US20200323269A1 - Vaporization device and method thereof - Google Patents

Vaporization device and method thereof Download PDF

Info

Publication number
US20200323269A1
US20200323269A1 US16/619,951 US201916619951A US2020323269A1 US 20200323269 A1 US20200323269 A1 US 20200323269A1 US 201916619951 A US201916619951 A US 201916619951A US 2020323269 A1 US2020323269 A1 US 2020323269A1
Authority
US
United States
Prior art keywords
heating component
heating
component
hole
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US16/619,951
Inventor
Chen Chen
Yao Fu
Shuting Feng
Zugang YANG
Jin Zhang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Relx Technology Co Ltd
Original Assignee
Shenzhen Relx Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201810942876.6A external-priority patent/CN110353306A/en
Priority claimed from CN201810941894.2A external-priority patent/CN110353305A/en
Priority claimed from CN201810943496.4A external-priority patent/CN110301673A/en
Priority claimed from CN201910028649.7A external-priority patent/CN110326817B/en
Application filed by Shenzhen Relx Technology Co Ltd filed Critical Shenzhen Relx Technology Co Ltd
Assigned to Shenzhen Relx Technology Co., Ltd. reassignment Shenzhen Relx Technology Co., Ltd. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CHEN, CHEN, Feng, Shuting, FU, Yao, YANG, Zugang, ZHANG, JIN
Publication of US20200323269A1 publication Critical patent/US20200323269A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/46Shape or structure of electric heating means
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/42Cartridges or containers for inhalable precursors
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/48Fluid transfer means, e.g. pumps
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • A24F40/51Arrangement of sensors
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • A24F40/53Monitoring, e.g. fault detection
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • A24F40/57Temperature control
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M11/00Sprayers or atomisers specially adapted for therapeutic purposes
    • A61M11/04Sprayers or atomisers specially adapted for therapeutic purposes operated by the vapour pressure of the liquid to be sprayed or atomised
    • A61M11/041Sprayers or atomisers specially adapted for therapeutic purposes operated by the vapour pressure of the liquid to be sprayed or atomised using heaters
    • A61M11/042Sprayers or atomisers specially adapted for therapeutic purposes operated by the vapour pressure of the liquid to be sprayed or atomised using heaters electrical
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M15/00Inhalators
    • A61M15/0001Details of inhalators; Constructional features thereof
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/10Devices using liquid inhalable precursors

Definitions

  • the present invention relates to a vaporization device and a method thereof, and more particularly to an electronic device providing an inhalable aerosol and a method thereof.
  • An electronic cigarette is an electronic product that heats a vaporizable solution and vaporizes the solution to produce an aerosol for a user to smoke.
  • an electronic cigarette product includes a housing, an e-liquid storage chamber, an vaporization chamber, a heating component, an air inlet, an airflow channel, an air outlet, a power supply device, a sensing device and a control device.
  • the e-liquid storage chamber is configured to store a vaporizable solution, and the heating component is used to heat and vaporize the solution to generate an aerosol.
  • the air inlet is in communication with the vaporization chamber, and provides air to the heating component when the user inhales.
  • the aerosol generated by the heating component is first generated in the vaporization chamber, and subsequently inhaled by the user via the airflow channel and the air outlet.
  • the power supply device supplies power needed by the heating component, and the control device controls the heating time of the heating component according to an inhalation action of the user detected by the sensing device.
  • the housing wraps all the foregoing components.
  • existing electronic cigarette products are not designed to control the power output of the heating component.
  • the power supply device continuously heats the heating component, and the heating component may be overheated and produce a burnt smell, causing a bad experience for the user.
  • the overheated heating component may also destroy or burn the internal components of the electronic cigarette.
  • Fast power consumption is also a general disadvantage of existing electronic cigarette products that are not designed to control the output power.
  • a vaporization device and a method thereof are provided to resolve the foregoing problems.
  • the vaporization device includes a cartridge and a body.
  • the cartridge includes a housing, a heating component and a heating component base.
  • the heating component base comprises a storage tank, a first supporting member adjacent to the storage tank, and a second supporting member adjacent to the storage tank, and the storage tank has a first depth.
  • the first supporting member comprises a plurality of openings
  • the second supporting member comprises a ramp structure, the distance between the ramp structure and a bottom portion of the storage tank is greater than the first depth, and the distance between the plurality of openings and the bottom portion of the storage tank is greater than the first depth.
  • the body has an accommodation portion. The accommodation portion covers a portion of the cartridge when the cartridge is removably engaged with the body.
  • a device configured to store a fluid includes a heating component top cap, a heating component and a heating component base.
  • the heating component base comprises a first supporting member and a second supporting member.
  • the heating component base comprises a storage tank having a first depth and adjacent to the first supporting member and the second supporting member.
  • the first supporting member comprises a first opening, the distance between the first opening and a bottom portion of the storage tank is a first height, and the first height is greater than the first depth.
  • the second supporting member comprises a ramp structure, the distance between the ramp structure and the bottom portion of the storage tank is a second height, and the second height is greater than or equal to the first depth.
  • a method for operating a vaporization device includes causing a first airflow to enter a cavity between a heating component and a heating component base through a first opening on a first supporting member along an air inlet channel, wherein the air inlet channel is defined by a housing and the heating component base.
  • the method includes causing the first airflow from the cavity to flow along a ramp structure on a second supporting member to enter an air outlet channel, wherein the air outlet channel is defined by the housing and the heating component base.
  • the method includes causing the first airflow to have a temperature rise when entering the cavity.
  • the method further includes causing the first airflow to have a temperature drop when flowing through the air outlet channel.
  • FIG. 1A and FIG. 1B are exploded views of a portion of a vaporization device according to some embodiments of the present invention.
  • FIG. 2A and FIG. 2B are exploded views of a portion of a vaporization device according to some embodiments of the present invention.
  • FIG. 3A and FIG. 3B are sectional views of a cartridge according to some embodiments of the present invention.
  • FIG. 4 is a sectional view of a cartridge according to some embodiments of the present invention.
  • FIG. 5A and FIG. 5B are sectional views of a cartridge according to some embodiments of the present invention.
  • FIG. 6A , FIG. 6B , FIG. 6C , FIG. 6D and FIG. 6E are top views of heating component top caps according to some embodiments of the present invention.
  • FIG. 7A , FIG. 7B , FIG. 7C and FIG. 7D are schematic diagrams of a heating component according to some embodiments of the present invention.
  • FIG. 8A , FIG. 8B and FIG. 8C are schematic diagrams of a heating component base according to some embodiments of the present invention.
  • FIG. 8D is a sectional view of a heating component base according to some embodiments of the present invention.
  • FIG. 9A is a schematic diagram of a vaporization device combination according to some embodiments of the present invention.
  • FIG. 9B and FIG. 9C are sectional views of a cartridge according to some embodiments of the present invention.
  • FIG. 10 is a flowchart of an output power control method according to some embodiments of the present invention.
  • reference formed by the first feature above or on the second feature may include an embodiment formed by direct contact between the first feature and the second feature, and may further include an embodiment in which an additional feature may be formed between the first feature and the second feature to enable the first feature and the second feature to be not in direct contact.
  • reference numerals and/or letters may be repeated in examples. This repetition is for the purpose of simplification and clarity, and does not indicate a relationship between the described various embodiments and/or configurations.
  • FIG. 1A and FIG. 1B are exploded views of a portion of a vaporization device according to some embodiments of the present invention.
  • a vaporization device 100 may include a cartridge 100 A (shown in FIG. 1A and FIG. 1B ) and a body 100 B (shown in FIG. 2A and FIG. 2B ).
  • the cartridge 100 A and the body 100 B may be designed as an integral device.
  • the cartridge 100 A and the body 100 B may be designed into two separate components.
  • the cartridge 100 A may be designed to be removably combined with the body 100 B.
  • the cartridge 100 A may be designed to be partly received by the body 100 B.
  • the cartridge 100 A includes a mouthpiece 1 , a silicone mouthpiece seal member 2 , a cartridge housing 3 , a heating component top cap 4 , a silicone heating component seal member 5 , a heating component 6 , a sensor starter tube 7 , a heating component base 8 , a conductive contact 9 , an base O-ring 10 and a metal cartridge base 11 .
  • the cartridge housing 3 may store a vaporizable material.
  • the cartridge housing 3 may store a vaporizable liquid.
  • the vaporizable material may make contact with the heating component 6 through a through hole 4 h on the heating component top cap 4 and a through hole 5 h on the silicone heating component seal member 5 .
  • the heating component 6 includes a groove 6 c, and the vaporizable material may make direct contact with the heating component 6 through an inner wall of the groove 6 c.
  • the vaporizable material may be a type of liquid.
  • the vaporizable material may be a type of solution.
  • the vaporizable material may be referred to as e-liquid.
  • the e-liquid is edible.
  • the heating component 6 includes a conductive component 6 p.
  • the vaporization device 100 may supply power to the heating component 6 through the conductive component 6 p to increase the temperature of the heating component 6 .
  • the sensor starter tube 7 may be a hollow tube.
  • the sensor starter tube 7 may be disposed on a side of the heating component base 8 .
  • the sensor starter tube 7 may be disposed on a side of the heating component base 8 close to an air inlet channel.
  • the sensor starter tube 7 may pass through a through hole 8 h 2 on the heating component base 8 .
  • the sensor starter tube 7 may be fixedly disposed on the through hole 8 h 2 on the heating component base 8 .
  • One end of the sensor starter tube 7 may be exposed by a through hole 11 c on the metal cartridge base 11 .
  • the conductive contact 9 passes through a through hole 8 h 1 on the heating component base 8 to make contact with the conductive component 6 p of the heating component 6 .
  • the conductive contact 9 may make physical contact with the conductive component 6 p.
  • the conductive contact 9 may be electrically connected with the conductive component 6 p.
  • the base O-ring 10 may be fixedly disposed in a groove 8 g of the heating component base 8 . After being combined with each other, the base O-ring 10 and the heating component base 8 are disposed inside the metal cartridge base 11 .
  • the metal cartridge base 11 may cover the base O-ring 10 .
  • the metal cartridge base 11 may cover at least one part of the heating component base 8 .
  • One end of the conductive contact 9 passes through the through hole 8 h 1 of the heating component base 8 , and the other end of the conductive contact 9 may be exposed by a through hole 11 h on the metal cartridge base 11 .
  • FIG. 2A and FIG. 2B are exploded views of a portion of a vaporization device according to some embodiments of the present invention.
  • the body 100 B includes a power component bracket silicone 12 , a magnetic component 13 , an O-ring 14 of the power component bracket, a conductive probe 15 , a sensor 16 , a circuit board 17 , an light guide component 18 , a buffer component 19 , a power supply component 20 , a power supply component bracket 21 , a motor 22 , a charging panel 23 and a body housing 24 .
  • the power component bracket silicone 12 may be a component closest to the metal cartridge base 11 in the body 100 B.
  • An upper surface 12 s of the power component bracket silicone 12 is adjacent to a lower surface 11 s of the metal cartridge base 11 .
  • the power component bracket silicone 12 includes through holes 12 h 1 , 12 h 2 and 12 h 3 .
  • One end of the magnetic component 13 may be exposed by the through hole 12 h 1 .
  • One end of the conductive probe 15 may be exposed by the through hole 12 h 2 .
  • An attractive force may be generated between the magnetic component 13 and the metal cartridge base 11 .
  • the attractive force removably combines the cartridge 100 A and the body 100 B.
  • the magnetic component 13 may be a permanent magnet.
  • the magnetic component 13 may be an electromagnet.
  • the magnetic component 13 itself has magnetic properties.
  • the magnetic component 13 has magnetic properties after being energized.
  • the conductive probe 15 may be exposed by the through hole 12 h 2 , and exceeds the upper surface 12 s of the power component bracket silicone 12 .
  • the conductive probe 15 can be scalable. When the cartridge 100 A and the body 100 B are removably combined, the conductive probe 15 and the conductive contact 9 make contact with each other. When the cartridge 100 A and the body 100 B are removably combined, the conductive probe 15 and the conductive contact 9 are electrically connected with each other. When the cartridge 100 A and the body 100 B are removably combined, the conductive contact 9 compresses the conductive probe 15 and shortens the length of the conductive probe 15 . In some embodiments, the conductive probe 15 may be a conductive contact.
  • the sensor 16 may detect an airflow through the through hole 12 h 3 .
  • the sensor 16 may detect a barometric change through the through hole 12 h 3 .
  • the sensor 16 may detect a negative pressure through the through hole 12 h 3 .
  • the sensor 16 may be used to detect whether an air pressure is lower than a threshold through the through hole 12 h 3 .
  • the sensor 16 may detect an acoustic wave through the through hole 12 h 3 .
  • the sensor 16 may be used to detect whether an amplitude of the acoustic wave is higher than a threshold through the through hole 12 h 3 .
  • the senor 16 may be an airflow sensor. In some embodiments, the sensor 16 may be an air pressure sensor. In some embodiments, the sensor 16 may be an acoustic sensor. In some embodiments, the sensor 16 may be an acoustic receiver. In some embodiments, the sensor 16 may be a microphone.
  • the controller 171 may be a microprocessor.
  • the controller 171 may be a programmable integrated circuit.
  • the controller 171 may be a programmable logic circuit. In some embodiments, after the controller 171 is manufactured, arithmetic logic in the controller 171 cannot be changed. In some embodiments, after the controller 171 is manufactured, arithmetic logic in the controller 171 can be changed programmably.
  • the circuit board 17 may also include a memory (not shown).
  • the memory may be integrated in the controller 171 .
  • the memory and the controller 171 may be separately disposed.
  • the controller 171 may be electrically connected to the sensor 16 .
  • the controller 171 may be electrically connected to the conductive probe 15 .
  • the controller 171 may be electrically connected to the power supply component 20 .
  • the controller 171 may control the power supply component 20 to supply power to the conductive probe 15 .
  • the controller 171 may control the power supply component 20 to supply power to the conductive probe 15 .
  • the controller 171 may control the power supply component 20 to supply power to the conductive probe 15 .
  • the controller 171 may control the power supply component 20 to supply power to the conductive probe 15 .
  • the controller 171 may control the power supply component 20 to supply power to the conductive probe 15 .
  • the controller 171 may control the power supply component 20 to supply power to the conductive probe 15 .
  • the other side of the circuit board 17 may include one or more luminous components (not shown). According to different operation states of the vaporization device 100 , the controller 171 may control the one or more luminous components on the circuit board 17 to produce different visual effects. In some embodiments, the one or more luminous components on the circuit board 17 may be arranged into an array. In some embodiments, the array of the one or more luminous components may have one or more rows. In some embodiments, the array of the one or more luminous components may have one or more columns.
  • the controller 171 may control the one or more luminous components to produce a visual affect. In some embodiments, when the user charges the vaporization device 100 , the controller 171 may control the one or more luminous components to produce a visual affect. In some embodiments, based on a quantity of electricity of the power supply component 20 , the controller 171 may control the one or more luminous components to produce a visual affect. In some embodiments, the visual effect produced by the one or more luminous components may include blinking, intermittent illumination or continuous illumination. In some embodiments, the controller 171 may control the brightness produced by the one or more luminous components. In some embodiments, the controller 171 may control the array of the one or more luminous components to display a specific pattern. In some embodiments, the controller 171 may control two luminous components that have different colors to illuminate and generate a mixed chromatic light.
  • the light guide component 18 is disposed on a side that is of the circuit board 17 and that includes one or more luminous components. A light generated by the one or more luminous components can be refracted after passing through the light guide component 18 . A light generated by the one or more luminous components can be scattered after passing through the light guide component 18 . The light guide component 18 may make the light emitted from the one or more luminous components on the circuit board 17 more uniform.
  • the power supply component 20 may be disposed in a groove 21 c of the power supply component bracket 21 .
  • the buffer component 19 may be disposed on a surface 20 s of the power supply component 20 .
  • the buffer component 19 may be disposed between the power supply component 20 and the body housing 24 .
  • the buffer component 19 may make direct contact with the surface 20 s of the power supply component 20 and an inner wall of the body housing 24 .
  • An extra buffer component may be disposed between the power supply component 20 and the groove 21 , even though it is not shown in the drawings.
  • the power supply component 20 may be a battery. In some embodiments, the power supply component 20 may be a rechargeable battery. In some embodiments, the power supply component 20 may be a disposable battery.
  • the power supply component bracket 21 may be fixedly connected with the body housing 24 by a fixing component 25 .
  • the fixing component 25 may fixedly connect the power supply component bracket 21 and the body housing 24 through a through hole 21 h on the power supply component bracket 21 and a through hole 24 h 1 on the body housing 24 .
  • the motor 22 may be electrically connected to the controller 171 . Based on different operation states of the vaporization device 100 , the controller 171 may control the motor 22 to produce different somatosensory effects. In some embodiments, when the user inhales for more than a specific length of time, the controller 171 may control the motor 22 to vibrate, so as to remind the user to stop inhaling. In some embodiments, when the user charges the vaporization device 100 , the controller 171 may control the motor 22 to vibrate, so as to indicate that charging has started. In some embodiments, when the vaporization device 100 has been charged, the controller 171 may control the motor 22 to vibrate, so as to indicate that charging has been completed.
  • the charging panel 23 is disposed on the bottom of the body housing 24 . One end of the charging panel 23 is exposed by a through hole 24 h 2 of the body housing 24 .
  • the power supply component 20 can be charged by the charging panel 23 .
  • the body housing 24 includes a light transmitting component 241 .
  • the light transmitting component 241 may include one or more holes penetrating the body housing 24 .
  • the light transmitting component 241 may appear in a generally circular shape.
  • the light transmitting component 241 may appear in a generally rectangle shape.
  • the light transmitting component 241 may appear in a generally symmetrical shape.
  • the light transmitting component 241 may appear in a generally asymmetrical shape. Light emitted by the one or more luminous components on the circuit board 17 is visible via the light transmitting component 241 .
  • FIG. 3A and FIG. 3B are sectional views of a cartridge according to some embodiments of the present invention.
  • the cartridge housing 3 includes an e-liquid storage compartment 30 , an air inlet channel 31 and an air outlet channel 32 .
  • the air inlet channel 31 and the air outlet channel 32 may be located inside the cartridge housing 3 . In some embodiments, the air inlet channel 31 and the air outlet channel 32 may be defmed by an internal structure of the cartridge housing 3 . In some embodiments, the air inlet channel 31 and the air outlet channel 32 may be defmed by the cartridge housing 3 and the body housing 24 together. In some embodiments, the air inlet channel 31 may be defined by the internal structure of the housing 3 and the heating component base 8 together. In some embodiments, the air outlet channel 32 may be defined by the internal structure of the housing 3 and the heating component base 8 together.
  • the air inlet channel 31 is located on one side of the cartridge housing 3 , and the air outlet channel 32 is located on the other side of the cartridge housing 3 .
  • the air inlet channel 31 may be located on one side of the heating component 6
  • the air outlet channel 32 may be located on the other side of the heating component 6 opposite to the air inlet channel 31 .
  • the pipe diameter of the air inlet channel 31 may be the same as that of the air outlet channel 32 . In some embodiments, the pipe diameter of the air inlet channel 31 may be different from that of the air outlet channel 32 . In some embodiments, the pipe diameter of the air inlet channel 31 may be smaller than that of the air outlet channel 32 . Smaller pipe diameter of the air inlet channel 31 may make it easier for the sensor starter tube 7 to generate a negative pressure. Smaller pipe diameter of the air inlet channel 31 may make it easier for the sensor 16 to detect an inhalation action of the user.
  • the air inlet channel 31 and the air outlet channel 32 may be configured asymmetrically in the cartridge housing 3 .
  • the vaporization chamber 8 c may be a cavity between the heating component 6 and the heating component base 8 .
  • the vaporization chamber 8 c may be defined by the heating component 6 and the heating component base 8 together.
  • the air inlet channel 31 is in communication with the vaporization chamber 8 c.
  • the air outlet channel 32 is in communication with the vaporization chamber 8 c.
  • the part where the air inlet channel 31 is in communication with the vaporization chamber 8 c is located below the heating component 6 .
  • the part where the air outlet channel 32 is in communication with the vaporization chamber 8 c is located below the heating component 6 .
  • the configuration can at least partially prevent the airflow from flowing directly through the heating component 6 .
  • the effect of a material of the heating component on the flavor of e-liquid (vaporizable material) is reduced.
  • the condensed liquid remaining on the inner wall of the air inlet channel dose not drip on the heating component 6 even if it flows backwards, so that the condensed liquid can be prevented from clogging the heating component 6 .
  • the sensor starter tube 7 is disposed on the heating component base 8 .
  • the length of the sensor starter tube 7 that protrudes from the heating component base 8 is 7 L.
  • the part of the sensor starter tube 7 protruding from the heating component base 8 can be disposed in the air inlet channel 31 .
  • an aerosol may condense into a liquid 32 d and remain on an inner wall of the air outlet channel 32 .
  • the liquid 32 d may flow back and accumulate in an e-liquid tank 8 t (refer to FIG. 8A to FIG. 8D ).
  • the vaporizable material stored in the e-liquid storage compartment 30 may also leak into the e-liquid tank 8 t through the bottom of the heating component 6 .
  • the part of the sensor starter tube 7 exceeding the heating component base 8 can present the liquid stored in the e-liquid tank 8 t from leaking through the through hole 8 h 2 .
  • the length 7 L is within a range of 1 mm to 10 mm. In some embodiments, the length 7 L is within a range of 1 mm to 6 mm. In some embodiments, the length 7 L is within a range of 1 mm to 4 mm. In some embodiments, the length 7 L is within a range of 1 mm to 2 mm. In some embodiments, the length 7 L may be 1.5 mm. In some embodiments, the length 7 L may be 2 mm.
  • the sensor starter tube 7 and the heating component base 8 may be two separate components. In some embodiments, the sensor starter tube 7 and the heating component base 8 may be formed integrally. In some embodiments, the sensor starter tube 7 may be made of a metal material. In some embodiments, the sensor starter tube 7 may be made of a plastic material. In some embodiments, the sensor starter tube 7 and the heating component base 8 may be made of a same material. In some embodiments, the sensor starter tube 7 and the heating component base 8 may be made of different materials.
  • the length of the air inlet channel 31 is 31 L, and the length of the air outlet channel 32 is 32 L.
  • the length 31 L may be different from the length 32 L. In some embodiments, the length 31 L may be less than the length 32 L.
  • the length 7 L and the length 31 L may be in a proportional relationship. In some embodiments, a proportion of the length 31 L and the length 7 L may be within a range of 6 to 7 . In some embodiments, a proportion of the length 31 L and the length 7 L may be within a range of 7 to 8. In some embodiments, a proportion of the length 31 L and the length 7 L may be within a range of 8 to 9. In some embodiments, a proportion of the length 31 L and the length 7 L may be within a range of 9 to 10.
  • the air inlet channel 31 is in communication with the external through a through hole 31 h on the cartridge housing 3 .
  • the air outlet channel 32 is in communication with the outside through a through hole 1 h on the mouthpiece 1 .
  • the through hole 31 h and the through hole 1 h are located in different positions in the horizontal direction.
  • the distance between the through hole 31 h and the heating component 6 is different from the distance between the through hole 1 h and the heating component 6 .
  • the distance between the through hole 31 h and the heating component 6 is less than the distance between the through hole 1 h and the heating component 6 .
  • the e-liquid storage compaitinent 30 is a sealed area.
  • the e-liquid storage compailinent 30 may be formed by compartment structures 30 w 1 and 30 w 2 in the cartridge housing 3 and the heating component top cap 4 .
  • a part where the heating component top cap 4 makes contact with the compailinent structures 30 w 1 and 30 w 2 has a sealing member 4 r.
  • the sealing member 4 r makes the heating component top cap 4 and the compailinent structures 30 w 1 and 30 w 2 closely in contact with each other.
  • the sealing member 4 r may prevent the vaporizable material stored in the e-liquid storage compartment 30 from leaking out.
  • the heating component top cap 4 and the sealing member 4 r may be formed by using a same process. In some embodiments, the heating component top cap 4 and the sealing member 4 r may be formed by using a same process and different materials. In some embodiments, the heating component top cap 4 and the sealing member 4 r may be formed by injection molding. In some embodiments, the heating component top cap 4 may be produced by injection molding using a plastic material. In some embodiments, the sealing member 4 r may be produced by injection molding using liquid silica on the heating component top cap 4 .
  • the heating component top cap 4 and the sealing member 4 r may be formed by using different processes and subsequently combined with each other.
  • the heating component top cap 4 is produced by injection molding using a plastic material
  • the sealing member 4 r is produced by compression molding. The heating component top cap 4 and the sealing member 4 r are combined with each other by using an additional component step.
  • FIG. 4 is a sectional view of a cartridge according to some embodiments of the present invention.
  • FIG. 4 shows a gas channel structure in the cartridge 100 A.
  • the air inlet channel 31 extends in a direction (the vertical direction shown in FIG. 4 ).
  • the communication portion 31 c (refer to FIG. 8D ) of the air inlet channel 31 and the vaporization chamber 8 c extends in a direction (the horizontal direction in FIG. 4 ).
  • the direction in which the air inlet channel 31 extends is different from the direction in which the communication portion 31 c extends.
  • the air outlet channel 32 extends in a direction (the vertical direction shown in the drawings).
  • the communication portion 32 c (refer to FIG. 8D ) of the air outlet channel 32 and the vaporization chamber 8 c extends in a direction (the horizontal direction in the drawings).
  • the direction in which the air outlet channel 32 extends is different from the direction in which the communication portion 32 c extends.
  • the air outlet channel 32 may have a first portion (shown in FIG. 4 , the part between 3 f 3 and 3 f 4 ) and a second portion (shown in FIG. 4 , the part between 3 f 4 and 3 f 5 ).
  • the direction in which the first portion extends may be different from the direction in which the second portion extends.
  • the part where the air inlet channel 31 is in communication with the vaporization chamber 8 c has a direction change 3 f 2 .
  • the part where the air outlet channel 32 is in communication with the vaporization chamber 8 c has a direction change 3 f 3 .
  • the part of the air outlet channel 32 close to the through hole 1 h of the mouthpiece 1 has a direction change 3 f 4 .
  • the part of the air outlet channel 32 in communication with the through hole 1 h of the mouthpiece 1 has a direction change 3 f 5 .
  • FIG. 4 shows an airflow direction generated when the user inhales from the cartridge 100 A.
  • air enters from a gap between the cartridge 100 A and the body housing 24 , and experiences the direction change 3 f 1 between the cartridge 100 A and the body housing 24 .
  • the air enters the air inlet channel 31 through the through hole 31 h, and experiences the direction change 3 f 2 before entering the vaporization chamber 8 c.
  • An airflow 7 f is generated in the sensor starter tube 7 by the inhalation action of the user.
  • the airflow 7 f enters the cartridge 100 A from the sensor starter tube 7 .
  • the airflow 7 f may enter the air inlet channel 31 .
  • the airflow 7 f may enter the vaporization chamber 8 c with the inhalation action of the user.
  • part of the airflow 7 f may enter the air outlet channel 32 with the inhalation action of the user.
  • the airflow 7 f is detected by the sensor 16 when passing through a gap between the cartridge 100 A and the body 100 B.
  • the controller 171 activates the heating component 6 based on a detection result of the sensor 16 , and generates an aerosol in the vaporization chamber 8 c.
  • the generated aerosol experiences the direction change 3 f 3 when the aerosol just enters the air outlet channel 32 .
  • the generated aerosol subsequently experiences the another direction change 3 f 4 at the through hole 1 h in the air outlet channel 32 close to the mouthpiece 1 .
  • the generated aerosol experiences the another direction change 3 f 5 when leaving the through hole 1 h on the mouthpiece 1 .
  • the aerosol When the vaporization device 100 is being used, the aerosol may condense into a liquid 32 d and remain on an inner wall of the air outlet channel 32 .
  • the condensed liquid 32 d is viscous and does not easily flow on the inner wall of the air outlet channel 32 .
  • the plurality of direction changes 3 f 3 , 3 f 4 and 3 f 5 included in the air outlet channel 32 may preferably prevent the condensed liquid 32 d from being inhaled by the user through the through hole 1 h.
  • the airflow has a temperature rise Tr after passing through the vaporization chamber 8 c from the air inlet channel 31 .
  • the temperature rise Tr may be within a range of 200° C. to 220° C.
  • the temperature rise Tr may be within a range of 240° C. to 260° C.
  • the temperature rise Tr may be within a range of 260° C. to 280° C.
  • the temperature rise Tr may be within a range of 280° C. to 300° C.
  • the temperature rise Tr may be within a range of 300° C. to 320° C.
  • the temperature rise Tr may be within a range of 200° C. to 320° C.
  • An airflow from the vaporization chamber 8 c may has a temperature drop Tf before reaching the through hole 1 h.
  • the airflow from the vaporization chamber 8 c may has a temperature drop Tf when passing through the air outlet channel 32 .
  • the temperature drop Tf may be within a range of 145° C. to 165° C. In some embodiments, the temperature drop Tf may be within a range of 165° C. to 185° C. In some embodiments, the temperature drop Tf may be within a range of 205° C. to 225° C. In some embodiments, the temperature drop Tf may be within a range of 225° C. to 245° C. In some embodiments, the temperature drop Tf may be within a range of 245° C. to 265° C. In some embodiments, the temperature drop Tf may be within a range of 145° C. to 265° C.
  • the aerosol inhaled by the user via the through hole 1 h can have a temperature below 65° C. In some embodiments, the aerosol inhaled by the user via the through hole 1 h can have a temperature below 55° C. In some embodiments, the aerosol inhaled by the user via the through hole 1 h can have a temperature below 50° C. In some embodiments, the aerosol inhaled by the user via the through hole 1 h can have a temperature below 45° C. In some embodiments, the aerosol inhaled by the user via the through hole 1 h can have a temperature below 40° C.
  • FIG. 5A and FIG. 5B are sectional views of a cartridge according to some embodiments of the present invention.
  • a blocking component 33 a may be disposed in the air inlet channel 31 .
  • the blocking component 33 a may have a through hole 33 h.
  • a diameter of the through hole 33 h is smaller than the pipe diameter of the air inlet channel 31 .
  • the through hole 33 h may be regarded as a portion of the air inlet channel 31 .
  • the thickness of the blocking component 33 a is 33 L.
  • the thickness 33 L of the block component 33 a results in a height drop in the air inlet channel 31 . Since the liquid or the e-liquid stored in the e-liquid tank 8 t is viscous, the height drop facilitates preventing the liquid or the e-liquid stored in the e-liquid tank 8 t from flowing backwards. The height drop facilitates preventing the liquid or the e-liquid stored in the e-liquid tank 8 t from leaking via the through hole 31 h.
  • the block component 33 a may be made of silica gel. In some embodiments, the block component 33 a may be a silicone ring. In some embodiments, the block component 33 a and the housing 3 may be made of a same material. In some embodiments, the block component 33 a and the housing 3 may be made of different materials. In some embodiments, the block component 33 a and the housing 3 may be two separate components. In some embodiments, the block components 33 a and the housing 3 may be formed integrally.
  • a blocking component 33 b may be disposed in the air inlet channel 31 .
  • the blocking component 33 b may cause the air to enter the air inlet channel 31 through the through hole 31 h.
  • the block component 33 b may prevent the liquid from flowing from the e-liquid tank 8 t to the through hole 31 h.
  • the block component 33 b may be a check valve.
  • a blocking component 34 may be disposed in the air outlet channel 32 .
  • the blocking component 34 may have one or more through holes 34 h.
  • the blocking component 34 may cause the aerosol to flow from the vaporization chamber 8 c to the through hole 1 h. Since the liquid or e-liquid stored in the e-liquid tank 8 t is viscous, the hole diameter of the through hole 34 h is designed to prevent the liquid or the e-liquid from flowing from the e-liquid tank 8 t to the through hole 1 h.
  • FIG. 6A , FIG. 6B , FIG. 6C , FIG. 6D and FIG. 6E are top views of a heating component top cap according to some embodiments of the present invention.
  • the e-liquid stored in the e-liquid storage compailinent 30 may make contact with the heating component 6 through a through hole 4 h on the heating component top cap 401 and a through hole 5 h on the silicone heating component seal member 5 .
  • the hold diameter and shape of the through hole 4 h may be adjusted according to the property of the e-liquid. In some embodiments, if the viscosity of the e-liquid is relatively high, the hole diameter of the through hole 4 h can be designed relatively big. In some embodiments, if the viscosity of the e-liquid is relatively low, the hole diameter of the through hole 4 h can be designed relatively small. The through hole 4 h with a relatively small hole diameter may prevent excessive e-liquid from making direct contact with the heating component 6 . The through hole 4 h with a relatively big hole diameter may ensure more e-liquid to make direct contact with the heating component 6 .
  • the hole diameter of the through hole 4 h may be appropriately adjusted according to the property of the e-liquid, so that the heating component 6 can make contact with enough e-liquid to avoid dry burning during heating and prevent the generated aerosol from having a burnt odor.
  • the hole diameter of the through hole 4 h may be appropriately adjusted according to the property of the e-liquid to prevent the heating component 6 from making contact with excessive e-liquid.
  • the excessive e-liquid cannot be adsorbed by the heating component 6 , and gradually permeates from the e-liquid storage compailinent 30 to the e-liquid tank 8 t through the heating component 6 . If the amount of e-liquid permeating into the e-liquid tank 8 t is excessively large, the probability of the e-liquid flowing into the air inlet channel 31 and the air outlet channel 32 will increase.
  • a single through hole 4 h may be disposed on the heating component top cap 401 .
  • a shape of the through hole 4 h is substantially the same as that of the heating component top cap 401 .
  • the aperture area of the through hole 4 h is approximately 80% to 90% of the sectional area of the heating component top cap 401 .
  • the aperture area of the through hole 4 h is approximately 70% to 80% of the sectional area of the heating component top cap 401 .
  • a through hole 5 h may be disposed on the silicone heating component seal member 5 used to match with the heating component top cap 401 .
  • the through hole 5 h may have a similar shape with that of the through hole 4 h on the heating component top cap 401 .
  • the through hole 5 h may have a similar aperture area with that of the through hole 4 h on the heating component top cap 401 .
  • the through hole 5 h may have a similar position with that of the through hole 4 h on the heating component top cap 401 .
  • the through hole 5 h may have a different shape from that of the through hole 4 h on the heating component top cap 401 .
  • the through hole 5 h may have a different position from that of the through hole 4 h on the heating component top cap 401 . In some embodiments, the through hole 5 h may have a different aperture area from that of the through hole 4 h on the heating component top cap 401 .
  • a single through hole 4 h may be disposed on the heating component top cap 402 .
  • a shape of the through hole 4 h is different from that of the heating component top cap 401 .
  • the aperture area of the through hole 4 h is approximately 50% to 60% of the sectional area of the heating component top cap 401 .
  • the aperture area of the through hole 4 h is approximately 40% to 50% of the sectional area of the heating component top cap 401 .
  • the aperture area of the through hole 4 h is approximately 30% to 40% of the sectional area of the heating component top cap 401 .
  • a through hole 5 h may be disposed on the silicone heating component seal member 5 used to match with the heating component top cap 402 .
  • the through hole 5 h may have a similar shape with that of the through hole 4 h on the heating component top cap 402 .
  • the through hole 5 h may have a similar aperture area with that of the through hole 4 h on the heating component top cap 402 .
  • the through hole 5 h may have a similar position with that of the through hole 4 h on the heating component top cap 402 .
  • the through hole 5 h may have a different shape from that of the through hole 4 h on the heating component top cap 402 .
  • the through hole 5 h may have a different position from that of the through hole 4 h on the heating component top cap 402 . In some embodiments, the through hole 5 h may have a different aperture area from that of the through hole 4 h on the heating component top cap 402 .
  • a single through hole 4 h may be disposed on the heating component top cap 403 .
  • the through hole 4 h is substantially in a circular shape.
  • the aperture area of the through hole 4 h is approximately 3 mm 2 to 4 mm 2 .
  • the aperture area of the through hole 4 h is approximately 4 mm 2 to 5 mm 2 .
  • the aperture area of the through hole 4 h is approximately 5 mm 2 to 6 mm 2 .
  • the aperture area of the through hole 4 h is approximately 6 mm 2 to 7 mm 2 .
  • the aperture area of the through hole 4 h is approximately 7 mm 2 to 8 mm 2 .
  • the aperture area of the through hole 4 h is approximately 5.5 mm 2 .
  • a through hole 5 h may be disposed on the silicone heating component seal member 5 used to match with the heating component top cap 403 .
  • the through hole 5 h may have a similar shape with that of the through hole 4 h on the heating component top cap 403 .
  • the through hole 5 h may have a similar aperture area with that of the through hole 4 h on the heating component top cap 403 .
  • the through hole 5 h may have a similar position with that of the through hole 4 h on the heating component top cap 403 .
  • the through hole 5 h may have a different shape from that of the through hole 4 h on the heating component top cap 403 .
  • the through hole 5 h may have a different position from that of the through hole 4 h on the heating component top cap 403 . In some embodiments, the through hole 5 h may have a different aperture area from that of the through hole 4 h on the heating component top cap 403 .
  • a single through hole 4 h may be disposed on the heating component top cap 404 .
  • the through hole 4 h is substantially in a rectangle shape.
  • the aperture area of the through hole 4 h is approximately 3 mm 2 to 4 mm 2 .
  • the aperture area of the through hole 4 h is approximately 4 mm 2 to 5 mm 2 .
  • the aperture area of the through hole 4 h is approximately 5 mm 2 to 6 mm 2 .
  • the aperture area of the through hole 4 h is approximately 6 mm 2 to 7 mm 2 .
  • the aperture area of the through hole 4 h is approximately 7 mm 2 to 8 mm 2 .
  • the aperture area of the through hole 4 h is approximately 5.5 mm 2 .
  • a through hole 5 h may be disposed on the silicone heating component seal member 5 used to match with the heating component top cap 404 .
  • the through hole 5 h may have a similar shape with that of the through hole 4 h on the heating component top cap 404 .
  • the through hole 5 h may have a similar aperture area with that of the through hole 4 h on the heating component top cap 404 .
  • the through hole 5 h may have a similar position with that of the through hole 4 h on the heating component top cap 404 .
  • the through hole 5 h may have a different shape from that of the through hole 4 h on the heating component top cap 404 .
  • the through hole 5 h may have a different position from that of the through hole 4 h on the heating component top cap 404 . In some embodiments, the through hole 5 h may have a different aperture area from that of the through hole 4 h on the heating component top cap 404 .
  • the through hole 4 h has a shape other than a circle and a rectangle.
  • through holes 4 h 1 and 4 h 2 may be disposed on the heating component top cap 405 .
  • the through hole 4 h 1 may be disposed on one side of the heating component top cap 405 .
  • the through hole 4 h 2 may be disposed on the other side of the heating component top cap 405 .
  • the aperture area of the through hole 4 h 1 and the aperture area of the through hole 4 h 2 may be the same.
  • the aperture area of the through hole 4 h 1 and the aperture area of the through hole 4 h 2 may be different.
  • the aperture area of the through hole 4 h 1 may be smaller than the aperture area of the through hole 4 h 2 .
  • Two through holes may be disposed on the silicone heating component seal member 5 used to match with the heating component top cap 405 .
  • the two through holes on the silicone heating component seal member 5 and the through holes 4 h 1 and 4 h 2 on the heating component top cap 404 may have similar shapes.
  • the two through holes on the silicone heating component seal member 5 and the through holes 4 h 1 and 4 h 2 on the heating component top cap 404 may have similar aperture areas.
  • the two through holes on the silicone heating component seal member 5 and the through holes 4 h 1 and 4 h 2 on the heating component top cap 404 may have similar positions.
  • the two through holes on the silicone heating component seal member 5 and the through holes 4 h 1 and 4 h 2 on the heating component top cap 404 may have different shapes.
  • the two through holes on the silicone heating component seal member 5 and the through holes 4 h 1 and 4 h 2 on the heating component top cap 404 may have different positions.
  • the two through holes on the silicone heating component seal member 5 and the through holes 4 h 1 and 4 h 2 on the heating component top cap 404 may have different aperture areas.
  • FIG. 7A , FIG. 7B , FIG. 7C and FIG. 7D are schematic diagrams of a heating component according to some embodiments of the present invention.
  • the heating component 6 includes a conductive component 6 p and a heating circuit 61 .
  • the heating circuit 61 may be disposed on a bottom surface of the heating component 6 .
  • the heating circuit 61 may be exposed at the bottom surface of the heating component 6 .
  • the heating circuit 61 may be disposed inside the heating component 6 .
  • the heating circuit 61 may be partially covered by the heating component 6 .
  • the heating circuit 61 may be completely covered by the heating component 6 .
  • the heating circuit 61 may include a section 61 a, a section 61 b and a section 61 c.
  • the section 61 a extends in one direction.
  • the section 61 b extends in one direction.
  • the section 61 c extends in one direction.
  • the extension direction of the section 61 a may be in parallel with the extension direction of the section 61 b.
  • the extension direction of the section 61 a may be in parallel with the extension direction of the section 61 c.
  • the extension direction of the section 61 b may be in parallel with the extension direction of the section 61 c.
  • the extension direction of the section 61 a may not be in parallel with the extension direction of the section 61 b. In some embodiments, the extension direction of the section 61 a may not be in parallel with the extension direction of the section 61 c. In some embodiments, the extension direction of the section 61 b may not be in parallel with the extension direction of the section 61 c.
  • the section 61 a, the section 61 b and the section 61 c are connected to each other.
  • the heating circuit 61 may include connection portions 61 d and 61 e.
  • the section 61 a and the section 61 b are connected to each other through the connection portion 61 d .
  • the section 61 b and the section 61 c are connected to each other through the connection portion 61 e.
  • connection portion 61 d has a curved shape. In some embodiments, the connection portion 61 e has a curved shape. In some embodiments, the connection portion 61 d has a curvature. In some embodiments, the connection portion 61 e has a curvature. In some embodiments, the curvature of the connection portion 61 d and the curvature of the connection portion 61 e may be the same. In some embodiments, the curvature of the connection portion 61 d and the curvature of the connection portion 61 e may be different.
  • connection portion 61 d has a concave shape facing toward one direction.
  • connection portion 61 e has a concave shape facing toward one direction.
  • the concave shape of the connection portion 61 d and the concave shape of the connection portion 61 e may face different directions.
  • the concave shape of the connection portion 61 d and the concave shape of the connection portion 61 e may face opposite directions.
  • the section 61 a, the section 61 b and the section 61 c are disposed between two conductive components 6 p.
  • the connection portions 61 d and 61 e are disposed between the two conductive components 6 p.
  • the section 61 a, the section 61 b and the section 61 c may increase an contact area between the heating component 6 and the heating circuit 61 .
  • the section 61 a, the section 61 b and the section 61 c may increase heating efficiency of the heating circuit 61 .
  • the heating circuit 61 may have more sections.
  • the heating circuit 61 may have fewer sections.
  • the heating circuit 61 may have more connection portions.
  • it is also considered that the heating circuit 61 may have fewer connection portions.
  • the heating circuit 61 may be printed on the bottom surface of the heating component 6 by circuit printing.
  • Manufacturing the heating circuit 61 by circuit printing may simplify a manufacturing process of the heating circuit 61 . Manufacturing the heating circuit 61 by circuit printing may reduce a manufacturing cost of the heating circuit 61 . In some embodiments, the heating circuit 61 may be wrapped inside the heating component 6 during a manufacturing process of the heating component 6 . Damage to the heating circuit 61 in a subsequent component process may be avoided by wrapping the heating circuit 61 inside the heating component 6 .
  • the heating circuit 61 is electrically connected to the conductive component 6 p.
  • the heating circuit 61 is physically connected to the conductive component 6 p.
  • the heating circuit 61 may be directly connected to the conductive component 6 p.
  • the heating circuit 61 may be indirectly connected to the conductive component 6 p.
  • the heating circuit 61 may include a metal material. In some embodiments, the heating circuit 61 may include silver. In some embodiments, the heating circuit 61 may include platinum. In some embodiments, the heating circuit 61 may include palladium. In some embodiments, the heating circuit 61 may include a nickel alloy material.
  • the heating component 6 may include a ceramic material.
  • the heating component 6 may include a diatomite material.
  • the heating component 6 may include alumina.
  • the heating component 6 may include a semiconductive ceramic material.
  • the heating component 6 may include a heavy-doped silicon carbide.
  • the heating component 6 may include barium titanate.
  • the heating component 6 may include strontium titanate.
  • the heating component 6 may have a characteristic of self-limiting temperature.
  • the resistance value of the heating component 6 rises as the temperature rises.
  • the heating component 6 has a resistance value R 1 .
  • the heating circuit 61 cannot make the temperature of the heating component 6 higher.
  • a heating power output by the heating circuit 61 cannot make the temperature of the heating component 6 higher.
  • the threshold T 1 is within a range of 200° C. to 220° C. In some embodiments, the threshold T 1 is within a range of 220° C. to 240° C. In some embodiments, the threshold T 1 is within a range of 240° C. to 260° C. In some embodiments, the threshold T 1 is within a range of 260° C. to 280° C. In some embodiments, the threshold T 1 is within a range of 280° C. to 300° C. In some embodiments, the threshold T 1 is within a range of 280° C. to 300° C. In some embodiments, the threshold T 2 is within a range of 300° C. to 320° C.
  • the heating component 6 has a resistance value of over 10 ⁇ when heated to the threshold T 1 . In some embodiments, the heating component 6 has a resistance value of over 15 ⁇ when heated to the threshold T 1 . In some embodiments, the heating component 6 has a resistance value of over 20 ⁇ when heated to the threshold T 1 . In some embodiments, the heating component 6 has a resistance value of over 30 ⁇ when heated to the threshold T 1 .
  • the self-limiting temperature characteristic of the heating component 6 can prevent the heating component 6 from dry burning.
  • the self-limiting temperature characteristic of the heating component 6 can reduce a chance of the vaporization device 100 from being destroyed by burning.
  • the self-limiting temperature characteristic of the heating component 6 can increase safety of the vaporization device 100 .
  • the self-limiting temperature characteristic of the heating component 6 can increase a service life of each component in the vaporization device 100 .
  • the self-limiting temperature characteristic of the heating component 6 can effectively reduce a risk of nicotine cracking.
  • the self-limiting temperature characteristic of the heating component 6 can control the aerosol from the mouthpiece at a specific temperature to avoid burning lips of the user.
  • the aerosol from the mouthpiece can be controlled at a temperature of 35° C. to 40° C.
  • the aerosol from the mouthpiece can be controlled at a temperature of 40° C. to 45° C.
  • the aerosol from the mouthpiece can be controlled at a temperature of 45° C. to 50° C.
  • the aerosol from the mouthpiece can be controlled at a temperature of 50° C. to 55° C.
  • the aerosol from the mouthpiece can be controlled at a temperature of 55° C. to 60° C.
  • the aerosol from the mouthpiece can be controlled at a temperature of 60° C. to 65° C.
  • the heating circuit 61 may be indirectly connected to the conductive component 6 p.
  • a protection component 62 may be disposed between the heating circuit 61 and the conductive component 6 p.
  • the protection component 62 is resettable.
  • the protection component 62 forms an open circuit when the temperature of the protection component 62 reaches a threshold T 2 .
  • the protection component 62 forms a short circuit when the temperature of the protection component 62 drops to a threshold T 3 .
  • the conductive component 6 p cannot provide a current for the heating circuit 61 when the temperature of the protection component 62 reaches the threshold T 2 .
  • the conductive component 6 p provides a current for the heating circuit 61 when the temperature of the protection component 62 drops to the threshold T 3 .
  • the threshold T 3 and the threshold T 2 may be the same. In some embodiments, the threshold T 3 and the threshold T 2 may be different. In some embodiments, the threshold T 3 may be less than the threshold T 2 .
  • the threshold T 2 is within a range of 200° C. to 220° C. In some embodiments, the threshold T 2 is within a range of 220° C. to 240° C. In some embodiments, the threshold T 2 is within a range of 240° C. to 260° C. In some embodiments, the threshold T 2 is within a range of 260° C. to 280° C. In some embodiments, the threshold T 2 is within a range of 280° C. to 300° C. In some embodiments, the threshold T 2 is within a range of 300° C. to 320° C.
  • the threshold T 3 is within a range of 180° C. to 200° C. In some embodiments, the threshold T 3 is within a range of 200° C. to 220° C. In some embodiments, the threshold T 3 is within a range of 220° C. to 240° C. In some embodiments, the threshold T 3 is within a range of 240° C. to 260° C. In some embodiments, the threshold T 3 is within a range of 260° C. to 280° C. In some embodiments, the threshold T 3 is within a range of 280° C. to 300° C. In some embodiments, the protection component 62 may be a resettable fuse.
  • the protection component 62 is non-resettable.
  • the protection component 62 forms an open circuit (open circuit) when the temperature of the protection component 62 reaches a threshold T 2 .
  • the protection component 62 that forms an open circuit dose not form a short circuit as the temperature drops.
  • the protection component 62 may prevent the heating component 6 from dry burning.
  • the protection component 62 may reduce the chance of the vaporization device 100 being destroyed by burning.
  • the protection component 62 may increase the safety of the vaporization device 100 .
  • the protection component 62 may increase the service life of each component in the vaporization device 100 .
  • the heating component 6 has an axisymmetric shape relative to an axis 6 x. In some embodiments, the heating component 6 has an asymmetric shape.
  • a top surface of the heating component 6 may be provided with a groove 6 c.
  • the groove 6 c may have an axisymmetric shape relative to the axis 6 x. In some embodiments, the groove 6 c may have an asymmetric shape.
  • the heating component 6 is disposed between the heating component top cap 4 and the heating component base 8 .
  • the through hole 4 h 1 and the axis 6 x do not overlap.
  • the through hole 4 h 2 and the axis 6 x do not overlap.
  • an extension direction of the axis 6 x does not pass through the through hole 4 h 1 .
  • the extension direction of the axis 6 x does not pass through the through hole 4 h 2 .
  • the extension direction of the axis 6 x does not pass through the air inlet channel 31 when the heating component 6 is disposed inside the cartridge 100 A.
  • the extension direction of the axis 6 x and the extension direction of the air inlet channel 31 do not overlap.
  • the extension direction of the axis 6 x passes through the through hole 1 h when the heating component 6 is disposed inside the cartridge 100 A.
  • the extension direction of the axis 6 x passes through a portion of the air outlet channel 32 close to the through hole 1 h when the heating component 6 is disposed inside the cartridge 100 A.
  • the extension direction of the axis 6 x does not pass through another part of the air outlet channel 32 away from the through hole 1 h when the heating component 6 is disposed inside the cartridge 100 A.
  • the vaporizable material makes direct contact with the heating component 6 via an inner wall of the groove 6 c.
  • the groove 6 c may have an opening 6 s 1 .
  • the groove 6 c may have a bottom surface 6 s 2 .
  • the area of the opening 6 s 1 and the area of the bottom surface 6 s 2 may be the same.
  • the area of the opening 6 s 1 and the area of the bottom surface 6 s 2 may be different.
  • the area of the opening 6 s 1 may be larger than the area of the bottom surface 6 s 2 .
  • the groove 6 c of the heating component 6 may increase a contact area between the heating component 6 and the e-liquid.
  • FIG. 7D shows an enlarged view of a portion of the heating component 6 .
  • the heating component 6 may have pores.
  • a shape of the pores may be square.
  • a shape of the pores may be cylindrical.
  • a shape of the pores may be a ring.
  • a shape of the pores may be a hexagonal column.
  • a shape of the pores may be a honeycomb structure.
  • the e-liquid can permeate into the pores of the heating component 6 .
  • the pores of the heating component 6 can be infiltrated in the e-liquid.
  • the pores of the heating component 6 may increase the contact area between the heating component 6 and the e-liquid.
  • the pores of the heating component 6 can surround small molecules of the e-liquid from all sides.
  • the pores of the heating component 6 allows the e-liquid to be more uniformly heated.
  • the pores of the heating component 6 allows the e-liquid to faster reach a predetermined temperature.
  • the pores of the heating component 6 can prevent the burnt odor.
  • the heating component 6 has a porosity of 20% to 30%. In some embodiments, the heating component 6 has a porosity of 30% to 40%. In some embodiments, the heating component 6 has a porosity of 40% to 50%. In some embodiments, the heating component 6 has a porosity of 50% to 60%. In some embodiments, the heating component 6 has a porosity of 60% to 70%. In some embodiments, the heating component 6 has a porosity of 70% to 80%.
  • the heating component 6 has a specific quantity of closed pores.
  • the closed pores may include alumina
  • the closed pores may include silicon carbide.
  • the heating component 6 has a closed porosity of 10% to 20%.
  • the heating component 6 has a closed porosity of 20% to 30%.
  • the heating component 6 has a closed porosity of 30% to 40%.
  • FIG. 8A , FIG. 8B and FIG. 8C are schematic diagrams of a heating component base according to some embodiments of the present invention.
  • the heating component base 8 includes a supporting member 81 and a supporting member 82 .
  • the supporting member 81 is disposed next to the air inlet channel 31 .
  • the supporting member 82 is disposed next to the air outlet channel 32 .
  • the supporting member 81 has a buckle part 81 c.
  • the supporting member 82 has a buckle part 82 c.
  • the heating component base 8 is combined with the heating component top cap 4 via the buckle parts 81 c and 82 c.
  • the heating component base 8 is removably combined with the heating component top cap 4 via the buckle parts 81 c and 82 c.
  • the heating component 6 is disposed between the heating component top cap 4 and the heating component base 8 .
  • the supporting member 81 may have one or more through holes 81 h. In some embodiments, the supporting member 81 may have 6 through hole 81 h.
  • the through holes 81 h penetrate the supporting member 81 .
  • the through holes 81 h allows the vaporization chamber 8 c and the air inlet channel 31 to be in communication with each other.
  • the aperture area of the through holes 81 h is designed to allow air to pass through.
  • the arrangement of the through holes 81 h is designed to allow air to pass through.
  • the aperture area of the through holes 81 h is designed to make it difficult for the e-liquid to pass through.
  • the arrangement of the through holes 81 h is designed to make it difficult for the e-liquid to pass through.
  • the diameter of each of the through holes 81 h is within a range of 0.2 mm to 0.3 mm. In some embodiments, the diameter of each of the through holes 81 h is within a range of 0.3 mm to 0.4 mm. In some embodiments, the diameter of each of the through holes 81 h is within a range of 0.4 mm to 0.5 mm. In some embodiments, the diameter of each of the through holes 81 h is within a range of 0.5 mm to 0.6 mm. In some embodiments, the diameter of each of the through holes 81 h is within a range of 0.6 mm to 0.7 mm. In some embodiments, each of the through holes 81 h may have a diameter of 0.55 mm.
  • a bottom of the supporting member 82 close to the heating component base 8 has a ramp structure 82 r.
  • One end of a cross section of the ramp structure 82 r has a height of 82 L.
  • the height 82 L may be a largest distance between the ramp structure 82 r and the e-liquid tank 8 t.
  • the ramp structure 82 r may be replaced with a staircase structure. Both ends of a cross section of the staircase structure may have a substantially same height.
  • the ramp structure 82 r may form a block portion of the e-liquid tank 8 t.
  • the ramp structure 82 r may prevent the e-liquid or liquid stored in the e-liquid tank 8 t from entering the air outlet channel 32 .
  • the staircase structure 82 r may prevent the e-liquid or liquid stored in the e-liquid tank 8 t from entering the air outlet channel 32 .
  • a bottom of the e-liquid tank 8 t may be provided with an e-liquid adsorbing cotton (not shown).
  • the e-liquid adsorbing cotton may adsorb the e-liquid or liquid stored in the e-liquid tank 8 t.
  • the e-liquid or liquid adsorbed by the e-liquid adsorbing cotton is less likely to flow in the e-liquid tank 8 t.
  • the supporting member 81 may have a window 81 w.
  • the window 81 w may be an opening.
  • the window 81 w penetrates the supporting member 81 .
  • the window 81 w allows the vaporization chamber 8 c and the air inlet channel 31 to be in communication with each other.
  • the aperture area of the window 81 w is designed to allow air to pass through.
  • a height 81 L is provided between the window 81 w and the e-liquid tank 8 t.
  • the height 81 L may prevent the e-liquid or liquid stored in the e-liquid tank 8 t from entering the air inlet channel 31 .
  • the height 81 L is within a range of 1 mm to 2 mm.
  • the height 81 L is within a range of 2 mm to 3 mm. In some embodiments, the height 81 L is within a range of 3 mm to 4 mm. In some embodiments, the height 81 L is within a range of 4 mm to 5 mm.
  • the height 81 L may form a block portion of the e-liquid tank 8 t.
  • the minimum height between the one or more through holes 81 h and the e-liquid tank 8 t may be equal to 81 L.
  • the minimum height between the one or more through holes 81 h and the e-liquid tank 8 t may be different from 81 L.
  • the minimum height between the one or more through holes 81 h and the e-liquid tank 8 t may be larger than 81 L.
  • a height 82 L is provided between the ramp structure 82 r and the bottom of the e-liquid tank 8 t.
  • the height 82 L is within a range of 1 mm to 2 mm.
  • the height 82 L is within a range of 2 mm to 3 mm.
  • the height 82 L is within a range of 3 mm to 4 mm.
  • the height 82 L is within a range of 4 mm to 5 mm.
  • FIG. 8D is a sectional view of a heating component base according to some embodiments of the present invention.
  • the e-liquid tank 8 t has a depth 83 L.
  • the depth 83 L may be less than the height 81 L.
  • the depth 83 L may be less than the height 82 L.
  • the depth 83 L may be equal to the height 82 L.
  • the air inlet channel 31 is in communication with the vaporization chamber 8 c through the communication portion 31 c.
  • the air outlet channel 32 is in communication with the vaporization chamber 8 c through the communication portion 32 c.
  • FIG. 9A is a schematic diagram of a vaporization device combination according to some embodiments of the present invention.
  • the vaporization device 100 may include a cartridge 100 A and a body 100 B.
  • the cartridge 100 A may be designed to be removably combined with the body 100 B.
  • the body 100 B may have an accommodation portion 24 c.
  • a portion of the cartridge 100 A may be stored in the accommodation portion 24 c.
  • the accommodation portion 24 c may surround a portion of the cartridge 100 A.
  • the accommodation portion 24 c may wrap a portion of the cartridge 100 A.
  • a portion of the cartridge 100 A may be exposed by the body 100 B.
  • the cartridge 100 A may be removably combined with the body 100 B in two directions.
  • the air inlet channel 31 may face towards a left side of the cartridge 100 A when the cartridge 100 A and the body 100 B are combined.
  • the air inlet channel 31 may face towards a right side of the cartridge 100 A when the cartridge 100 A and the body 100 B are combined.
  • the vaporization device 100 can work normally no matter in which direction the cartridge 100 A is combined with the body 100 B.
  • the conductive contact 9 of the cartridge 100 A and the conductive probe 15 of the body 100 B make contact with each other.
  • the conductive contact 9 of the cartridge 100 A and the conductive probe 15 of the body 100 B are electrically connected to each other.
  • the conductive contact 9 of the cartridge 100 A and the conductive probe 15 of the body 100 B make contact with each other.
  • the conductive contact 9 of the cartridge 100 A and the conductive probe 15 of the body 100 B make contact with each other.
  • the conductive contact 9 of the cartridge 100 A and the conductive probe 15 of the body 100 B are electrically connected to each other.
  • FIG. 9B and FIG. 9C are sectional views of a cartridge according to some embodiments of the present invention.
  • FIG. 9B A cross section 3 s 1 of the cartridge 100 A at a length 100 L 1 from the lower surface 11 s of the metal base 11 is shown in FIG. 9B .
  • FIG. 9C A cross section 3 s 2 of the cartridge 100 A at a length 100 L 2 from the lower surface 11 s of the metal base 11 is shown in FIG. 9C .
  • the cartridge housing 3 may have an asymmetrical cross section 3 s 1 at a length 100 L 1 from the lower surface 11 s of the metal base 11 .
  • FIG. 9C the cartridge housing 3 may have an asymmetrical cross section 3 s 2 at a length 100 L 2 from the lower surface 11 s of the metal base 11 .
  • the cross section 3 s 1 is non-axisymmetric relative to an axis 100 x.
  • the cross section 3 s 2 is non-axisymmetric relative to the axis 100 x. As shown in FIG. 9A , the axis 100 x extends from a top of the cartridge 100 A to a bottom.
  • the accommodation portion 24 c wraps the cross section 3 s 1 .
  • the accommodation portion 24 c wraps the cross section 3 s 2 .
  • FIG. 10 is a flowchart of an output power control method according to some embodiments of the present invention.
  • the output power control method 200 may include a plurality of steps. In some embodiments, the steps in the output power control method 200 may be performed sequentially in the order shown in FIG. 10 . In some embodiments, the steps in the output power control method 200 may not be performed in the order shown in FIG. 10 .
  • Step 201 Detect an inhalation action of the user.
  • the Step 201 may be performed by a sensor 16 and a controller 171 in combination.
  • Step 202 Determine whether a duration in which a power outputted to the heating component 6 is stopped is greater than a threshold TN 1 . If the time when an output power to the heating component 6 is stopped is greater than or equal to the threshold TN 1 , Step 203 is performed. If the time when an output power to the heating component 6 is stopped is less than the threshold TN 1 , Step 204 is performed. Step 202 may be performed by setting a timer in the controller 171 . A timer may be set in the controller 171 , and starts when the power supply component 20 stops provide power for the heating component 6 .
  • the threshold TN 1 is within a range of 15 seconds to 60 seconds. In some embodiments, the threshold TN 1 is within a range of 25 seconds to 40 seconds. In some embodiments, the threshold TN 1 may be 30 seconds.
  • Step 203 Output a power P 1 to the heating component 6 in a duration S 1 , and output a power P 2 to the heating component 6 in a duration S 2 after the duration S 1 .
  • the duration S 1 and the duration S 2 are both during the continuous inhalation action of the user.
  • Step 204 may be performed by the controller 171 , a circuit board 17 , a power supply component 20 , a conductive contact 9 , a conductive probe 15 and the heating component 6 in combination.
  • the power P 1 may be greater than the power P 2 .
  • P 1 is within a range of 6 W to 15 W.
  • P 1 is within a range of 7.2 W to 9 W.
  • P 2 is within a range of 4.5 W to 9 W.
  • P 2 is within a range of 6 W to 8 W.
  • S 1 is within a range of 0.1 second to 2 seconds. In some embodiments, S 1 is within a range of 0.1 second to 1 seconds. In some embodiments, S 1 is within a range of 0.1 second to 0.6 seconds.
  • S 2 is within a range of 0.1 second to 4 seconds. In some embodiments, S 2 is within a range of 0.1 second to 3.5 seconds.
  • Step 202 and Step 203 have a plurality of advantages. Whether the vaporization device 100 has not been in use for a long time can be determined by the threshold TN 1 .
  • the heating component 6 appears in a cool state when the user has not used the vaporization device 100 for a long time.
  • the vaporization device 100 may output a relative high power P 1 in the duration S 1 .
  • the relative high power P 1 may accelerate the generation of an aerosol.
  • the heating component 6 already has a specific temperature, and the vaporization device 100 can reduce the output power to P 2 .
  • the reduced power P 2 may allow the aerosol to be generated uniformly.
  • the reduced power P 2 may increase the use time of the power supply component 20 .
  • Step 204 Output a power P 3 to the heating component.
  • Step 203 may be performed by the controller 171 , the circuit board 17 , the power supply component 20 , the conductive contact 9 , the conductive probe 15 and the heating component 6 in combination.
  • P 3 is within a range of 3.5 W to 10 W. In some embodiments, P 3 is within a range of 4.5 W to 9 W. In some embodiments, P 3 is within a range of 6 W to 8 W. In some embodiments, P 3 and P 2 may be the same. In some embodiments, P 3 and P 2 may be different.
  • Step 202 and Step 204 have a plurality of advantages. Whether the vaporization device 100 has been used by the user in a short time can be determined by the threshold TN 1 . If the vaporization device 100 has been used by the user in a short time, the heating component 6 has not been cooled completely. If the vaporization device 100 has been used by the user in a short time, the heating component 6 has a specific temperature. In this case, the vaporization device 100 may adjust the output power to P 3 . The adjusted power P 3 allows the aerosol to be generated uniformly. The adjusted power P 3 may increase the use time of the power supply component 20 .
  • Step 205 Stop outputting the power to the heating component when the duration of outputting the power to the heating component has reached the threshold TN 2 .
  • Step 205 may be performed by setting a timer in the controller 171 .
  • Step 205 has many advantages.
  • the stop of heating may prevent the heating component 6 from being overheated. Overheated heating component 6 may damage another component inside the vaporization device 100 . Overheated heating component 6 may decrease service lives of components inside the vaporization device 100 .
  • the stop of heating may prevent the heating component 6 from dry burning. Drying burning the heating component 6 may produce a burnt odor. Drying burning the heating component 6 may produce toxic chemicals.
  • the threshold TN 2 is within a range of 2 seconds to 10 seconds.
  • Step 206 The vaporization device 100 is triggered to enter a standby state when a duration in which the inhalation action has not been detected reaches a threshold TN 3 .
  • the power consumption of the vaporization device 100 is reduced.
  • the sensor 16 remains in an active state.
  • Step 206 may be performed by setting a timer in the controller 171 .
  • the output power control method 200 may further include a step of stopping outputting power to the heating component 6 .
  • the step may be performed by the sensor 16 and the controller 171 in combination.
  • space-related terms such as “under”, “below”, “lower portion”, “above”, “upper portion”, “lower portion”, “left side”, “right side”, and the like may be used herein to simply describe a relationship between one element or feature and another element or feature as shown in the figures.
  • space-related terms are intended to encompass different orientations of the device in use or operation.
  • An apparatus may be oriented in other ways (rotated 90 degrees or at other orientations), and the space-related descriptors used herein may also be used for explanation accordingly. It should be understood that when an element is “connected” or “coupled” to another element, the element may be directly connected to coupled to another element, or an intermediate element may exist.
  • the terms “approximately”, “basically”, “substantially”, and “about” are used to describe and explain small variations. When used in combination with an event or a situation, the terms may refer to an example in which an event or a situation occurs accurately and an example in which the event or situation occurs approximately. As used herein with respect to a given value or range, the term “about” generally means in the range of ⁇ 10%, ⁇ 5%, ⁇ 1%, or ⁇ 0.5% of the given value or range. The range may be indicated herein as from one endpoint to another endpoint or between two endpoints. Unless otherwise specified, all ranges disclosed herein include endpoints.
  • substantially coplanar may refer to two surfaces within a few micrometers ( ⁇ m) positioned along the same plane, for example, within 10 ⁇ m, within 5 ⁇ m, within 1 ⁇ m, or within 0.5 ⁇ m located along the same plane.
  • ⁇ m micrometers
  • the term may refer to a value within ⁇ 10%, ⁇ 5%, ⁇ 1%, or ⁇ 0.5% of the average of the values.
  • the terms “approximately”, “basically”, “substantially”, and “about” are used to describe and explain small variations.
  • the terms may refer to an example in which an event or a situation occurs accurately and an example in which the event or situation occurs approximately.
  • the term when being used in combination with a value, the term may refer to a variation range of less than or equal to ⁇ 10% of the value, for example, less than or equal to ⁇ 5%, less than or equal to ⁇ 4%, less than or equal to ⁇ 3%, less than or equal to ⁇ 2%, less than or equal to ⁇ 1%, less than or equal to ⁇ 0.5%, less than or equal to ⁇ 0.1%, or less than or equal to ⁇ 0.05%.
  • a difference between two values is less than or equal to ⁇ 10% of an average value of the value (for example, less than or equal to ⁇ 5%, less than or equal to ⁇ 4%, less than or equal to ⁇ 3%, less than or equal to ⁇ 2%, less than or equal to ⁇ 1%, less than or equal to ⁇ 0.5%, less than or equal to ⁇ 0.1%, or less than or equal to ⁇ 0.05%), it could be considered that the two values are “substantially” the same.
  • being “substantially” parallel may refer to an angular variation range of less than or equal to ⁇ 10° with respect to 0°, for example, less than or equal to ⁇ 5°, less than or equal to ⁇ 4°, less than or equal to ⁇ 3°, less than or equal to ⁇ 2°, less than or equal to ⁇ 1°, less than or equal to ⁇ 0.5°, less than or equal to ⁇ 0.1°, or less than or equal to ⁇ 0.05°.
  • being “substantially” perpendicular may refer to an angular variation range of less than or equal to ⁇ 10° with respect to 90°, for example, less than or equal to ⁇ 5°, less than or equal to ⁇ 4°, less than or equal to ⁇ 3°, less than or equal to ⁇ 2°, less than or equal to ⁇ 1°, less than or equal to ⁇ 0.5°, less than or equal to ⁇ 0.1°, or less than or equal to ⁇ 0.05°.
  • assemblies provided “on” or “above” another component may encompass a case in which a previous component is directly on a latter component (for example, in physical contact with the latter component), and a case in which one or more intermediate assemblies are located between the previous component and the latter component.
  • space descriptions such as “above”, “below”, “up”, “left”, “right”, “down”, “top portion”, “bottom portion”, “vertical”, “horizontal”, “side face”, “higher than”, “lower than”, “upper portion”, “on”, “under”, “downward”, etc. are indicated relative to the orientation shown in the figures. It should be understood that the space descriptions used herein are merely for illustrative purposes, and actual implementations of the structures described herein may be spatially arranged in any orientation or manner, provided that the advantages of embodiments of the present invention are not deviated due to such arrangement.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Animal Behavior & Ethology (AREA)
  • Anesthesiology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Hematology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pulmonology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Catching Or Destruction (AREA)

Abstract

This application relates to a vaporization device and a method thereof. The vaporization device includes a cartridge and a body. The cartridge includes a housing, a heating component and a heating component base. The heating component base comprises a storage tank, a first supporting member adjacent to the storage tank, a second supporting member adjacent to the storage tank, and the storage tank has a first depth. The first supporting member comprises a plurality of openings, the second supporting member comprises a ramp structure, the distance between the ramp structure and a bottom portion of the storage tank is greater than the first depth, and the distance between the plurality of openings and the bottom portion of the storage tank is greater than the first depth. The body has an accommodation portion. The accommodation portion covers a portion of the cartridge when the cartridge is removably engaged with the body.

Description

    BACKGROUND OF THE INVENTION 1. Field of the Invention
  • The present invention relates to a vaporization device and a method thereof, and more particularly to an electronic device providing an inhalable aerosol and a method thereof.
  • 2. Description of the Related Art
  • An electronic cigarette is an electronic product that heats a vaporizable solution and vaporizes the solution to produce an aerosol for a user to smoke.
  • In recent years, major manufacturers begin to produce various electronic cigarette products. Generally, an electronic cigarette product includes a housing, an e-liquid storage chamber, an vaporization chamber, a heating component, an air inlet, an airflow channel, an air outlet, a power supply device, a sensing device and a control device. The e-liquid storage chamber is configured to store a vaporizable solution, and the heating component is used to heat and vaporize the solution to generate an aerosol. The air inlet is in communication with the vaporization chamber, and provides air to the heating component when the user inhales. The aerosol generated by the heating component is first generated in the vaporization chamber, and subsequently inhaled by the user via the airflow channel and the air outlet. The power supply device supplies power needed by the heating component, and the control device controls the heating time of the heating component according to an inhalation action of the user detected by the sensing device. The housing wraps all the foregoing components.
  • Existing electronic cigarette products have different defects, which may result from poor designs of relative positions between different members. For example, common electronic cigarette products are designed to align the heating component, the airflow channel and the air outlet in a vertical direction. Since the airflow has a specific length, the aerosol is cooled when passing through the airflow channel, and a condensed liquid is formed on the airflow channel wall. Under this design, when the condensed liquid reaches a specific volume, the user is likely to inhale the condensed liquid directly and consequently have a bad experience of choking.
  • In addition, existing electronic cigarette products are not designed to avoid countercurrent flow of condensate. When the electronic cigarette is tilted or placed upside down, the condensed liquid remaining in the vaporization chamber and the airflow channel may leak from the air inlet or the air outlet. The leaking condensed liquid may damage electrical components (for example, the sensing device and the control device) in the electronic cigarette product.
  • Further, existing electronic cigarette products are not designed to control the power output of the heating component. When the user inhales for a long time, the power supply device continuously heats the heating component, and the heating component may be overheated and produce a burnt smell, causing a bad experience for the user. The overheated heating component may also destroy or burn the internal components of the electronic cigarette. Fast power consumption is also a general disadvantage of existing electronic cigarette products that are not designed to control the output power.
  • Therefore, a vaporization device and a method thereof are provided to resolve the foregoing problems.
  • SUMMARY OF THE INVENTION
  • A vaporization device is provided. The vaporization device includes a cartridge and a body. The cartridge includes a housing, a heating component and a heating component base. The heating component base comprises a storage tank, a first supporting member adjacent to the storage tank, and a second supporting member adjacent to the storage tank, and the storage tank has a first depth. The first supporting member comprises a plurality of openings, the second supporting member comprises a ramp structure, the distance between the ramp structure and a bottom portion of the storage tank is greater than the first depth, and the distance between the plurality of openings and the bottom portion of the storage tank is greater than the first depth. The body has an accommodation portion. The accommodation portion covers a portion of the cartridge when the cartridge is removably engaged with the body.
  • A device configured to store a fluid is provided. The device includes a heating component top cap, a heating component and a heating component base. The heating component base comprises a first supporting member and a second supporting member. The heating component base comprises a storage tank having a first depth and adjacent to the first supporting member and the second supporting member. The first supporting member comprises a first opening, the distance between the first opening and a bottom portion of the storage tank is a first height, and the first height is greater than the first depth. The second supporting member comprises a ramp structure, the distance between the ramp structure and the bottom portion of the storage tank is a second height, and the second height is greater than or equal to the first depth.
  • A method for operating a vaporization device is provided. The method includes causing a first airflow to enter a cavity between a heating component and a heating component base through a first opening on a first supporting member along an air inlet channel, wherein the air inlet channel is defined by a housing and the heating component base. The method includes causing the first airflow from the cavity to flow along a ramp structure on a second supporting member to enter an air outlet channel, wherein the air outlet channel is defined by the housing and the heating component base. The method includes causing the first airflow to have a temperature rise when entering the cavity. The method further includes causing the first airflow to have a temperature drop when flowing through the air outlet channel.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The aspects of the present invention will become more comprehensible from the following detailed description made with reference to the accompanying drawings. It should be noted that, various features may not be drawn to scale, and the sizes of the various features may be increased or reduced arbitrarily for the purpose of clear description.
  • FIG. 1A and FIG. 1B are exploded views of a portion of a vaporization device according to some embodiments of the present invention.
  • FIG. 2A and FIG. 2B are exploded views of a portion of a vaporization device according to some embodiments of the present invention.
  • FIG. 3A and FIG. 3B are sectional views of a cartridge according to some embodiments of the present invention.
  • FIG. 4 is a sectional view of a cartridge according to some embodiments of the present invention.
  • FIG. 5A and FIG. 5B are sectional views of a cartridge according to some embodiments of the present invention.
  • FIG. 6A, FIG. 6B, FIG. 6C, FIG. 6D and FIG. 6E are top views of heating component top caps according to some embodiments of the present invention.
  • FIG. 7A, FIG. 7B, FIG. 7C and FIG. 7D are schematic diagrams of a heating component according to some embodiments of the present invention.
  • FIG. 8A, FIG. 8B and FIG. 8C are schematic diagrams of a heating component base according to some embodiments of the present invention.
  • FIG. 8D is a sectional view of a heating component base according to some embodiments of the present invention.
  • FIG. 9A is a schematic diagram of a vaporization device combination according to some embodiments of the present invention.
  • FIG. 9B and FIG. 9C are sectional views of a cartridge according to some embodiments of the present invention.
  • FIG. 10 is a flowchart of an output power control method according to some embodiments of the present invention.
  • The drawings and detailed descriptions use the same reference numerals to indicate same or similar elements. The present invention will be more apparent from the detailed descriptions made with reference to the accompanying drawings.
  • PREFERRED EMBODIMENT OF THE PRESENT INVENTION
  • The following disclosed content provides many different embodiments or examples of different features used to implement the provided subject matters. The following describes particular examples of components and deployments. Certainly, there are merely examples and are not intended to be limitative. In the present invention, in the following descriptions, reference formed by the first feature above or on the second feature may include an embodiment formed by direct contact between the first feature and the second feature, and may further include an embodiment in which an additional feature may be formed between the first feature and the second feature to enable the first feature and the second feature to be not in direct contact. In addition, in the present invention, reference numerals and/or letters may be repeated in examples. This repetition is for the purpose of simplification and clarity, and does not indicate a relationship between the described various embodiments and/or configurations.
  • The embodiments of the present invention are described in detail below. However, it should be understood that, the present invention provides many applicable concepts that can be implemented in various particular cases. The described particular embodiments are only illustrative and do not limit the scope of the present invention.
  • FIG. 1A and FIG. 1B are exploded views of a portion of a vaporization device according to some embodiments of the present invention.
  • A vaporization device 100 may include a cartridge 100A (shown in FIG. 1A and FIG. 1B) and a body 100B (shown in FIG. 2A and FIG. 2B). In some embodiments, the cartridge 100A and the body 100B may be designed as an integral device. In some embodiments, the cartridge 100A and the body 100B may be designed into two separate components. In some embodiments, the cartridge 100A may be designed to be removably combined with the body 100B. In some embodiments, the cartridge 100A may be designed to be partly received by the body 100B.
  • The cartridge 100A includes a mouthpiece 1, a silicone mouthpiece seal member 2, a cartridge housing 3, a heating component top cap 4, a silicone heating component seal member 5, a heating component 6, a sensor starter tube 7, a heating component base 8, a conductive contact 9, an base O-ring 10 and a metal cartridge base 11.
  • The cartridge housing 3 may store a vaporizable material. The cartridge housing 3 may store a vaporizable liquid. The vaporizable material may make contact with the heating component 6 through a through hole 4 h on the heating component top cap 4 and a through hole 5 h on the silicone heating component seal member 5. The heating component 6 includes a groove 6 c, and the vaporizable material may make direct contact with the heating component 6 through an inner wall of the groove 6 c. The vaporizable material may be a type of liquid. The vaporizable material may be a type of solution. In subsequent paragraphs of this application, the vaporizable material may be referred to as e-liquid. The e-liquid is edible.
  • The heating component 6 includes a conductive component 6 p. The vaporization device 100 may supply power to the heating component 6 through the conductive component 6 p to increase the temperature of the heating component 6.
  • The sensor starter tube 7 may be a hollow tube. The sensor starter tube 7 may be disposed on a side of the heating component base 8. The sensor starter tube 7 may be disposed on a side of the heating component base 8 close to an air inlet channel. The sensor starter tube 7 may pass through a through hole 8 h 2 on the heating component base 8. The sensor starter tube 7 may be fixedly disposed on the through hole 8 h 2 on the heating component base 8. One end of the sensor starter tube 7 may be exposed by a through hole 11 c on the metal cartridge base 11.
  • The conductive contact 9 passes through a through hole 8 h 1 on the heating component base 8 to make contact with the conductive component 6 p of the heating component 6. The conductive contact 9 may make physical contact with the conductive component 6 p. The conductive contact 9 may be electrically connected with the conductive component 6 p.
  • The base O-ring 10 may be fixedly disposed in a groove 8 g of the heating component base 8. After being combined with each other, the base O-ring 10 and the heating component base 8 are disposed inside the metal cartridge base 11. The metal cartridge base 11 may cover the base O-ring 10. The metal cartridge base 11 may cover at least one part of the heating component base 8.
  • One end of the conductive contact 9 passes through the through hole 8 h 1 of the heating component base 8, and the other end of the conductive contact 9 may be exposed by a through hole 11 h on the metal cartridge base 11.
  • FIG. 2A and FIG. 2B are exploded views of a portion of a vaporization device according to some embodiments of the present invention.
  • The body 100B includes a power component bracket silicone 12, a magnetic component 13, an O-ring 14 of the power component bracket, a conductive probe 15, a sensor 16, a circuit board 17, an light guide component 18, a buffer component 19, a power supply component 20, a power supply component bracket 21, a motor 22, a charging panel 23 and a body housing 24.
  • The power component bracket silicone 12 may be a component closest to the metal cartridge base 11 in the body 100B. An upper surface 12 s of the power component bracket silicone 12 is adjacent to a lower surface 11 s of the metal cartridge base 11. The power component bracket silicone 12 includes through holes 12 h 1, 12 h 2 and 12 h 3. One end of the magnetic component 13 may be exposed by the through hole 12 h 1. One end of the conductive probe 15 may be exposed by the through hole 12 h 2.
  • An attractive force may be generated between the magnetic component 13 and the metal cartridge base 11. The attractive force removably combines the cartridge 100A and the body 100B. In some embodiments, the magnetic component 13 may be a permanent magnet. In some embodiments, the magnetic component 13 may be an electromagnet. In some embodiments, the magnetic component 13 itself has magnetic properties. In some embodiments, the magnetic component 13 has magnetic properties after being energized.
  • One part of the conductive probe 15 may be exposed by the through hole 12 h 2, and exceeds the upper surface 12 s of the power component bracket silicone 12. The conductive probe 15 can be scalable. When the cartridge 100A and the body 100B are removably combined, the conductive probe 15 and the conductive contact 9 make contact with each other. When the cartridge 100A and the body 100B are removably combined, the conductive probe 15 and the conductive contact 9 are electrically connected with each other. When the cartridge 100A and the body 100B are removably combined, the conductive contact 9 compresses the conductive probe 15 and shortens the length of the conductive probe 15. In some embodiments, the conductive probe 15 may be a conductive contact.
  • The sensor 16 may detect an airflow through the through hole 12 h 3. The sensor 16 may detect a barometric change through the through hole 12 h 3. The sensor 16 may detect a negative pressure through the through hole 12 h 3. The sensor 16 may be used to detect whether an air pressure is lower than a threshold through the through hole 12 h 3. The sensor 16 may detect an acoustic wave through the through hole 12 h 3. The sensor 16 may be used to detect whether an amplitude of the acoustic wave is higher than a threshold through the through hole 12 h 3.
  • In some embodiments, the sensor 16 may be an airflow sensor. In some embodiments, the sensor 16 may be an air pressure sensor. In some embodiments, the sensor 16 may be an acoustic sensor. In some embodiments, the sensor 16 may be an acoustic receiver. In some embodiments, the sensor 16 may be a microphone.
  • One side of the circuit board 17 includes a controller 171. The controller 171 may be a microprocessor. The controller 171 may be a programmable integrated circuit. The controller 171 may be a programmable logic circuit. In some embodiments, after the controller 171 is manufactured, arithmetic logic in the controller 171 cannot be changed. In some embodiments, after the controller 171 is manufactured, arithmetic logic in the controller 171 can be changed programmably.
  • The circuit board 17 may also include a memory (not shown). In some embodiments, the memory may be integrated in the controller 171. In some embodiments, the memory and the controller 171 may be separately disposed.
  • The controller 171 may be electrically connected to the sensor 16. The controller 171 may be electrically connected to the conductive probe 15. The controller 171 may be electrically connected to the power supply component 20. When the sensor 16 detects an airflow, the controller 171 may control the power supply component 20 to supply power to the conductive probe 15. When the sensor 16 detects a barometric change, the controller 171 may control the power supply component 20 to supply power to the conductive probe 15. When the sensor 16 detects a negative pressure, the controller 171 may control the power supply component 20 to supply power to the conductive probe 15. When the controller 171 determines that an air pressure that the sensor 16 detects is lower than a threshold, the controller 171 may control the power supply component 20 to supply power to the conductive probe 15. When the sensor 16 detects an acoustic wave, the controller 171 may control the power supply component 20 to supply power to the conductive probe 15. When the controller 171 determines that an amplitude of the acoustic wave that the sensor 16 detects is higher than a threshold, the controller 171 may control the power supply component 20 to supply power to the conductive probe 15.
  • The other side of the circuit board 17 may include one or more luminous components (not shown). According to different operation states of the vaporization device 100, the controller 171 may control the one or more luminous components on the circuit board 17 to produce different visual effects. In some embodiments, the one or more luminous components on the circuit board 17 may be arranged into an array. In some embodiments, the array of the one or more luminous components may have one or more rows. In some embodiments, the array of the one or more luminous components may have one or more columns.
  • In some embodiments, when a user inhales from the vaporization device 100, the controller 171 may control the one or more luminous components to produce a visual affect. In some embodiments, when the user charges the vaporization device 100, the controller 171 may control the one or more luminous components to produce a visual affect. In some embodiments, based on a quantity of electricity of the power supply component 20, the controller 171 may control the one or more luminous components to produce a visual affect. In some embodiments, the visual effect produced by the one or more luminous components may include blinking, intermittent illumination or continuous illumination. In some embodiments, the controller 171 may control the brightness produced by the one or more luminous components. In some embodiments, the controller 171 may control the array of the one or more luminous components to display a specific pattern. In some embodiments, the controller 171 may control two luminous components that have different colors to illuminate and generate a mixed chromatic light.
  • The light guide component 18 is disposed on a side that is of the circuit board 17 and that includes one or more luminous components. A light generated by the one or more luminous components can be refracted after passing through the light guide component 18. A light generated by the one or more luminous components can be scattered after passing through the light guide component 18. The light guide component 18 may make the light emitted from the one or more luminous components on the circuit board 17 more uniform.
  • The power supply component 20 may be disposed in a groove 21 c of the power supply component bracket 21. The buffer component 19 may be disposed on a surface 20 s of the power supply component 20. The buffer component 19 may be disposed between the power supply component 20 and the body housing 24. The buffer component 19 may make direct contact with the surface 20 s of the power supply component 20 and an inner wall of the body housing 24. An extra buffer component may be disposed between the power supply component 20 and the groove 21, even though it is not shown in the drawings.
  • In some embodiments, the power supply component 20 may be a battery. In some embodiments, the power supply component 20 may be a rechargeable battery. In some embodiments, the power supply component 20 may be a disposable battery.
  • The power supply component bracket 21 may be fixedly connected with the body housing 24 by a fixing component 25. The fixing component 25 may fixedly connect the power supply component bracket 21 and the body housing 24 through a through hole 21 h on the power supply component bracket 21 and a through hole 24 h 1 on the body housing 24.
  • The motor 22 may be electrically connected to the controller 171. Based on different operation states of the vaporization device 100, the controller 171 may control the motor 22 to produce different somatosensory effects. In some embodiments, when the user inhales for more than a specific length of time, the controller 171 may control the motor 22 to vibrate, so as to remind the user to stop inhaling. In some embodiments, when the user charges the vaporization device 100, the controller 171 may control the motor 22 to vibrate, so as to indicate that charging has started. In some embodiments, when the vaporization device 100 has been charged, the controller 171 may control the motor 22 to vibrate, so as to indicate that charging has been completed.
  • The charging panel 23 is disposed on the bottom of the body housing 24. One end of the charging panel 23 is exposed by a through hole 24 h 2 of the body housing 24. The power supply component 20 can be charged by the charging panel 23.
  • The body housing 24 includes a light transmitting component 241. The light transmitting component 241 may include one or more holes penetrating the body housing 24. In some embodiments, the light transmitting component 241 may appear in a generally circular shape. In some embodiments, the light transmitting component 241 may appear in a generally rectangle shape. In some embodiments, the light transmitting component 241 may appear in a generally symmetrical shape. In some embodiments, the light transmitting component 241 may appear in a generally asymmetrical shape. Light emitted by the one or more luminous components on the circuit board 17 is visible via the light transmitting component 241.
  • FIG. 3A and FIG. 3B are sectional views of a cartridge according to some embodiments of the present invention.
  • As shown in FIG. 3A, the cartridge housing 3 includes an e-liquid storage compartment 30, an air inlet channel 31 and an air outlet channel 32.
  • In some embodiments, the air inlet channel 31 and the air outlet channel 32 may be located inside the cartridge housing 3. In some embodiments, the air inlet channel 31 and the air outlet channel 32 may be defmed by an internal structure of the cartridge housing 3. In some embodiments, the air inlet channel 31 and the air outlet channel 32 may be defmed by the cartridge housing 3 and the body housing 24 together. In some embodiments, the air inlet channel 31 may be defined by the internal structure of the housing 3 and the heating component base 8 together. In some embodiments, the air outlet channel 32 may be defined by the internal structure of the housing 3 and the heating component base 8 together.
  • The air inlet channel 31 is located on one side of the cartridge housing 3, and the air outlet channel 32 is located on the other side of the cartridge housing 3. In some embodiments, the air inlet channel 31 may be located on one side of the heating component 6, and the air outlet channel 32 may be located on the other side of the heating component 6 opposite to the air inlet channel 31.
  • In some embodiments, the pipe diameter of the air inlet channel 31 may be the same as that of the air outlet channel 32. In some embodiments, the pipe diameter of the air inlet channel 31 may be different from that of the air outlet channel 32. In some embodiments, the pipe diameter of the air inlet channel 31 may be smaller than that of the air outlet channel 32. Smaller pipe diameter of the air inlet channel 31 may make it easier for the sensor starter tube 7 to generate a negative pressure. Smaller pipe diameter of the air inlet channel 31 may make it easier for the sensor 16 to detect an inhalation action of the user.
  • In some embodiments, the air inlet channel 31 and the air outlet channel 32 may be configured asymmetrically in the cartridge housing 3.
  • As shown in FIG. 3A, the vaporization chamber 8 c may be a cavity between the heating component 6 and the heating component base 8. As shown in FIG. 3A, the vaporization chamber 8 c may be defined by the heating component 6 and the heating component base 8 together. The air inlet channel 31 is in communication with the vaporization chamber 8 c. The air outlet channel 32 is in communication with the vaporization chamber 8 c. The part where the air inlet channel 31 is in communication with the vaporization chamber 8 c is located below the heating component 6. The part where the air outlet channel 32 is in communication with the vaporization chamber 8 c is located below the heating component 6. The foregoing configuration has many advantages. The configuration can at least partially vent the airflow away from the heating component 6. The configuration can at least partially prevent the airflow from flowing directly through the heating component 6. Compared to the prior art where the airflow needs to pass directly through the heating component, the effect of a material of the heating component on the flavor of e-liquid (vaporizable material) is reduced. In addition, when the user vertically holds the vaporization device 100, the condensed liquid remaining on the inner wall of the air inlet channel dose not drip on the heating component 6 even if it flows backwards, so that the condensed liquid can be prevented from clogging the heating component 6.
  • As shown in FIG. 3A, the sensor starter tube 7 is disposed on the heating component base 8. The length of the sensor starter tube 7 that protrudes from the heating component base 8 is 7L. The part of the sensor starter tube 7 protruding from the heating component base 8 can be disposed in the air inlet channel 31. When the vaporization device 100 is being used, an aerosol may condense into a liquid 32 d and remain on an inner wall of the air outlet channel 32. The liquid 32 d may flow back and accumulate in an e-liquid tank 8 t (refer to FIG. 8A to FIG. 8D). In some circumstances, the vaporizable material stored in the e-liquid storage compartment 30 may also leak into the e-liquid tank 8 t through the bottom of the heating component 6. The part of the sensor starter tube 7 exceeding the heating component base 8 can present the liquid stored in the e-liquid tank 8 t from leaking through the through hole 8 h 2.
  • In some embodiments, the length 7L is within a range of 1 mm to 10 mm. In some embodiments, the length 7L is within a range of 1 mm to 6 mm. In some embodiments, the length 7L is within a range of 1 mm to 4 mm. In some embodiments, the length 7L is within a range of 1 mm to 2 mm. In some embodiments, the length 7L may be 1.5 mm. In some embodiments, the length 7L may be 2 mm.
  • In some embodiments, the sensor starter tube 7 and the heating component base 8 may be two separate components. In some embodiments, the sensor starter tube 7 and the heating component base 8 may be formed integrally. In some embodiments, the sensor starter tube 7 may be made of a metal material. In some embodiments, the sensor starter tube 7 may be made of a plastic material. In some embodiments, the sensor starter tube 7 and the heating component base 8 may be made of a same material. In some embodiments, the sensor starter tube 7 and the heating component base 8 may be made of different materials.
  • As shown in FIG. 3B, the length of the air inlet channel 31 is 31L, and the length of the air outlet channel 32 is 32L. In some embodiments, the length 31L may be different from the length 32L. In some embodiments, the length 31L may be less than the length 32L.
  • The length 7L and the length 31L may be in a proportional relationship. In some embodiments, a proportion of the length 31L and the length 7L may be within a range of 6 to 7. In some embodiments, a proportion of the length 31L and the length 7L may be within a range of 7 to 8. In some embodiments, a proportion of the length 31L and the length 7L may be within a range of 8 to 9. In some embodiments, a proportion of the length 31L and the length 7L may be within a range of 9 to 10.
  • The air inlet channel 31 is in communication with the external through a through hole 31 h on the cartridge housing 3. The air outlet channel 32 is in communication with the outside through a through hole 1 h on the mouthpiece 1. In some embodiments, the through hole 31 h and the through hole 1 h are located in different positions in the horizontal direction. In some embodiments, the distance between the through hole 31 h and the heating component 6 is different from the distance between the through hole 1 h and the heating component 6. In some embodiments, the distance between the through hole 31 h and the heating component 6 is less than the distance between the through hole 1 h and the heating component 6.
  • The e-liquid storage compaitinent 30 is a sealed area. The e-liquid storage compailinent 30 may be formed by compartment structures 30 w 1 and 30 w 2 in the cartridge housing 3 and the heating component top cap 4. A part where the heating component top cap 4 makes contact with the compailinent structures 30 w 1 and 30 w 2 has a sealing member 4 r. The sealing member 4 r makes the heating component top cap 4 and the compailinent structures 30 w 1 and 30 w 2 closely in contact with each other.
  • The sealing member 4 r may prevent the vaporizable material stored in the e-liquid storage compartment 30 from leaking out.
  • In some embodiments, the heating component top cap 4 and the sealing member 4 r may be formed by using a same process. In some embodiments, the heating component top cap 4 and the sealing member 4 r may be formed by using a same process and different materials. In some embodiments, the heating component top cap 4 and the sealing member 4 r may be formed by injection molding. In some embodiments, the heating component top cap 4 may be produced by injection molding using a plastic material. In some embodiments, the sealing member 4 r may be produced by injection molding using liquid silica on the heating component top cap 4.
  • In some embodiments, the heating component top cap 4 and the sealing member 4 r may be formed by using different processes and subsequently combined with each other. In some embodiments, the heating component top cap 4 is produced by injection molding using a plastic material, and the sealing member 4 r is produced by compression molding. The heating component top cap 4 and the sealing member 4 r are combined with each other by using an additional component step.
  • FIG. 4 is a sectional view of a cartridge according to some embodiments of the present invention.
  • FIG. 4 shows a gas channel structure in the cartridge 100A.
  • The air inlet channel 31 extends in a direction (the vertical direction shown in FIG. 4). The communication portion 31 c (refer to FIG. 8D) of the air inlet channel 31 and the vaporization chamber 8 c extends in a direction (the horizontal direction in FIG. 4). The direction in which the air inlet channel 31 extends is different from the direction in which the communication portion 31 c extends.
  • The air outlet channel 32 extends in a direction (the vertical direction shown in the drawings). The communication portion 32 c (refer to FIG. 8D) of the air outlet channel 32 and the vaporization chamber 8 c extends in a direction (the horizontal direction in the drawings). The direction in which the air outlet channel 32 extends is different from the direction in which the communication portion 32 c extends.
  • The air outlet channel 32 may have a first portion (shown in FIG. 4, the part between 3 f 3 and 3 f 4) and a second portion (shown in FIG. 4, the part between 3 f 4 and 3 f 5). The direction in which the first portion extends may be different from the direction in which the second portion extends.
  • The part where the air inlet channel 31 is in communication with the vaporization chamber 8 c has a direction change 3 f 2. The part where the air outlet channel 32 is in communication with the vaporization chamber 8 c has a direction change 3 f 3. The part of the air outlet channel 32 close to the through hole 1 h of the mouthpiece 1 has a direction change 3 f 4. The part of the air outlet channel 32 in communication with the through hole 1 h of the mouthpiece 1 has a direction change 3 f 5.
  • FIG. 4 shows an airflow direction generated when the user inhales from the cartridge 100A. When the user inhales, air enters from a gap between the cartridge 100A and the body housing 24, and experiences the direction change 3 f 1 between the cartridge 100A and the body housing 24. Subsequently, the air enters the air inlet channel 31 through the through hole 31 h, and experiences the direction change 3 f 2 before entering the vaporization chamber 8 c.
  • An airflow 7 f is generated in the sensor starter tube 7 by the inhalation action of the user. The airflow 7 f enters the cartridge 100A from the sensor starter tube 7. In some embodiments, the airflow 7 f may enter the air inlet channel 31. In some embodiments, the airflow 7 f may enter the vaporization chamber 8 c with the inhalation action of the user. In some embodiments, part of the airflow 7 f may enter the air outlet channel 32 with the inhalation action of the user.
  • The airflow 7 f is detected by the sensor 16 when passing through a gap between the cartridge 100A and the body 100B. The controller 171 activates the heating component 6 based on a detection result of the sensor 16, and generates an aerosol in the vaporization chamber 8 c. The generated aerosol experiences the direction change 3 f 3 when the aerosol just enters the air outlet channel 32. The generated aerosol subsequently experiences the another direction change 3 f 4 at the through hole 1 h in the air outlet channel 32 close to the mouthpiece 1. The generated aerosol experiences the another direction change 3 f 5 when leaving the through hole 1 h on the mouthpiece 1.
  • When the vaporization device 100 is being used, the aerosol may condense into a liquid 32 d and remain on an inner wall of the air outlet channel 32. The condensed liquid 32 d is viscous and does not easily flow on the inner wall of the air outlet channel 32. When the user is inhaling, the plurality of direction changes 3 f 3, 3 f 4 and 3 f 5 included in the air outlet channel 32 may preferably prevent the condensed liquid 32 d from being inhaled by the user through the through hole 1 h.
  • The airflow has a temperature rise Tr after passing through the vaporization chamber 8 c from the air inlet channel 31. In some embodiments, the temperature rise Tr may be within a range of 200° C. to 220° C. In some embodiments, the temperature rise Tr may be within a range of 240° C. to 260° C. In some embodiments, the temperature rise Tr may be within a range of 260° C. to 280° C. In some embodiments, the temperature rise Tr may be within a range of 280° C. to 300° C. In some embodiments, the temperature rise Tr may be within a range of 300° C. to 320° C. In some embodiments, the temperature rise Tr may be within a range of 200° C. to 320° C.
  • An airflow from the vaporization chamber 8 c may has a temperature drop Tf before reaching the through hole 1 h. The airflow from the vaporization chamber 8 c may has a temperature drop Tf when passing through the air outlet channel 32. In some embodiments, the temperature drop Tf may be within a range of 145° C. to 165° C. In some embodiments, the temperature drop Tf may be within a range of 165° C. to 185° C. In some embodiments, the temperature drop Tf may be within a range of 205° C. to 225° C. In some embodiments, the temperature drop Tf may be within a range of 225° C. to 245° C. In some embodiments, the temperature drop Tf may be within a range of 245° C. to 265° C. In some embodiments, the temperature drop Tf may be within a range of 145° C. to 265° C.
  • In some embodiments, the aerosol inhaled by the user via the through hole 1 h can have a temperature below 65° C. In some embodiments, the aerosol inhaled by the user via the through hole 1 h can have a temperature below 55° C. In some embodiments, the aerosol inhaled by the user via the through hole 1 h can have a temperature below 50° C. In some embodiments, the aerosol inhaled by the user via the through hole 1 h can have a temperature below 45° C. In some embodiments, the aerosol inhaled by the user via the through hole 1 h can have a temperature below 40° C.
  • FIG. 5A and FIG. 5B are sectional views of a cartridge according to some embodiments of the present invention.
  • As shown in FIG. 5A, a blocking component 33 a may be disposed in the air inlet channel 31. The blocking component 33 a may have a through hole 33 h. A diameter of the through hole 33 h is smaller than the pipe diameter of the air inlet channel 31. The through hole 33 h may be regarded as a portion of the air inlet channel 31. The thickness of the blocking component 33 a is 33L. The thickness 33L of the block component 33 a results in a height drop in the air inlet channel 31. Since the liquid or the e-liquid stored in the e-liquid tank 8 t is viscous, the height drop facilitates preventing the liquid or the e-liquid stored in the e-liquid tank 8 t from flowing backwards. The height drop facilitates preventing the liquid or the e-liquid stored in the e-liquid tank 8 t from leaking via the through hole 31 h.
  • In some embodiments, the block component 33 a may be made of silica gel. In some embodiments, the block component 33 a may be a silicone ring. In some embodiments, the block component 33 a and the housing 3 may be made of a same material. In some embodiments, the block component 33 a and the housing 3 may be made of different materials. In some embodiments, the block component 33 a and the housing 3 may be two separate components. In some embodiments, the block components 33 a and the housing 3 may be formed integrally.
  • As shown in FIG. 5B, a blocking component 33 b may be disposed in the air inlet channel 31. The blocking component 33 b may cause the air to enter the air inlet channel 31 through the through hole 31 h. The block component 33 b may prevent the liquid from flowing from the e-liquid tank 8 t to the through hole 31 h. In some embodiments, the block component 33 b may be a check valve.
  • A blocking component 34 may be disposed in the air outlet channel 32. The blocking component 34 may have one or more through holes 34 h. The blocking component 34 may cause the aerosol to flow from the vaporization chamber 8 c to the through hole 1 h. Since the liquid or e-liquid stored in the e-liquid tank 8 t is viscous, the hole diameter of the through hole 34 h is designed to prevent the liquid or the e-liquid from flowing from the e-liquid tank 8 t to the through hole 1 h.
  • FIG. 6A, FIG. 6B, FIG. 6C, FIG. 6D and FIG. 6E are top views of a heating component top cap according to some embodiments of the present invention.
  • The e-liquid stored in the e-liquid storage compailinent 30 may make contact with the heating component 6 through a through hole 4 h on the heating component top cap 401 and a through hole 5 h on the silicone heating component seal member 5.
  • The hold diameter and shape of the through hole 4 h may be adjusted according to the property of the e-liquid. In some embodiments, if the viscosity of the e-liquid is relatively high, the hole diameter of the through hole 4 h can be designed relatively big. In some embodiments, if the viscosity of the e-liquid is relatively low, the hole diameter of the through hole 4 h can be designed relatively small. The through hole 4 h with a relatively small hole diameter may prevent excessive e-liquid from making direct contact with the heating component 6. The through hole 4 h with a relatively big hole diameter may ensure more e-liquid to make direct contact with the heating component 6.
  • The hole diameter of the through hole 4 h may be appropriately adjusted according to the property of the e-liquid, so that the heating component 6 can make contact with enough e-liquid to avoid dry burning during heating and prevent the generated aerosol from having a burnt odor.
  • The hole diameter of the through hole 4 h may be appropriately adjusted according to the property of the e-liquid to prevent the heating component 6 from making contact with excessive e-liquid. The excessive e-liquid cannot be adsorbed by the heating component 6, and gradually permeates from the e-liquid storage compailinent 30 to the e-liquid tank 8 t through the heating component 6. If the amount of e-liquid permeating into the e-liquid tank 8 t is excessively large, the probability of the e-liquid flowing into the air inlet channel 31 and the air outlet channel 32 will increase. If the amount of e-liquid permeating into the e-liquid tank 8 t is excessively large, the probability of the e-liquid permeating out of the through hole 31 h of the air inlet channel and the through hole 32 h of the air outlet channel will increase.
  • As shown in FIG. 6A, a single through hole 4 h may be disposed on the heating component top cap 401. A shape of the through hole 4 h is substantially the same as that of the heating component top cap 401. In some embodiments, the aperture area of the through hole 4 h is approximately 80% to 90% of the sectional area of the heating component top cap 401. In some embodiments, the aperture area of the through hole 4 h is approximately 70% to 80% of the sectional area of the heating component top cap 401.
  • A through hole 5 h may be disposed on the silicone heating component seal member 5 used to match with the heating component top cap 401. The through hole 5 h may have a similar shape with that of the through hole 4 h on the heating component top cap 401. The through hole 5 h may have a similar aperture area with that of the through hole 4 h on the heating component top cap 401. The through hole 5 h may have a similar position with that of the through hole 4 h on the heating component top cap 401. In some embodiments, the through hole 5 h may have a different shape from that of the through hole 4 h on the heating component top cap 401. In some embodiments, the through hole 5 h may have a different position from that of the through hole 4 h on the heating component top cap 401. In some embodiments, the through hole 5 h may have a different aperture area from that of the through hole 4 h on the heating component top cap 401.
  • As shown in FIG. 6B, a single through hole 4 h may be disposed on the heating component top cap 402. A shape of the through hole 4 h is different from that of the heating component top cap 401. In some embodiments, the aperture area of the through hole 4 h is approximately 50% to 60% of the sectional area of the heating component top cap 401. In some embodiments, the aperture area of the through hole 4 h is approximately 40% to 50% of the sectional area of the heating component top cap 401. In some embodiments, the aperture area of the through hole 4 h is approximately 30% to 40% of the sectional area of the heating component top cap 401.
  • A through hole 5 h may be disposed on the silicone heating component seal member 5 used to match with the heating component top cap 402. The through hole 5 h may have a similar shape with that of the through hole 4 h on the heating component top cap 402. The through hole 5 h may have a similar aperture area with that of the through hole 4 h on the heating component top cap 402. The through hole 5 h may have a similar position with that of the through hole 4 h on the heating component top cap 402. In some embodiments, the through hole 5 h may have a different shape from that of the through hole 4 h on the heating component top cap 402. In some embodiments, the through hole 5 h may have a different position from that of the through hole 4 h on the heating component top cap 402. In some embodiments, the through hole 5 h may have a different aperture area from that of the through hole 4 h on the heating component top cap 402.
  • As shown in FIG. 6C, a single through hole 4 h may be disposed on the heating component top cap 403. The through hole 4 h is substantially in a circular shape. In some embodiments, the aperture area of the through hole 4 h is approximately 3 mm2 to 4 mm2. In some embodiments, the aperture area of the through hole 4 h is approximately 4 mm2 to 5 mm2. In some embodiments, the aperture area of the through hole 4 h is approximately 5 mm2 to 6 mm2. In some embodiments, the aperture area of the through hole 4 h is approximately 6 mm2 to 7 mm2. In some embodiments, the aperture area of the through hole 4 h is approximately 7 mm2 to 8 mm2. In some embodiments, the aperture area of the through hole 4 h is approximately 5.5 mm2.
  • A through hole 5 h may be disposed on the silicone heating component seal member 5 used to match with the heating component top cap 403. The through hole 5 h may have a similar shape with that of the through hole 4 h on the heating component top cap 403. The through hole 5 h may have a similar aperture area with that of the through hole 4 h on the heating component top cap 403. The through hole 5 h may have a similar position with that of the through hole 4 h on the heating component top cap 403. In some embodiments, the through hole 5 h may have a different shape from that of the through hole 4 h on the heating component top cap 403. In some embodiments, the through hole 5 h may have a different position from that of the through hole 4 h on the heating component top cap 403. In some embodiments, the through hole 5 h may have a different aperture area from that of the through hole 4 h on the heating component top cap 403.
  • As shown in FIG. 6D, a single through hole 4 h may be disposed on the heating component top cap 404. The through hole 4 h is substantially in a rectangle shape. In some embodiments, the aperture area of the through hole 4 h is approximately 3 mm2 to 4 mm2. In some embodiments, the aperture area of the through hole 4 h is approximately 4 mm2 to 5 mm2. In some embodiments, the aperture area of the through hole 4 h is approximately 5 mm2 to 6 mm2. In some embodiments, the aperture area of the through hole 4 h is approximately 6 mm2 to 7 mm2. In some embodiments, the aperture area of the through hole 4 h is approximately 7 mm2 to 8 mm2. In some embodiments, the aperture area of the through hole 4 h is approximately 5.5 mm2.
  • A through hole 5 h may be disposed on the silicone heating component seal member 5 used to match with the heating component top cap 404. The through hole 5 h may have a similar shape with that of the through hole 4 h on the heating component top cap 404. The through hole 5 h may have a similar aperture area with that of the through hole 4 h on the heating component top cap 404. The through hole 5 h may have a similar position with that of the through hole 4 h on the heating component top cap 404. In some embodiments, the through hole 5 h may have a different shape from that of the through hole 4 h on the heating component top cap 404. In some embodiments, the through hole 5 h may have a different position from that of the through hole 4 h on the heating component top cap 404. In some embodiments, the through hole 5 h may have a different aperture area from that of the through hole 4 h on the heating component top cap 404.
  • Although not illustrated in the drawings, it is considered that the through hole 4 h has a shape other than a circle and a rectangle.
  • As shown in FIG. 6E, through holes 4 h 1 and 4 h 2 may be disposed on the heating component top cap 405. The through hole 4 h 1 may be disposed on one side of the heating component top cap 405. The through hole 4 h 2 may be disposed on the other side of the heating component top cap 405. In some embodiments, the aperture area of the through hole 4 h 1 and the aperture area of the through hole 4 h 2 may be the same. In some embodiments, the aperture area of the through hole 4 h 1 and the aperture area of the through hole 4 h 2 may be different. In some embodiments, the aperture area of the through hole 4 h 1 may be smaller than the aperture area of the through hole 4 h 2.
  • Two through holes may be disposed on the silicone heating component seal member 5 used to match with the heating component top cap 405. The two through holes on the silicone heating component seal member 5 and the through holes 4 h 1 and 4 h 2 on the heating component top cap 404 may have similar shapes. The two through holes on the silicone heating component seal member 5 and the through holes 4 h 1 and 4 h 2 on the heating component top cap 404 may have similar aperture areas. The two through holes on the silicone heating component seal member 5 and the through holes 4 h 1 and 4 h 2 on the heating component top cap 404 may have similar positions. In some embodiments, the two through holes on the silicone heating component seal member 5 and the through holes 4 h 1 and 4 h 2 on the heating component top cap 404 may have different shapes. The two through holes on the silicone heating component seal member 5 and the through holes 4 h 1 and 4 h 2 on the heating component top cap 404 may have different positions. The two through holes on the silicone heating component seal member 5 and the through holes 4 h 1 and 4 h 2 on the heating component top cap 404 may have different aperture areas.
  • FIG. 7A, FIG. 7B, FIG. 7C and FIG. 7D are schematic diagrams of a heating component according to some embodiments of the present invention.
  • As shown in FIG. 7A, the heating component 6 includes a conductive component 6 p and a heating circuit 61. In some embodiments, the heating circuit 61 may be disposed on a bottom surface of the heating component 6. In some embodiments, the heating circuit 61 may be exposed at the bottom surface of the heating component 6. In some embodiments, the heating circuit 61 may be disposed inside the heating component 6. In some embodiments, the heating circuit 61 may be partially covered by the heating component 6. In some embodiments, the heating circuit 61 may be completely covered by the heating component 6.
  • In some embodiments, the heating circuit 61 may include a section 61 a, a section 61 b and a section 61 c.
  • The section 61 a extends in one direction. The section 61 b extends in one direction. The section 61 c extends in one direction. In some embodiments, the extension direction of the section 61 a may be in parallel with the extension direction of the section 61 b. In some embodiments, the extension direction of the section 61 a may be in parallel with the extension direction of the section 61 c. In some embodiments, the extension direction of the section 61 b may be in parallel with the extension direction of the section 61 c.
  • In some embodiments, the extension direction of the section 61 a may not be in parallel with the extension direction of the section 61 b. In some embodiments, the extension direction of the section 61 a may not be in parallel with the extension direction of the section 61 c. In some embodiments, the extension direction of the section 61 b may not be in parallel with the extension direction of the section 61 c.
  • The section 61 a, the section 61 b and the section 61 c are connected to each other. The heating circuit 61 may include connection portions 61 d and 61 e. The section 61 a and the section 61 b are connected to each other through the connection portion 61 d. The section 61 b and the section 61 c are connected to each other through the connection portion 61 e.
  • In some embodiments, the connection portion 61 d has a curved shape. In some embodiments, the connection portion 61 e has a curved shape. In some embodiments, the connection portion 61 d has a curvature. In some embodiments, the connection portion 61 e has a curvature. In some embodiments, the curvature of the connection portion 61 d and the curvature of the connection portion 61 e may be the same. In some embodiments, the curvature of the connection portion 61 d and the curvature of the connection portion 61 e may be different.
  • In some embodiments, the connection portion 61 d has a concave shape facing toward one direction. In some embodiments, the connection portion 61 e has a concave shape facing toward one direction. In some embodiments, the concave shape of the connection portion 61 d and the concave shape of the connection portion 61 e may face different directions. In some embodiments, the concave shape of the connection portion 61 d and the concave shape of the connection portion 61 e may face opposite directions.
  • The section 61 a, the section 61 b and the section 61 c are disposed between two conductive components 6 p. The connection portions 61 d and 61 e are disposed between the two conductive components 6 p. The section 61 a, the section 61 b and the section 61 c may increase an contact area between the heating component 6 and the heating circuit 61. The section 61 a, the section 61 b and the section 61 c may increase heating efficiency of the heating circuit 61. In some embodiments, it is also considered that the heating circuit 61 may have more sections. In some embodiments, it is also considered that the heating circuit 61 may have fewer sections. In some embodiments, it is also considered that the heating circuit 61 may have more connection portions. In some embodiments, it is also considered that the heating circuit 61 may have fewer connection portions.
  • In some embodiments, the heating circuit 61 may be printed on the bottom surface of the heating component 6 by circuit printing.
  • Manufacturing the heating circuit 61 by circuit printing may simplify a manufacturing process of the heating circuit 61. Manufacturing the heating circuit 61 by circuit printing may reduce a manufacturing cost of the heating circuit 61. In some embodiments, the heating circuit 61 may be wrapped inside the heating component 6 during a manufacturing process of the heating component 6. Damage to the heating circuit 61 in a subsequent component process may be avoided by wrapping the heating circuit 61 inside the heating component 6.
  • The heating circuit 61 is electrically connected to the conductive component 6 p. The heating circuit 61 is physically connected to the conductive component 6 p. In some embodiments, the heating circuit 61 may be directly connected to the conductive component 6 p. In some embodiments, the heating circuit 61 may be indirectly connected to the conductive component 6 p.
  • The heating circuit 61 may include a metal material. In some embodiments, the heating circuit 61 may include silver. In some embodiments, the heating circuit 61 may include platinum. In some embodiments, the heating circuit 61 may include palladium. In some embodiments, the heating circuit 61 may include a nickel alloy material.
  • The heating component 6 may include a ceramic material. The heating component 6 may include a diatomite material. The heating component 6 may include alumina. In some embodiments, the heating component 6 may include a semiconductive ceramic material. In some embodiments, the heating component 6 may include a heavy-doped silicon carbide. In some embodiments, the heating component 6 may include barium titanate. In some embodiments, the heating component 6 may include strontium titanate.
  • The heating component 6 may have a characteristic of self-limiting temperature. The resistance value of the heating component 6 rises as the temperature rises. When the temperature of the heating component 6 reaches a threshold T1, the heating component 6 has a resistance value R1. In some embodiments, when the heating component 6 reaches a threshold T1, the heating circuit 61 cannot make the temperature of the heating component 6 higher. In some embodiments, when the resistance value of the heating component 6 reaches R1, a heating power output by the heating circuit 61 cannot make the temperature of the heating component 6 higher.
  • In some embodiments, the threshold T1 is within a range of 200° C. to 220° C. In some embodiments, the threshold T1 is within a range of 220° C. to 240° C. In some embodiments, the threshold T1 is within a range of 240° C. to 260° C. In some embodiments, the threshold T1 is within a range of 260° C. to 280° C. In some embodiments, the threshold T1 is within a range of 280° C. to 300° C. In some embodiments, the threshold T1 is within a range of 280° C. to 300° C. In some embodiments, the threshold T2 is within a range of 300° C. to 320° C.
  • In some embodiments, the heating component 6 has a resistance value of over 10Ω when heated to the threshold T1. In some embodiments, the heating component 6 has a resistance value of over 15Ω when heated to the threshold T1. In some embodiments, the heating component 6 has a resistance value of over 20Ω when heated to the threshold T1. In some embodiments, the heating component 6 has a resistance value of over 30Ω when heated to the threshold T1.
  • The self-limiting temperature characteristic of the heating component 6 can prevent the heating component 6 from dry burning. The self-limiting temperature characteristic of the heating component 6 can reduce a chance of the vaporization device 100 from being destroyed by burning. The self-limiting temperature characteristic of the heating component 6 can increase safety of the vaporization device 100. The self-limiting temperature characteristic of the heating component 6 can increase a service life of each component in the vaporization device 100. The self-limiting temperature characteristic of the heating component 6 can effectively reduce a risk of nicotine cracking.
  • The self-limiting temperature characteristic of the heating component 6 can control the aerosol from the mouthpiece at a specific temperature to avoid burning lips of the user. In some embodiments, the aerosol from the mouthpiece can be controlled at a temperature of 35° C. to 40° C. In some embodiments, the aerosol from the mouthpiece can be controlled at a temperature of 40° C. to 45° C. In some embodiments, the aerosol from the mouthpiece can be controlled at a temperature of 45° C. to 50° C. In some embodiments, the aerosol from the mouthpiece can be controlled at a temperature of 50° C. to 55° C. In some embodiments, the aerosol from the mouthpiece can be controlled at a temperature of 55° C. to 60° C. In some embodiments, the aerosol from the mouthpiece can be controlled at a temperature of 60° C. to 65° C.
  • As shown in FIG. 7B, the heating circuit 61 may be indirectly connected to the conductive component 6 p. In some embodiments, a protection component 62 may be disposed between the heating circuit 61 and the conductive component 6 p.
  • In some embodiments, the protection component 62 is resettable.
  • The protection component 62 forms an open circuit when the temperature of the protection component 62 reaches a threshold T2. The protection component 62 forms a short circuit when the temperature of the protection component 62 drops to a threshold T3. The conductive component 6 p cannot provide a current for the heating circuit 61 when the temperature of the protection component 62 reaches the threshold T2. The conductive component 6 p provides a current for the heating circuit 61 when the temperature of the protection component 62 drops to the threshold T3.
  • In some embodiments, the threshold T3 and the threshold T2 may be the same. In some embodiments, the threshold T3 and the threshold T2 may be different. In some embodiments, the threshold T3 may be less than the threshold T2.
  • In some embodiments, the threshold T2 is within a range of 200° C. to 220° C. In some embodiments, the threshold T2 is within a range of 220° C. to 240° C. In some embodiments, the threshold T2 is within a range of 240° C. to 260° C. In some embodiments, the threshold T2 is within a range of 260° C. to 280° C. In some embodiments, the threshold T2 is within a range of 280° C. to 300° C. In some embodiments, the threshold T2 is within a range of 300° C. to 320° C.
  • In some embodiments, the threshold T3 is within a range of 180° C. to 200° C. In some embodiments, the threshold T3 is within a range of 200° C. to 220° C. In some embodiments, the threshold T3 is within a range of 220° C. to 240° C. In some embodiments, the threshold T3 is within a range of 240° C. to 260° C. In some embodiments, the threshold T3 is within a range of 260° C. to 280° C. In some embodiments, the threshold T3 is within a range of 280° C. to 300° C. In some embodiments, the protection component 62 may be a resettable fuse.
  • In some embodiments, the protection component 62 is non-resettable.
  • The protection component 62 forms an open circuit (open circuit) when the temperature of the protection component 62 reaches a threshold T2. In some embodiments, the protection component 62 that forms an open circuit dose not form a short circuit as the temperature drops.
  • The protection component 62 may prevent the heating component 6 from dry burning. The protection component 62 may reduce the chance of the vaporization device 100 being destroyed by burning. The protection component 62 may increase the safety of the vaporization device 100. The protection component 62 may increase the service life of each component in the vaporization device 100.
  • As shown in FIG. 7C, the heating component 6 has an axisymmetric shape relative to an axis 6 x. In some embodiments, the heating component 6 has an asymmetric shape. A top surface of the heating component 6 may be provided with a groove 6 c. The groove 6 c may have an axisymmetric shape relative to the axis 6 x. In some embodiments, the groove 6 c may have an asymmetric shape.
  • The heating component 6 is disposed between the heating component top cap 4 and the heating component base 8. When the heating component 6 is disposed between the heating component top cap 4 and the heating component base 8 as shown in FIG. 6E, the through hole 4 h 1 and the axis 6 x do not overlap. When the heating component 6 is disposed between the heating component top cap 4 and the heating component base 8 as shown in FIG. 6E, the through hole 4 h 2 and the axis 6 x do not overlap. When the heating component 6 is disposed between the heating component top cap 4 and the heating component base 8 as shown in FIG. 6E, an extension direction of the axis 6 x does not pass through the through hole 4 h 1. When the heating component 6 is disposed between the heating component top cap 4 and the heating component base 8 as shown in FIG. 6E, the extension direction of the axis 6 x does not pass through the through hole 4 h 2.
  • Referring to FIG. 3B again, the extension direction of the axis 6 x does not pass through the air inlet channel 31 when the heating component 6 is disposed inside the cartridge 100A. The extension direction of the axis 6 x and the extension direction of the air inlet channel 31 do not overlap. The extension direction of the axis 6 x passes through the through hole 1 h when the heating component 6 is disposed inside the cartridge 100A. The extension direction of the axis 6 x passes through a portion of the air outlet channel 32 close to the through hole 1 h when the heating component 6 is disposed inside the cartridge 100A. The extension direction of the axis 6 x does not pass through another part of the air outlet channel 32 away from the through hole 1 h when the heating component 6 is disposed inside the cartridge 100A.
  • The vaporizable material makes direct contact with the heating component 6 via an inner wall of the groove 6 c. The groove 6 c may have an opening 6 s 1. The groove 6 c may have a bottom surface 6 s 2. In some embodiments, the area of the opening 6 s 1 and the area of the bottom surface 6 s 2 may be the same. In some embodiments, the area of the opening 6 s 1 and the area of the bottom surface 6 s 2 may be different. In some embodiments, the area of the opening 6 s 1 may be larger than the area of the bottom surface 6 s 2. The groove 6 c of the heating component 6 may increase a contact area between the heating component 6 and the e-liquid.
  • FIG. 7D shows an enlarged view of a portion of the heating component 6. As shown in FIG. 7D, the heating component 6 may have pores. In some embodiments, a shape of the pores may be square. In some embodiments, a shape of the pores may be cylindrical. In some embodiments, a shape of the pores may be a ring. In some embodiments, a shape of the pores may be a hexagonal column. In some embodiments, a shape of the pores may be a honeycomb structure.
  • The e-liquid can permeate into the pores of the heating component 6. The pores of the heating component 6 can be infiltrated in the e-liquid. The pores of the heating component 6 may increase the contact area between the heating component 6 and the e-liquid. The pores of the heating component 6 can surround small molecules of the e-liquid from all sides. During the heating process, the pores of the heating component 6 allows the e-liquid to be more uniformly heated. During the heating process, the pores of the heating component 6 allows the e-liquid to faster reach a predetermined temperature. During the heating process, the pores of the heating component 6 can prevent the burnt odor.
  • In some embodiments, the heating component 6 has a porosity of 20% to 30%. In some embodiments, the heating component 6 has a porosity of 30% to 40%. In some embodiments, the heating component 6 has a porosity of 40% to 50%. In some embodiments, the heating component 6 has a porosity of 50% to 60%. In some embodiments, the heating component 6 has a porosity of 60% to 70%. In some embodiments, the heating component 6 has a porosity of 70% to 80%.
  • In some embodiments, the heating component 6 has a specific quantity of closed pores. In some embodiments, the closed pores may include alumina In some embodiments, the closed pores may include silicon carbide. In some embodiments, the heating component 6 has a closed porosity of 10% to 20%. In some embodiments, the heating component 6 has a closed porosity of 20% to 30%. In some embodiments, the heating component 6 has a closed porosity of 30% to 40%.
  • FIG. 8A, FIG. 8B and FIG. 8C are schematic diagrams of a heating component base according to some embodiments of the present invention.
  • As shown in FIG. 8A, the heating component base 8 includes a supporting member 81 and a supporting member 82. The supporting member 81 is disposed next to the air inlet channel 31. The supporting member 82 is disposed next to the air outlet channel 32. The supporting member 81 has a buckle part 81 c. The supporting member 82 has a buckle part 82 c. The heating component base 8 is combined with the heating component top cap 4 via the buckle parts 81 c and 82 c. The heating component base 8 is removably combined with the heating component top cap 4 via the buckle parts 81 c and 82 c. The heating component 6 is disposed between the heating component top cap 4 and the heating component base 8.
  • The supporting member 81 may have one or more through holes 81 h. In some embodiments, the supporting member 81 may have 6 through hole 81 h. The through holes 81 h penetrate the supporting member 81. The through holes 81 h allows the vaporization chamber 8 c and the air inlet channel 31 to be in communication with each other. The aperture area of the through holes 81 h is designed to allow air to pass through. The arrangement of the through holes 81 h is designed to allow air to pass through.
  • The aperture area of the through holes 81 h is designed to make it difficult for the e-liquid to pass through. The arrangement of the through holes 81 h is designed to make it difficult for the e-liquid to pass through. In some embodiments, the diameter of each of the through holes 81 h is within a range of 0.2 mm to 0.3 mm. In some embodiments, the diameter of each of the through holes 81 h is within a range of 0.3 mm to 0.4 mm. In some embodiments, the diameter of each of the through holes 81 h is within a range of 0.4 mm to 0.5 mm. In some embodiments, the diameter of each of the through holes 81 h is within a range of 0.5 mm to 0.6 mm. In some embodiments, the diameter of each of the through holes 81 h is within a range of 0.6 mm to 0.7 mm. In some embodiments, each of the through holes 81 h may have a diameter of 0.55 mm.
  • A bottom of the supporting member 82 close to the heating component base 8 has a ramp structure 82 r. One end of a cross section of the ramp structure 82 r has a height of 82L. The height 82L may be a largest distance between the ramp structure 82 r and the e-liquid tank 8 t. In some embodiments, the ramp structure 82 r may be replaced with a staircase structure. Both ends of a cross section of the staircase structure may have a substantially same height. The ramp structure 82 r may form a block portion of the e-liquid tank 8 t.
  • When the user is inhaling, the ramp structure 82 r may prevent the e-liquid or liquid stored in the e-liquid tank 8 t from entering the air outlet channel 32. When the user is inhaling, the staircase structure 82 r may prevent the e-liquid or liquid stored in the e-liquid tank 8 t from entering the air outlet channel 32.
  • In some embodiments, a bottom of the e-liquid tank 8 t may be provided with an e-liquid adsorbing cotton (not shown). The e-liquid adsorbing cotton may adsorb the e-liquid or liquid stored in the e-liquid tank 8 t. The e-liquid or liquid adsorbed by the e-liquid adsorbing cotton is less likely to flow in the e-liquid tank 8 t.
  • As shown in FIG. 8B, the supporting member 81 may have a window 81 w. The window 81 w may be an opening. The window 81 w penetrates the supporting member 81. The window 81 w allows the vaporization chamber 8 c and the air inlet channel 31 to be in communication with each other. The aperture area of the window 81 w is designed to allow air to pass through. A height 81L is provided between the window 81 w and the e-liquid tank 8 t. The height 81L may prevent the e-liquid or liquid stored in the e-liquid tank 8 t from entering the air inlet channel 31. In some embodiments, the height 81L is within a range of 1 mm to 2 mm. In some embodiments, the height 81L is within a range of 2 mm to 3 mm. In some embodiments, the height 81L is within a range of 3 mm to 4 mm. In some embodiments, the height 81L is within a range of 4 mm to 5 mm.
  • The height 81L may form a block portion of the e-liquid tank 8 t. Referring to FIG. 8A again, the minimum height between the one or more through holes 81 h and the e-liquid tank 8 t may be equal to 81L. Referring to FIG. 8A again, the minimum height between the one or more through holes 81 h and the e-liquid tank 8 t may be different from 81L. In some embodiments, the minimum height between the one or more through holes 81 h and the e-liquid tank 8 t may be larger than 81L.
  • As shown in FIG. 8C, a height 82L is provided between the ramp structure 82 r and the bottom of the e-liquid tank 8 t. In some embodiments, the height 82L is within a range of 1 mm to 2 mm. In some embodiments, the height 82L is within a range of 2 mm to 3 mm. In some embodiments, the height 82L is within a range of 3 mm to 4 mm. In some embodiments, the height 82L is within a range of 4 mm to 5 mm.
  • FIG. 8D is a sectional view of a heating component base according to some embodiments of the present invention. The e-liquid tank 8 t has a depth 83L. The depth 83L may be less than the height 81L. The depth 83L may be less than the height 82L. The depth 83L may be equal to the height 82L. The air inlet channel 31 is in communication with the vaporization chamber 8 c through the communication portion 31 c. The air outlet channel 32 is in communication with the vaporization chamber 8 c through the communication portion 32 c.
  • FIG. 9A is a schematic diagram of a vaporization device combination according to some embodiments of the present invention. The vaporization device 100 may include a cartridge 100A and a body 100B. The cartridge 100A may be designed to be removably combined with the body 100B. The body 100B may have an accommodation portion 24 c. A portion of the cartridge 100A may be stored in the accommodation portion 24 c. The accommodation portion 24 c may surround a portion of the cartridge 100A. The accommodation portion 24 c may wrap a portion of the cartridge 100A. A portion of the cartridge 100A may be exposed by the body 100B.
  • The cartridge 100A may be removably combined with the body 100B in two directions. In some embodiments, the air inlet channel 31 may face towards a left side of the cartridge 100A when the cartridge 100A and the body 100B are combined. In some embodiments, the air inlet channel 31 may face towards a right side of the cartridge 100A when the cartridge 100A and the body 100B are combined. In the foregoing situations, the vaporization device 100 can work normally no matter in which direction the cartridge 100A is combined with the body 100B.
  • When the cartridge 100A is combined with the body 100B in a first direction (for example, the air inlet channel 31 may face towards the left side of the cartridge 100A), the conductive contact 9 of the cartridge 100A and the conductive probe 15 of the body 100B make contact with each other. When the cartridge 100A is combined with the body 100B in the first direction, the conductive contact 9 of the cartridge 100A and the conductive probe 15 of the body 100B are electrically connected to each other. When the cartridge 100A is combined with the body 100B in a second direction (for example, the air inlet channel 31 may face towards the right side of the cartridge 100A), the conductive contact 9 of the cartridge 100A and the conductive probe 15 of the body 100B make contact with each other. When the cartridge 100A is combined with the body 100B in the second direction, the conductive contact 9 of the cartridge 100A and the conductive probe 15 of the body 100B are electrically connected to each other.
  • FIG. 9B and FIG. 9C are sectional views of a cartridge according to some embodiments of the present invention.
  • A cross section 3 s 1 of the cartridge 100A at a length 100L1 from the lower surface 11 s of the metal base 11 is shown in FIG. 9B. A cross section 3 s 2 of the cartridge 100A at a length 100L2 from the lower surface 11 s of the metal base 11 is shown in FIG. 9C. As shown in FIG. 9B, the cartridge housing 3 may have an asymmetrical cross section 3 s 1 at a length 100L1 from the lower surface 11 s of the metal base 11. As shown in FIG. 9C, the cartridge housing 3 may have an asymmetrical cross section 3 s 2 at a length 100L2 from the lower surface 11 s of the metal base 11. In some embodiments, the cross section 3 s 1 is non-axisymmetric relative to an axis 100 x. In some embodiments, the cross section 3 s 2 is non-axisymmetric relative to the axis 100 x. As shown in FIG. 9A, the axis 100 x extends from a top of the cartridge 100A to a bottom.
  • When the cartridge 100A is removably combined with the body 100B, the accommodation portion 24 c wraps the cross section 3 s 1. When the cartridge 100A is removably combined with the body 100B, the accommodation portion 24 c wraps the cross section 3 s 2.
  • FIG. 10 is a flowchart of an output power control method according to some embodiments of the present invention.
  • The output power control method 200 may include a plurality of steps. In some embodiments, the steps in the output power control method 200 may be performed sequentially in the order shown in FIG. 10. In some embodiments, the steps in the output power control method 200 may not be performed in the order shown in FIG. 10.
  • Step 201: Detect an inhalation action of the user. The Step 201 may be performed by a sensor 16 and a controller 171 in combination.
  • Step 202: Determine whether a duration in which a power outputted to the heating component 6 is stopped is greater than a threshold TN1. If the time when an output power to the heating component 6 is stopped is greater than or equal to the threshold TN1, Step 203 is performed. If the time when an output power to the heating component 6 is stopped is less than the threshold TN1, Step 204 is performed. Step 202 may be performed by setting a timer in the controller 171. A timer may be set in the controller 171, and starts when the power supply component 20 stops provide power for the heating component 6.
  • In some embodiments, the threshold TN1 is within a range of 15 seconds to 60 seconds. In some embodiments, the threshold TN1 is within a range of 25 seconds to 40 seconds. In some embodiments, the threshold TN1 may be 30 seconds.
  • Step 203: Output a power P1 to the heating component 6 in a duration S1, and output a power P2 to the heating component 6 in a duration S2 after the duration S1. The duration S1 and the duration S2 are both during the continuous inhalation action of the user. Step 204 may be performed by the controller 171, a circuit board 17, a power supply component 20, a conductive contact 9, a conductive probe 15 and the heating component 6 in combination.
  • In some embodiments, the power P1 may be greater than the power P2. In some embodiments, P1 is within a range of 6 W to 15 W. In some embodiments, P1 is within a range of 7.2 W to 9 W. In some embodiments, P2 is within a range of 4.5 W to 9 W. In some embodiments, P2 is within a range of 6 W to 8 W.
  • In some embodiments, S1 is within a range of 0.1 second to 2 seconds. In some embodiments, S1 is within a range of 0.1 second to 1 seconds. In some embodiments, S1 is within a range of 0.1 second to 0.6 seconds.
  • In some embodiments, S2 is within a range of 0.1 second to 4 seconds. In some embodiments, S2 is within a range of 0.1 second to 3.5 seconds.
  • Step 202 and Step 203 have a plurality of advantages. Whether the vaporization device 100 has not been in use for a long time can be determined by the threshold TN1. The heating component 6 appears in a cool state when the user has not used the vaporization device 100 for a long time. When the user performs a first inhalation action to the vaporization device 100, the vaporization device 100 may output a relative high power P1 in the duration S1. The relative high power P1 may accelerate the generation of an aerosol. When the inhalation action of the user lasts for the duration S2, the heating component 6 already has a specific temperature, and the vaporization device 100 can reduce the output power to P2. The reduced power P2 may allow the aerosol to be generated uniformly. The reduced power P2 may increase the use time of the power supply component 20.
  • Step 204: Output a power P3 to the heating component. Step 203 may be performed by the controller 171, the circuit board 17, the power supply component 20, the conductive contact 9, the conductive probe 15 and the heating component 6 in combination.
  • In some embodiments, P3 is within a range of 3.5 W to 10 W. In some embodiments, P3 is within a range of 4.5 W to 9 W. In some embodiments, P3 is within a range of 6 W to 8 W. In some embodiments, P3 and P2 may be the same. In some embodiments, P3 and P2 may be different.
  • Step 202 and Step 204 have a plurality of advantages. Whether the vaporization device 100 has been used by the user in a short time can be determined by the threshold TN1. If the vaporization device 100 has been used by the user in a short time, the heating component 6 has not been cooled completely. If the vaporization device 100 has been used by the user in a short time, the heating component 6 has a specific temperature. In this case, the vaporization device 100 may adjust the output power to P3. The adjusted power P3 allows the aerosol to be generated uniformly. The adjusted power P3 may increase the use time of the power supply component 20.
  • Step 205: Stop outputting the power to the heating component when the duration of outputting the power to the heating component has reached the threshold TN2. Step 205 may be performed by setting a timer in the controller 171.
  • Step 205 has many advantages. When the time of the heating component 6 being continuously heated has reached the threshold TN2, the stop of heating may prevent the heating component 6 from being overheated. Overheated heating component 6 may damage another component inside the vaporization device 100. Overheated heating component 6 may decrease service lives of components inside the vaporization device 100. When the time of the heating component 6 being continuously heated has reached the threshold TN2, the stop of heating may prevent the heating component 6 from dry burning. Drying burning the heating component 6 may produce a burnt odor. Drying burning the heating component 6 may produce toxic chemicals.
  • In some embodiments, the threshold TN2 is within a range of 2 seconds to 10 seconds.
  • Step 206: The vaporization device 100 is triggered to enter a standby state when a duration in which the inhalation action has not been detected reaches a threshold TN3. When staying in the standby state, the power consumption of the vaporization device 100 is reduced. When staying in the standby state, the sensor 16 remains in an active state. Step 206 may be performed by setting a timer in the controller 171.
  • When the user stops inhaling, the output power control method 200 may further include a step of stopping outputting power to the heating component 6. The step may be performed by the sensor 16 and the controller 171 in combination.
  • As used herein, space-related terms such as “under”, “below”, “lower portion”, “above”, “upper portion”, “lower portion”, “left side”, “right side”, and the like may be used herein to simply describe a relationship between one element or feature and another element or feature as shown in the figures. In addition to orientation shown in the figures, space-related terms are intended to encompass different orientations of the device in use or operation. An apparatus may be oriented in other ways (rotated 90 degrees or at other orientations), and the space-related descriptors used herein may also be used for explanation accordingly. It should be understood that when an element is “connected” or “coupled” to another element, the element may be directly connected to coupled to another element, or an intermediate element may exist.
  • As used herein, the terms “approximately”, “basically”, “substantially”, and “about” are used to describe and explain small variations. When used in combination with an event or a situation, the terms may refer to an example in which an event or a situation occurs accurately and an example in which the event or situation occurs approximately. As used herein with respect to a given value or range, the term “about” generally means in the range of ±10%, ±5%, ±1%, or ±0.5% of the given value or range. The range may be indicated herein as from one endpoint to another endpoint or between two endpoints. Unless otherwise specified, all ranges disclosed herein include endpoints. The term “substantially coplanar” may refer to two surfaces within a few micrometers (μm) positioned along the same plane, for example, within 10 μm, within 5 μm, within 1 μm, or within 0.5 μm located along the same plane. When reference is made to “substantially” the same numerical value or characteristic, the term may refer to a value within ±10%, ±5%, ±1%, or ±0.5% of the average of the values.
  • As used herein, the terms “approximately”, “basically”, “substantially”, and “about” are used to describe and explain small variations. When used in combination with an event or a situation, the terms may refer to an example in which an event or a situation occurs accurately and an example in which the event or situation occurs approximately. For example, when being used in combination with a value, the term may refer to a variation range of less than or equal to ±10% of the value, for example, less than or equal to ±5%, less than or equal to ±4%, less than or equal to ±3%, less than or equal to ±2%, less than or equal to ±1%, less than or equal to ±0.5%, less than or equal to ±0.1%, or less than or equal to ±0.05%. For example, if a difference between two values is less than or equal to ±10% of an average value of the value (for example, less than or equal to ±5%, less than or equal to ±4%, less than or equal to ±3%, less than or equal to ±2%, less than or equal to ±1%, less than or equal to ±0.5%, less than or equal to ±0.1%, or less than or equal to ±0.05%), it could be considered that the two values are “substantially” the same. For example, being “substantially” parallel may refer to an angular variation range of less than or equal to ±10° with respect to 0°, for example, less than or equal to ±5°, less than or equal to ±4°, less than or equal to ±3°, less than or equal to ±2°, less than or equal to ±1°, less than or equal to ±0.5°, less than or equal to ±0.1°, or less than or equal to ±0.05°. For example, being “substantially” perpendicular may refer to an angular variation range of less than or equal to ±10° with respect to 90°, for example, less than or equal to ±5°, less than or equal to ±4°, less than or equal to ±3°, less than or equal to ±2°, less than or equal to ±1°, less than or equal to ±0.5°, less than or equal to ±0.1°, or less than or equal to ±0.05°.
  • As used herein, singular terms “a”, “an”, and “said” may include plural referents unless the context clearly dictates otherwise. In the description of some embodiments, assemblies provided “on” or “above” another component may encompass a case in which a previous component is directly on a latter component (for example, in physical contact with the latter component), and a case in which one or more intermediate assemblies are located between the previous component and the latter component.
  • Unless otherwise specified, space descriptions such as “above”, “below”, “up”, “left”, “right”, “down”, “top portion”, “bottom portion”, “vertical”, “horizontal”, “side face”, “higher than”, “lower than”, “upper portion”, “on”, “under”, “downward”, etc. are indicated relative to the orientation shown in the figures. It should be understood that the space descriptions used herein are merely for illustrative purposes, and actual implementations of the structures described herein may be spatially arranged in any orientation or manner, provided that the advantages of embodiments of the present invention are not deviated due to such arrangement.
  • Although the illustrative embodiments have been shown and described, it should be understood by those skilled in the art that the above embodiments cannot be interpreted as limitations to the present application, and the embodiments can be changed, substituted and modified without departing from the spirit, principle and scope of the present application.

Claims (20)

What is claimed is:
1. A vaporization device, comprising:
a cartridge, comprising a housing, a heating component and a heating component base, wherein
the heating component base comprises a storage tank, a first supporting member adjacent to the storage tank, and a second supporting member adjacent to the storage tank, and the storage tank has a first depth; and
the first supporting member comprises a plurality of openings, the second supporting member comprises a ramp structure, the distance between the ramp structure and a bottom portion of the storage tank is greater than the first depth, and the distance between the plurality of openings and the bottom portion of the storage tank is greater than the first depth; and
a body, comprising an accommodation portion, wherein
the accommodation portion covers a part of the cartridge when the cartridge is removably engaged with the body.
2. The vaporization device according to claim 1, wherein the heating component comprises a ceramic material and a porosity of 40% to 50%.
3. The vaporization device according to claim 1, wherein the housing and the heating component base define an air inlet channel and an air outlet channel, the heating component and the heating component base define a cavity, and the air inlet channel is in communication with the cavity through the plurality of openings.
4. The vaporization device according to claim 1, wherein the heating component comprises a heating circuit, a conductive component and a protection component, the heating circuit is disposed on a surface of the heating component, and the protection component is disposed between the conductive component and the heating circuit.
5. The vaporization device according to claim 4, wherein the protection component forms an open circuit when the temperature of the protection component is greater than a first threshold.
6. The vaporization device according to claim 4, wherein the protection component forms an open circuit when the temperature of the protection component is greater than a first threshold, and the protection component forms a short circuit when the temperature of the protection component is less than a second threshold.
7. The vaporization device according to claim 6, wherein the first threshold is different from the second threshold.
8. A device configured to store a fluid, comprising:
a heating component top cap, a heating component and a heating component base, wherein
the heating component base comprises a first supporting member and a second supporting member, and the heating component base comprises a storage tank having a first depth and adjacent to the first supporting member and the second supporting member;
the first supporting member comprises a first opening, the distance between the first opening and a bottom portion of the storage tank is a first height, and the first height is greater than the first depth; and
the second supporting member comprises a ramp structure, the distance between the ramp structure and the bottom portion of the storage tank is a second height, and the second height is greater than or equal to the first depth.
9. The device according to claim 8, wherein the first supporting member comprises a first fastening portion, the second supporting member comprises a second fastening portion, the heating component top cap is removably engaged with the heating component base through the first fastening portion and the second fastening portion, and the heating component is disposed between the heating component top cap and the heating component base.
10. The device according to claim 8, further comprising a housing, wherein the housing and the heating component base define an air inlet channel and an air outlet channel, the heating component and the heating component base define a cavity, and the air inlet channel is in communication with the cavity through the opening.
11. The device according to claim 8, wherein the first supporting member further comprises a second opening, a third opening, a fourth opening, a fifth opening and a sixth opening, and the second opening, the third opening, the fourth opening, the fifth opening and the sixth opening have the same diameter.
12. The device according to claim 11, wherein the distances between the bottom portion of the storage tank and the second opening, the third opening, the fourth opening, the fifth opening and the sixth opening are greater than the first height.
13. The device according to claim 10, wherein the air outlet channel is in communication with the cavity through a communication portion, and the opening and the communication portion are located between the heating component and the heating component base.
14. The device according to claim 10, further comprising a hollow tube disposed on the heating component base, wherein the hollow tube extends from the heating component base into the air inlet channel.
15. The device according to claim 14, wherein the heating component base wraps a first portion of the hollow tube and exposes a second portion of the hollow tube, and the second portion is not in contact with the housing.
16. The device according to claim 10, wherein the heating component top cap comprises a through hole, the housing and the heating component top cap define a storage compartment, and the storage compartment is in communication with the heating component through the through hole of the heating component top cap.
17. A method for operating a vaporization device, comprising:
causing a first airflow to enter a cavity between a heating component and a heating component base through a first opening on a first supporting member along an air inlet channel, wherein the air inlet channel is defined by a housing and the heating component base;
causing the first airflow from the cavity to flow along a ramp structure on a second supporting member to enter an air outlet channel, wherein the air outlet channel is defined by the housing and the heating component base;
causing the first airflow to have a temperature rise when entering the cavity; and
causing the first airflow to have a temperature drop when flowing through the air outlet channel
18. The method according to claim 17, wherein the temperature rises in a range of 200° C. to 320° C.
19. The method according to claim 17, wherein the temperature drops in a range of 145° C. to 265° C.
20. The method according to claim 17, further comprising causing the first airflow to experience the temperature rise by using a heating circuit disposed on a surface of the heating component.
US16/619,951 2018-08-17 2019-06-27 Vaporization device and method thereof Abandoned US20200323269A1 (en)

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
CN201810941894.2 2018-08-17
CN201810943496.4 2018-08-17
CN201810942876.6A CN110353306A (en) 2018-08-17 2018-08-17 A kind of atomising device and its electronic cigarette
CN201810941894.2A CN110353305A (en) 2018-08-17 2018-08-17 A kind of atomising device and its electronic cigarette
CN201810943496.4A CN110301673A (en) 2018-08-17 2018-08-17 A kind of atomising device and its electronic cigarette
CN201810942876.6 2018-08-17
CN201910028649.7A CN110326817B (en) 2019-01-11 2019-01-11 Electronic cigarette power supply output power control method and electronic cigarette
CN201910028649.7 2019-01-11
PCT/CN2019/093230 WO2020034773A1 (en) 2018-08-17 2019-06-27 Atomization device, and method for same

Publications (1)

Publication Number Publication Date
US20200323269A1 true US20200323269A1 (en) 2020-10-15

Family

ID=69525094

Family Applications (5)

Application Number Title Priority Date Filing Date
US16/623,784 Active 2040-08-14 US11849771B2 (en) 2018-08-17 2019-06-27 Vaporization device and method thereof
US16/619,951 Abandoned US20200323269A1 (en) 2018-08-17 2019-06-27 Vaporization device and method thereof
US16/624,288 Active 2040-04-15 US11399568B2 (en) 2018-08-17 2019-06-27 Vaporization device and method thereof
US16/618,801 Active 2039-10-09 US11382354B2 (en) 2018-08-17 2019-06-27 Vaporization device having air inlet and outlet channels structures
US16/619,950 Abandoned US20200305503A1 (en) 2018-08-17 2019-06-27 Vaporization device and method thereof

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US16/623,784 Active 2040-08-14 US11849771B2 (en) 2018-08-17 2019-06-27 Vaporization device and method thereof

Family Applications After (3)

Application Number Title Priority Date Filing Date
US16/624,288 Active 2040-04-15 US11399568B2 (en) 2018-08-17 2019-06-27 Vaporization device and method thereof
US16/618,801 Active 2039-10-09 US11382354B2 (en) 2018-08-17 2019-06-27 Vaporization device having air inlet and outlet channels structures
US16/619,950 Abandoned US20200305503A1 (en) 2018-08-17 2019-06-27 Vaporization device and method thereof

Country Status (3)

Country Link
US (5) US11849771B2 (en)
CN (5) CN111182807A (en)
WO (5) WO2020034770A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220079222A1 (en) * 2017-09-06 2022-03-17 Kt&G Corporation Aerosol generation device

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020034770A1 (en) * 2018-08-17 2020-02-20 深圳雾芯科技有限公司 Atomisation device and method therefor
USD929649S1 (en) * 2019-04-03 2021-08-31 Shenzhen Relx Technology Co., Ltd. Electronic cigarette
WO2020220293A1 (en) * 2019-04-30 2020-11-05 Shenzhen Next Vape Technology Co., Limited. Device for vaporizing liquid
CN110074464B (en) * 2019-05-15 2024-04-16 深圳市你我网络科技有限公司 Atomizer and electronic cigarette
CN110338465B (en) * 2019-07-16 2024-10-15 深圳麦克韦尔科技有限公司 Scavenging valve and electronic atomizing device
JP2022543043A (en) * 2019-08-08 2022-10-07 ジェイティー インターナショナル エス.エイ. aerosol generating device
US11116253B2 (en) * 2019-09-03 2021-09-14 Banana Bros, Llc Inner core element for use with electronic cigarette
CN212814261U (en) * 2020-05-09 2021-03-30 深圳麦克韦尔科技有限公司 Electronic atomization device and atomizer thereof
CN113475772A (en) * 2020-12-31 2021-10-08 深圳市吉迩科技有限公司 Power supply unit and electron cigarette subassembly
WO2022141471A1 (en) * 2020-12-31 2022-07-07 深圳市吉迩科技有限公司 Power supply device, atomization device, and electronic cigarette assembly
US12096795B2 (en) * 2021-05-22 2024-09-24 Shenzhen Eigate Technology Co., Ltd. Atomizer and electronic cigarette comprising the same
CN217161073U (en) * 2021-12-15 2022-08-12 深圳麦克韦尔科技有限公司 Electronic atomization device and power supply assembly thereof
WO2024047072A1 (en) * 2022-08-30 2024-03-07 Cue Vapor Ltd. Disposable tank electronic cigarette

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160073693A1 (en) * 2013-05-02 2016-03-17 Nicoventures Holdings Limited Electronic cigarette
US20160287816A1 (en) * 2015-03-30 2016-10-06 Cloud V Enterprises Vaporizer
US20170347714A1 (en) * 2014-12-31 2017-12-07 UTVG Global IP B.V. Personal electronic delivery system, atomizer assembly, use thereof and corresponding production method
US20180317557A1 (en) * 2014-02-06 2018-11-08 Juul Labs, Inc. Vaporizer apparatus

Family Cites Families (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101733229B (en) * 2008-11-21 2012-11-21 财团法人工业技术研究院 Atomizing module and atomizing device
CN201379072Y (en) 2009-02-11 2010-01-13 韩力 Improved atomizing electronic cigarette
CN101518361B (en) * 2009-03-24 2010-10-06 北京格林世界科技发展有限公司 High-simulation electronic cigarette
CA2797975C (en) * 2010-04-30 2017-06-06 Blec, Llc Electronic smoking device
JP6030580B2 (en) * 2011-02-09 2016-11-24 エスアイエス・リソーシズ・リミテッド Variable output control electronic cigarette
KR20120008751U (en) 2011-06-13 2012-12-24 이영찬 an electronic cigarette
CN103622160B (en) 2012-08-24 2016-01-20 佛山市新芯微电子有限公司 A kind of air-flow check processing method of electronic cigarette and device, electronic cigarette
CN103404969A (en) 2012-10-05 2013-11-27 佛山市新芯微电子有限公司 Electronic cigarette device
CN104026742A (en) 2013-03-05 2014-09-10 向智勇 Heating control method and device for electronic cigarette
CN103504478B (en) * 2013-05-07 2016-01-27 深圳市合元科技有限公司 Electronic smoke atomizer and electronic cigarette
EP3039974B1 (en) 2013-09-30 2018-04-18 Japan Tobacco, Inc. Non-combusting flavor inhaler
US20160270442A1 (en) * 2013-11-18 2016-09-22 Qiuming Liu Atomizer and electronic cigarette
ES2718075T3 (en) * 2014-01-29 2019-06-27 Japan Tobacco Inc Flavor inhaler type without combustion
WO2015120588A1 (en) * 2014-02-12 2015-08-20 吉瑞高新科技股份有限公司 Electronic cigarette and airflow control method thereof
KR101504868B1 (en) * 2014-04-07 2015-03-20 주식회사 케이티앤지 Cartridge and apparatus to inhale aerosol having the same
CN205337592U (en) * 2014-05-06 2016-06-29 惠州市吉瑞科技有限公司 Prevent to suck condensation tobacco juice electronics cigarette in oral cavity
CN203884697U (en) * 2014-05-21 2014-10-22 深圳市韩中泰克电子科技有限公司 Electronic cigarette atomizer with filter E-liquid or smoke backflow effect
CN104146352B (en) * 2014-07-16 2015-08-19 深圳劲嘉彩印集团股份有限公司 A kind of electronic simulated cigarette and using method thereof
CN104161306A (en) * 2014-08-12 2014-11-26 湖北允升科技工业园有限公司 Electronic cigarette provided with one-way channel device
CN204232300U (en) 2014-10-31 2015-04-01 惠州市吉瑞科技有限公司 Disposable electric cigarette
US10244792B2 (en) * 2014-12-30 2019-04-02 Lubby Holdings, LLC Personal vaporizer
CN204440191U (en) * 2015-01-22 2015-07-01 卓尔悦(常州)电子科技有限公司 Temperature control system and the electronic cigarette containing temperature control system thereof
WO2016123780A1 (en) * 2015-02-05 2016-08-11 惠州市吉瑞科技有限公司 Vaporization assembly and electronic cigarette
EA034513B1 (en) * 2015-02-27 2020-02-14 Джапан Тобакко Инк. Non-burning type flavor inhaler
CN204969471U (en) * 2015-08-17 2016-01-20 深圳市艾维普思科技股份有限公司 Novel multi -chamber atomizing device
CN105192895B (en) 2015-10-28 2018-07-13 深圳麦克韦尔股份有限公司 Electronic cigarette and its atomising device
CN105595430A (en) * 2015-11-04 2016-05-25 卓尔悦(常州)电子科技有限公司 Battery device, electronic cigarette and control method thereof
CN105342011B (en) * 2015-11-06 2018-06-26 浙江中烟工业有限责任公司 A kind of heating suction unit of solid smoke grenade cigarette
US20170136193A1 (en) * 2015-11-17 2017-05-18 Lunatech, Llc Next generation electronic vapor device
US10368581B2 (en) * 2016-03-11 2019-08-06 Altria Client Services Llc Multiple dispersion generator e-vaping device
CN205912902U (en) * 2016-04-29 2017-02-01 湖南中烟工业有限责任公司 Atomizer
EP3471803B1 (en) * 2016-06-16 2022-08-10 Juul Labs, Inc. On-demand, portable convection vaporizer
CN205962838U (en) * 2016-06-27 2017-02-22 深圳市合元科技有限公司 Atomizer and electronic cigarette
CN206025206U (en) 2016-07-20 2017-03-22 深圳市云创高科电子有限公司 Side type electron cigarette that admits air
US10485267B2 (en) * 2016-07-25 2019-11-26 Altria Client Services Llc Fluid permeable heater assembly with cap
CN107865462B (en) * 2016-09-22 2021-06-01 卓尔悦欧洲控股有限公司 Electronic cigarette
JP6872604B2 (en) * 2016-09-30 2021-05-19 チャイナ タバコ フーナン インダストリアル カンパニー リミテッド Atomizer for ultrasonic e-cigarette
CN106418709B (en) * 2016-10-10 2023-08-08 深圳市康泓威科技有限公司 Electronic cigarette with transverse liquid supply
EP3547860A1 (en) * 2016-12-02 2019-10-09 VMR Products LLC Vaporizer with cartridge
CN206260849U (en) * 2016-12-14 2017-06-20 常州市派腾电子技术服务有限公司 Cigarette bullet and the electronic cigarette with the cigarette bullet
CN108201175B (en) * 2016-12-19 2024-03-19 湖南中烟工业有限责任公司 Atomizing core, preparation method, atomizer and electronic cigarette
CN206453243U (en) 2016-12-20 2017-09-01 常州市派腾电子技术服务有限公司 Cigarette bullet, atomizing component and its electronic cigarette
CN206443204U (en) * 2016-12-21 2017-08-29 湖南中烟工业有限责任公司 A kind of cigarette bullet and its low temperature cigarette
CN206776743U (en) * 2017-05-04 2017-12-22 常州市派腾电子技术服务有限公司 Atomising head, atomizer and its electronic cigarette
CN107080291A (en) * 2017-05-19 2017-08-22 惠州市吉瑞科技有限公司深圳分公司 The control method and electronic cigarette of a kind of electronic cigarette
CN107095343B (en) * 2017-05-24 2020-05-12 惠州市新泓威科技有限公司 Heating method of electronic smoking set
CN207040883U (en) * 2017-06-19 2018-02-27 深圳市合元科技有限公司 With the electronic smoke atomizer for improving air flue construction
US10791761B2 (en) * 2017-08-17 2020-10-06 Rai Strategic Holdings, Inc. Microtextured liquid transport element for aerosol delivery device
CN207461400U (en) * 2017-10-17 2018-06-08 彭世俊 A kind of Novel oil storage electronic smoke atomizer
CN207613199U (en) * 2017-11-22 2018-07-17 深圳市卓力能电子有限公司 A kind of electronic cigarette of type of heat structure
CN108030153B (en) 2018-01-26 2019-07-26 云南中烟工业有限责任公司 A kind of surface acoustic wave electronic cigarette system
WO2019157648A1 (en) * 2018-02-13 2019-08-22 深圳麦克韦尔股份有限公司 Electronic cigarette and heating assembly thereof
CN108185536B (en) * 2018-02-13 2020-01-21 深圳麦克韦尔科技有限公司 Electronic cigarette and atomizer thereof
CN108308716B (en) 2018-02-13 2022-07-12 深圳麦克韦尔科技有限公司 Electronic cigarette and heating assembly thereof
WO2019157645A1 (en) * 2018-02-13 2019-08-22 深圳麦克韦尔股份有限公司 Electronic cigarette and heating assembly thereof
EP3753426B1 (en) * 2018-02-13 2024-10-09 Shenzhen Smoore Technology Limited Electronic cigarette and heating assembly and heating member thereof
US11903419B2 (en) * 2018-02-13 2024-02-20 Shenzhen Smoore Technology Limited Electronic cigarette and heating assembly and heating member thereof
CN108178220A (en) * 2018-03-02 2018-06-19 贾二芳 A kind of solar energy remotely carries integrated system
CN108158045A (en) * 2018-03-13 2018-06-15 卓尔悦欧洲控股有限公司 The control method and device of electronic cigarette
WO2020034770A1 (en) * 2018-08-17 2020-02-20 深圳雾芯科技有限公司 Atomisation device and method therefor
CN208863588U (en) * 2018-08-17 2019-05-17 深圳雾芯科技有限公司 A kind of atomising device and its electronic cigarette
CN208987818U (en) * 2018-08-17 2019-06-18 深圳雾芯科技有限公司 A kind of atomising device and its electronic cigarette
CN208987819U (en) * 2018-08-17 2019-06-18 深圳雾芯科技有限公司 A kind of atomising device and its electronic cigarette

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160073693A1 (en) * 2013-05-02 2016-03-17 Nicoventures Holdings Limited Electronic cigarette
US20180317557A1 (en) * 2014-02-06 2018-11-08 Juul Labs, Inc. Vaporizer apparatus
US20170347714A1 (en) * 2014-12-31 2017-12-07 UTVG Global IP B.V. Personal electronic delivery system, atomizer assembly, use thereof and corresponding production method
US20160287816A1 (en) * 2015-03-30 2016-10-06 Cloud V Enterprises Vaporizer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220079222A1 (en) * 2017-09-06 2022-03-17 Kt&G Corporation Aerosol generation device
US11937631B2 (en) * 2017-09-06 2024-03-26 Kt&G Corporation Aerosol generation device having concealed fastening portion

Also Published As

Publication number Publication date
CN111212577A (en) 2020-05-29
US20200305509A1 (en) 2020-10-01
CN111343877B (en) 2021-09-28
WO2020034771A1 (en) 2020-02-20
US11849771B2 (en) 2023-12-26
US11382354B2 (en) 2022-07-12
WO2020034773A1 (en) 2020-02-20
CN111182808A (en) 2020-05-19
US20210307394A1 (en) 2021-10-07
US20200305503A1 (en) 2020-10-01
CN111343877A (en) 2020-06-26
CN111315247A (en) 2020-06-19
WO2020034774A1 (en) 2020-02-20
US11399568B2 (en) 2022-08-02
US20200315250A1 (en) 2020-10-08
CN111182807A (en) 2020-05-19
WO2020034772A1 (en) 2020-02-20
WO2020034770A1 (en) 2020-02-20

Similar Documents

Publication Publication Date Title
US11382354B2 (en) Vaporization device having air inlet and outlet channels structures
US11432583B2 (en) Vaporization device and method thereof
US12048807B2 (en) Power supply section configuration for an electronic vaping device and electronic vaping device
ES2711606T3 (en) Electronic cigarette
RU2735170C2 (en) Aerosol generating system with puff detector
CN111631433B (en) Electronic vaporization inhaler
ES2953688T3 (en) Non-combustion aroma inhaler
EP3571943A1 (en) Electronic cigarette
CN211510568U (en) Heating assembly and atomizing device
KR100939512B1 (en) Electronic cigarette
TW201538092A (en) Non-burning type fragrance-inhaling device
CN212877615U (en) Atomizer and electric heating atomization device
EP3995006A1 (en) Vaporization device
CN211065029U (en) Atomization device
KR20220137060A (en) Atomizer and its atomization assembly
WO2021016866A1 (en) Atomizing device and method therefor
US20240349799A1 (en) Electronic cigarette atomization core
EP4449914A1 (en) Electronic cigarette atomization core
WO2021134224A1 (en) Vaporization device

Legal Events

Date Code Title Description
AS Assignment

Owner name: SHENZHEN RELX TECHNOLOGY CO., LTD., CHINA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CHEN, CHEN;FU, YAO;FENG, SHUTING;AND OTHERS;REEL/FRAME:051212/0566

Effective date: 20191126

STPP Information on status: patent application and granting procedure in general

Free format text: APPLICATION DISPATCHED FROM PREEXAM, NOT YET DOCKETED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION