-1H-indole-2-carboxamide obtained in Step 1 was dissolved in 10 ml of acetic acid, and the solution was stirred under reflux with heating for 3 hours. After the reaction, the solvent was evaporated under reduced pressure. The resulting residue was mixed with 10 ml of water and extracted with ethyl acetate (10 ml×2). The resulting organic layer was dehydrated with saturated aqueous sodium chloride and dried over anhydrous sodium sulfate, and the solvent was evaporated under reduced pressure. The resulting residue was purified by preparative medium pressure liquid chromatography using n-hexane/ethyl acetate (with a gradient of from 100:0 to 0:100) as the eluent to obtain 638 mg of the desired product as a flesh-colored solid.
  • Melting point: 200-202° C.
  • 1H-NMR (DMSO-d6): δ8.84 (d, J=1.4 Hz, 1H), 8.64 (d, J=1.4 Hz, 1H), 8.15 (s, 1H), 7.86 (d, J=8.9 Hz, 1H), 7.63 (dd, J=8.9, 1.4 Hz, 1H), 7.46 (s, 1H), 4.12 (s, 3H), 4.06 (s, 3H).
  • Step 3: Synthesis of 2-[3-iodo-1-methyl-5-(trifluoromethyl)-1H-indol-2-yl]-3-methyl-6-(trifluoromethyl)-3H-imidazo[4,5-b]pyridine
  • To a solution of 478 mg of 3-methyl-2-[1-methyl-5-(trifluoromethyl)-1H-indol-2-yl]-6-(trifluoromethyl)-3H-imidazo[4,5-b]pyridine in 8 ml of N,N-dimethylformamide, 405 mg of N-iodosuccinimide was added at room temperature. After the addition, the reaction mixture was stirred under reflux with heating for 7 hours. After the reaction, a saturated sodium thiosulfate aqueous solution was added to the reaction mixture, and the precipitated solid was collected by filtration to obtain 675 mg of the desired product as a white solid.
  • Melting point: 165-167° C.
  • 1H-NMR (CDCl3): δ8.82 (d, J=1.4 Hz, 1H), 8.43 (d, J=1.4 Hz, 1H), 7.90-7.87 (m, 1H), 7.66 (dd, J=8.7, 1.4 Hz, 1H), 7.52 (d, J=8.7 Hz, 1H), 3.97 (s, 3H), 3.85 (s, 3H).
  • Step 4: Synthesis of 2-[3-(ethylthio)-1-methyl-5-(trifluoromethyl)-1H-indol-2-yl]-3-methyl-6-(trifluoromethyl)-3H-imidazo[4,5-b]pyridine (Compound No. 3-1-001b of the Present Invention)
  • To a solution of 626 mg of 2-[3-iodo-1-methyl-5-(trifluoromethyl)-1H-indol-2-yl]-3-methyl-6-(trifluoromethyl)-3H-imidazo[4,5-b]pyridine in 10 ml of 1,4-dioxane, 154 mg of diisopropylethylamine, 69 mg of 4,5′-bis(diphenylphosphino)-9,9′-dimethylxanthene, 54 mg of tris(dibenzylideneacetone)dipalladium(0) and 111 mg of ethanethiol were successively added at room temperature. After the addition, the atmosphere in the reaction vessel was replaced by nitrogen gas, and the mixture was stirred under reflux with heating for 1.5 hours. After the reaction, the reaction mixture was subjected to filtration through Celite, and the Celite was washed with chloroform. The resulting filtrate and washing solution were put together, and the solvent was evaporated under reduced pressure. The resulting residue was purified by preparative medium pressure liquid chromatography using n-hexane/ethyl acetate (with a gradient of from 100:0 to 50:50) as the eluent to obtain 545 mg of the desired product as a pale yellow solid.
  • Melting point: 153-155° C.
  • 1H-NMR (CDCl3): δ8.80 (s, 1H), 8.40 (s, 1H), 8.19 (s, 1H), 7.65 (d, J=8.5 Hz, 1H), 7.55 (d, J=8.5 Hz, 1H), 3.95 (s, 3H), 3.85 (s, 3H), 2.59 (q, J=7.4 Hz, 2H), 1.00 (t, J=7.4 Hz, 3H).
  • Step 5: Synthesis of 2-[3-(ethylsulfonyl)-1-methyl-5-(trifluoromethyl)-1H-indol-2-yl]-3-methyl-6-(trifluoromethyl)-3H-imidazo[4,5-b]pyridine (Compound No. 3-1-001a of the Present Invention)
  • To a solution of 250 mg of 2-[3-(ethylthio)-1-methyl-5-(trifluoromethyl)-1H-indol-2-yl]-3-methyl-6-(trifluoromethyl)-3H-imidazo[4,5-b]pyridine in 5 ml of chloroform, 333 mg of 65 weight % m-chloroperbenzoic acid (containing about 30 weight % of water) was added under cooling with ice. After the addition, the reaction mixture was stirred at room temperature for 2 hours. After the reaction, the reaction mixture was mixed with a saturated sodium thiosulfate aqueous solution and extracted with chloroform (10 ml). The resulting organic layer was washed with a 1M sodium hydroxide aqueous solution and dried over anhydrous sodium sulfate, and the solvent was evaporated under reduced pressure. The resulting residue was purified by preparative medium pressure liquid chromatography using n-hexane/ethyl acetate (with a gradient of from 100:0 to 0:100) as the eluent to obtain 245 mg of the desired product as a white solid.
  • Melting point: 143-146° C.
  • 1H-NMR (CDCl3): δ8.83 (s, 1H), 8.50 (s, 1H), 8.40 (d, =1.7 Hz, 1H), 7.75 (dd, J=8.5, 1.7 Hz, 1H), 7.63 (d, J=8.5 Hz, 1H), 3.88 (s, 3H), 3.73 (s, 3H), 3.30-3.11 (m, 2H), 1.27 (t, J=7.2 Hz, 3H).
  • Synthetic Example 16: Synthesis of 2-[3-(ethylthio)-5-(trifluoromethyl)benzo[b]thiophen-2-yl]-3-methyl-6-(trifluoromethyl)-3H-imidazo[4,5-b]pyridine (Compound No. 3-1-002b of the Present Invention) and 2-[3-(ethylsulfonyl)-5-(trifluoromethyl)benzo[b]thiophen-2-yl]-3-methyl-6-(trifluoromethyl)-3H-imidazo[4,5-b]pyridine (Compound No. 3-1-002a of the Present Invention) Step 1: Synthesis of N-[2-(methylamino)-5-(trifluoromethyl)pyridin-3-yl]-5-(trifluoromethyl)benzo[b]thiophene-2-carboxamide
  • 573 mg of N2-methyl-5-(trifluoromethyl)pyridine-2,3-diamine was dissolved in 10 ml of pyridine, and 615 mg of 5-(trifluoromethyl)benzo[b]thiophene-2-carboxylic acid, 959 mg of 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride and 31 mg of 4-(dimethylamino)pyridine were added at room temperature. After the addition, the reaction mixture was stirred at room temperature overnight. After the reaction, 20 ml of water was added to the reaction mixture, and the precipitated solid was collected by filtration to obtain 939 mg of the desired crude product as a gray solid. The crude product was used in the next step without further purification.
  • Step 2: Synthesis of 3-methyl-6-(trifluoromethyl)-2-[5-(trifluoromethyl)benzo[b]thiophen-2-yl]-3H-imidazo[4,5-b]pyridine
  • 877 mg of the crude N-[2-(methylamino)-5-(trifluoromethyl)pyridin-3-yl]-5-(trifluoromethyl)benzo[b]thiophene-2-carboxamide obtained in Step 1 was dissolved in 10 ml of acetic acid, and the solution was stirred under reflux with heating for 3 hours. After the reaction, the solvent was evaporated under reduced pressure. The resulting residue was mixed with 10 ml of water and extracted with ethyl acetate (10 ml×2). The resulting organic layer was dehydrated with saturated aqueous sodium chloride and dried over anhydrous sodium sulfate, and the solvent was evaporated under reduced pressure. The resulting residue was purified by preparative medium pressure liquid chromatography using n-hexane/ethyl acetate (with a gradient of from 100:0 to 0:100) as the eluent to obtain 683 mg of the desired product as a flesh-colored solid.
  • Melting point: 191-193° C.
  • 1H-NMR (DMSO-d6): δ8.83-8.79 (m, 1H), 8.62-8.59 (m, 1H), 8.53 (s, 1H), 8.44 (s, 1H), 8.36 (d, J=8.5 Hz, 1H), 7.80 (d, J=8.5 Hz, 1H), 4.24 (s, 3H).
  • Step 3: Synthesis of 2-[3-chloro-5-(trifluoromethyl)benzo[b]thiophen-2-yl]-3-methyl-6-(trifluoromethyl)-3H-imidazo[4,5-b]pyridine
  • To a solution of 400 mg of 3-methyl-6-(trifluoromethyl)-2-[5-(trifluoromethyl)benzo[b]thiophen-2-yl]-3H-imidazo[4,5-b]pyridine in 5 ml of N,N-dimethylformamide, 590 mg of 1,3-dichloro-5,5-dimethylhydantoin was added at 80° C. After the addition, the reaction mixture was stirred at 80° C. for 1.5 hours. After the reaction, a saturated sodium thiosulfate aqueous solution was added to the reaction mixture, and the precipitated solid was collected by filtration to obtain 390 mg of the desired product as a white solid.
  • Melting point: 158-160° C.
  • 1H-NMR (CDCl3): δ8.81-8.77 (m, 1H), 8.41-8.38 (m, 1H), 8.29-8.26 (m, 1H), 8.06 (d, J=8.5 Hz, 1H), 7.80 (d, J=8.5 Hz, 1H), 4.04 (s, 3H).
  • Step 4: Synthesis of 2-[3-(ethylthio)-5-(trifluoromethyl)benzo[b]thiophen-2-yl]-3-methyl-6-(trifluoromethyl)-3H-imidazo[4,5-b]pyridine (Compound No. 3-1-002b of the Present Invention)
  • To a solution of 370 mg of 2-[3-chloro-5-(trifluoromethyl)benzo[b]thiophen-2-yl]-3-methyl-6-(trifluoromethyl)-3H-imidazo[4,5-b]pyridine in 5 ml of N,N-dimethylformamide, 119 mg of sodium ethanethiolate was added at 80° C. After the addition, the reaction mixture was stirred at 80° C. for 1.5 hours. After the stirring, 159 mg of sodium ethanethiolate was added to the reaction mixture at 80° C. After the reaction, the reaction mixture was mixed with 20 ml of water and extracted with ethyl acetate (20 ml×2). The resulting organic layer was dehydrated with saturated aqueous sodium chloride and dried over anhydrous sodium sulfate, and the solvent was evaporated under reduced pressure. The resulting residue was purified by silica gel column chromatography using n-hexane/ethyl acetate (with a gradient of from 100:0 to 0:100) as the eluent to obtain 186 mg of the desired product as a yellow solid.
  • Melting point: 120-122° C.
  • 1H-NMR (CDCl3): δ8.78 (s, 1H), 8.41 (s, 1H), 8.38 (d, J=1.8 Hz, 1H), 8.06 (d, J=8.6 Hz, 1H), 7.77-7.74 (m, 1H), 3.96 (s, 3H), 2.69 (q, J=7.4 Hz, 2H), 1.05 (t, J=7.4 Hz, 3H).
  • Step 5: Synthesis of 2-[3-(ethylsulfonyl)-5-(trifluoromethyl)benzo[b]thiophen-2-yl]-3-methyl-6-(trifluoromethyl)-3H-imidazo[4,5-b]pyridine (Compound No. 3-1-002a of the Present Invention)
  • To a solution of 147 mg of 2-[3-(ethylthio)-5-(trifluoromethyl)benzo[b]thiophen-2-yl]-3-methyl-6-(trifluoromethyl)-3H-imidazo[4,5-b]pyridine in 3 ml of chloroform, 195 mg of 65 weight % m-chloroperbenzoic acid (containing about 30 weight % of water) was added under cooling with ice. After the addition, the reaction mixture was stirred at room temperature for 4 hours. After the reaction, the reaction mixture was mixed with a saturated sodium thiosulfate aqueous solution and extracted with chloroform (10 ml). The resulting organic layer was washed with a 1M sodium hydroxide aqueous solution and dried over anhydrous sodium sulfate, and the solvent was evaporated under reduced pressure. The resulting residue was purified by preparative medium pressure liquid chromatography using n-hexane/ethyl acetate (with a gradient of from 100:0 to 0:100) as the eluent to obtain 104 mg of the desired product as a white solid.
  • Melting point: 70-75° C.
  • 1H-NMR (CDCl3): δ8.85 (s, 1H), 8.79 (d, J=1.5 Hz, 1H), 8.35 (d, J=1.8 Hz, 1H), 8.13 (d, J=8.6 Hz, 1H), 7.85 (dd, J=8.6, 1.8 Hz, 1H), 3.89 (s, 3H), 3.38 (q, J=7.5 Hz, 2H), 1.32 (t, J=7.5 Hz, 3H).
  • Synthetic Example 17: Synthesis of 2-[3-(ethylthio)-7-(trifluoromethyl)imidazo[1,2-a]pyridin-2-yl]-6-(trifluoromethyl)-2H-pyrazolo[4,3-b]pyridine (Compound No. 1-10-002b of the Present Invention) and 2-[3-(ethylsulfonyl)-7-(trifluoromethyl)imidazo[1,2-a]pyridin-2-yl]-6-(trifluoromethyl)-2H-pyrazolo[4,3-b]pyridine (Compound No. 1-10-002a of the Present Invention) Step 1: Synthesis of 2-[3-(ethylthio)-7-(trifluoromethyl)imidazo[1,2-a]pyridin-2-yl]-6-(trifluoromethyl)-2H-pyrazolo[4,3-b]pyridine (Compound No. 1-10-002b)
  • A solution of 400 mg of 3-nitro-5-(trifluoromethyl)picolinaldehyde and 522 mg of 3-(ethylthio)-7-(trifluoromethyl)imidazo[1,2-a]pyridin-2-amine in 5 ml of xylene was stirred under reflux with heating for one hour. After the stirring, 1.50 g of triethyl phosphite was added to the reaction mixture at room temperature. After the addition, the reaction mixture was stirred under reflux with heating for one hour. After the reaction, the solvent was evaporated from the reaction mixture. The resulting residue was purified by preparative medium pressure liquid chromatography using n-hexane/ethyl acetate (with a gradient of from 100:0 to 50:50) as the eluent to obtain 613 mg of the desired product as a pale yellow solid.
  • Melting point: 161-163° C.
  • 1H-NMR (CDCl3): δ9.43-9.41 (m, 1H), 8.85 (d, J=2.1 Hz, 1H), 8.76 (d, J=7.4 Hz, 1H), 8.53-8.49 (m, 1H), 8.05-8.00 (m, 1H), 7.30-7.20 (m, 1H), 2.99 (q, J=7.5 Hz, 2H), 1.21 (t, J=7.5 Hz, 3H).
  • Step 2: Synthesis of 2-[3-(ethylsulfonyl)-7-(trifluoromethyl)imidazo[1,2-a]pyridin-2-yl]-6-(trifluoromethyl)-2H-pyrazolo[4,3-b]pyridine (Compound No. 1-10-002a of the Present Invention)
  • To a solution of 150 mg of 2-[3-(ethylthio)-7-(trifluoromethyl)imidazo[1,2-a]pyridin-2-yl]-6-(trifluoromethyl)-2H-pyrazolo[4,3-b]pyridine in 5 ml of chloroform, 204 mg of m-chloroperbenzoic acid (containing 35 weight % of water) was added under cooling with ice. After the addition, the reaction mixture was stirred at room temperature for 2 hours. After the stirring, 40 mg of m-chloroperbenzoic acid (containing 35 weight % of water) was added to the reaction mixture at room temperature. After the addition, the reaction mixture was stirred at room temperature for 2 hours. After the reaction, the reaction mixture was mixed with 3 ml of a saturated sodium thiosulfate aqueous solution and extracted with chloroform (10 ml×2). The resulting organic layer was washed with a 1M sodium hydroxide aqueous solution and dried over anhydrous sodium sulfate, and the solvent was evaporated under reduced pressure. The resulting residue was purified by preparative medium pressure liquid chromatography using n-hexane/ethyl acetate (with a gradient of from 100:0 to 0:100) as the eluent to obtain 61 mg of the desired product as a white solid.
  • Melting point: 245-247° C.
  • 1H-NMR (CDCl3): δ9.44 (d, J=7.2 Hz, 1H), 9.17-9.15 (m, 1H), 8.86 (d, J=1.8 Hz, 1H), 8.48-8.43 (m, 1H), 8.13-8.09 (m, 1H), 7.35-7.30 (m, 1H), 4.04 (q, J=7.5 Hz, 2H), 1.48 (t, J=7.5 Hz, 3H).
  • Synthetic Example 18: Synthesis of 2-[3-(ethylthio)-7-(trifluoromethyl)imidazo[1,2-a]pyridin-2-yl]-6-(trifluoromethyl)-2H-pyrazolo[4,3-c]pyridine (Compound No. 1-11-001b of the Present Invention) and 2-[3-(ethylsulfonyl)-7-(trifluoromethyl)imidazo[1,2-a]pyridin-2-yl]-6-(trifluoromethyl)-2H-pyrazolo[4,3-c]pyridine (Compound No. 1-11-001a of the Present Invention) Step 1: Synthesis of 4-azido-6-(trifluoromethyl)nicotinaldehyde
  • To a solution of 1.50 g of 4-chloro-6-(trifluoromethyl)nicotinaldehyde in 10 ml of N,N-dimethylformamide, 511 mg of sodium azide was added under cooling with ice. After the addition, the reaction mixture was stirred at room temperature for 3 hours. After the reaction, the reaction mixture was mixed with 10 ml of water and extracted with diethyl ether (20 ml×2). The resulting organic layer was dehydrated with saturated aqueous sodium chloride and dried over anhydrous sodium sulfate, and the solvent was evaporated under reduced pressure. The resulting residue was purified by silica gel column chromatography using n-hexane/ethyl acetate (with a gradient of from 100:0 to 80:20) as the eluent to obtain 2.13 g of the desired product as a white solid.
  • Melting point: 54-56° C.
  • 1H-NMR (CDCl3): δ10.39 (s, 1H), 9.06 (s, 1H), 7.54 (s, 1H).
  • Step 2: Synthesis of 2-[3-(ethylthio)-7-(trifluoromethyl)imidazo[1,2-a]pyridin-2-yl]-6-(trifluoromethyl)-2H-pyrazolo[4,3-c]pyridine (Compound No. 1-11-001b of the Present Invention)
  • To a solution of 200 mg of 4-azido-6-(trifluoromethyl)nicotinaldehyde and 266 mg of 3-(ethylthio)-7-(trifluoromethyl)imidazo[1,2-a]pyridin-2-amine in 5 ml of dichloromethane, 282 mg of triethylamine and 1 ml of 0.56 ml of about 1M titanium(IV) chloride in dichloromethane were successively added. After the addition, the reaction mixture was stirred at room temperature for one hour. After the reaction, the solvent was evaporated from the reaction mixture under reduced pressure. The resulting residue was subjected to filtration through Celite, and the Celite was washed with 20 ml of xylene. The resulting washing solution was stirred under reflux with heating for 2 hours. After the reaction, the reaction mixture was mixed with 10 ml of water and extracted with ethyl acetate (20 ml×2). The resulting organic layer was washed with saturated aqueous sodium chloride and dried over anhydrous sodium sulfate, and the solvent was evaporated under reduced pressure. The resulting residue was purified by silica gel chromatography using n-hexane/ethyl acetate (with a gradient of from 100:0 to 50:50) as the eluent to obtain 250 mg of the desired product as a pale yellow solid.
  • Melting point: 183-185° C.
  • 1H-NMR (CDCl3): δ9.40-9.37 (m, 1H), 9.29 (d, J=0.9 Hz, 1H), 8.77 (d, J=7.4 Hz, 1H), 8.14 (s, 1H), 8.04-7.99 (m, 1H), 7.30-7.25 (m, 1H), 3.02 (q, J=7.4 Hz, 2H), 1.21 (t, J=7.4 Hz, 3H).
  • Step 3: Synthesis of 2-[3-(ethylsulfonyl)-7-(trifluoromethyl)imidazo[1,2-a]pyridin-2-yl]-6-(trifluoromethyl)-2H-pyrazolo[4,3-c]pyridine (Compound No. 1-11-001a of the Present Invention)
  • To a solution of 120 mg of 2-[3-(ethylthio)-7-(trifluoromethyl)imidazo[1,2-a]pyridin-2-yl]-6-(trifluoromethyl)-2H-pyrazolo[4,3-c]pyridine in 5 ml of chloroform, 164 mg of 65 weight % m-chloroperbenzoic acid (containing about 30 weight % of water) was added under cooling with ice. After the addition, the reaction mixture was stirred at room temperature overnight. After the reaction, the reaction mixture was mixed with a saturated sodium thiosulfate aqueous solution and extracted with chloroform (10 ml×2). The resulting organic layer was washed with the saturated sodium hydrogen carbonate aqueous solution and dried over anhydrous sodium sulfate, and the solvent was evaporated under reduced pressure. The resulting residue was purified by preparative medium pressure liquid chromatography using n-hexane/ethyl acetate (with a gradient of from 100:0 to 0:100) as the eluent to obtain 63 mg of the desired product as a white solid.
  • Melting point: 230-233° C.
  • 1H-NMR (CDCl3): δ9.43 (d, J=7.4 Hz, 1H), 9.41-9.37 (m, 1H), 9.07 (s, 1H), 8.12-8.06 (m, 2H), 7.36 (dd, J=7.4, 1.8 Hz, 1H), 4.03 (q, J=7.4 Hz, 2H), 1.48 (t, J=7.4 Hz, 3H).
  • Synthetic Example 19: Synthesis of 2-[3-(ethylthio)-7-(trifluoromethyl)imidazo[1,2-a]pyridin-2-yl]-6-(trifluoromethyl)thiazolo[5,4-b]pyridine (Compound No. 1-13-001b of the Present Invention) and 2-[3-(ethylsulfonyl)-7-(trifluoromethyl)imidazo[1,2-a]pyridin-2-yl]-6-(trifluoromethyl)thiazolo[5,4-b]pyridine (Compound No. 1-13-001a of the Present Invention) Step 1: Synthesis of 3-(ethylthio)-N-[2-mercapto-5-(trifluoromethyl)pyridin-3-yl]-7-(trifluoromethyl)imidazo[1,2-a]pyridine-2-carboxamide
  • 500 mg of 3-amino-5-(trifluoromethyl)pyridine-2-thiol was dissolved in 5 ml of pyridine, and 621 mg of 3-(ethylthio)-7-(trifluoromethyl)imidazo[1,2-a]pyridine-2-carboxylic acid, 820 mg of 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride and 10 mg of 1-hydroxybenzotriazole were added at room temperature. After the addition, the reaction mixture was stirred at room temperature overnight. After the reaction, water was added to the reaction mixture, and the precipitated solid was collected by filtration to obtain 234 mg of the desired crude product as a brown solid. The crude product was used in the next step without further purification.
  • Step 2: Synthesis of 2-[3-(ethylthio)-7-(trifluoromethyl)imidazo[1,2-a]pyridin-2-yl]-6-(trifluoromethyl)thiazolo[5,4-b]pyridine (Compound No. 1-13-001b of the Present Invention)
  • 214 mg of the crude 3-(ethylthio)-N-[2-mercapto-5-(trifluoromethyl)pyridin-3-yl]-7-(trifluoromethyl)imidazo[1,2-a]pyridine-2-carboxamide obtained in Step 1 was dissolved in 5 ml of propionic acid, and the solution was stirred under reflux with heating for 4 hours. After the stirring, the reaction mixture was stirred at room temperature overnight. After the reaction, water was added to the reaction mixture and extracted with ethyl acetate (10 ml×2). The resulting organic layer was washed with a 1M sodium hydroxide aqueous solution and dried over anhydrous sodium sulfate, and the solvent was evaporated under reduced pressure. The resulting residue was purified by preparative medium pressure liquid chromatography using n-hexane/ethyl acetate (with a gradient of from 100:0 to 0:100) as the eluent to obtain 20 mg of the desired product as a white solid.
  • Melting point: 150-160° C.
  • 1H-NMR (CDCl3): δ8.91-8.87 (m, 1H), 8.71 (d, J=7.5 Hz, 1H), 8.65-8.61 (m, 1H), 8.06 (s, 1H), 7.20 (dd, J=7.5, 1.5 Hz, 1H), 3.08 (q, J=7.4 Hz, 2H), 1.27 (t, J=7.4 Hz, 3H).
  • Step 3: Synthesis of 2-[3-(ethylsulfonyl)-7-(trifluoromethyl)imidazo[1,2-a]pyridin-2-yl]-6-(trifluoromethyl)thiazolo[5,4-b]pyridine (Compound No. 1-13-001a of the Present Invention)
  • To a solution of 20 mg of 2-[3-(ethylthio)-7-(trifluoromethyl)imidazo[1,2-a]pyridin-2-yl]-6-(trifluoromethyl)thiazolo[5,4-b]pyridine in 3 ml of chloroform, 27 mg of 65 weight % m-chloroperbenzoic acid (containing about 30 weight % of water) was added under cooling with ice. After the addition, the reaction mixture was stirred at room temperature for 2 hours. After the reaction, the reaction mixture was mixed with a saturated sodium thiosulfate aqueous solution and extracted with chloroform (10 ml×2). The resulting organic layer was washed with a 1M sodium hydroxide aqueous solution and dried over anhydrous sodium sulfate, and the solvent was evaporated under reduced pressure. The resulting residue was purified by preparative medium pressure liquid chromatography using n-hexane/ethyl acetate (with a gradient of from 100:0 to 50:50) as the eluent to obtain 15 mg of the desired product as a white solid.
  • Melting point: 243-245° C.
  • 1H-NMR (CDCl3): δ9.53 (d, J=7.5 Hz, 1H), 8.95-8.93 (m, 1H), 8.63-8.61 (m, 1H), 8.17-8.14 (m, 1H), 7.30 (dd, J=7.5, 1.9 Hz, 1H), 4.10 (q, J=7.5 Hz, 2H), 1.45 (t, J=7.5 Hz, 3H).
  • Synthetic Example 20: Synthesis of 2-[3-(ethylthio)-7-(trifluoromethyl)imidazo[1,2-a]pyridin-2-yl]-6-iodo-3-methyl-3H-imidazo[4,5-b]pyridine (Compound No. 1-1-026b of the Present Invention), 2-ethylhexyl-3-((2-(3-(ethylthio)-7-(trifluoromethyl)imidazo[1,2-a]pyridin-2-yl)-3-methyl-3H-imidazo[4,5-b]pyridin-6-yl)thio)propanoate (Compound No. 1-1-028b of the Present Invention), 2-[3-(ethylthio)-7-(trifluoromethyl)imidazo[1,2-a]pyridin-2-yl]-3-methyl-6-((trifluoromethyl)thio)-3H-imidazo[4,5-b]pyridine (Compound No. 1-1-027b of the Present Invention) and 2-[3-(ethylsulfonyl)-7-(trifluoromethyl)imidazo[1,2-a]pyridin-2-yl]-3-methyl-6-((trifluoromethyl)thio)-3H-imidazo[4,5-b]pyridine (Compound No. 1-1-027a of the Present Invention) Step 1: Synthesis of 3-(ethylthio)-N-[5-iodo-2-(methylamino)pyridin-3-yl]-7-(trifluoromethyl)imidazo[1,2-a]pyridine-2-carboxamide
  • 1.59 g of 5-iodo-N2-methylpyridine-2,3-diamine was dissolved in 15 ml of pyridine, and 1.54 g of 3-(ethylthio)-7-(trifluoromethyl)imidazo[1,2-a]pyridine-2-carboxylic acid and 2.45 g of 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride were added at room temperature. After the addition, the reaction mixture was stirred at room temperature overnight. After the reaction, water was added to the reaction mixture, and the precipitated solid was collected by filtration to obtain 2.49 g of the desired crude product as a gray solid. The crude product was used in the next step without further purification.
  • 1H-NMR (CDCl3): δ8.97 (brs, 1H), 8.71 (d, J=7.2 Hz, 1H), 8.27 (d, J=2.0 Hz, 1H), 8.07 (d, J=2.0 Hz, 1H), 7.96 (s, 1H), 7.19 (dd, J=7.2, 2.0 Hz, 1H), 4.78 (brs, 1H), 3.08 (q, J=7.4 Hz, 2H), 3.03 (d, J=4.8 Hz, 3H), 1.22 (t, J=7.4 Hz, 3H).
  • Step 2: Synthesis of 2-[3-(ethylthio)-7-(trifluoromethyl)imidazo[1,2-a]pyridin-2-yl]-6-iodo-3-methyl-3H-imidazo[4,5-b]pyridine (Compound No. 1-1-026b of the Present Invention)
  • 2.49 g of the crude 3-(ethylthio)-N-[5-iodo-2-(methylamino)pyridin-3-yl]-7-(trifluoromethyl)imidazo[1,2-a]pyridine-2-carboxamide obtained in Step 1 was dissolved in 15 ml of acetic acid, and the solution was stirred under reflux with heating for 3.5 hours. After the reaction, water was added to the reaction mixture, and the precipitated solid was collected by filtration. The resulting solid was washed with n-hexane to obtain 2.02 g of the desired product as a brown solid.
  • Melting point: 230-233° C.
  • 1H-NMR (CDCl3): δ8.76 (d, J=7.2 Hz, 1H), 8.62 (d, J=1.7 Hz, 1H), 8.47 (d, J=1.7 Hz, 1H), 8.03 (s, 1H), 7.19 (dd, J=7.2, 1.7 Hz, 1H), 4.25 (s, 3H), 3.11 (q, J=7.5 Hz, 2H), 1.20 (t, J=7.5 Hz, 3H).
  • Step 3: Synthesis of 2-ethylhexyl 3-((2-(3-(ethylthio)-7-(trifluoromethyl)imidazo[1,2-a]pyridin-2-yl)-3-methyl-3H-imidazo[4,5-b]pyridin-6-yl)thio)propanoate (Compound No. 1-1-028b of the Present Invention)
  • To a solution of 503 mg of 2-[3-(ethylthio)-7-(trifluoromethyl)imidazo[1,2-a]pyridin-2-yl]-6-iodo-3-methyl-3H-imidazo[4,5-b]pyridine in 10 ml of 1,4-dioxane, 387 mg of diisopropylethylamine, 58 mg of 4,5′-bis(diphenylphosphino)-9,9′-dimethylxanthene, 92 mg of tris(dibenzylideneacetone)dipalladium(0) and 262 mg of 2-ethylhexyl 3-mercaptopropionate were successively added at room temperature. After the addition, the atmosphere in the reaction vessel was replaced by nitrogen gas, and the mixture was stirred under reflux with heating for 4 hours. After the reaction, the reaction mixture was mixed with 10 ml of water and extracted with diethyl ether (10 ml×2). The resulting organic layer was dehydrated with saturated aqueous sodium chloride and dried over anhydrous sodium sulfate, and the solvent was evaporated under reduced pressure. The resulting residue was purified by preparative medium pressure liquid chromatography using n-hexane/ethyl acetate (with a gradient of from 100:0 to 80:20) as the eluent to obtain 599 mg of the desired product as a yellow solid.
  • Melting point: 94-96° C.
  • 1H-NMR (CDCl3): δ8.76 (d, J=7.2 Hz, 1H), 8.53 (d, J=2.0 Hz, 1H), 8.27 (d, J=2.0 Hz, 1H), 8.03 (s, 1H), 7.18 (dd, J=7.2, 1.9 Hz, 1H), 4.27 (s, 3H), 4.01 (dd, J=5.8, 1.7 Hz, 2H), 3.20-3.05 (m, 4H), 2.62 (t, J=7.3 Hz, 2H), 1.45-1.20 (m, 12H), 0.89 (t, J=7.5 Hz, 6H).
  • Step 4: Synthesis of 2-[3-(ethylthio)-7-(trifluoromethyl)imidazo[1,2-a]pyridin-2-yl]-3-methyl-6-((trifluoromethyl)thio)-3H-imidazo[4,5-b]pyridine (Compound No. 1-1-027b of the Present Invention)
  • Under a nitrogen atmosphere, to a solution of 560 mg of 2-ethylhexyl 3-((2-(3-(ethylthio)-7-(trifluoromethyl)imidazo[1,2-a]pyridin-2-yl)-3-methyl-3H-imidazo[4,5-b]pyridin-6-yl)thio)propanoate in 5 ml of tetrahydrofuran, 159 mg of potassium tert-butoxide was added under cooling with ice. After the addition, the reaction mixture was stirred under cooling with ice for 30 minutes. After the stirring, to the reaction mixture, 756 mg of S-(trifluoromethyl)dibenzothiophenium trifluoromethanesulfonate was added under cooling with ice. After the addition, the reaction mixture was stirred at room temperature overnight. After the reaction, the reaction mixture was mixed with water and extracted with chloroform (10 ml×2). The resulting organic layer was washed with a saturated sodium hydrogen carbonate aqueous solution and dried over anhydrous sodium sulfate, and the solvent was evaporated under reduced pressure. The resulting residue was purified by thin layer chromatography using n-hexane/ethyl acetate (with a gradient of from 100:0 to 80:20) as the eluent to obtain 69 mg of the desired product as a pale yellow solid.
  • Melting point: 209-210° C.
  • 1H-NMR (CDCl3): δ8.77 (d, J=7.2 Hz, 1H), 8.66 (d, J=2.0 Hz, 1H), 8.46 (d, J=2.0 Hz, 1H), 8.05-8.02 (m, 1H), 7.20 (dd, J=7.2, 1.9 Hz, 1H), 4.31 (s, 3H), 3.14 (q, J=7.4 Hz, 2H), 1.21 (t, J=7.4 Hz, 3H).
  • Step 5: Synthesis of 2-[3-(ethylsulfonyl)-7-(trifluoromethyl)imidazo[1,2-a]pyridin-2-yl]-3-methyl-6-((trifluoromethyl)thio)-3H-imidazo[4,5-b]pyridine (Compound No. 1-1-027a of the Present Invention)
  • To a solution of 31 mg of 2-[3-(ethylthio)-7-(trifluoromethyl)imidazo[1,2-a]pyridin-2-yl]-3-methyl-6-((trifluoromethyl)thio)-3H-imidazo[4,5-b]pyridine in 3 ml of chloroform, 38 mg of 65 weight % m-chloroperbenzoic acid (containing about 30 weight % of water) was added under cooling with ice. After the addition, the reaction mixture was stirred at room temperature for 2 hours. After the reaction, the reaction mixture was mixed with a saturated sodium thiosulfate aqueous solution and extracted with chloroform (10 ml×2). The resulting organic layer was washed with a 1M sodium hydroxide aqueous solution and dried over anhydrous sodium sulfate, and the solvent was evaporated under reduced pressure. The resulting residue was purified by preparative medium pressure liquid chromatography using n-hexane/ethyl acetate (with a gradient of from 100:0 to 50:50) as the eluent to obtain 34 mg of the desired product as a white solid.
  • Melting point: 220-223° C.
  • 1H-NMR (CDCl3): δ9.41 (d, J=7.4 Hz, 1H), 8.70 (d, J=2.0 Hz, 1H), 8.41 (d.J=2.0 Hz, 1H), 8.14 (s, 1H), 7.31 (dd, J=7.4, 1.6 Hz, 1H), 4.16 (s, 3H), 4.11 (q, J=7.4 Hz, 2H), 1.45 (t, J=7.4 Hz, 3H).
  • Synthetic Example 21: Synthesis of 2-[3-(ethylsulfonyl)-7-(trifluoromethyl)imidazo[1,2-a]pyridin-2-yl]-3-methyl-6-(trifluoromethyl)-3H-imidazo[4,5-b]pyridine 4-oxide (compound No. 1-14-001a of the Present Invention)
  • To a solution of 500 mg of 2-[3-(ethylsulfonyl)-7-(trifluoromethyl)imidazo[1,2-a]pyridin-2-yl]-3-methyl-6-(trifluoromethyl)-3H-imidazo[4,5-b]pyridine in 15 ml of acetonitrile, 834 mg of 65 weight % m-chloroperbenzoic acid (containing about 30 weight % of water) was added under cooling with ice. After the addition, the reaction mixture was stirred at 50° C. for 20 hours. After the stirring, 279 mg of 65 weight % m-chloroperbenzoic acid (containing about 30 weight % of water) was added to the reaction mixture at room temperature. After the addition, the reaction mixture was stirred at 50° C. for 20 hours. After the stirring, 418 mg of 65 weight % m-chloroperbenzoic acid (containing about 30 weight % of water) was added to the reaction mixture at room temperature. After the addition, the reaction mixture was stirred to 50° C. for 20 hours. After the reaction, the reaction mixture was mixed with a saturated sodium thiosulfate aqueous solution and extracted with chloroform (20 ml×2). The resulting organic layer was washed with a 1M sodium hydroxide aqueous solution and dried over anhydrous sodium sulfate, and the solvent was evaporated under reduced pressure. The resulting residue was purified by preparative medium pressure liquid chromatography using n-hexane/ethyl acetate with a gradient of from 100:0 to 0:100) as the eluent to obtain 67 mg of the desired product as a white solid.
  • 1H-NMR (CDCl3): δ9.35 (d, J=7.2 Hz, 1H), 8.48-8.46 (m, 1H), 8.19-8.16 (m, 1H), 7.96 (s, 1H), 7.35 (dd, J=7.2, 1.7 Hz, 1H), 4.58 (s, 3H), 3.94 (q, J=7.4 Hz, 2H), 1.46 (t, J=7.4 Hz, 3H).
  • Synthetic Example 22: Synthesis of 8-[3-(ethylthio)-6-(trifluoromethyl)imidazo[1,2-a]pyridin-2-yl]-9-methyl-(trifluoromethyl)-9H-imidazo[4,5-c]pyridazine (Compound No. 1-16-001b of the Present Invention) and 8-[3-(ethylsulfonyl)-6-(trifluoromethyl)imidazo[1,2-a]pyridin-2-yl]-9-methyl-(trifluoromethyl)-9H-imidazo[4,5-c]pyridazine (Compound No. 1-16-001a of the Present Invention) Step 1: Synthesis of 3-(ethylthio)-N-[3-(methylamino)-6-(trifluoromethyl)pyridazin-4-yl]-6-(trifluoromethyl)imidazo[1,2-a]pyridine-2-carboxamide
  • 300 mg of 4-bromo-N-methyl-6-(trifluoromethyl)pyridazin-3-amine, 509 mg of 3-(ethylthio)-6-(trifluoromethyl)imidazo[1,2-a]pyridine-carboxamide, 497 mg of potassium phosphate and 52 mg of N,N′-dimethylethylenediamine were dissolved in 4 ml of N,N-dimethylformamide, and 56 mg of copper(I) iodide was added at room temperature. After the addition, the atmosphere in the reaction vessel was replaced by nitrogen gas, and the mixture was stirred at 90° C. for 9 hours. After the reaction, the reaction mixture was mixed with 10 ml of water and extracted with ethyl acetate (10 ml×2). The resulting organic layer was dehydrated with saturated aqueous sodium chloride and dried over anhydrous sodium sulfate, and the solvent was evaporated under reduced pressure to obtain crude 3-(ethylthio)-N-[3-(methylamino)-6-(trifluoromethyl)pyridazin-4-yl]-6-(trifluoromethyl)imidazo[1,2-a]pyridine-2-carboxamide as the desired product. The crude product was used in the next step without further purification.
  • Step 2: Synthesis of 8-[3-(ethylthio)-6-(trifluoromethyl)imidazo[1,2-a]pyridin-2-yl]-9-methyl-(trifluoromethyl)-9H-imidazo[4,5-c]pyridazine (Compound No. 1-16-001b of the Present Invention)
  • The crude 3-(ethylthio)-N-[3-(methylamino)-6-(trifluoromethyl)pyridazin-4-yl]-7-(trifluoromethyl)imidazo[1,2-a]pyridine-2-carboxamide obtained in Step 1 was dissolved in 10 ml of acetic acid, and the solution was stirred under reflux with heating for 7 hours. After the reaction, the solvent was evaporated under reduced pressure. The resulting residue was mixed with 10 ml of water and extracted with ethyl acetate (10 ml×2). The resulting organic layer was washed with a saturated sodium hydrogen carbonate aqueous solution and then with 28 weight % aqueous ammonia, dehydrated with saturated aqueous sodium chloride and dried over anhydrous sodium sulfate, and the solvent was evaporated under reduced pressure. The resulting residue was dehydrated with saturated aqueous sodium chloride and dried over anhydrous sodium sulfate, and the solvent was evaporated under reduced pressure. The resulting residue was purified by preparative medium pressure liquid chromatography using n-hexane/ethyl acetate (with a gradient of from 100:0 to 25:75) as the eluent to obtain 72 mg of the desired product as a pale yellow solid.
  • Melting point: 240-242° C.
  • 1H-NMR (CDCl3): δ9.05-9.00 (m, 1H), 8.23 (s, 1H), 7.85 (d, J=9.8 Hz, 1H), 7.56 (dd, J=9.4, 1.6 Hz, 1H), 4.55 (s, 3H), 3.16 (q, J=7.4 Hz, 2H), 1.25 (t, J=7.4 Hz, 3H).
  • Step 3: Synthesis of 8-[3-(ethylsulfonyl)-6-(trifluoromethyl)imidazo[1,2-a]pyridin-2-yl]-9-methyl-(trifluoromethyl)-9H-imidazo[4,5-c]pyridazine (Compound No. 1-16-001a of the Present Invention)
  • To a solution of 62 mg of 8-[3-(ethylthio)-6-(trifluoromethyl)imidazo[1,2-a]pyridin-2-yl]-9-methyl-(trifluoromethyl)-9H-imidazo[4,5-c]pyridazine in 5 ml of chloroform, 81 mg of 65 weight % m-chloroperbenzoic acid (containing about 30 weight % of water) was added under cooling with ice. After the addition, the reaction mixture was stirred at room temperature for one hour. After the reaction, the reaction mixture was mixed with a saturated sodium thiosulfate aqueous solution and extracted with chloroform (10 ml). The resulting organic layer was washed with a saturated sodium hydrogen carbonate aqueous solution and dried over anhydrous sodium sulfate, and the solvent was evaporated under reduced pressure. The resulting residue was purified by preparative medium pressure liquid chromatography using n-hexane/ethyl acetate (with a gradient of from 100:0 to 25:75) as the eluent to obtain 66 mg of the desired product as a pale yellow solid.
  • Melting point: 274-276° C.
  • 1H-NMR (CDCl3): δ9.70-9.60 (m, 1H), 8.22 (s, 1H), 7.99 (d, J=9.4 Hz, 1H), 7.75 (dd, J=9.4, 1.6 Hz, 1H), 4.38 (s, 3H), 4.05 (q, J=7.4 Hz, 2H), 1.48 (t, J=7.4 Hz, 3H).
  • Synthetic Example 23: Synthesis of 2-[3-(ethylthio)-6-(trifluoromethyl)imidazo[1,2-a]pyrimidin-2-yl]-3-methyl-6-(trifluoromethyl)-3H-imidazo[4,5-b]pyridine (Compound No. 1-1-054b of the Present Invention) and 2-[3-(ethylsulfonyl)-6-(trifluoromethyl)imidazo[1,2-a]pyrimidin-2-yl]-3-methyl-6-(trifluoromethyl)-3H-imidazo[4,5-b]pyridine (Compound No. 1-1-054a of the Present Invention) Step 1: Synthesis of 3-methyl-6-(trifluoromethyl)-2-[6-(trifluoromethyl)imidazo[1,2-a]pyrimidin-2-yl]-3H-imidazo[4,5-b]pyridine
  • 250 mg of 5-(trifluoromethyl)pyrimidin-2-amine was dissolved in 10 ml of acetonitrile, and 550 mg of 2-bromo-1-[3-methyl-6-(trifluoromethyl)-3H-imidazo[4,5-b]pyridin-2-yl]ethanone was added at room temperature. After the addition, the reaction mixture was stirred under reflux with heating for 7.5 hours. After the reaction, 10 ml of water was added to the reaction mixture, and the precipitated solid was collected by filtration to obtain 445 mg of the desired product as a yellow solid.
  • Melting point: 283-285° C.
  • 1H-NMR (CDCl3): δ8.92-8.89 (m, 1H), 8.84 (d, J=2.4 Hz, 1H), 8.73 (s, 1H), 8.57 (s, 1H), 8.29 (s, 1H), 4.53 (s, 3H).
  • Step 2: Synthesis of 2-[3-iodo-6-(trifluoromethyl)imidazo[1,2-a]pyrimidin-2-yl]-3-methyl-6-(trifluoromethyl)-3H-imidazo[4,5-b]pyridine
  • To a solution of 415 mg of 3-methyl-6-(trifluoromethyl)-2-[6-(trifluoromethyl)imidazo[1,2-a]pyrimidin-2-yl]-3H-imidazo[4,5-b]pyridine in 4 ml of N,N-dimethylformamide, 408 mg of 1,3-diiodo-5,5-dimethylhydantoin was added at 80° C. After the addition, the reaction mixture was stirred at 80° C. for 3 hours. After the reaction, a saturated sodium thiosulfate aqueous solution was added to the reaction mixture, and the precipitated solid was collected by filtration to obtain 468 mg of the desired product as a yellow solid.
  • Melting point: 260-265° C.
  • 1H-NMR (CDCl3): δ9.00-8.86 (m, 1H), 8.81 (d, J=2.4 Hz, 1H), 8.74 (d, J=1.5 Hz, 1H), 8.42 (d, J=1.5 Hz, 1H), 4.43 (s, 3H).
  • Step 3: Synthesis of 2-[3-(ethylthio)-6-(trifluoromethyl)imidazo[1,2-a]pyrimidin-2-yl]-3-methyl-6-(trifluoromethyl)-3H-imidazo[4,5-b]pyridine (Compound No. 1-1-054b of the Present Invention)
  • To a solution of 438 mg of 2-[3-iodo-6-(trifluoromethyl)imidazo[1,2-a]pyrimidin-2-yl]-3-methyl-6-(trifluoromethyl)-3H-imidazo[4,5-b]pyridine in 10 ml of 1,4-dioxane, 334 mg of diisopropylethylamine, 50 mg of 4,5′-bis(diphenylphosphino)-9,9′-dimethylxathene, 39 mg of tris(dibenzylideneacetone)dipalladium(0) and 106 mg of ethanethiol were successively added at room temperature. After the addition, the atmosphere in the reaction vessel was replaced by nitrogen gas, and the mixture was stirred under reflux with heating for 3 hours. After the reaction, water was added to the reaction mixture, and the precipitated solid was collected by filtration. The resulting solid was washed with diisopropyl ether to obtain 337 mg of the desired product as a yellow solid.
  • Melting point: 220-222° C.
  • 1H-NMR (CDCl3): δ9.27-9.23 (m, 1H), 8.88 (d, J=2.1 Hz, 1H), 8.75 (s, 1H), 8.42 (s, 1H), 4.42 (s, 3H), 3.25 (q, J=7.5 Hz, 2H), 1.26 (t, J=7.5 Hz, 3H).
  • Step 4: Synthesis of 2-[3-(ethylsulfonyl)-6-(trifluoromethyl)imidazo[1,2-a]pyrimidin-2-yl]-3-methyl-6-(trifluoromethyl)-3H-imidazo[4,5-b]pyridine (Compound No. 1-1-054a of the Present Invention)
  • To a solution of 297 mg of 2-[3-(ethylthio)-6-(trifluoromethyl)imidazo[1,2-a]pyrimidin-2-yl]-3-methyl-6-(trifluoromethyl)-3H-imidazo[4,5-b]pyridine in 7 ml of chloroform, 371 mg of 65 weight % m-chloroperbenzoic acid (containing about 30 weight % of water) was added under cooling with ice. After the addition, the reaction mixture was stirred at room temperature for 3.5 hours. After the stirring, m-chloroperbenzoic acid (containing 35 weight % of water) was added to the reaction mixture at room temperature. After the addition, the reaction mixture was stirred at room temperature for one hour. After the stirring, 50 mg of m-chloroperbenzoic acid (containing 35 weight % of water) was added to the reaction mixture at room temperature. After the addition, the reaction mixture was stirred at room temperature for one hour. After the reaction, the reaction mixture was mixed with a saturated sodium thiosulfate aqueous solution and extracted with chloroform (10 ml×2). The resulting organic layer was washed with a saturated sodium hydrogen carbonate aqueous solution and dried over anhydrous sodium sulfate, and the solvent was evaporated under reduced pressure. The resulting residue was purified by preparative medium pressure liquid chromatography using n-hexane/ethyl acetate (with a gradient of from 100:0 to 50:50) as the eluent to obtain 150 mg of the desired product as a white solid.
  • Melting point: 244-248° C.
  • 1H-NMR (CDCl3): δ10.00-9.95 (m, 1H), 9.04 (d, J=2.4 Hz, 1H), 8.80 (s, 1H), 8.41-8.37 (m, 1H), 4.30 (s, 3H), 4.27 (q, J=7.5 Hz, 2H), 1.49 (t, J=7.5 Hz, 3H).
  • Synthetic Example 24: Synthesis of 2-[3-(ethylthio)-7-(trifluoromethyl)imidazo[1,2-c]pyrimidin-2-yl]-3-methyl-6-(trifluoromethyl)-3H-imidazo[4,5-b]pyridine (Compound No. 1-1-055b of the Present Invention) and 2-[3-(ethylsulfonyl)-7-(trifluoromethyl)imidazo[1,2-c]pyrimidin-2-yl]-3-methyl-6-(trifluoromethyl)-3H-imidazo[4,5-b]pyridine (Compound No. 1-1-055a of the Present Invention) Step 1: Synthesis of 3-methyl-6-(trifluoromethyl)-2-[7-(trifluoromethyl)imidazo[1,2-c]pyrimidin-2-yl]-3H-imidazo[4,5-b]pyridine
  • 251 mg of 6-(trifluoromethyl)pyrimidin-4-amine was dissolved in 10 ml of acetonitrile, and 550 mg of 2-bromo-1-[3-methyl-6-(trifluoromethyl)-3H-imidazo[4,5-b]pyridin-2-yl]ethanone was added at room temperature. After the addition, the reaction mixture was stirred under reflux with heating for 7.5 hours. After the reaction, 10 ml of water was added to the reaction mixture, and the precipitated solid was collected by filtration to obtain 335 mg of the desired product as a yellow solid.
  • Melting point: 257-260° C.
  • 1H-NMR (CDCl3): δ9.22 (s, 1H), 8.73 (d, J=1.2 Hz, 1H), 8.64 (s, 1H), 8.29 (d, J=1.8 Hz, 1H), 8.05 (s, 1H), 4.47 (s, 3H).
  • Step 2: Synthesis of 2-[3-bromo-7-(trifluoromethyl)imidazo[1,2-c]pyrimidin-2-yl]-3-methyl-6-(trifluoromethyl)-3H-imidazo[4,5-b]pyridine
  • To a solution of 300 mg of 3-methyl-6-(trifluoromethyl)-2-[7-(trifluoromethyl)imidazo[1,2-c]pyrimidin-2-yl]-3H-imidazo[4,5-b]pyridine in 5 ml of N,N-dimethylformamide, 244 mg of 1,3-dibromo-5,5-dimethylhydantoin was added at 80° C. After the addition, the reaction mixture was stirred at 80° C. for 30 minutes. After the reaction, a saturated sodium thiosulfate aqueous solution was added to the reaction mixture, and the precipitated solid was collected by filtration to obtain 468 mg of the desired crude product as a yellow solid. The crude product was used in the next step without further purification.
  • 1H-NMR (CDCl3): δ9.27 (s, 1H), 8.75 (d, J=0.9 Hz, 1H), 8.43 (d, J=1.5 Hz, 1H), 8.02 (s, 1H), 4.37 (s, 3H).
  • Step 3: Synthesis of 2-[3-(ethylthio)-7-(trifluoromethyl)imidazo[1,2-c]pyrimidin-2-yl]-3-methyl-6-(trifluoromethyl)-3H-imidazo[4,5-b]pyridine (Compound No. 1-1-055b of the Present Invention)
  • To a solution of 452 mg of the crude 2-[3-bromo-7-(trifluoromethyl)imidazo[1,2-c]pyrimidin-2-yl]-3-methyl-6-(trifluoromethyl)-3H-imidazo[4,5-b]pyridine obtained in Step 2 in 10 ml of 1,4-dioxane, 377 mg of diisopropylethylamine, 56 mg of 4,5′-bis(diphenylphosphino)-9,9′-dimethylxanthene, 44 mg of tris(dibenzylideneacetone)dipalladium(0) and 121 mg of ethanethiol were successively added at room temperature. After the addition, the atmosphere in the reaction vessel was replaced by nitrogen gas, and the mixture was stirred under reflux with heating for 6.5 hours. After the stirring, to the reaction mixture, 754 mg of diisopropylethylamine, 112 mg of 4,5′-bis(diphenylphosphino)-9,9′-dimethylxanthene, 88 mg of tris(dibenzylideneacetone)dipalladium(0) and 242 mg of ethanethiol were successively added at room temperature. After the addition, the atmosphere in the reaction vessel was replaced by nitrogen gas, and the mixture was stirred under reflux with heating for 5 hours. After the reaction, water was added to the reaction mixture, and the precipitated solid was collected by filtration. The resulting solid was washed with diisopropyl ether to obtain 371 mg of the desired product as a brown solid.
  • Melting point: 198-200° C.
  • 1H-NMR (CDCl3): δ9.54 (s, 1H), 8.77-8.73 (m, 1H), 8.41 (s, 1H), 8.01 (s, 1H), 4.32 (s, 3H), 3.24 (q, J=7.5 Hz, 2H), 1.26 (t, J=7.5 Hz, 3H).
  • Step 4: Synthesis of 2-[3-(ethylsulfonyl)-7-(trifluoromethyl)imidazo[1,2-c]pyrimidin-2-yl]-3-methyl-6-(trifluoromethyl)-3H-imidazo[4,5-b]pyridine (Compound No. 1-1-055a of the Present Invention)
  • To a solution of 315 mg of 2-[3-(ethylthio)-7-(trifluoromethyl)imidazo[1,2-c]pyrimidin-2-yl]-3-methyl-6-(trifluoromethyl)-3H-imidazo[4,5-b]pyridine obtained in Step 3 in 10 ml of chloroform, 412 mg of 65 weight % m-chloroperbenzoic acid (contain in about 30 weight % of water) was added under cooling with ice. After the addition, the reaction mixture was stirred at room temperature for 3 hours. After the stirring, 206 mg of m-chloroperbenzoic acid (containing 35 weight % of water) was added to the reaction mixture at room temperature. After the addition, the reaction mixture was stirred at room temperature for 2 hours. After the reaction, the reaction mixture was mixed with a saturated sodium thiosulfate aqueous solution and extracted with chloroform (10 ml×2). The resulting organic layer was washed with a saturated sodium hydrogen carbonate aqueous solution and dried over anhydrous sodium sulfate, and the solvent was evaporated under reduced pressure. The resulting residue was purified by preparative medium pressure liquid chromatography using n-hexane/ethyl acetate (with a gradient of from 100:0 to 50:50) as the eluent to obtain 139 mg of the desired product as a white solid.
  • Melting point: 238-240° C.
  • 1H-NMR (CDCl3): δ10.15 (s, 1H), 8.80 (s, 1H), 8.39 (s, 1H), 8.15 (s, 1H), 4.22 (s, 3H), 4.22 (q, J=7.5 Hz, 2H), 1.50 (t, J=7.5 Hz, 3H).
  • Synthetic Example 25: Synthesis of 2-[3-(ethylsulfonyl)-6-(trifluoromethyl)imidazo[1,2-a]pyridin-2-yl]-6-(trifluoromethyl)imidazo[1,2-a]pyrazine (Compound No. 1-6-002a of the Present Invention)
  • 103 mg of 5-(trifluoromethyl)pyrazin-2-amine was dissolved in 4 ml of bromobenzene, and 300 mg of 2-bromo-1-[3-(ethylsulfonyl)-6-(trifluoromethyl)imidazo[1,2-a]pyridin-2-yl]ethanone was added at room temperature. After the addition, the reaction mixture was stirred under reflux with heating for 5 hours. After the reaction, the reaction mixture was mixed with 10 ml of a 1M sodium hydroxide aqueous solution and extracted with ethyl acetate (10 ml×2). The resulting organic layer was dehydrated with saturated aqueous sodium chloride and dried over anhydrous sodium sulfate, and the solvent was evaporated under reduced pressure. The resulting residue was purified by preparative medium pressure liquid chromatography using n-hexane/ethyl acetate (with a gradient of from 100:0 to 0:100) as the eluent to obtain 38 mg of the desired product as a white solid.
  • Melting point: 266-270° C.
  • 1H-NMR (CDCl3): δ9.63 (s, 1H), 9.24 (s, 1H), 8.68 (s, 1H), 8.62 (s, 1H), 7.93 (d, J=9.3 Hz, 1H), 7.66 (dd, J=9.3, 1.8 Hz, 1H), 3.70 (q, J=7.5 Hz, 2H), 1.35 (t, J=7.5 Hz, 3H).
  • Synthetic Example 26: Synthesis of 2-[7-chloro-3-(ethylthio)imidazo[1,2-a]pyridin-2-yl]-6-(trifluoromethyl)-3H-imidazo[4,5-c]pyridine (Compound No. 1-8-012b of the Present Invention), 2-[7-chloro-3-(ethylthio)imidazo[1,2-a]pyridin-2-yl]-3-methyl-6-(trifluoromethyl)-3H-imidazo[4,5-c]pyridine (Compound No. 1-8-006b of the Present Invention) and 2-[7-chloro-3-(ethylthio)imidazo[1,2-a]pyridin-2-yl]-1-methyl-6-(trifluoromethyl)-1H-imidazo[4,5-c]pyridine (Compound No. 1-9-003b of the Present Invention) Step 1: Synthesis of N-[5-amino-2-(trifluoromethyl)pyridin-4-yl]-7-chloro-3-(ethylthio)imidazo[1,2-a]pyridine-2-carboxamide
  • 470 mg of 6-(trifluoromethyl)pyridine-3,4-diamine was dissolved in 7 ml of pyridine, and 486 mg of 7-chloro-3-(ethylthio)imidazo[1,2-a]pyridine-2-carboxylic acid and 752 mg of 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride were added at room temperature. After the addition, the reaction mixture was stirred at room temperature overnight. After the reaction, 20 ml of water was added to the reaction mixture, and the precipitated solid was collected by filtration to obtain 749 mg of the desired crude product as a pale solid. The crude product was used in the next step without further purification.
  • Step 2: Synthesis of 2-[7-chloro-3-(ethylthio)imidazo[1,2-a]pyridin-2-yl]-6-(trifluoromethyl)-3H-imidazo[4,5-c]pyridine (Compound No. 1-8-012b of the Present Invention)
  • 749 mg of the crude N-[5-amino-2-(trifluoromethyl)pyridin-4-yl]-7-chloro-3-(ethylthio)imidazo[1,2-a]pyridine-2-carboxamide obtained in Step 1 was dissolved in 7 ml of propionic acid, and the solution was stirred under reflux with heating for 20 hours. After the stirring, the solid precipitated in the reaction mixture was collected by filtration. The resulting solid was washed with water to obtain 761 mg of the desired product as a brown solid. The product was used in the next step without further purification.
  • Step 3: Synthesis of 2-[7-chloro-3-(ethylthio)imidazo[1,2-a]pyridin-2-yl]-3-methyl-6-(trifluoromethyl)-3H-imidazo[4,5-c]pyridine (Compound No. 1-8-006b of the Present Invention) and 2-[7-chloro-3-(ethylthio)imidazo[1,2-a]pyridin-2-yl]-1-methyl-6-(trifluoromethyl)-1H-imidazo[4,5-c]pyridine (Compound No. 1-9-003b of the Present Invention)
  • To a solution of 219 mg of 63 weight % sodium hydroxide (dispersed in mineral oil) in 10 ml of N,N-dimethylformamide, a solution of 761 mg of 2-[7-chloro-3-(ethylthio)imidazo[1,2-a]pyridin-2-yl]-6-(trifluoromethyl)-3H-imidazo[4,5-c]pyridine in 10 ml of N,N-dimethylformamide was added under cooling with ice. After the addition, the reaction mixture was stirred under cooling with ice for 30 minutes. After the stirring, 940 mg of methyl trifluoromethanesulfonate was added to the reaction mixture under cooling with ice. After the addition, the reaction mixture was stirred to room temperature for one hour. After the reaction, the reaction mixture was mixed with 20 ml of water and extracted with diethyl ether (20 ml×2). The resulting organic layer was dehydrated with saturated aqueous sodium chloride and dried over anhydrous sodium sulfate, and the solvent was evaporated under reduced pressure. The resulting residue was purified by preparative medium pressure liquid chromatography using n-hexane/ethyl acetate (with a gradient of from 100:0 to 50:50) as the eluent to obtain 65 mg of the desired 2-[7-chloro-3-(ethylthio)imidazo[1,2-a]pyridin-2-yl]-3-methyl-6-(trifluoromethyl)-3H-imidazo[4,5-c]pyridine and 247 mg of the desired 2-[7-chloro-3-(ethylthio)imidazo[1,2-a]pyridin-2-yl]-1-methyl-6-(trifluoromethyl)-1H-imidazo[4,5-c]pyridine respectively as a white solid.
  • Melting point of 2-[7-chloro-3-(ethylthio)imidazo[1,2-a]pyridin-2-yl]-3-methyl-6-(trifluoromethyl)-3H-imidazo[4,5-c]pyridine: 215-217° C.
  • 1H-NMR (CDCl3): δ8.95 (s, 1H), 8.59 (d, J=7.5 Hz, 1H), 8.19 (s, 1H), 7.74-7.71 (m, 1H), 7.03 (dd, J=7.5, 2.1 Hz, 1H), 4.33 (s, 3H), 3.09 (q, J=7.5 Hz, 2H), 1.19 (t, J=7.5 Hz, 3H).
  • Melting point of 2-[7-chloro-3-(ethylthio)imidazo[1,2-a]pyridin-2-yl]-1-methyl-6-(trifluoromethyl)-1H-imidazo[4,5-c]pyridine: 187-188° C.
  • 1H-NMR (CDCl3): δ9.24 (s, 1H), 8.59 (dd, J=7.2, 0.6 Hz, 1H), 7.81 (s, 1H), 7.73-7.69 (m, 1H), 7.03 (dd, J=7.2, 1.8 Hz, 1H), 4.26 (s, 3H), 3.10 (q, J=7.5 Hz, 2H), 1.20 (t, J=7.5 Hz, 3H).
  • Synthetic Example 27: Synthesis of 2-[3-(ethylthio)-6-iodo-8-(trifluoromethyl)imidazo[1,2-a]pyridin-2-yl]-3-methyl-6-(trifluoromethyl)-3H-imidazo[4,5-b]pyridine (Compound No. 1-1-C66b of the Present Invention) Step 1: Synthesis of 2-(ethylthio)-1-[3-methyl-6-(trifluoromethyl)-3H-imidazo[4,5-b]pyridin-2-yl]ethanone
  • To a solution of 20 g of 2-bromo-1-[3-methyl-6-(trifluoromethyl)-3H-imidazo[4,5-b]pyridin-2-yl]ethanone in 80 ml of N,N-dimethylformamide, 4.2 g of ethanethiol and 9.4 g of potassium carbonate were successively added under cooling with ice. After the addition, the reaction mixture was stirred under cooling with ice for 30 minutes. After the stirring, the reaction mixture was stirred at room temperature for one hour. After the reaction, the reaction mixture was mixed with 100 ml of water and extracted with ethyl acetate (100 ml×2). The resulting organic layer was dehydrated with saturated aqueous sodium chloride and dried over anhydrous sodium sulfate, and the solvent was evaporated under reduced pressure. The resulting residue was purified by preparative medium pressure liquid chromatography using n-hecane/ethyl acetate (with a gradient of from 100:0 to 80:20) as the eluent to obtain 13.8 g of the desired product as a pale yellow solid.
  • Melting point: 67-69° C.
  • 1H-NMR (CDCl3): δ8.85-8.80 (m, 1H), 8.45-8.40 (m, 1H), 4.24 (s, 3H), 4.07 (s, 2H), 2.66 (q, J=7.4 Hz, 2H), 1.31 (t, J=7.4 Hz, 3H).
  • Step 2: Synthesis of 2-bromo-2-(ethylthio)-1-[3-methyl-6-(trifluoromethyl)-3H-imidazo[4,5-b]pyridin-2-yl]ethanone
  • To a solution of 11.4 g of 2-(ethylthio)-1-[3-methyl-6-(trifluoromethyl)-3H-imidazo[4,5-b]pyridin-2-yl]ethanone in 100 ml of dichloromethane, 4.2 g of triethylamine was added at room temperature. After the addition, the reaction mixture was cooled to −20° C., and 8.8 g of trimethylsilyl trifluoromethanesulfonate was added. After the addition, the reaction mixture was stirred under cooling with ice for 20 minutes. After the stirring, the reaction mixture was cooled to −20° C., and 14.1 g of trimethylphenylammonium tribromide was added. After the addition, the reaction mixture was stirred under cooling with ice for 30 minutes. After the reaction, the reaction mixture was added dropwise to 100 ml of water under cooling with ice, and the mixture was extracted with chloroform (100 ml×2). The resulting organic layer was dried over anhydrous sodium sulfate, and the solvent was evaporated under reduced pressure to obtain 13.4 g of the desired product as a reddish brown oil.
  • 1H-NMR (CDCl3): δ8.90-8.80 (m, 1H), 8.50-8.40 (m, 1H), 7.14 (s, 1H), 4.27 (s, 3H), 3.05-2.80 (m, 2H), 1.39 (t, J=7.6 Hz, 3H).
  • Step 3: Synthesis of 2-[3-(ethylthio)-6-iodo-8-(trifluoromethyl)imidazo[1,2-a]pyridin-2-yl]-3-methyl-6-(trifluoromethyl)-3H-imidazo[4,5-b]pyridine (Compound No. 1-1-C66b of the Present Invention)
  • 300 mg of 5-iodo-3-(trifluoromethyl)pyridin-2-amine was dissolved in 8 ml of propionitrile, and 345 mg of 2-bromo-2-(ethylthio)-1-[3-methyl-6-(trifluoromethyl)-3H-imidazo[4,5-b]pyridin-2-yl]ethanone was added at room temperature. After the addition, the reaction mixture was stirred under reflux with heating for 1.5 hours. After the reaction, the reaction mixture was mixed with 20 ml of water and extracted with chloroform (20 ml×2). The resulting organic layer was dried over anhydrous sodium sulfate, and the solvent was evaporated under reduced pressure. 10 ml of diisopropyl ether was added to the precipitated solid, followed by filtration to obtain 294 mg of the desired product as an orange solid.
  • Melting point: 222-225° C.
  • 1H-NMR (CDCl3): δ9.10-9.00 (m, 1H), 8.75-8.70 (m, 1H), 8.40-8.35 (m, 1H), 7.90-7.85 (m, 1H), 4.35 (s, 3H), 3.18 (q, J=7.4 Hz, 2H), 1.24 (t, J=7.4 Hz, 3H).
  • Synthetic Example 28: Synthesis of 2-[3-(ethylthio)-7-(trifluoromethyl)imidazo[1,2-b]pyridazin-2-yl]-3-methyl-6-(trifluoromethyl)-3H-imidazo[4,5-b]pyridine (Compound No. 1-1-057b of the Present Invention), 2-[3-(ethylsulfonyl)-7-(trifluoromethyl)imidazo[1,2-b]pyridazin-2-yl]-3-methyl-6-(trifluoromethyl)-3H-imidazo[4,5-b]pyridine (Compound No. 1-1-057a of the Present Invention) and 2-[3-(ethylsulfinyl)-7-(trifluoromethyl)imidazo[1,2-b]pyridazin-2-yl]-3-methyl-6-(trifluoromethyl)-3H-imidazo[4,5-b]pyridine (Compound No. 1-1-057c of the Present Invention) Step 1: Synthesis of 2-[3-(ethylthio)-7-(trifluoromethyl)imidazo[1,2-b]pyridazin-2-yl]-3-methyl-6-(trifluoromethyl)-3H-imidazo[4,5-b]pyridine (Compound No. 1-1-057b of the Present Invention)
  • 42 mg of 5-(trifluoromethyl)pyridazin-3-amine was dissolved in 3 ml of acetonitrile, and 100 mg of 2-bromo-2-(ethylthio)-1-[3-methyl-6-(trifluoromethyl)-3H-imidazo[4,5-b]pyridin-2-yl]ethanone was added at room temperature. After the addition, the reaction mixture was stirred under reflux with heating for 2 hours. After the reaction, the reaction mixture was mixed with 10 ml of water and extracted with chloroform (10 ml×2). The resulting organic layer was dried over anhydrous sodium sulfate, and the solvent was evaporated under reduced pressure to obtain 130 mg of the desired crude product. The crude product was used in the next step without further purification.
  • Step 2: Synthesis of 2-[3-(ethylsulfonyl)-7-(trifluoromethyl)imidazo[1,2-b]pyridazin-2-yl]-3-methyl-6-(trifluoromethyl)-3H-imidazo[4,5-b]pyridine (Compound No. 1-1-057a of the Present Invention) and 2-[3-(ethylsulfinyl)-7-(trifluoromethyl)imidazo[1,2-b]pyridazin-2-yl]-3-methyl-6-(trifluoromethyl)-3H-imidazo[4,5-b]pyridine (Compound No. 1-1-057c of the Present Invention)
  • To a solution of 120 mg of the crude 2-[3-(ethylthio)-7-(trifluoromethyl)imidazo[1,2-b]pyridazin-2-yl]-3-methyl-6-(trifluoromethyl)-3H-imidazo[4,5-b]pyridine obtained in Step 1 in 10 ml of chloroform, 99 mg of 65 weight % m-chloroperbenzoic acid (containing about 30 weight % of water) was added under cooling with ice. After the addition, the reaction mixture was stirred at room temperature overnight. After the reaction, the reaction mixture was mixed with a saturated sodium thiosulfate aqueous solution and extracted with chloroform (10 ml×2). The resulting organic layer was washed with a saturated sodium hydrogen carbonate aqueous solution and dried over anhydrous sodium sulfate, and the solvent was evaporated under reduced pressure. The resulding residue was purified by preparative medium pressure liquid chromatography using n-hexane/ethyl acetate (with a gradient of from 100:0 to 50:50) as the eluent to obtain 70 mg of the desired 2-[3-(ethylsulfonyl)-7-(trifluoromethyl)imidazo[1,2-b]pyridazin-2-yl]-3-methyl-6-(trifluoromethyl)-3H-imidazo[4,5-b]pyridine and 41 mg of the desired 2-[3-(ethylsulfinyl)-7-(trifluoromethyl)imidazo[1,2-b]pyridazin-2-yl]-3-methyl-6-(trifluoromethyl)-3H-imidazo[4,5-b]pyridine respectively as a pale yellow oil.
  • 1H-NMR of 2-[3-(ethylsulfonyl)-7-(trifluoromethyl)imidazo[1,2-b]pyridazin-2-yl]-3-methyl-6-(trifluoromethyl)-3H-imidazo[4,5-b]pyridine: 68.90 (d, J=1.8 Hz, 1H), 8.79 (d, J=1.5 Hz, 1H), 8.55-8.50 (m, 1H), 8.42 (d, J=2.1 Hz, 1H), 4.02 (s, 3H), 3.75 (q, J=7.5 Hz, 2H), 1.46 (t, J=7.5 Hz, 3H).
  • 1H-NMR of 2-[3-(ethylsulfinyl)-7-(trifluoromethyl)imidazo[1,2-b]pyridazin-2-yl]-3-methyl-6-(trifluoromethyl)-3H-imidazo[4,5-b]pyridine: 58.82 (d, J=2.1 Hz, 1H), 8.78-8.74 (m, 1H), 8.49-8.45 (m, 1H), 8.42-8.38 (m, 1H), 4.36 (s, 3H), 4.18-4.00 (m, 1H), 3.85-3.70 (m, 1H), 1.55 (t, J=7.5 Hz, 3H).
  • Synthetic Example 29: Synthesis of 5-(ethylthio)-6-[3-methyl-6-(trifluoromethyl)-3H-imidazo[4,5-b]pyridin-2-yl]-2-(trifluoromethyl)imidazo[2,1-b][1,3,4]thiadiazole (compound No. 2-1-002b of the Present Invention) and 5-(ethylsulfonyl)-6-[3-methyl-6-(trifluoromethyl)-3H-imidazo[4,5-b]pyridin-2-yl]-2-(trifluoromethyl)imidazo[2,1-b][1,3,4]thiadiazole (Compound No. 2-1-002a of the Present Invention) Step 1: Synthesis of 5-(ethylthio)-6-[3-methyl-6-(trifluoromethyl)-3H-imidazo[4,5-b]pyridin-2-yl]-2-(trifluoromethyl)imidazo[2,1-b][1,3,4]thiadiazole (Compound No. 2-1-002b of the Present Invention)
  • 195 mg of 5-(trifluoromethyl)-1,3,4-thiadiazol-2-amine was dissolved in 5 ml of propionitrile, and 400 mg of 2-bromo-2-(ethylthio)-1-[3-methyl-6-(trifluoromethyl)-3H-imidazo[4,5-b]pyridin-2-yl]ethanone was added at room temperature. After the addition, the reaction mixture was stirred under reflux with heating for 3 hours. After the reaction, the reaction mixture was mixed with 10 ml of water and extracted with chloroform (10 ml×2). The resulting organic layer was dried over anhydrous sodium sulfate, and the solvent was evaporated under reduced pressure. The resulting residue was purified by preparative medium pressure liquid chromatography using n-hexane/ethyl acetate (with a gradient of from 100:0 to 0:100) as the eluent to obtain 130 mg of the desired product as a white solid.
  • 1H-NMR (CDCl3): δ8.82 (d, J=1.2 Hz, 1H), 8.43 (d, J=1.2 Hz, 1H), 4.24 (s, 3H), 2.66 (q, J=7.5 Hz, 2H), 1.31 (t, J=7.5 Hz, 3H).
  • Step 2: Synthesis of 5-(ethylsulfonyl)-6-[3-methyl-6-(trifluoromethyl)-3H-imidazo[4,5-b]pyridin-2-yl]-2-(trifluoromethyl)imidazo[2,1-b][1,3,4]thiadiazole (compound No. 2-1-002a of the Present Invention)
  • To a solution of 130 mg of 5-(ethylthio)-6-[3-methyl-6-(trifluoromethyl)-3H-imidazo[4,5-b]pyridin-2-yl]-2-(trifluoromethyl)imidazo[2,1-b][1,3,4]thiadiazole in 10 ml of chloroform, 191 mg of 65 weight % m-chloroperbenzoic acid (containing about 30 weight % of water) was added under cooling with ice. After the addition, the reaction mixture was stirred at room temperature overnight. After the reaction, the reaction mixture was mixed with a saturated sodium thiosulfate aqueous solution and extracted with chloroform (10 ml×2). The resulting organic layer was washed with a saturated sodium hydrogen carbonate aqueous solution and dried over anhydrous sodium sulfate, and the solvent was evaporated under reduced pressure. The resulting residue was purified by preparative medium pressure liquid chromatography using n-hexane/ethyl acetate (with a gradient of from 100:0 to 50:50) as the eluent to obtain 52 mg of the desired product as a white solid.
  • Melting point: 231-234° C.
  • 1H-NMR (CDCl3): δ8.76 (s, 1H), 8.35 (s, 1H), 4.11 (s, 3H), 3.92 (q, J=7.5 Hz, 2H), 1.51 (t, J=7.5 Hz, 3H).
  • Synthetic Example 30: Synthesis of 2-[3-(ethylthio)-8-fluoro-6-iodoimidazo[1,2-a]pyridin-2-yl]-3-methyl-6-(trifluoromethyl)-3H-imidazo[4,5-c]pyridine (Compound No. 1-8-008b of the Present Invention) Step 1: Synthesis of 2-(ethylthio)-1-[3-methyl-6-(trifluoromethyl)-3H-imidazo[4,5-c]pyridin-2-yl]ethanone
  • To 2.36 g of 2-bromo-1-[3-methyl-6-(trifluoromethyl)-3H-imidazo[4,5-c]pyridin-2-yl]ethanone in 25 ml of N,N-dimethylformamide, 546 mg of ethanethiol and 1.21 g of potassium carbonate were successively added under cooling with ice. After the addition, the reaction mixture was stirred at room temperature for one hour. After the reaction, the reaction mixture was mixed with 50 ml of water and extracted with ethyl acetate (50 ml×2). The resulting organic layer was dehydrated with saturated aqueous sodium chloride and dried over anhydrous sodium sulfate, and the solvent was evaporated under reduced pressure. The resulting residue was purified by preparative medium pressure liquid chromatography using n-hexane/ethyl acetate (with a gradient of from 100:0 to 80:20) as the eluent to obtain 1.70 g of the desired product as a white solid.
  • Melting point: 90-93° C.
  • 1H-NMR (CDCl3): 9.03 (s, 1H), 8.19 (d, J=1.0 Hz, 1H), 4.29 (s, 3H), 4.08 (s, 2H), 2.65 (q, J=7.4 Hz, 2H), 1.32 (t, J=7.4 Hz, 3H).
  • Step 2: Synthesis of 2-bromo-2-(ethylthio)-1-[3-methyl-6-(trifluoromethyl)-3H-imidazo[4,5-c]pyridin-2-yl]ethanone
  • To a solution of 1.63 g of 2-(ethylthio)-1-[3-methyl-6-(trifluoromethyl)-3H-imidazo[4,5-c]pyridin-2-yl]ethanone in 15 ml of dichloromethane, 600 mg of triethylamine was added at room temperature. After the addition, 1.25 g of trimethylsilyl trifluoromethanesulfonate was added to the reaction mixture under cooling with ice. After the addition, the reaction mixture was stirred under cooling with ice for 30 minutes. After the stirring, 2.02 g of trimethylphenylammonium tribromide was added to the reaction mixture under cooling with ice. After the addition, the reaction mixture was stirred under cooling with ice for one hour. After the reaction, the reaction mixture was added dropwise to 20 ml of water under cooling with ice, and the mixture was extracted with chloroform (20 ml×2). The resulting organic layer was dried over anhydrous sodium sulfate, and the solvent was evaporated under reduced pressure to obtain 2.09 g of the desired product as a yellow oil.
  • 1H-NMR (CDCl3): δ9.06 (s, 1H), 8.19 (s, 1H), 7.12 (s, 1H), 4.31 (s, 3H), 3.01-2.77 (m, 2H), 1.39 (t, J=7.5 Hz, 3H).
  • Step 3: Synthesis of 2-[3-(ethylthio)-8-fluoro-6-iodoimidazo[1,2-a]pyridin-2-yl]-3-methyl-6-(trifluoromethyl)-3H-imidazo[4,5-c]pyridine (Compound No. 1-8-008b of the Present Invention)
  • 250 mg of 3-fluoro-5-iodopyridin-2-amine was dissolved in 5 ml of acetonitrile, and 400 mg of 2-bromo-2-(ethylthio)-1-[3-methyl-6-(trifluoromethyl)-3H-imidazo[4,5-c]pyridin-2-yl]ethanone was added at room temperature. After the addition, the reaction mixture was stirred under reflux with heating for one hour. After the reaction, the reaction mixture was mixed with 10 ml of water and extracted with chloroform (10 ml×2). The resulting organic layer was dried over anhydrous sodium sulfate, and the solvent was evaporated under reduced pressure. The precipitated solid was collected by filtration to obtain 338 mg of the desired product as a brown solid.
  • 1H-NMR (CDCl3): δ8.96 (s, 1H), 8.73 (d, J=1.5 Hz, 1H), 8.19 (d, J=0.9 Hz, 1H), 7.33 (dd, J=9.0, 1.5 Hz, 1H), 4.36 (s, 3H), 3.15 (q, J=7.5 Hz, 2H), 1.23 (t, J=7.5 Hz, 3H).
  • Reference Example 1: Synthesis of 2-bromo-1-[3-(ethylsulfonyl)-7-(trifluoromethyl)imidazo[1,2-a]pyridin-2-yl]ethanone Step 1: Synthesis of ethyl 7-(trifluoromethyl)imidazo[1,2-a]pyridine-2-carboxylate
  • 5.0 g of 4-(trifluoromethyl)pyridin-2-amine was dissolved in 50 ml of chlorobenzene, and 6.67 g of ethyl 3-bromo-2-oxopropanoate was added at room temperature. After the addition, the reaction mixture was stirred under reflux with heating for 6.5 hours. After the reaction, the reaction mixture was mixed with 20 ml of a 1M sodium hydroxide aqueous solution and extracted with ethyl acetate (20 ml×2). The resulting organic layer was dehydrated with saturated aqueous sodium chloride and dried over anhydrous sodium sulfate, and the solvent was evaporated under reduced pressure. The resulting residue was mixed with a 3M hydrochloric acid aqueous solution and washed with 10 ml of ethyl acetate. The aqueous layer was adjusted to have a pH of from 2 to 3 with a 10M sodium hydroxide aqueous solution and extracted with ethyl acetate (10 ml×2). The resulting organic layer was dehydrated with saturated aqueous sodium chloride and dried over anhydrous sodium sulfate, and the solvent was evaporated under reduced pressure to obtain 3.94 g of the desired product as a yellow solid.
  • Melting point: 170-175° C.
  • 1H-NMR (CDCl3): δ8.29 (s, 1H), 8.27 (d, J=7.2 Hz, 1H), 8.01 (s, 1H), 7.07 (dd, J=7.2, 1.7 Hz, 1H), 4.49 (q, J=7.2 Hz, 2H), 1.46 (t, J=7.2 Hz, 3H).
  • Step 2: Synthesis of ethyl 3-iodo-7-(trifluoromethyl)imidazo[1,2-a]pyridine-2-carboxylate
  • To a solution of 3.73 g of ethyl 7-(trifluoromethyl)imidazo[1,2-a]pyridine-2-carboxylate in 20 ml of N,N-dimethylformamide, 6.5 g N-iodosuccinimide was added at room temperature. After the addition, the reaction mixture was stirred at 80° C. for 5 hours. After the reaction, water was added to the reaction mixture, and the precipitated solid was collected by filtration. The resulting solid was dissolved in 20 ml of chloroform, and washed with a saturated sodium thiosulfate aqueous solution and then with saturated sodium hydrogen carbonate. The resulting organic layer was dried over anhydrous sodium sulfate, and the solvent was evaporated under reduced pressure to obtain 5.08 g of the desired product as a flesh-colored solid.
  • Melting point: 183-185° C.
  • 1H-NMR (CDCl3): δ8.40 (d, J=7.2 Hz, 1H), 7.99 (s, 1H), 7.17 (dd, J=7.2, 1.7 Hz, 1H), 4.53 (q, J=7.2 Hz, 2H), 1.50 (t, J=7.2 Hz, 3H).
  • Step 3: Synthesis of ethyl 3-(ethylthio)-7-(trifluoromethyl)imidazo[1,2-a]pyridine-2-carboxylate
  • To a solution of 5.73 g of ethyl 3-iodo-7-(trifluoromethyl)imidazo[1,2-a]pyridine-2-carboxylate in 40 ml of 1,4-dioxane, 5.79 g of diisopropylethylamine, 862 mg of 4,5-bis(diphenylphosphino)-9,9-dimethylxanthene, 682 mg of tris(dibenzylideneacetone)dipalladium(0) and 1.85 g of ethanethiol were successively added at room temperature. After the addition, the atmosphere in the reaction vessel was replaced by nitrogen gas, and the mixture was stirred under reflux with heating for 2 hours. After the reaction, the reaction mixture was subjected to filtration through Celite, and the Celite was washed with 30 ml of chloroform. The resulting filtrate and washing solution were put together, and the solvent was evaporated under reduced pressure. The resulting residue was purified by preparative medium pressure liquid chromatography using n-hexane/ethyl acetate (with a gradient of from 100:0 to 50:50) as the eluent to obtain 5.58 g of the desired product as a brown solid.
  • Melting point: 50-52° C.
  • 1H-NMR (CDCl3): δ8.67 (d, J=7.4 Hz, 1H), 8.02-8.00 (m, 1H), 7.15 (dd, J=7.4, 1.8 Hz, 1H), 4.52 (q, J=7.0 Hz, 2H), 2.98 (q, J=7.5 Hz, 2H), 1.48 (t, J=7.0 Hz, 3H), 1.20 (t, J=7.5 Hz, 3H).
  • Step 4: Synthesis of 3-(ethylthio)-7-(trifluoromethyl)imidazo[1,2-a]pyridine-2-carboxylic acid
  • To a solution of 5.58 g of ethyl 3-(ethylthio)-7-(trifluoromethyl)imidazo[1,2-a]pyridine-2-carboxylate in 60 ml of ethanol and 30 ml of tetrahydrofuran, 10 ml of a 3M sodium hydroxide aqueous solution was added at room temperature. After the addition, the reaction mixture was stirred at room temperature for 5 hours. After the reaction, the solvent was evaporated from the reaction mixture under reduced pressure. The resulting residue was mixed with a 1M hydrochloric acid aqueous solution to adjust the aqueous layer to have a pH of 2, and extracted with ethyl acetate (20 ml×2). The resulting organic layer was dehydrated with saturated aqueous sodium chloride and dried over anhydrous sodium sulfate, and the solvent was evaporated under reduced pressure to obtain 3.40 g of the desired product as a yellow solid.
  • Melting point: 163-171° C.
  • 1H-NMR (CDCl3): δ8.69 (d, J=7.2 Hz, 1H), 8.19 (s, 1H), 7.22 (dd, J=7.2, 1.4 Hz, 1H), 3.06 (q, J=7.4 Hz, 2H), 1.23 (t, J=7.4 Hz, 3H) (no peak of proton of CO2H was observed).
  • Step 5: Synthesis of 3-(ethylthio)-N-methoxy-N-methyl-7-(trifluoromethyl)imidazo[1,2-a]pyridine-2-carboxamide
  • To a solution of 2.52 g of 3-(ethylthio)-7-(trifluoromethyl)imidazo[1,2-a]pyridine-2-carboxylic acid in 30 ml of dichloromethane, 3.31 g of oxalyl chloride and 30 mg of N,N-dimethylformamide were added under cooling with ice. After the addition, the reaction mixture was stirred at room temperature for 3 hours. After the stirring, the solvent was evaporated from the reaction mixture under reduced pressure to obtain crude 3-(ethylthio)-7-(trifluoromethyl)imidazo[1,2-a]pyridine-2-carboxylic acid chloride. The obtained crude 3-(ethylthio)-7-(trifluoromethyl)imidazo[1,2-a]pyridine-2-carboxylic acid chloride was dissolved in 5 ml of dichloromethane, and the solution was added to a solution of 931 mg of N,O-dimethylhydroxylamine hydrochloride and 1.93 g of triethylamine in 15 ml of dichloromethane prepared in a separate container, under cooling with ice. After the addition, the reaction mixture was stirred at room temperature for 1.5 hours. After the reaction, the reaction mixture was mixed with 10 ml of water and extracted with chloroform (10 ml×2). The resulting organic layer was washed with dilute hydrochloric acid and then with a saturated sodium hydrogen carbonate aqueous solution and dried over anhydrous sodium sulfate, and the solvent was evaporated under reduced pressure to obtain 2.50 g of the desired product as a flesh-colored solid.
  • Melting point: 82-84° C.
  • 1H-NMR (CDCl3): δ8.62 (d, J=7.2 Hz, 1H), 7.98-7.95 (m, 1H), 7.14 (dd, J=7.2, 1.7 Hz, 1H), 3.80 (s, 3H), 3.44 (s, 3H), 2.91 (q, J=7.4 Hz, 2H), 1.22 (t, J=7.4 Hz, 3H).
  • Step 6: Synthesis of 1-[3-(ethylthio)-7-(trifluoromethyl)imidazo[1,2-a]pyridin-2-yl]ethanone
  • Under a nitrogen atmosphere, to a solution of 2.45 g of 3-(ethylthio)-N-methoxy-N-methyl-7-(trifluoromethyl)imidazo[1,2-a]pyridine-2-carboxamide in 25 ml of tetrahydrofuran, 2.7 ml of a solution of about 3M methylmagnesium bromide in diethyl ether was added under cooling with ice. After the addition, the reaction mixture was stirred under cooling with ice for one hour. After the reaction, the reaction mixture was added dropwise to 10 ml of a 4M hydrochloric acid aqueous solution under cooling with ice and extracted with ethyl acetate (20 ml×2). The resulting organic layer was washed with a saturated sodium hydrogen carbonate aqueous solution and dehydrated with saturated aqueous sodium chloride and dried over anhydrous sodium sulfate, and the solvent was evaporated under reduced pressure to obtain 2.08 g of the desired product as a brown solid.
  • Melting point: 60-64° C.
  • 1H-NMR (CDCl3): δ8.67 (d, J=7.2 Hz, 1H), 8.03-7.99 (m, 1H), 7.15 (dd, J=7.2, 1.7 Hz, 1H), 3.01 (q, J=7.4 Hz, 2H), 2.80 (s, 3H), 1.18 (t, J=7.4 Hz, 3H).
  • Step 7: Synthesis of 1-[3-(ethylsulfonyl)-7-(trifluoromethyl)imidazo[1,2-a]pyridin-2-yl]ethanone
  • To a solution of 2.08 g of 1-[3-(ethylthio)-7-(trifluoromethyl)imidazo[1,2-a]pyridin-2-yl]ethanone in 40 ml of methanol and 20 ml of water, 13.3 g of Oxone (registered trademark by DuPont) was added under cooling with ice. After the addition, the reaction mixture was stirred at room temperature overnight. After the reaction, to the reaction mixture, a solution of 2.28 g of sodium thiosulfate in 25 ml of water was added, and then a 10M sodium hydroxide aqueous solution was added to adjust the aqueous layer to be alkaline, and methanol was evaporated under reduced pressure. The resulting residue was extracted with ethyl acetate (40 ml×2). The resulting organic layer was dehydrated with saturated aqueous sodium chloride and dried over anhydrous sodium sulfate, and the solvent was evaporated under reduced pressure to obtain 2.11 g of the desired product as a yellow solid.
  • Melting point: 135-138° C.
  • 1H-NMR (CDCl3): δ9.44 (d, J=7.5 Hz, 1H), 8.12-8.09 (m, 1H), 7.27-7.24 (m, 1H), 3.80 (q, J=7.5 Hz, 2H), 2.80 (s, 3H), 1.35 (t, J=7.5 Hz, 3H).
  • Step 8: Synthesis of 2-bromo-1-[3-(ethylsulfonyl)-7-(trifluoromethyl)imidazo[1,2-a]pyridin-2-yl]ethanone
  • To a solution of 2.05 g 1-[3-(ethylsulfonyl)-7-(trifluoromethyl)imidazo[1,2-a]pyridin-2-yl]ethanone in 15 ml of toluene, 10.2 g of a solution of about 5.1M hydrogen bromide in acetic acid and 1.13 g of bromine were successively added at 10° C. After the addition, the reaction mixture was stirred at room temperature for 2 hours. After the stirring, the reaction mixture was mixed with 205 mg of bromine and stirred at room temperature overnight. After the reaction, the reaction mixture was mixed with 10 ml of water and extracted with ethyl acetate (20 ml×2). The resulting organic layer was washed with a 5 weight % sodium hydrogen sulfite aqueous solution and dried over anhydrous sodium sulfate, and the solvent was evaporated under reduced pressure to obtain 2.48 g of the desired product as a yellow solid.
  • Melting point: 122-123° C.
  • 1H-NMR (CDCl3): δ9.45 (d, J=7.5 Hz, 1H), 8.14-8.11 (m, 1H), 7.33-7.27 (m, 1H), 4.78 (s, 2H), 3.78 (q, J=7.4 Hz, 2H), 1.37 (t, J=7.4 Hz, 3H).
  • Reference Example 2: Synthesis of 5-(ethylthio)-2-(trifluoromethyl)imidazo[2,1-b]thiazole-6-carboxylic Acid Step 1: Synthesis of ethyl 2-(trifluoromethyl)imidazo[2,1-b]thiazole-6-carboxylate
  • 4.0 g of 5-(trifluoromethyl)thiazol-2-amine was dissolved in 80 ml of chlorobenzene, and 7.2 g of ethyl 3-bromo-2-oxopropanoate was added at room temperature. After the addition, the reaction mixture was stirred under reflux with heating for 3 hours. After the stirring, 3.09 g of ethyl 3-bromo-2-oxopropanoate was added to the reaction mixture. After the addition, the reaction mixture was stirred under reflux with heating for one hour. After the stirring, 2.4 g of ethyl 3-bromo-2-oxopropanoate was added to the reaction mixture. After the addition, the reaction mixture was stirred under reflux with heating for 2 hours. After the reaction, the solvent was evaporated from the reaction mixture under reduced pressure. The resulting residue was mixed with a 1M sodium hydroxide aqueous solution to adjust the aqueous layer to have a pH of 8, and extracted with ethyl acetate (20 ml×3). The resulting organic layer was dehydrated with saturated aqueous sodium chloride and dried over anhydrous sodium sulfate, and the solvent was evaporated under reduced pressure. The precipitated solid was collected by filtration. The resulting solid was washed with diisopropyl ether to obtain 2.12 g of the desired product as a white solid. 1H-NMR (CDCl3): δ8.14 (s, 1H), 7.92 (s, 1H), 4.42 (q, J=7.5 Hz, 2H), 1.43 (t, J=7.5 Hz, 3H).
  • Step 2: Synthesis of ethyl 5-iodo-2-(trifluoromethyl)imidazo[2,1-b]thiazole-6-carboxylate
  • To a solution of 7.97 g of ethyl 2-(trifluoromethyl)imidazo[2,1-b]thiazole-6-carboxylate in 10 ml of N,N-dimethylformamide, 3.58 g of N-iodosuccinimide was added at room temperature. After the addition, the reaction mixture was stirred at 80° C. for 4 hours. After the reaction, a saturated sodium thiosulfate aqueous solution was added to the reaction mixture, and the precipitated solid was collected by filtration to obtain 3.09 g of the desired product as a white solid.
  • 1H-NMR (CDCl3): δ7.90-7.86 (m, 1H), 4.44 (q, J=7.5 Hz, 2H), 1.45 (t, J=7.5 Hz, 3H).
  • Step 3: Synthesis of ethyl 3-(ethylthio)-2-(trifluoromethyl)imidazo[2,1-b]thiazole-6-carboxylate
  • To a solution of 2.00 g of ethyl 5-iodo-2-(trifluoromethyl)imidazo[2,1-b]thiazole-6-carboxylate in 20 ml of 1,4-dioxane, 1.98 g of diisopropylethylamine, 296 mg of 4,5-bis(diphenylphosphino)-9,9-dimethylxanthene, 234 mg of tris(dibenzylideneacetone)dipalladium(0) and 636 mg of ethanethiol were successively added at room temperature. After the addition, the atmosphere in the reaction vessel was replaced by nitrogen gas, and the mixture was stirred under reflux with heating for 4 hours. After the reaction, the reaction mixture was subjected to filtration through Celite, and the Celite was washed with 30 ml of chloroform. The resulting filtrate and washing solution were put together, and the solvent was evaporated under reduced pressure. The resulting residue was purified by preparative medium pressure liquid chromatography using n-hexane/ethyl acetate (with a gradient of from 100:0 to 50:50) as the eluent to obtain 1.11 g of the desired product as a yellow solid.
  • 1H-NMR (CDCl3): δ8.04-7.98 (m, 1H), 4.44 (q, J=7.5 Hz, 2H), 2.99 (q, J=7.5 Hz, 2H), 1.46 (t, J=7.5 Hz, 3H), 1.23 (t, J=7.5 Hz, 3H).
  • Step 4: Synthesis of 5-(ethylthio)-2-(trifluoromethyl)imidazo[2,1-b]thiazole-6-carboxylic acid
  • To a solution of 1.09 g of ethyl 3-(ethylthio)-2-(trifluoromethyl)imidazo[2,1-b]thiazole-6-carboxylate in 10 ml of ethanol and 10 ml of tetrahydrofuran, 6.8 ml of a 1M sodium hydroxide aqueous solution was added at room temperature. After the addition, the reaction mixture was stirred at room temperature overnight. After the reaction, the solvent was evaporated from the reaction mixture under reduced pressure. The resulting residue was mixed with a 1M hydrochloric acid aqueous solution to adjust the aqueous layer to have a pH of from 2 to 3, and extracted with chloroform (20 ml×2). The resulting organic layer was dried over anhydrous sodium sulfate, and the solvent was evaporated under reduced pressure to obtain 896 mg of the desired product as a yellow solid.
  • 1H-NMR (CDCl3): 8.06-8.02 (m, 1H). 3.04 (q, J=7.5 Hz, 2H), 1.25 (t, J=7.5 Hz, 3H) (no peak of proton of CO2H was observed).
  • Reference Example 3
  • The following compounds were synthesized in the same manner as in Steps 1 to 4 in Reference Example 1.
  • 3-(Ethylthio)-6-(trifluoromethyl)imidazo[1,2-a]pyridine-2-carboxylic acid
  • Melting point: 200-201° C.
  • 1H-NMR (CDCl3): δ8.93 (s, 1H), 8.20 (d, J=9.6 Hz, 1H), 7.56 (dd, J=9.6, 1.8 Hz, 1H), 3.06 (q.J=7.4 Hz, 2H), 1.23 (t, J=7.4 Hz, 3H) (no peak of proton of CO2H was observed).
  • 3-(Ethylthio)-6-(trifluoromethyl)imidazo[1,2-a]pyrazine-2-carboxylic acid Melting point: 175-178° C.
  • 1H-NMR (CDCl3): δ9.21 (s, 1H), 8.84 (s, 1H), 3.08 (q, J=7.2 Hz, 2H), 1.22 (t, J=7.2 Hz, 3H) (no peak of proton of CO2H was observed).
  • Reference Example 4: Synthesis of N3,2-dimethyl-6-(trifluoromethyl)pyridine-3,4-diamine Step 1: Synthesis of 4-bromo-2-methyl-6-(trifluoromethyl)pyridin-3-amine
  • To a solution of 3.0 g of 2-methyl-6-(trifluoromethyl)pyridin-3-amine in 30 ml of acetonitrile, 3.03 g of N-bromosuccinimide was added at room temperature. After the addition, the reaction mixture was stirred at room temperature for 1.5 hours. After the reaction, the solvent was evaporated under reduced pressure. The resulting residue was purified by preparative medium pressure liquid chromatography using n-hexane/ethyl acetate (with a gradient of from 100:0 to 50:50) as the eluent to obtain 4.0 g of the desired product as a brown solid.
  • Melting point: 40-41° C.
  • 1H-NMR (CDCl3): δ7.61 (s, 1H), 4.40 (brs, 2H), 2.52 (s, 3H).
  • Step 2: Synthesis of 4-bromo-N,2-dimethyl-6-(trifluoromethyl)pyridin-3-amine
  • To a solution of 537 mg of 63 weight % sodium hydride (dispersed in mineral oil) in 5 ml of N,N-dimethylformamide, a solution of 3.0 g of 4-bromo-2-methyl-6-(trifluoromethyl)pyridin-3-amine in 12 ml of N,N-dimethylformamide was added under cooling with ice. After the addition, the reaction mixture was stirred at room temperature for one hour. After the stirring, 2.0 g of methyl iodide was added to the reaction mixture under cooling with ice. After the addition, the reaction mixture was stirred at room temperature for 30 minutes. After the reaction, the reaction mixture was mixed with 10 ml of water and extracted with ethyl acetate (10 ml×2). The resulting organic layer was dehydrated with saturated aqueous sodium chloride and dried over anhydrous sodium sulfate, and the solvent was evaporated under reduced pressure. The resulting residue was purified by preparative medium pressure liquid chromatography using n-hexane/ethyl acetate (with a gradient of from 100:0 to 50:50) as the eluent to obtain 2.82 g of the desired product as a yellow oil.
  • 1H-NMR (CDCl3): δ7.62 (s, 1H), 3.01 (s, 3H), 2.65 (s, 3H) (no peak of proton of NH was observed).
  • Step 3: Synthesis of N3,2-dimethyl-6-(trifluoromethyl)pyridine-3,4-diamine
  • To a solution of 1.0 g of 4-bromo-N,2-dimethyl-6-(trifluoromethyl)pyridin-3-amine, 186 mg of acetylacetone, 243 mg of copper(II) acetylacetonate and 1.81 g of cesium carbonate in 30 ml of N-methylpyrrolidone was added to an autoclave reactor. After the addition, 20 ml of 28 weight % aqueous ammonia was added to the reaction mixture at room temperature. After the addition, the reactor was closely sealed, and the reaction mixture was heated to 140° C. and stirred for one hour. After the reaction, the reaction mixture was mixed with 20 ml of water and extracted with ethyl acetate (20 ml×2). The resulting organic layer was dehydrated with saturated aqueous sodium chloride and dried over anhydrous sodium sulfate, and the solvent was evaporated under reduced pressure. The resulting residue was purified by silica gel column chromatography using n-hexane/ethyl acetate (with a gradient of from 100:0 to 0:100) as the eluent to obtain 189 mg of the desired product as a white solid.
  • 1H-NMR (CDCl3): 6.84 (s, 1H), 4.53 (brs, 2H), 2.69 (s, 3H), 2.50 (s, 3H) (no peak of proton of NH was observed).
  • Reference Example 5: Synthesis of 2-methyl-6-(perfluoroethyl)pyrimidin-4-amine Step 1: Synthesis of (Z)-ethyl 3-ethoxy-4,4,5,5,5-pentafluoropent-2-enoate
  • To a solution of 20.7 g of ethyl 4,4,5,5,5-pentafluoro-3-oxovalerate in 150 ml of acetone, 24.4 g of potassium carbonate and 15.7 g of ethyl trifluoromethanesulfonate were successively added under cooling with ice. After the addition, the reaction mixture was stirred at room temperature for 30 minutes. After the reaction, the reaction mixture was subjected to filtration through Celite, and the Celite was washed with 50 ml of acetone. The resulting filtrate and washing solution were put together, and the solvent was evaporated under reduced pressure. The resulting residue was mixed with 30 ml of water and extracted with hexane (30 ml×2). The resulting organic layer was dehydrated with saturated aqueous sodium chloride and dried over anhydrous sodium sulfate, and the solvent was evaporated under reduced pressure to obtain 20.53 g of the desired crude product as a colorless and transparent oil.
  • 1H-NMR (CDCl3): δ5.80 (s, 1H), 4.33 (q, J=7.0 Hz, 2H), 4.22 (q, J=7.0 Hz, 2H), 1.36 (t, J=7.0 Hz, 3H), 1.32 (t, J=7.0 Hz, 3H).
  • Step 2: Synthesis of 2-methyl-6-(perfluoroethyl)pyrimidin-4-ol
  • To a solution of 6.49 g of acetamidine hydrochloride in 75 ml of dimethyl sulfoxide, 23.3 g of a solution of about 20 weight % sodium ethoxide in ethanol, and 15.0 g of (Z)-ethyl 3-ethoxy-4,4,5,5,5-pentafluoropent-2-enoate were successively added at 50° C. After the addition, the reaction mixture was stirred at 50° C. for 2 hours. After the stirring, 5.84 g of a solution of about 20 weight % sodium ethoxide in ethanol was added to the reaction mixture at 50° C. After the addition, the reaction mixture was stirred at 50° C. for 2.5 hours. After the stirring, the reaction mixture was stirred at room temperature overnight. After the reaction, the reaction mixture was mixed with 50 ml of water and extracted with diethyl ether (50 ml×2). The resulting aqueous layer was mixed with concentrated hydrochloric acid to adjust the aqueous layer to have a pH of from 1 to 2, and extracted with chloroform (20 ml×2). The resulting organic layer was dried over anhydrous sodium sulfate, and the solvent was evaporated under reduced pressure to obtain 7.0 g of the desired crude product as a white solid.
  • Melting point: 135-138° C.
  • 1H-NMR (CDCl3): δ6.77 (s, 1H), 2.57 (s, 3H) (no peak of proton of OH was observed).
  • Step 3: Synthesis of 4-chloro-2-methyl-6-(perfluoroethyl)pyrimidine
  • To a solution of 8.7 g of 2-methyl-6-(perfluoroethyl)pyrimidin-4-ol in 20 ml of thionyl chloride, 30 mg of N,N-dimethylformamide was added at room temperature. After the addition, the reaction mixture was stirred under reflux with heating for one hour. After the reaction, the reaction mixture was allowed to cool to room temperature, added dropwise to ice water and extracted with diethyl ether (20 ml×2). The resulting organic layer was dehydrated with saturated aqueous sodium chloride and dried over anhydrous sodium sulfate, and the solvent was evaporated under reduced pressure to obtain 9.33 g of the desired crude product as a reddish brown oil.
  • 1H-NMR (CDCl3): δ7.54 (s, 1H), 2.82 (s, 3H).
  • Step 4: Synthesis of 2-methyl-6-(perfluoroethyl)pyrimidin-4-amine
  • To a solution of 9.33 g of the crude 4-chloro-2-methyl-6-(perfluoroethyl)pyrimidine in 20 ml of acetonitrile, 20 ml of 28 weight % aqueous ammonia was added at room temperature. After the addition, the reaction mixture was stirred at room temperature for 3 days. After the reaction, the solvent was evaporated from the reaction mixture under reduced pressure. The resulting residue was mixed with 20 ml of water and extracted with ethyl acetate (20 ml×2). The resulting organic layer was dehydrated with saturated aqueous salt solution and dried over anhydrous sodium sulfate, and the solvent was evaporated under reduced pressure to obtain 6.75 g of the desired product as a reddish brown solid.
  • Melting point: 95-105° C.
  • 1H-NMR (CDCl3): δ6.61 (s, 1H), 5.12 (brs, 2H), 2.59 (s, 3H).
  • Reference Example 6
  • The following compound was synthesized in the same manner as in Steps 1 to 4 in Reference Example 5.
  • 6-(Perfluoroethyl)pyrimidin-4-amine
  • 1H-NMR (CDCl3): δ8.70 (s, 1H), 6.79 (s, 1H), 5.22 (brs, 2H).
  • Reference Example 7: Synthesis of 4-chloro-6-(perfluoroethyl)nicotinaldehyde Step 1: Synthesis of 4-chloro-6-(perfluoroethyl)nicotinic acid
  • Under a nitrogen atmosphere, to a solution of 4.04 g of 2,2,6,6-tetramethylpiperidine in 20 ml of tetrahydrofuran, 17.9 ml of a solution of about 1.6M n-butyllithium in n-hexane was added at −78° C. After the addition, the temperature of the reaction mixture was raised to 0° C., and the reaction mixture was stirred for 10 minutes. After the stirring, the reaction mixture was cooled to −78° C., and a solution of 2.3 g of 6-(perfluoroethyl)nicotinic acid in 20 ml of tetrahydrofuran was added. After the addition, the temperature of the reaction mixture was raised to −40° C., and the reaction mixture was stirred for 1.5 hours. After the stirring, the reaction mixture was cooled to −78° C., and 4.5 g of hexachloroethane was added. After the addition, the reaction mixture was stirred at −78° C. for 1.5 hours. After the reaction, 25 ml of a saturated ammonium chloride aqueous solution was added at −78° C. After the addition, the reaction mixture was warmed to room temperature, mixed with an about 1.0M sodium hydroxide aqueous solution to adjust to have a pH of 9, and washed with diethyl ether (20 ml). The resulting aqueous layer was mixed with concentrated hydrochlorid acid to adjust the aqueous solution to have a pH of 2, and extracted with ethyl acetate (20 ml×2). The resulting organic layer was dehydrated with saturated aqueous sodium chloride and dried over anhydrous sodium sulfate, and the solvent was evaporated under reduced pressure to obtain 1.08 g of the desired 4-chloro-6-(perfluoroethyl)nicotinic acid as a brown oil.
  • 1H-NMR (CDCl3): δ9.25 (s, 1H), 7.84 (s, 1H) (no peak of proton of CO2H was observed).
  • Step 2: Synthesis of [4-chloro-6-(perfluoroethyl)pyridin-3-yl]methanol
  • To a solution of 1.0 g of 4-chloro-6-(perfluoroethyl)nicotinic acid in 10 ml of tetrahydrofuran, 8.5 ml of a solution of 0.85M borane-tetrahydrofuran complex in tetrahydrofuran was added at −50° C. After the addition, the reaction mixture was warmed to room temperature and stirred overnight. After the reaction, the reaction mixture was added dropwise to a 1M hydrochloric acid aqueous solution under cooling with ice and extracted with ethyl acetate (20 ml×2). The resulting organic layer was dehydrated with saturated aqueous sodium chloride and dried over anhydrous sodium sulfate, and the solvent was evaporated under reduced pressure to obtain 950 mg of the desired [4-chloro-6-(perfluoroethyl)pyridin-3-yl]methanol as an orange oil.
  • 1H-NMR (CDCl3): δ8.87 (s, 1H), 7.71 (s, 1H), 4.92 (s, 2H) (no peak of proton of OH was observed).
  • Step 3: Synthesis of 4-chloro-6-(perfluoroethyl)nicotinaldehyde
  • To a solution of 930 mg of [4-chloro-6-(perfluoroethyl)pyridin-3-yl]methanol in 10 ml of dichloromethane, 3 g of silicon dioxide and 1.53 g of pyridinium chlorochromate were successively added at room temperature. After the addition, the reaction mixture was stirred at room temperature for one hour. After the stirring, 500 mg of pyridinium chlorochromate was added to the reaction mixture. After the addition, the reaction mixture was stirred at room temperature for 30 minutes. After the reaction, the reaction mixture was subjected to filtration through Celite, and the Celite was washed with 100 ml of n-hexane/ethyl acetate [2:1 (volume ratio)]. The resulting filtrate and washing solution were put together, and the solvent was evaporated under reduced pressure. The resulting residue was purified by preparative medium pressure liquid chromatography using n-hexane/ethyl acetate (with a gradient of from 100:0 to 30:70) as the eluent to obtain 154 mg of the desired product as a yellow oil.
  • 1H-NMR (CDCl3): δ10.54 (s, 1H), 9.14 (s, 1H), 7.84 (s, 1H).
  • Reference Example 8
  • The following compound was synthesized in the same manner as in Steps 1 to 3 in Reference Example 7.
  • 4-Chloro-6-(trifluoromethyl)nicotinaldehyde
  • 1H-NMR (CDCl3): δ10.54 (s, 1H), 9.12 (s, 1H), 7.81 (s, 1H).
  • Reference Example 9: Synthesis of 3-nitro-5-(trifluoromethyl)picolinaldehyde
  • A solution of 930 mg of selenium dioxide and 1.46 g of 2-methyl-3-nitro-5-(trifluoromethyl)pyridine in 10 ml of 1,4-dioxane was stirred under reflux with heating for 8 hours. After the stirring, the reaction mixture was subjected to filtration through Celite, and the Celite was washed with 10 ml of 1,4-dioxane. The resulting filtrate and washing solution were put together, and the solvent was evaporated under reduced pressure, and the resulting residue was mixed with 5 ml of saturated aqueous sodium bicarbonate and extracted with ethyl acetate (10 ml×2). The resulting organic layer was dehydrated with saturated aqueous sodium chloride and dried over anhydrous sodium sulfate, and the solvent was evaporated under reduced pressure. The resulting residue was purified by preparative medium pressure liquid chromatography using n-hexane/ethyl acetate (with a gradient of from 100:0 to 50:50) as the eluent. To the residue obtained by concentration, 10 ml of toluene was added, and the solvent was evaporated under reduced pressure. Then, 10 ml of toluene was added, and the solvent was evaporated under reduced pressure to obtain 1.07 g of the desired product as a brown liquid.
  • 1H-NMR (CDCl3): δ10.32 (s, 1H), 9.25-9.20 (m, 1H), 8.53-8.49 (m, 1H).
  • Reference Example 10: Synthesis of 3-(ethylthio)-7-(trifluoromethyl)imidazo[1,2-a]pyridin-2-amine Step 1: Synthesis of tert-butyl [3-(ethylthio)-7-(trifluoromethyl)imidazo[1,2-a]pyridin-2-yl]carbamate
  • To a solution of 3.0 g of 3-(ethylthio)-7-(trifluoromethyl)imidazo[1,2-a]pyridine-2-carboxylic acid in 30 ml of 2-methyl-2-propanol, 3.14 g of triethylamine and 3.40 g of diphenylphosphoryl azide were added at room temperature. After the addition, the reaction mixture was stirred under reflux with heating for 2 hours. After the reaction, the solvent was evaporated from the reaction mixture. The resulting residue was mixed with 20 ml of water and extracted with ethyl acetate (20 ml×2). The resulting organic layer was washed with a saturated sodium hydrogen carbonate aqueous solution and dried over anhydrous sodium sulfate, and the solvent was evaporated under reduced pressure. The resulting residue was purified by preparative medium pressure liquid chromatography using n-hexane/ethyl acetate (50:50) as the eluent to obtain 2.12 g of the desired product as a pale yellow solid.
  • 1H-NMR (CDCl3): δ8.42 (d, J=7.0 Hz, 1H), 7.93-7.88 (m, 1H), 7.13-7.01 (m, 2H), 2.68 (q, J=7.4 Hz, 2H), 1.56 (s, 9H), 1.21 (t, J=7.4 Hz, 3H).
  • Step 2: Synthesis of 3-(ethylthio)-7-(trifluoromethyl)imidazo[1,2-a]pyridin-2-amine
  • To a solution of 2.0 g of tert-butyl [3-(ethylthio)-7-(trifluoromethyl)imidazo[1,2-a]pyridin-2-yl]carbamate in 10 ml of dichloromethane, 2.1 ml of trifluoroacetic acid was added under cooling with ice. After the addition, the reaction mixture was stirred at room temperature for 30 minutes. After the stirring, 10 ml of trifluoroacetic acid was added to the reaction mixture. After the addition, the reaction mixture was stirred at room temperature for 30 minutes. After the reaction, the solvent was evaporated from the reaction mixture. The resulting residue was mixed with 20 ml of water and extracted with chloroform (20 ml×2). The resulting organic layer was washed with a 1M sodium hydroxide aqueous solution and dried over anhydrous sodium sulfate, and the solvent was evaporated under reduced pressure to obtain 1.69 g of the desired product as a yellow oil.
  • 1H-NMR (CDCl3): δ8.31 (d, J=7.0 Hz, 1H), 7.63-7.58 (m, 1H), 6.98 (dd, J=7.0, 1.6 Hz, 1H), 4.41 (brs, 2H), 2.63 (q, J=7.4 Hz, 2H), 1.21 (t, J=7.4 Hz, 3H).
  • Reference Example 11: Synthesis of 3-(ethylthio)-6-(trifluoromethyl)imidazo[1,2-a]pyridine-2-carboxamide
  • To a solution of 1.34 g of 3-(ethylthio)-6-(trifluoromethyl)imidazo[1,2-a]pyridine-2-carboxylic acid in 20 ml of dichloromethane, 882 mg of oxalyl chloride and 10 mg N,N-dimethylformamide were added under cooling with ice. After the addition, the reaction mixture was stirred at room temperature for 2.5 hours. After the stirring, the solvent was evaporated from the reaction mixture under reduced pressure to obtain crude 3-(ethylthio)-6-(trifluoromethyl)imidazo[1,2-a]pyridine-2-carboxylic acid chloride. The obtained crude 3-(ethylthio)-6-(trifluoromethyl)imidazo[1,2-a]pyridine-2-carboxylic acid chloride was dissolved in 2 ml of tetrahydrofuran and added to 20 ml of 28 weight % aqueous ammonia prepared in a separate container, under cooling with ice. After the addition, the reaction mixture was stirred under cooling with ice for 30 minutes. After the addition, the reaction mixture was mixed with 10 ml of water and extracted with chloroform (10 ml×2). The resulting organic layer was dried over anhydrous sodium sulfate, and the solvent was evaporated under reduced pressure to obtain 1.8 g of the desired product as a pale yellow solid.
  • 1H-NMR (CDCl3): δ8.90 (s, 1H), 7.71 (d, J=9.4 Hz 1H), 7.47 (dd, J=9.4, 2.0 Hz, 1H), 7.38 (brs, 1H), 5.66 (brs, 1H), 3.03 (q, J=7.4 Hz, 2H), 1.21 (t, J=7.4 Hz, 3H).
  • Reference Example 12: Synthesis of 2-bromo-1-[3-methyl-6-(trifluoromethyl)-3H-imidazo[4,5-b]pyridin-2-yl]ethanone Step 1: Synthesis of (5)-1-[3-methyl-6-(trifluoromethyl)-3H-imidazo[4,5-b]pyridin-2-yl]ethanol
  • 37.7 g of N2-methyl-5-(trifluoromethyl)pyridine-2,3-diamine was dissolved in 150 ml of pyridine, and 32.8 g of (S)-(−)-2-acetoxypropionyl chloride was added at −20° C. After the addition, the reaction mixture was stirred at room temperature for 30 minutes. After the stirring, the solvent was evaporated from the reaction mixture under reduced pressure. The resulting residue was dissolved in 150 ml of ethanol, and 39.4 ml of a 10M sodium hydroxide aqueous solution was added at room temperature. After the addition, the reaction mixture was stirred under reflux with heating for 2 hours. After the stirring, 20 ml of a 10M sodium hydroxide aqueous solution was added to the reaction mixture at room temperature. After the addition, the reaction mixture was stirred under reflux with heating for 4.5 hours. After the reaction, the solvent was evaporated from the reaction mixture under reduced pressure. The resulting residue was mixed with concentrated hydrochloric acid to adjust the aqueous solution to have a pH of 4, and extracted with ethyl acetate (100 ml×2). The resulting organic layer was dehydrated with saturated aqueous sodium chloride and dried over anhydrous sodium sulfate, and the solvent was evaporated under reduced pressure to obtain 59.8 g of the desired (S)-1-[3-methyl-6-(trifluoromethyl)-3H-imidazo[4,5-b]pyridin-2-yl]ethanol as a black solid.
  • 1H-NMR (CDCl3): δ8.65 (s, 1H), 8.23 (s, 1H), 5.20 (brs, 1H), 3.97 (s, 3H), 2.99 (brs, 1H), 1.75 (d, J=6.3 Hz, 3H).
  • Step 2: Synthesis of 1-[3-methyl-6-(trifluoromethyl)-3H-imidazo[4,5-b]pyridin-2-yl]ethanone
  • A solution of 48.3 g of (S)-1-[3-methyl-6-(trifluoromethyl)-3H-imidazo[4,5-b]pyridin-2-yl]ethanol in 200 ml of acetic acid was heated to 90° C., and a solution of 14.8 g of chromium(VI) oxide in 50 ml of water was added. After the addition, the reaction mixture was stirred under reflux with heating for 1.5 hours. After the stirring, a solution of 5 g of chromium(VI) oxide in 10 ml of water was added to the reaction mixture at 90° C. After the addition, the reaction mixture was stirred under reflux with heating for 1.5 hours. After the reaction, the reaction mixture was added dropwise to 800 ml of water at room temperature. The precipitated solid was collected by filtration. The resulting solid was washed with water to obtain 35.6 g of the desired 1-[3-methyl-6-(trifluoromethyl)-3H-imidazo[4,5-b]pyridin-2-yl]ethanone as a brown solid.
  • Melting point: 106-108° C.
