US20200353035A1 - Treatment of parasitic infections of fish surfaces - Google Patents

Treatment of parasitic infections of fish surfaces Download PDF

Info

Publication number
US20200353035A1
US20200353035A1 US16/764,437 US201816764437A US2020353035A1 US 20200353035 A1 US20200353035 A1 US 20200353035A1 US 201816764437 A US201816764437 A US 201816764437A US 2020353035 A1 US2020353035 A1 US 2020353035A1
Authority
US
United States
Prior art keywords
fish
lipopeptide
treatment
biosurfactant
derivative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US16/764,437
Inventor
Irene De Bruijn
Josephus Maria Raaijmakers
Kurt Buchman
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobenhavns Universitet
Nederlands Instituut Voor Ecologie (nioo-Knaw)
Original Assignee
Kobenhavns Universitet
Nederlands Instituut Voor Ecologie (nioo-Knaw)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobenhavns Universitet, Nederlands Instituut Voor Ecologie (nioo-Knaw) filed Critical Kobenhavns Universitet
Assigned to NEDERLANDS INSTITUUT VOOR ECOLOGIE (NIOO-KNAW) reassignment NEDERLANDS INSTITUUT VOOR ECOLOGIE (NIOO-KNAW) ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: DE BRUJIN, IRENE, RAAJIMAKERS, JOSEPHUS MARIA, BUCHMAN, Kurt
Publication of US20200353035A1 publication Critical patent/US20200353035A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • C12N1/205Bacterial isolates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/66Microorganisms or materials therefrom
    • A61K35/74Bacteria
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/04Peptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
    • A61K38/08Peptides having 5 to 11 amino acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/04Peptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
    • A61K38/12Cyclic peptides, e.g. bacitracins; Polymyxins; Gramicidins S, C; Tyrocidins A, B or C
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P33/00Antiparasitic agents
    • A61P33/02Antiprotozoals, e.g. for leishmaniasis, trichomoniasis, toxoplasmosis
    • C12R1/39
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/38Pseudomonas
    • C12R2001/39Pseudomonas fluorescens

Definitions

  • the present invention relates to the treatment of parasitic infections causing white spot disease in fish.
  • White spot disease causes severe economic losses in fresh water and sea water aquaculture. Accordingly, there is a need for an effective and safe remedy against white spot disease in fish.
  • lipopeptide surfactants can be used in the treatment of white spot disease in fish.
  • the present invention relates to the use of lipopeptide surfactants in the treatment of white spot disease in fish.
  • the present invention relates in particular to the use of bacterial lipopeptide surfactants in the treatment of white spot disease.
  • surfactant lipopeptides may find application as an antiparasitic control agent in aquacultured fish.
  • the fish or fish tank water may be treated with the isolated surfactant lipopeptide, or with compositions or formulations containing this lipopeptide.
  • the fish may be treated with the bacterial isolate wherein the bacteria are capable to produce said lipopeptide biosurfactant.
  • the present invention relates to a lipopeptide biosurfactant for use in the treatment of white spot disease in fish, such as in fresh water fish and in marine fish.
  • Examples of parasites causing white spot disease in fish are parasites of the family termed Ichthyophthudidae, and in particular Ichthyophthirius multifiliis causing freshwater white spot disease.
  • a further example is the parasite Cryptocaryon irritans (originally classified as Ichthyophthirius marinus ) causing marine white spot disease.
  • the present invention relates to lipopeptide biosurfactant for use in the treatment of white spot disease, such as caused by Ichthyophthirius multifiliis infection and Cryptocaryon irritans infection.
  • the present invention relates to lipopeptide biosurfactant for use in the prevention of white spot disease, such as caused by Ichthyophthirius multifiliis infection in fresh water fish and Cryptocaryon irritans in marine fish.
  • fresh water fish relates to fish living at least during a certain stage of its life cycle in fresh water.
  • suitable examples are fish raised for consumption in aquaculture (such as salmonids (exemplified by rainbow trout ( Oncorhynchus mykiss )), cyprinids (exemplified by grass carp ( Ctenopharyngodon idella ), black carp ( Mylopharyngodon piceus ), silver carp ( Hypophthalmichthys molitrix ), common carp ( Cyprinus carpio ), bighead carp ( Hypophthalmichthys nobilis ), catla (Indian carp, Catla calla), crucian carp ( Carassius carassius ), roho labeo ( Labeo rohita )), other fish families including tilapia (exemplified by nile tilapia ( Oreochromis niloticus )), milkfish ( Chanos
  • marine fish relates to fish species living at least a part of their life in marine waters. Examples are fish raised for aquaculture in mariculture systems such as gilthead seabream ( Sparus auratus ) and seabass ( Dicentrarchus labrax ). In addition, a long range ornamental fish species used in marine aquaria is covered by the term.
  • lipopeptide biosurfactant relates to a molecule consisting of a lipid connected to a peptide, generally a cyclic peptide, with surfactant properties (i.e. lowering surface tension of fluids).
  • Lipopeptide biosurfactants can be produced by bacteria. Generally, the biosynthetic pathway encoding the lipopeptide surfactant within a given bacterial strain leads to a single main lipopeptide surfactant and minor amounts of structurally related derivatives of the main lipopeptide surfactant.
  • Known bacterial lipopeptide biosurfactants are for example surfactin and derivatives thereof, daptomycin and derivatives thereof, massetolide and derivatives thereof, viscosin and derivatives thereof, thanamycin and derivatives thereof and putisolvin and derivatives thereof.
  • Suitable massetolide lipopeptide surfactants for use according to the present invention are massetolide A, massetolide B, massetolide C, massetolide D, massetolide E, massetolide F, massetolide G and massetolide H.
  • Treatment of white spot disease in fish in particular comprises the prevention of white spot disease by preventing the development of the tomonts and tomocysts and more in particular by preventing the development of the free-living theronts of the organisms causing white spot disease in fish, like Ichthyophthirius multifiliis and Cryptocaryon irritans.
  • a further viscosin-like lipopeptide biosurfactant obtainable from the bacterium Pseudomonas fluorescens strain H6 was recently reported to kill zoospores of the oomycete fish pathogen Saprolegnia diclina (de Bruijn et al. 2007; Liu et al. 2015) and thus might be useful to control Saprolegnia infections.
  • this vicosin-like lipopeptide biosurfactant of Pseudomonas fluorescens strain H6 can also suitably be used for the treatment of white spot disease in fish such as infections caused by Ichthyophthirius multifiliis.
  • the present invention relates to a bacterial lipopeptide biosurfactant obtainable from the Pseudomonas fluorescens strain H6 or a derivative thereof for use in the treatment of Ichthyophthirius multifiliis infection in fish.
  • the present invention relates to a composition comprising at least one lipopeptide biosurfactant for use in the treatment of white spot in fish, in particular in fresh water fish and in marine fish.
  • the present invention relates to a composition comprising at least one lipopeptide biosurfactant for use in the treatment of Ichthyophthirius multifiliis infection in fish, in particular in fresh water fish.
  • the present invention relates to a composition
  • a composition comprising a bacterial lipopeptide biosurfactant obtainable from the Pseudomonas fluorescens strain H6 for use in the treatment white spot in fish, in particular in fresh water fish and in marine fish.
  • the present invention relates to a composition
  • a composition comprising a bacterial lipopeptide biosurfactant obtainable from the Pseudomonas fluorescens strain H6 or a derivative thereof for use in the treatment of Ichthyophthirius multifiliis infection in fish, in particular in fresh water fish.
  • a composition suitable according to the present invention may predominantly comprise the lipopeptide or lipopeptides, for example the one or more lipopeptides together with one or more carriers, or may for example comprise a slow-release form (i.e. granules) which sheds the lipopeptide biosurfactant(s) over a prolonged period.
  • a slow-release form i.e. granules
  • composition suitable according to the present invention may be prepared from a freeze-dried solution of the lipopeptide or lipopeptides by dissolving the freeze-dried solution in water, such as sterile distilled water.
  • the lipopeptide biosurfactant may be administered to the fish as a bacterial culture, which is capable to produce the lipopeptide in aquaculture.
  • the invention relates to a bacterial isolate of the Pseudomonas fluorescens strain H6 for use in the treatment of white spot in fish, in particular in fresh water fish and in marine fish.
  • the invention relates to a bacterial isolate wherein the bacteria are capable to produce a putisolvin and/or derivatives for use in the treatment of white spot disease in fish, in particular in fresh water fish.
  • this lipopeptide biosurfactant of Pseudomonas fluorescens strain H6 may find further application as an antiparasitic control agent in aquacultured fish, in particular in aquacultured trout, such as in rainbow trout.
  • the present invention relates to the use of a lipopeptide biosurfactant selected from (a) a viscosin-like lipopeptide (such as lipopeptide biosurfactant obtainable from the Pseudomonas fluorescens strain H6) (b) a massetolide (such as a massetolide biosurfactant obtainable from Pseudomonas fluorescens strain SS101) or a derivative thereof, and (c) a putisolvin (such as the putisolvin biosurfactant obtainable from Pseudomonas putida 267) or a derivative thereof in a concentration of 10-1000 ⁇ g/ml, such as in a concentration of 10-100 ⁇ g/ml, in the treatment of white spot disease in fish, in particular in fresh water fish, and more particular in the treatment of white spot disease caused by the pathogenic ciliate Ichthyophthirius multifiliis.
  • a viscosin-like lipopeptide such as
  • treatment and “control” or “controlling” may be used interchangeably and may all relate to prevention and curing of diseases.
  • FIG. 3 Effect of biosurfactants on number of theronts.
  • the biosurfactants tested were massetolide obtained from Pseudomonas fluorescens SS101, the putisolvin-like biosurfactant from Pseudomonas putida 267 and the viscosin-like biosurfactant of Pseudomonas H6.
  • Ichthyophthirius multifiliis parasites were isolated at room temperature by placing fins and gills, recovered from a fish euthanized (300 mg/L of tricaine methanesulfonate, MS222, Sigma-Aldrich, Denmark), in Petridishes with freshwater (22° C.). This induced release of epidermal trophonts to leave the fish tissues as tomonts. Some were isolated and used directly for lipopeptide biosurfactant exposure studies. Others were incubated further and transformed into tomocysts each containing several hundreds of tomites (24 h). A subpopulation of these were used for exposure and others were incubated further until they released theronts within 24-30 h. These were isolated and similarly used for in vitro evaluation of lipopeptide biosurfactant effects.
  • a lipopeptide biosurfactant of Pseudomonas fluorescens strain H6 was extracted according to the method described by Liu et al. (2015).
  • Pseudomonas fluorescens strain H6 was grown on Pseudomonas agar plates (20 ml plates) for 48 h at 25 C. Cells of strain H6 were collected from the agar plates and suspended in sterile de-mineralized water (5-10 ml per plate), and vortexed to homogenize the cell suspension. Cell suspensions were then centrifuged twice for 10 min at 9,000 rpm (4 C) and supernatant filter-sterilised with 0.2 um filters. The lipopeptide biosurfactant present in the cell-free culture supernatant was precipitated by acidification of the supernatant with 9% (v/v) HCl to pH 2.0. Precipitation was allowed for 1 h on ice.
  • the precipitate was collected by centrifugation at maximum speed and washed three consecutive times with acidified (pH 2.0) demineralized water. Demineralized water was added to the washed precipitate and the pH was adjusted to 8.0 with 0.2 M NaOH to allow the precipitate to dissolve. The resulting solution was freeze-dried.
  • a stock solution of 10 mg/mL was prepared by dissolving the product in sterile distilled water whereafter a dilution series was prepared for parasite exposures.
  • the final concentrations of the lipopeptide biosurfactant in the wells were 1000, 100, 20, 13, 10, 7, 5, 2.5, 2 and 1 ⁇ /mL and all concentrations were tested in triplicate for each parasite stage.
  • the volume added into each well was 100 ⁇ L composed by mixing 50 ⁇ L of lipopeptide biosurfactant solution with 50 ⁇ L of fresh water containing parasites.
  • a Leica MZ 95 dissection microscope (magnification 6-40 ⁇ ) was used for monitoring motility of tomonts, tomocysts and theronts.
  • Motility was recorded as presence of ciliary activity and cell movements of free theronts, free tomonts and tomites enclosed in tomocysts.
  • Non-motile and lysed tomites, theronts and tomonts were considered dead.
  • Ichthyophthirius multifiliis tomonts were only sensitive to the two highest concentrations (1000 and 100 ⁇ g/mL PS), which killed all parasites within 15 min ( FIG. 1A ).
  • Cytoplasmic movements inside the tomonts initially increased when exposed to the lipopeptide biosorfactant, whereafter a disruption of the membrane followed and finally cytoplasm was released into the surroundings of the tomonts ( FIG. 2C ).
  • Dead tomites were concentrated at the center of the tomocyte because tomites in the tomocyst moved away from the periphery immediately after PS addition ( FIG. 2D ).
  • Tomocysts were phenotypically not affected at PS concentrations of 0 and 7 ⁇ g/mL.
  • Ichthyophthirius multifiliis theronts showed a high sensitivity towards PS and when exposed to 1000 and 100 ⁇ g/mL PS theronts showed 100% mortality within 5 min ( FIG. 10 ). In 20 ⁇ g/mL PS, less than 20% survival was seen at this time point and the remaining theronts were killed after 30 min.
  • Extracts of the biosurfactant massetolide A was obtained from Pseudomonas fluorescens SS101 as described in De Bruijn et al (2008), the putisolvin-like biosurfactant from Pseudomonas putida 267 as described in Kruijt et al (2008) and the viscosin-like biosurfactant of Pseudomonas H6 as described above.
  • a stock solution of 15 mg/mL was prepared for each surfactant by dissolving the product in sterile distilled water whereafter a dilution series was prepared for parasite exposures that was performed as described in above.
  • the viscosin, massetolide and putisolvin biosurfactants extract from Pseudomonas sp H6, Pseudomonas fluorescens SS101 and Pseudomonas putida 267, respectively, elicited 100% mortality of theronts during the first 5 min exposure at a concentration 0.15 mg/mL.
  • concentration 0.15 mg/mL At a concentration of 0.015 mg/ml, massetolide and viscosin-like biosurfactant elicited 90% and 50% mortality of theronts within 15 min, whereas putisolvin had no effect at this concentration ( FIG. 3 ).
  • Tomonts were killed at 0.1 mg/ml within 15 minutes upon exposure of the viscosin-like biosurfactant of Pseudomonas H6. Tomonts exposed to 1.5 and 0.15 mg/mL of massetolide were lethal within 15 min of exposure, whereas putisolvin killed tomonts at 1.5 mg/mL within the first 15 min, but no effects were observed at a concentration 0.15 mg/mL (Table 1).

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Epidemiology (AREA)
  • Organic Chemistry (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Immunology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Biomedical Technology (AREA)
  • Virology (AREA)
  • Molecular Biology (AREA)
  • Mycology (AREA)
  • Peptides Or Proteins (AREA)
  • Farming Of Fish And Shellfish (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

The invention relates to the use of bacterial lipopeptide biosurfactants in the treatment of white spot disease in fresh water and marine fish. Particularly useful for treatment of white spot disease are viscosin-like lipopeptide biosurfactants obtainable from the Pseudomonas fluorescens strain H6, massetolide or a derivative thereof and putisolvin or a derivative thereof.

Description

    FIELD OF THE INVENTION
  • The present invention relates to the treatment of parasitic infections causing white spot disease in fish.
  • BACKGROUND OF THE INVENTION
  • Diseases in fish, such as freshwater fish caused by parasites in and on their surfaces (gills, skin, fins) are an economic challenge in fish production industry targeting fish for consumption as well as ornamental fish. One important disease is white spot disease of freshwater fish in particular caused by the parasitic ciliate Ichthyophthirius multifiliis which leads to high morbidity and mortality in both wild and cultured fish, worldwide.
  • Several chemicals are currently being applied to control white spot disease in fish, such as in freshwater fish.
  • Following the ban of the organic dye malachite green, previously used for treatment of the disease, fish farmers apply a number of compounds for disease control including sodium percarbonate, copper sulphate, formalin, peracetic acid and totrazuril. These compounds, however, can have adverse environmental effects. Also plant extracts have attracted considerable attention due to their effect on certain life stages of the parasite and recently purified plant derived compounds comprising cynatratoside-C, sanguinarine, dihydrosanguinarine and dihydrochelerythrine, pentagalloylglucose have exhibited some antiparasitic effects in laboratory experiments. However, despite the promising reports on antiparasitic effects of natural, semi-synthetic and synthetic plant-derived products, questions on their residual and toxic effects on the environment, fish and humans remain unsolved.
  • White spot disease causes severe economic losses in fresh water and sea water aquaculture. Accordingly, there is a need for an effective and safe remedy against white spot disease in fish.
  • SUMMARY OF THE INVENTION
  • According to the present invention it was surprisingly found that lipopeptide surfactants can be used in the treatment of white spot disease in fish.
  • Accordingly, the present invention relates to the use of lipopeptide surfactants in the treatment of white spot disease in fish. The present invention relates in particular to the use of bacterial lipopeptide surfactants in the treatment of white spot disease.
  • Furthermore, such treatment is considered safe as fish showed no adverse immediate or late signs following several hours of incubation in the effective lipopeptide biosurfactant concentrations.
  • Accordingly surfactant lipopeptides may find application as an antiparasitic control agent in aquacultured fish.
  • To this end, the fish or fish tank water may be treated with the isolated surfactant lipopeptide, or with compositions or formulations containing this lipopeptide.
  • Alternatively, the fish may be treated with the bacterial isolate wherein the bacteria are capable to produce said lipopeptide biosurfactant.
  • DETAILED EMBODIMENTS OF THE INVENTION
  • The present invention relates to a lipopeptide biosurfactant for use in the treatment of white spot disease in fish, such as in fresh water fish and in marine fish.
  • Examples of parasites causing white spot disease in fish are parasites of the family termed Ichthyophthiriidae, and in particular Ichthyophthirius multifiliis causing freshwater white spot disease. A further example is the parasite Cryptocaryon irritans (originally classified as Ichthyophthirius marinus) causing marine white spot disease.
  • Accordingly, in a particular embodiment, the present invention relates to lipopeptide biosurfactant for use in the treatment of white spot disease, such as caused by Ichthyophthirius multifiliis infection and Cryptocaryon irritans infection.
  • More in particular, the present invention relates to lipopeptide biosurfactant for use in the prevention of white spot disease, such as caused by Ichthyophthirius multifiliis infection in fresh water fish and Cryptocaryon irritans in marine fish.
  • Herein, the term “fresh water fish” relates to fish living at least during a certain stage of its life cycle in fresh water. Suitable examples are fish raised for consumption in aquaculture (such as salmonids (exemplified by rainbow trout (Oncorhynchus mykiss)), cyprinids (exemplified by grass carp (Ctenopharyngodon idella), black carp (Mylopharyngodon piceus), silver carp (Hypophthalmichthys molitrix), common carp (Cyprinus carpio), bighead carp (Hypophthalmichthys nobilis), catla (Indian carp, Catla calla), crucian carp (Carassius carassius), roho labeo (Labeo rohita)), other fish families including tilapia (exemplified by nile tilapia (Oreochromis niloticus)), milkfish (Chanos chanos), catfish (exemplified by Amur catfish (Silurus asotus)), Wuchang bream (Megalobrama amblycephala), northern snakehead (Channa argus) as well as a long range of ornamental fish species maintained in aquaria.
  • As referred herein, “marine fish” relates to fish species living at least a part of their life in marine waters. Examples are fish raised for aquaculture in mariculture systems such as gilthead seabream (Sparus auratus) and seabass (Dicentrarchus labrax). In addition, a long range ornamental fish species used in marine aquaria is covered by the term.
  • As referred herein the expression “lipopeptide biosurfactant” relates to a molecule consisting of a lipid connected to a peptide, generally a cyclic peptide, with surfactant properties (i.e. lowering surface tension of fluids). Lipopeptide biosurfactants can be produced by bacteria. Generally, the biosynthetic pathway encoding the lipopeptide surfactant within a given bacterial strain leads to a single main lipopeptide surfactant and minor amounts of structurally related derivatives of the main lipopeptide surfactant.
  • Known bacterial lipopeptide biosurfactants are for example surfactin and derivatives thereof, daptomycin and derivatives thereof, massetolide and derivatives thereof, viscosin and derivatives thereof, thanamycin and derivatives thereof and putisolvin and derivatives thereof.
  • Suitable massetolide lipopeptide surfactants for use according to the present invention are massetolide A, massetolide B, massetolide C, massetolide D, massetolide E, massetolide F, massetolide G and massetolide H.
  • Treatment of white spot disease in fish in particular comprises the prevention of white spot disease by preventing the development of the tomonts and tomocysts and more in particular by preventing the development of the free-living theronts of the organisms causing white spot disease in fish, like Ichthyophthirius multifiliis and Cryptocaryon irritans.
  • A further viscosin-like lipopeptide biosurfactant obtainable from the bacterium Pseudomonas fluorescens strain H6 was recently reported to kill zoospores of the oomycete fish pathogen Saprolegnia diclina (de Bruijn et al. 2007; Liu et al. 2015) and thus might be useful to control Saprolegnia infections.
  • Surprisingly, we discovered that this vicosin-like lipopeptide biosurfactant of Pseudomonas fluorescens strain H6 can also suitably be used for the treatment of white spot disease in fish such as infections caused by Ichthyophthirius multifiliis.
  • In a particular embodiment, the present invention relates to a bacterial lipopeptide biosurfactant obtainable from the Pseudomonas fluorescens strain H6 or a derivative thereof for use in the treatment of Ichthyophthirius multifiliis infection in fish.
  • In a further embodiment, the present invention relates to a composition comprising at least one lipopeptide biosurfactant for use in the treatment of white spot in fish, in particular in fresh water fish and in marine fish.
  • In a further embodiment, the present invention relates to a composition comprising at least one lipopeptide biosurfactant for use in the treatment of Ichthyophthirius multifiliis infection in fish, in particular in fresh water fish.
  • In a further embodiment, the present invention relates to a composition comprising a bacterial lipopeptide biosurfactant obtainable from the Pseudomonas fluorescens strain H6 for use in the treatment white spot in fish, in particular in fresh water fish and in marine fish.
  • In a further embodiment, the present invention relates to a composition comprising a bacterial lipopeptide biosurfactant obtainable from the Pseudomonas fluorescens strain H6 or a derivative thereof for use in the treatment of Ichthyophthirius multifiliis infection in fish, in particular in fresh water fish.
  • A composition suitable according to the present invention may predominantly comprise the lipopeptide or lipopeptides, for example the one or more lipopeptides together with one or more carriers, or may for example comprise a slow-release form (i.e. granules) which sheds the lipopeptide biosurfactant(s) over a prolonged period.
  • In a particular embodiment, the composition suitable according to the present invention may be prepared from a freeze-dried solution of the lipopeptide or lipopeptides by dissolving the freeze-dried solution in water, such as sterile distilled water.
  • Alternatively, the lipopeptide biosurfactant may be administered to the fish as a bacterial culture, which is capable to produce the lipopeptide in aquaculture.
  • Accordingly, in a further embodiment, the invention relates to a bacterial isolate wherein the bacteria are capable to produce lipopeptide surfactant for use in the treatment white spot in fish, in particular fresh water fish and marine fish.
  • In a further embodiment, the invention relates to a bacterial isolate wherein the bacteria are capable to produce lipopeptide surfactant for use in the treatment of Ichthyophthirius multifiliis infection in fish, in particular fresh water fish.
  • In a further embodiment, the invention relates to a bacterial isolate of the Pseudomonas fluorescens strain H6 for use in the treatment of white spot in fish, in particular in fresh water fish and in marine fish.
  • In a further embodiment, the invention relates to a bacterial isolate wherein the bacteria are capable to produce a massetolide and/or derivatives for use in the treatment of white spot disease in fish, in particular in fresh water fish.
  • In a further embodiment, the invention relates to a bacterial isolate wherein the bacteria are capable to produce a putisolvin and/or derivatives for use in the treatment of white spot disease in fish, in particular in fresh water fish.
  • In a further embodiment, the invention relates to a bacterial isolate of the Pseudomonas fluorescens strain H6 or a derivative thereof or a derivative thereof for use in the treatment of Ichthyophthirius multifiliis infection in fish.
  • A sample of the Pseudomonas fluorescens strain H6 has been deposited on Nov. 1, 2017 under the Regulations of the Budapest Treaty in the CBS collection of the Westerdijk Fungal Biodiversity Institute with deposit number CBS 143505.
  • The isolation and characterization of the lipopeptide biosurfactant of Pseudomonas fluorescens strain H6 has been described by Liu et al. (2015). This viscosin-like lipopeptide biosurfactant was found to be clearly distinguished from the well-known lipopeptide biosurfactants of related strains such as the massetolide lipopeptide which can be obtained from Pseudomonas fluorescens SS101, the viscosin lipopeptide which can be obtained from Pseudomonas fluorescens SBW25 and the putisolvin lipopeptide which can be obtained from Pseudomons putida 267.
  • It was shown that these lipopeptide biosurfactants have a strong in vitro antiparasitic effect on the fish pathogenic ciliate Ichthyophthirius multifiliis. Ichthyophthirius multifiliis is a pathogenic ciliate with different life cycle stages, the infective theront stage, the trophont stage in the fish epidermis, the tomont (the stage attained in the water after the trophont has left the fish skin), the tomocyst containing tomites which are released to the water as theronts. The life cycle stages including tomonts, tomocysts and theronts were found susceptible to the H6 lipopeptide biosurfactant. Theronts were the most sensitive showing 100% mortality within 30 min in as low concentrations as 10 and 13 μg/ml.
  • Tomonts were the most resistant but were killed still fast at the higher concentrations of 100 and 1000 μg/ml. Tomocysts are generally resistant to chemical and medical treatment due to the surrounding protective cyst wall. Surprisingly, they were sensitive to the lipopeptide biosurfactant from Pseudomonas fluorescens strain H6. The lipopeptide biosurfactant, even at low concentrations of 10 and 13 μg/ml, (penetrated the cyst wall and) killed the enclosed tomites within a few minutes.
  • Accordingly, this lipopeptide biosurfactant of Pseudomonas fluorescens strain H6 may find further application as an antiparasitic control agent in aquacultured fish, in particular in aquacultured trout, such as in rainbow trout.
  • As mentioned above, the present invention also relates to the use of other lipopeptide biosurfactants for the control of white spot disease. It has been shown for example that also massetolide and putisolvin show a pronounced in vitro activity against various developmental stages of the parasite causing white spot disease in fish.
  • Accordingly, in a particular embodiment, the present invention relates to the use of a lipopeptide biosurfactant selected from (a) a viscosin-like lipopeptide (such as lipopeptide biosurfactant obtainable from the Pseudomonas fluorescens strain H6) or a derivative thereof, (b) a massetolide (such as a massetolide surfactant obtainable from Pseudomonas fluorescens strain SS101) or a derivative thereof, and (c) a putisolvin (such as the putisolvin biosurfactant obtainable from Pseudomonas putida 267) or a derivative thereof in the treatment of white spot disease in fish, in particular in fresh water fish and in marine fish, and more particular in the treatment of white spot disease caused by the pathogenic ciliate Ichthyophthirius multifiliis.
  • In the applications mentioned above, the lipopeptide according to the present invention may be administered to the fish (such as to the fish tank water) in a concentration of 10-1000 μg/ml, such as 10-100 μg/ml of the lipopeptide biosurfactant.
  • Accordingly, in a particular embodiment, the present invention relates to the use of a lipopeptide biosurfactant selected from (a) a viscosin-like lipopeptide (such as lipopeptide biosurfactant obtainable from the Pseudomonas fluorescens strain H6) (b) a massetolide (such as a massetolide biosurfactant obtainable from Pseudomonas fluorescens strain SS101) or a derivative thereof, and (c) a putisolvin (such as the putisolvin biosurfactant obtainable from Pseudomonas putida 267) or a derivative thereof in a concentration of 10-1000 μg/ml, such as in a concentration of 10-100 μg/ml, in the treatment of white spot disease in fish, in particular in fresh water fish, and more particular in the treatment of white spot disease caused by the pathogenic ciliate Ichthyophthirius multifiliis.
  • The treatment may be a one-time treatment after infection has been identified. Alternatively the treatment may be performed several times, such as once a day or once a week.
  • Use of the verb “to comprise” and its conjugations does not exclude the presence of elements or steps other than those stated in a claim. Unless the context clearly requires otherwise, throughout the description and the claims, the words “comprise”, “comprising”, and the like are to be construed in an inclusive sense as opposed to an exclusive or exhaustive sense; that is to say, in the sense of “including, but not limited to”.
  • The article “a” or “an” preceding an element does not exclude the presence of a plurality of such elements.
  • The terms “treatment” and “control” or “controlling” may be be used interchangeably and may all relate to prevention and curing of diseases.
  • The various aspects discussed in this patent can be combined in order to provide additional advantages. Further, the person skilled in the art will understand that embodiments can be combined, and that also more than two embodiments can be combined. Furthermore, some of the features can form the basis for one or more divisional applications.
  • Notification
  • The project leading to this patent application has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 634429.
  • BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1. Effects of Pseudomonas fluorescens H6 lipopeptide biosurfactant (PS). Three life stages of free living Ichthyophthirius multifiliis were incubated with a concentration series of PS in water and compared to parasites in control water without PS. The parasite mortality was recorded at 0, 15, 30, 45, 75, 60, 120 and 180 min after treatment. A. Tomonts, B. Tomocysts, C. Theronts.
  • FIG. 2. Tomonts released from the fish skin and tomocysts with enclosed tomites of Ichthyophthirius multifiliis affected by PS. A) Tomonts without PS. B) Tomocysts with enclosed tomites after 30 sec exposure to PS. C) Tomont showing a membrane disruption and release of cytoplasm following 15 min of PS exposure. D) Tomocyst with enclosed dead tomites in the cyst center after 15 min PS exposure.
  • FIG. 3. Effect of biosurfactants on number of theronts. The biosurfactants tested were massetolide obtained from Pseudomonas fluorescens SS101, the putisolvin-like biosurfactant from Pseudomonas putida 267 and the viscosin-like biosurfactant of Pseudomonas H6. In this figure the following data are included (1) water control; (2) 0.15 mg/ml viscosin (H6); (3) 0.015 mg/ml viscosin (H6); (4) 0.15 mg/ml massetolide (SS101); (5) 0,015 mg/ml massetolide (SS101); (6) 0.15 mg/ml putisolvin (267); (7) 0,015 mg/ml putisolvin (267).
  • EXAMPLES Materials and Methods Parasites:
  • A Danish strain of Ichthyophthirius multifiliis was established in a laboratory population of rainbow trout originally raised in a disease free recirculation system (Xueqin et al. (2012)).
  • Parasites were collected from infected rainbow trout reared in a Danish commercial trout farm (Jutland, western part of Denmark) as previously described (Aihua & Buchmann, (2001)). Infected live fish were transported to the University of Copenhagen.
  • Ichthyophthirius multifiliis parasites were isolated at room temperature by placing fins and gills, recovered from a fish euthanized (300 mg/L of tricaine methanesulfonate, MS222, Sigma-Aldrich, Denmark), in Petridishes with freshwater (22° C.). This induced release of epidermal trophonts to leave the fish tissues as tomonts. Some were isolated and used directly for lipopeptide biosurfactant exposure studies. Others were incubated further and transformed into tomocysts each containing several hundreds of tomites (24 h). A subpopulation of these were used for exposure and others were incubated further until they released theronts within 24-30 h. These were isolated and similarly used for in vitro evaluation of lipopeptide biosurfactant effects.
  • Pseudomonas fluorescens H6 Lipopeptide Biosurfactant (PS):
  • A lipopeptide biosurfactant of Pseudomonas fluorescens strain H6 was extracted according to the method described by Liu et al. (2015).
  • Pseudomonas fluorescens strain H6 was grown on Pseudomonas agar plates (20 ml plates) for 48 h at 25 C. Cells of strain H6 were collected from the agar plates and suspended in sterile de-mineralized water (5-10 ml per plate), and vortexed to homogenize the cell suspension. Cell suspensions were then centrifuged twice for 10 min at 9,000 rpm (4 C) and supernatant filter-sterilised with 0.2 um filters. The lipopeptide biosurfactant present in the cell-free culture supernatant was precipitated by acidification of the supernatant with 9% (v/v) HCl to pH 2.0. Precipitation was allowed for 1 h on ice. The precipitate was collected by centrifugation at maximum speed and washed three consecutive times with acidified (pH 2.0) demineralized water. Demineralized water was added to the washed precipitate and the pH was adjusted to 8.0 with 0.2 M NaOH to allow the precipitate to dissolve. The resulting solution was freeze-dried.
  • A stock solution of 10 mg/mL was prepared by dissolving the product in sterile distilled water whereafter a dilution series was prepared for parasite exposures.
  • In Vitro Incubation and Exposure:
  • Glass plates (thickness 6 mm) each with 30 concave wells (diameter 25 mm, depth 3 mm, maximum water capacity 2000 μL) were used for incubation of parasite life stages (theronts, tomont and tomocysts).
  • The final concentrations of the lipopeptide biosurfactant in the wells were 1000, 100, 20, 13, 10, 7, 5, 2.5, 2 and 1 μ/mL and all concentrations were tested in triplicate for each parasite stage.
  • The number of parasites in each well was for theronts 20-25, for tomonts 2 and for tomocysts 2.
  • The volume added into each well was 100 μL composed by mixing 50 μL of lipopeptide biosurfactant solution with 50 μL of fresh water containing parasites.
  • The experiment was performed at room temperature (22° C.) and parasite motility was recorded at 0, 15, 30, 45, 75, 60 and 90 min. The experiments were conducted in triplicate.
  • Monitoring Effect of Lipopeptide Biosurfactant on Motility of Parasites:
  • A Leica MZ 95 dissection microscope (magnification 6-40×) was used for monitoring motility of tomonts, tomocysts and theronts.
  • Motility was recorded as presence of ciliary activity and cell movements of free theronts, free tomonts and tomites enclosed in tomocysts.
  • Non-motile and lysed tomites, theronts and tomonts were considered dead.
  • Sensitivity of Fish to Lipopeptide Biosurfactant:
  • Rainbow trout (2×3) were exposed in plastic fish tanks (total volume 3 L), each containing 1 L of lipopeptide biosurfactant solution and three rainbow trout, to concentrations of lipopeptide biosurfactant (10 and 13 μg/mL) which were found effective for all tested parasite life stages within 90 min. Three control fish were kept under the same conditions but without lipopeptide biosurfactant.
  • Fish were monitored in the lipopeptide biosurfactant solution for 3 h after exposure whereafter they were transferred to 80 L tanks containing only pure water and observed for any adverse behavioural signs (balance disturbances, lethargia, anorexia) for 7 days.
  • Data Analysis
  • As no significant differences between the triplicate wells were observed with regard to parasite survival (three different parasite life stages in different lipopeptide biosurfactant concentrations), data from these were pooled.
  • Survival of the different parasite life stages was visualized in a Kaplan-Meier plot and statistically tested by Dunn's multiple comparison test with a probability level of 5%.
  • All the statistical analyses and graphs in this study were performed by using Graph Pad Prism Version 5.
  • Example 1
  • In Vitro Effects Pseudomonas fluorescens Strain H6 Lipopeptide Biosurfactant on Ichthyophthirius multifiliis
  • Tomonts
  • Ichthyophthirius multifiliis tomonts were only sensitive to the two highest concentrations (1000 and 100 μg/mL PS), which killed all parasites within 15 min (FIG. 1A).
  • Cytoplasmic movements inside the tomonts (FIG. 2A) initially increased when exposed to the lipopeptide biosorfactant, whereafter a disruption of the membrane followed and finally cytoplasm was released into the surroundings of the tomonts (FIG. 2C).
  • A 10 μg/mL PS concentration had no effect on this parasite life stage within the observation period tested.
  • Tomocysts
  • Ichthyophthirius multifiliis tomocysts, with their enclosed tomites (FIG. 2B), showed a different sensitivity to the lipopeptide biosurfactant when compared to tomonts (FIG. 1B).
  • At the highest tested concentration of 1000 μg/mL PS, the majority of tomites in the tomocysts (83%) were immotile after 15 min of exposure (FIG. 1B). When exposed to 100 μg/mL PS, immobilization was observed for 83% tomites after 30 min. After 60 min, all tomocysts with their content of tomites were dead (FIG. 2D).
  • Dead tomites were concentrated at the center of the tomocyte because tomites in the tomocyst moved away from the periphery immediately after PS addition (FIG. 2D).
  • The effect of 13 and 10 μg/mL PS was slightly lower; nevertheless, all parasites were killed within 75 min and 90 min, respectively.
  • Tomocysts were phenotypically not affected at PS concentrations of 0 and 7 μg/mL.
  • Theronts
  • Ichthyophthirius multifiliis theronts showed a high sensitivity towards PS and when exposed to 1000 and 100 μg/mL PS theronts showed 100% mortality within 5 min (FIG. 10). In 20 μg/mL PS, less than 20% survival was seen at this time point and the remaining theronts were killed after 30 min.
  • Concentrations of 13 and 10 μg/mL PS were lethal for theronts within 60 min. Concentrations of 7 μg/mL PS and lower had no visual effect even after 90 min.
  • Example 2 Sensitivity of Fish to Pseudomonas Lipopeptide Biosurfactant
  • Rainbow trout showed no immediate or late adverse reactions when exposed for 3 h to PS concentrations of 10 and 13 μg/mL. No toxic effects on fish could be detected.
  • Example 3 Comparison of In Vitro Activity of Various Biosurfactants Against Tomonts and Theronts
  • Collection of I. multifiliis was performed as described above. Extracts of the biosurfactant massetolide A was obtained from Pseudomonas fluorescens SS101 as described in De Bruijn et al (2008), the putisolvin-like biosurfactant from Pseudomonas putida 267 as described in Kruijt et al (2008) and the viscosin-like biosurfactant of Pseudomonas H6 as described above. A stock solution of 15 mg/mL was prepared for each surfactant by dissolving the product in sterile distilled water whereafter a dilution series was prepared for parasite exposures that was performed as described in above. Concentrations of 0.15 and 0.015 mg/ml were tested for all three biosurfactants against tomonts (one replicate) and theronts (in duplicate) and mortality recorded every 15 min up to 1 h of exposure. Significant differences were calculated for the theront mortality data by analysis of variance followed by Dunnet's posthoc analyses (p<0.05).
  • Results
  • The viscosin, massetolide and putisolvin biosurfactants extract from Pseudomonas sp H6, Pseudomonas fluorescens SS101 and Pseudomonas putida 267, respectively, elicited 100% mortality of theronts during the first 5 min exposure at a concentration 0.15 mg/mL. At a concentration of 0.015 mg/ml, massetolide and viscosin-like biosurfactant elicited 90% and 50% mortality of theronts within 15 min, whereas putisolvin had no effect at this concentration (FIG. 3).
  • Tomonts were killed at 0.1 mg/ml within 15 minutes upon exposure of the viscosin-like biosurfactant of Pseudomonas H6. Tomonts exposed to 1.5 and 0.15 mg/mL of massetolide were lethal within 15 min of exposure, whereas putisolvin killed tomonts at 1.5 mg/mL within the first 15 min, but no effects were observed at a concentration 0.15 mg/mL (Table 1).
  • TABLE 1
    Effect of biosurfactants on number of tomonts. The
    biosurfactants included were massetolide obtained from
    Pseudomonas fluorescens SS101, the putisolvin-like
    biosurfactant from Pseudomonas putida 267.
    number of tomonts
    water
    concentration time control massetolide putisolvin
    1.5 mg/ml 0 min 2 2 2
    15 min 2 0 0
    30 min 2 0 0
    45 min 2 0 0
    60 min 2 0 0
    0.15 mg/ml 0 min 2 2 2
    15 min 2 0 2
    30 min 2 0 2
    45 min 2 0 2
    60 min 2 0 2
  • CONCLUSIONS
      • The viscosin-like biosurfactant of Pseudomonas H6 showed clear inhibitory effect on the free-living tomont and theront life stages of Ich at concentrations 100 and 10-20 ug/ml, respectively.
      • Structurally related biosurfactant massetolide (produced by Pseudomonas fluorescens SS101) showed similar activity as the viscosin-like biosurfactant from Pseudomonas H6 towards theronts and tomonts. Putisolvin, which is structurally more distant from the visocosin-like biosurfactant of H6, is less active at lower concentrations against theronts and not active against tomonts.
    REFERENCES
    • de Bruijn et al. (2007): de Bruijn I, de Kock M J D, Yang M, de Waard P, van Beek T A, Raaijmakers J M. “Genome-based discovery, structure prediction and functional analysis of cyclic lipopeptide antibiotics in Pseudomonas species.” Molecular Microbiology. 2007; 63(2):417-28.
    • De Bruijn et al (2008): De Bruijn I, De Kock M J D, De Waard P, Van Beek T A, Raaijmakers J M. “Massetolide A Biosynthesis in Pseudomonas fluorescens.” J Bacteriol 190, 2777-2789 (2008).
    • Liu et al. (2015): Yiying Liu, Elzbieta Rzeszutek, Menno van der Voort, Cheng-Hsuan Wu, Even Thoen, Ida Skaar, Vincent Bulone, Pieter C. Dorrestein, Jos M. Raaijmakers, Irene de Bruijn “Diversity of Aquatic Pseudomonas Species and Their Activity against the Fish Pathogenic Oomycete Saprolegnia” PLOSOne; DOI:10.1371/journal.pone.0136241; published 28. August 2016.
    • Xueqin et al. (2012): Xueqin J, Kania P W and Buchmann K. “Comparative effects of four feed types on white spot disease susceptibility and skin immune parameters in rainbow trout, Oncorhynchus mykiss (Walbaum)” J Fish Dis. 2012 February; 35(2):127-35.
    • Aihua, L., Buchmann, K. (2001). “Temperature- and salinity-dependent development of a Nordic strain of Ichthyophthirius multifiliis from rainbow trout.” J Appl Ichthyol 17, 273-276.
    • Kruijt et al (2008): Kruijt M, Tran H, Raaijmakers J M. “Functional, genetic and chemical characterization of biosurfactants produced by plant growth-promoting Pseudomonas putida 267.” Journal of applied microbiology 107, 546-556 (2009).

Claims (15)

1. A lipopeptide biosurfactant for use in the treatment of white spot disease in fish such as fresh water fish and marine fish.
2. A lipopeptide biosurfactant according to claim 1 selected from (a) a viscosin lipopeptide or a derivative thereof (b) a massetolide or a derivative thereof and (c) a putisolvin or a derivative thereof for use in the treatment of white spot disease in fish.
3. A lipopeptide biosurfactant according to claim 1 selected from (a) a viscosin or a derivative thereof (b) a massetolide or a derivative thereof and (c) a putisolvin or a derivative thereof for use in the treatment of Ichthyophthirius multifillis infection in fish.
4. A lipopeptide biosurfactant according to claim 2, wherein the viscosin lipopeptide is a viscosin-like lipopeptide obtainable from the Pseudomonas fluorescens strain H6.
5. A lipopeptide biosurfactant according to claim 1, wherein the biosurfactant has a concentration of 10-1000 μg/ml.
6. A composition comprising at least one lipopeptide biosurfactant for use in the treatment of white spot disease in fish such as fresh water fish and marine fish
7. A composition according to claim 6 wherein the composition comprises at least one lipopeptide biosurfactant selected from (a) a viscosin lipopeptide or a derivative thereof (b) a massetolide or a derivative thereof and (c) a putisolvin or a derivative thereof.
8. A composition according to claim 6, wherein the lipopeptide biosurfactant is a lipopeptide obtainable from the Pseudomonas fluorescens strain H6.
9. A composition according to claim 6 comprising at least one lipopeptide biosurfactant for use in the treatment of Ichthyophthirius multifillis infection in fresh water fish.
10. A composition according to claim 6 comprising a bacterial lipopeptide biosurfactant selected from (a) a lipopeptide obtainable from the Pseudomonas fluorescens strain H6 (b) a massetolide and (c) a putisolvin for use in the treatment of Ichthyophthirius multifillis infection in fish.
11. A composition according to claim 6, wherein the biosurfactant has a concentration of 10-1000 μg/ml.
12. A bacterial isolate, wherein the bacteria produce a lipopeptide surfactant for use in the treatment of white spot disease in fish, such as fresh in water fish and in marine fish.
13. A bacterial isolate according to claim 12, wherein the bacteria produce a massetolide or derivative thereof for use in the treatment of white spot disease in fish.
14. A bacterial isolate according to claim 12 producing a putisolvin or a derivative thereof for use in the treatment of white spot disease in fish.
15. A bacterial isolate of the Pseudomonas fluorescens strain H6 for use in the treatment of Ichthyophthirius multifillis infection in fresh water fish.
US16/764,437 2017-11-21 2018-11-20 Treatment of parasitic infections of fish surfaces Abandoned US20200353035A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP17202669.2 2017-11-21
EP17202669 2017-11-21
PCT/EP2018/081923 WO2019101739A1 (en) 2017-11-21 2018-11-20 Treatment of parasitic infections of fish surfaces

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2018/081923 A-371-Of-International WO2019101739A1 (en) 2017-11-21 2018-11-20 Treatment of parasitic infections of fish surfaces

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/951,560 Division US20230107426A1 (en) 2017-11-21 2022-09-23 Treatment of Parasitic Infections of Fish Surfaces

Publications (1)

Publication Number Publication Date
US20200353035A1 true US20200353035A1 (en) 2020-11-12

Family

ID=60421620

Family Applications (2)

Application Number Title Priority Date Filing Date
US16/764,437 Abandoned US20200353035A1 (en) 2017-11-21 2018-11-20 Treatment of parasitic infections of fish surfaces
US17/951,560 Pending US20230107426A1 (en) 2017-11-21 2022-09-23 Treatment of Parasitic Infections of Fish Surfaces

Family Applications After (1)

Application Number Title Priority Date Filing Date
US17/951,560 Pending US20230107426A1 (en) 2017-11-21 2022-09-23 Treatment of Parasitic Infections of Fish Surfaces

Country Status (5)

Country Link
US (2) US20200353035A1 (en)
EP (1) EP3713419A1 (en)
JP (1) JP7422669B2 (en)
CN (1) CN111787937A (en)
WO (1) WO2019101739A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112889717A (en) * 2021-02-24 2021-06-04 中山大学 Method for biologically preventing and controlling cryptocaryon irritans infection by using tilapia

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL2029375B1 (en) * 2021-10-11 2023-05-04 Univ Santiago Compostela Treatment of parasitic infections of fish
CA3232499A1 (en) 2021-10-11 2023-04-20 Malte Jarlgaard HANSEN Method for the killing, inactivating, or inhibiting of harmful blue-green algae or algae capable of causing harmful algal bloom (hab)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10328003B4 (en) * 2003-01-27 2010-02-04 Alpha-Biocare Gmbh Remedy for unicellular parasites of fish

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112889717A (en) * 2021-02-24 2021-06-04 中山大学 Method for biologically preventing and controlling cryptocaryon irritans infection by using tilapia

Also Published As

Publication number Publication date
CN111787937A (en) 2020-10-16
JP2021510379A (en) 2021-04-22
JP7422669B2 (en) 2024-01-26
EP3713419A1 (en) 2020-09-30
WO2019101739A1 (en) 2019-05-31
US20230107426A1 (en) 2023-04-06

Similar Documents

Publication Publication Date Title
US20230107426A1 (en) Treatment of Parasitic Infections of Fish Surfaces
Karim et al. Probiotic strains for shellfish aquaculture: protection of eastern oyster, Crassostrea virginica, larvae and juveniles againsl bacterial challenge
Louradour et al. The midgut microbiota plays an essential role in sand fly vector competence for Leishmania major
Labreuche et al. Effects of extracellular products from the pathogenic Vibrio aestuarianus strain 01/32 on lethality and cellular immune responses of the oyster Crassostrea gigas
Kumari et al. Evaluation of the antibacterial activity of skin mucus of three carp species
Rengpipat et al. Evaluations of lactic acid bacteria as probiotics for juvenile seabass Lates calcarifer
Manilal et al. Virulence of vibrios isolated from diseased black tiger shrimp, Penaeus monodon, Fabricius
Tyor et al. Biochemical characterization and antibacterial properties of fish skin mucus of fresh water fish, Hypophthalmichthys nobilis
Pridgeon et al. Virulence of Aeromonas hydrophila to channel catfish Ictaluras punctatus fingerlings in the presence and absence of bacterial extracellular products
JPWO2006101060A1 (en) Prevention method for crustacean mold and fish mold using Bacillus subtilis
Chumpol et al. Optimization of culture conditions for production of antivibrio compounds from probiotic purple nonsulfur bacteria against acute hepatopancreatic necrosis disease-causing Vibrio parahaemolyticus and Vibrio spp.
Girija et al. In vitro antagonistic activity and the protective effect of probiotic Bacillus licheniformis Dahb1 in zebrafish challenged with GFP tagged Vibrio parahaemolyticus Dahv2
Hamza et al. Efficacy of cell free supernatant from Bacillus licheniformis in protecting Artemia salina against Vibrio alginolyticus and Pseudomonas gessardii
Loganathan et al. Studies on the role of mucus from Clarias batrachus (Linn) against selected microbes
KR20180131948A (en) Pseudomonas extremorientalis strain KACC 81047BP and composition for comprising the same
Van Cam et al. Effect of N-acyl homoserine lactone-degrading enrichment cultures on Macrobrachium rosenbergii larviculture
US20140274880A1 (en) Mosquitocidal xenorhabdus, lipopeptide and methods
NL2029375B1 (en) Treatment of parasitic infections of fish
KR101793393B1 (en) INHIBITOR COMPRISING DINOFLAGELLATES Alexandrium spp. AGAINST SCUTICOCILIATES
US20210000123A1 (en) Anti-parasitic agents
Ajadi et al. Growth enhancement and protective potential of feed-based outer membrane proteins against vibriosis in Macrobrachium rosenbergii
Borisutpeth et al. The in vitro antifungal effects of chlorine dioxide on water molds
Dao Chemical investigation of candidate probiotics in aquaculture and formulation of a probiotic agent for oyster larviculure
WO2023061961A1 (en) Method for the killing, inactivating, or inhibiting of harmful blue-green algae or algae capable of causing harmful algal bloom (hab)
Youn et al. Antifungal effects of Pseudomonas aeruginosa MB1-3 and its active compound against fish pathogenic Saprolegnia sp.

Legal Events

Date Code Title Description
AS Assignment

Owner name: NEDERLANDS INSTITUUT VOOR ECOLOGIE (NIOO-KNAW), NETHERLANDS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:DE BRUJIN, IRENE;RAAJIMAKERS, JOSEPHUS MARIA;BUCHMAN, KURT;SIGNING DATES FROM 20200610 TO 20200625;REEL/FRAME:053582/0589

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION