WO2020220293A1 - Device for vaporizing liquid - Google Patents

Device for vaporizing liquid Download PDF

Info

Publication number
WO2020220293A1
WO2020220293A1 PCT/CN2019/085268 CN2019085268W WO2020220293A1 WO 2020220293 A1 WO2020220293 A1 WO 2020220293A1 CN 2019085268 W CN2019085268 W CN 2019085268W WO 2020220293 A1 WO2020220293 A1 WO 2020220293A1
Authority
WO
WIPO (PCT)
Prior art keywords
air flow
air
flow path
housing
power source
Prior art date
Application number
PCT/CN2019/085268
Other languages
French (fr)
Inventor
Bill Mo
Hitesh Dubey
Original Assignee
Shenzhen Next Vape Technology Co., Limited.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Next Vape Technology Co., Limited. filed Critical Shenzhen Next Vape Technology Co., Limited.
Priority to EP19926908.5A priority Critical patent/EP3962307A1/en
Priority to PCT/CN2019/085268 priority patent/WO2020220293A1/en
Priority to CN201980095658.6A priority patent/CN113795163A/en
Priority to US17/605,228 priority patent/US20220175026A1/en
Publication of WO2020220293A1 publication Critical patent/WO2020220293A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/48Fluid transfer means, e.g. pumps
    • A24F40/485Valves; Apertures
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/10Devices using liquid inhalable precursors
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/44Wicks
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/46Shape or structure of electric heating means
    • A24F40/465Shape or structure of electric heating means specially adapted for induction heating

Definitions

  • the subject described herein in general, relates to an electronic cigarette. More par-ticularly, but not exclusively, the subject matter relates to configuration for achieving desired and consistent air flow volume and pressure drop across the electronic cigarette; while ensuring necessary flow and pressure conditions at the different sub-sections of the electronic cigarette.
  • E-cigarette Electronic cigarettes
  • E-cigarette includes a battery-powered atomizing device to atomize e-liquid containing nicotine or other active ingredients when activated by a user.
  • the power source and the liquid carrying housing are separate contraptions. While the power source may be a rechargeable device, the liquid carrying housing could be a frequently replaced or refilled part.
  • Atomizers of some e-cigarettes are manually activated by user operated switch. In other cases, when the user simulates a smoking action by inhaling the e-cigarette, one or more sensors automatically detect puffing and activate an atomizer.
  • the atomizer comprises a wick configured to absorb e-liquid stored in a liquid storing chamber.
  • the e-liquid absorbed by the wick is then fed to a connected heating element for the conversion of the e-liquid to vapor or aerosol form, upon activation of the heating element.
  • a puff When a puff is initiated, the user applies suction pressure, which draws ambient air into the e-cigarette. This air is mixed with the vapour and this mixture is inhaled by the user.
  • the space wherein the conversion of liquid into vapour and the mixing of air and vapour takes place, is frequently termed as the vaporization zone.
  • an inlet for entry of air exists (by design or default) between a (liquid carrying) housing and a power source assembly when coupled.
  • a gap may be formed on coupling the housing and the power source assembly, through which the air enters into the housing during puffing.
  • the gap formed may not be consistent resulting in more or less air entry into the housing and also resulting in higher or lower draw effort of the user.
  • an inconsistent air-intake volume would lead to differing air-vapour mixing ratio, thereby changing the smoking perception. If the air intake is too much, the inhaled mixture gets extra-diluted and non-satisfying.
  • the inhaled mixture could be much hotter than desired and even burnt taste may be observed. This may be due to lack of air, which plays a vital role in the cooling of the heating element, within the va-porisation zone. Further, if the draw effort is too high, a user may feel tired during vaping and if the draw effort is too less, a user may feel empty air sucking.
  • An air-flow sensor usually has a minimum threshold requirement of negative pressure for activation.
  • the air flow sensor is usually located at the power source assembly and hence, ex-periences the suction pressure only after it has been reduced (in magnitude) at the va-porization zone and at the gap between the housing and the power source assembly. If this pressure drop is high at the vaporization zone or the gap between the housing and the power source assembly is large, the resultant negative pressure at the air-flow sensor may not even reach the threshold value; thereby causing failure in activation of the sensor and consequently the heater.
  • a device for vaporising liquid comprises a housing, a vaporization zone, a power source assembly and a first connecting member.
  • the housing comprises a first air flow path enabling flow of air from entry of the air into the housing to exit of the air from the housing.
  • a vaporization zone is provided in the housing to vaporise the liquid, wherein the vaporization zone is disposed in the first air flow path.
  • a power source assembly is operably coupled to the housing and comprises a second air flow path. The second air flow path enables flow of air from entry of the air into the power source assembly to exit of the air from the power source assembly, for the air to eventually enter the first air flow path.
  • a first connecting member is configured to establish a fluidic communication between the first air flow path and the second air flow path wherein, the first connecting member comprising a flexible member.
  • the flexible member is deformable and reform-able, to compensate for gap between the housing and the power source assembly when coupled.
  • the device further modularly comprises of a throttle member and a flow controller to achieve appropriate flow and pressure condition within the over device and individual components.
  • FIG. 1A illustrates an assembled view of a device 100, in accordance to an em-bodiment
  • FIG. 1B is a disassembled view of the device 100, in accordance to an embodiment
  • FIG. 1C illustrates a inside perspective view of a cap 102 of the device 100, in ac-cordance to an embodiment
  • FIG. 1D illustrates a perspective view of a holder 104 of the device 100, in ac-cordance to an embodiment
  • FIG. 2 illustrates a perspective view of a housing 200 of the device 100, in ac-cordance to an embodiment
  • FIG. 3A is a sectional view of the housing 200, in accordance to an embodiment
  • FIG. 3B is a perspective view of a base 308, in accordance to an embodiment
  • FIG. 3C illustrates a perspective view of an enclosure 316, in accordance to an em-bodiment
  • FIGs. 4A -4C illustrates various embodiments of a throttle member 310, in ac-cordance to an embodiment
  • FIG. 5A illustrates a first air vent inlet 506 and outlets 510 and 512 provided in a power source assembly 500, in accordance to an embodiment
  • FIG. 5B illustrates an air flow sensor 514 of the power source assembly 500, in ac-cordance to an embodiment
  • FIG. 5C illustrates a diffusor component 520 of the power source assembly 500, in accordance to an embodiment
  • FIG. 5D is an exploded view illustrating a flow controller 555 and a cover 522 for covering the air flow sensor 514, in accordance to an embodiment
  • FIGs. 5E-5J illustrates various embodiments of the flow controller 555, in ac-cordance to an embodiment
  • FIG. 6A illustrates a perspective view of a first connecting member 600a accordance to an embodiment
  • FIG. 6B illustrates a sectional view of the first connecting member 600a of FIG. 6A
  • FIG. 7A illustrates a front view of an alternate first connecting member 700a, in ac-cordance to an embodiment
  • FIG. 7B illustrates a sectional view of the alternate first connecting member 700a of FIG. 7A
  • FIG. 7C is a perspective view illustrating the connecting members 700a and 700b engaged to a magnetic coupler 708, in accordance with an embodiment
  • FIG. 7D is a section view of FIG. 7C
  • FIG. 7E is a perspective view illustrating the funnel shaped members 704a and 704b of the connecting members 700a and 700b covering the inlets provided in the housing 200, in accordance to an embodiment
  • FIG. 8 illustrates a sectional view of the coupling of the housing 200 with the power source assembly 500, in accordance to an embodiment
  • FIG. 9 illustrates a sectional view of the coupling of the housing 200 with the power source assembly 500, in accordance to an alternate embodiment
  • FIG. 10 is a sectional view of the assembly of the base 308 with the enclosure 316, and the throttle 310;
  • FIG. 11 illustrates assembly of the enclosure 316 with the base 308, in accordance with an embodiment of the present invention.
  • FIG. 12 illustrates one-way engagement of the cap 102 with the housing main body 230, in accordance with an embodiment of the present invention.
  • FIG. 13 illustrates an arrangement for coupling the housing 200 with the holder 104, which enables coupling in a “one-way coupling” orientation, in accordance to an em-bodiment
  • FIG. 14 illustrates an alternate arrangement for coupling the housing 200 with the holder 104, which enables coupling in “two-way coupling” orientations, in accordance to an embodiment.
  • the terms “a” or “an” are used, as is common in patent documents, to include one or more than one.
  • the term “or” is used to refer to a non-exclusive “or” , such that “A or B” includes “A but not B” , “B but not A” , and “A and B” , unless otherwise indicated.
  • a device for vaporising liquid comprises a housing, a va-porization zone, a power source assembly, and a first connecting member.
  • the va-porization zone is provided in the housing to vaporise the liquid, wherein the va-porization zone is disposed in a first air flow path.
  • the power source assembly is operably coupled to the housing and comprises a second air flow path.
  • the first connecting member is configured to establish a fluidic communication between the first air flow path and the second air flow path wherein, the first connecting member comprising a flexible member.
  • the first connecting member compensates for the gap that may be formed on coupling the housing and the power source assembly and hence, prevents any gain or loss of the air during the fluidic communication between the first air flow path and the second air flow path.
  • the power source assembly comprises an airflow sensor, wherein the airflow sensor detects the attributes related to inflow of air into the device and sends a signal to the printed circuit board, which in turn may enable supply of power to the heating element.
  • the device further comprises of a throttle member and a flow controller to modularly control pressure and flow condition in the overall device and its individual components.
  • FIG. 1A illustrates an assembled view of a device 100, in accordance with an embodiment.
  • the device 100 is a vaporising device or a vaping device or an e-cigarette or any device configured to vaporise liquid or e-liquid.
  • the device 100 comprises a cap 102, a holder 104, a housing 200 (shown in FIG. 2) , and a power source assembly 500 (shown in FIG. 5A) .
  • the housing 200 which is partially received by the cap 104, may be detached from the holder 104, while the power source assembly 500 (shown in FIG. 5A) is still accommodated within the holder 104.
  • the power source assembly 500 defines a slot 108, which allows the battery 502 (shown in FIG. 5A) to be connected to external power supply for recharging.
  • FIG. 1 C illustrates a inside perspective view of the cap 102, in accordance to an em-bodiment.
  • the cap 102 is configured to accommodate or cover at least a portion of the housing 200 (shown in FIG. 2) .
  • the cap 102 defines an opening 110, wherein a user provides suction pressure during puffing. The vapours generated by the device 100 exits from the opening 110 and is inhaled by the user.
  • the holder 104 is configured to receive the power source assembly 500 (shown in FIG. 5A) .
  • the holder 104 accommodates the power source assembly 500 completely, and partly receives the housing 200.
  • a light indication slot 113 is a through-cut provided in the holder 104.
  • the holder 104 comprise of one or more inlets to enable the flow or entry of air into the device 100 from the at-mosphere.
  • a first holder inlet 112 is shown in the drawing, while a second holder inlet 111 may be provided on the other side of the holder 104 (not shown in FIG. 1D but shown in FIG 8 and FIG 9) .
  • FIG. 2 illustrates a perspective view of the housing 200, in accordance with an em-bodiment.
  • the housing 200 defines a housing main body 230, which is the outer shell and serve as the mechanical structural member for the assembly of other components and sub-assemblies onto the housing 200.
  • the housing 200 comprises a first end 200a and a second end 200b, which is opposed to the first end 200a.
  • a suction orifice 322 (shown in FIG. 3A) is provided towards the first end 200a of the housing 200 for the exit of the vapours/aerosol. These vapours are received by the opening 110 and are inhaled by the user.
  • the housing 200 defines a first inlet 204 and a second inlet 206, and at least two connecting ports 208a and 208b towards the second end 200b of the housing 200. While the first inlet 204 and the second inlet 206 serve as entry points for the air into the housing 200, the connecting ports 208a and 208b serve as the positive and negative terminal for the power supply to the heating element 304 (shown in FIG 3A) into housing.
  • the housing 200 comprises a wick 302, a heating element 304, a vaporization zone 306 and a base 308 and a throttle 310.
  • the housing 200 defines a chamber 312, which may be configured to store the liquid. Further, the liquid stored in the chamber 312 may be any liquid that serves the purpose of the present invention. The liquid stored in the chamber 312 is vaporized in the vaporisation zone 306 for in-halation.
  • An air flow path which may be referred to as the first air flow path may be defined in the housing 200. The first air flow path enables the air to flow from the inlet, such as the first inlet 204 and a second inlet 206, to the suction orifice 322.
  • the vaporisation zone 306 may be disposed in the first airflow path.
  • the wick 302 is configured to draw liquid from the chamber 312 by capillary action.
  • the liquid absorbed by the wick 302 is heated by the heating element 304.
  • the heating element 304 may be a coil, a wire or any heating means that serves the purpose of the disclosed subject matter.
  • the liquid on being heated by the heating element 304 is vaporised, which is inhaled by the user.
  • the axis of the wick 302 and the heating element 304 is disposed perpendicularly to a central axis or longitudinal axis 320 of the housing 200.
  • the present invention can be practised even if the axis of the wick 302 and heating element 304 is disposed in-line with the longitudinal axis 320. Further, the housing main body 230 comprise of a cavity 1204, relevance of which is discussed later.
  • the liquid may be filled into the chamber 312 through a hole provided at the first end 200a (the hole is not explicitly shown) .
  • the hole can be closed using a plug 333, which may be made from flexible elastomeric material such as silicon.
  • the suction orifice 322 proximally aligns with the opening 110 of the cap (shown in FIG. 12) .
  • the suction provided by the user at the opening 110 is transmitted to the suction orifice 322.
  • the vapours/aerosols generated inside the housing 200 exits from the suction orifice 322 and are received by the user through opening 110.
  • the cap 102 could be an integral part of the housing main body 230.
  • the first inlet 204 and the second inlet 206 are provided in the base 308. Further, the connecting ports 208a and 208b to receive a pair of pogo pin connectors 504 (shown in FIG. 5A) are also provided in the base 308. A top portion of the base 308 comprises a projected portion 305 and a provision 307, and their relevance is discussed later.
  • the base 308 defines at least a portion of the first air flow path.
  • the base 308 defines a first stream path 314a, and a second stream path 314b.
  • the air flowing via the first stream path 314a and the second stream path 314b conflux within the base 308.
  • the first air flow path further comprises a main stream path 318 within the chamber 312.
  • the main stream path 318 is provided between the vaporization zone 306, and the suction orifice 322.
  • the main stream path 318 is along the central axis or longitudinal axis 320 of the device 100.
  • the air that conflux at the base 308 flows towards the main stream 318 passing through the throttle member 310.
  • the vaporised liquid along with the air flows towards the suction orifice 322 through the main stream path 318.
  • an enclosure 316 is configured to partially enclose and define the vaporisation zone 306.
  • the enclosure 316 comprises a first portion 316a and a second portion 316b.
  • the first portion 316a protrudes from the second portion 316b and configured to receive at least a portion of a main stream path 318.
  • the second portion 316b of the enclosure 316 is received by the base 308.
  • the enclosure 316 defines an opening to enable the flow of vaporised liquid along with the air towards the suction orifice 322 and prevents any loss of the vaporised liquid from the vaporisation zone 306.
  • the second portion 316b of the enclosure 316 defines a side cut or edge cut 316c, relevance of which is discussed later.
  • a throttle member 310 is provided below the wick 302 along the first air flow path.
  • the throttle member 310 is provided to regulate the generation of negative static pressure (relative to atmosphere) at the vaporisation zone 306. It also serves the purpose of distributing the air flow inside the vaporization zone 306 such that all sections of the wick 302 and heating element 304 are subjected to similar air flow condition.
  • FIGs. 4A -4C illustrates various embodiments of the throttle member 310.
  • the throttle member 310 defines plurality of apertures 402.
  • the apertures 402 may be circular, rectangular, or of any shape that serves the purpose of the disclosed subject matter.
  • the apertures 402 reduces the dimension of the first air flow path, such that relatively high negative pressure is created within the vaporisation zone 306.
  • the heating element 304 comprises a pair of legs 390a and 390b (shown in FIG. 10) , wherein each of the legs may pass through the apertures.
  • the throttle member 310 is assembled to the base 308.
  • the throttle member 310 further comprises a projected portion, the relevance of which is discussed later.
  • the throttle member 310 defines a slit 406. In FIG. 4B the slit 406 has “Z” shaped con-figuration. In FIG. 4C the slit 406 has “L” shaped configuration.
  • the negative static pressure in the vaporisation zone 306 is achieved by reducing the dimension of the first air flow path at the throttle member 310 relative to the dimension of the first air flow path at the wick 302.
  • the number, size and spatial distribution of the apertures 402 and slit 406 in the throttle member 310 can be varied to regulate the draw effort and air volume intake inside the device 100 to better suit user requirements. Since the throttle member 310 is a modular component, end of line customization can be easily achieved to cater to differentiation needs (relating to puffing patterns of consumers) of the diverse markets.
  • the housing 200 and the power source assembly 500 may be configured to be operably engaged by a user.
  • the housing 200 may be replaced once the liquid is sufficiently depleted, whereas the power source assembly 500 is recharged and reused. Therefore, the two are configured to be readily dis-engagable and re-engagable by the user.
  • the power source assembly 500 comprises a frame 501, a battery 502, a pair of pogo pin connectors 504, a first air vent inlet 506, a second air vent inlet 508 (seen in FIG. 8) provided on the other side of the power source assembly 500, a first outlet 510, and a second outlet 512, an air flow sensor 514, a PCB (printed circuit board) 516, a second air flow path, a diffusor component 520 and one or more flow controllers (555, 556) .
  • a frame 501 is the mechanical structural member of the power source assembly 500, wherein the other components are assembled.
  • the air enters into the power source assembly 500 via the first air vent inlet 506, and the second air vent inlet 508.
  • the first air vent inlet 506 and the second air vent inlet 508 are proximally aligned to the second holder inlet 111 and the first holder inlet 112 respectively such that the air entering into the device 100 through the first holder inlet 111 and the second holder inlet 112 is fully transmitted to the second air vent inlet 508 and the first air vent inlet 506 (proximity shown in FIG. 8) .
  • a second air flow path may be defined in the power source assembly 500.
  • the second air flow path may be defined as the air flow path defined to allow the air entering the power source assembly 500 to exit the power source assembly 500, wherein after exit, the air enters the first air flow path defined in the housing 200.
  • the second air flow path may comprise of two streams-a third stream 802a and a fourth stream 802b.
  • the third stream 802a may be defined by the air entering via the first air vent inlet 506 and exiting via the first outlet 510.
  • the fourth stream may be defined by the air entering through the second air vent inlet 508 and exiting via the second outlet 512.
  • a cover 522 is provided within the power source assembly 500.
  • the front view of the power source assembly 500 without the cover 522 is shown in FIG. 5B.
  • the power source assembly 500 defines a first and second sensor air flow channels 518.
  • the cover 522 covers the air flow sensor 514 and the sensor air flow channels 518.
  • a space is defined above the air flow sensor 514, and this space is in fluidic communication with the second air flow path through the air flow channels 518.
  • suction force is applied by a user during puffing, the air from the sensor air flow channels 518 is also drawn into the second air flow path, which enables the air flow sensor 514 to detect partial vacuum i.e. negative pressure relative to atmosphere.
  • a signal is sent to the PCB 516 to deliver power to the heating element 304.
  • the air flow sensor 514 may have a sensing portion at one side and a neutral portion on the other side.
  • the sensing portion of the air flow sensor 514 is away from a surface of the PCB 516, while the neutral portion of the air flow sensor 514 is towards the surface of the PCB 516 and is exposed to the atmospheric pressure.
  • the air flow sensor 514 detects the pressure difference between the sensing portion and the neutral portion.
  • the power source assembly 500 comprises of one or more flow controllers.
  • a first flow controller 555 proximally aligned to first air vent inlet 506 is shown in FIG 5D, while a second flow controller 556, which is on the other side, is not shown.
  • the flow controller 555 controls the air intake inside the device 100. It also regulates the existence of negative pressure for the operation of air flow controller 514.
  • FIGs. 5E -5H illustrates various embodiments of the first flow controller 555.
  • the first flow controller 555 defines plurality of apertures, which may be circular, rectangular, or of any shape that serves the purpose of the disclosed subject matter.
  • the number, size and spatial distribution of the apertures in the first flow controller 555 can be varied to regulate the draw effort and air volume intake inside the device 100 to better suit user requirements. Since it is a modular component, end of line cus-tomization can be easily achieved to cater to differentiation needs (relating to puffing pattern of consumers) of the diverse markets.
  • the second flow controller 556 is similar to the first flow controller 555 and hence not repeated.
  • the pogo pin connectors 504 are configured to supply power to the heating element 304 from the battery 502, on receiving the signal by the PCB 516 from the air sensor 514.
  • the liquid from the chamber 312 is heated and vaporised by the heating element 304.
  • the battery 502 to power the heating element 304 may be a rechargeable, for example but not limited to rechargeable lithium-ion battery.
  • the legs 390a and 390b (shown in Fig 10) of the heating element 304 are permanently connected to the connecting ports (208a and 208b) , which in turn gets connected to the pogo pin connectors 504 when the housing 200 and power source assembly 500 are coupled. Further a slot is provided at a bottom portion of the power source assembly 500 for charging the battery 502.
  • a magnetic coupler 708 may be part of the power source assembly 500 towards the proximal end to the housing 200.
  • the pogo pin connectors 504 may protrude outside the top surface of the magnetic coupler 708.
  • the surface of the magnetic coupler 708 may be insulated to avoid short circuiting between the pogo pins 504.
  • a corresponding magnet or metal strip (not shown) may be provided on the base 308 towards the side 200b of the housing 200.
  • the magnetic coupler 708 and the metal strip engage, thereby coupling the housing 200 with the power source assembly 500.
  • an alternate ar-rangement such as a friction fit, may be adapted. It may be noted that the coupling between the cap 102 and the holder 104 may add to the coupling discussed here.
  • the power source assembly 500 further comprises one or more LEDs, which are provided on the printed circuit board 516.
  • the LEDs are covered by the diffusor component 520.
  • the diffusor component 520 is a translucent component configured to diffuse the light emitted from the LEDs.
  • the light transmitted out of the diffuser component 520 comes out of the light indication slot 113 and can be used to visually indicate the device status to the user.
  • the power source assembly 500 and the housing 200 are coupled via a first connecting member (600a, 700a) , and a second connecting member (600b, 700b) .
  • the connecting members may establish fluidic communication between the first air flow path defined by the housing 200 and the second air flow path defined by the power source assembly 500.
  • the first and the second connecting members (600a, 600b, 700a, 700b) comprises a flexible member.
  • the flexible member may be deformable and reform-able to compensate for a gap that may be formed between the housing 200 and the power source assembly 500 when coupled.
  • the various em-bodiments of the first connecting member are discussed below.
  • the first connecting member 600a comprises a head 601a and a casing member 604a defining a through hole 606a.
  • the head 601a comprises a conical portion 602a, wherein at least a portion of the head 601a is received by the casing member 604a.
  • the head 601a rests on the flexible member, wherein the flexible member is a spring 608a.
  • the position of the conical portion 602a of the head 601a relative to the casing member 604a may vary based on the extent to which the shape of the spring 608a has changed during coupling between the housing 200 and the power source assembly 500.
  • the fluidic communication is es-tablished between the housing 200, and the power source assembly 500, when at least a part of the conical portion 602a of the head 601a is received into the first air flow path.
  • the device 100 comprises a second connecting member 600b (not shown in FIG) .
  • the construction of the second connecting member 600b is similar to the first connecting 600a and hence not repeated.
  • the first connecting member 700a comprises a projected portion 702a and a funnel shaped member 704a.
  • the funnel shape member 704a forms the flexible member.
  • the funnel shaped member 704a defines a first rim 705a and a second rim 706a.
  • the diameter of the first rim 705a is larger than the diameter of the second rim 706a.
  • the second rim 706a has smaller diameter compared to the first rim 705a to form the funnel shaped flexible member.
  • the funnel shaped member 704a may be formed or elastomeric material such as silicon.
  • the device 100 further comprises a second connecting member 700b (refer FIG. 7C-7D) .
  • the construction of the second connecting member 700b is similar to the first connecting 700a and hence not repeated.
  • the housing 200, the powers source assembly 500 and the connecting members 600a, 600b, 700a and 700b were discussed in detail indi-vidually.
  • the discussion henceforth would be based on the connecting members 700a and 700b but would be equally ap-plicable for the alternate embodiment of connecting members 600a and 600b.
  • the connecting members 700a and 700b are mounted on the power source assembly 500 and are shown engaged to the magnetic coupler 708.
  • the pogo pin connectors 504 are also protruding out of the surface of the magnetic coupler 708.
  • the connecting members 700a and 700b establishes the fluidic communication with the housing 200.
  • the first rims 705a and 705b of the funnel shaped members 704a and 704b covers the air inlets 204 and 206 (refer FIG. 2) of the housing 200. Since the funnel shaped members 704a and 704b are flexible, they compensate for the coupling tolerances between the housing 200 and the power source assembly 500. Under the influence of suction from inside, the funnel shaped members 704a and 704b further deforms to close any gap which could be existing.
  • FIG. 8 is a sectional view illustrating the coupling of the housing 200 with the power source assembly 500 (the cap 102 and the holder 104 are also shown) .
  • the first connecting member 700a and the second connecting member 700b (connecting members) are configured to fluidically couple the housing 200 with the power source assembly 500.
  • the first outlet 510 and the second outlet 512 in the power source assembly 500 are configured to receive at least a portion of the first connecting member 700a, and the second connecting member 700b.
  • the air that exits the power source assembly 500 via the outlets 510 and 512 passes through the first connecting member 700a and the second connecting member 700b, and then enters into the housing 200 via the first air inlet 204 and the second air inlet 206 (refer FIG. 2) .
  • the first connecting member 700a establishes the fluidic communication between the first stream path 314a of the first air flow path and the third stream 802a path of the second air flow path.
  • the second connecting member 700b is configured to establishes the fluidic communication between the second stream path 314b of the first air flow path and the fourth stream path 802b of the second air flow path.
  • the air passing from the third stream 802a enters the first stream 314a and the air passing from the fourth stream path 802b enters the second stream path 314b.
  • the projected portion 702a of the first connecting member 700a extends beyond the first rim 705a of the funnel shaped member 704a, wherein at least a part of the projected portion 702a is received into the first air flow path.
  • the funnel shaped member 704a is usually soft and prone to mechanical damages and the projected portion 702a may serve as a protection for the funnel shaped member 704a during operating conditions.
  • the first rim 705a presses against the housing 200 and surrounds the first inlet 204 of the first air flow path (as discussed earlier as well in reference to FIG. 7D) .
  • the attachment of the second connecting member 700b is similar to first connecting member 700a and hence not discussed again.
  • a suction force is applied by the user from the opening 110, which is sequentially transmitted to the suction orifice 322, then to first air flow path, then to the connecting members 700a and 700b, then to the second air path, then to the air vent inlets 506 and 508, and lastly to the holder inlets 111 and 112.
  • the connecting members 700a and 700b compensates for the coupling gaps that may be formed between the housing 200 and the power source assembly 200 and hence, prevents any gain or loss of the air.
  • the air flow sensor 514 in the power source assembly 500 senses negative pressure at the sensing portion and hence sends signal to the PCB 516 to send power to the heating member 304.
  • the throttle member 310 and the flow controllers 555 and 556 regulates the overall pressure drop and air flow into the device. Further, the throttle member 310 regulates the negative pressure and air flow distribution at the vaporization zone 306; while the flow controllers 555 and 556 regulates the negative pressure at the air flow sensor 514.
  • the modularity of the design with individual members as the throttle member 310 and the flow controllers 555 and 556, provides necessary degrees of freedom for end of line customization of product for differentiation needs of the market.
  • the first stream path 314a and the third stream path 802a are symmetrical to the second stream path 314b and the fourth stream path 802b, respectively, about the central axis 320 of the device 100.
  • the func-tionality of the first stream path 314a is same as the functionality of the second stream path 314b.
  • the functionality of the third stream path 802a is same as the func-tionality of the fourth stream path 802b.
  • the housing 200 is rotated by 180° about the central axis 320 and then coupled with the power source assembly 500, then fluidic commu-nication would be established between the first stream path 314a and the fourth stream path 802b, and between the second stream path 314b and the third stream path 802a.
  • the device can operate as per the method envisaged in this invention. Hence, such systems are conducive for “two-way coupling” arrangement.
  • the symmetrical arrangement of the first stream path 314a and the second stream path 314b within the base allows the main stream path 318 to be centrally aligned to the central axis 320.
  • FIG. 9 illustrates an alternate embodiment of the housing 200 and the power source assembly 500, in accordance with an embodiment of the present invention.
  • the base 308 defines a first air flow channel 902 and a third air flow channel 906, which are isolated from each other.
  • An air flow path which may be referred to as the first air flow path may be defined in the housing 200.
  • the first air flow path enables the air to flow from the inlet (such as the second air inlet 206) to the suction orifice 322 (not shown in FIG) .
  • the first air flow path comprises of the third air flow channel 906 and the main stream path 318 and it passes through the va-porization zone 306 and the throttle member 310.
  • the vapour-air mixture is generated at the vaporization zone 306 and flows towards the suction orifice 322 through the main stream path 318.
  • the power source assembly 500 defines a second air flow channel 904 and a fourth air flow channel 908, which are isolated from each other.
  • An air flow path which may be referred to as the second air flow path may be defined in the power source assembly 500.
  • the second air flow path allows the air entering the power source assembly 500 to exit the power source assembly 500, wherein after exit, the air enters the first air flow path defined in the housing 200.
  • the air entering via the second air vent inlet 508 flows in the second air flow path (the fourth air flow channel 908) , and exits the second outlet 512, towards the third air flow channel 906, which is a part of the first air flow path.
  • the sensor air flow channel 518 leading to the air flow sensor 514 is in fluidic communication with the second air flow path.
  • the air from the sensor air flow channel 518 is also drawn into the second air flow path, which enables the air flow sensor 514 to detect the pressure drop.
  • a signal is sent to the PCB 516 to deliver power to the heating element 304.
  • the second air flow path establishes fluidic communication with the first air flow path via the connecting member (such as the first connecting member 700a) .
  • a suction force is applied by the user from the opening 110, which is se-quentially transmitted to the suction orifice 322, then to the main stream path 318, then to the third air flow channel 906, then to the first connecting member 700a, then to the fourth air flow channel 908, then to the second air vent inlet 508 and lastly to the first holder inlet 112.
  • air flows in a reverse manner i.e. entering the device 100 through the first holder inlet 112 and exiting the device 100 from the opening 110.
  • the throttle member 310 and second flow controller 556 comes in the path of above-mentioned suction /air flow route.
  • the sensor air flow channel 518 is in fluidic com-munication with the third air flow channel 906 and hence the air flow sensor 514 gets activated when a puff is taken.
  • the first air flow channel 902 is isolated from the first air flow path
  • the second air flow channel 904 is isolated from the second air flow path.
  • the air entering the power source assembly 500 from the first air vent inlet 506 flows towards the first air flow channel 902 from the second air flow channel 904.
  • the pressure condition at the first air flow channel 902 can be completely isolated from the puffing action of the user i.e. the first air flow channel 902 can experience atmospheric air pressure (rather than suction pressure) even during puffing.
  • the availability of air at atmospheric pressure at the first air flow channel 902 at all times (including during puffing) may have several applications.
  • the first air flow channel 902 and the third air flow channel 906 are functionally different within the housing 200. Further, the second air flow channel 904 and the fourth air flow channel 908 are functionally different within the power source assembly 500. As described above, for appropriate functioning, the fluidic communication needs to be established between the third air flow channel 906 and the fourth air flow channel 908 and between the first air flow channel 902 and second air flow channel 904. Hence, the coupling between the housing 200 and the power source assembly 500 needs to be done as per FIG. 9.
  • the third air flow channel 906 within the base 308 is spatially off-set from the central axis 320, which leads to one sided entry of air into the vaporization zone 306.
  • An ordinary person skilled in art would appreciate that, ideally, the air flow condition of all sections of the wick 302 and heating element 304 inside the va-porization zone 306 should be similar.
  • the exit of vapour-air mixture outside the vaporization zone 306 has been taken from the main stream path 318 which is off-centred in an opposite manner.
  • FIG. 13 shows a simple, user friendly, intuitive and full-proof “one-way coupling” arrangement of the housing 200 and the power source assembly 500.
  • the cap 102 defines a first tapered edge 1302, which acts as a first coupling provision.
  • the holder 104 defines a second tapered edge 1304.
  • the second tapered edge 1304 acts as a second coupling provision of the holder 104 and aligns with the first tapered edge 1302 of the cap 104, when the holder 104 and the cap 102 are oriented in the single coupling direction.
  • This type of coupling configuration may be preferred for embodiments referred in FIG. 9.
  • the housing 200 and the power source assembly 500 may be assembled in a “two-way coupling” arrangement.
  • the housing 200 can be flipped (by 180 degrees) and still be coupled with the power source assembly 500 (holder 104) .
  • This type of coupling configuration may be preferred for embodiments referred in FIG. 8.
  • FIG. 10 is a sectional view of the assembly of the base 308 with the enclosure 316, and the throttle 310.
  • the base 308 is configured to receive the enclosure 316 and the throttle 310.
  • the throttle member 310 is provided below the wick 302, and the enclosure 316 is provided above the wick 302.
  • the projected portion 404 extending from the base portion of the throttle 310 is received by the provision 307 provided at the top portion of the base 308.
  • the throttle member 310 is provided below the wick 302, on assembly of the throttle member 310 with the base 308. Therefore, there is only one way on which the throttle 310 can be engaged to the base 308.
  • FIG. 11 shows a side cut 316c provided at one edge of the second portion 316b of the enclosure 316 receives the projected portion 305 of the base 308 enabling the one-way engagement of the enclosure 316 with the base 308.
  • FIG 11 also shows a base absorbent 399, which is designed to absorb and soak inadvertent spillage of liquid drops out of the vaporization zone 306.
  • the cap 104 comprises a notch 1202 provided at the inner surface of the cap 104.
  • the notch 1202 is received by a cavity 1204 defined in the housing main body 230.
  • the cap 104 can only be assembled in one manner with the housing main body 230, when the notch 1202 and the cavity 1204 matches with each other.
  • FIG. 12 also shows the cap absorbent 389, which is provided to absorb ac-cidental liquid particles or large aerosol particles that may be inadvertently present in the vapour-air mixture. Further, FIG. 12 also shows the proximal alignment of the suction orifice 322 and the opening 110.
  • the base sub-assembly (FIG. 10) and the housing main body-cap sub-assembly (FIG. 12) mate with each other at the opening of the enclosure 316 towards the first end 200a of the housing 200. Since, both the sub-assemblies are off-centred at the mating point, the assembly of the base sub-assembly (FIG. 10) and the housing main body-cap sub-assembly (FIG. 12) is possible only in a particular manner (refer FIG. 9) .
  • the power source assembly 500 and the holder 104 needs to aligned such that the light indication slot 113 and diffuser component 520 are proximally aligned.
  • the present invention overcomes the drawbacks of undesirable and inconsistent draw effort and air-intake volume of the conventional systems by eliminating the in-consistent gap between the housing 200 and the power source assembly 500 through use of one or more flexible connecting members (700a, 700b, 600a, 600b) .
  • the present invention provides a well-defined air flow and suction path, along with modular components (throttle member 310 and flow controllers 555, 556) to regulate air flow and pressure conditions of the overall device and the relevant sub-sections (vaporization zone and air-flow sensor) .
  • the modular design provides substantial opportunities for economical customization of the device 100 at the end of manufacturing operation. Further, an alternate embodiment (FIG.
  • FIG. 9 can provide the flexibility of achieving atmospheric pressure at least some section of the base 308 even when the housing 200 is subjected to suction pressure during puffing.
  • the alternate embodiment (FIG. 9) requiring “one-way coupling” has been achieved in a full proof and user-friendly manner.

Abstract

A device comprises a housing (200), a vaporization zone (306), a power source assembly (500), and a first connecting member (600a, 700a). The housing (200) comprises a first air flow path enabling flow of air from entry of the air into the housing (200) to exit of the air from the housing (200). The vaporization zone (306) provided in the housing (200) to vaporise the liquid is disposed in the first air flow path. A power source (500) assembly operably coupled to the housing (200) comprises a second air flow path enabling the flow of air from entry of the air into the housing (200) to exit of the air from the housing (200). The first connecting member (600a, 700a) establishes a fluidic communication between the first air flow path and the second air flow path and comprises a flexible member. The flexible member is deformable and reform-able, to compensate for gap between the housing (200) and the power source (500) assembly when coupled.

Description

Device for vaporizing liquid Technical Field
The subject described herein, in general, relates to an electronic cigarette. More par-ticularly, but not exclusively, the subject matter relates to configuration for achieving desired and consistent air flow volume and pressure drop across the electronic cigarette; while ensuring necessary flow and pressure conditions at the different sub-sections of the electronic cigarette.
Background Art
Electronic cigarettes (e-cigarette) are electronic devices that stimulate the feeling of smoke and have widely been used to replace the conventional tobacco cigarettes. E-cigarette includes a battery-powered atomizing device to atomize e-liquid containing nicotine or other active ingredients when activated by a user. In most e-cigarettes, the power source and the liquid carrying housing are separate contraptions. While the power source may be a rechargeable device, the liquid carrying housing could be a frequently replaced or refilled part. Atomizers of some e-cigarettes are manually activated by user operated switch. In other cases, when the user simulates a smoking action by inhaling the e-cigarette, one or more sensors automatically detect puffing and activate an atomizer. The atomizer comprises a wick configured to absorb e-liquid stored in a liquid storing chamber. The e-liquid absorbed by the wick is then fed to a connected heating element for the conversion of the e-liquid to vapor or aerosol form, upon activation of the heating element. When a puff is initiated, the user applies suction pressure, which draws ambient air into the e-cigarette. This air is mixed with the vapour and this mixture is inhaled by the user. The space wherein the conversion of liquid into vapour and the mixing of air and vapour takes place, is frequently termed as the vaporization zone. However, certain disadvantages are associated with the con-ventional e-cigarettes such as undesirable and inconsistent draw effort by user, un-desirable and inconsistent air-intake volume and constraints related to regulation of air flow and pressure conditions at the different subsections of the e-cigarette.
In conventional rechargeable e-cigarettes, an inlet for entry of air exists (by design or default) between a (liquid carrying) housing and a power source assembly when coupled. A gap may be formed on coupling the housing and the power source assembly, through which the air enters into the housing during puffing. However, there may be a scenario that the gap formed may not be consistent resulting in more or less air entry into the housing and also resulting in higher or lower draw effort of the user. Even if we consider consistent vapour production, an inconsistent air-intake volume would lead to differing air-vapour mixing ratio, thereby changing the smoking  perception. If the air intake is too much, the inhaled mixture gets extra-diluted and non-satisfying. On the other hand, if the air is too less, the inhaled mixture could be much hotter than desired and even burnt taste may be observed. This may be due to lack of air, which plays a vital role in the cooling of the heating element, within the va-porisation zone. Further, if the draw effort is too high, a user may feel tired during vaping and if the draw effort is too less, a user may feel empty air sucking.
Further, different sub-sections of the e-cigarette have different requirements of air flow and pressure conditions. For example, at the vaporisation zone, the existence of negative static pressure (relative to atmosphere) plays a very vital role in the operation of e-cigarette. The absorption of liquid by the wick from the chamber is based on the quantum of this negative pressure at the vaporisation zone. High negative pressure at the vaporisation zone enables the wick to speedily draw more liquid from the chamber, while negating the pressure variation inside the liquid storage chamber. When a puff is initiated, the suction pressure applied by the user is also transmitted to the vaporization zone, which helps in maintaining a somewhat consistent liquid supply to the wick. Functioning of an air-flow sensor could be another example. An air-flow sensor usually has a minimum threshold requirement of negative pressure for activation. Note that the air flow sensor is usually located at the power source assembly and hence, ex-periences the suction pressure only after it has been reduced (in magnitude) at the va-porization zone and at the gap between the housing and the power source assembly. If this pressure drop is high at the vaporization zone or the gap between the housing and the power source assembly is large, the resultant negative pressure at the air-flow sensor may not even reach the threshold value; thereby causing failure in activation of the sensor and consequently the heater. Countering manufacturing and coupling tolerances, while balancing the three inter-related aspects of ensuring high pressure drop at vaporization zone, achieving sufficient air-intake volume and realizing threshold negative pressure at the air-flow sensor, leads to design constraints in con-ventional e-cigarettes. In such a scenario, it is difficult to achieve optimal puffing draw-effort and optimal vapour-air ratio.
While the vaporization zone and the air-flow sensor have negative static pressure re-quirements, some applications may require few components of the housing to be exposed to normal atmospheric pressure even during puffing cycle. One such ap-plication could be for pressure equalization at the liquid storage chamber. Con-ventional e-cigarettes have limitation that the section of the housing in proximity to the power source assembly is exposed to suction pressure during puffing.
Summary of Invention
Technical Problem
In light of the foregoing, there is a need of an improved device, that regulates the air flow and pressure condition for the complete e-cigarette as well as for the individual components; while achieving optimal draw effort and air-vapour ratio for the user.
Solution to Problem
Technical Solution
In an embodiment, a device for vaporising liquid is disclosed. The device comprises a housing, a vaporization zone, a power source assembly and a first connecting member. The housing comprises a first air flow path enabling flow of air from entry of the air into the housing to exit of the air from the housing. A vaporization zone is provided in the housing to vaporise the liquid, wherein the vaporization zone is disposed in the first air flow path. A power source assembly is operably coupled to the housing and comprises a second air flow path. The second air flow path enables flow of air from entry of the air into the power source assembly to exit of the air from the power source assembly, for the air to eventually enter the first air flow path. A first connecting member is configured to establish a fluidic communication between the first air flow path and the second air flow path wherein, the first connecting member comprising a flexible member. The flexible member is deformable and reform-able, to compensate for gap between the housing and the power source assembly when coupled. The device further modularly comprises of a throttle member and a flow controller to achieve appropriate flow and pressure condition within the over device and individual components.
Advantageous Effects of Invention
Brief Description of Drawings
Description of Drawings
Embodiments are illustrated by way of example and not limitation in the figures of the accompanying drawings, in which like references indicate similar elements and in which:
FIG. 1A illustrates an assembled view of a device 100, in accordance to an em-bodiment;
FIG. 1B is a disassembled view of the device 100, in accordance to an embodiment;
FIG. 1C illustrates a inside perspective view of a cap 102 of the device 100, in ac-cordance to an embodiment;
FIG. 1D illustrates a perspective view of a holder 104 of the device 100, in ac-cordance to an embodiment;
FIG. 2 illustrates a perspective view of a housing 200 of the device 100, in ac-cordance to an embodiment;
FIG. 3A is a sectional view of the housing 200, in accordance to an embodiment;
FIG. 3B is a perspective view of a base 308, in accordance to an embodiment;
FIG. 3C illustrates a perspective view of an enclosure 316, in accordance to an em-bodiment;
FIGs. 4A -4C illustrates various embodiments of a throttle member 310, in ac-cordance to an embodiment;
FIG. 5A illustrates a first air vent inlet 506 and  outlets  510 and 512 provided in a power source assembly 500, in accordance to an embodiment;
FIG. 5B illustrates an air flow sensor 514 of the power source assembly 500, in ac-cordance to an embodiment;
FIG. 5C illustrates a diffusor component 520 of the power source assembly 500, in accordance to an embodiment;
FIG. 5D is an exploded view illustrating a flow controller 555 and a cover 522 for covering the air flow sensor 514, in accordance to an embodiment;
FIGs. 5E-5J illustrates various embodiments of the flow controller 555, in ac-cordance to an embodiment
FIG. 6A illustrates a perspective view of a first connecting member 600a accordance to an embodiment;
FIG. 6B illustrates a sectional view of the first connecting member 600a of FIG. 6A;
FIG. 7A illustrates a front view of an alternate first connecting member 700a, in ac-cordance to an embodiment;
FIG. 7B illustrates a sectional view of the alternate first connecting member 700a of FIG. 7A;
FIG. 7C is a perspective view illustrating the connecting  members  700a and 700b engaged to a magnetic coupler 708, in accordance with an embodiment;
FIG. 7D is a section view of FIG. 7C;
FIG. 7E is a perspective view illustrating the funnel shaped  members  704a and 704b of the connecting  members  700a and 700b covering the inlets provided in the housing 200, in accordance to an embodiment;
FIG. 8 illustrates a sectional view of the coupling of the housing 200 with the power source assembly 500, in accordance to an embodiment;
FIG. 9 illustrates a sectional view of the coupling of the housing 200 with the power source assembly 500, in accordance to an alternate embodiment;
FIG. 10 is a sectional view of the assembly of the base 308 with the enclosure 316, and the throttle 310;
FIG. 11 illustrates assembly of the enclosure 316 with the base 308, in accordance with an embodiment of the present invention.
FIG. 12 illustrates one-way engagement of the cap 102 with the housing main body 230, in accordance with an embodiment of the present invention.
FIG. 13 illustrates an arrangement for coupling the housing 200 with the holder 104, which enables coupling in a “one-way coupling” orientation, in accordance to an em-bodiment; and
FIG. 14 illustrates an alternate arrangement for coupling the housing 200 with the holder 104, which enables coupling in “two-way coupling” orientations, in accordance to an embodiment.
Mode for the Invention
Mode for Invention
The following detailed description includes references to the accompanying drawings, which form part of the detailed description. The drawings show illustrations in accordance with example embodiments. These example embodiments are described in enough details to enable those skilled in the art to practice the present subject matter. However, it may be apparent to one with ordinary skill in the art that the present invention may be practised without these specific details. In other instances, well-known methods, procedures and components have not been described in detail so as not to unnecessarily obscure aspects of the embodiments. The embodiments can be combined, other embodiments can be utilized, or structural and logical changes can be made without departing from the scope of the invention. The following detailed de-scription is, therefore, not to be taken as a limiting sense.
In this document, the terms “a” or “an” are used, as is common in patent documents, to include one or more than one. In this document, the term “or” is used to refer to a non-exclusive “or” , such that “A or B” includes “A but not B” , “B but not A” , and “A and B” , unless otherwise indicated.
It should be understood, that the capabilities of the invention described in the present disclosure and elements shown in the figures may be implemented in various forms of hardware, firmware, software, recordable medium or combinations thereof.
OVERVIEW:
A device for vaporising liquid is disclosed. The device comprises a housing, a va-porization zone, a power source assembly, and a first connecting member. The va-porization zone is provided in the housing to vaporise the liquid, wherein the va-porization zone is disposed in a first air flow path. The power source assembly is operably coupled to the housing and comprises a second air flow path. The first connecting member is configured to establish a fluidic communication between the first air flow path and the second air flow path wherein, the first connecting member comprising a flexible member. Further, the first connecting member compensates for the gap that may be formed on coupling the housing and the power source assembly and hence, prevents any gain or loss of the air during the fluidic communication  between the first air flow path and the second air flow path. The power source assembly comprises an airflow sensor, wherein the airflow sensor detects the attributes related to inflow of air into the device and sends a signal to the printed circuit board, which in turn may enable supply of power to the heating element. The device further comprises of a throttle member and a flow controller to modularly control pressure and flow condition in the overall device and its individual components.
Construction of the device
We begin by referring to FIG. 1A, which illustrates an assembled view of a device 100, in accordance with an embodiment. The device 100 is a vaporising device or a vaping device or an e-cigarette or any device configured to vaporise liquid or e-liquid. In an embodiment, the device 100 comprises a cap 102, a holder 104, a housing 200 (shown in FIG. 2) , and a power source assembly 500 (shown in FIG. 5A) .
Referring to FIG. 1B the housing 200, which is partially received by the cap 104, may be detached from the holder 104, while the power source assembly 500 (shown in FIG. 5A) is still accommodated within the holder 104. The power source assembly 500 defines a slot 108, which allows the battery 502 (shown in FIG. 5A) to be connected to external power supply for recharging.
FIG. 1 C illustrates a inside perspective view of the cap 102, in accordance to an em-bodiment. The cap 102 is configured to accommodate or cover at least a portion of the housing 200 (shown in FIG. 2) . The cap 102 defines an opening 110, wherein a user provides suction pressure during puffing. The vapours generated by the device 100 exits from the opening 110 and is inhaled by the user.
Referring to FIG. 1D, the holder 104 is configured to receive the power source assembly 500 (shown in FIG. 5A) . The holder 104 accommodates the power source assembly 500 completely, and partly receives the housing 200. A light indication slot 113 is a through-cut provided in the holder 104. Further, the holder 104 comprise of one or more inlets to enable the flow or entry of air into the device 100 from the at-mosphere. A first holder inlet 112 is shown in the drawing, while a second holder inlet 111 may be provided on the other side of the holder 104 (not shown in FIG. 1D but shown in FIG 8 and FIG 9) .
HOUSING 200 AND CAP 102:
FIG. 2 illustrates a perspective view of the housing 200, in accordance with an em-bodiment. The housing 200 defines a housing main body 230, which is the outer shell and serve as the mechanical structural member for the assembly of other components and sub-assemblies onto the housing 200. The housing 200 comprises a first end 200a and a second end 200b, which is opposed to the first end 200a. A suction orifice 322 (shown in FIG. 3A) is provided towards the first end 200a of the housing 200 for the exit of the vapours/aerosol. These vapours are received by the opening 110 and are  inhaled by the user. The housing 200 defines a first inlet 204 and a second inlet 206, and at least two connecting  ports  208a and 208b towards the second end 200b of the housing 200. While the first inlet 204 and the second inlet 206 serve as entry points for the air into the housing 200, the connecting  ports  208a and 208b serve as the positive and negative terminal for the power supply to the heating element 304 (shown in FIG 3A) into housing.
Referring to FIG. 3A the housing 200 comprises a wick 302, a heating element 304, a vaporization zone 306 and a base 308 and a throttle 310. The housing 200 defines a chamber 312, which may be configured to store the liquid. Further, the liquid stored in the chamber 312 may be any liquid that serves the purpose of the present invention. The liquid stored in the chamber 312 is vaporized in the vaporisation zone 306 for in-halation. An air flow path, which may be referred to as the first air flow path may be defined in the housing 200. The first air flow path enables the air to flow from the inlet, such as the first inlet 204 and a second inlet 206, to the suction orifice 322. The vaporisation zone 306 may be disposed in the first airflow path. The wick 302 is configured to draw liquid from the chamber 312 by capillary action. The liquid absorbed by the wick 302 is heated by the heating element 304. The heating element 304 may be a coil, a wire or any heating means that serves the purpose of the disclosed subject matter. The liquid on being heated by the heating element 304 is vaporised, which is inhaled by the user. The axis of the wick 302 and the heating element 304 is disposed perpendicularly to a central axis or longitudinal axis 320 of the housing 200. However, it may be apparent to one with ordinary skill in the art that the present invention can be practised even if the axis of the wick 302 and heating element 304 is disposed in-line with the longitudinal axis 320. Further, the housing main body 230 comprise of a cavity 1204, relevance of which is discussed later.
Further referring to FIG. 3A, the liquid may be filled into the chamber 312 through a hole provided at the first end 200a (the hole is not explicitly shown) . After liquid filling, the hole can be closed using a plug 333, which may be made from flexible elastomeric material such as silicon.
The suction orifice 322 proximally aligns with the opening 110 of the cap (shown in FIG. 12) . The suction provided by the user at the opening 110 is transmitted to the suction orifice 322. Also, the vapours/aerosols generated inside the housing 200 exits from the suction orifice 322 and are received by the user through opening 110. Further in some embodiments, the cap 102 could be an integral part of the housing main body 230.
Referring to FIG. 3B the first inlet 204 and the second inlet 206 are provided in the base 308. Further, the connecting  ports  208a and 208b to receive a pair of pogo pin connectors 504 (shown in FIG. 5A) are also provided in the base 308. A top portion of  the base 308 comprises a projected portion 305 and a provision 307, and their relevance is discussed later.
In an embodiment, referring again to FIG. 3A, the base 308 defines at least a portion of the first air flow path. The base 308 defines a first stream path 314a, and a second stream path 314b. The air flowing via the first stream path 314a and the second stream path 314b conflux within the base 308. The first air flow path further comprises a main stream path 318 within the chamber 312. The main stream path 318 is provided between the vaporization zone 306, and the suction orifice 322. In an embodiment, the main stream path 318 is along the central axis or longitudinal axis 320 of the device 100. The air that conflux at the base 308 flows towards the main stream 318 passing through the throttle member 310. The vaporised liquid along with the air flows towards the suction orifice 322 through the main stream path 318.
Referring to FIG. 3A and 3C, an enclosure 316 is configured to partially enclose and define the vaporisation zone 306. The enclosure 316 comprises a first portion 316a and a second portion 316b. The first portion 316a protrudes from the second portion 316b and configured to receive at least a portion of a main stream path 318. Further, the second portion 316b of the enclosure 316 is received by the base 308. The enclosure 316 defines an opening to enable the flow of vaporised liquid along with the air towards the suction orifice 322 and prevents any loss of the vaporised liquid from the vaporisation zone 306. Further, the second portion 316b of the enclosure 316 defines a side cut or edge cut 316c, relevance of which is discussed later.
Referring to FIG. 3A, a throttle member 310 is provided below the wick 302 along the first air flow path. The throttle member 310 is provided to regulate the generation of negative static pressure (relative to atmosphere) at the vaporisation zone 306. It also serves the purpose of distributing the air flow inside the vaporization zone 306 such that all sections of the wick 302 and heating element 304 are subjected to similar air flow condition. FIGs. 4A -4C illustrates various embodiments of the throttle member 310. In FIG. 4A, the throttle member 310 defines plurality of apertures 402. The apertures 402 may be circular, rectangular, or of any shape that serves the purpose of the disclosed subject matter. The apertures 402 reduces the dimension of the first air flow path, such that relatively high negative pressure is created within the vaporisation zone 306. The heating element 304 comprises a pair of  legs  390a and 390b (shown in FIG. 10) , wherein each of the legs may pass through the apertures. The throttle member 310 is assembled to the base 308. The throttle member 310 further comprises a projected portion, the relevance of which is discussed later. In another embodiment, the throttle member 310 defines a slit 406. In FIG. 4B the slit 406 has “Z” shaped con-figuration. In FIG. 4C the slit 406 has “L” shaped configuration.
During a puff, the negative static pressure in the vaporisation zone 306 is achieved  by reducing the dimension of the first air flow path at the throttle member 310 relative to the dimension of the first air flow path at the wick 302. The number, size and spatial distribution of the apertures 402 and slit 406 in the throttle member 310 can be varied to regulate the draw effort and air volume intake inside the device 100 to better suit user requirements. Since the throttle member 310 is a modular component, end of line customization can be easily achieved to cater to differentiation needs (relating to puffing patterns of consumers) of the diverse markets.
POWER SOURCE ASSEMBLY 500 AND HOLDER 104:
Having discussed the housing 200 in detail, we now discuss the power source assembly 500 in detail. Notably, the housing 200 and the power source assembly 500 may be configured to be operably engaged by a user. In some use cases, the housing 200 may be replaced once the liquid is sufficiently depleted, whereas the power source assembly 500 is recharged and reused. Therefore, the two are configured to be readily dis-engagable and re-engagable by the user.
Referring to FIGs. 5A -5D, the power source assembly 500 comprises a frame 501, a battery 502, a pair of pogo pin connectors 504, a first air vent inlet 506, a second air vent inlet 508 (seen in FIG. 8) provided on the other side of the power source assembly 500, a first outlet 510, and a second outlet 512, an air flow sensor 514, a PCB (printed circuit board) 516, a second air flow path, a diffusor component 520 and one or more flow controllers (555, 556) . In an embodiment, a frame 501 is the mechanical structural member of the power source assembly 500, wherein the other components are assembled. In an embodiment, the air enters into the power source assembly 500 via the first air vent inlet 506, and the second air vent inlet 508. The first air vent inlet 506 and the second air vent inlet 508 are proximally aligned to the second holder inlet 111 and the first holder inlet 112 respectively such that the air entering into the device 100 through the first holder inlet 111 and the second holder inlet 112 is fully transmitted to the second air vent inlet 508 and the first air vent inlet 506 (proximity shown in FIG. 8) .
In an embodiment, a second air flow path may be defined in the power source assembly 500. The second air flow path may be defined as the air flow path defined to allow the air entering the power source assembly 500 to exit the power source assembly 500, wherein after exit, the air enters the first air flow path defined in the housing 200. Referring to FIG 5A and FIG 8, the second air flow path may comprise of two streams-a third stream 802a and a fourth stream 802b. The third stream 802a may be defined by the air entering via the first air vent inlet 506 and exiting via the first outlet 510. The fourth stream may be defined by the air entering through the second air vent inlet 508 and exiting via the second outlet 512.
Referring to FIG. 5D, a cover 522 is provided within the power source assembly 500.  The front view of the power source assembly 500 without the cover 522 is shown in FIG. 5B. Referring to FIG. 5B, the power source assembly 500 defines a first and second sensor air flow channels 518. The cover 522 covers the air flow sensor 514 and the sensor air flow channels 518. As a result, a space is defined above the air flow sensor 514, and this space is in fluidic communication with the second air flow path through the air flow channels 518. When suction force is applied by a user during puffing, the air from the sensor air flow channels 518 is also drawn into the second air flow path, which enables the air flow sensor 514 to detect partial vacuum i.e. negative pressure relative to atmosphere. On detection of the negative pressure by the air flow sensor 514, a signal is sent to the PCB 516 to deliver power to the heating element 304.
In an embodiment, the air flow sensor 514 may have a sensing portion at one side and a neutral portion on the other side. The sensing portion of the air flow sensor 514 is away from a surface of the PCB 516, while the neutral portion of the air flow sensor 514 is towards the surface of the PCB 516 and is exposed to the atmospheric pressure. The air flow sensor 514 detects the pressure difference between the sensing portion and the neutral portion.
Referring to FIG 5D, the power source assembly 500 comprises of one or more flow controllers. A first flow controller 555 proximally aligned to first air vent inlet 506 is shown in FIG 5D, while a second flow controller 556, which is on the other side, is not shown. The flow controller 555 controls the air intake inside the device 100. It also regulates the existence of negative pressure for the operation of air flow controller 514.
FIGs. 5E -5H illustrates various embodiments of the first flow controller 555. The first flow controller 555 defines plurality of apertures, which may be circular, rectangular, or of any shape that serves the purpose of the disclosed subject matter. The number, size and spatial distribution of the apertures in the first flow controller 555 can be varied to regulate the draw effort and air volume intake inside the device 100 to better suit user requirements. Since it is a modular component, end of line cus-tomization can be easily achieved to cater to differentiation needs (relating to puffing pattern of consumers) of the diverse markets. The second flow controller 556 is similar to the first flow controller 555 and hence not repeated.
Moving on, referring to FIG. 5A again, the pogo pin connectors 504 are configured to supply power to the heating element 304 from the battery 502, on receiving the signal by the PCB 516 from the air sensor 514. The liquid from the chamber 312 is heated and vaporised by the heating element 304. The battery 502 to power the heating element 304 may be a rechargeable, for example but not limited to rechargeable lithium-ion battery. The  legs  390a and 390b (shown in Fig 10) of the heating element 304 are permanently connected to the connecting ports (208a and 208b) , which in turn gets connected to the pogo pin connectors 504 when the housing 200 and power source  assembly 500 are coupled. Further a slot is provided at a bottom portion of the power source assembly 500 for charging the battery 502.
Again, referring to FIG. 5A, a magnetic coupler 708 may be part of the power source assembly 500 towards the proximal end to the housing 200. The pogo pin connectors 504 may protrude outside the top surface of the magnetic coupler 708. The surface of the magnetic coupler 708 may be insulated to avoid short circuiting between the pogo pins 504. A corresponding magnet or metal strip (not shown) may be provided on the base 308 towards the side 200b of the housing 200. The magnetic coupler 708 and the metal strip engage, thereby coupling the housing 200 with the power source assembly 500. In an alternate embodiment, instead of magnetic coupling an alternate ar-rangement, such as a friction fit, may be adapted. It may be noted that the coupling between the cap 102 and the holder 104 may add to the coupling discussed here.
Referring to FIG. 5C, the power source assembly 500 further comprises one or more LEDs, which are provided on the printed circuit board 516. The LEDs are covered by the diffusor component 520. The diffusor component 520 is a translucent component configured to diffuse the light emitted from the LEDs. The light transmitted out of the diffuser component 520 comes out of the light indication slot 113 and can be used to visually indicate the device status to the user.
CONNECTING MEMBERS:
In an embodiment, the power source assembly 500 and the housing 200 are coupled via a first connecting member (600a, 700a) , and a second connecting member (600b, 700b) . Hence, the connecting members may establish fluidic communication between the first air flow path defined by the housing 200 and the second air flow path defined by the power source assembly 500. The first and the second connecting members (600a, 600b, 700a, 700b) comprises a flexible member. The flexible member may be deformable and reform-able to compensate for a gap that may be formed between the housing 200 and the power source assembly 500 when coupled. The various em-bodiments of the first connecting member are discussed below.
Referring to FIGs. 6A-6B and FIGs. 7A-7B, various embodiments of the first connecting member are illustrated. In FIGs. 6A-6B, the first connecting member 600a comprises a head 601a and a casing member 604a defining a through hole 606a. The head 601a comprises a conical portion 602a, wherein at least a portion of the head 601a is received by the casing member 604a. The head 601a rests on the flexible member, wherein the flexible member is a spring 608a. The position of the conical portion 602a of the head 601a relative to the casing member 604a may vary based on the extent to which the shape of the spring 608a has changed during coupling between the housing 200 and the power source assembly 500. The fluidic communication is es-tablished between the housing 200, and the power source assembly 500, when at least a  part of the conical portion 602a of the head 601a is received into the first air flow path.
In an embodiment, the device 100 comprises a second connecting member 600b (not shown in FIG) . The construction of the second connecting member 600b is similar to the first connecting 600a and hence not repeated.
Referring to FIGs. 7A -7B, an alternate embodiment of the first connecting member 700a is discussed. The first connecting member 700a comprises a projected portion 702a and a funnel shaped member 704a. The funnel shape member 704a forms the flexible member. The funnel shaped member 704a defines a first rim 705a and a second rim 706a. The diameter of the first rim 705a is larger than the diameter of the second rim 706a. In other words, the second rim 706a has smaller diameter compared to the first rim 705a to form the funnel shaped flexible member. The funnel shaped member 704a may be formed or elastomeric material such as silicon.
In an embodiment, the device 100 further comprises a second connecting member 700b (refer FIG. 7C-7D) . The construction of the second connecting member 700b is similar to the first connecting 700a and hence not repeated.
OVERALL DEVICE OPERATION:
In the foregoing description, the housing 200, the powers source assembly 500 and the connecting  members  600a, 600b, 700a and 700b were discussed in detail indi-vidually. We now move on to discuss the overall operation of the device 100 and the fluidic communication between the first air flow path of the housing 200 and the second air flow path of the power source assembly 500. The discussion henceforth would be based on the connecting  members  700a and 700b but would be equally ap-plicable for the alternate embodiment of connecting members 600a and 600b.
Referring to FIGs. 7C and 7D, the connecting  members  700a and 700b are mounted on the power source assembly 500 and are shown engaged to the magnetic coupler 708. The pogo pin connectors 504 are also protruding out of the surface of the magnetic coupler 708. Referring to FIG. 7E, the connecting  members  700a and 700b establishes the fluidic communication with the housing 200. The first rims 705a and 705b of the funnel shaped  members  704a and 704b covers the air inlets 204 and 206 (refer FIG. 2) of the housing 200. Since the funnel shaped  members  704a and 704b are flexible, they compensate for the coupling tolerances between the housing 200 and the power source assembly 500. Under the influence of suction from inside, the funnel shaped  members  704a and 704b further deforms to close any gap which could be existing.
FIG. 8 is a sectional view illustrating the coupling of the housing 200 with the power source assembly 500 (the cap 102 and the holder 104 are also shown) . The first connecting member 700a and the second connecting member 700b (connecting members) are configured to fluidically couple the housing 200 with the power source  assembly 500. The first outlet 510 and the second outlet 512 in the power source assembly 500 are configured to receive at least a portion of the first connecting member 700a, and the second connecting member 700b. The air that exits the power source assembly 500 via the  outlets  510 and 512 passes through the first connecting member 700a and the second connecting member 700b, and then enters into the housing 200 via the first air inlet 204 and the second air inlet 206 (refer FIG. 2) .
Referring to FIG. 8, in an embodiment, the first connecting member 700a establishes the fluidic communication between the first stream path 314a of the first air flow path and the third stream 802a path of the second air flow path. Further, the second connecting member 700b is configured to establishes the fluidic communication between the second stream path 314b of the first air flow path and the fourth stream path 802b of the second air flow path. The air passing from the third stream 802a enters the first stream 314a and the air passing from the fourth stream path 802b enters the second stream path 314b.
On coupling the housing 200 and the power source assembly 500, the projected portion 702a of the first connecting member 700a extends beyond the first rim 705a of the funnel shaped member 704a, wherein at least a part of the projected portion 702a is received into the first air flow path. This is not a necessary condition for fluidic connection but could be preferable from other considerations. The funnel shaped member 704a is usually soft and prone to mechanical damages and the projected portion 702a may serve as a protection for the funnel shaped member 704a during operating conditions. Further, the first rim 705a presses against the housing 200 and surrounds the first inlet 204 of the first air flow path (as discussed earlier as well in reference to FIG. 7D) . The attachment of the second connecting member 700b is similar to first connecting member 700a and hence not discussed again.
During puffing, a suction force is applied by the user from the opening 110, which is sequentially transmitted to the suction orifice 322, then to first air flow path, then to the connecting  members  700a and 700b, then to the second air path, then to the  air vent inlets  506 and 508, and lastly to the  holder inlets  111 and 112. During this fluidic com-munication, the connecting  members  700a and 700b compensates for the coupling gaps that may be formed between the housing 200 and the power source assembly 200 and hence, prevents any gain or loss of the air. The air flow sensor 514 in the power source assembly 500 senses negative pressure at the sensing portion and hence sends signal to the PCB 516 to send power to the heating member 304. In the complete fluid circuit, the throttle member 310 and the  flow controllers  555 and 556 regulates the overall pressure drop and air flow into the device. Further, the throttle member 310 regulates the negative pressure and air flow distribution at the vaporization zone 306; while the  flow controllers  555 and 556 regulates the negative pressure at the air flow sensor 514.  The modularity of the design with individual members as the throttle member 310 and the  flow controllers  555 and 556, provides necessary degrees of freedom for end of line customization of product for differentiation needs of the market.
Referring FIG. 8, in an embodiment, the first stream path 314a and the third stream path 802a are symmetrical to the second stream path 314b and the fourth stream path 802b, respectively, about the central axis 320 of the device 100. Further, the func-tionality of the first stream path 314a is same as the functionality of the second stream path 314b. Also, the functionality of the third stream path 802a is same as the func-tionality of the fourth stream path 802b. On coupling the housing 200 and the power source assembly 500, the fluidic communication is established between the first stream path 314a and the third stream path 802a, and between the second stream path 314b and the fourth stream path 802b. If the housing 200 is rotated by 180° about the central axis 320 and then coupled with the power source assembly 500, then fluidic commu-nication would be established between the first stream path 314a and the fourth stream path 802b, and between the second stream path 314b and the third stream path 802a. However, in both the cases (one as shown in FIG. 8 and another after 180° rotation of housing 200 about the central axis 320) , due to symmetry of position and equivalence in functionality between relevant components, the device can operate as per the method envisaged in this invention. Hence, such systems are conducive for “two-way coupling” arrangement.
Furthermore, the symmetrical arrangement of the first stream path 314a and the second stream path 314b within the base, allows the main stream path 318 to be centrally aligned to the central axis 320.
Though we have presented two streams each at the power source assembly 500 and the housing 200, it may be apparent to one with ordinary skill in the art that the invention presented above needs at least one stream each at the power source assembly 500 and the housing 200. In such a case, only one connecting member would be required. However, in such a case, the ability of the housing 200 and power source assembly 500 to couple in a “two-way coupling” arrangement could be achieved only if the air outlet from power source assembly 500, the corresponding air inlet into the housing 200 and the corresponding connecting member are centrally aligned to the central axis 320.
FIG. 9 illustrates an alternate embodiment of the housing 200 and the power source assembly 500, in accordance with an embodiment of the present invention.
Referring Fig. 9, the base 308 defines a first air flow channel 902 and a third air flow channel 906, which are isolated from each other. An air flow path, which may be referred to as the first air flow path may be defined in the housing 200. The first air flow path enables the air to flow from the inlet (such as the second air inlet 206) to the  suction orifice 322 (not shown in FIG) . The first air flow path comprises of the third air flow channel 906 and the main stream path 318 and it passes through the va-porization zone 306 and the throttle member 310. The vapour-air mixture is generated at the vaporization zone 306 and flows towards the suction orifice 322 through the main stream path 318.
Referring Fig. 9, the power source assembly 500 defines a second air flow channel 904 and a fourth air flow channel 908, which are isolated from each other. An air flow path, which may be referred to as the second air flow path may be defined in the power source assembly 500. The second air flow path allows the air entering the power source assembly 500 to exit the power source assembly 500, wherein after exit, the air enters the first air flow path defined in the housing 200. The air entering via the second air vent inlet 508 flows in the second air flow path (the fourth air flow channel 908) , and exits the second outlet 512, towards the third air flow channel 906, which is a part of the first air flow path. The sensor air flow channel 518 leading to the air flow sensor 514 is in fluidic communication with the second air flow path. The air from the sensor air flow channel 518 is also drawn into the second air flow path, which enables the air flow sensor 514 to detect the pressure drop. On detection of the pressure drop by the air senor 514, a signal is sent to the PCB 516 to deliver power to the heating element 304.
The second air flow path establishes fluidic communication with the first air flow path via the connecting member (such as the first connecting member 700a) . During puffing, a suction force is applied by the user from the opening 110, which is se-quentially transmitted to the suction orifice 322, then to the main stream path 318, then to the third air flow channel 906, then to the first connecting member 700a, then to the fourth air flow channel 908, then to the second air vent inlet 508 and lastly to the first holder inlet 112. Subsequently, air flows in a reverse manner i.e. entering the device 100 through the first holder inlet 112 and exiting the device 100 from the opening 110. The throttle member 310 and second flow controller 556 comes in the path of above-mentioned suction /air flow route. The sensor air flow channel 518 is in fluidic com-munication with the third air flow channel 906 and hence the air flow sensor 514 gets activated when a puff is taken.
Furthermore, the first air flow channel 902 is isolated from the first air flow path, and the second air flow channel 904 is isolated from the second air flow path. The air entering the power source assembly 500 from the first air vent inlet 506 flows towards the first air flow channel 902 from the second air flow channel 904. In addition, the pressure condition at the first air flow channel 902 can be completely isolated from the puffing action of the user i.e. the first air flow channel 902 can experience atmospheric air pressure (rather than suction pressure) even during puffing. The availability of air at  atmospheric pressure at the first air flow channel 902 at all times (including during puffing) may have several applications.
Referring FIG. 9, in an embodiment, the first air flow channel 902 and the third air flow channel 906 are functionally different within the housing 200. Further, the second air flow channel 904 and the fourth air flow channel 908 are functionally different within the power source assembly 500. As described above, for appropriate functioning, the fluidic communication needs to be established between the third air flow channel 906 and the fourth air flow channel 908 and between the first air flow channel 902 and second air flow channel 904. Hence, the coupling between the housing 200 and the power source assembly 500 needs to be done as per FIG. 9. If the housing 200 is rotated by 180° about the central axis 320 and then coupled with the power source assembly 500, then fluidic communication would be established between the third air flow channel 906 and the second air flow channel 904 and between the first air flow channel 902 and fourth air flow channel 908. In such as case, the device cannot function as the suction pressure provided by the user cannot trigger the air flow sensor 514. Hence, such systems are not conducive for “two-way coupling” ar-rangement and needs a “one-way coupling” arrangement, wherein the housing 200 and power source assembly 500 can couple in the right manner as explained above.
Furthermore, the third air flow channel 906 within the base 308 is spatially off-set from the central axis 320, which leads to one sided entry of air into the vaporization zone 306. An ordinary person skilled in art would appreciate that, ideally, the air flow condition of all sections of the wick 302 and heating element 304 inside the va-porization zone 306 should be similar. Hence, in order to compensate for the sideways entry of air inside the vaporization zone 306, the exit of vapour-air mixture outside the vaporization zone 306 has been taken from the main stream path 318 which is off-centred in an opposite manner.
ONE-WAY COUPLING ARRANGEMENT
After discussing the possibility of “two-way coupling” arrangement for embodiments as shown in FIG. 8 and the need of “one-way coupling” arrangement for alternate em-bodiments as shown in FIG. 9, now we explain a user-friendly way to achieve the “one-way coupling” arrangement along with the associated assembly features.
FIG. 13 shows a simple, user friendly, intuitive and full-proof “one-way coupling” arrangement of the housing 200 and the power source assembly 500. The cap 102 defines a first tapered edge 1302, which acts as a first coupling provision. The holder 104 defines a second tapered edge 1304. The second tapered edge 1304 acts as a second coupling provision of the holder 104 and aligns with the first tapered edge 1302 of the cap 104, when the holder 104 and the cap 102 are oriented in the single coupling direction. This type of coupling configuration may be preferred for embodiments  referred in FIG. 9.
Referring to FIG. 14, the housing 200 and the power source assembly 500 may be assembled in a “two-way coupling” arrangement. In other words, the housing 200 can be flipped (by 180 degrees) and still be coupled with the power source assembly 500 (holder 104) . This type of coupling configuration may be preferred for embodiments referred in FIG. 8.
Though user-friendly manner of achieving “one-way coupling” arrangement is shown in Fig 13, it is necessary that full-proof assembly process is used in manu-facturing to ensure the integrity of flow paths. We now move to the assembly of the various components of the housing 200 and the power source assembly 500.
Referring to FIG. 10 is a sectional view of the assembly of the base 308 with the enclosure 316, and the throttle 310. In an embodiment, the base 308 is configured to receive the enclosure 316 and the throttle 310. The throttle member 310 is provided below the wick 302, and the enclosure 316 is provided above the wick 302. The projected portion 404 extending from the base portion of the throttle 310 is received by the provision 307 provided at the top portion of the base 308. The throttle member 310 is provided below the wick 302, on assembly of the throttle member 310 with the base 308. Therefore, there is only one way on which the throttle 310 can be engaged to the base 308.
In FIG. 11, the side cut 316c provided at one edge of the second portion 316b of the enclosure 316 receives the projected portion 305 of the base 308 enabling the one-way engagement of the enclosure 316 with the base 308. FIG 11 also shows a base absorbent 399, which is designed to absorb and soak inadvertent spillage of liquid drops out of the vaporization zone 306.
Referring to FIG. 12, the cap 104 comprises a notch 1202 provided at the inner surface of the cap 104. The notch 1202 is received by a cavity 1204 defined in the housing main body 230. The cap 104 can only be assembled in one manner with the housing main body 230, when the notch 1202 and the cavity 1204 matches with each other. FIG. 12 also shows the cap absorbent 389, which is provided to absorb ac-cidental liquid particles or large aerosol particles that may be inadvertently present in the vapour-air mixture. Further, FIG. 12 also shows the proximal alignment of the suction orifice 322 and the opening 110.
Further, the base sub-assembly (FIG. 10) and the housing main body-cap sub-assembly (FIG. 12) mate with each other at the opening of the enclosure 316 towards the first end 200a of the housing 200. Since, both the sub-assemblies are off-centred at the mating point, the assembly of the base sub-assembly (FIG. 10) and the housing main body-cap sub-assembly (FIG. 12) is possible only in a particular manner (refer FIG. 9) .
Referring to FIG. 1D and FIG. 5C, the power source assembly 500 and the holder 104 needs to aligned such that the light indication slot 113 and diffuser component 520 are proximally aligned.
The present invention overcomes the drawbacks of undesirable and inconsistent draw effort and air-intake volume of the conventional systems by eliminating the in-consistent gap between the housing 200 and the power source assembly 500 through use of one or more flexible connecting members (700a, 700b, 600a, 600b) . Unlike con-ventional systems, the present invention provides a well-defined air flow and suction path, along with modular components (throttle member 310 and flow controllers 555, 556) to regulate air flow and pressure conditions of the overall device and the relevant sub-sections (vaporization zone and air-flow sensor) . The modular design provides substantial opportunities for economical customization of the device 100 at the end of manufacturing operation. Further, an alternate embodiment (FIG. 9) can provide the flexibility of achieving atmospheric pressure at least some section of the base 308 even when the housing 200 is subjected to suction pressure during puffing. The alternate embodiment (FIG. 9) requiring “one-way coupling” has been achieved in a full proof and user-friendly manner.
It shall be noted that the processes described above are described as sequence of steps; this was done solely for the sake of illustration. Accordingly, it is contemplated that some steps may be added, some steps may be omitted, the order of the steps may be re-arranged, or some steps may be performed simultaneously.
Although embodiments have been described with reference to specific example em-bodiments, it will be evident that various modifications and changes may be made to these embodiments without departing from the broader spirit and scope of the system and method described herein. Accordingly, the specification and drawings are to be regarded in an illustrative rather than a restrictive sense.
Many alterations and modifications of the present invention will no doubt become apparent to a person of ordinary skill in the art after having read the foregoing de-scription. It is to be understood that the phraseology or terminology employed herein is for the purpose of description and not of limitation. It is to be understood that the de-scription above contains many specifications; these should not be construed as limiting the scope of the invention but as merely providing illustrations of some of the personally preferred embodiments of this invention. Thus, the scope of the invention should be determined by the appended claims and their legal equivalents rather than by the examples given.

Claims (19)

  1. A device for vaporising liquid, the device comprising:
    a housing comprising a first air flow path enabling flow of air from entry of the air into the housing to exit of the air from the housing;
    a vaporization zone provided in the housing wherein the liquid is vaporized, the vaporization zone disposed in the first air flow path;
    a power source assembly operably coupled to the housing, the power source assembly comprising a second air flow path enabling entry of the air into the power source assembly to exit of the air from the power source assembly, for the air to eventually enter the first air flow path; and
    a first connecting member establishing fluidic communication between the first air flow path and the second air flow path, the first connecting member comprising a flexible member, which is deformable and reform-able, to compensate for gap between the housing and the power source assembly when coupled.
  2. The device as claimed in claim 1, wherein the flexible member is a spring, the first connecting member further comprising:
    a casing member defining a through hole; and
    a head comprising a conical portion; wherein,
    at least a portion of the head is received by the casing member;
    the head rests on the spring, wherein the position of the head relative to
    the casing member varies based on extent to which the shape of the spring has changed; and
    at least a portion of the conical portion of the head is received into the first air flow path.
  3. The device as claimed in claim 1, wherein the flexible member is a funnel shaped member defining a first rim of larger diameter and a second rim of the smaller diameter, wherein the first rim presses against the housing and surrounds the air inlet of the first air flow path.
  4. The device as claimed in claim 3, wherein the connecting member comprises a projected portion, wherein the projected portion extends beyond the first rim of the funnel shaped member, wherein at least a part of the projected portion is received into the first air flow path.
  5. The device as claimed in claim 1, wherein the power source assembly comprises:
    an air flow sensor; and
    a first sensor air flow channel in fluidic communication with the second air flow path;
    wherein,
    suction of air via the first air flow path causes air to be drawn from the second air flow path and the first sensor air flow channel; and
    suction of air from the first sensor air flow channel causes the air flow sensor to detect pressure drop.
  6. The device as claimed in claim 1, further comprising:
    a wick provided in the vaporization zone;
    a throttle member defining one or more apertures, the throttle member provided below the wick along the first air flow path, wherein the throttle member reduces the dimension of the first air flow path relative to the dimension of the air flow path at the wick to increase the negative static pressure relative to atmosphere at the vaporization zone.
  7. The device as claimed in claim 6, wherein the housing comprises:
    a chamber for holding the liquid;
    a base defining at least a portion of the first air flow path, wherein the base is positioned in between the chamber and the power source assembly, when coupled, wherein the throttle member is assembled to the base.
  8. The device as claimed in claim 1, further comprising:
    a second air vent inlet for entry of air into the power source assembly;
    a second flow controller located proximally to the second air vent inlet and defining plurality of apertures, wherein the second flow controller throttles the entry of air into the second air flow path.
  9. The device as claimed in claim 1, wherein,
    the first connecting member is mounted on the power source assembly.
  10. The device as claimed in claim 1, wherein,
    the power source assembly comprises a pair of pogo pin connectors;
    the housing comprises a heating element; and
    supply of power to the heating element is via the pogo pin connectors.
  11. The device as claimed in claim 1, further comprising:
    a chamber for holding the liquid; and
    a base defining at least a portion of the first air flow path, wherein the base is positioned in between the chamber and the power source assembly, when coupled;
    wherein,
    the first air flow path comprises a first stream path and a second stream  path;
    the first stream path and the second stream path are defined in the base; air flowing via the first stream path and the second stream path conflux within the base;
    the second air flow path comprises a third stream path and a fourth stream path;
    air passing via the third stream path enters the first stream path; and
    air passing via the fourth stream path enters the second stream path.
  12. The device as claimed in claim 11, further comprising a second connecting member, wherein,
    the first connecting member establishing fluidic communication between first stream path of the first air flow path and the third stream path of the second air flow path; and
    the second connecting member establishing fluidic communication between second stream path of the first air flow path and the fourth stream path of the second air flow path.
  13. The device as claimed in claim 12, wherein,
    the first stream path and the third stream path are symmetrical to the second stream path and the fourth stream path about a central axis;
    coupling the housing and the power source assembly by rotating one of the housing and the power source assembly by 180 degrees about the central axis results in establishing fluidic communication between the first stream path and the fourth stream path, and the second stream path and the third stream path.
  14. The device as claimed in claim 1, wherein,
    the housing comprises a chamber for holding the liquid;
    the first air flow path comprises a main stream flow path defined within
    the chamber between the vaporization zone and a suction orifice;
    the main stream flow path is offset about a central axis of the device.
  15. The device as claimed in claim 1, further comprising:
    a chamber for holding the liquid;
    a base defining at least a portion of the first air flow path, wherein the base is positioned in between the chamber and the power source assembly, when coupled, wherein the base comprises a first air flow channel; and
    a second air flow channel defined in the power source assembly;
    wherein,
    the first air flow channel is isolated from the first air flow path;
    the second air flow channel is isolated from the second air flow path; and
    air passing from the second air flow channel enters the first air flow channel.
  16. The device as claimed in claim 15, further comprising a second connecting member, wherein,
    the first connecting member establishing fluidic communication between the third air flow channel of the first air flow path and the fourth air flow channel of the second air flow path; and
    the second connecting member establishing fluidic communication between first air flow channel and the second air flow channel.
  17. The device as claimed in claim 1, wherein the housing and the power source assembly are configured to be assembled with the housing and the power source assembly being oriented in only a one-way coupling direction.
  18. The device as claimed in claim 1, further comprising
    a cap;
    a holder receiving the power source assembly completely and the housing partly;
    wherein either the housing or the cap or both comprise a first coupling provision and the holder comprises a second coupling provision,
    wherein the first coupling provision is configured to be coupled with the second coupling provision only when the housing and the power source assembly are oriented in the one-way coupling direction.
  19. The device as claimed in claim 18, wherein,
    the cap defines a first tapered edge;
    the first tapered edge is the first coupling provision;
    the holder defines a second tapered edge ;
    the second tapered edge is the second coupling provision; and
    the first tapered edge aligns with the second tapered edge when the holder and the cap are oriented in the one-way coupling direction.
PCT/CN2019/085268 2019-04-30 2019-04-30 Device for vaporizing liquid WO2020220293A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP19926908.5A EP3962307A1 (en) 2019-04-30 2019-04-30 Device for vaporizing liquid
PCT/CN2019/085268 WO2020220293A1 (en) 2019-04-30 2019-04-30 Device for vaporizing liquid
CN201980095658.6A CN113795163A (en) 2019-04-30 2019-04-30 Device for vaporizing a liquid
US17/605,228 US20220175026A1 (en) 2019-04-30 2019-04-30 Device for vaporizing liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/085268 WO2020220293A1 (en) 2019-04-30 2019-04-30 Device for vaporizing liquid

Publications (1)

Publication Number Publication Date
WO2020220293A1 true WO2020220293A1 (en) 2020-11-05

Family

ID=73029575

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/085268 WO2020220293A1 (en) 2019-04-30 2019-04-30 Device for vaporizing liquid

Country Status (4)

Country Link
US (1) US20220175026A1 (en)
EP (1) EP3962307A1 (en)
CN (1) CN113795163A (en)
WO (1) WO2020220293A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022011680A1 (en) * 2020-07-17 2022-01-20 昂纳自动化技术(深圳)有限公司 One-piece cigarette
WO2023041485A1 (en) * 2021-09-17 2023-03-23 Nerudia Limited A smoking substitute device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11660405B2 (en) * 2018-06-20 2023-05-30 Shenzhen First Union Technology Co., Ltd. Electronic cigarette and method thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203482897U (en) * 2013-08-22 2014-03-19 刘秋明 Electronic cigarette
US20170231279A1 (en) * 2016-02-12 2017-08-17 Zipline Innovations, LLC Convenient smoking device
CN107072322A (en) * 2017-02-06 2017-08-18 东莞市爱华实业有限公司 A kind of electronic cigarette
CN108968159A (en) * 2018-09-13 2018-12-11 深圳麦克韦尔股份有限公司 Electronic cigarette and its atomizer and battery component
CN208370946U (en) * 2018-06-28 2019-01-15 深圳市美深威科技有限公司 Multi-chamber flow-guiding type atomizer
CN208510076U (en) * 2018-05-29 2019-02-19 深圳麦克韦尔股份有限公司 Electronic cigarette
KR20190000538U (en) * 2017-08-21 2019-03-04 이병준 Side air suction type electronic cigarette
CN109497616A (en) * 2018-10-27 2019-03-22 深圳市斯达斯科技有限公司 A kind of electronic cigarette of atomizer tobacco tar and heat generating core separated structure

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101282900B1 (en) * 2011-04-05 2013-07-05 이영인 Structure for Keeping Nicotine Solution from Leaking in Electric Cigarette and Electric Cigarette with the Same
KR101446466B1 (en) * 2013-10-11 2014-10-06 김한기 Electrical Cigarette Having Improved Structure for Connection of Battery Module
GB2542376A (en) * 2015-09-16 2017-03-22 Nicoventures Holdings Ltd Aerosol provision system with variable airflow
GB201605101D0 (en) * 2016-03-24 2016-05-11 Nicoventures Holdings Ltd Electronic vapour provision system
US9877521B1 (en) * 2017-02-28 2018-01-30 Vapor Slide LLC Vaporizer, vaporizer cartridge, vaporizer assembly, and method of use thereof
IL263217B (en) * 2017-11-24 2022-06-01 Juul Labs Inc Puff sensing and power circuitry for vaporizer devices
GB201807156D0 (en) * 2018-05-01 2018-06-13 Nerudia Ltd Smoking substitute device
US11065817B2 (en) * 2018-08-14 2021-07-20 Massivit 3D Printing Technologies Ltd. Extrusion orifice cleaning
CN111343877B (en) * 2018-08-17 2021-09-28 深圳雾芯科技有限公司 Atomization device and method thereof
US11588287B2 (en) * 2018-10-12 2023-02-21 Rai Strategic Holdings, Inc. Aerosol delivery device with improved connectivity, airflow, and aerosol paths

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203482897U (en) * 2013-08-22 2014-03-19 刘秋明 Electronic cigarette
US20170231279A1 (en) * 2016-02-12 2017-08-17 Zipline Innovations, LLC Convenient smoking device
CN107072322A (en) * 2017-02-06 2017-08-18 东莞市爱华实业有限公司 A kind of electronic cigarette
KR20190000538U (en) * 2017-08-21 2019-03-04 이병준 Side air suction type electronic cigarette
CN208510076U (en) * 2018-05-29 2019-02-19 深圳麦克韦尔股份有限公司 Electronic cigarette
CN208370946U (en) * 2018-06-28 2019-01-15 深圳市美深威科技有限公司 Multi-chamber flow-guiding type atomizer
CN108968159A (en) * 2018-09-13 2018-12-11 深圳麦克韦尔股份有限公司 Electronic cigarette and its atomizer and battery component
CN109497616A (en) * 2018-10-27 2019-03-22 深圳市斯达斯科技有限公司 A kind of electronic cigarette of atomizer tobacco tar and heat generating core separated structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022011680A1 (en) * 2020-07-17 2022-01-20 昂纳自动化技术(深圳)有限公司 One-piece cigarette
WO2023041485A1 (en) * 2021-09-17 2023-03-23 Nerudia Limited A smoking substitute device

Also Published As

Publication number Publication date
US20220175026A1 (en) 2022-06-09
CN113795163A (en) 2021-12-14
EP3962307A1 (en) 2022-03-09

Similar Documents

Publication Publication Date Title
US20210386122A1 (en) Electronic inhalation device with suspension function
US11805816B2 (en) Electronic cigarette
WO2020220293A1 (en) Device for vaporizing liquid
JP7159200B2 (en) Aerosol delivery device containing a ceramic core element
CN110167367B (en) Aerosol generating device
CN106998810B (en) Smoke generating device
CN113163865A (en) Aerosol delivery device with improved connectivity, airflow, and aerosol path
EP3061358A1 (en) Electronic smoking device with an air pre-heating element
US20180020730A1 (en) Device for storing and vaporizing liquid
KR20240017419A (en) Aerosol delivery devices including a selector and related methods
CN113287794A (en) Electronic atomization device
KR20230019010A (en) Seasoning component and electronic atomization device
KR20220108035A (en) electronic cigarette
CN110430771B (en) Aerosol generating device
KR102546288B1 (en) Aerosol generating device
RU2799594C1 (en) Electronic cigarette atomizer and electronic cigarette atomizing assembly

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19926908

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019926908

Country of ref document: EP

Effective date: 20211130