  • 1H-NMR (CDCl3): δ8.82 (d, J=1.5 Hz, 1H), 8.43 (d, J=1.5 Hz, 1H), 4.23 (s, 3H), 2.86 (s, 3H).
  • Step 3: Synthesis of 2-bromo-1-[3-methyl-6-(trifluoromethyl)-3H-imidazo[4,5-b]pyridin-2-yl]ethanone
  • 35.6 g of 1-[3-methyl-6-(trifluoromethyl)-3H-imidazo[4,5-b]pyridin-2-yl]ethanone was dissolved in 300 ml of toluene and a solution of about 5.1M hydrogen bromide in 150 ml of acetic acid, and 25.8 g of bromine was added under cooling with ice. After the addition, the reaction mixture was stirred at room temperature for 2 hours. After the stirring, 3.12 g of bromine was added to the reaction mixture at room temperature. After the addition, the reaction mixture was stirred at room temperature for one hour. After the stirring, 2.58 g of bromine was added to the reaction mixture at room temperature. After the addition, the reaction mixture was stirred at room temperature for 30 minutes. After the reaction, the reaction mixture was mixed with a 10M sodium hydroxide aqueous solution to have a pH of 3, and extracted with toluene (200 ml×2). The resulting organic layer was washed with a saturated sodium hydrogen sulfite aqueous solution, dehydrated with saturated aqueous sodium chloride and dried over anhydrous sodium sulfate, and the solvent was evaporated under reduced pressure. The precipitated solid was collected by filtration. The resulting solid was washed with diisopropyl ether to obtain 36.6 g of the desired 2-bromo-1-[3-methyl-6-(trifluoromethyl)-3H-imidazo[4,5-b]pyridin-2-yl]ethanone as a white solid.
  • Melting point: 90-91° C.
  • 1H-NMR (CDCl3): δ8.86 (d, J=1.8 Hz, 1H), 8.47 (d, J=1.8 Hz, 1H), 4.85 (s, 2H), 4.26 (s, 3H).
  • Reference Example 13: Synthesis of 2-bromo-1-[3-methyl-6-(trifluoromethyl)-3H-imidazo[4,5-c]pyridin-2-yl]ethanone Step 1: Synthesis of (S)-1-[3-methyl-6-(trifluoromethyl)-3H-imidazo[4,5-c]pyridin-2-yl]ethanol
  • 3.34 g of N3-methyl-6-(trifluoromethyl)pyridine-3,4-diamine was dissolved in 20 ml of pyridine, and 2.89 g of (S)-(−)-2-acetoxypropionyl chloride was added at −20° C. After the addition, the reaction mixture was stirred at room temperature for 20 minutes. After the stirring, the solvent was evaporated from the reaction mixture under reduced pressure. The resulting residue was dissolved in 20 ml of ethanol, and 3.5 ml of a 10M sodium hydroxide aqueous solution was added at room temperature. After the addition, the reaction mixture was stirred under reflux with heating for one hour. After the stirring, 1.8 ml of a 10M sodium hydroxide aqueous solution was added to the reaction mixture at room temperature. After the addition, the reaction mixture was stirred under reflux with heating for 2 hours. After the reaction, the reaction mixture was mixed with 50 ml of water and extracted with ethyl acetate (50 ml×2). The resulting organic layer was dried over anhydrous sodium sulfate, and the solvent was evaporated under reduced pressure. The resulting residue was purified by preparative medium pressure liquid chromatography using n-hexane/ethyl acetate (with a gradient of 100:0 to 50:50) as the eluent to obtain 3.0 g of the desired product as a pale pink solid.
  • Melting point: 97-100° C.
  • 1H-NMR (CDCl3): δ8.84 (s, 1H), 8.04 (d, J=0.7 Hz, 1H), 5.31-5.14 (m, 1H), 4.02 (s, 3H), 3.03 (d, J=7.2 Hz, 1H), 1.78 (d, J=6.5 Hz, 3H).
  • Step 2: Synthesis of 1-[3-methyl-6-(trifluoromethyl)-3H-imidazo[4,5-c]pyridin-2-yl]ethanone
  • A solution of 3.0 g of (S)-1-[3-methyl-6-(trifluoromethyl)-3H-imidazo[4,5-c]pyridin-2-yl]ethanol in 30 ml of acetic acid was heated to 90° C., and a solution of 1.22 g of chromium(VI) oxide in 10 ml of water was added. After the addition, the reaction mixture was stirred under reflux with heating for one hour. After the reaction, the reaction mixture was mixed with 50 ml of water and extracted with ethyl acetate (50 ml×2). The resulting organic layer was dried over anhydrous sodium sulfate, and the solvent was evaporated under reduced pressure to obtain 2.59 g of the desired 1-[3-methyl-6-(trifluoromethyl)-3H-imidazo[4,5-c]pyridin-2-yl]ethanone as a pale yellow solid.
  • Melting point: 136-140° C.
  • 1H-NMR (CDCl3): δ9.03 (s, 1H), 8.19 (d, J=0.9 Hz, 1H), 4.28 (s, 3H), 2.89 (s, 3H).
  • Step 3: Synthesis of 2-bromo-1-[3-methyl-6-(trifluoromethyl)-3H-imidazo[4,5-c]pyridin-2-yl]ethanone
  • To a solution of 2.55 g of 1-[3-methyl-6-(trifluoromethyl)-3H-imidazo[4,5-c]pyridin-2-yl]ethanone in 30 ml of dichloromethane, 1.16 g of triethylamine was added at room temperature. After the addition, 2.44 g of trimethylsilyl trifluoromethanesulfonate was added to the reaction mixture under cooling with ice. After the addition, the reaction mixture was stirred under cooling with ice for 30 minutes. After the stirring, 3.95 g of trimethylphenylammonium tribromide was added to the reaction mixture under cooling with ice. After the addition, the reaction mixture was stirred under cooling with ice for 30 minutes. After the reaction, the reaction mixture was mixed with 50 ml of water and extracted with chloroform (30 ml×2). The resulting organic layer was dried over anhydrous sodium sulfate, and the solvent was evaporated under reduced pressure. The precipitated solid was collected by filtration. The resulting solid was washed with n-hexane to obtain 2.66 g of the desired 2-bromo-1-[3-methyl-6-(trifluoromethyl)-3H-imidazo[4,5-c]pyridin-2-yl]ethanone as a white solid.
  • Melting point: 127-131° C.
  • 1H-NMR (CDCl3): δ9.07 (s, 1H), 8.21 (d, J=1.0 Hz, 1H), 4.87 (s, 2H), 4.31 (s, 3H).
  • The compounds of the present invention may be synthesized in accordance with the above Processes and Synthetic Examples. Examples of condensed heterocyclic compounds produced in the same manner as in Synthetic Examples 1 to 30 are shown in Tables 6 to 24, and examples of intermediates thereof are shown in Tables 25 to 32, however, the condensed heterocyclic compounds of the present invention and the intermediates thereof are not limited thereto.
  • In Tables, “Me” represents a methyl group, “Et” an ethyl group, and “Ph” a phenyl group. Substituents represented by Z1 to Z16 in Tables have the following structures. Further, in Tables, “*1” represents that the compound is a solid, “*2” represents that the compound is an oil, “*5” represents that the compound was decomposed when its melting point was measured, and “m.p.” represents the melting point (unit: ° C.). Further, with respect to the description of the melting point in Tables, “>” represents that the melting point of the compound is higher than the described temperature, for example, “>250” means that the compound did not melt at 250° C.
  • Figure US20210017194A1-20210121-C00697
    Figure US20210017194A1-20210121-C00698
  • TABLE 6
    Figure US20210017194A1-20210121-C00699
    No. R3 R4 A1a G1 G2 G3 G4 n m.p.
    1-1-001a CF3 H Me C—H C—CF3 C—H C—H 2 212-213
    1-1-001b CF3 H Me C—H C—CF3 C—H C—H 0 208-209
    1-1-001c CF3 H Me C—H C—CF3 C—H C—H 1 202-203
    1-1-002a CF3 H Me C—H C—H C—CF3 C—H 2 203-205
    1-1-002b CF3 H Me C—H C—H C—CF3 C—H 0 199-202
    1-1-003a CF3 H Me C—H C—Cl C—H C—H 2 217-218
    1-1-003b CF3 H Me C—H C—Cl C—H C—H 0 228-230
    1-1-003c CF3 H Me C—H C—Cl C—H C—H 1 217-219
    1-1-004a CF3 H Me C—H C—F C—H C—H 2 187-189
    1-1-004b CF3 H Me C—H C—F C—H C—H 0 190-195
    1-1-004c CF3 H Me C—H C—F C—H C—H 1 195-200
    1-1-005a CF3 H Me C—H C—I C—H C—H 2 215-218
    1-1-005b CF3 H Me C—H C—I C—H C—H 0 260-263
    1-1-005c CF3 H Me C—H C—I C—H C—H 1 239-241
    1-1-006a CF3 H Me C—H C—Br C—H C—H 2 205-207
    1-1-006b CF3 H Me C—H C—Br C—H C—H 0 233-236
    1-1-007a CF3 H Me C—H C—OMe C—H C—H 2 186-188
    1-1-007b CF3 H Me C—H C—OMe C—H C—H 0 209-211
    1-1-008a CF3 H Me C—H C—NO2 C—H C—H 2 258-262
    1-1-008b CF3 H Me C—H C—NO2 C—H C—H 0 218-221
    1-1-009a CF3 H Me C—H C—Me C—H C—H 2 162-165
    1-1-010a CF3 H Me C—H C—Z1 C—H C—H 2 *2
    1-1-011a CF3 H Me C—H C—SCF3 C—H C—H 2 208-210
    1-1-012a CF3 H Me C—H C—H C—H C—H 2 122-125
    1-1-012b CF3 H Me C—H C—H C—H C—H 0 183-184
    1-1-013a CF3 H Me C—H C—H C—Cl C—H 2 214-215
    1-1-013b CF3 H Me C—H C—H C—Cl C—H 0 198-203
    1-1-013c CF3 H Me C—H C—H C—Cl C—H 1 *1
    1-1-014a CF3 H Me C—H C—H C—F C—H 2 170-171
    1-1-014b CF3 H Me C—H C—H C—F C—H 0 210-212
    1-1-014c CF3 H Me C—H C—H C—F C—H 1 *5
    1-1-015a CF3 H Me C—H C—H C—I C—H 2 208-211
    1-1-015b CF3 H Me C—H C—H C—I C—H 0 202-205
    1-1-016a CF3 H Me C—H C—H C—Br C—H 2 205-206
    1-1-016b CF3 H Me C—H C—H C—Br C—H 0 204-206
    1-1-016c CF3 H Me C—H C—H C—Br C—H 1 *5
    1-1-017a CF3 H Me C—H C—H C—Me C—H 2 136-138
    1-1-018a CF3 H Me C—H C—H C—CN C—H 2 253-255
    1-1-019a CF3 H Me C—H C—H C—CO2H C—H 2 210-214
    1-1-020a CF3 H Me C—H C—CF3 C—H C—Cl 2 192-195
    1-1-020b CF3 H Me C—H C—CF3 C—H C—Cl 0 138-144
    1-1-021b CF3 H Me C—H C—CF3 C—H C—SEt 0 190-192
    1-1-022a CF3 H Me C—H C—CF3 C—H C—SO2Et 2 *1
    1-1-023a CF3 H Me C—H C—Br C—CF3 C—H 2 226-228
    1-1-023b CF3 H Me C—H C—Br C—CF3 C—H 0 214-215
    1-1-023c CF3 H Me C—H C—Br C—CF3 C—H 1 198-200
    1-1-024a CF3 H Me C—H C—Me C—CF3 C-H 2 247-250
    1-1-025b CF3 H Me C—Me C—H C—Me C—H 0 156-158
    1-1-025c CF3 H Me C—Me C—H C—Me C—H 1 *2
    1-1-026a I H Me C—H C—H C—CF3 C—H 2 202-205
    1-1-026b I H Me C—H C—H C—CF3 C—H 0 230-233
    1-1-027a SCF3 H Me C—H C—H C—CF3 C—H 2 220-223
    1-1-027b SCF3 H Me C—H C—H C—CF3 C—H 0 209-210
    1-1-028b Z1 H Me C—H C—H C—CF3 C—H 0 94-96
    1-1-029a CF3 H Me C—H C—CF3 N C—H 2 234-226
    1-1-029b CF3 H Me C—H C—CF3 N C—H 0 220-222
    1-1-030a H CF3 Me C—H C—H C—CF3 C—H 2 217-219
    1-1-030b H CF3 Me C—H C—H C—CF3 C—H 0 163-165
    1-1-030c H CF3 Me C—H C—H C—CF3 C—H 1 190-200
    1-1-031b H CF3 H C—H C—H C—CF3 C—H 0 *5
    1-1-032a CF3 H Et C—H C—H C—CF3 C—H 2 215-217
    1-1-032b CF3 H Et C—H C—H C—CF3 C—H 0 199-202
    1-1-033a CF3 H Me C—H C—H C—CO2Me C—H 2 199-202
    1-1-034a CF3 H Me C—H C—H C—CO2Et C—H 2 192-194
    1-1-035a CF3 H Me C—H C—H C—CONMe2 C—H 2 155-157
    1-1-036a CF3 H Me C—H C—SMe C—CF3 C—H 2 192-202
    1-1-037a CF3 H Me C—H C—Z1 C—CF3 C—H 2 77-79
    1-1-038a CF3 H Me C—H C—SO2Me C—CF3 C—H 2 *1
    1-1-039a CF3 H Me C—H C—SOMe C—CF3 C-H 2 220-223
    1-1-040a CF3 H Me C—CF3 C—H C—H C—H 2 196-200
    1-1-040b CF3 H Me C—CF3 C—H C—H C—H 0 131-133
    1-1-040c CF3 H Me C—CF3 C—H C—H C—H 1 175-178
    1-1-041a CF3 H Me C—H C—H C—Z1 C—H 2 75-77
    1-1-042a CF3 H Me C—H C—H C—SMe C—H 2 194-196
    1-1-043a CF3 H Me C—H C—H C—SOMe C—H 2 226-228
    1-1-044a CF3 H Me C—H C—H C—SO2Me C—H 2 290-292
    1-1-045a CF3 H Me C—H C—CF2CF3 C—H C—H 2 208-210
    1-1-045b CF3 H Me C—H C—CF2CF3 C—H C—H 0 165-167
    1-1-046a CF3 H Me C—H C—Cl C—Cl C—H 2 224-225
    1-1-047a CF3 H Me C—H C—I C—Cl C—H 2 268-270
    1-1-047b CF3 H Me C—H C—I C—Cl C—H 0 239-243
    1-1-048a CF3 H Me C—H C—I C—Me C—H 2 231-234
    1-1-048b CF3 H Me C—H C—I C—Me C—H 0 *1
    1-1-049a CF3 H Me C—H C—I C—CF3 C—H 2 240-243
    1-1-049b CF3 H Me C—H C—I C—CF3 C—H 0 222-225
    1-1-050a CF3 H Me C—H C—I C—CN C—H 2 290-297
    1-1-050b CF3 H Me C—H C—I C—CN C—H 0 284-290
    1-1-051a CF3 H Me C—H C—I C—F C—H 2 *1
    1-1-051b CF3 H Me C—H C—I C—F C—H 0 *1
    1-1-052a CF3 H Me C—H C—I C—OMe C—H 2 251-253
    1-1-052b CF3 H Me C—H C—I C—OMe C—H 0 240-244
    1-1-053a CF3 H Me C—H C—I C—H N 2 292-295
    1-1-053b CF3 H Me C—H C—I C—H N 0 275-278
    1-1-054a CF3 H Me C—H C—CF3 C—H N 2 244-248
    1-1-054b CF3 H Me C—H C—CF3 C—H N 0 220-222
    1-1-055a CF3 H Me C—H N C—CF3 C—H 2 238-240
    1-1-055b CF3 H Me C—H N C—CF3 C—H 0 198-200
    1-1-056a CF3 H Me C—H C—I N C—H 2 205-210
    1-1-057a CF3 H Me N C—H C—CF3 C—H 2 *2
    1-1-057b CF3 H Me N C—H C—CF3 C—H 0 *2
    1-1-057c CF3 H Me N C—H C—CF3 C—H 1 *2
    1-1-058a CF3 H Me C—H C—Cl C—H C—Me 2 198-200
    1-1-058b CF3 H Me C—H C—Cl C—H C—Me 0 199-202
    1-1-059a CF3 H Me C—H C—Cl C—H C—Cl 2 220-224
    1-1-059b CF3 H Me C—H C—Cl C—H C—Cl 0 222-225
    1-1-060a CF3 H Me C—H C—F C—H C—F 2 190-192
    1-1-060b CF3 H Me C—H C—F C—H C—F 0 181-185
    1-1-061a CF3 H Me C—H C—I C—H C—I 2 277-279
    1-1-061b CF3 H Me C—H C—I C—H C—I 0 267-270
    1-1-062a CF3 H Me C—H C—I C—H C—Cl 2 240-243
    1-1-062b CF3 H Me C—H C—I C—H C—Cl 0 248-251
    1-1-063a CF3 H Me C—H C—Br C—H C—F 2 229-231
    1-1-063b CF3 H Me C—H C—Br C—H C—F 0 202-205
    1-1-064a CF3 H Me C—H C—I C—H C—OMe 2 239-241
    1-1-065a CF3 H Me C—H C—I C—H C—OEt 2 220-221
    1-1-066a CF3 H Me C—H C—I C—H C—CF3 2 271-273
    1-1-066b CF3 H Me C—H C—I C—H C—CF3 0 222-225
    1-1-067a CF3 H Me C—H C—I C—H C—CN 2 253-256
    1-1-067b CF3 H Me C—H C—I C—H C—CN 0 298-300
    1-1-068a CF3 H Me C—H C—I C—H C—NMe2 2 202-203
    1-1-069a CF3 H Me C—H C—Cl C—H C—CF3 2 218-220
    1-1-069b CF3 H Me C—H C—Cl C—H C—CF3 0 201-203
    1-1-070a CF3 H Me C—H C—CF3 C—H C—F 2 195-196
    1-1-070b CF3 H Me C—H C—CF3 C—H C—F 0 169-171
    1-1-071a CF3 H Me C—H C—CF3 C—H C—I 2 240-243
    1-1-071b CF3 H Me C—H C—CF3 C—H C—I 0 227-229
    1-1-072a CF3 H Me C—H C—I C—H C—Me 2 204-206
    1-1-072b CF3 H Me C—H C—I C—H C—Me 0 214-216
    1-1-072c CF3 H Me C—H C—I C—H C—Me 1 *5
    1-1-073a CF3 H Me C—H C—Me C—H C—Cl 2 233-236
    1-1-073b CF3 H Me C—H C—Me C—H C—Cl 0 213-218
    1-1-074a CF3 H Me C—H C—I C—H C—F 2 222-226
    1-1-074b CF3 H Me C—H C—I C—H C—F 0 232-236
    1-1-075a CF3 H Me C—H C—SMe C—H C—SMe 2 205-214
    1-1-076a CF3 H Me C—H C—CF3 C—H C—Br 2 219-220
    1-1-077a CF3 H Me C—H C—H C—H C—CF3 2 199-202
    1-1-077b CF3 H Me C—H C—H C—H C—CF3 0 195-197
    1-1-078a CF3 H Me C—H C—Cl C—Cl C—Cl 2 *1
    1-1-078b CF3 H Me C—H C—Cl C—Cl C—Cl 0 *1
    1-1-079a CF3 H Me C—H C—Ph C—H C—H 2 220-221
    1-1-080a CF3 H Me C—H C—Z2 C—H C—H 2 235-238
    1-1-081a CF3 H Me C—H C—Z3 C—H C—H 2 204-207
    1-1-082a CF3 H Me C—H C—Z4 C—H C—H 2 227-229
    1-1-083a CF3 H Me C—H C—Z5 C—H C—H 2 187-189
    1-1-084a CF3 H Me C—H C—Z6 C—H C—H 2 217-220
    1-1-085a CF3 H Me C—H C—Z7 C—H C—H 2 213-215
    1-1-086a CF3 H Me C—H C—Z8 C—H C—H 2 224-228
    1-1-087a CF3 H Me C—H C—Z9 C—H C—H 2 231-233
    1-1-088a CF3 H Me C—H C—Z10 C—H C—H 2 213-214
    1-1-089a CF3 H Me C—H C—Z11 C—H C—H 2 175-178
    1-1-090a CF3 H Me C—H C—Z12 C—H C—H 2 201-204
    1-1-091a CF3 H Me C—H C—Z13 C—H C—H 2 197-200
    1-1-092a Cl H Me C—H C—CF3 C—H C—H 2 181-183
    1-1-092b Cl H Me C—H C—CF3 C—H C—H 0 224-228
    1-1-093a CF2CF3 H Me C—H C—Cl C—H C—H 2 185-187
    1-1-093b CF2CF3 H Me C—H C—Cl C—H C—H 0 169-171
    1-1-094a CF2CF3 H Me C—H C—I C—H C—H 2 207-208
    1-1-094b CF2CF3 H Me C—H C—I C—H C—H 0 225-230
    1-1-094c CF2CF3 H Me C—H C—I C—H C—H 1 220-223
    1-1-095a CF3 H Me C—H C—SMe C—H C—H 2 198-200
    1-1-096a CF3 H Me C—H C—SOMe C—H C—H 2 230-232
    1-1-097a CF3 H Me C—H C—SO2Me C—H C—H 2 225-230
    1-1-098a CF3 H Me C—H C—SCH2CF3 C—H C—H 2 229-233
    1-1-099a CF2CF3 H Me C—H C—SMe C—H C—H 2 175-181
    1-1-100a CF3 H Me C—H C—Z14 C—H C—H 2 215-216
    1-1-101a CF3 H Me C—H C—H C—NO2 C—H 2 230-232
    1-1-101b CF3 H Me C—H C—H C—NO2 C—H 0 231-233
    1-1-102a H H Me C—H C—H C—CF3 C—H 2 180-183
    1-1-102b H H Me C—H C—H C—CF3 C—H 0 182-184
    1-1-103a CF2CF3 H Me C—H C—H C—CF3 C—H 2 229-239
    1-1-103b CF2CF3 H Me C—H C—H C—CF3 C—H 0 186-188
    1-1-104a CF3 H Me C—H C—Z15 C—CF3 C—H 2 *5
    1-1-105a CF3 H Me C—H C—CF3 C—H C—CN 2 238-241
    1-1-105a CF3 H Me C—H C—CF3 C—H C—CN 0 187-190
    1-1-105a CF3 H Me C—H C—CF3 C—H C—CN 1 152-155
    1-1-106a CF3 H Me C—H C—H C—CHF2 C—H 2 164-165
    1-1-106b CF3 H Me C—H C—H C—CHF2 C—H 0 191-193
    1-1-106c CF3 H Me C—H C—H C—CHF2 C—H 1 191-194
    1-1-107a CF3 H Me C—H C—NH2 C—H C—H 2 *2
    1-1-108a CF3 H Me C—H C—Z16 C—H C—H 2 *2
    1-1-109a CF3 H Me C—H C—Br C—F C—H 2 240-242
    1-1-109b CF3 H Me C—H C—Br C—F C—H 0 250-253
    1-1-110a CF3 H Me C—H C—Br C—Cl C—H 2 238-242
    1-1-110c CF3 H Me C—H C—Br C—Cl C—H 1 298-300
    1-1-111a CF3 H Me C—H C—Br C—CN C—H 2 255-268
    1-1-111b CF3 H Me C—H C—Br C—CN C—H 0 246-248
    1-1-112a CF3 H Me C—H C—Br C—H C—Cl 2 220-221
    1-1-112b CF3 H Me C—H C—Br C—H C—Cl 0 223-226
    1-1-113a CF3 H Me C—H C—F C—H C—Cl 2 171-175
    1-1-113b CF3 H Me C—H C—F C—H C—Cl 0 204-208
    1-1-114a CF3 H Me C—H C—Cl C—I C—H 2 238-241
    1-1-114b CF3 H Me C—H C—Cl C—I C—H 0 *1
    1-1-115a CF3 H Me C—H C—Cl C—Br C—H 2 220-224
    1-1-115b CF3 H Me C—H C—Cl C—Br C—H 0 *1
    1-1-116a CF3 H Me C—H C—Cl C—SMe C—H 2 248-251
    1-1-117a CF3 H Me C—H C—Cl C—SOMe C—H 2 254-256
    1-1-118a CF3 H Me C—H C—Cl C—H C—Br 2 219-223
    1-1-118b CF3 H Me C—H C—Cl C—H C—Br 0 233-235
    1-1-118c CF3 H Me C—H C—Cl C—H C—Br 1 *5
    1-1-119b CF3 H Me C—H C—Cl C—Me C—Cl 0 230-232
    1-1-119c CF3 H Me C—H C—Cl C—Me C—Cl 1 *5
    1-1-120c CF3 H Me C—H C—H N C—H 1 *5
    1-1-121a CF3 H Me C—H C—F C—I C—H 2 243-245
    1-1-122a SOCF3 H Me C—H C—H C—CF3 C—H 2 218-219
    1-1-123a SO2CF3 H Me C—H C—H C—CF3 C—H 2 241-243
  • TABLE 7
    Figure US20210017194A1-20210121-C00700
    No. R3 A5 G1 G2 G3 G4 n m.p.
    1-2-001a SO2CF3 C—H C—H C—CF3 C—H C—H 2 *1
    1-2-002a SOCF3 C—H C—H C—CF3 C—H C—H 2 *1
    1-2-003b SCF3 C—H C—H C—CF3 C—H C—H 0 *1
    1-2-004a CF3 N C—H C—H C—CF3 C—H 2 244-246
    1-2-004b CF3 N C—H C—H C—CF3 C—H 0 159-161
    1-2-004c CF3 N C—H C—H C—CF3 C—H 1 175-177
    1-2-005a SCF3 C—H C—H C—H C—CF3 C—H 2 217-219
    1-2-006a SO2CF3 C—H C—H C—H C—CF3 C—H 2 198-199
  • TABLE 8
    Figure US20210017194A1-20210121-C00701
    No. R3 R5 R6 G1 G2 G3 G4 n m.p.
    1-3-001a CF3 H H C—H C—H C—CF3 C—H 2 235-
    237
    1-3-002a CF3 Me H C—H C—H C—CF3 C—H 2 218-
    223
    1-3-003a CF2CF3 Me H C—H C—H C—CF3 C—H 2 218-
    222
    1-3-004a CF2CF3 H H C—H C—H C—CF3 C—H 2 228-
    232
    1-3-005a CF3 H H C—H C—CF3 C—H C—H 2 165-
    168
    1-3-006a CF3 Me H C—H C—CF3 C—H C—H 2 207-
    213
    1-3-007a CF2CF3 Me H C—H C—CF3 C—H C—H 2 224-
    226
    1-3-008a CF2CF3 H H C—H C—CF3 C—H C—H 2 233-
    239
    1-3-009a CF2CF3 H I C—H C—CF3 C—H C—H 2 196-
    198
    1-3-010a CF2CF3 H Br C—H C—CF3 C—H C—H 2 200-
    205
    1-3-011a CF2CF3 H Me C—H C—CF3 C—H C—H 2 223-
    225
    1-3-012a CF3 H H C—H C—I C—H C—H 2 *1
    1-3-013a CF2CF3 H I C—H C—H C—CF3 C—H 2 254-
    258
    1-3-014a CF2CF3 H Me C—H C—H C—CF3 C—H 2 277-
    279
  • TABLE 9
    Figure US20210017194A1-20210121-C00702
    No. R3 G1 G2 G3 G4 n m.p.
    1-4-001a CF3 C—H C—H C—CF3 C—H 2 214-218
    1-4-002a CF3 C—H C—CF3 C—H C—H 2 235-238
    1-4-003a CF3 C—H C—I C—H C—H 2 253-258
    1-4-003b CF3 C—H C—I C—H C—H 0 220-225
  • TABLE 10
    Figure US20210017194A1-20210121-C00703
    No. R3 R4 G1 G2 G3 G4 n m.p.
    1-5-001a CF3 H C—H C—H C—CF3 C—H 2 142-144
    1-5-002a CF3 H C—H C—CF3 C—H C—H 2 245-248
    1-5-003a H CF3 C—H C—H C—CF3 C—H 2 175-177
    1-5-004a H CF3 C—H C—CF3 C—H C—H 2 138-143
  • TABLE 11
    Figure US20210017194A1-20210121-C00704
    No. R4 G1 G2 G3 G4 n m.p.
    1-6-001a CF3 C—H C—H C—CF3 C—H 2 200-202
    1-6-002a CF3 C—H C—CF3 C—H C—H 2 266-270
  • TABLE 12
    Figure US20210017194A1-20210121-C00705
    No. R3 R4 A1a G1 G2 G3 G4 n m.p.
    1-7-001a CF3 H Me C—H C—H C—CF3 C—H 2 190-200
    1-7-001b CF3 H Me C—H C—H C—CF3 C—H 0 164-166
  • TABLE 13
    Figure US20210017194A1-20210121-C00706
    No. R3 R5 A1a G1 G2 G3 G4 n m.p.
    1-8-001b CF3 H H C—H C—CF3 C—H C—H 0 233-
    235
    1-8-002a CF3 H Me C—H C—CF3 C—H C—H 2 253-
    256
    1-8-002b CF3 H Me C—H C—CF3 C—H C—H 0 226-
    228
    1-8-003a CF3 Me Me C—H C—CF3 C—H C—H 2 200-
    205
    1-8-003b CF3 Me Me C—H C—CF3 C—H C—H 0 169-
    171
    1-8-004b CF3 H H C—H C—H C—CF3 C—H 0 96-
    98
    1-8-005a CF3 H Me C—H C—H C—CF3 C—H 2 245-
    247
    1-8-005b CF3 H Me C—H C—H C—CF3 C—H 0 217-
    219
    1-8-006a CF3 H Me C—H C—H C—Cl C—H 2 217-
    219
    1-8-006b CF3 H Me C—H C—H C—Cl C—H 0 215-
    217
    1-8-007a CF3 H Me C—H C—I C—H C—H 2 *1
    1-8-007b CF3 H Me C—H C—I C—H C—H 0 280-
    282
    1-8-008a CF3 H Me C—H C—I C—H C—F 2 294-
    298
    1-8-008b CF3 H Me C—H C—I C—H C—F 0 *1
    1-8-009a CF3 H Me C—H C—I C—H C—OEt 2 257-
    259
    1-8-010a CF3 H Me C—H C—H C—I C—H 2 235-
    237
    1-8-011a CF3 H Me C—H C—Br C—H C—F 2 266-
    268
    1-8-012b CF3 H H C—H C—H C—Cl C—H 0 *1
    1-8-013a CF3 H Me C—H C—Br C—H C—H 2 270-
    272
    1-8-013b CF3 H Me C—H C—Br C—H C—H 0 240-
    242
    1-8-013c CF3 H Me C—H C—Br C—H C—H 1 238-
    240
    1-8-014a CF3 H Me C—H C—I C—CN C—H 2 280-
    284
    1-8-014b CF3 H Me C—H C—I C—CN C—H 0 248-
    253
    1-8-015a CF3 H Me C—H C—I C—F C—H 2 294-
    297
    1-8-015b CF3 H Me C—H C—I C—F C—H 0 259-
    263
    1-8-016a CF3 H Me C—H C—Cl C—H C—H 2 239-
    241
    1-8-016b CF3 H Me C—H C—Cl C—H C—H 0 238-
    242
  • TABLE 14
    Figure US20210017194A1-20210121-C00707
    No. R2 R4 A1a G1 G2 G3 G4 n m.p.
    1-9-001a H CF3 Me C—H C—CF3 C—H C—H 2 269-271
    1-9-001b H CF3 Me C—H C—CF3 C—H C—H 0 230-232
    1-9-002a H CF3 Me C—H C—H C—CF3 C—H 2 185-187
    1-9-002b H CF3 Me C—H C—H C—CF3 C—H 0 175-177
    1-9-003a H CF3 Me C—H C—H C—Cl C—H 2 200-202
    1-9-003b H CF3 Me C—H C—H C—Cl C—H 0 187-188
  • TABLE 15
    Figure US20210017194A1-20210121-C00708
    No. R3 A5 G1 G2 G3 G4 n m.p.
    1-10-001a CF3 C—H C—H C—H C—CF3 C—H 2 206-209
    1-10-001b CF3 C—H C—H C—H C—CF3 C—H 0 126-130
    1-10-001c CF3 C—H C—H C—H C—CF3 C—H 1 184-188
    1-10-002a CF3 N C—H C—H C—CF3 C—H 2 245-247
    1-10-002b CF3 N C—H C—H C—CF3 C—H 0 161-163
    I-10-002c CF3 N C—H C—H C—CF3 C—H 1 *1
    1-10-003a CF3 N C—H C—I C—H C—H 2 260-265
    1-10-003b CF3 N C—H C—I C—H C—H 0 249-251
  • TABLE 16
    Figure US20210017194A1-20210121-C00709
    No. R3 G1 G2 G3 G4 n m.p.
    1-11-001a CF3 C—H C—H C—CF3 C—H 2 230-233
    1-11-001b CF3 C—H C—H C—CF3 C—H 0 183-185
    1-11-001c CF3 C—H C—H C—CF3 C—H 1 189-192
    1-11-002a CF3 C—H C—H C—I C—H 2 231-233
    1-11-003a CF3 C—H C—I C—H C—H 2 276-283
    1-11-003b CF3 C—H C—I C—H C—H 0 *5
    1-11-004a CF3 C—H C—CF3 C—H C—H 2 225-227
    1-11-004b CF3 C—H C—CF3 C—H C—H 0 185-187
    1-11-004c CF3 C—H C—CF3 C—H C—H 1 195-198
    1-11-005a CF3 C—H C—Br C—H C—F 2 254-256
    1-11-005b CF3 C—H C—Br C—H C—F 0 199-201
    1-11-006a CF3 C—H C—I C—H C—F 2 283-286
    1-11-006b CF3 C—H C—I C—H C—F 0 258-260
    1-11-007a CF3 C—H C—Br C—H C—H 2 250-255
    1-11-007b CF3 C—H C—Br C—H C—H 0 249-251
    1-11-007c CF3 C—H C—Br C—H C—H 1 198-202
  • TABLE 17
    Figure US20210017194A1-20210121-C00710
    No. R7 A8 G1 G2 G3 G4 n m.p.
    1-12-001a CF3 C—H C—H C—CF3 C—H C—H 2 219-
    220
    1-12-002a CF2CF3 C—H C—H C—CF3 C—H C—H 2 188-
    194
    1-12-003a CF2CF3 C—Me C—H C—CF3 C—H C—H 2 182-
    186
    1-12-004a CF3 C—H C—H C—H C—CF3 C—H 2 198-
    200
    1-12-005a CF2CF3 C—Me C—H C—H C—CF3 C—H 2 233-
    236
    1-12-006a CF3 N C—H C—CF3 C—H C—H 2 204-
    207
    1-12-007a CF2CF3 N C—H C—CF3 C—H C—H 2 194-
    196
    1-12-008a CF3 N C—H C—H C—CF3 C—H 2 153-
    155
    1-12-009a CF3 N C—H C—I C—H C—H 2 *1
  • TABLE 18
    Figure US20210017194A1-20210121-C00711
    (1-A-M)
    No. R3 A5 G1 G2 G3 G4 n m.p.
    1-13-001a CF3 N C—H C—H C—CF3 C—H 2 243-245
    1-13-001b CF3 N C—H C—H C—CF3 C—H 0 150-160
  • TABLE 19
    Figure US20210017194A1-20210121-C00712
    (1-A-N)
    No. R3 R4 A1a G1 G2 G3 G4 n m.p.
    1-14-001a CF3 H Me C—H C—H C—CF3 C—H 2 *5
  • TABLE 20
    Figure US20210017194A1-20210121-C00713
    (1-A-O)
    No. R2 R3 R4 R5 A1a Y2 Y3 n m.p.
    1-15-001b H CF3 H Br H H CF3 0 139-145
    1-15-002a Br H CF3 H Me H CF3 2 236-239
    1-15-002b Br H CF3 H Me H CF3 0 205-208
    1-15-003a H CF3 H Br Me H CF3 2 206-209
  • TABLE 21
    Figure US20210017194A1-20210121-C00714
    (1-A-P)
    No. R3 A1a G1 G2 G3 G4 n m.p.
    1-16-001a CF3 Me C—H C—CF3 C—H C—H 2 274-276
    1-16-001b CF3 Me C—H C—CF3 C—H C—H 0 240-242
  • TABLE 22
    Figure US20210017194A1-20210121-C00715
    (1-A-Q)
    No. R3 R4 R6 G1 G2 G3 G4 n m.p.
    1-17-001a H CF3 Br C—H C—I C—H C—H 2 255-260
  • TABLE 23
    Figure US20210017194A1-20210121-C00716
    (1-B-A)
    No. R3 A1a G5 Y6 n m.p.
    2-1-001a CF3 Me C—H CF3 2 249-251
    2-1-001b CF3 Me C—H CF3 0 200-203
    2-1-002a CF3 Me N CF3 2 231-234
    2-1-002b CF3 Me N CF3 0 *1
  • TABLE 24
    (1-C-A)
    Figure US20210017194A1-20210121-C00717
    No. R3 A1a T1 G1 G2 G3 G4 n m.p.
    3-1- CF3 Me N—Me C—H C—CF3 C—H C—H 2 143-146
    001a
    3-1- CF3 Me N—Me C—H C—CF3 C—H C—H 0 153-155
    001b
    3-1- CF3 Me N—Me C—H C—CF3 C—H C—H 1 123-126
    001c
    3-1- CF3 Me S C—H C—CF3 C—H C—H 2 70-75
    002a
    3-1- CF3 Me S C—H C—CF3 C—H C—H 0 120-122
    002b
    3-1- CF3 Me S C—H C—CF3 C—H C—H 1 195-197
    002c
  • TABLE 25
    Figure US20210017194A1-20210121-C00718
    No. J1 G1 G2 G3 G4 n m.p.
    i-1-001 Et C—H C—CF3 C—H C—H 0 76-78
    i-1-002 H C—H C—CF3 C—H C—H 0 200-201
    i-1-003 Et C—H C—H C—CF3 C—H 0 50-52
    i-1-004 H C—H C—H C—CF3 C—H 0 163-171
    i-1-005 Et C—H C—Cl C—H C—H 0 63-64
    i-1-006 H C—H C—Cl C—H C—H 0 178-170
    i-1-007 Et C—H C—F C—H C—H 0 30-31
    i-1-008 H C—H C—F C—H C—H 0 165-168
    i-1-009 Et C—H C—I C—H C—H 0 110-112
    i-1-010 H C—H C—I C—H C—H 0 214-215
    i-1-011 H C—H C—Br C—H C—H 0 170-173
    i-1-012 Et C—H C—OMe C—H C—H 0 *2
    i-1-013 H C—H C—OMe C—H C—H 0 180-182
    i-1-014 Et C—H C—NO2 C—H C—H 0 95-97
    i-1-015 H C—H C—NO2 C—H C—H 0 188-190
    i-1-016 Et C—H C—H C—Cl C—H 0 70-71
    i-1-017 H C—H C—H C—Cl C—H 0 210-212
    i-1-018 Et C—H C—H C—F C—H 0 74-76
    i-1-019 H C—H C—H C—F C—H 0 243-244
    i-1-020 Et C—H C—H C—I C—H 0 *2
    i-1-021 H C—H C—H C—I C—H 0 175-178
    i-1-022 H C—H C—H C—Br C—H 0 150-152
    i-1-023 Et C—H C—CF3 C—H C—Cl 0 138-140
    i-1-024 H C—H C—I C—Cl C—H 0 212-220
    i-1-025 Et C—H C—I C—H C—Cl 0 *2
    i-1-026 Et C—H C—I C—H C—F 0 173-175
    i-1-027 H C—H C—I C—H C—F 0 189-190
    i-1-028 H C—H C—CF3 N C—H 0 175-178
  • TABLE 26
    Figure US20210017194A1-20210121-C00719
    No. J1 G5 Y6 n m.p.
    i-2-001 Et C—H CF3 0 41-43
    i-2-002 H C—H CF3 0 176-178
  • TABLE 27
    Figure US20210017194A1-20210121-C00720
    No. R3 J2 G1 G2 G3 G4 m.p.
    i-3- CF3 H C—H C—Br C—CF3 C—H 220-225
    001
    i-3- CF3 H C—Me C—H C—Me C—H 219-221
    002
    i-3- CF3 H C—CF3 C—H C—H C—H 180-183
    003
    i-3- CF3 H C—H C—CF2CF3 C—H C—H 208-210
    004
    i-3- CF3 H C—H C—Cl C—Cl C—H 245-248
    005
    i-3- CF3 I C—H C—Cl C—Cl C—H *5
    006
    i-3- CF3 H C—H C—I C—Me C—H >250
    007
    i-3- CF3 Cl C—H C—I C—Me C—H >250
    008
    i-3- CF3 H C—H C—I C—CF3 C—H 180-184
    009
    i-3- CF3 H C—H C—I C—CN C—H 284-285
    010
    i-3- CF3 H C—H C—I C—F C—H >250
    011
    i-3- CF3 H C—H C—I C—OMe C—H >300
    012
    i-3- CF3 H C—H C—Cl C—H C—Me 237-239
    013
    i-3- CF3 H C—H C—Cl C—H C—Cl 265-266
    014
    i-3- CF3 H C—H C—F C—H C—F >250
    015
    i-3- CF3 Cl C—H C—F C—H C—F 239-242
    016
    i-3- CF3 H C—H C—I C—H C—I >300
    017
    i-3- CF3 H C—H C—Br C—H C—F >300
    018
    i-3- CF3 Cl C—H C—Br C—H C—F 244-246
    019
    i-3- CF3 H C—H C—I C—H C—CN 284-285
    020
    i-3- CF3 H C—H C—Cl C—H C—CF3 252-257
    021
    i-3- CF3 H C—H C—CF3 C—H C—F 288-289
    022
    i-3- CF3 Cl C—H C—CF3 C—H C—F 255-256
    023
    i-3- CF3 H C—H C—CF3 C—H C—I >250
    024
    i-3- CF3 H C—H C—I C—H C—Me 257-260
    025
    i-3- CF3 H C—H C—Me C—H C—Cl >250
    026
    i-3- CF3 Cl C—H C—Me C—H C—Cl *5
    027
    i-3- CF3 H C—H C—I C—H C—F >250
    028
    i-3- CF3 H C—H C—H C—H C—CF3 198-201
    029
    i-3- CF3 H C—H C—Cl C—Cl C—Cl *5
    030
    i-3- CF3 Cl C—H C—Cl C—Cl C—Cl >250
    031
    i-3- CF3 H C—H C—H C—NO2 C—H 150-151
    032
    i-3- CF3 H C—H C—I C—H N 280-285
    033
    i-3- CF3 Cl C—H C—I C—H N 250-255
    034
    i-3- CF3 H C—H C—CF3 C—H N 283-285
    035
    i-3- CF3 I C—H C—CF3 C—H N 260-265
    036
    i-3- CF3 H C—H N C—CF3 C—H 257-260
    037
    i-3- CF3 Br C—H N C—CF3 C—H 254-259
    038
    i-3- CF3 H C—H C—I N C—H 256-259
    039
  • TABLE 28
    Figure US20210017194A1-20210121-C00721
    No. R3 J3 T1 G1 G2 G3 G4 m.p.
    i-4-001 CF3 H N—Me C—H C—CF3 C—H C—H 200-202
    i-4-002 CF3 I N—Me C—H C—CF3 C—H C—H 165-167
    i-4-003 CF3 H S C—H C—CF3 C—H C—H 191-193
    i-4-004 CF3 Cl S C—H C—CF3 C—H C—H 158-160
  • TABLE 29
    Figure US20210017194A1-20210121-C00722
    No. R3 A1a A4 A5 Y1 Y2 Y3 Y4 n m.p.
    i-5-001 CF3 Me C—H N H I H Cl 0 208-217
    i-5-002 CF3 Me C—H N H I H OEt 2 230-239
    i-5-003 CF3 Me C—H N H H CF3 H 0 135-140
    i-5-004 I Me C—H N H H CF3 H 0 194-195
    i-5-005 CF3 Me C—H N CF3 H H H 0 *2
    i-5-006 CF3 Me C—H N H I H H 0 90-92
    i-5-007 CF3 Me C—H N H I Cl H 0 203-205
    i-5-008 H Me C—H N H H CF3 H 0 125-127
    i-5-009 CF3 H C—H C—Br H H CF3 H 0 70-72
    i-5-010 Cl Me C—H N H CF3 H H 0 75-80
  • TABLE 30
    Figure US20210017194A1-20210121-C00723
    No. J4 G1 G2 G3 G4 n m. p.
    i-6-001 H C—H C—H C—CF3 C—H 0 60-64
    i-6-002 H C—H C—H C—CF3 C—H 2 135-138
    i-6-003 Br C—H C—H C—CF3 C—H 2 122-123
    i-6-004 H C—H C—CF3 C—H C—H 0 73-75
    i-6-005 H C—H C—CF3 C—H C—H 2 125-127
    i-6-006 Br C—H C—CF3 C—H C—H 2 83-85
    i-6-007 H C—H C—I C—H C—H 0 147-149
    i-6-008 H C—H C—I C—H C—H 2 110-133
    i-6-009 Br C—H C—I C—H C—H 2 162-164
  • TABLE 31
    Figure US20210017194A1-20210121-C00724
    No. G1 G2 G3 G4 n m.p.
    i-7-001 C—H C—H C—CF3 C—H 0 *2
    i-7-002 C—H C—I C—H C—H 0 123-129
    i-7-003 C—H C—H C—I C—H 0 *2
    i-7-004 C—H C—CF3 C—H C—H 0 *2
    i-7-005 C—H C—Br C—H C—F 0 *2
    i-7-006 C—H C—I C—H C—F 0 150-153
    i-7-007 C—H C—Br C—H C—H 0 88-92
  • TABLE 32
    Figure US20210017194A1-20210121-C00725
    No. R3 A4 A5 J5 J6 m.p.
    i-8-001 CF3 C—H N H H 106-108
    i-8-002 CF3 C—H N Br H 90-91
    i-8-003 CF3 C—H N SEt H 67-69
    i-8-004 CF3 C—H N SEt Br *2
    i-8-005 CF3 N C—H H H 136-140
    i-8-006 CF3 N C—H Br H 127-131
    i-8-007 CF3 N C—H SEt H 90-93
    i-8-008 CF3 N C—H SEt Er *2
  • 1H-NMR data of the compounds of the present invention and intermediates thereof are shown in Table 33. The proton nuclear magnetic resonance chemical shift values were measured by using Me4Si (tetramethylsilane) as a standard substance in deuterated chloroform solvent at 300 MHz (ECX300 or ECP300, manufactured by JEOL Ltd.).
  • Reference symbols in the proton nuclear magnetic resonance chemical shift values have the following meanings.
  • s: Singlet, brs: broad singlet, d: doublet, dd: double doublet, t: triplet, q: quartet, m: multiplet.
  • TABLE 33
    No. 1H NMR (CDCl3, Me4Si, 300 MHz).
    1-1-001a δ 9.68-9.63 (m, 1H), 8.76 (s, 1H), 8.35 (s, 1H), 7.95 (d, J = 9.5 Hz, 1H),
    7.71 (d, J = 9.5 Hz, 1H), 4.17 (s, 3H), 4.12 (q, J = 7.2 Hz, 2H), 1.26 (t, J = 2 Hz, 3H).
    1-1-001b δ 9.05-8.95 (m, 1H), 8.72 (s, 1H), 8.40 (s, 1H), 7.82 (d, J = 9.7 Hz, 1H),
    7.52 (dd, J = 9.7, 1.9 Hz, 1H), 4.31 (s, 3H), 3.14 (q, J = 7.4 Hz, 2H), 1.22 (t, J = 7.4 Hz,
    3H).
    1-1-001c δ 9.95-9.90 (m, 1H), 8.72 (d, J = 1.4 Hz, 1H), 8.31 (d, J = 1.4 Hz, 1H), 7.86 (d,
    J = 9.5 Hz, 1H), 7.57 (dd, J = 9.5, 2.0 Hz, 1H), 4.44 (s, 3H), 3.80-3.50 (m, 2H), 1.57 (t,
    J = 7.5 Hz, 3H).
    1-1-003a δ 9.32 (s, 1H), 8.75 (d, J = 1.2 Hz, 1H), 8.35 d, J = 1.2 Hz, 1H), 7.79 (d,
    J = 9.6 Hz, 1H), 7.54 (dd, J = 9.6 Hz, 1.8 Hz, 1H), 4.15 (s, 3H), 4.04 (q, J = 7.5 Hz, 2H),
    1.46 (t, J = 7.5 Hz, 3H).
    1-1-003b δ 8.71 (s, 1H), 8.68 (d, J = 1.2 Hz, 1H), 8.39 (s, 1H), 7.66 (d, J = 9.6 Hz, 1H),
    7.35 (d, J = 9.6 Hz, 1.8 Hz, 1H), 4.29 (s, 3H), 3.09 (q, J = 7.5 Hz, 2H), 1.21 (t, J = 7.5 Hz,
    3H).
    1-1-003c δ 9.53 (d, J = 1.2 Hz, 1H), 8.71 (d, J = 1.2 Hz, 1H), 8.30 (d, J = 1.2 Hz, 1H),
    7.70 (d, J = 9.6 Hz, 1H), 7.40 (dd, J = 9.6, 1.8 Hz, 1H), 4.41 (s, 3H), 3.80-3.50 (m, 2H),
    1.56 (t, J = 7. Hz, 3H).
    1-1-004a δ 9.26-9.22 (m, 1H), 8.74 (d, J = 1.4 Hz, 1H), 8.33 (d, J = 1.4 Hz, 1H),
    7.85-7.78 (m, 1H), 7.57-7.44 (m, 1H), 4.15 (s, 3H), 4.04 (q, J = 7.5 Hz, 2H), 1.45 (t,
    J = 7.5 Hz, 3H).
    1-1-004b δ 8.70 (d, J = 1.2 Hz, 1H), 8.60-8.55 (m, 1H), 8.37 (d, J = 1.2 Hz, 1H),
    7.73-7.65 (m, 1H), 7.35-7.25 (m, 1H), 4.29 (s, 3H), 3.09 (q, J = 7.4 Hz, 2H), 1.20 (t,
    J = 7.4 Hz, 3H).
    1-1-004c δ 9.47-9.43 (m, 1H), 8.71 (dd, J = 1.8, 0.6 Hz, 1H), 8.30 (d, J = 1.7 Hz, 1H),
    7.77-7.70 (m, 1H), 7.40-7.32 (m, 1H), 4.42 (s, 3H), 3.80-3.45 (m, 2H), 1.55 (t,
    J = 7.5Hz, 3H).
    1-1-005a δ 9.49 (s, 1H), 8.75 (s, 1H), 8.35 (s, 1H), 7.75 (dd, J = 9.3, 1.2 Hz, 1H),
    7.61 (d, J = 9.3 Hz, 1H), 4.13 (s, 3H), 4.01 (q, J = 7.2 Hz, 2H), 1.46 (t, J = 7.2 Hz, 3H).
    1-1-005b δ 8.91-8.88 (m, 1H), 8.73-8.70 (m, 1H), 8.41-8.39 (m, 1H), 7.56 (dd, J = 9.3,
    1.8 Hz, 1H), 7.50 (d, J = 9.3 Hz, 1H), 4.29 (s, 3H), 3.08 (q, J = 7.2 Hz, 2H), 1.21 (t,
    J = 7.2 Hz, 3H).
    1-1-005c δ 9.72 (s, 1H), 8.71 (d, J = 1.2 Hz, 1H), 8.30 (d, J = 1.2 Hz, 1H), 7.61 (d,
    J = 9.6 Hz, 1H), 7.54 (d, J = 9.6 Hz, 1H), 4.41 (s, 3H), 3.75-3.49 (m, 2H), 1.56 (t,
    J = 7.5 Hz, 3H).
    1-1-006a δ 9.41 (s, 1H), 8.75 (s, 1H), 8.34 (s, 1H), 7.72 (d, J = 9.6 Hz, 1H), 7.64 (dd,
    J = 9.6, 1.8 Hz, 1H), 4.14 (s, 3H), 4.04 (q, J = 7.5 Hz, 2H), 1.46 (t, J = 7.5 Hz, 3H).
    1-1-006b δ 8.78 (s, 1H), 8.71 (s, 1H), 8.42-8.35 (m, 1H), 7.70-7.55 (m, 1H),
    7.50-7.40 (m, 1H), 4.29 (s, 3H), 3.09 (q, J = 7.5 Hz, 2H), 1.21 (t, J = 7.5 Hz, 3H).
    1-1-007a δ 8.80 (d, J = 2.1 Hz, 1H), 8.73 (s, 1H), 8.33 (d, J = 0.9 Hz, 1H), 7.70 (d,
    J = 9.9 Hz, 1H), 7.33 (dd, J = 9.9, 2.1 Hz, 1H), 4.12 (s, 3H), 3.99 (q, J = 7.2 Hz, 2H),
    3.93 (s, 3H), 1.44 (t, J = 7.2 Hz, 3H).
    1-1-007b δ 8.72-8.68 (m, 1H), 8.37 (d, J = 2.1 Hz, 1H), 8.16 (d, J = 2.1 Hz, 1H), 7.60 (d,
    J = 9.6 Hz, 1H), 7.16 (dd, J = 9.6, 2.1 Hz, 1H), 4.29 (s, 3H), 3.94 (s, 3H), 3.06 (q,
    J = 7.2 Hz, 2H), 1.20 (t, J = 7.2 Hz, 3H).
    1-1-008a δ 10.34 (dd, J = 2.1, 0.6 Hz, 1H), 8.77 (d, J = 1.2 Hz, 1H), 8.36 (d, J = 1.2 Hz,
    1H), 8.33 (dd, J = 9.9, 2.1 Hz, 1H), 7.93 (dd, J = 9.9, 0.6 Hz, 1H), 4.20 (s, 3H), 4.16 (q,
    J = 7.2 Hz, 2H), 1.50 (t, J = 7.2 Hz, 3H).
    1-1-008b δ 9.73 (d, J = 2.4 Hz, 1H), 8.73 (d, J = 2.4 Hz, 1H), 8.40 (d, J = 2.4 Hz, 1H),
    8.14 (dd, J = 9.9, 2.4 Hz, 1H), 7.79 (d, J = 9.9 Hz, 1H), 4.33 (s, 3H), 3.20 (q, J = 7.2 Hz,
    2H), 1.25 (t, J = 7.2 Hz, 3H).
    1-1-009a δ 9.00 (s, 1H), 8.74 (d, J = 1.2 Hz, 1H), 8.33 (d, J = 1.2 Hz, 1H), 7.73 (d,
    J = 9.3 Hz, 1H), 7.42 (dd, J = 9.3, 1.2 Hz, 1H), 4.11 (s, 3H), 3.94 (q, J = 7.5 Hz, 2H),
    2.47 (s, 3H), 1.44 (t, J = 7.5 Hz, 3H).
    1-1-010a δ 9.26 (d, J = 1.2 Hz, 1H), 8.74 (d, J = 1.5 Hz, 1H), 8.33 (d, J = 1.5 Hz, 1H),
    7.76 (d, J = 9.0 Hz, 1H), 7.60 (dd, J = 9.0, 1.8 Hz, 1H), 4.14 (s, 3H), 4.07-3.96 (m, 4H),
    3.23 (t, J = 7.2 Hz, 2H), 2.69 (t, J = 7.2 Hz, 2H), 1.65-1.22 (m, 12H), 0.90 (t, J = 7.5 Hz,
    6H).
    1-1-011a δ 9.61 (s, 1H), 8.75 (d, J = 1.2 Hz, 1H), 8.35 (d, J = 1.2 Hz, 1H), 7.87 (dd,
    J = 9.6, 0.9 Hz, 1H), 7.74 (dd, J = 9.6, 1.2 Hz, 1H), 4.17 (s, 3H), 4.08 (q, J = 7.5 Hz, 2H),
    1.46 (t, J = 7.5 Hz, 3H).
    1-1-012a δ 9.24 (d, J = 7.2 Hz, 1H), 8.75 (d, J = 1.4 Hz, 1H), 8.35 (d, J = 1.4 Hz, 1H),
    7.84 (d, J = 9.2 Hz, 1H), 7.62-7.54 (m, 1H), 7.21-7.13 (m, 1H), 4.15 (s, 3H), 3.99 (q,
    J = 7.4 Hz, 2H), 1.45 (t, J = 7.4 Hz, 3H).
    1-1-012b δ 8.71 (s, 1H), 8.66 (d, J = 6.8 Hz, 1H), 8.39 (s, 1H), 7.72 (d, J = 8.9 Hz, 1H),
    7.43-7.35 (m, 1H), 7.08-7.01 (m, 1H), 4.31 (s, 3H), 3.06 (q, J = 7.4 Hz, 2H), 1.20 (t,
    J = 7.4 Hz, 3H).
    1-1-013a δ 9.18 (d, J = 7.4 Hz, 1H), 8.74 (s, 1H), 8.33 (d, J = 1.2 Hz, 1H), 7.85-7.80 (m,
    1H), 7.15-7.10 (m, 1H), 4.14 (s, 3H), 4.03 (q, J = 7.4 Hz, 2H), 1.43 (t, J = 7.4 Hz, 3H).
    1-1-013b δ 8.70 (d, J = 1.6 Hz, 1H), 8.57 (d, J = 7.4 Hz, 1H), 8.37 (s, 1H), 7.71 (d,
    J = 1.6 Hz, 1H), 7.02 (dd, J = 7.4, 1.6 Hz, 1H), 4.28 (s, 3H), 3.07 (q, J = 7.5 Hz, 2H),
    1.19 (t, J = 7.5 Hz, 3H).
    1-1-013c δ 9.40 (dd, J = 7.4, 0.8 Hz, 1H), 8.75-8.65 (m, 1H), 8.35-8.25 (m, 1H),
    7.76 (dd, J = 2.2, 0.8 Hz, 1H), 6.97 (dd, J = 7.4, 2.2 Hz, 1H), 4.41 (S, 3H), 3.75-3.45 (m,
    2H), 1.53 (t, J = 7.4 Hz, 3H).
    1-1-014a δ 9.27-9.22 (m, 1H), 8.75-8.73 (m, 1H), 8.35-8.32 (m, 1H), 7.48-7.42 (m,
    1H), 7.07-6.99 (m, 1H), 4.14 (s, 3H), 4.02 (q, J = 7.4 Hz, 2H), 1.44 (t, 7.4 Hz, 3H).
    1-1-014b δ 8.70 (dd, J = 2.0, 1.2 Hz, 1H), 8.66-8.58 (m, 1H), 8.37 (d, J = 1.2 Hz, 1H),
    7.34 (dd, J = 8.9, 2.4 Hz, 1H), 6.95-6.87 (m, 1H), 4.28 (s, 3H), 3.06 (q, J = 7.4 Hz, 2H),
    1.19 (t, J = 7.4 Hz, 3H).
    1-1-014c δ 9.50-9.43 (m, 1H), 8.73-8.69 (m, 1H), 8.30 (d, J = 1.4 Hz, 1H), 7.38 (dd,
    J = 9.2, 2.4 Hz, 1H), 6.93-6.83 (m, 1H), 4.41 (s, 3H), 3.75-3.45 (m, 2H), 1.54 (t,
    J = 7.3 Hz, 3H).
    1-1-015a δ 8.99 (dd, J = 7.5, 0.6 Hz, 1H), 8.75 (d, J = 1.2 Hz, 1H), 8.33 (d, J = 1.2 Hz,
    1H), 8.30-8.26 (m,1H), 7.38 (dd, J = 7.2, 1.2 Hz, 1H), 4.13 (s, 3H), 4.02 (q, J = 7.6 Hz,
    2H), 1.43 (t, J = 7.5 Hz, 3H).
    1-1-015b δ 8.87 (d, J = 1.2 Hz, 1H), 8.82 (s, 1H), 8.48 (s, 1H), 8.41 (d, J = 7.2 Hz, 1H),
    7.51 (d, J = 7.2 Hz, 1H), 4.38 (s, 3H), 3.14 (q, J = 7.5 Hz, 2H), 1.25 (t, J = 7.5 Hz, 3H).
    1-1-016a δ 9.11 (dd, J = 7.5, 0.9 Hz, 1H), 8.75-8.72 (m, 1H), 8.33 (d, J = 1.2 Hz, 1H),
    8.02-8.00 (m, 1H), 7.24-7.22 (m, 1H), 4.14 (s, 3H), 4.03 (q, J = 7.5 Hz, 2H), 1.43 (t,
    J = 7.5 Hz, 3H).
    1-1-016b δ 8.71 (s, 1H), 8.52 (d, J = 7.5 Hz, 1H), 8.39 (s, 1H), 7.93-7.89 (m, 1H),
    7.13 (dd, J = 7.5, 1.8 Hz, 1H), 4.29 (s, 3H), 3.07 (q, J = 7.5 Hz, 2H), 1.19 (t, J = 7.5 Hz,
    3H).
    1-1-016c δ 9.35 (d, J = 7.5 Hz, 1H), 8.72 (s, 1H), 8.31 (d, J = 2.1 Hz, 1H), 7.96 (dd,
    J = 2.1, 0.6 Hz, 1H), 7.09 (dd, J = 7.5 Hz, 2.1 Hz, 1H), 4.41 (s, 3H), 3.75-3.45 (m, 2H),
    1.53 (t, J = 7.5 Hz, 3H).
    1-1-017a δ 9.08 (d, J = 7.2 Hz, 1H), 8.74 (d, J = 1.5 Hz, 1H), 8.33 (d, J = 1.5 Hz, 1H),
    7.59 (s, 1H), 6.99 (dd, J = 7.2, 1.8 Hz, 1H), 4.12 (s, 3H), 3.95 (q, J = 7.5 Hz, 2H),
    2.53 (s, 3H), 1.42 (t, J = 7.5 Hz, 3H).
    1-1-018a δ 9.41 (dd, J = 7.5, 0.9 Hz, 1H), 8.77 (d, J = 0.9 Hz, 1H), 8.36 (d, J = 0.9 Hz,
    1H), 8.25-8.22 (m, 1H), 7.29 (dd, J = 7.5, 1.5 Hz, 1H), 4.19 (s, 3H), 4.14 (q, J = 7.5 Hz,
    2H), 1.46 (t, J = 7.5 Hz, 3H).
    1-1-020a δ 9.61-9.59 (m, 1H), 8.78-8.75 (m, 1H), 8.35 (d, J = 1.6 Hz, 1H), 7.78 (d,
    J = 1.5 Hz, 1H), 4.22 (s, 3H), 4.14 (q, J = 7.4 Hz, 2H), 1.47 (t, J = 7.4 Hz, 3H).
    1-1-020b δ 8.95 (d, J = 1.4 Hz, 1H), 8.73 (d, J = 2.0 Hz, 1H), 8.39 (d, J = 2.0 Hz, 1H),
    7.60 (d, J = 1.4 Hz, 1H), 4.36 (s, 3H), 3.18 (q, J = 7.4 Hz, 2H), 1.23 (t, J = 7.4 Hz, 3H).
    1-1-021b δ 8.82-8.76 (m, 1H), 8.71 (d, J = 2.0 Hz, 1H), 8.38 (d, J = 2.0 Hz, 1H), 7.19 (d,
    J = 1.4 Hz, 1H), 4.35 (s, 3H), 3.24 (q, J = 7.4 Hz, 2H), 3.15 (q, J = 7.4 Hz, 2H), 1.49 (t,
    J = 7.4 Hz, 3H), 1.22 (t, J = 7.4 Hz, 3H).
    1-1-022a δ 9.92-9.87 (m, 1H), 8.79 (d, J = 2.0 Hz, 1H), 8.44 (d, J = 2. Hz, 1H), 8.37 (d,
    J = 1.2 Hz, 1H), 4.22 (s, 3H), 4.22 (q, J = 7.4 Hz, 2H), 3.79 (q, J = 7.5 Hz, 2H), 1.50 (t,
    J = 7.4 Hz, 3H), 1.40 (t, J = 7.5 Hz, 3H).
    1-1-023c δ 9.85 (s, 1H), 8.74 (d, J =
    4.44 (s, 3H), 3.82-3.51 (m, 2H), 1.58 (t, J = 7.3 Hz, 3H).
    1-1-024a δ 9.16 (s, 1H), 8.76 (d, J = 1.2 Hz, 1H), 8.35 (d, J = 1.2 Hz, 1H), 8.14 (s, 1H),
    4.15 (s, 3H), 4.07 (q, J = 7.5 Hz, 2H), 2.57 (s, 3H), 1.46 (t, J = 7.5 Hz, 3H).
    1-1-025b δ 8.71 (d, J = 1.5 Hz, 1H), 8.37 (d, J = 1.5 Hz, 1H), 7.38 (s, 1H), 6.55 (s, 1H),
    4.13 (s, 3H), 3.15 (s, 3H), 2.91 (q, J = 7.5 Hz, 2H), 2.41 (s, 3H), 1.11 (t, J = 7.5 Hz,
    3H).
    1-1-025c δ 8.74-8.72 (m, 1H), 8.34 (d, J = 1.2 Hz, 1H), 7.45 (s, 1H), 6.75 (s, 1H),
    4.10 (s, 3H), 3.88-3.72 (m, 1H), 3.67-3.52 (m, 1H), 3.02 (s, 3H), 2.48 (s, 3H), 1.42 (t,
    J = 7.5 Hz, 3H).
    1-1-026a δ 9.41 (d, J = 7.5 Hz, 1H), 8.66 (d, J = 1.7 Hz, 1H), 8.43 (d, J = 1.7 Hz, 1H),
    8.16-8.12 (m, 1H), 7.31 (dd, J = 7.5, 1.7 Hz, 1H), 4.12 (s, 3H), 4.10 (q, J = 7.4 Hz, 2H),
    1.45 (t, J = 7.4 Hz, 3H).
    1-1-030a δ 9.42 (d, J = 7.3 Hz, 1H), 8.22 (d, J = 7.8 Hz, 1H), 8.17 (s, 1H), 7.70 (d,
    J = 7.8 Hz, 1H), 7.32 (dd, J = 7.3, 1.9 Hz, 1H), 4.19 (s, 3H), 4.11 (q, J = 7.4 Hz, 2H),
    1.46 (t, J = 7.4 Hz, 3H).
    1-1-030c δ 9.63 (d, J = 7.5 Hz, 1H), 8.18 (d, J = 8.5 Hz, 1H), 8.10 (s, 1H), 7.68 (d,
    J = 8.5 Hz, 1H), 7.16 (dd, J = 7.5, 1.7 Hz, 1H), 4.45 (s, 3H), 3.81-3.45 (m, 2H), 1.56 (t,
    J = 7.5 Hz, 3H).
    1-1-032a δ 9.40 (d, J = 7.5 Hz, 1H), 8.77-8.74 (m, 1H), 8.35 (d, J = 1.8 Hz, 1H),
    8.18-8.14 (m, 1H), 7.32 (dd, J = 7.5, 1.8 Hz, 1H), 4.71 (q, J = 7.5 Hz, 2H), 4.09 (q,
    J = 7.5 Hz, 2H), 1.50 (t, J = 7.5 Hz, 3H), 1.46 (t, J = 7.5 Hz, 3H).
    1-1-032b δ 8.77 (d, J = 7.5 Hz, 1H), 8.73-8.70 (m, 1H), 8.42-8.38 (d, J = 1.8 Hz, 1H),
    8.07-8.03 (m, 1H), 7.20 (dd, J = 7.5, 1.5 Hz, 1H), 4.96 (q, J = 7.5 Hz, 2H), 3.13 (q,
    J = 7.5 Hz, 2H), 1.50 (t, J = 7.5 Hz, 3H), 1.20 (t, J = 7.5 Hz, 3H).
    1-1-033a δ 9.29 (dd, J = 7.2, 1.2 Hz, 1H), 8.77-8.72 (m, 1H), 8.53-8.48 (m, 1H),
    8.36-8.32 (m, 1H), 7.71 (dd, J = 7.2, 1.8 Hz, 1H), 4.17 (s, 3H), 4.06 (q, J = 7.5 Hz, 2H),
    4.03 (s, 3H), 1.45 (t, J = 7.5 Hz, 3H).
    1-1-034a δ 9.30 (dd, J = 7.5, 1.2 Hz, 1H), 8.78-8.74 (m, 1H), 8.55-8.50 (m, 1H),
    8.36-8.34 (m, 1H), 7.72 (dd, J = 7.5, 1.8 Hz, 1H), 4.49 (q, J = 7.5 Hz, 2H), 4.17 (s, 3H),
    4.07 (q, J = 7.5 Hz, 2H), 1.47 (t, J = 7.5 Hz, 3H), 1.45 (t, J = 7.5 Hz, 3H).
    1-1-035a δ 9.27 (dd, J = 7.5, 0.9 Hz, 1H), 8.77-8.74 (m, 1H), 8.36-8.32 (m, 1H),
    7.86-7.83 (m, 1H), 7.22 (dd, J = 7.5, 1.8 Hz, 1H), 4.15 (s, 3H), 4.03 (q, J = 7.5 Hz, 2H),
    3.18 (s, 3H), 3.13 (s, 3H), 1.44 (t, J = 7.5 Hz, 3H).
    1-1-036a δ 9.26 (s, 1H), 8.77 (d, J = 1.4 Hz, 1H), 8.36 (d, J = 1.4 Hz, 1H), 8.17 (s, 1H),
    4.18 (s, 3H), 4.14 (q, J = 7.5 Hz, 2H), 2.63 (s, 3H), 1.48 (t, J = 7.5 Hz, 3H).
    1-1-037a δ 9.46 (s, 1H), 8.76 (d, J = 1.2 Hz, 1H), 8.36 (d, J = 1.2 Hz, 1H), 8.19 (s, 1H),
    4.18 (s, 3H), 4.13 (q, J = 7.1 Hz, 2H), 4.03 (dd, J = 5.7, 2.0 Hz, 2H), 3.25 (t, J = 7.0 Hz,
    2H), 2.73 (t, J = 7.0 Hz, 2H), 1.48 (t, J = 7.4 Hz, 3H), 1.42-1.23 (m, 9H), 0.89 (t,
    J = 7.4 Hz, 6H).
    1-1-038a δ 10.24 (s, 1H), 8.80 (s, 1H), 8.39 (s, 1H), 8.36 (s, 1H), 4.23 (S, 3H),
    4.20 (q, J = 7.5 Hz, 2H), 3.36 (s, 3H), 1.52 (t, J = 7.5 Hz, 3H).
    1-1-039a δ 10.02 (s, 1H), 8.78 (d, J = 1.4 Hz, 1H), 8.38 (s, 1H), 8.23 (s, 1H),
    4.30-3.97 (m, 2H), 4.20 (s, 3H), 2.98 (s, 3H), 1.51 (t, J = 7.5 Hz, 3H).
    1-1-040a δ 8.77 (s, 1H), 8.34 (s, 1H), 8.07 (dd, J = 7.7, 2.6 Hz, 1H), 7.74-7.65 (m,
    2H), 4.11 (s, 3H), 4.03 (q, J = 7.5 Hz, 2H), 1.51 (t, J = 7.5 Hz, 3H).
    1-1-040b δ 8.76-8.73 (m, 1H), 8.42-8.37 (m, 1H), 7.96 (d, J = 9.2 Hz, 1H), 7.59 (d,
    J = 7.5 Hz, 1H), 7.47-7.38 (m, 1H), 4.15 (s, 3H), 2.95 (q, J = 7.4 Hz, 2H), 1.11 (t,
    J = 7.4 Hz, 3H).
    1-1-040c δ 8.74 (d, J = 1.4 Hz, 1H), 8.36 (d, J = 1.4 Hz, 1H), 8.05 (d, J = 8.5 Hz, 1H),
    7.64 (d, J = 7.5 Hz, 1H), 7.59-7.52 (m, 1H), 4.61-4.48 (m, 1H), 3.95 (s, 3H),
    3.41-3.26 (m, 1H), 1.48 (t, J = 7.5 Hz, 3H).
    1-1-041a δ 9.04 (d, J = 7.5 Hz, 1H), 8.74 (s, 1H), 8.33 (s, 1H), 7.52 (d, J = 1.5 Hz, 1H),
    6.97 (dd, J = 7.5, 1.5 Hz, 1H), 4.13 (s, 3H), 4.06 (dd, J = 5.7, 2.0 Hz, 2H), 3.99 (q,
    J = 7.5 Hz, 2H), 3.36 (t, J = 7.2 Hz, 2H), 2.80 (t, J = 7.2 Hz, 2H), 1.49-1.22 (m, 12H),
    0.89 (t, J = 7.5 Hz, 6H).
    1-1-042a δ 9.02 (d, J = 7.5 Hz, 1H), 8.76-8.73 (m, 1H), 8.35-8.32 (m, 1H), 7.42-7.40 (m,
    1H), 6.97 (dd, J = 7.5, 2.1 Hz, 1H), 4.13 (s, 3H), 3.97 (q, J = 7.5 Hz, 2H), 2.61 (s, 3H),
    1.42 (t, J = 7.5 Hz, 3H).
    1-1-043a δ 9.41 (dd, J = 7.5, 0.6 Hz, 1H), 8.76 (d, J = 1.5 Hz, 1H), 8.35 (d, J = 1.8 Hz,
    1H), 8.21 (d, J = 1.8 Hz, 1H), 7.29 (dd, J = 7.5, 1.8 Hz, 1H), 4.18 (s, 3H), 4.10 (q,
    J = 7.5 Hz, 2H), 2.88 (s, 3H), 1.46 (t, J = 7.5 Hz, 3H).
    1-1-044a δ 9.49 (dd, J = 7.5, 1.2 Hz, 1H), 8.77 (d, J = 1.5 Hz, 1H), 8.50-8.46 (m, 1H),
    8.37-8.34 (m, 1H), 7.57 (dd, J = 7.5, 1.2 Hz, 1H), 4.20 (s, 3H), 4.14 (q, J = 7.5 Hz, 2H),
    3.20 (s, 3H), 1.47 (t, J = 7.5 Hz, 3H).
    1-1-045a δ 9.63 (d, J = 0.6 Hz, 1H), 8.75-8.79 (m, 1H), 8.38-8.35 (m, 1H), 7.96 (dd,
    J = 9.3, 0.6 Hz, 1H), 7.69 (dd, J = 9.3, 1.2 Hz, 1H), 4.18 (s, 3H), 4.11 (q, J = 7.5 Hz, 2H),
    1.46 (t, J = 7.5 Hz, 3H).
    1-1-045b δ 8.99 (s, 1H), 8.73 (d, J = 0.6 Hz, 1H), 8.40 (d, J = 1.2 Hz, 1H), 7.83 (d,
    J = 9.3 Hz, 1H), 7.50 (d, J = 9.3 Hz, 1H), 4.32 (s, 3H), 3.14 (q, J = 7.5 Hz, 2H), 1.22 (t,
    J = 7.5 Hz, 3H).
    1-1-046a δ 9.43 (s, 1H), 8.77-8.74 (m, 1H), 8.36-8.33 (m, 1H), 7.96 (s, 1H), 4.15 (s,
    3H), 4.08 (q, J = 7.4 Hz, 2H), 1.46 (t, J = 7.4 Hz, 3H).
    1-1-047a δ 9.46 (s, 1H), 8.76 (s, 1H), 8.35 (s, 1H), 7.98 (s, 1H), 4.15 (s, 3H),
    4.07 (q, J = 7.4 Hz, 2H), 1.47 (t, J = 7.4 Hz, 3H).
    1-1-047b δ 8.88 (d, J = 0.7 Hz, 1H), 8.57 (d, J = 1.0 Hz, 1H), 8.24 (d, J = 1.0 Hz, 1H),
    7.75 (d, J = 0.7 Hz, 1H), 4.15 (s, 3H), 2.97 (q, J = 7.4 Hz, 2H), 1.08 (t, J = 7.4 Hz, 3H).
    1-1-048a δ 9.55 (s, 1H), 8.75 (d, J = 1.0 Hz, 1H), 8.34 (d, J = 1.0 Hz, 1H), 7.71 (s, 1H),
    4.13 (s, 3H), 4.00 (q, J = 7.5 Hz, 2H), 2.61 (s, 3H), 1.45 (t, J = 7.5 Hz, 3H).
    1-1-048b δ 8.96 (s, 1H), 8.70 (s, 1H), 8.38 (s, 1H), 7.60 (s, 1H), 4.28 (s, 3H),
    3.06 (q, J = 7.5 Hz, 2H), 2.57 (s, 3H), 1.20 (t, J = 7.5 Hz, 3H).
    1-1-049a δ 9.76 (s, 1H), 8.77 (s, 1H), 8.36 (s, 1H), 8.20 (s, 1H), 4.17 (s, 3H),
    4.13 (q, J = 7.5 Hz, 2H), 1.48 (t, J = 7.5 Hz, 3H).
    1-1-049b δ 9.09 (s, 1H), 8.72 (s, 1H), 8.40 (s, 1H), 8.09 (s, 1H), 4.31 (s, 3H),
    3.16 (q, J = 7.5 Hz, 2H), 1.23 (t, J = 7.5 Hz, 3H).
    1-1-050a δ 9.70 (s, 1H), 8.79-8.76 (m, 1H), 8.38-8.35 (m, 1H), 8.20 (s, 1H), 4.18 (s,
    3H), 4.16 (q, J = 7.4 Hz, 2H), 1.48 (t, J = 7.4 Hz, 3H).
    1-1-050b δ 9.04 (s, 1H), 8.76-8.73 (m, 1H), 8.43-8.39 (m, 1H), 8.11 (s, 1H), 4.33 (s,
    3H), 3.20 (q, J = 7.5 Hz, 2H), 1.24 (t, J = 7.5 Hz, 3H).
    1-1-051a δ 9.58 (d, J = 5.8 Hz, 1H), 8.76 (d, J = 1.0 Hz, 1H), 8.35 (d, J = 1.0 Hz, 1H),
    7.50 (dd, J = 7.2, 0.7 Hz, 1H), 4.15 (s, 3H), 4.06 (q, J = 7.5 Hz, 2H), 1.47 (t, J = 7.5 Hz,
    3H).
    1-1-051b δ 8.93 (d, J = 6.1 Hz, 1H), 8.73-8.70 (m, 1H), 8.40-8.38 (m, 1H), 7.40 (d,
    J = 7.8 Hz, 1H), 4.29 (s, 3H), 3.09 (q, J = 7.4 Hz, 2H), 1.22 (t, J = 7.4 Hz, 3H).
    1-1-052a δ 9.45 (s, 1H), 8.74 (d, J = 1.0 Hz, 1H), 8.34 (d, J = 1.0 Hz, 1H), 7.04 (s, 1H),
    4.13 (s, 3H), 4.05 (s, 3H), 3.98 (q, J = 7.4 Hz, 2H), 1.45 (t, J = 7.4 Hz, 3H).
    1-1-052b δ 8.86 (s, 1H), 8.70 (d, J = 1.4 Hz, 1H), 8.37 (d, J = 1.4 Hz, 1H), 6.96 (s, 1H),
    4.28 (s, 3H), 4.01 (s, 3H), 3.05 (q, J = 7.5 Hz, 2H), 1.20 (t, J = 7.5 Hz, 3H).
    1-1-053a δ 9.81 (d, J = 2.4 Hz, 1H), 8.91 (d, J = 2.4 Hz, 1H), 8.78-8.75 (m, 1H), 8.35 (d,
    J = 1.5 Hz, 1H), 4.26 (s, 3H), 4.21 (q, J = 7.5 Hz, 2H), 1.48 (t, J = 7.5 Hz, 3H).
    1-1-053b δ 9.14 (d, J = 2.4 Hz, 1H), 8.76 (d, J = 2.4 Hz, 1H), 8.75-8.71 (m, 1H), 8.39 (d,
    J = 1.5 Hz, 1H), 4.39 (s, 3H), 3.19 (q, J = 7.5 Hz, 2H), 1.24 (t, J = 7.5 Hz, 3H).
    1-1-056a δ 9.49 (d, J = 1.5 Hz, 1H), 9.14 (d, J = 1.5 Hz, 1H), 8.78 (s, 1H), 8.37 (s, 1H),
    4.22 (s, 3H), 4.18 (q, J = 7.5 Hz, 2H), 1.48 (t, J = 7.5 Hz, 3H).
    1-1-058a δ 9.14 (s, 1H), 8.74 (s, 1H), 8.33 (s, 1H), 7.35 (s, 1H), 4.15 (s, 3H),
    3.96 (q, J = 7.4 Hz, 2H), 2.70 (s, 3H), 1.43 (t, J = 7.4 Hz, 3H).
    1-1-058b δ 8.75-8.65 (m, 1H), 8.55-8.50 (m, 1H), 8.40-8.35 (m, 1H), 7.20-7.15 (m,
    1H), 4.30 (s, 3H), 3.05 (q, J = 7.4 Hz, 2H). 2.68 (s, 3H), 1.19 (t, J = 7.4 Hz, 3H).
    1-1-059a δ 9.28 (d, J = 1.6 Hz, 1H), 8.75 (d, J = 1.6 Hz, 1H), 8.34 (d, J = 1.6 Hz, 1H),
    7.65 (d, J = 1.6 Hz, 1H), 4.19 (s, 3H), 4.08 (q, J = 7.4 Hz, 2H), 1.46 (t , J = 7.4 Hz, 3H).
    1-1-059b δ 8.75-8.70 (m, 1H), 8.63 (d, J = 1.6 Hz, 1H), 8.40-8.35 (m, 1H), 7.46 (d,
    J = 1.6 Hz, 1H), 4.34 (s, 3H), 3.13 (q, J = 7.4 Hz, 2H), 1.22 (t, J = 7.4 Hz, 3H).
    1-1-060a δ 9.18-9.14 (m, 1H), 8.78-8.75 (m, 1H), 8.37-8.34 (m, 1H), 7.33-7.24 (m,
    1H), 4.19 (s, 3H), 4.11 (q, J = 7.4 Hz, 2H), 1.47 (t, J = 7.4 Hz, 3H).
    1-1-060b δ 8.75-8.71 (m, 1H), 8.50-8.46 (m, 1H), 8.43-8.38 (m, 1H), 7.15-7.05 (m,
    1H), 4.33 s, 3H), 3.14 (q, J = 7.4 Hz, 2H), 1.22 (t, J = 7.4 Hz, 3H).
    1-1-061a δ 9.50 (d, J = 1.4 Hz, 1H), 8.76 (d, J = 1.4 Hz, 1H), 8.35 (d, J = 1.4 Hz, 1H),
    8.25 (d, J = 1.4 Hz, 1H), 4.21 (s, 3H), 4.08 (q, J = 7.4 Hz, 2H), 1.46 (t, J = 7.4 Hz, 3H).
    1-1-061b δ 8.86 (d, J = 1.4 Hz, 1H), 8.72 (d, J = 1.0 Hz, 1H), 8.39 (d, J = 1.0 Hz, 1H),
    8.05 (d, J = 1.4 Hz, 1H), 4.38 (s, 3H), 3.14 (q, J = 7.4 Hz, 2H), 1.22 (t, J = 7.4 Hz, 3H).
    1-1-062a δ 9.45 (d, J = 1.4 Hz, 1H), 8.78 -8.75 (m, 1H), 8.36-8.33 (m, 1H), 7.85 (d,
    J = 1.4 Hz, 1H), 4.19 (s, 3H), 4.07 (q, J = 7.5 Hz, 2H), 1.47 (t, J = 7.5 Hz, 3H).
    1-1-062b δ 8.82 (d, J = 1.4 Hz, 1H), 8.72 (d, J = 1.0 Hz, 1H), 8.39 (d, J = 1.0 Hz, 1H),
    7.66 (d, J = 1.4 Hz, 1H), 4.34 (s, 3H), 3.13 (q, J = 7.4 Hz, 2H), 1.23 (t, J = 7.4 Hz, 3H).
    1-1-063a δ 9.30-9.25 (m, 1H), 8.80-8.70 (m, 1H), 8.40-8.30 (m, 1H), 7.42 (dd, J = 8.9,
    1.5 Hz, 1H), 4.18 (s, 3H), 4.10 (q, J = 7.4 Hz, 2H), 1.47 (t, J = 7.4 Hz, 3H).
    1-1-063b δ 8.75-8.70 (m, 1H), 8.65-8.60 (m, 1H), 8.40-8.35 (m, 1H), 7.23 (dd, J = 9.2,
    1.5 Hz, 1H), 4.33 (s, 3H), 3.14 (q, J = 7.4 Hz, 2H), 1.22 (t, J = 7.4 Hz, 3H).
    1-1-064a δ 9.08 (d, J = 1.2 Hz, 1H), 8.74 (d, J = 1.2 Hz, 1H), 8.33 (d, J = 1.2 Hz, 1H),
    7.03 (d, J = 1.2 Hz, 1H), 4.11 (s, 3H), 4.10 (s, 3H), 3.97 (q, J = 7.4 Hz, 2H), 1.45 (t,
    J = 7.4 Hz, 3H).
    1-1-065a δ 9.05 (d, J = 1.2 Hz, 1H), 8.73 (d, J = 1.5 Hz, 1H), 8.32 (d, J = 1.5 Hz, 1H),
    7.02 (d, J = 1.2 Hz, 1H), 4.31 (q, J = 7.0 Hz, 2H), 4.09 (s, 3H), 3.93 (q, J = 7.4 Hz, 2H),
    1.60 (t, J = 7.0 Hz, 3H), 1.43 (t, J = 7.4 Hz, 3H).
    1-1-066a δ 9.75-9.70 (m, 1H), 8.80-8.70 (m, 1H), 8.40-8.30 (m, 1H), 8.10-8.00 (m,
    1H), 4.20 (s, 3H), 4.17 (q, J = 7.4 Hz, 2H), 1.48 (t, J = 7.4 Hz, 3H).
    1-1-067a δ 9.74 (d, J = 1.5 Hz, 1H), 8.78 (d, J = 1.8 Hz, 1H), 8.36 (d, J = 1.8 Hz, 1H),
    8.14 (d, J = 1.5 Hz, 1H), 4.25 (s, 3H), 4.19 (q, J = 7.5 Hz, 2H), 1.48 (t, J = 7.5 Hz, 3H).
    1-1-067b δ 9.08 (d, J = 1.7 Hz, 1H), 8.76-8.73 (m, 1H), 8.42-8.39 (m, 1H), 7.96 (d, J = 1.7
    Hz, 1H), 4.40 (s, 3H), 3.20 (q, J = 7.4 Hz, 2H), 1.25 (t, J = 7.4 Hz, 3H).
    1-1-068a δ 9.75-8.89 (m, 1H), 8.75-8.72 (m, 1H), 8.34-8.32 (m, 1H), 6.74-6.71 (m,
    1H), 4.10 (s, 3H), 3.93 (q, J = 7.2 Hz, 2H), 3.30 (s, 6H), 1.43 (t, J = 7.2 Hz, 3H).
    1-1-069a δ 9.60-9.50 (m, 1H), 8.80-8.70 (m, 1H), 8.40-8.30 (m, 1H), 7.90-7.85 (m,
    1H), 4.21 (s, 3H), 4.18 (q, J = 7.4 Hz, 2H), 1.48 (t, J = 7.4 Hz, 3H).
    1-1-069b δ 8.90-8.80 (m, 1H), 8.75-8.70 (m, 1H), 8.40-8.35 (m, 1H), 7.70-7.65 (m,
    1H), 4.35 (s, 3H), 3.19 (q, J = 7.4 Hz, 2H), 1.24 (t, J = 7.4 Hz, 3H).
    1-1-070a δ 9.55-9.50 (m, 1H), 8.80-8.75 (m, 1H), 8.40-8.30 (m, 1H), 7.43 (dd, J = 9.0,
    1.6 Hz, 1H), 4.21 (s, 3H), 4.16 (q, J = 7.4 Hz, 2H), 1.48 (t, J = 7.4 Hz, 3H).
    1-1-70b δ 8.90-8.85 (m, 1H), 8.75-8.70 (m, 1H), 8.45-8.35 (m, 1H), 7.22 (d, J = 1.2 Hz,
    1H), 4.35 (s, 3H), 3.19 (q, J = 7.4 Hz, 2H), 1.24 (t, J = 7.4 Hz, 3H).
    1-1-071a δ 9.68 (s, 1H), 8.77 (d, J = 1.4 Hz, 1H), 8.36 (d, J = 1.4 Hz, 1H), 8.18 (d,
    J = 1.4 Hz, 1H), 4.25 (s, 3H), 4.15 (q, J = 7.3 Hz, 2H), 1.48 (t, J = 7.3 Hz, 3H).
    1-1-071b δ 9.03-8.99 (m, 1H), 8.76-8.72 (m, 1H), 8.43-8.39 (m, 1H), 8.00 (d, J = 1.4 Hz,
    1H), 4.40 (s, 3H), 3.19 (q, J = 7.4 Hz, 2H), 1.24 (t, J = 7.4 Hz, 3H).
    1-1-072a δ 9.33 (s, 1H), 8.74 (s, 1H), 8.34 (s, 1H), 7.58 (s, 1H), 4.13 (s, 3H),
    3.95 (q, J = 7.5 Hz, 2H), 2.67 (s, 3H), 1.43 (t, J = 7.5 Hz, 3H).
    1-1-072b δ 8.74 (s, 1H), 8.73 (s, 1H), 8.45 (s, 1H), 7.40 (s, 1H), 4.31 (s, 3H),
    3.05 (q, J = 7.5 Hz, 2H), 2.65 (s, 3H), 1.19 (t, J = 7.5 Hz, 3H).
    1-1-072c δ 9.57 (s, 1H), 8.71 (d, J = 1.5 Hz, 1H), 8.30 (d, J = 1.5 Hz, 1H), 7.46-7.42 (m,
    1H), 4.44 (s, 3H), 3.75-3.40 (m, 2H), 2.65 (s, 3H), 1.54 (t, J = 7.5 Hz, 3H).
    1-1-073a δ 9.00-8.90 (m, 1H), 8.75-8.70 (m, 1H), 8.35-8.30 (m, 1H), 7.51 (d, J = 1.2 Hz,
    1H), 4.15 (s, 3H), 4.00 (q, J = 7.4 Hz, 2H), 2.47 (d, J = 0.8 Hz, 3H), 1.44 (t, J = 7.4 Hz,
    3H).
    1-1-073b δ 8.75-8.65 (m, 1H), 8.40-8.30 (m, 2H), 7.33 (d, J = 1.2 Hz, 1H), 4.32 (s, 3H),
    3.07 (q, J = 7.4 Hz, 2H), 2.45 (d, J = 0.8 Hz, 3H), 1.19 (t, J = 7.4 Hz, 3H).
    1-1-074a δ 9.34 (s, 1H), 8.77-8.75 (m, 1H), 8.36-8.34 (m, 1H), 7.52 (dd, J = 8.7,
    1.2 Hz, 1H), 4.18 (s, 3H), 4.09 (q, J = 7.5 Hz, 2H), 1.47 (t, J = 7.5 Hz, 3H).
    1-1-074b δ 8.74-8.71 (m, 2H), 8.42-8.38 (m, 1H), 7.36-7.30 (m, 1H), 4.33 (s, 3H),
    3.14 (q, J = 7.4 Hz, 2H), 1.23 (t, J = 7.4 Hz, 3H).
    1-1-075a δ 8.84 (d, J = 1.5 Hz, 1H), 8.75-8.73 (m, 1H), 8.34-8.32 (m, 1H), 7.12 (d,
    J = 1.5 Hz, 1H), 4.16 (s, 3H), 4.02 (q, J = 7.5 Hz, 2H), 2.65 (s, 3H), 2.59 (s, 3H), 1.44 (t,
    J = 7.5 Hz, 3H).
    1-1-076a δ 9.70-9.60 (m, 1H), 8.80-8.75 (m, 1H), 8.40-8.30 (m, 1H), 8.00-7.95 (m,
    1H), 4.22 (s, 3H), 4.14 (q, J = 7.4 Hz, 2H), 1.47 (t, J = 7.4 Hz, 3H).
    1-1-077a δ 9.47 (d, J = 7.2 Hz, 1H), 8.76 (d, J = 1.2 Hz, 1H), 8.35 (d, J = 1.2 Hz, 1H),
    7.90 (d, J = 7.2 Hz, 1H), 7.30-7.20 (m, 1H), 4.21 (s, 3H), 4.14 (q, J = 7.5 Hz, 2H), 1.46 (t,
    J = 7.5 Hz, 3H).
    1-1-077b δ 8.83 (d, J = 7.5 Hz, 1H), 8.71 (s, 1H), 8.39 (s, 1H), 7.72 (d, J = 6.6 Hz, 1H),
    7.10 (t, J = 6.6 Hz, 1H), 4.36 (s, 3H), 3.16 (q, J = 7.5 Hz, 2H), 1.22 (t, J = 7.5 Hz, 3H).
    1-1-078a δ 9.41 (s, 1H), 8.78-8.76 (m, 1H), 8.37-8.34 (m, 1H), 4.21 (s, 3H), 4.12 (q,
    J = 7.4 Hz, 2H), 1.47 (t, J = 7.4 Hz, 3H).
    1-1-078b δ 8.74 (d, J = 0.7 Hz, 1H), 8.74-8.72 (m, 1H), 8.41-8.38 (m, 1H), 4.36 (s, 3H),
    3.16 (q, J = 7.5 Hz, 2H), 1.23 (t, J = 7.5 Hz, 3H).
    1-1-079a δ 9.41 (s, 1H), 8.75 (s, 1H), 8.34 (s, 1H), 7.94-7.80 (m, 2H), 7.68-7.60 (m,
    2H), 7.58-7.42 (m, 3H), 4.15 (s, 3H), 3.99 (q, J = 7.5 Hz, 2H), 1.46 (t, J = 7.5 Hz, 3H).
    1-1-080a δ 9.41 (s, 1H), 8.75 (d, J = 1.8 Hz, 1H), 8.35 (d, J = 1.8 Hz, 1H), 7.95-7.75 (m,
    2H), 7.70-7.25 (m, 4H), 4.15 (s, 3H), 4.00 (q, J = 7.5 Hz, 2H), 1.47 (t, J = 7.5 Hz, 3H).
    1-1-081a δ 9.43 (s, 1H), 8.75 (d, J = 1.8 Hz, 1H), 8.35 (d, J = 1.8 Hz, 1H), 7.95-7.75 (m,
    2H), 7.60-7.15 (m, 4H), 4.16 (s, 3H), 4.02 (q, J = 7.5 Hz, 2H), 1.47 (t, J = 7.5 Hz, 3H).
    1-1-082a δ 9.40-9.36 (m, 1H), 8.75 (d, J = 1.8 Hz, 1H), 8.35 (d, J = 1.8 Hz, 1H),
    7.95-7.75 (m, 2H), 7.70-7.55 (m, 2H), 7.25-7.20 (m, 2H), 4.16 (s, 3H), 4.05 (q,
    J = 7.5 Hz, 2H), 1.46 (t, J = 7.5 Hz, 3H).
    1-1-083a δ 9.20 (s, 1H), 8.75 (s, 1H), 8.34 (s, 1H), 8.01 (s, 1H), 7.90-7.80 (m, 2H),
    7.70-7.30 (m, 3H), 4.16 (s, 3H), 3.98 (q, J = 7.5 Hz, 2H), 1.43 (t, J = 7.5 Hz, 3H).
    1-1-084a δ 9.47 (s, 1H), 8.76 (s, 1H), 8.36 (s, 1H), 7.95-7.30 (m, 6H), 4.17 (s, 3H),
    4.05 (q, J = 7.5 Hz, 2H), 1.47 (t, J = 7.5 Hz, 3H).
    1-1-085a δ 9.49 (s, 1H), 8.76 (s, 1H), 8.36 (s, 1H), 7.94 (d, J = 9.6 Hz, 1H),
    7.85-7.35 (m, 5H), 4.17 (s, 3H), 4.05 (q, J = 7.5 Hz, 2H), 1.47 (t, J = 7.5 Hz, 3H).
    1-1-086a δ 9.47 (s, 1H), 8.92 (s, 1H), 8.80-8.70 (m, 2H), 8.36 (s, 1H), 7.97 (s, 1H),
    7.94 (s, 1H), 7.80 (dd, J = 9.6, 1.8 Hz, 1H), 7.55-7.43 (m, 1H), 4.17 (s, 3H), 4.05 (q,
    J = 7.5 Hz, 2H), 1.48 (t, J = 7.5 Hz, 3H).
    1-1-087a δ 9.56 (s, 1H), 8.82-8.74 (m, 3H), 8.36 (s, 1H), 7.96 (d, J = 9.6 Hz, 1H),
    7.84 (d, J = 9.6 Hz, 1H), 7.55-7.53 (m, 2H), 4.18 (s, 3H), 4.08 (q, J = 7.5 Hz, 2H), 1.48 (t,
    J = 7.5 Hz, 3H).
    1-1-088a δ 9.45 (s, 1H), 8.75 (s, 1H), 8.34 (s, 1H), 7.85-7.80 (m, 2H), 7.65-7.40 (m,
    3H), 4.15 (s, 3H), 4.01 (q, J = 7.5 Hz, 2H), 1.46 (t, J = 7.5 Hz, 3H).
    1-1-089a δ 9.34 (d, J = 0.9 Hz, 1H), 8.75 (s, 1H), 8.34 (s, 1H), 7.74 (d, J = 9.6 Hz, 1H),
    7.56 (dd, J = 9.6, 1.8 Hz, 1H), 4.14 (s, 3H), 4.01 (q, J = 7.5 Hz, 2H), 1.46 (t, J = 7.5 Hz,
    3H), 0.30 (s, 9H).
    1-1-090a δ 9.22 (s, 1H), 8.75-8.72 (m, 1H), 8.34-8.31 (m, 1H), 7.70 (d, J = 9.3 Hz, 1H),
    7.49 (dd, J = 9.3, 1.8 Hz, 1H), 4.12 (s, 3H), 3.97 (q, J = 7.5 Hz, 2H), 1.44 (t, J = 7.5 Hz,
    3H), 1.00-0.80 (m, 5H).
    1-1-091a δ 9.24 (s, 1H), 8.74 (s, 1H), 8.34 (s, 1H), 7.77 (d, J = 1.5 Hz, 2H), 5.56 (s,
    1H), 5.32 (s, 1H), 4.13 (s, 3H), 3.99 (q, J = 7.5 Hz, 2H), 2.24 (s, 3H), 1.45 (t, J = 7.5 Hz,
    3H).
    1-1-092a δ 9.65 (s, 1H), 8.45 (d, J = 2.0 Hz, 1H), 8.10 (d, J = 2.0 Hz, 1H), 7.94 (d,
    J = 9.2 Hz, 1H), 7.71 (d, J = 9.2 Hz, 1H), 4.13 (s, 3H), 4.10 (q, J = 7.3 Hz, 2H), 1.47 (t,
    J = 7.3 Hz, 3H).
    1-1-092b δ 9.03-8.99 (m, 1H), 8.41 (d, J = 2.4 Hz, 1H), 8.14 (d, J = 2.4 Hz, 1H), 7.82 (d,
    J = 9.5 Hz, 1H), 7.52 (d, J = 9.5 Hz, 1H), 4.26 (s, 3H), 3.11 (q, J = 7.4 Hz, 2H), 1.21 (t,
    J = 7.4 Hz, 3H).
    1-1-093a δ 9.34-9.32 (m, 1H), 8.71-8.69 (m, 1H), 8.33-8.31 (m, 1H), 7.79 (dd, J = 9.5,
    1.0 Hz, 1H), 7.55 (dd, J = 9.5, 1.9 Hz, 1H), 4.16 (s, 3H), 4.06 (q, J = 7.4 Hz, 2H), 1.47 (t,
    J = 7.4 Hz, 3H).
    1-1093b δ 8.69 (dd, J = 2.0, 1.0 Hz, 1H), 8.66 (d, J = 1.7 Hz, 1H), 8.37 (d, J = 1.7 Hz,
    1H), 7.67 (dd, J = 9.5, 1.0 Hz, 1H), 7.36 (dd, J = 9.5, 2.0 Hz, 1H), 4.32 (s, 3H), 3.12 (q,
    J = 7.5 Hz, 2H), 1.23 (t, J = 7.5 Hz, 3H).
    1-1-094a δ 9.50 (dd, J = 1.5, 0.9 Hz, 1H), 8.70 (d, J = 2.0 Hz, 1H), 8.32 (d, J = 2.0 Hz,
    1H), 7.76 (dd, J = 9.4, 1.5 Hz, 1H), 7.61 (dd, J = 9.4, 0.9 Hz, 1H), 4.15 (s, 3H), 4.05 (q,
    J = 7.4 Hz, 2H), 1.47 (t, J = 7.4 Hz, 3H).
    1-1-094b δ 8.91-8.89 (m, 1H), 8.67-8.65 (m, 1H), 8.37-8.35 (m, 1H), 7.56 (dd, J = 9.4,
    1.5 Hz, 1H), 7.50 (dd, J = 9.4, 0.9 Hz, 1H), 4.31 (s, 3H), 3.11 (q, J = 7.3 Hz, 2H), 1.23 (t,
    J = 7.3 Hz, 3H).
    1-1-094c δ 9.74-9.72 (m, 1H), 8.68-8.66 (m, 1H), 8.29-8.27 (m, 1H), 7.62 (dd, J = 9.4,
    1.7 Hz, 1H), 7.55 (dd, J = 9.4, 0.9 Hz, 1H), 4.43 (s, 3H), 3.75-3.64 (m, 1H),
    3.63-3.49 (m, 1H), 1.57 (t, J = 7.5 Hz, 3H).
    1-1-095a δ 9.05 (d, J = 1.2 Hz, 1H), 8.74 (d, J = 0.9 Hz, 1H), 8.33 (d, J = 1.5 Hz, 1H),
    7.73 (dd, J = 9.3, 0.6 Hz, 1H), 7.50 (dd, J = 9.3, 1.5 Hz, 1H), 4.13 (s, 3H), 4.00 (q,
    J = 7.2 Hz, 2H), 2.59 (s, 3H), 1.45 (t, J = 7.2 Hz, 3H).
    1-1-096a δ 9.57 (s, 1H), 8.77 (s, 1H), 8.36 (s, 1H), 8.00 (d, J = 9.6 Hz, 1H), 7.81 (dd,
    J = 9.6, 1.8 Hz, 1H), 4.18 (s, 3H), 4.18-4.00 (m, 2H), 2.91 (s, 3H), 1.47 (t, J = 7.2 Hz,
    3H).
    1-1-097a δ 9.93 (s, 1H), 8.77 (s, 1H), 8.37 (s, 1H), 8.02-7.90 (m, 2H), 4.19 (s, 3H),
    4.12 (q, J = 7.5 Hz, 2H), 3.23 (s, 3H), 1.49 (t, J = 7.5 Hz, 3H).
    1-1-098a δ 9.48-9.46 (m, 1H), 8.76 (d, J = 1.4 Hz, 1H), 8.35 (d, J = 1.4 Hz, 1H), 7.81 (dd,
    J = 9.4, 0.9 Hz, 1H), 7.67 (dd, J = 9.4, 1.7 Hz, 1H), 4.15 (s, 3H), 4.04 (q, J = 7.4 Hz, 2H),
    3.47 (q, J = 18.7 Hz, 2H), 1.46 (t, J = 7.4 Hz, 3H).
    1-1-099a δ 9.07 (dd, J = 1.7, 0.9 Hz, 1H), 8.69 (d, J = 1.7 Hz, 1H), 8.31 (d, J = 1.7 Hz,
    1H), 7.74 (dd, J = 9.4, 0.9 Hz, 1H), 7.51 (dd, J = 9.4, 1.7 Hz, 1H), 4.15 (s, 3H), 4.02 (q,
    J = 7.3 Hz, 2H), 2.60 (s, 3H), 1.46 (t, J = 7.3 Hz, 3H).
    1-1-100a δ 9.47 (s, 1H), 8.73 (d, J = 1.5 Hz, 1H), 8.33 (d, J = 1.5 Hz, 1H), 7.74 (d,
    J = 9.6 Hz, 1H), 7.58 (d, J = 9.6 Hz, 1H), 6.60 (brs, 1H), 4.11 (s, 3H), 3.93 (q, J = 7.5 Hz,
    2H), 1.56 (s, 9H), 1.45 (t, J = 7.5 Hz, 3H).
    1-1-101a δ 9.47 (d, J = 2.1 Hz, 1H), 8.80-8.77 (m, 1H), 8.75 (d, J = 1.5 Hz, 1H),
    8.39-8.35 (m, 1H), 7.95 (dd, J = 7.8, 2.4 Hz, 1H), 4.21 (s, 3H), 4.17 (q, J = 7.5 Hz, 2H),
    1.47 (t, J = 7.5 Hz, 3H).
    1-1-101b δ 8.82-8.72 (m, 2H), 8.70-8.66 (m, 1H), 8.40 (d, J = 2.1 Hz, 1H), 7.85 (dd,
    J = 7.5, 2.1 Hz, 1H), 4.35 (s, 3H), 3.21 (q, J = 7.5 Hz, 2H), 1.22 (t, J = 7.5 Hz, 3H).
    1-1-102a δ 9.42 (d, J = 7.5 Hz, 1H), 8.50 (dd, J = 4.8, 1.4 Hz, 1H), 8.16-8.13 (m, 1H),
    8.10 (dd, J = 7.5, 1.4 Hz, 1H), 7.33-7.28 (m, 2H), 4.15 (s, 3H), 4.14 (q, J = 7.3 Hz, 2H),
    1.45 (t, J = 7.3 Hz, 3H).
    1-1-102b δ 8.76 (d, J = 7.2 Hz, 1H), 8.47 (dd, J = 4.8, 1.4 Hz, 1H), 8.16 (dd, J = 8.2,
    1.4 Hz, 1H), 8.04 (s, 1H), 7.29 (dd, J = 8.2, 4.8 Hz, 1H), 7.19 (dd, J = 7.2, 1.7 Hz, 1H),
    4.28 (s, 3H), 3.11 (q, J = 7.4 Hz, 2H), 1.19 (t, J = 7.4 Hz, 3H).
    1-1-103a δ 9.42 (d, J = 7.5 Hz, 1H), 8.72 (d, J = 1.7 Hz, 1H), 8.33 (d, J = 1.7 Hz, 1H),
    8.17-8.15 (m, 1H), 7.33 (dd, J = 7.5 Hz, 1.7 Hz, 1H), 4.19 (s, 3H), 4.13 (q, J = 7.5 Hz,
    2H), 1.47 (t, J = 7.5 Hz, 3H).
    1-1-103b δ 8.78 (d, J = 7.2 Hz, 1H), 8.68 (d, J = 1.7 Hz, 1H), 8.38 (d, J = 1.7 Hz, 1H),
    8.05 (s, 1H), 7.21 (dd, J = 7.2, 1.7 Hz, 1H), 4.34 (s, 3H), 3.16 (q, J = 7.4 Hz, 2H),
    1.23 (t, J = 7.4 Hz, 3H).
    1-1-104a δ 10.35 (s, 1H), 8.77 (s, 1H), 8.39-8.35 (m, 1H), 8.22 (s, 1H), 8.06-8.02 (m,
    1H), 7.96-7.90 (m, 2H), 7.67-7.62 (m, 1H), 7.62-7.54 (m, 2H), 4.16 (s, 3H), 4.06 (q,
    J = 7.7 Hz, 2H), 1.54 (t, J = 7.7 Hz, 3H).
    1-1-105a δ 9.92-9.89 (m, 1H), 8.81-8.78 (m, 1H), 8.38 (d, J = 1.5 Hz, 1H), 8.12 (d,
    J = 1.5 Hz, 1H), 4.29 (s, 3H), 4.12 (q, J = 7.1 Hz, 2H), 1.26 (t, J = 7.1 Hz, 3H).
    1-1-105b δ 9.22-9.19 (m, 1H), 8.76 (d, J = 1.4 Hz, 1H), 8.42 (d, J = 1.4 Hz, 1H), 7.96 (d,
    J = 1.4 Hz, 1H), 4.42 (s, 3H), 3.26 (q, J = 7.3 Hz, 2H), 1.26 (t, J = 7.3 Hz, 3H).
    1-1-105c δ 10.22-10.19 (m, 1H), 8.78-8.76 (m, 1H), 8.34 (d, J = 1.7 Hz, 1H), 8.00 (d,
    J = 1.7 Hz, 1H), 4.51 (s, 3H), 3.81-3.57 (m, 2H), 1.58 (t, J = 7.7 Hz, 3H).
    1-1-106a δ 9.36 (dd, J = 7.5, 0.7 Hz, 1H), 8.76 (d, J = 1.0 Hz, 1H), 8.36 (d, J = 1.7 Hz,
    1H), 8.00-7.97 (m, 1H), 7.32-7.27 (m, 1H), 6.79 (t, J = 55.5 Hz, 1H), 4.17 (s, 3H),
    4.07 (q, J = 7.5 Hz, 2H), 1.46 (t, J = 7.5 Hz, 3H).
    1-1-106b δ 8.75 (dd, J = 7.2, 0.7 Hz, 1H), 8.72 (dd, J = 2.0, 0.7 Hz, 1H), 8.40 (d,
    J = 2.0 Hz, 1H), 7.88-7.85 (m, 1H), 7.18 (dd, J = 7.2, 2.0 Hz, 1H), 6.76 (t,
    J = 55.7 Hz, 1H), 4.32 (s, 3H), 3.12 (q, J = 7.4 Hz, 2H), 1.21 (t, J = 7.4 Hz, 2H).
    1-1-106c δ 9.56 (d, J = 7.4 Hz, 1H), 8.72 (d, J = 1.8 Hz, 1H), 8.32 (d, J = 1.8 Hz,
    1H), 7.93-7.90 (m, 1H), 7.11 (dd, J = 7.4, 1.5 Hz, 1H), 6.75 (t, J = 55.7 Hz, 1H),
    4.43 (s, 3H), 3.80-3.64 (m, 1H), 3.63-3.47 (m, 1H), 1.55 (t, J = 7.5 Hz, 3H).
    1-1-107a δ 8.73 (d, J = 1.4 Hz, 1H), 8.65-8.63 (m, 1H), 8.32 (d, J = 2.0 Hz, 1H),
    7.64 (d, J = 9.5 Hz, 1H), 7.13 (dd, J = 9.5, 2.0 Hz, 1H), 4.11 (s, 3H), 3.92 (q,
    J = 7.4 Hz, 2H), 3.83 (brs, 2H), 1.43 (t, J = 7.4 Hz, 3H).
    1-1-108a δ 9.72 (s, 1H), 8.76 (d, J = 2.0 Hz, 1H), 8.35 (d, J = 2.0 Hz, 1H), 7.80 (d,
    J = 9.5 Hz, 1H), 7.71 (d, J = 9.5 Hz, 1H), 4.14 (s, 3H), 3.99 (q, J = 7.5 Hz, 2H),
    1.45 (t, J = 7.5 Hz, 3H) (No peak of proton NH was observed).
    1-1-109a δ 9.49 (dd, J = 6.5, 0.7 Hz, 1H), 8.80-8.70 (m, 1H), 8.35-8.30 (m, 1H),
    7.53 (dd, J = 7.7, 0.7 Hz, 1H), 4.14 (s, 3H), 4.07 (q, J = 7.4 Hz, 2H), 1.46 (t,
    J = 7.4 Hz, 3H).
    1-1-109b δ 8.83 (d, J = 6.5 Hz, 1H), 8.75-8.65 (m, 1H), 8.40-8.35 (m, 1H),
    7.44 (d, J = 8.5 Hz, 1H), 4.28 (s, 3H), 3.09 (q, J = 7.5 Hz, 2H), 1.21 (t, J = 7.5 Hz,
    3H).
    1-1-110a δ 9.52 (s, 1H), 8.75 (d, J = 2.0 Hz, 1H), 8.34 (d, J = 2.0 Hz, 1H), 7.95 (s,
    1H), 4.15 (s, 3H), 4.07 (q, J = 7.4 Hz, 2H), 1.46 (t, J = 7.4 Hz, 3H).
    1-1-110c δ 9.78 (d, J = 0.7 Hz, 1H), 8.75-8.70 (m, 1H), 8.35-8.25 (m, 1H),
    7.90 (d, J = 0.7 Hz, 1H), 4.40 (s, 3H), 3.75-3.45 (m, 2H), 1.55 (t, J = 7.3 Hz, 3H).
    1-1-111a δ 9.60 (d, J = 0.7 Hz, 1H), 8.80-8.75 (m, 1H), 8.40-8.30 (m, 1H),
    8.23 (d, J = 0.7 Hz, 1H), 4.18 (s, 3H), 4.17 (q, J = 7.5 Hz, 2H), 1.48 (t, J = 7.5 Hz,
    3H).
    1-1-111b δ 8.93 (d, J = 0.7 Hz, 1H), 8.75-8.70 (m, 1H), 8.40 -8.35 (m, 1H),
    8.17 (d, J = 0.7 Hz, 1H), 4.32 (s, 3H), 3.20 (q, J = 7.4 Hz, 2H), 1.23 (t, J = 7.4 Hz,
    3H).
    1-1-112a δ 9.37 (d, J = 1.5 Hz, 1H), 8.80-8.70 (m, 1H), 8.40-8.30 (m, 1H),
    7.75 (d, J = 1.5 Hz, 1H), 4.18 (s, 3H), 4.07 (q, J = 7.4 Hz, 2H), 1.46 (t, J = 7.4 Hz,
    3H).
    1-1-112b δ 8.75-8.70 (m, 2H), 8.45-8.30 (m, 1H), 7.55 (d, J = 1.5 Hz, 1H),
    4.34 (s, 3H), 3.13 (q, J = 7.5 Hz, 2H), 1.22 (t, J = 7.5 Hz, 3H).
    1-1-113a δ 9.24 (dd, J = 4.4, 2.0 Hz, 8.80-8.70 (m, 1H), 8.35-8.30 (m, 1H),
    7.61 (dd, J = 7.7, 2.0 Hz, 1H), 4.19 (s, 3H), 4.08 (q, J = 7.4 Hz, 2H), 1.45 (t,
    J = 7.4 Hz, 3H).
    1-1-113b δ 8.75-8.62 (m, 1H), 8.55 (dd, J = 3.7, 2.4 Hz, 1H), 8.40-8.35 (m, 1H),
    7.43 (dd, J = 7.8, 2.4 Hz, 1H), 4.34 (s, 3H), 3.12 (q, J = 7.4 Hz, 2H), 1.21 (t,
    J = 7.4 Hz, 3H).
    1-1-114a δ 9.39 (s, 1H), 8.75 (d, J = 1.8 Hz, 1H), 8.43 (s, 1H), 8.34 (d, J = 1.8 Hz,
    1H), 4.14 (s, 3H), 4.07 (q, J = 7.5 Hz, 2H), 1.45 (t, J = 7.5 Hz, 3H).
    1-1-114b δ 8.76 (d, J = 0.7 Hz, 1H), 8.73-8.71 (m, 1H), 8.40-8.38 (m, 1H),
    8.31 (d, J = 0.7 Hz, 1H), 4.29 (s, 3H), 9, 3.12 (d, J = 7.4 Hz, 2H), 1.21 (t,
    J = 7.4 Hz, 3H).
    1-1-115a δ 9.42 (d, J = 0.6 Hz, 1H), 8.75 (dd, J = 1.8, 0.6 Hz, 1H), 8.34 (dd,
    J = 1.8, 0.6 Hz, 1H), 8.17 (d, J = 0.6 Hz, 1H), 4.15 (s, 3H), 4.08 (q, J = 7.5 Hz,
    2H), 1.46 (t, J = 7.5 Hz, 3H).
    1-1-115b δ 8.77 (d, J = 0.7 Hz, 1H), 8.73-8.71 (m, 1H), 8.40-8.38 (m, 1H),
    8.06 (d, J = 0.7 Hz, 1H), 4.30 (s, 3H), 3.12 (q, J = 7.4 Hz, 2H), 1.22 (t, J = 7.4 Hz,
    3H).
    1-1-116a δ 9.24 (s, 1H), 8.75 (d, J = 2.0 Hz, 1H), 8.34 (d, J = 2.0 Hz, 1H),
    7.40 (s, 1H), 4.15 (s, 3H), 4.03 (q, J = 7.4 Hz, 2H), 2.62 (s, 3H), 1.46 (t,
    J = 7.4 Hz, 3H).
    1-1-117a δ 9.42 (s, 1H), 8.80-8.75 (m, 1H), 8.44 (s, 1H), 8.39-8.32 (m,
    1H), 4.21 (s, 3H), 4.13 (q, J = 7.3 Hz, 2H), 3.00 (s, 3H), 1.49 (t, J = 7.3
    Hz, 3H).
    1-1-118a δ 9.33 (d, J = 1.7 Hz, 1H), 8.80-8.70 (m, 1H), 8.35-8.30 (m, 1H),
    7.83 (d, J = 1.7 Hz, 1H), 4.19 (s, 3H), 4.07 (q, J = 7.4 Hz, 2H), 1.45 (t, J = 7.4 Hz,
    3H).
    1-1-118b δ 8.75-8.70 (m, 1H), 8.67 (d, J = 1.7 Hz, 1H), 8.40-8.35 (m, 1H),
    7.64 (d, J = 1.7 Hz, 1H), 4.35 (s, 3H), 3.13 (q, J = 7.4 Hz, 2H), 1.21 (t, J = 7.4 Hz,
    3H).
    1-1-118c 9.57 (d, J = 1.7 Hz, 1H), 8.75-8.70 (m, 1H), 8.35-8.25 (m, 1H),
    7.70 (d, J = 1.7 Hz, 1H), 4.47 (s, 3H), 3.75-3.50 (m, 2H), 1.55 (t, J = 7.5 Hz, 3H).
    1-1-119b δ 8.76-8.66 (m, 1H), 8.63 (s, 1H), 8.40-8.30 (m, 1H), 4.33 (s, 3H),
    3.10 (q, J = 7.4 Hz, 2H), 2.63 (s, 3H), 1.20 (t, J = 7.4 Hz, 3H).
    1-1-119c δ 9.52 (s, 1H), 8.75-8.70 (m, 1H), 8.35-8.25 (m, 1H), 4.46 (s, 3H),
    3.75-3.45 (m, 2H), 2.63 (s, 3H), 1.54 (t, J = 7.3 Hz, 3H).
    1-1-120c δ 9.37 (d, J = 4.8 Hz, 1H), 9.30-9.25 (m, 1H), 8.75-8.70 (m, 1H),
    8.35-8.30 (m, 1H), 8.04 (d, J = 4.8 Hz, 1H), 4.46 (s, 3H), 3.80-3.50 (m, 2H),
    1.55 (t, J = 7.3 Hz, 3H).
    1-1-121a δ 9.22 (d, J = 3.7 Hz, 1H), 8.80-8.70 (m, 1H), 8.35-8.30 (m, 2H),
    4.15 (s, 3H), 4.07 (q, J = 7.4 Hz, 2H), 1.44 (t, J = 7.4 Hz, 3H).
    1-1-122a δ 9.42 (d, J = 7.5 Hz, 1H), 8.79 (d, J = 2.0 Hz, 1H), 8.60 (d, J = 2.0 Hz,
    1H), 8.19-8.15 (m, 1H), 7.34 (dd, J = 7.5, 1.7 Hz, 1H), 4.21 (s, 3H), 4.12
    (q, J = 7.5 Hz, 2H), 1.48 (t, J = 7.5 Hz, 3H).
    1-1-123a δ 9.42 (d, J = 7.5 Hz, 1H), 9.08 (d, J = 2.0 Hz, 1H), 8.72 (d, J = 2.0 Hz,
    1H), 8.19-8.16 (m, 1H), 7.35 (dd, J = 7.5, 1.7 Hz, 1H), 4.24 (s, 3H), 4.10
    (q, J = 7.4 Hz, 2H), 1.49 (t, J = 7.4 Hz, 3H).
    1-2-004a δ 9.46 (d, J = 7.5 Hz, 1H), 8.80 (d, J = 1.4 Hz, 1H), 8.47 (d, J = 2.0 Hz,
    1H), 8.20 (s, 1H), 7.35 (dd, J = 7.5, 2.0 Hz, 1H), 4.00 (q, J = 7.4 Hz, 2H), 1.48 (t,
    J = 7.4 Hz, 3H).
    1-2-004b δ 8.78-8.72 (m, 2H), 8.43 (d, J = 2.0 Hz, 1H), 8.09 (s, 1H), 7.23 (dd,
    J = 7.3, 2.0 Hz, 1H), 3.10 (q, J = 7.4 Hz, 2H), 1.27 (t, J = 7.4 Hz, 3H).
    1-2-004c δ 9.54 (d, J = 7.5 Hz, 1H), 8.75 (d, J = 1.4 Hz, 1H), 8.40 (d, J = 1.4 Hz,
    1H), 8.13 (s, 1H), 7.20 (dd, J = 7.5, 1.4 Hz, 1H), 3.66-3.39 (m, 2H), 1.50 (t,
    J = 7.5 Hz, 3H).
    1-2-005a δ 9.50 (d, J = 7.4 Hz, 1H), 8.25-8.20 (m, 1H), 8.20-8.10 (m, 1H),
    7.80-7.70 (m, 2H), 7.31 (dd, J = 7.4, 1.8 Hz, 1H), 4.08 (q, J = 7.4 Hz, 2H), 1.45 (t,
    J = 7.4 Hz, 3H).
    1-2-006a δ 9.49 (d, J = 7.4 Hz, 1H), 8.65-8.60 (m, 1H), 8.20-8.10 (m, 2H),
    7.98 (d, J = 8.6 Hz, 1H), 7.34 (dd, J = 7.4, 1.8 Hz, 1H), 4.06 (q, J = 7.4 Hz, 2H),
    1.47 (t, J = 7.4 Hz, 3H).
    1-3-002a δ 9.41 (d, J = 7.5 Hz, 1H), 8.44 (s, 1H), 8.10-8.07 (m, 1H), 7.91 (s,
    1H), 7.27-7.23 (m, 1H), 3.84 (q, J = 7.4 Hz, 2H), 2.99 (s, 3H), 1.36 (t, J = 7.4 Hz,
    3H).
    1-3-003a δ 9.41 (d, J = 7.5 Hz, 1H), 8.44 (s, 1H), 8.09-8.07 (m, 1H), 7.95 (s,
    1H), 7.27-7.22 (m, 1H), 3.87 (q, J = 7.4 Hz, 2H), 2.98 (s, 3H), 1.37 (t, J = 7.4 Hz,
    3H).
    1-3-004a δ 9.39 (d, J = 7.5 Hz, 1H), 9.20 (s, 1H), 8.63 (s, 1H), 8.12-8.08 (m,
    1H), 8.05 (s, 1H), 7.25 (dd, J = 7.5, 1.8 Hz, 1H), 3.75 (q, J = 7.4 Hz, 2H), 1.35 (t,
    J = 7.5 Hz, 3H).
    1-3-005a δ 9.63 (s, 1H), 9.19 (s, 1H), 8.65 (s, 1H), 8.01 (s, 1H), 7.93 (d,
    J = 9.3 Hz, 1H), 7.66 (dd, J = 9.3, 1.5 Hz, 1H), 3.69 (q, J = 7.5 Hz, 2H), 1.34 (t,
    J = 7.5 Hz, 3H).
    1-3-006a δ 9.66 (s, 1H), 8.46 (s, 1H), 7.94-7.86 (m, 2H), 7.65 (dd, J = 9.3,
    1.5 Hz, 1H), 3.82 (q, J = 7.5 Hz, 2H), 2.98 (s, 3H), 1.37 (t, J = 7.5 Hz, 3H).
    1-3-009a δ 9.61 (s, 1H), 9.23 (s, 1H), 7.96 (d, J = 9.6 Hz, 1H), 7.94 (s, 1H),
    7.68 (d, J = 9.6 Hz, 1H), 4.00 (q, J = 7.5 Hz, 2H), 1.45 (t, J = 7.5 Hz, 3H).
    1-3-011a δ 9.65 (s, 1H), 8.98 (s, 1H), 7.96 (d, J = 1.5 Hz, 1H), 7.88 (d, J = 9.3 Hz,
    1H), 7.64 (dd, J = 9.3, 1.5 Hz, 1H), 4.09 (q, J = 7.5 Hz, 2H), 2.94 (s, 3H), 1.44 (t,
    J = 7.5 Hz, 3H).
    1-3-012a δ 9.46-9.44 (m, 1H), 9.24 (d, J = 0.7 Hz, 1H), 8.67 (s, 1H), 7.99 (s,
    1H), 7.71 (dd, J = 9.5, 1.7 Hz, 1H), 7.61 (dd, J = 9.5, 0.7 Hz, 1H), 3.63 (q,
    J = 7.3 Hz, 2H), 1.33 (t, J = 7.3 Hz, 3H).
    1-3-013a δ 9.40-9.30 (m, 1H), 9.25-9.15 (m, 1H), 8.20-8.15 (m, 1H),
    7.95-7.90 (m, 1H), 7.30-7.20 (m, 1H), 3.99 (q, J = 7.5 Hz, 2H), 1.43 (t, J = 7.5 Hz,
    3H).
    1-3-014a δ 9.41 (d, J = 7.5 Hz, 1H), 8.99 (s, 1H), 8.09 (s, 1H), 7.97 (d, J = 1.5 Hz,
    1H), 7.30-7.20 (m, 1H), 4.10 (q, J = 7.5 Hz, 2H), 2.94 (s, 3H), 1.43 (t, J = 7.5 Hz,
    3H).
    1-4-002a δ 9.65 (s, 1H), 8.94 (s, 1H), 8.57 (d, J = 2.1 Hz, 1H), 8.31 (s, 1H),
    7.91 (d, J = 9.3 Hz, 1H), 7.64 (dd, J = 9.3, 2.1 Hz, 1H), 3.76 (q, J = 7.5 Hz, 2H),
    1.36 (t, J = 7.5 Hz, 3H).
    1-4-003a δ 9.48 (dd, J = 1.7, 1.0 Hz, 1H), 8.94 (s, 1H), 8.56 (d, J = 2.0 Hz, 1H),
    8.31-8.29 (m, 1H), 7.69 (dd, J = 9.4, 1.7 Hz, 1H), 7.60 (dd, J = 9.4, 1.0 Hz, 1H),
    3.69 (q, J = 7.4 Hz, 2H), 1.34 (t, J = 7.4 Hz, 3H).
    1-4-003b δ 9.05-9.00 (m, 1H), 8.80-8.70 (m, 1H), 8.55-8.50 (m, 1H),
    8.30-8.25 (m, 1H), 7.55-7.45 (m, 2H), 2.86 (q, J = 7.4 Hz, 2H), 1.20 (t, J = 7.4 Hz,
    3H).
    1-5-001a δ 9.39 (d, J = 7.4 Hz, 1H), 8.54 (s, 1H), 8.30 (d, J = 7.4 Hz, 1H), 8.07 (s,
    1H), 8.01 (s, 1H), 7.21 (dd, J = 7.4, 1.7 Hz, 1H), 7.04 (dd, J = 7.4, 1.7 Hz, 1H),
    3.75 (q, J = 7.5 Hz, 2H), 1.31 (t, J = 7.5 Hz, 3H).
    1-5-003a δ 9.38 (d, J = 7.5 Hz, 1H), 8.59 (s, 2H), 8.10 (s, 1H), 7.82 (d, J = 9.5 Hz,
    1H), 7.40 (dd, J = 9.5, 2.0 Hz, 1H), 7.22 (dd, J = 7.5, 2.0 Hz, 1H), 3.66 (q,
    J = 7.4 Hz, 2H), 1.31 (t, J = 7.4 Hz, 3H).
    1-5-004a δ 9.64 (s, 1H), 8.61 (s, 1H), 8.59 (s, 1H), 7.91 (d, J = 9.6 Hz, 1H),
    7.80 (d, J = 9.6 Hz, 1H), 7.63 (dd, J = 9.6, 1.8 Hz, 1H), 7.39 (dd, J = 9.6, 1.8 Hz,
    1H), 3.64 (q, J = 7.5 Hz, 2H), 1.31 (t, J = 7.5 Hz, 3H).
    1-6-001a δ 9.38 (d, J = 7.5 Hz, 1H), 9.24 (s, 1H), 8.66 (s, 1H), 8.62 (s, 1H),
    8.13-8.08 (m, 1H), 7.26 (dd, J = 7.5, 1.9 Hz, 1H), 3.74 (q, J = 7.4 Hz, 2H), 1.35 (t,
    J = 7.4 Hz, 3H).
    1-6-002a δ 9.63 (s, 1H), 9.24 (s, 1H), 8.68 (s, 1H), 8.62 (s, 1H), 7.93 (d,
    J = 9.3 Hz, 1H), 7.66 (dd, J = 9.3, 1.8 Hz, 1H), 3.70 (q, J = 7.5 Hz, 2H), 1.35 (t,
    J = 7.5 Hz, 3H).
    1-7-001a δ 9.42 (d, J = 7.5 Hz, 1H), 8.15 (d, J = 1.7 Hz, 1H), 7.96 (d, J = 8.2 Hz,
    1H), 7.75 (d, J = 8.2 Hz, 1H), 7.32 (dd, J = 7.5, 1.7 Hz, 1H), 4.23 (q, J = 7.4 Hz,
    2H), 4.14 (s, 3H), 1.46 (t, J = 7.4 Hz, 3H).
    1-8-002a δ 9.63 (s, 1H), 9.00 (s, 1H), 8.15 (s, 1H), 7.95 (d, J = 9.6 Hz, 1H),
    7.73 (dd, J = 9.6, 1.5 Hz, 1H), 4.19 (s, 3H), 4.06 (q, J = 7.5 Hz, 2H), 1.47 (t,
    J = 7.5 Hz, 3H).
    1-8-002b δ 9.03 (s, 1H), 8.97 (s, 1H), 8.20 (s, 1H), 7.82 (d, J = 9.6 Hz, 1H),
    7.54 (dd, J = 9.6, 1.5 Hz, 1H), 4.36 (s, 3H), 3.15 (q, J = 7.5 Hz, 2H), 1.23 (t,
    J = 7.5 Hz, 3H).
    1-8-006a δ 9.17 (d, J = 7.5 Hz, 1H), 8.99 (s, 1H), 8.14 (s, 1H), 7.87 (d, J = 2.4 Hz,
    1H), 7.15 (dd, J = 7.5, 2.4 Hz, 1H), 4.17 (s, 3H), 3.99 (q, J = 7.5 Hz, 2H), 1.43 (t,
    J = 7.5 Hz, 3H).
    1-8-006b δ 8.95 (s, 1H), 8.59 (d, J = 7.5 Hz, 1H), 8.19 (s, 1H), 7.74-7.71 (m,
    1H), 7.03 (dd, J = 7.5, 2.1 Hz, 1H), 4.33 (s, 3H), 3.09 (q, J = 7.5 Hz, 2H), 1.19 (t,
    J = 7.5 Hz, 3H).
    1-8-007a δ 9.47 (s, 1H), 8.98 (s, 1H), 8.14 (s, 1H), 7.76 (dd, J = 9.3, 1.2 Hz,
    1H), 7.61 (d, J = 9.3 Hz, 1H), 4.15 (s, 3H), 3.98 (q, J = 7.5 Hz, 2H), 1.45 (t,
    J = 7.5 hz, 3H).
    1-8-007b δ 8.95 (s, 1H), 8.90 (s, 1H), 8.19 (s, 1H), 7.57 (dd, J = 9.3, 1.2 Hz,
    1H), 7.50 (d, J = 9.3 Hz, 1H), 4.33 (s, 3H), 3.10 (q, J = 7.5 Hz, 2H), 1.21 (t,
    J = 7.5 Hz, 3H).
    1-8-008a δ 9.32-9.31 (m, 1H), 8.99 (s, 1H), 8.14 (d, J = 1.2 Hz, 1H), 7.53 (dd,
    J = 8.3, 1.2 Hz, 1H), 4.19 (s, 3H), 4.05 (q, J = 7.5 Hz, 2H), 1.46 (t, J = 7.5 Hz,
    3H).
    1-8-009a δ 8.88 (d, J = 1.4 Hz, 1H), 8.85 (s, 1H), 7.99-7.97 (m, 1H), 6.94 (d,
    J = 1.4 Hz, 1H), 4.20 (q, J = 7.0 Hz, 2H), 3.99 (s, 3H), 3.76 (q, J = 7.4 Hz, 2H),
    1.47 (t, J = 7.0 Hz, 3H), 1.30 (t, J = 7.4 Hz, 3H).
    1-8-010a δ 9.00-8.90 (m, 2H), 8.30-8.25 (m, 1H), 8.15-8.10 (m, 1H), 7.40 (dd,
    J = 7.4, 1.6 Hz, 1H), 4.15 (s, 3H), 3.98 (q, J = 7.4 Hz, 2H), 1.43 (t, J = 7.4 Hz,
    3H).
    1-8-011a δ 9.25-9.20 (m, 1H), 9.00-8.95 (m, 1H), 8.15-8.10 (m, 1H), 7.43 (dd,
    J = 8.6, 1.6 Hz, 1H), 4.20 (s, 3H), 4.12 (q, J = 7.4 Hz, 2H), 1.47 (t, J = 7.4 Hz,
    3H).
    1-8-013a δ 9.39 (dd, J = 1.7, 0.7 Hz, 1H), 8.99 (s, 1H), 8.14 (d, J = 0.7 Hz, 1H),
    7.74 (dd, J = 9.5, 0.7 Hz, 1H), 7.66 (dd, J = 9.5, 1.7 Hz, 1H), 4.17 (s, 3H),
    4.01 (q, J = 7.5 Hz, 2H), 1.47 (t, J = 7.5 Hz, 3H).
    1-8-013b δ 8.95 (s, 1H), 8.80 (dd, J = 9.5, 2.0 Hz, 1H), 8.19 (d, J = 0.9 Hz, 1H),
    7.62 (dd, J = 9.5, 0.9 Hz, 1H), 7.46 (dd, J = 9.5, 2.0 Hz, 1H), 4.35 (s, 3H),
    3.11 (q, J = 7.4 Hz, 2H), 1.22 (t, J = 7.4 Hz, 3H).
    1-8-013c δ 9.65 (dd, J = 1.9, 0.9 Hz, 1H), 8.97 (s, 1H), 8.10 (d, J = 0.9 Hz, 1H),
    7.66 (dd, J = 9.5 Hz, 0.9 Hz, 1H), 7.52 (dd, J = 9.7, 1.9 Hz, 1H), 4.49 (s, 3H),
    3.77-3.64 (m, 1H), 3.63-3.52 (m, 1H), 1.58 (t, J = 7.3 Hz, 3H).
    1-8-014a δ 9.68 (s, 1H), 9.02 (s, 1H), 8.20 (s, 1H), 8.15 (s, 1H), 4.20
    (s, 3H), 4.12 (q, J = 7.2 Hz, 2H), 1.48 (t, J = 7.2 Hz, 3H).
    1-8-014b δ 9.04 (s, 1H), 9.00 (s, 1H), 8.18 (s, 1H), 8.13 (s, 1H), 4.37
    (s, 3H), 3.19 (q, J = 7.3 Hz, 2H), 1.23 (t, J = 7.3 Hz, 3H).
    1-8-015a δ 9.55 (d, J = 6.1 Hz, 1H), 9.00 (s, 1H), 8.14 (s, 1H), 7.52 (d,
    J = 7.4 Hz, 1H), 4.18 (s, 3H), 4.03 (q, J = 7.4 Hz, 2H), 1.46 (t, J = 7.4 Hz,
    3H).
    1-8-015b δ 8.96-8.92 (m, 2H), 8.19-8.18 (m, 1H), 7.40 (d, J = 8.2 Hz, 1H),
    4.34 (s, 3H), 3.11 (q, J = 7.4 Hz, 2H), 1.22 (t, J = 7.3 Hz, 3H).
    1-8-016a δ 9.29 (d, J = 2.0 Hz, 1H), 9.00-8.95 (m, 1H), 8.15-8.10 (m, 1H),
    7.78 (d, J = 9.5 Hz, 1H), 7.55 (dd, J = 9.5, 2.0 Hz, 1H), 4.16 (s, 3H), 4.00 (q,
    J = 7.4 Hz, 2H), 1.45 (t, J = 7.4 Hz, 3H).
    1-8-016b δ 8.95-8.90 (m, 1H), 8.68 (d, J = 2.0 Hz, 1H), 8.20-8.15 (m, 1H),
    7.66 (d, J = 9.4 Hz, 1H), 7.36 (dd, J = 9.4, 2.0 Hz, 1H), 4.34 (s, 3H), 3.10 (q,
    J = 7.4 Hz, 2H), 1.21 (t, J = 7.4 Hz, 3H).
    1-9-001a δ 9.63 (s, 1H), 9.21 (s, 1H), 7.95 (d, J = 9.6 Hz, 1H), 7.85 (s, 1H),
    7.72 (d, J = 9.6 Hz, 1H), 4.11 (s, 3H), 4.06 (q, J = 7.5 Hz, 2H), 1.47 (t, J = 7.5 Hz,
    3H).
    1-9-001b δ 9.26 (s, 1H), 9.03 (s, 1H), 7.83 (s, 1H), 7.82 (d, J = 9.6 Hz, 1H),
    7.54 (d, J = 9.6 Hz, 1H), 4.29 (s, 3H), 3.16 (q, J = 7.5 Hz, 2H), 1.23 (t, J = 7.5 Hz,
    3H).
    1-9-002a δ 9.39 (d, J = 7.8 Hz, 1H), 9.20 (s, 1H), 8.14 (s, 1H), 7.85 (s, 1H),
    7.32 (dd, J = 7.8, 1.5 Hz, 1H), 4.12 (s, 3H), 4.07 (q, J = 7.5 Hz, 2H), 1.46 (t,
    J = 7.5 Hz, 3H).
    1-9-002b δ 9.25 (s, 1H), 8.77 (d, J = 7.2 Hz, 1H), 8.04 (s, 1H), 7.82 (s, 1H),
    7.20 (dd, J = 7.2, 1.2 Hz, 1H), 4.29 (s, 3H), 3.16 (q, J = 7.5 Hz, 2H), 1.22 (t,
    J = 7.5 Hz, 3H).
    1-9-003a δ 9.19 (s, 1H), 9.17 (d, J = 7.5 Hz, 1H), 7.85-7.81 (m, 2H), 7.14 (dd,
    J = 7.5, 2.4 Hz, 1H), 4.08 (s, 3H), 4.00 (q, J = 7.5 Hz, 2H), 1.44 (t, J = 7.5 Hz,
    3H).
    1-9-003b δ 9.24 (s, 1H), 8.59 (dd, J = 7.2, 0.6 Hz, 1H), 7.81 (s, 1H),
    7.73-7.69 (m, 1H), 7.03 (dd, J = 7.2, 1.8 Hz, 1H), 4.26 (s, 3H), 3.10 (q, J = 7.5 Hz,
    2H), 1.20 (t, J = 7.5 Hz, 3H).
    1-10-001a δ 9.44 (d, J = 7.2 Hz, 1H), 8.86 (d, J = 0.7 Hz, 1H), 8.12-8.04 (m, 2H),
    7.87 (d, J = 8.9 Hz, 1H), 7.33-7.28 (m, 2H), 4.08 (q, J = 7.5 Hz, 2H), 1.47 (t,
    J = 7.5 Hz, 3H).
    1-10-001b δ 9.08 (d, J = 0.7 Hz, 1H), 8.75 (d, J = 7.2 Hz, 1H), 8.20-8.17 (m, 1H),
    8.00-7.97 (m, 1H), 7.87 (d, J = 8.9 Hz, 1H), 7.29 (dd, J = 8.9, 1.4 Hz, 1H),
    7.22 (dd, J = 7.2, 1.9 Hz, 1H), 3.00 (q, J = 7.4 Hz, 2H), 1.20 (t, J = 7.4 Hz, 3H).
    1-10-001c δ 9.57 (d, J = 7.2 Hz, 1H), 8.99 (d, J = 1.0 Hz, 1H), 8.09-8.05 (m, 1H),
    8.01-7.97 (m, 1H), 7.87 (d, J = 8.9 Hz, 1H), 7.31 (dd, J = 8.9, 1.4 Hz, 1H),
    7.16 (dd, J = 7.2, 1.9 Hz, 1H), 3.73-3.46 (m, 2H), 1.55 (t, J = 7.5 Hz, 3H).
    1-10-002c δ 9.57 (d, J = 7.4 Hz, 1H), 9.30 (d, J = 0.9 Hz, 1H), 8.85 (d, J = 1.5 Hz,
    1H), 8.44-8.41 (m, 1H), 8.05-8.02 (m, 1H), 7.19 (dd, J = 7.4, 2.3 Hz, 1H),
    3.70-3.43 (m, 2H), 1.55 (t, J = 7.4 Hz, 3H).
    1-10-003a δ 9.52-9.50 (m, 1H), 9.13-9.12 (m, 1H), 8.86-8.84 (m, 1H),
    8.45-8.43 (m, 1H), 7.80 (dd, J = 9.2, 1.5 Hz, 1H), 7.58 (dd, J = 9.2, 0.9 Hz, 1H),
    3.97 (q, J = 7.5 Hz, 2H), 1.48 (t, J = 7.5 Hz, 3H).
    1-10-003b δ 9.40 (s, 1H), 8.86-8.85 (m, 1H), 8.83 (d, J = 2.1 Hz, 1H),
    8.50-8.48 (m, 1H), 7.62 (dd, J = 9.2, 1.5 Hz, 1H), 7.51 (d, J = 9.2 Hz, 1H), 2.94 (q,
    J = 7.4 Hz, 2H), 1.20 (t, J = 7.4 Hz, 3H).
    1-11-001c δ 9.58 (d, J = 7.4 Hz, 1H), 9.38 (s, 1H), 9.23 (d, J = 0.9 Hz, 1H),
    8.06 (s, 1H), 8.04-8.01 (m, 1H), 7.25-7.17 (m, 1H), 3.75-3.45 (m, 2H), 1.53 (t,
    J = 7.4 Hz, 3H).
    1-11-002a δ 9.40-9.34 (m, 1H), 9.05-9.00 (m, 1H), 8.99 (d, J = 7.4 Hz, 1H),
    8.25-8.20 (m, 1H), 8.10-8.05 (m, 1H), 7.43 (dd, J = 7.4, 1.8 Hz, 1H), 3.95 (q,
    J = 7.4 Hz, 2H), 1.44 (t, J = 7.4 Hz, 3H).
    1-11-003a δ 9.51-9.48 (m, 1H), 9.38 (s, 1H), 9.03-9.01 (m, 1H), 8.07 (s, 1H),
    7.81 (dd, J = 9.3, 1.7 Hz, 1H), 7.58 (d, J = 9.3 Hz, 1H), 3.95 (q, J = 7.4 Hz, 2H),
    1.47 (t, J = 7.4 Hz, 3H).
    1-11-003b δ 9.36 (s, 1H), 9.27 (s, 1H), 8.87-8.85 (m, 1H), 8.13 (s, 1H),
    7.62 (dd, J = 9.2, 0.9 Hz, 1H), 7.49 (d, J = 9.2 Hz, 1H), 2.97 (q, J = 7.4 Hz, 2H),
    1.20 (t, J = 7.4 Hz, 3H).
    1-11-004a δ 9.69-9.66 (m, 1H), 9.40 (d, J = 1.0 Hz, 1H), 9.08 (d, J = 1.0 Hz, 1H),
    8.09 (s, 1H), 7.93 (d, J = 9.5 Hz, 1H), 7.78 (dd, J = 9.5, 1.7 Hz, 1H), 4.03 (q,
    J = 7.5 Hz, 2H), 1.50 (t, J = 7.5 Hz, 3H).
    1-11-004b δ 9.38 (dd, J = 1.4, 0.7 Hz, 1H), 9.30 (d, J = 1.0 Hz, 1H), 9.02-8.99 (m,
    1H), 8.15 (s, 1H), 7.85-7.80 (m, 1H), 7.60 (dd, J = 9.3, 1.7 Hz, 1H), 3.03 (q,
    J = 7.4 Hz, 2H), 1.23 (t, J = 7.4 Hz, 3H).
    1-11-004c δ 9.87-9.85 (m, 1H), 9.38 (s, 1H), 9.23 (d, J = 1.0 Hz, 1H), 8.05 (s,
    1H), 7.83 (d, J = 9.5 Hz, 1H), 7.64 (dd, J = 9.5, 1.7 Hz, 1H), 3.72-3.47 (m, 2H),
    1.57 (t, J = 7.5 Hz, 3H).
    1-11-005a δ 9.40-9.35 (m, 1H), 9.30-9.25 (m, 1H), 9.10-9.05 (m, 1H), 8.06(s,
    1H), 7.48 (dd, J = 8.6, 1.6 Hz, 1H), 4.02 (q, J = 7.4 Hz, 2H), 1.49 (t, J = 7.4 Hz,
    3H).
    1-11-005b δ 9.40-9.30 (m, 1H), 9.25 (d, J = 1.0 Hz, 1H), 8.65-8.60 (m, 1H),
    8.15-8.10 (m, 1H), 7.30 (dd, J = 8.9, 1.7 Hz, 1H), 3.04 (q, J = 7.4 Hz, 2H), 1.23 (t,
    J = 7.4 Hz, 3H).
    1-11-006a δ 9.39-9.37 (m, 1H), 9.35 (s, 1H), 9.08 (d, J = 1.4 Hz, 1H), 8.07 (s,
    1H), 7.58 (dd, J = 8.2, 1.4 Hz, 1H), 4.03 (q, J = 7.5 Hz, 2H), 1.50 (t, J = 7.5 Hz,
    3H).
    1-11-006b δ 9.36 (s, 1H), 9.27 (s, 1H), 8.72 (d, J = 1.4 Hz, 1H), 8.14 (s, 1H),
    7.40 (dd, J = 8.9, 1.4 Hz, 1H), 3.05 (q, J = 7.5 Hz, 2H), 1.23 (t, J = 7.5 Hz, 3H).
    1-11-007a δ 9.42-9.41 (m, 1H), 9.39-9.37 (m, 1H), 9.03 (d, J = 1.0 Hz, 1H),
    8.08 (s, 1H), 7.71-7.69 (m, 2H), 3.96 (q, J = 7.5 Hz, 2H), 1.48 (t, J = 7.5 Hz, 3H).
    1-11-007b δ 9.38-9.36 (m, 1H), 9.27 (d, J = 1.0 Hz, 1H), 8.77 (d, J = 1.0 Hz, 1H),
    8.14 (s, 1H), 7.61 (d, J = 9.5 Hz, 1H), 7.52 (dd, J = 9.5, 1.9 Hz, 1H), 2.98 (q,
    J = 7.4 Hz, 2H), 1.22 (t, J = 7.4 Hz, 3H).
    1-11-007c δ 9.58 (d, J = 1.0 Hz, 1H), 9.37 (s, 1H), 9.19 (s, 1H), 8.05 (s, 1H),
    7.62 (d, J = 9.5 Hz, 1H), 7.56 (dd, J = 9.5, 1.4 Hz, 1H), 3.71-3.44 (m, 2H), 1.56 (t,
    J = 7.3 Hz, 3H).
    1-12-002a δ 9.59 (s, 1H), 8.45 (s, 1H), 7.94-7.92 (m, 1H), 7.86 (d, J = 9.6 Hz,
    1H), 7.61 (dd, J = 9.6, 2.1 Hz, 1H), 3.60 (q, J = 7.5 Hz, 2H), 1.31 (t, J = 7.5 Hz,
    3H).
    1-12-003a δ 9.62 (s, 1H), 8.30 (s, 1H), 7.85 (d, J = 9.6 Hz, 1H), 7.61 (dd, J = 9.6,
    1.5 Hz, 1H), 3.69 (q, J = 7.5 Hz, 2H), 2.61 (s, 3H), 1.32 (t, J = 7.5 Hz, 3H).
    1-12-004a δ 9.35 (d, J = 7.5 Hz, 1H), 8.42 (s, 1H), 8.04 (s, 1H), 7.96 (d,
    J = 1.7 Hz, 1H), 7.20 (dd, J = 7.5, 1.7 Hz, 1H), 3.62 (q, J = 7.4 Hz, 2H), 1.30 (t,
    J = 7.4 Hz, 3H).
    1-12-005a δ 9.37 (d, J = 7.5 Hz, 1H), 8.28 (s, 1H), 8.04-8.02 (m, 1H), 7.20 (dd,
    J = 7.5, 1.9 Hz, 1H), 3.72 (q, J = 7.4 Hz, 2H), 2.63 (s, 3H), 1.32 (t, J = 7.4 Hz,
    3H).
    1-12-006a δ 9.61 (s, 1H), 8.78 (s, 1H), 7.87 (d, J = 9.6 Hz, 1H), 7.63 (dd, J = 9.6,
    1.8 Hz, 1H), 3.63 (q, J = 7.5 Hz, 2H), 1.33 (t, J = 7.5 Hz, 3H).
    1-12-007a δ 9.60 (s, 1H), 8.81 (s, 1H), 7.87 (d, J = 9.6 Hz, 1H), 7.63 (dd, J = 9.6,
    1.8 Hz, 1H), 3.62 (q, J = 7.5 Hz, 2H), 1.33 (t, J = 7.5 Hz, 3H).
    1-12-008a δ 9.35 (d, J = 7.5 Hz, 1H), 8.77 (s, 1H), 8.08-8.04 (m, 1H), 7.22 (dd,
    J = 7.5, 1.9 Hz, 1H), 3.64 (q, J = 7.4 Hz, 2H), 1.32 (t, J = 7.4 Hz, 3H).
    1-12-009a δ 9.43 (dd, J = 1.5, 0.9 Hz, 1H), 8.77 (s, 1H), 7.67 (dd, J = 9.4, 1.5 Hz,
    1H), 7.56 (dd, J = 9.4, 0.9 Hz, 1H), 3.56 (q, J = 7.5 Hz, 2H), 1.32 (t, J = 7.5 Hz,
    3H).
    1-15-002a δ 9.43 (d, J = 7.5 Hz, 1H), 8.15-8.12 (m, 1H), 7.79 (s, 1H), 7.73 (s,
    1H), 7.31 (dd, J = 7.5, 1.9 Hz, 1H), 4.27 (q, J = 7.4 Hz, 2H), 4.14 (s, 3H), 1.50 (t,
    J = 7.4 Hz, 3H).
    1-15-002b δ 8.79 (d, J = 7.4 Hz, 1H), 8.02 (s, 1H), 7.77 (s, 1H), 7.70 (s, 1H),
    7.19 (dd, J = 7.4, 1.7, Hz, 1H), 4.26 (s, 3H), 3.35 (q, J = 7.4 Hz, 2H), 1.29 (t,
    J = 7.4 Hz, 3H).
    1-15-003a δ 9.35 (d, J = 7.5 Hz, 1H), 8.15 (s, 1H), 8.04 (s, 1H), 7.76 (s, 1H),
    7.36-7.29 (m, 1H), 4.31 (s, 3H), 3.98 (q, J = 7.4 Hz, 2H), 1.44 (t, J = 7.4 Hz, 3H).
    1-17-001a δ 9.46 (s, 1H), 8.85-8.81 (m, 1H), 8.78 (d, J = 2.4 Hz, 1H), 7.70 (dd,
    J = 9.6, 1.5 Hz, 1H), 7.62 (d, J = 9.3 Hz, 1H), 4.05 (q, J = 7.5 Hz, 2H), 1.45 (t,
    J = 7.5 Hz, 3H).
    2-1-001a δ 8.76-8.73 (m, 1H), 8.71-8.67 (m, 1H), 8.35-8.32 (m, 1H), 4.22 (s,
    3H), 4.19 (q, J = 7.4 Hz, 2H), 1.45 (t, J = 7.4 Hz, 3H).
    2-1-001b δ 8.66-8.64 (m, 1H), 8.36-8.34 (m, 1H), 8.11-8.09 (m, 1H), 4.24 (s,
    3H), 3.14 (q, J = 7.4 Hz, 2H), 1.25 (t, J = 7.4 Hz, 3H).
    3-1-001c δ 8.83 (d, J = 1.4 Hz, 1H), 8.57 (brs, 1H), 8.41 (d, J = 1.7 Hz, 1H),
    7.72 (dd, J = 8.9, 1.4 Hz, 1H), 7.63 (d, J = 8.9 Hz, 1H), 4.00 (s, 3H), 3.82 (s,
    3H), 3.41-3.09 (m, 2H), 1.19 (t, J = 7.3 Hz, 3H).
    3-1-002c δ 9.16 (s, 1H), 8.78 (s, 1H), 8.36 (s, 1H), 8.10 (d, J = 8.6 Hz, 1H),
    7.79 (d, J = 8.6 Hz, 1H), 4.12 (s, 3H), 3.64-3.46 (m, 2H), 1.49 (t, J = 7.5 Hz, 3H).
    i-1-012 δ 8.03 (d, J = 1.8 Hz, 1H), 7.58 (d, J = 9.9 Hz, 1H), 7.40 (d, J = 2.4 Hz,
    1H), 4.48 (q, J = 7.2 Hz, 2H), 3.89 (s, 3H), 2.94 (q, J = 7.2 Hz, 2H), 1.46 (t,
    J = 7.5 Hz, 3H), 1.19 (t, J = 7.5 Hz, 3H).
    i-1-020 δ 8.29 (d, J = 6.6 Hz, 1H), 8.10 (d, J = 0.9 Hz, 1H), 7.21 (dd, J = 7.2,
    1.5 Hz, 1H), 4.49 (q, J = 7.2 Hz, 2H), 2.93 (q, J = 7.2 Hz, 2H), 1.47 (t, J = 7.5 Hz,
    3H), 1.18 (t, J = 7.5 Hz, 3H).
    i-1-025 δ 8.73 (d, J = 1.4 Hz, 1H), 7.62 (d, J = 1.4 Hz, 1H), 4.51 (q, J = 7.0 Hz,
    2H), 2.97 (q, J = 7.4 Hz, 2H), 1.37 (t, J = 7.0 Hz, 3H), 1.21 (t, J = 7.4 Hz, 3H).
    i-5-005 δ 9.13 (brs, 1H), 8.37 (s, 1H), 7.91 (s, 1H), 7.87 (d, J = 8.9 Hz, 1H),
    7.58 (d, J = 6.8 Hz, 1H), 7.46-7.40 (m, 1H), 5.24 (brs, 1H), 3.10 (d, J = 4.8 Hz,
    3H), 3.06 (q, J = 7.5 Hz, 2H), 1.27 (t, J = 7.5 Hz, 3H).
    i-7-003 δ 7.95 (d, J = 7.0 Hz, 1H), 7.69 (s, 1H), 7.04 (d, J = 7.0 Hz, 1H),
    4.35 (brs, 2H), 2.58 (q, J = 7.4 Hz, 2H), 1.19 (t, J = 7.4 Hz, 3H).
    i-7-004 δ 8.56 (s, 1H), 7.42 (d, J = 9.2 Hz, 1H), 7.32 (dd, J = 9.2, 1.7 Hz, 1H),
    4.42 (brs, 2H), 2.65 (q, J = 7.3 Hz, 2H), 1.24 (t, J = 7.3 Hz, 3H).
    i-7-005 δ 8.17 (d, J = 1.6 Hz, 1H), 7.04 (dd, J = 9.4, 1.6 Hz, 1H), 4.38 (brs, 2H),
    2.63 (q, J = 7.4 Hz, 2H), 1.22 (t, J = 7.4 Hz, 3H).
  • Now, usefulness of the compounds of the present invention as pesticides will be described in detail by referring to the following Test Examples, but the present invention is by no means restricted thereto.
  • TEST EXAMPLE 1: Insecticidal Test on Nilaparvata lugens
  • 10% emulsifiable concentrates (or 10% wettable powders) of compounds of the present invention were diluted with water containing a spreader to obtain 500 ppm solutions. Rice sheaths were soaked in the solutions for about 10 seconds. After the soaking, the rice sheaths were dried in air and put in test tubes. In each tube, five 3rd-instar larvae of Nilaparvata lugens were released, and the tubes were capped with sponge and placed in an incubator at 25° C. 6 Days after, dead insects in the test tubes were counted, and the mortality (%) (the number of dead insects÷the number of released insects×100) was calculated. The test was carried out in duplicate.
  • Among the compounds tested, the following compounds showed a mortality of at least 90%.
  • Compounds Nos. 1-1-001a, 1-1-002a, 1-1-005a, 1-1-006a, 1-1-009a, 1-1-015a, 1-1-020a, 1-1-023a, 1-1-024a, 1-1-035a, 1-1-036a, 1-1-038a, 1-1-039a, 1-1-040a, 1-1-042a, 1-1-043a, 1-1-044a, 1-1-049a, 1-1-052a, 1-1-057a, 1-1-057c, 1-1-058a, 1-1-064a, 1-1-072a, 1-1-074a, 1-1-095a, 1-1-096a, 1-1-097a, 1-1-099a, 1-1-100a, 1-1-105a, 1-1-106a, 1-1-116a, 1-1-117a, 1-1-122a, 1-1-123a, 1-2-001a, 1-2-002a, 1-3-001a, 1-3-003a, 1-3-005a, 1-3-007a, 1-4-002a, 1-5-002a, 1-8-002a, 1-8-005a, 1-8-010a, 1-9-002a, 1-11-001a, 1-11-001b, 1-11-002a, 1-11-003a, 1-11-004a, 1-11-004b, 1-12-003a, 1-12-004a, 1-12-006a, 1-12-007a, 1-12-008a, 1-12-009a, 1-14-001a, 1-16-001a, 1-16-001b, 2-1-001a and 3-1-002a of the present invention.
  • Test Example 2: Insecticidal Test on Plutella xylostella
  • 10% emulsifiable concentrates (or 10% wettable powders) of compounds of the present invention were diluted with water containing a spreader to obtain 500 ppm solutions. Leaves of cabbage were soaked in the solutions for about 10 seconds. After the soaking, the leaves were dried in air and placed in dishes. In each dish, five 3rd-instar larvae of Plutella xylostella were released, and the dishes were covered with lids and placed in an incubator at 25° C. 6 Days after, dead insects in the dishes were counted, and the mortality was calculated by using the same equation as in Test Example 1. The test was carried out in duplicate.
  • Among the compounds tested, the following compounds showed a mortality of at least 90%.
  • Compounds Nos. 1-1-001a, 1-1-001b, 1-1-001c, 1-1-002a, 1-1-002b, 1-1-003a, 1-1-003c, 1-1-004a, 1-1-005a, 1-1-005c, 1-1-006a, 1-1-007a, 1-1-008a, 1-1-009a, 1-1-011a, 1-1-012a, 1-1-012b, 1-1-013a, 1-1-013b, 1-1-013c, 1-1-014a, 1-1-014b, 1-1-014c, 1-1-015a, 1-1-015b, 1-1-016a, 1-1-016b, 1-1-016c, 1-1-017a, 1-1-018a, 1-1-019a, 1-1-020a, 1-1-020b, 1-1-021b, 1-1-022a, 1-1-023a, 1-1-023b, 1-1-023c, 1-1-024a, 1-1-026a, 1-1-027a, 1-1-027b, 1-1-029a, 1-1-030a, 1-1-030b, 1-1-030c, 1-1-032a, 1-1-033a, 1-1-034a, 1-1-035a, 1-1-036a, 1-1-037a, 1-1-038a, 1-1-039a, 1-1-040a, 1-1-040c, 1-1-041a, 1-1-042a, 1-1-043a, 1-1-044a, 1-1-045a, 1-1-045b, 1-1-046a, 1-1-047a, 1-1-048a, 1-1-049a, 1-1-049b, 1-1-050a, 1-1-050b, 1-1-051a, 1-1-051b, 1-1-052a, 1-1-052b, 1-1-053a, 1-1-054a, 1-1-055a, 1-1-056a, 1-1-057a, 1-1-057c, 1-1-058a, 1-1-058b, 1-1-059a, 1-1-060a, 1-1-060b, 1-1-061a, 1-1-062a, 1-1-063a, 1-1-063b, 1-1-064a, 1-1-065a, 1-1-066a, 1-1-067a, 1-1-068a, 1-1-069a, 1-1-069b, 1-1-070a, 1-1-070b, 1-1-071a, 1-1-072a, 1-1-072b, 1-1-072c, 1-1-073b, 1-1-074a, 1-1-076a, 1-1-077a, 1-1-077b, 1-1-080a, 1-1-081a, 1-1-082a, 1-1-083a, 1-1-084a, 1-1-085a, 1-1-086a, 1-1-087a, 1-1-088a, 1-1-089a, 1-1-090a, 1-1-091a, 1-1-092a, 1-1-093a, 1-1-093b, 1-1-094a, 1-1-094b, 1-1-094c, 1-1-095a, 1-1-096a, 1-1-097a, 1-1-099a, 1-1-100a, 1-1-101a, 1-1-101b, 1-1-103a, 1-1-103b, 1-1-104a, 1-1-105a, 1-1-105b, 1-1-105c, 1-1-106a, 1-1-106b, 1-1-106c, 1-1-107a, 1-1-108a, 1-1-109a, 1-1-109b, 1-1-110a, 1-1-110c, 1-1-111a, 1-1-112a, 1-1-112b, 1-1-113a, 1-1-113b, 1-1-114a, 1-1-114b, 1-1-115a, 1-1-115b, 1-1-116a, 1-1-117a, 1-1-118a, 1-1-118c, 1-1-120c, 1-1-121a, 1-1-122a, 1-1-123a, 1-2-001a, 1-2-002a, 1-2-004a, 1-2-004b, 1-2-004c, 1-2-005a, 1-2-006a, 1-3-001a, 1-3-002a, 1-3-003a, 1-3-004a, 1-3-005a, 1-3-006a, 1-3-007a, 1-3-008a, 1-3-009a, 1-3-010a, 1-3-011a, 1-3-012a, 1-3-013a, 1-3-014a, 1-4-001a, 1-4-002a, 1-4-003a, 1-4-003b, 1-5-001a, 1-5-002a, 1-5-003a, 1-5-004a, 1-6-001a, 1-6-002a, 1-7-001a, 1-8-001b, 1-8-002a, 1-8-002b, 1-8-003a, 1-8-003b, 1-8-004b, 1-8-005a, 1-8-005b, 1-8-006a, 1-8-006b, 1-8-007a, 1-8-008a, 1-8-009a, 1-8-010a, 1-8-011a, 1-8-013a, 1-8-013b, 1-8-014a, 1-8-014b, 1-8-015a, 1-8-015b, 1-9-002a, 1-9-002b, 1-9-003a, 1-9-003b, 1-10-001a, 1-10-001b, 1-10-001c, 1-10-002a, 1-10-002b, 1-10-002c, 1-10-003a, 1-11-001a, 1-11-001b, 1-11-001c, 1-11-002a, 1-11-003a, 1-11-003b, 1-11-004a, 1-11-004b, 1-11-004c, 1-11-005a, 1-11-005b, 1-11-006a, 1-11-006b, 1-11-007a, 1-11-007b, 1-11-007c, 1-12-001a, 1-12-002a, 1-12-003a, 1-12-004a, 1-12-005a, 1-12-006a, 1-12-007a, 1-12-008a, 1-12-009a, 1-13-001a, 1-14-001a, 1-15-002a, 1-15-003a, 1-16-001a, 1-16-001b, 2-1-001a, 2-1-001b, 2-1-002a, 3-1-001a, 3-1-001b, 3-1-001c, 3-1-002a, 3-1-002b and 3-1-002c of the present invention.
  • Test Example 3: Insecticidal Test on Spodoptera litura
  • 10% emulsifiable concentrates (or 10% wettable powders) of compounds of the present invention were diluted with water containing a spreader to obtain 500 ppm solutions. Leaves of cabbage were soaked in the solutions for about 10 seconds. After the soaking, the leaves were dried in air and placed in dishes. In each dish, five 3rd-instar larvae of Spodoptera litura were released, and the dishes were covered with lids and placed in an incubator at 25° C. 6 Days after, dead insects in the dishes were counted, and the mortality was calculated by using the same equation as in Test Example 1. The test was carried out in duplicate.
  • Among the compounds tested, the following compounds showed a mortality of at least 90%.
  • Compounds Nos. 1-1-001a, 1-1-001b, 1-1-001c, 1-1-002a, 1-1-002b, 1-1-003a, 1-1-004a, 1-1-005a, 1-1-005c, 1-1-006a, 1-1-007a, 1-1-009a, 1-1-011a, 1-1-012a, 1-1-013a, 1-1-013b, 1-1-013c, 1-1-014a, 1-1-014c, 1-1-015a, 1-1-015b, 1-1-016a, 1-1-016b, 1-1-016c, 1-1-017a, 1-1-018a, 1-1-019a, 1-1-020a, 1-1-020b, 1-1-023a, 1-1-023b, 1-1-023c, 1-1-024a, 1-1-026a, 1-1-027a, 1-1-027b, 1-1-029a, 1-1-030a, 1-1-030b, 1-1-030c, 1-1-032a, 1-1-033a, 1-1-034a, 1-1-036a, 1-1-037a, 1-1-038a, 1-1-039a, 1-1-040a, 1-1-040c, 1-1-041a, 1-1-042a, 1-1-043a, 1-1-044a, 1-1-045a, 1-1-045b, 1-1-046a, 1-1-047a, 1-1-048a, 1-1-049a, 1-1-049b, 1-1-050a, 1-1-051a, 1-1-051b, 1-1-052a, 1-1-053a, 1-1-056a, 1-1-057a, 1-1-057c, 1-1-058a, 1-1-059a, 1-1-060a, 1-1-061a, 1-1-062a, 1-1-063a, 1-1-064a, 1-1-065a, 1-1-066a, 1-1-067a, 1-1-068a, 1-1-069a, 1-1-070a, 1-1-070b, 1-1-071a, 1-1-072a, 1-1-072b, 1-1-072c, 1-1-074a, 1-1-076a, 1-1-077a, 1-1-077b, 1-1-080a, 1-1-081a, 1-1-082a, 1-1-083a, 1-1-084a, 1-1-085a, 1-1-087a, 1-1-089a, 1-1-090a, 1-1-091a, 1-1-092a, 1-1-093a, 1-1-093b, 1-1-094a, 1-1-094b, 1-1-094c, 1-1-095a, 1-1-096a, 1-1-097a, 1-1-099a, 1-1-100a, 1-1-101a, 1-1-103a, 1-1-103b, 1-1-104a, 1-1-105a, 1-1-105b, 1-1-106a, 1-1-109a, 1-1-110a, 1-1-110c, 1-1-111a, 1-1-112a, 1-1-113a, 1-1-114a, 1-1-114b, 1-1-115a, 1-1-115b, 1-1-118a, 1-1-122a, 1-1-123a, 1-2-001a, 1-2-002a, 1-2-004a, 1-2-004b, 1-2-004c, 1-2-005a, 1-2-006a, 1-3-001a, 1-3-002a, 1-3-003a, 1-3-004a, 1-3-005a, 1-3-006a, 1-3-007a, 1-3-008a, 1-3-009a, 1-3-010a, 1-3-011a, 1-3-012a, 1-3-013a, 1-3-014a, 1-4-001a, 1-4-002a, 1-4-003a, 1-4-003b, 1-5-001a, 1-5-002a, 1-5-003a, 1-5-004a, 1-6-001a, 1-6-002a, 1-7-001a, 1-8-002a, 1-8-002b, 1-8-003a, 1-8-003b, 1-8-005a, 1-8-005b, 1-8-006a, 1-8-006b, 1-8-007a, 1-8-008a, 1-8-009a, 1-8-010a, 1-8-011a, 1-8-013a, 1-8-013b, 1-8-014a, 1-8-015a, 1-9-002a, 1-9-002b, 1-9-003a, 1-10-001a, 1-10-001b, 1-10-001c, 1-10-002a, 1-10-002b, 1-10-002c, 1-10-003a, 1-11-001a, 1-11-001b, 1-11-001c, 1-11-002a, 1-11-003a, 1-11-004a, 1-11-004b, 1-11-004c, 1-11-005a, 1-11-005b, 1-11-006a, 1-11-007a, 1-11-007b, 1-11-007c, 1-12-001a, 1-12-002a, 1-12-003a, 1-12-004a, 1-12-005a, 1-12-006a, 1-12-007a, 1-12-008a, 1-12-009a, 1-13-001a, 1-14-001a, 1-15-003a, 1-16-001a, 2-1-001a, 2-1-001b, 3-1-001a, 3-1-001c, 3-1-002a, 3-1-002b and 3-1-002c of the present invention.
  • Test Example 4: Insecticidal Activity on Frankliniella occidentalis
  • In styrol cups having an inner diameter of 7 cm, wet filter paper was laid, kidney bean leaves cut into a 3 cm square were laid on the paper, and each leaf was inoculated with 20 larvae of Frankliniella occidentalis. 10% emulsifiable concentrates (or 10% wettable powders) of compounds of the present invention were diluted with water containing a spreader to obtain 500 ppm solutions. 2.5 ml of the solutions were sprayed from a rotary spray tower into the styrol cups (2.5 mg/cm2).
  • 2 Days after, dead insects were counted, and insect damage on kidney bean leaves was examined. The mortality was calculated by using the same equation as in Test Example 1.
  • The insect damage degree was evaluated as follows. 1: 0 to 20% insect damage, 2: 20 to 50% insect damage, 3: 50 to 70% insect damage, and 4: 70% or higher insect damage. The test was carried out in duplicate.
  • Among the compounds tested, the following compounds showed a mortality of at least 50% and an insect damage degree of 2 or higher.
  • Compounds Nos. 1-1-001a, 1-1-002b, 1-1-003a, 1-1-005a, 1-1-006a, 1-1-023c, 1-1-035a, 1-1-036a, 1-1-038a, 1-1-039a, 1-1-042a, 1-1-043a, 1-1-049a, 1-1-050a, 1-1-051a, 1-1-052a, 1-1-052b, 1-1-053a, 1-1-054b, 1-1-055b, 1-1-056a, 1-1-057a, 1-1-057c, 1-1-061a, 1-1-062a, 1-1-063a, 1-1-064a, 1-1-067a, 1-1-068a, 1-1-069b, 1-1-070a, 1-1-071a, 1-1-072a, 1-1-074a, 1-1-076a, 1-1-080a, 1-1-081a, 1-1-082a, 1-1-087a, 1-1-089a, 1-1-090a, 1-1-093a, 1-1-095a, 1-1-096a, 1-1-097a, 1-1-099a, 1-1-105a, 1-1-106b, 1-1-109a, 1-1-110a, 1-1-112a, 1-1-114a, 1-1-115a, 1-1-117a, 1-1-120c, 1-1-122a, 1-1-123a, 1-2-006a, 1-3-012a, 1-4-003a, 1-8-007a, 1-8-008a, 1-8-011a, 1-8-013a, 1-8-014a, 1-8-015a, 1-9-002a, 1-9-003a, 1-10-003a, 1-11-003a, 1-11-004a, 1-11-006a, 1-11-007a, 1-11-007c, 1-12-009a, 2-1-002a, 3-1-001a, 3-1-001b, 3-1-001c and 3-1-002a of the present invention.
  • Test Example 5: Insecticidal Test on Myzus persicae
  • Wet absorbent cotton was laid on glass dishes having an inner diameter of 3 cm, and covered with leaves of cabbage cut into circles of the same diameter, and 4 apterous adults of Myzus persicae were released. After a day, 10% emulsifiable concentrates (or 10% wettable powders) of compounds of the present invention were diluted with water containing a spreader to obtain 500 ppm solutions. The solutions were sprayed from a rotary spray tower (2.5 mg/cm2), and the dishes were covered with lids and placed in an incubator at 25° C. 6 Days after, dead insects were counted, and the mortality was calculated by using the same equation as in Test Example 1. The test was carried out in duplicate.
  • Among the compounds tested, the following compounds showed a mortality of at least 90%.
  • Compounds Nos. 1-1-001a, 1-1-002a, 1-1-002b, 1-1-003a, 1-1-004a, 1-1-004b, 1-1-004c, 1-1-005a, 1-1-006a, 1-1-007a, 1-1-009a, 1-1-011a, 1-1-012a, 1-1-012b, 1-1-013a, 1-1-013c, 1-1-014a, 1-1-014c, 1-1-015a, 1-1-015b, 1-1-016c, 1-1-017a, 1-1-018a, 1-1-019a, 1-1-020a, 1-1-023a, 1-1-024a, 1-1-025c, 1-1-026a, 1-1-027a, 1-1-032a, 1-1-033a, 1-1-034a, 1-1-035a, 1-1-036a, 1-1-037a, 1-1-038a, 1-1-039a, 1-1-040b, 1-1-040c, 1-1-041a, 1-1-042a, 1-1-043a, 1-1-044a, 1-1-045b, 1-1-046a, 1-1-047a, 1-1-048a, 1-1-049a, 1-1-049b, 1-1-050a, 1-1-051a, 1-1-052a, 1-1-053a, 1-1-056a, 1-1-057a, 1-1-057c, 1-1-058a, 1-1-059a, 1-1-060a, 1-1-061a, 1-1-062a, 1-1-063a, 1-1-064a, 1-1-065a, 1-1-066a, 1-1-067a, 1-1-068a, 1-1-071a, 1-1-072a, 1-1-073b, 1-1-074a, 1-1-077a, 1-1-077b, 1-1-080a, 1-1-082a, 1-1-086a, 1-1-087a, 1-1-090a, 1-1-091a, 1-1-093a, 1-1-093b, 1-1-095a, 1-1-096a, 1-1-097a, 1-1-099a, 1-1-100a, 1-1-101a, 1-1-102a, 1-1-105a, 1-1-106a, 1-1-106b, 1-1-106c, 1-1-107a, 1-1-108a, 1-1-109a, 1-1-110a, 1-1-112a, 1-1-113a, 1-1-115a, 1-1-116a, 1-1-117a, 1-1-118a, 1-1-120c, 1-1-121a, 1-1-122a, 1-1-123a, 1-2-001a, 1-2-002a, 1-3-001a, 1-3-002a, 1-3-003a, 1-3-004a, 1-3-005a, 1-3-006a, 1-3-007a, 1-3-009a, 1-3-010a, 1-3-011a, 1-3-012a, 1-4-001a, 1-4-002a, 1-4-003a, 1-5-001a, 1-5-002a, 1-5-003a, 1-5-004a, 1-6-001a, 1-6-002a, 1-8-002a, 1-8-002b, 1-8-003a, 1-8-003b, 1-8-004b, 1-8-005a, 1-8-006a, 1-8-008a, 1-8-010a, 1-8-013a, 1-8-014a, 1-8-015b, 1-9-002a, 1-9-003a, 1-10-001a, 1-10-001 b, 1-10-002a, 1-10-002b, 1-10-002c, 1-10-003a, 1-11-001a, 1-11-001 b, 1-11-002a, 1-11-003a, 1-11-004a, 1-11-007a, 1-11-007b, 1-11-007c, 1-12-001a, 1-12-002a, 1-12-003a, 1-12-004a, 1-12-005a, 1-12-006a, 1-12-007a, 1-12-008a, 1-14-001a, 1-15-003a, 1-16-001a, 1-17-001a, 2-1-001a, 2-1-002a, 3-1-001a, 3-1-001c and 3-1-002a of the present invention.
  • Test Example 6: Insecticidal Test on Bemisia argentifolii
  • In styrol cups having an inner diameter of 7 cm, wet filter paper was laid, and kidney bean leaves cut to 3 cm were laid on the paper. 10% emulsifiable concentrates (or 10% wettable powders) of compounds of the present invention were diluted with water containing a spreader to obtain 500 ppm solutions, and 2.5 ml of the solutions were sprayed from a rotary spray tower into the styrol cups (2.5 mg/cm2). The leaves were dried in air, and adults of Bemisia argentifolii were released in the cups, and the cups were covered with lids and placed in an incubator at 25° C. 5 Days after, dead insects were counted, and the mortality was calculated by using the same equation as in Test Example 1. The test was carried out in duplicate.
  • Among the compounds tested, the following compounds showed a mortality of at least 90%.
  • Compounds Nos. 1-1-035a, 1-1-036a, 1-1-043a, 1-1-049a, 1-1-047a, 1-1-094a, 1-1-095a, 1-1-096a, 1-1-099a, 1-3-001a, 1-14-001a and 3-1-002a of the present invention.
  • Test Example 7: Soil Irrigation Test on Myzus persicae
  • 10% emulsifiable concentrates of compounds of the present invention were diluted with tap water to obtain 500 ppm solutions.
  • The soil around the bases of cabbage seedlings (at the 2.5-leaf stage) planted in plastic cups was irrigated with 10 ml of the solutions. After the irrigation, the cabbage seedlings were placed in a greenhouse. One day after the irrigation, adults of Myzus persicae were released at a ratio of 20 insects per seedling, and the seedlings were left in the greenhouse. 6 Days after the release of the insects, living insects were counted, and the control value was calculated from the following equation.

  • Control value (%)={1−(Cb×Tai)/(Cai×Tb)}×100
  • Cb: the number of insects in a non-treated plot before treatment
  • Cai: the final number of living insects in a non-treated plot
  • Tb: the number of insects in a treated plot before treatment
  • Tai: the final number of living insects in a treated plot
  • Among the compounds tested, the following compounds showed a control value of at least 90%.
  • Compounds Nos. 1-1-001a, 1-1-002a, 1-1-003a, 1-1-004a, 1-1-005a, 1-1-006a, 1-1-012a, 1-1-013a, 1-1-014a, 1-1-016a, 1-1-017a, 1-1-018a, 1-1-029a, 1-1-032a, 1-1-035a, 1-1-039a, 1-1-042a, 1-1-043a, 1-1-049a, 1-1-057a, 1-1-058a, 1-1-060a, 1-1-074a, 1-1-093a, 1-1-097a, 1-1-106a, 1-1-112a, 1-1-113a, 1-1-122a, 1-8-002a, 1-8-003a, 1-8-005a, 1-8-006a, 1-8-010a, 1-8-013a, 1-9-002a, 1-12-008a, 1-14-001a, 1-16-001a and 2-1-002a of the present invention.
  • Test Example 8: Systemic Insecticidal Test on Nilaparvata lugens
  • 10% emulsifiable concentrates of compounds of the present invention were diluted with tap water to obtain 20 ppm solutions, and root of rice plug seedlings (at the 2-leaf stage) were dipped in the solutions. 7 Days after, the rice seedlings were picked and put in test tubes, and in each tube, five 3rd-instar larvae of Nilaparvata lugens were released, and the tubes were capped with sponge and placed in an incubator at 25° C. 6 Days after the release of the insects, dead insects were counted, and the mortality (%) (the number of dead insects÷the number of released insects×100) was calculated. The test was carried out in duplicate.
  • Among the compounds tested, the following compounds showed a mortality of at least 90%.
  • Compounds Nos. 1-1-001a, 1-1-001b, 1-1-002a, 1-1-005a, 1-1-006a, 1-1-013a, 1-1-014a, 1-1-017a, 1-1-018a, 1-1-020a, 1-1-030a, 1-1-032a, 1-1-035a, 1-1-036a, 1-1-038a, 1-1-039a, 1-1-042a, 1-1-043a, 1-1-044a, 1-1-049a, 1-1-052a, 1-1-057a, 1-1-057c, 1-1-058a, 1-1-067a, 1-1-070a, 1-1-072a, 1-1-074a, 1-1-076a, 1-1-077a, 1-1-092a, 1-1-093a, 1-1-095a, 1-1-096a, 1-1-097a, 1-1-099a, 1-1-105a, 1-1-106a, 1-1-107a, 1-1-109a, 1-1-111a, 1-1-113a, 1-1-117a, 1-1-122a, 1-2-002a, 1-3-001a, 1-3-005a, 1-3-007a, 1-8-002a, 1-8-005a, 1-8-006a, 1-8-008a, 1-8-010a, 1-8-013a, 1-9-002a, 1-11-001a, 1-11-002a, 1-11-003a, 1-11-004a, 1-11-007a, 1-12-006a, 1-12-008a, 1-12-009a, 1-14-001a, 1-16-001a, 2-1-002a and 3-1-002b of the present invention.
  • Test Example 9: Soil Irrigation Test on Plutella xylostella
  • 10% emulsifiable concentrates of compounds of the present invention were diluted with tap water to obtain 500 ppm solutions.
  • The soil around the bases of cabbage seedlings (at the 2.5-leaf stage) planted in plastic cups was irrigated with 10 ml of the solutions. After the irrigation, the cabbage seedlings were placed in a greenhouse. 5 Days after the irrigation, leaves of cabbage were picked and placed in dishes. In each dish, five 3rd-instar larvae of Plutella xylostella were released, and the dishes were covered with lids and placed in an incubator at 25° C. 6 Days after, dead insects in the dishes were counted, and the mortality was calculated by using the same equation as in Test Example 1. The test was carried out in duplicate.
  • Among the compounds tested, the following compounds showed a control value of at least 90%.
  • Compounds Nos. 1-1-001a, 1-1-001c, 1-1-002a, 1-1-003a, 1-1-004a, 1-1-005a, 1-1-006a, 1-1-013a, 1-1-014a, 1-1-015a, 1-1-016a, 1-1-018a, 1-1-029a, 1-1-030a, 1-1-039a, 1-1-042a, 1-1-043a, 1-1-049a, 1-1-050a, 1-1-052a, 1-1-056a, 1-1-057a, 1-1-058a, 1-1-059a, 1-1-060a, 1-1-063a, 1-1-069a, 1-1-070a, 1-1-074a, 1-1-076a, 1-1-077a, 1-1-080a, 1-1-082a, 1-1-090a, 1-1-093a, 1-1-096a, 1-1-097a, 1-1-099a, 1-1-103a, 1-1-103b, 1-1-105a, 1-1-106a, 1-1-107a, 1-1-109a, 1-1-111a, 1-1-112a, 1-1-113a, 1-1-117a, 1-1-122a, 1-3-001a, 1-3-004a, 1-3-013a, 1-3-014a, 1-4-001a, 1-8-002a, 1-8-003a, 1-8-005a, 1-8-006a, 1-8-007a, 1-8-008a, 1-8-010a, 1-8-013a, 1-9-002a, 1-10-002a, 1-11-001a, 1-11-002a, 1-11-003a, 1-11-004a, 1-11-007a, 1-12-008a, 1-12-009a, 1-14-001a, 1-16-001a and 2-1-002a of the present invention.
  • Test Example 10: Test on the Effect of Seed Treatment on Aphis glycines
  • 2.4 mg of compounds of the present invention were diluted with 97.6 μl of acetone. Four soybean seeds were put in each 50 ml plastic tube, and the solutions of compounds of the present invention were poured onto the seeds and stirred until the acetone evaporated completely so that the seeds were evenly coated with the compounds. The treated seeds were sown in pots, 4 seeds per pot, and placed in a greenhouse. After the primary leaf folded out, two adults of Aphis glycines were released per seedling. 7 Days after the release of the insects, living insects were counted, and the control value was calculated from the following equation.

  • Control value (%)={1−(Cb×Tai)/(Cai×Tb)}×100
  • wherein
  • Cb: the number of insects in a non-treated plot before treatment
  • Cai: the final number of living insects in a non-treated plot
  • Tb: the number of insects in a treated plot before treatment
  • Tai: the final number of living insects in a treated plot
  • Among the compounds tested, the following compounds showed a control value of at least 90%.
  • Compounds Nos. 1-1-001a, 1-1-002a, 1-1-003a, 1-1-004a, 1-1-005a, 1-1-006a, 1-1-012a, 1-1-013a, 1-1-014a, 1-1-016a, 1-1-017a, 1-1-018a, 1-1-029a, 1-1-032a, 1-1-035a, 1-1-039a, 1-1-042a, 1-1-043a, 1-1-049a, 1-1-057a, 1-1-058a, 1-1-060a, 1-1-074a, 1-1-093a, 1-1-097a, 1-1-106a, 1-1-112a, 1-1-113a, 1-1-122a, 1-3-001a, 1-8-002a, 1-8-003a, 1-8-005a, 1-8-006a, 1-8-010a, 1-8-013a, 1-9-002a, 1-12-008a, 1-14-001a and 1-16-001a of the present invention.
  • Test Example 11: Test on the Effect on Rhipicephalus sanguineus
  • 3.5 mg of compounds of the present invention were diluted with 3.5 ml of acetone to obtain 1,000 ppm solutions. 350 μl of the solutions were applied to the bottoms and the side walls of glass containers with an inner wall surface area of 35 cm2, and acetone was volatilized to prepare thin films of the compounds on the inner walls of the glass containers. Since the inner wall surface area of each glass container was 35 cm2, the application dose was 10 μg/cm2.
  • To each glass container, five protonymphs (male and female) of Rhipicephalus sanguineus were released, and the containers were covered with lids and placed in an incubator at 25° C. 4 Days after the release of the ticks, dead ticks were counted, and the mortality was calculated by using the same equation as in Test Example 1.
  • Among the compounds tested, the following compounds showed a mortality of at least 50%.
  • Compounds Nos. 1-1-001a, 1-1-001b, 1-1-002a, 1-1-003a, 1-1-003b, 1-1-003c, 1-1-004a, 1-1-004b, 1-1-004c, 1-1-005a, 1-1-005b, 1-1-006a, 1-1-006b, 1-1-010a, 1-1-011a, 1-1-012a, 1-1-013a, 1-1-014a, 1-1-014b, 1-1-016a, 1-1-016c, 1-1-017a, 1-1-018a, 1-1-020a, 1-1-022a, 1-1-023c, 1-1-026a, 1-1-023c, 1-1-027b, 1-1-035a, 1-1-039a, 1-1-040a, 1-1-042a, 1-1-043a, 1-1-045a, 1-1-046a, 1-1-047a, 1-1-049a, 1-1-051a, 1-1-052b, 1-1-053a, 1-1-055a, 1-1-057a, 1-1-057c, 1-1-059b, 1-1-060a, 1-1-062a, 1-1-063a, 1-1-065a, 1-1-067a, 1-1-068a, 1-1-071a, 1-1-072a, 1-1-072b, 1-1-075a, 1-1-080a, 1-1-083a, 1-1-088a, 1-1-093a, 1-1-093b, 1-1-094a, 1-1-094b, 1-1-095a, 1-1-096a, 1-1-099a, 1-1-103a, 1-1-105a, 1-1-105b, 1-1-105c, 1-1-106a, 1-1-106b, 1-1-106c, 1-1-107a, 1-1-108a, 1-1-109a, 1-1-110a, 1-1-110c, 1-1-111a, 1-1-111b, 1-1-112a, 1-1-113a, 1-1-114a, 1-1-114b, 1-1-115a, 1-1-115b, 1-1-116a, 1-1-118b, 1-1-118c, 1-1-120c, 1-3-004a, 1-3-005a, 1-3-011a, 1-3-013a, 1-3-014a, 1-5-001a, 1-6-001a, 1-8-002a, 1-8-005a, 1-8-006a, 1-8-006b, 1-8-008a, 1-8-010a, 1-8-011a, 1-8-013a, 1-8-014a, 1-8-014b, 1-8-015b, 1-9-002a, 1-9-002b, 1-9-003a, 1-10-002c, 1-11-004a, 1-11-004c, 1-11-005a, 1-11-006a, 1-11-007c, 1-12-004a, 1-12-007a, 1-15-003a, 1-16-001a, 3-1-002a, 3-1-002b and 3-1-002c of the present invention.
  • Test Example 12: Test on the Effect on Ctenocephalides felis
  • 3.5 mg of compounds of the present invention were diluted with 3.5 ml of acetone to obtain 1,000 ppm solutions. 350 μl of the solutions were applied to the bottoms and the side walls of glass containers with an inner wall surface area of 35 cm2, and acetone was volatilized to prepare thin films of the compounds on the inner walls of the glass containers. Since the inner wall surface area of each glass container was 35 cm2, the application dose was 10 μg/cm2.
  • To each glass container, five adults (male and female) of Ctenocephalides felis were released, and the containers were covered with lids and placed in an incubator at 25° C. 4 Days after the release of the fleas, dead fleas were counted, and the mortality was calculated by using the same equation as in Test Example 1.
  • Among the compounds tested, the following compounds showed a mortality of at least 50%.
  • Compounds Nos. 1-1-001a, 1-1-001b, 1-1-001c, 1-1-002a, 1-1-002b, 1-1-003a, 1-1-003b, 1-1-003c, 1-1-004a, 1-1-004b, 1-1-004c, 1-1-005a, 1-1-005b, 1-1-005c, 1-1-006a, 1-1-007a, 1-1-009a, 1-1-012a, 1-1-013a, 1-1-013b, 1-1-013c, 1-1-014a, 1-1-014c, 1-1-015a, 1-1-015b, 1-1-016a, 1-1-016b, 1-1-016c, 1-1-017a, 1-1-018a, 1-1-019a, 1-1-020a, 1-1-023a, 1-1-023b, 1-1-023c, 1-1-024a, 1-1-025c, 1-1-026a, 1-1-027a, 1-1-027b, 1-1-029a, 1-1-030a, 1-1-032a, 1-1-033a, 1-1-034a, 1-1-035a, 1-1-036a, 1-1-037a, 1-1-039a, 1-1-040c, 1-1-041a, 1-1-042a, 1-1-043a, 1-1-044a, 1-1-045a, 1-1-046a, 1-1-047a, 1-1-047b, 1-1-048a, 1-1-048b, 1-1-049a, 1-1-050a, 1-1-050b, 1-1-051a, 1-1-051b, 1-1-052a, 1-1-052b, 1-1-053a, 1-1-054b, 1-1-055a, 1-1-056a, 1-1-057a, 1-1-057c, 1-1-058a, 1-1-058b, 1-1-059b, 1-1-060a, 1-1-060b, 1-1-061a, 1-1-062a, 1-1-062b, 1-1-063a, 1- 1-063b, 1-1-064a, 1-1-065a, 1-1-066a, 1-1-066b, 1-1-067a, 1-1-067b, 1-1-068a, 1-1-069a, 1-1-070a, 1-1-071a, 1-1-072a, 1-1-072b, 1-1-072c, 1-1-073b, 1-1-074a, 1-1-074b, 1-1-075a, 1-1-076a, 1-1-077a, 1-1-077b, 1-1-080a, 1-1-081a, 1-1-082a, 1-1-084a, 1-1-085a, 1-1-086a, 1-1-087a, 1-1-088a, 1-1-089a, 1-1-090a, 1-1-091a, 1-1-092a, 1-1-093a, 1-1-093b, 1-1-094a, 1-1-094b, 1-1-094c, 1-1-095a, 1-1-096a, 1-1-097a, 1-1-099a, 1-1-101a, 1-1-102a, 1-1-103a, 1-1-103b, 1-1-104a, 1-1-105a, 1-1-105b, 1-1-105c, 1-1-106a, 1-1-106b, 1-1-106c, 1-1-107a, 1-1-108a, 1-1-109a, 1-1-110a, 1-1-110c, 1-1-111a, 1-1-111b, 1-1-112a, 1-1-113a, 1-1-114a, 1-1-114b, 1-1-115a, 1-1-115b, 1-1-116a, 1-1-117a, 1-1-118a, 1-1-118b, 1-1-119c, 1-1-122a, 1-1-123a, 1-2-001a, 1-3-001a, 1-3-002a, 1-3-003a, 1-3-004a, 1-3-005a, 1-3-006a, 1-3-007a, 1-3-008a, 1-3-009a, 1-3-010a, 1-3-011a, 1-3-012a, 1-3-013a, 1-3-014a, 1-4-001a, 1-4-002a, 1-4-003a, 1-4-003b, 1-5-001a, 1-5-002a, 1-5-003a, 1-5-004a, 1-8-002a, 1-8-002b, 1-8-003a, 1-8-004b, 1-8-005a, 1-8-006a, 1-8-006b, 1-8-007a, 1-8-007b, 1-8-008a, 1-8-009a, 1-8-010a, 1-8-011a, 1-8-013a, 1-8-013c, 1-8-014a, 1-8-014b, 1-9-002a, 1-9-002b, 1-9-003a, 1-9-003b, 1-10-001b, 1-10-002a, 1-10-002b, 1-10-002c, 1-10-003a, 1-11-001a, 1-11-001 b, 1-11-001c, 1-11-003a, 1-11-004a, 1-11-004c, 1-11-005b, 1-11-006a, 1-11-007b, 1-11-007c, 1-12-001a, 1-12-002a, 1-12-003a, 1-12-006a, 1-12-007a, 1-12-008a, 1-12-009a, 1-14-001a, 1-15-003a, 1-16-001a, 1-16-001b, 1-17-001a, 2-1-001a, 3-1-001a, 3-1-001b, 3-1-001c, 3-1-002a, 3-1-002b and 3-1-002c of the present invention.
  • Test Example 13: Test on the Parasiticidal Effect by Rat Oral Administration on Rhipicephalus sanguineus
  • 5 mg of compounds of the present invention were dissolved in 5 ml of olive oil to prepare administration solutions. The solutions were orally administered to rats in a dose of 10 ml/kg body weight by a feeding tube. The oral administration was repeated twice in each group. 1 Hour after the administration, 50 protonymphs (male and female) of Rhipicephalus sanguineus were released for each rat. 3 Days after the release of the ticks, the number of ticks parasitic on the rats were counted, and the parasiticidal degree was calculated from the following equation.

  • Parasiticidal degree (%)=100×(1−the number of parasitic ticks on administered group/the number of parasitic ticks on non-administered group)
  • Among the compounds tested, the following compounds showed a parasiticidal degree of at least 70%.
  • Compounds Nos. 1-1-001a, 1-1-002a, 1-1-003a, 1-1-006a, 1-1-016a, 1-1-096a, 1-1-103a, 1-3-011a and 1-9-002a of the present invention.
  • INDUSTRIAL APPLICABILITY
  • The compounds of the present invention are very useful compounds which are excellent in pesticidal activities and have little harmful effect on non-target organisms such as mammals, fishes and beneficial insects.
  • The entire disclosures of Japanese Patent Application No. 2015-025604 filed on Feb. 12, 2015 and Japanese Patent Application No. 2015-133816 filed on Jul. 2, 2015 including specifications, claims and summaries are incorporated herein by reference in their entireties.

Claims (12)

1-25. (canceled)
26. A condensed heterocyclic compound represented by The following formula or its salt or an N-oxide thereof:
Figure US20210017194A1-20210121-C00726
wherein:
G1 is a nitrogen atom or C(Y1);
G2 is a nitrogen atom or C(Y2);
G3 is a nitrogen atom or C(Y3);
G4 is a nitrogen atom or C(Y4);
A8 is a nitrogen atom or C(R8);
R1 is C1-C6 alkyl, C1-C6 haloalkyl, (C1-C6) alkyl optionally substituted with R1a, C2-C6 alkenyl, C2-C6 haloalkenyl, C2-C6 alkynyl, C2-C6 haloalkynyl, C3-C6 cycloalkyl, C3-C6 halocycloalkyl, C3-C6 cycloalkyl (C1-C6) alkyl, C3-C6 halocycloalkyl (C1-C6) alkyl or hydroxy (C1-C6) alkyl;
R1a is C1-C8 alkoxy, C1-C8 haloalkoxy, C1-C8 alkoxycarbonyl, C1-C6 alkylthio, C1-C6 haloalkylthio, C1-C6 alkylsulfinyl, C1-C6 haloalkylsulfinyl, C1-C6 alkylsulfonyl, C1-C6 haloalkylsulfonyl or cyano;
R6 is a hydrogen atom, a halogen atom, C1-C6 alkyl, C1-C6 haloalkyl, C1-C8 alkoxy, C1-C8 haloalkoxy, C3-C6 cycloalkyl, C3-C6 halocycloalkyl, C1-C6 alkylthio, C1-C6 haloalkylthio, C1-C6 alkylsulfinyl, C1-C6 haloalkylsulfinyl, C1-C6 alkylsulfonyl, C1-C6 haloalkylsulfonyl, —C(O)R60a, —C(O)OH, hydroxy, —NH2, —NHR60g, —N(R60h)R60g, mercapto, cyano or nitro;
R7 is a hydrogen atom, a halogen atom, C1-C6 alkyl, C1-C6 haloalkyl, C1-C8 alkoxy, C1-C8 haloalkoxy, C1-C6 alkylthio, C1-C6 haloalkylthio, C1-C6 alkylsulfinyl, C1-C6 haloalkylsulfinyl, C1-C6 alkylsulfonyl, C1-C6 haloalkylsulfonyl, mercapto, —SF5, cyano or nitro;
R8 is a hydrogen atom, a halogen atom, C1-C6 alkyl, C1-C6 haloalkyl, C1-C8 alkoxy, C1-C8 haloalkoxy or cyano;
each of Y1, Y2, Y3 and Y4 is independently a hydrogen atom, a halogen atom, C1-C6 alkyl, C1-C6 haloalkyl, (C1-C6) alkyl optionally substituted with Ya, (C1-C6) haloalkyl optionally substituted with Ya, C2-C6 alkenyl, C2-C6 haloalkenyl, (C2-C6) alkenyl optionally substituted with Ya, C2-C6 alkynyl, C2-C6 haloalkynyl, (C2-C6) alkynyl optionally substituted with Yb, C1-C8 alkoxy, C1-C8 haloalkoxy, (C1-C8) alkoxy optionally substituted with Ya, C2-C6 alkenyloxy, C2-C6 haloalkenyloxy, (C2-C6) alkenyloxy optionally substituted with Ya, C2-C6 alkynyloxy, C2-C6 haloalkynyloxy, (C2-C6) alkynyloxy optionally substituted with Ya, C6 cycloalkyl, C3-C6 halocycloalkyl, C3-C6 cycloalkyl (C1-C6) alkyl, C3-C6 halocycloalkyl (C1-C6) alkyl, C1-C6 alkylthio, C1-C6 haloalkylthio, (C1-C6) alkylthio optionally substituted with Ya, C2-C6 alkenylthio, C2-C6 haloalkenylthio, C2-C6 alkynylthio, C2-C6 haloalkynylthio, C1-C6 alkylsulfinyl, C1-C6 haloalkylsulfinyl, (C1-C6) alkylsulfinyl optionally substituted with Ya, C2-C6 alkenylsulfinyl, C2-C6 haloalkenylsulfinyl, C2-C6 alkynylsulfinyl, C2-C6 haloalkynylsulfinyl, C1-C6 alkylsulfonyl, C1-C6 haloalkylsulfonyl, (C1-C6) alkylsulfonyl optionally substituted with Ya, C2-C6 alkenylsulfonyl, C2-C6 haloalkenylsulfonyl, C2-C6 alkynylsulfonyl, C2-C6 haloalkynylsulfonyl, —C(O)R90a, —C(O)NHR90b, —C(O)N(R90c)R90b, —C(O)OH, —C(═NOR90d)R90a, —C(O)NH2, hydroxy, —OC(O)R90e, —OS(O)2R90f, —NH2, —NHR90g, —N(R90h)R90g, mercapto, —SC(O)R90i, —S(O)2NHR90j, —S(O)2N(R90k)R90j, —SF5, cyano, nitro, phenyl, phenyl optionally substituted with Yc, heterocyclyl or heterocyclyl optionally substituted with Yc;
Ya is C1-C3 alkoxy, C1-C8 haloalkoxy, C1-C8 alkoxycarbonyl, C1-C8 haloalkoxycarbonyl, C1-C6 alkylcarbonyl, C1-C6 haloalkylcarbonyl, C1-C6 alkylthio, C1-C6 haloalkylthio, C1-C6 alkylsulfinyl, C1-C6 haloalkylsulfinyl, C1-C6 alkylsulfonyl, C1-C6 haloalkylsulfonyl, hydroxy or cyano;
Yb is C1-C6 alkyl, C3-C6 cycloalkyl, trimethylsilyl or phenyl;
Yc is a halogen atom, C1-C6 alkyl, C1-C6 haloalkyl, C1-C8 alkoxy, C1-C8 haloalkoxy, cyano or nitro;
each of R60a and R90a is independently a hydrogen atom, C1-C6 alkyl, C1-C6 haloalkyl, C1-C8 alkoxy or C1-C8 haloalkoxy;
each of R60g, R60h, R90b, R90c, R90i, R90j and R90k is independently C1-C6 alkyl or C1-C6 haloalkyl;
R90d is a hydrogen atom, C1-C6 alkyl or C1-C6 haloalkyl;
R90e is a hydrogen atom, C1-C6 alkyl, C1-C6 haloalkyl, C1-C8 alkoxy, C1-C8 haloalkoxy, C1-C6 alkylamino, C1-C6 haloalkylamino, di(C1-C6) alkylamino or di(C1-C6) haloalkylamino;
R90f is C1-C6 alkyl, C1-C6 haloalkyl, C1-C6 alkylamino, C1-C6 haloalkylamino, di(C1-C6) alkylamino or di(C1-C6) haloalkylamino;
each of R90g and R90h is independently C1-C6 alkyl, C1-C6 haloalkyl, C1-C6 alkylcarbonyl, C1-C6 haloalkylcarbonyl, C1-C5 alkoxycarbonyl, C1-C8 haloalkoxycarbonyl, C1-C6 alkylaminocarbonyl, C1-C6 haloalkylaminocarbonyl, C1-C6 alkylaminothiocarbonyl, C1-C6 haloalkylaminothiocarbonyl, phenylcarbonyl, C1-C6 alkylsulfonyl, C1-C6 haloalkylsulfonyl, C1-C6 alkylaminosulfonyl or di(C1-C6) alkylaminosulfonyl; and
n is an integer of 0, 1 or 2.
27. The condensed heterocyclic compound or its salt or an N-oxide thereof according to claim 26, wherein:
G1 is C(Y1);
G2 is C(Y2);
G3 is C(Y3);
G4 is C(Y4);
R1 is C1-C6 alkyl, C1-C6 haloalkyl, C2-C6 alkenyl, C2-C6 haloalkenyl, C2-C6 alkynyl, C2-C6 haloalkynyl, C3-C6 cycloalkyl (C1-C6) alkyl or C3-C6 halocycloalkyl (C1-C6) alkyl;
each of R6 and R8 is independently a hydrogen atom, a halogen atom, C1-C6 alkyl or C1-C6 haloalkyl;
R7 is a hydrogen atom, a halogen atom or C1-C6 haloalkyl;
each of Y1, Y2, Y3 and Y4 is independently a hydrogen atom, a halogen atom, C1-C6 alkyl, C1-C6 haloalkyl, C2-C6 alkenyl, C2-C6 alkynyl, (C2-C6) alkynyl optionally substituted with Yb, C1-C8 alkoxy, C1-C8 haloalkoxy, C1-C6 alkylthio, C1-C6 haloalkylthio, (C1-C6) alkylthio optionally substituted with Ya, C1-C6 alkylsulfinyl, C1-C6 haloalkylsulfinyl, C1-C6 alkylsulfonyl, C1-C6 haloalkylsulfonyl, —C(O)R90a, —C(O)NHR90b, —C(O)N(R90c)R90b, —C(O)OH, hydroxy, —OC(O)R90e, —OS(O)2R90f, —NH2, —NHR90g, —N(R90h)R90g, mercapto, —SC(O)R90i, —S(O)2NHR90j, —S(O)2N(R90k)R90j, —SF5, cyano, nitro, phenyl, phenyl optionally substituted with Yc, heterocyclyl or heterocyclyl optionally substituted with Yc; and
Ya is C1-C8 alkoxycarbonyl.
28. The condensed heterocyclic compound or its salt or an N-oxide thereof according to claim 27, wherein:
R1 is C1-C6 alkyl;
R6 is a hydrogen atom;
R7 is C1-C6 haloalkyl;
R8 is a hydrogen atom or C1-C6 alkyl;
each of Y1 and Y4 is a hydrogen atom;
Y2 is a hydrogen atom, a halogen atom or C1-C6 haloalkyl; and
Y3 is a hydrogen atom or C1-C6 haloalkyl.
29. The condensed heterocyclic compound or its salt or an N-oxide thereof according to claim 27, wherein:
R6 is a hydrogen atom;
each of Y1 and Y4 is a hydrogen atom; and
each of Y2 and Y3 is independently a hydrogen atom or C1-C6 haloalkyl.
30. The condensed heterocyclic compound or its salt or an N-oxide thereof according to claim 26, wherein:
G1 is C(Y1);
G2 is C(Y2);
G3 is C(Y3);
G4 is C(Y4); and
n is 2.
31. The condensed heterocyclic compound or its salt or an N-oxide thereof according to claim 30, wherein:
each of Y1, Y3 and Y4 is a hydrogen atom;
Y2 is C1-C6 haloalkyl;
As is a nitrogen atom;
R1 is C1-C6 alkyl;
R6 is a hydrogen atom; and
R7 is a C1-C6 haloalkyl.
32. An agricultural chemical composition, comprising:
the condensed heterocyclic compound of claim 26 or its salt or N-oxide as an active ingredient; and
an agriculturally acceptable diluent.
33. A method for treating internal or external parasites in or on a mammal or bird, comprising:
administering the condensed heterocyclic compound of claim 26 or its salt or N-oxide to the mammal or bird.
34. The method according to claim 31, wherein the external parasites are Siphonaptera or ticks.
35. A method for treating a seed, comprising:
applying the condensed heterocyclic compound of claim 26 or its salt or N-oxide to the seed.
36. A method for treating soil, comprising:
applying the condensed heterocyclic compound of claim 26 or its salt or N-oxide to soil.
US17/037,817 2015-02-12 2020-09-30 Condensed heterocyclic compounds and pesticides Abandoned US20210017194A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/037,817 US20210017194A1 (en) 2015-02-12 2020-09-30 Condensed heterocyclic compounds and pesticides

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2015025604 2015-02-12
JP2015-025604 2015-02-12
JP2015-133816 2015-07-02
JP2015133816 2015-07-02
PCT/JP2016/054171 WO2016129684A1 (en) 2015-02-12 2016-02-12 Condensed heterocyclic compound and noxious organism control agent
US201715550165A 2017-08-10 2017-08-10
US16/545,594 US10882869B2 (en) 2015-02-12 2019-08-20 Condensed heterocyclic compounds and pesticides
US17/037,817 US20210017194A1 (en) 2015-02-12 2020-09-30 Condensed heterocyclic compounds and pesticides

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US16/545,594 Continuation US10882869B2 (en) 2015-02-12 2019-08-20 Condensed heterocyclic compounds and pesticides

Publications (1)

Publication Number Publication Date
US20210017194A1 true US20210017194A1 (en) 2021-01-21

Family

ID=56614451

Family Applications (3)

Application Number Title Priority Date Filing Date
US15/550,165 Active US10464950B2 (en) 2015-02-12 2016-02-12 Condensed heterocyclic compounds and pesticides
US16/545,594 Active US10882869B2 (en) 2015-02-12 2019-08-20 Condensed heterocyclic compounds and pesticides
US17/037,817 Abandoned US20210017194A1 (en) 2015-02-12 2020-09-30 Condensed heterocyclic compounds and pesticides

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US15/550,165 Active US10464950B2 (en) 2015-02-12 2016-02-12 Condensed heterocyclic compounds and pesticides
US16/545,594 Active US10882869B2 (en) 2015-02-12 2019-08-20 Condensed heterocyclic compounds and pesticides

Country Status (20)

Country Link
US (3) US10464950B2 (en)
EP (1) EP3257853B1 (en)
JP (1) JP6781404B2 (en)
KR (1) KR102129658B1 (en)
CN (1) CN107207506B (en)
AU (1) AU2016216963B2 (en)
BR (1) BR112017015870B1 (en)
CA (1) CA2973862C (en)
EA (1) EA034278B1 (en)
ES (1) ES2901127T3 (en)
HU (1) HUE057027T2 (en)
IL (1) IL253937B (en)
MX (1) MX2017010420A (en)
MY (1) MY183075A (en)
PH (1) PH12017501395B1 (en)
PL (1) PL3257853T3 (en)
PT (1) PT3257853T (en)
SG (1) SG11201706489YA (en)
WO (1) WO2016129684A1 (en)
ZA (1) ZA201706071B (en)

Families Citing this family (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016142327A1 (en) * 2015-03-12 2016-09-15 Syngenta Participations Ag Pesticidally active tetracyclic derivatives with sulfur containing substituents
EP3280716B1 (en) 2015-04-08 2020-02-12 Bayer CropScience AG Imidazo[1,2-a]pyridin-2-yl derivatives as pesticides and intermediates thereof
WO2017061497A1 (en) * 2015-10-06 2017-04-13 日本農薬株式会社 Condensed heterocyclic compound or salts thereof, agricultural and horticultural insecticide containing said compound, and method for using same
JP6763396B2 (en) 2015-11-05 2020-09-30 住友化学株式会社 Condensed heterocyclic compound
WO2017093180A1 (en) 2015-12-01 2017-06-08 Bayer Cropscience Aktiengesellschaft Condensed bicyclic heterocycle derivatives as pest control agents
WO2017144341A1 (en) 2016-02-23 2017-08-31 Bayer Cropscience Aktiengesellschaft Condensed bicyclic heterocycle derivatives as pest control agents
WO2017155103A1 (en) 2016-03-10 2017-09-14 日産化学工業株式会社 Condensed heterocyclic compound and pest control agent
CN109415370B (en) * 2016-07-01 2021-06-08 日本农药株式会社 N-alkylsulfonyl fused heterocyclic compound or salt thereof, insecticide containing the compound, and method of using the same
TWI705066B (en) * 2016-08-10 2020-09-21 日商日產化學工業股份有限公司 Condensed heterocyclic compounds and pest control agents
PE20190800A1 (en) 2016-08-15 2019-06-10 Bayer Cropscience Ag DERIVATIVES OF THE CONDENSED BICYCLE HETEROCYCLE AS PEST CONTROL AGENTS
WO2018052136A1 (en) * 2016-09-15 2018-03-22 日産化学工業株式会社 Pest control agent composition and pest control method
US10611779B2 (en) 2016-09-19 2020-04-07 Bayer Cropscience Aktiengesellschaft Fused bicyclic heterocycle derivatives as pesticides
WO2018065288A1 (en) 2016-10-07 2018-04-12 Bayer Cropscience Aktiengesellschaft 2-[2-phenyl-1-(sulfonyl-methyl)-vinyl]-imidazo-[4,5-b] pyridine derivatives and related compounds as pesticides in plant protection
JP6717968B2 (en) * 2016-11-01 2020-07-08 日本農薬株式会社 N-alkylsulfonylindoline compound, agricultural and horticultural insecticide containing the compound, and method of using the same
EP3544978B1 (en) 2016-11-23 2020-11-04 Bayer CropScience Aktiengesellschaft 2-[3-(alkylsulfonyl)-2h-indazol-2-yl]-3h-imidazo[4,5-b]pyridine derivatives and related compounds as pesticides
KR102515694B1 (en) 2017-01-10 2023-03-29 바이엘 악티엔게젤샤프트 Heterocycle derivatives as pest control agents
UY37557A (en) 2017-01-10 2018-07-31 Bayer Ag HETEROCYCLIC DERIVATIVES AS PESTICIDES
WO2018138050A1 (en) 2017-01-26 2018-08-02 Bayer Aktiengesellschaft Condensed bicyclic heterocyclene derivatives as pest control agents
TW201833107A (en) 2017-02-06 2018-09-16 德商拜耳廠股份有限公司 2-(het)aryl-substituted fused heterocycle derivatives as pesticides
TWI762568B (en) 2017-02-06 2022-05-01 德商拜耳作物科學股份有限公司 Method for preparing halogenated imidazopyridine derivatives
US10934287B2 (en) 2017-03-23 2021-03-02 Sumitomo Chemical Company, Limited Fused heterocyclic compound and composition containing same
EP3615540B1 (en) * 2017-04-24 2022-04-27 Bayer Aktiengesellschaft Condensed bicyclic heterocycle derivatives as pesticides
JP6818131B2 (en) 2017-04-27 2021-01-20 日本農薬株式会社 Condensed heterocyclic compounds or salts thereof, agricultural and horticultural insecticides containing these compounds, and their usage
KR102600330B1 (en) 2017-08-22 2023-11-10 바이엘 악티엔게젤샤프트 Heterocyclene derivatives as pest control agents
EP3689872B1 (en) * 2017-09-26 2022-11-02 Sumitomo Chemical Company, Limited Heterocyclic compound and harmful arthropod controlling agent containing same
CN117430622A (en) * 2017-10-04 2024-01-23 拜耳公司 Derivatives of heterocyclic compounds as pest control agents
EP3730494B1 (en) * 2017-12-22 2023-11-08 Sumitomo Chemical Company, Limited Heterocyclic compound and harmful arthropod controlling agent containing same
KR20200122353A (en) 2018-02-21 2020-10-27 바이엘 악티엔게젤샤프트 Condensed bicyclic heterocyclic derivatives as pest control agents
US20190292188A1 (en) 2018-02-27 2019-09-26 Incyte Corporation Imidazopyrimidines and triazolopyrimidines as a2a / a2b inhibitors
KR20200131269A (en) * 2018-03-12 2020-11-23 바이엘 악티엔게젤샤프트 Fused bicyclic heterocyclic derivatives as pest control agents
MX2020011061A (en) * 2018-04-20 2020-11-06 Bayer Ag Heterocyclene derivatives as pest control agents.
MX2020012376A (en) 2018-05-18 2021-03-09 Incyte Corp Fused pyrimidine derivatives as a2a / a2b inhibitors.
MX2020013767A (en) 2018-06-26 2021-03-02 Bayer Ag Heterocyclene derivatives as pest control agents.
AU2019297361A1 (en) 2018-07-05 2021-02-25 Incyte Corporation Fused pyrazine derivatives as A2A / A2B inhibitors
AR116314A1 (en) 2018-09-13 2021-04-21 Bayer Ag HETEROCYCLIC DERIVATIVES AS PESTICIDES
BR112021003324A2 (en) 2018-09-19 2021-05-11 Basf Se pesticide mixtures, compositions, methods of combating or controlling invertebrate pests, protecting growing plants and protecting plant propagation material, using a mixture of pesticides and seeds
TWI829857B (en) 2019-01-29 2024-01-21 美商英塞特公司 Pyrazolopyridines and triazolopyridines as a2a / a2b inhibitors
EP3918896A4 (en) 2019-01-31 2022-09-28 Sumitomo Chemical Company, Limited Heterocyclic compound and harmful arthropod control composition containing same
JPWO2020171077A1 (en) * 2019-02-19 2021-12-16 住友化学株式会社 Heterocyclic compound and harmful arthropod control composition containing it
BR112021010400A2 (en) 2019-02-26 2021-08-24 Bayer Aktiengesellschaft Condensed bicyclic heterocyclic derivatives as pest control agents
EP3935056A1 (en) * 2019-03-08 2022-01-12 Syngenta Crop Protection AG Pesticidally active heterocyclic derivatives with sulfur containing substituents
AU2020252618A1 (en) 2019-03-29 2021-10-07 Sumitomo Chemical Company, Limited Heterocyclic compound and harmful arthropod pest control composition containing same
KR20220103993A (en) 2019-11-22 2022-07-25 바스프 에스이 Pyrimidone Derivatives Containing Two Fused Bicyclic Rings
TW202132300A (en) * 2020-01-06 2021-09-01 瑞士商先正達農作物保護公司 Pesticidally active heterocyclic derivatives with sulfur containing substituents
CN114981276A (en) 2020-01-09 2022-08-30 住友化学株式会社 Heterocyclic compound and harmful arthropod control composition containing same
WO2021204577A1 (en) 2020-04-06 2021-10-14 Basf Se Imidazo-pyrimidone compounds as pesticides
AU2021256876A1 (en) 2020-04-14 2022-11-03 Basf Se Tricyclic pesticidal compounds
KR20230039665A (en) 2020-07-02 2023-03-21 바이엘 악티엔게젤샤프트 Heterocycle derivatives as pest control agents
CN116075226A (en) 2020-09-02 2023-05-05 先正达农作物保护股份公司 Pesticidally active heterocyclic derivatives with sulfur containing substituents
EP4223755A1 (en) 2020-09-30 2023-08-09 Sumitomo Chemical Company, Limited Heterocyclic compound and harmful arthropod-controlling composition including same
EP4223756A1 (en) 2020-09-30 2023-08-09 Sumitomo Chemical Company, Limited Heterocyclic compound and harmful arthropod-controlling composition containing same
EP4259627A1 (en) 2020-12-14 2023-10-18 Basf Se Sulfoximine pesticides
EP4305042A1 (en) 2021-03-09 2024-01-17 Basf Se Tricyclic pesticidal compounds
WO2022189189A1 (en) 2021-03-09 2022-09-15 Basf Se Tricyclic pesticidal compounds
KR102564484B1 (en) * 2021-05-24 2023-08-04 서울대학교산학협력단 Pesticidal composition and method comprising juvenile hormone antagonists of carbazomycin derivatives
WO2023046853A1 (en) 2021-09-23 2023-03-30 Syngenta Crop Protection Ag Insect, acarina and nematode pest control
WO2023088718A1 (en) 2021-11-19 2023-05-25 Basf Se Bicyclic compounds for the control of invertebrate pests
WO2023105064A1 (en) 2021-12-10 2023-06-15 Syngenta Crop Protection Ag Insect, acarina and nematode pest control
WO2023105065A1 (en) 2021-12-10 2023-06-15 Syngenta Crop Protection Ag Insect, acarina and nematode pest control
WO2023152340A1 (en) 2022-02-10 2023-08-17 Syngenta Crop Protection Ag Insect, acarina and nematode pest control
WO2023203038A1 (en) 2022-04-19 2023-10-26 Syngenta Crop Protection Ag Insect, acarina and nematode pest control
WO2024071219A1 (en) * 2022-09-28 2024-04-04 住友化学株式会社 Sulfonamide compound, and harmful-arthropod extermination composition containing same
WO2024071393A1 (en) * 2022-09-30 2024-04-04 住友化学株式会社 Heterocyclic compound and harmful arthropod-controlling composition containing same

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2282808A (en) * 1993-10-14 1995-04-19 Merck & Co Inc 3-substituted heterocyclic indoles as inhibitors of HIV reverse transcriptase
JP5369854B2 (en) 2008-04-21 2013-12-18 住友化学株式会社 Harmful arthropod control composition and condensed heterocyclic compound
WO2010125985A1 (en) 2009-04-28 2010-11-04 Sumitomo Chemical Company, Limited Fused heterocyclic compound and use thereof
JP5540640B2 (en) 2009-10-07 2014-07-02 住友化学株式会社 Heterocyclic compounds and their use for controlling harmful arthropods
CN103037694B (en) 2010-06-23 2014-08-13 住友化学株式会社 Noxious arthropod control composition, and heterocyclic compound
TW201242962A (en) 2010-12-01 2012-11-01 Sumitomo Chemical Co Pyrimidine compound and use for pest control thereof
BR112013016022B1 (en) 2010-12-24 2019-05-07 Sumitomo Chemical Company, Limited Fused heterocyclic compound and use for same control.
TWI589570B (en) 2011-08-04 2017-07-01 住友化學股份有限公司 Fused heterocyclic compound and use thereof for pest control
BR112014029503B1 (en) 2012-05-30 2020-05-19 Sumitomo Chemical Co method to control pests
BR112014029501B1 (en) 2012-05-31 2020-05-19 Sumitomo Chemical Co fused heterocyclic compound, its use, pest control agent and method for pest control
US9271500B2 (en) 2012-06-18 2016-03-01 Sumitomo Chemical Company, Limited Fused heterocyclic compound
WO2013191189A1 (en) 2012-06-21 2013-12-27 住友化学株式会社 Fused heterocyclic compound
JP6311603B2 (en) 2012-06-22 2018-04-18 住友化学株式会社 Fused heterocyclic compounds
BR112014031584A2 (en) 2012-06-22 2017-06-27 Sumitomo Chemical Co fused heterocyclic compound
US9615580B2 (en) 2012-12-27 2017-04-11 Sumitomo Chemical Company, Limited Fused heterocyclic compound and use thereof for pest control
BR112015017740A2 (en) 2013-02-06 2017-07-11 Sumitomo Chemical Co condensed heterocyclic compound
EP2955179A4 (en) 2013-02-06 2016-09-28 Sumitomo Chemical Co Condensed heterocyclic compound
JP6418151B2 (en) 2013-02-28 2018-11-07 住友化学株式会社 Fused heterocyclic compound and its pest control use
BR112015020204B1 (en) 2013-02-28 2020-10-27 Sumitomo Chemical Company, Limited fused heterocyclic compound, plague control agent and method for controlling plague
UY35421A (en) 2013-03-15 2014-10-31 Nihon Nohyaku Co Ltd CONDENSED HETEROCYCLIC COMPOUND OR ITS SALT, AGRICULTURAL OR HERITAGE INSECTICIDE THAT INCLUDES THE COMPOSITE AND METHOD OF USE OF THE INSECTICIDE
WO2014148451A1 (en) 2013-03-19 2014-09-25 日本農薬株式会社 Fused heterocyclic compound or salt thereof, pesticide for agricultural and horticultural use containing said compound, and usage method therefor
JP2016135742A (en) 2013-03-29 2016-07-28 日本農薬株式会社 Condensed heterocyclic compound or salt thereof and insecticide for agricultural and horticultural use comprising compound, and method for use thereof
JP2015003906A (en) * 2013-05-24 2015-01-08 日本農薬株式会社 Condensed heterocyclic compounds or salts thereof, agricultural and gardening pesticides containing said compounds and methods of using the same
WO2015002211A1 (en) 2013-07-01 2015-01-08 住友化学株式会社 Fused heterocyclic compound and pest control use thereof
BR112016000059B1 (en) 2013-07-02 2020-12-29 Syngenta Participations Ag bi or tricyclic heterocycles compounds, composition comprising said compounds, method for combating and controlling pests, method for protecting plant propagation material from attack by pests and plant propagation material coated with said composition
WO2015059088A1 (en) 2013-10-23 2015-04-30 Bayer Cropscience Ag Substituted quinoxaline derivatives as pest control agent
EP2873668A1 (en) 2013-11-13 2015-05-20 Syngenta Participations AG. Pesticidally active bicyclic heterocycles with sulphur containing substituents
WO2015087458A1 (en) 2013-12-13 2015-06-18 住友化学株式会社 Fused heterocyclic compound and pest control application thereof
EP3083643B1 (en) 2013-12-20 2019-02-27 Syngenta Participations AG Pesticidally active substituted 5,5-bicyclic heterocycles with sulphur containing substituents
CN106414441B9 (en) 2014-02-17 2019-09-20 拜耳作物科学股份公司 2- (hetero) aryl-substituted fused bicyclic heterocyclic derivatives as pest control agents
AR099677A1 (en) 2014-03-07 2016-08-10 Sumitomo Chemical Co FUSION HETEROCYCLIC COMPOUND AND ITS USE FOR PEST CONTROL
WO2015198859A1 (en) 2014-06-26 2015-12-30 住友化学株式会社 Condensed heterocyclic compound
BR112017000269B1 (en) 2014-07-08 2020-06-02 Syngenta Participations Ag HETEROCYCLIC DERIVATIVES ACTIVE FROM THE PESTICIDE POINT OF VIEW WITH SUBSTITUTES CONTAINING SULFUR
WO2016142327A1 (en) 2015-03-12 2016-09-15 Syngenta Participations Ag Pesticidally active tetracyclic derivatives with sulfur containing substituents
EP3280716B1 (en) * 2015-04-08 2020-02-12 Bayer CropScience AG Imidazo[1,2-a]pyridin-2-yl derivatives as pesticides and intermediates thereof
WO2017061497A1 (en) * 2015-10-06 2017-04-13 日本農薬株式会社 Condensed heterocyclic compound or salts thereof, agricultural and horticultural insecticide containing said compound, and method for using same

Also Published As

Publication number Publication date
US10464950B2 (en) 2019-11-05
MY183075A (en) 2021-02-10
EP3257853A4 (en) 2018-10-10
IL253937A0 (en) 2017-10-31
PT3257853T (en) 2021-12-23
EA201791815A1 (en) 2017-11-30
KR20170117079A (en) 2017-10-20
ZA201706071B (en) 2019-02-27
ES2901127T3 (en) 2022-03-21
MX2017010420A (en) 2017-11-28
AU2016216963A1 (en) 2017-08-10
EP3257853B1 (en) 2021-11-10
NZ734281A (en) 2021-09-24
EA034278B1 (en) 2020-01-24
WO2016129684A1 (en) 2016-08-18
HUE057027T2 (en) 2022-04-28
JPWO2016129684A1 (en) 2017-11-24
US10882869B2 (en) 2021-01-05
CN107207506B (en) 2020-06-05
BR112017015870B1 (en) 2021-11-16
KR102129658B1 (en) 2020-07-02
CA2973862A1 (en) 2016-08-18
BR112017015870A2 (en) 2018-03-27
AU2016216963B2 (en) 2020-04-30
PL3257853T3 (en) 2022-03-21
CN107207506A (en) 2017-09-26
US20180022760A1 (en) 2018-01-25
PH12017501395A1 (en) 2018-01-15
CA2973862C (en) 2020-11-03
JP6781404B2 (en) 2020-11-04
PH12017501395B1 (en) 2018-01-15
EP3257853A1 (en) 2017-12-20
US20190375765A1 (en) 2019-12-12
SG11201706489YA (en) 2017-09-28
IL253937B (en) 2019-11-28

Similar Documents

Publication Publication Date Title
US10882869B2 (en) Condensed heterocyclic compounds and pesticides
US10640518B2 (en) Condensed heterocyclic compounds and pesticides
WO2012102387A1 (en) Pyrazole derivative and pest control agent
JP2012188418A (en) Triazole derivative, and pest control agent
TW202124378A (en) Condensed heterocyclic compound and noxious organism control agent capable of effectively eliminating insects or mites
JP2018070585A (en) Condensed heterocyclic compound and pest control agent
TWI705066B (en) Condensed heterocyclic compounds and pest control agents
JP2019182855A (en) Condensed heterocyclic compound and pest control agent
JP2020111539A (en) Condensed heterocyclic compound and pest control agent
NZ734281B2 (en) Condensed heterocyclic compounds and pesticides
JP2021102584A (en) Condensed heterocyclic compound and pest control agent
JP2014043436A (en) Pyrazole derivative, and pest controlling agent
JP2014034539A (en) Optically active pyrazole amide derivative and pest control agent
JP2014034540A (en) Pyrazole amide derivative and pest control agent
JP2014040411A (en) Pyrazole derivative and pest controlling agent
JP2014058512A (en) Thiazole derivative and pest control agent

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: APPLICATION DISPATCHED FROM PREEXAM, NOT YET DOCKETED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION