US20200321361A1 - Electronic device - Google Patents

Electronic device Download PDF

Info

Publication number
US20200321361A1
US20200321361A1 US16/822,047 US202016822047A US2020321361A1 US 20200321361 A1 US20200321361 A1 US 20200321361A1 US 202016822047 A US202016822047 A US 202016822047A US 2020321361 A1 US2020321361 A1 US 2020321361A1
Authority
US
United States
Prior art keywords
bending part
electronic device
cutting structure
region
active region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US16/822,047
Inventor
Yen-Chung Chen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hannstar Display Nanjing Corp
Hannstar Display Corp
Original Assignee
Hannstar Display Nanjing Corp
Hannstar Display Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hannstar Display Nanjing Corp, Hannstar Display Corp filed Critical Hannstar Display Nanjing Corp
Assigned to HANNSTAR DISPLAY (NANJING) CORPORATION, HANNSTAR DISPLAY CORPORATION reassignment HANNSTAR DISPLAY (NANJING) CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CHEN, YEN-CHUNG
Publication of US20200321361A1 publication Critical patent/US20200321361A1/en
Priority to US17/876,593 priority Critical patent/US11894385B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1218Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition or structure of the substrate
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/552Protection against radiation, e.g. light or electromagnetic waves
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/124Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or layout of the wiring layers specially adapted to the circuit arrangement, e.g. scanning lines in LCD pixel circuits

Definitions

  • the present invention relates to an electronic device, and more particularly to an electronic device having a bending part in a peripheral region.
  • the electronic device such as a display device or a touch display device has the characteristics of thin appearance, light weight, low power consumption and no radiation pollution, it has been widely used in many kinds of electronic products, such as notebooks, smart phones, watches, and display devices in vehicles, for transmitting and displaying information more conveniently.
  • border of the electronic device such as the region of the display device which the peripheral circuit and/or peripheral chip is disposed in
  • the reliability of such electronic device manufactured by the conventional techniques is low (for example, the trace of the electronic device may be broken to be an open circuit), or the degree of reducing the border by the conventional techniques is insufficient.
  • the present invention provides an electronic device, wherein a peripheral region of a flexible substrate has a bending part and a cutting structure adjacent to the bending part, such that the peripheral region of the flexible substrate can be bended to reduce the border and downsized the electronic device under the condition that the reliability of the electronic device is not affected.
  • An embodiment of the present invention provides an electronic device including a flexible substrate and a peripheral trace.
  • the flexible substrate includes an active region and a peripheral region situated outside of the active region.
  • the flexible substrate includes a first bending part, a second bending part and a first cutting structure in the peripheral region.
  • the first bending part is disposed on a first side region of the peripheral region and extending along a first direction.
  • the second bending part is disposed on a second side region of the peripheral region and extending along a second direction not parallel to the first direction, and the second side region is adjacent to the first side region.
  • the first cutting structure is adjacent to the first bending part and the second bending part.
  • the peripheral trace is disposed on the flexible substrate and disposed between the active region and the first cutting structure.
  • the peripheral region of the present invention is bended backward to the back of the active region to reduce the border and size of the electronic device by bending ways.
  • the flexible substrate has the cutting structures in the peripheral region which can determine the extending lines and separate the bending parts, when the bending ways are proceeded on the peripheral region, at least one of the bending parts of the peripheral region may be bended according to the corresponding extending line, such that the main bending portions having the peripheral traces and/or the electronic components are only bended one time, so as to enhance the yield of the peripheral traces and further improve qualities of the electronic device.
  • FIG. 1 is a schematic diagram showing a top view of an electronic device which is not bended according to a first embodiment of the present invention.
  • FIG. 2 is a schematic diagram showing a cross-sectional view of the electronic device which is not bended according to the first embodiment of the present invention.
  • FIG. 3 is an enlarged diagram of a corner in FIG. 1 .
  • FIG. 4A to FIG. 4C are schematic diagrams respectively showing top views of a bending process of the electronic device according to the first embodiment of the present invention.
  • FIG. 5 is a schematic diagram showing a cross-sectional view taken along a cross-sectional line A-A′ in FIG. 4C .
  • FIG. 6A is a schematic diagram showing a cross-sectional view taken along a cross-sectional line B-B′ in FIG. 4C .
  • FIG. 6B is a schematic diagram showing a cross-sectional view taken along a cross-sectional line C-C′ in FIG. 4C .
  • FIG. 7 is a schematic diagram showing a top view of an electronic device which is not bended according to a second embodiment of the present invention.
  • FIG. 8 is a schematic diagram showing a top view of the bended electronic device according to the second embodiment of the present invention.
  • FIG. 9A is a schematic diagram showing a cross-sectional view taken along a cross-sectional line D-D′ in FIG. 8 .
  • FIG. 9B is a schematic diagram showing a cross-sectional view taken along a cross-sectional line E-E′ in FIG. 8 .
  • FIG. 10 is a schematic diagram showing a top view of an electronic device which is not bended according to a third embodiment of the present invention.
  • FIG. 11 is a schematic diagram showing a top view of an electronic device which is not bended according to a fourth embodiment of the present invention.
  • back refers to the relative relationship in a top view direction. For instance, if one structure is situated at the rear of one film, the film is upper than the structure in the top view direction.
  • FIG. 1 is a schematic diagram showing a top view of an electronic device which is not bended according to a first embodiment of the present invention
  • FIG. 2 is a schematic diagram showing a cross-sectional view of the electronic device which is not bended according to the first embodiment of the present invention
  • FIG. 3 is an enlarged diagram of a corner in FIG. 1 .
  • the electronic device 100 may be such as a flexible display device (e.g.
  • the electronic device 100 may be an inflexible electronic device. As shown in FIG. 1 to FIG. 3 , the electronic device 100 includes a flexible substrate 110 and an electronic component layer 120 .
  • the flexible substrate 110 is configured to be served as a substrate of the electronic device 100 , and has an active region AR and a peripheral region PR situated outside of the active region AR.
  • the active region AR may be served as a display region for displaying images, and components, structures and films configured to assist the display region in displaying images may be situated in the peripheral region PR.
  • the peripheral region PR surrounds the active region AR.
  • the peripheral region PR may include a first side region PS 1 , a second side region PS 2 which is adjacent to the first side region PS 1 , a third side region PS 3 which is adjacent to the second side region PS 2 and a fourth side region PS 4 which is adjacent to the first side region PS 1 and the third side region PS 3 , and the side regions PS 1 -PS 4 are combined to surround the active region AR, but not limited thereto.
  • the active region AR may have a first edge S 1 facing the first side region PS 1 , a second edge S 2 facing the second side region PS 2 , a third edge S 3 facing the third side region PS 3 and a fourth edge S 4 facing the fourth side region PS 4 , but not limited thereto.
  • the first side region PS 1 , the second side region PS 2 , the third side region PS 3 and the fourth side region PS 4 are respectively disposed on a side of different edges of the active region AR.
  • the first side region PS 1 is a region on the left side of the first edge S 1 of the active region AR (i.e. a region of the peripheral region PR on the left side of the active region AR in FIG.
  • the second side region PS 2 is a region on the lower side of the second edge S 2 of the active region AR (i.e. a region of the peripheral region PR on the lower side of the active region AR in FIG. 1 )
  • the third side region PS 3 is a region on the right side of the third edge S 3 of the active region AR (i.e. a region of the peripheral region PR on the right side of the active region AR in FIG. 1 )
  • the fourth side region PS 4 is a region on the upper side of the fourth edge S 4 of the active region AR (i.e. a region of the peripheral region PR on the upper side of the active region AR in FIG. 1 ).
  • the electronic device 100 and the active region AR may be any other suitable shape.
  • the electronic device 100 of this embodiment is rectangular, such that the first side region PS 1 and the third side region PS 3 extend along a first direction D 1 , the second side region PS 2 and the fourth side region PS 4 extend along a second direction D 2 , the first edge S 1 and the third edge S 3 are parallel to the first direction D 1 , and the second edge S 2 and the fourth edge S 4 are parallel to the second direction D 2 .
  • the first direction D 1 is not parallel to the second direction D 2 (e.g. the first direction D 1 is perpendicular to the second direction D 2 ), but not limited thereto.
  • the flexible substrate 110 may include such as polyimide (PI), polyethylene terephthalate (PET) or any other suitable flexible material.
  • the electronic component layer 120 is disposed on the flexible substrate 110 , and includes a plurality of electronic components 122 .
  • the electronic components 122 may include active components, passive components or any other suitable electronic components.
  • the electronic components 122 may be correspondingly altered based on the type of the electronic device 100 , such that the electronic device 100 may have a function of displaying images, a function of touch sensing and/or any other suitable function.
  • the electronic component layer 120 in the active region AR may include the active components such as thin film transistors and light emitting components (e.g.
  • the electronic component layer 120 in the peripheral region PR may include the peripheral traces, driving component(s) (such as a gate driving circuit, a source driving circuit and/or an integrated circuit (IC)) and/or any other suitable components.
  • the driving component may be electrically connected to the active component in the active region AR or another driving component through the peripheral trace. Note that, in FIG. 1 to FIG. 3 , the range of the active region AR is only shown in FIG. 1 , one driving component 124 is exemplarily shown in the peripheral region PR of FIG. 1 to serve as one of the electronic components of the peripheral region PR (in FIG.
  • the driving component 124 is disposed in the second side region PS 2 for example), the electronic components 122 of the electronic component layer 120 in FIG. 2 exemplarily show the active components in the active region AR and one driving component 124 in the peripheral region PR, and FIG. 3 enlarges the lower-left corner shown in FIG. 1 and shows the peripheral traces 128 and the driving components 124 , 126 of the electronic component layer 120 , so as to make the figures clear.
  • the driving components 124 may be an integrated circuit for example, and the driving components 126 may be a gate driving circuit for example.
  • the number of the driving components 124 and the number of the driving components 126 are not limited by FIG. 1 and FIG. 2 .
  • the electronic device 100 may optionally include any other required structure(s) and/or any other required film(s), such as a color filter layer, a light shielding layer, an alignment layer, a common electrode layer, a pixel electrode layer, a display medium layer, a polarizer and/or an opposite substrate.
  • the electronic device 100 may further include a peripheral light shielding layer 130 disposed in the peripheral region PR and configured to shield the peripheral region PR for determining the range of the active region AR.
  • the active region AR may be surrounded by the peripheral light shielding layer 130 according to a top view direction D 3 , and the peripheral light shielding layer 130 may be disposed on the flexible substrate 110 , but not limited thereto.
  • the peripheral light shielding layer 130 may be disposed on the opposite substrate opposite to the flexible substrate 110 . Moreover, in another embodiment, since the almost entire peripheral region PR may be bended backward to the back of the active region AR (that is, the electronic component layer 120 disposed in the peripheral region PR may be situated at the back of the active region AR almost after being bended), there is no need to deploy a peripheral light shielding layer, so as to advantage the manufacturing process and the cost.
  • the flexible substrate 110 may have at least one cutting structure and at least two bending parts. Each cutting structure is situated between two bending parts, so as to separate two bending parts from each other and determine the region of the adjacent bending parts.
  • the bending part is configured to be bended towards the backside of the active region AR.
  • the flexible substrate 110 may have a first bending part BP 1 and a second bending part BP 2 in the peripheral region PR, and may optionally have a third bending part BP 3 and a fourth bending part BP 4 in the peripheral region PR.
  • the first bending part BP 1 may be disposed in the first side region PS 1
  • the second bending part BP 2 may be disposed in the second side region PS 2
  • the third bending part BP 3 may be disposed in the third side region PS 3
  • the fourth bending part BP 4 may be disposed in the fourth side region PS 4
  • the first bending part BP 1 and the third bending part BP 3 may extend along the first direction D 1
  • the second bending part BP 2 and the fourth bending part BP 4 may extend along the second direction D 2 , but not limited thereto.
  • the electronic device 100 having different shapes may have the bending parts of corresponding designs.
  • the flexible substrate 110 has the first cutting structure CS 1 in the peripheral region PR, and the first cutting structure CS 1 is adjacent to the first bending part BP 1 and the second bending part BP 2 . That is to say, the first bending part BP 1 and the second bending part BP 2 is divided by the first cutting structure CS 1 .
  • the second bending part BP 2 shown in FIG. 1 is adjacent to the first cutting structure CS 1 in the second direction D 2 ; that is to say, an end of the second bending part BP 2 in the second direction D 2 is separated from the first bending part BP 1 by the first cutting structure CS 1 , but not limited thereto.
  • the flexible substrate 110 may optionally have a second cutting structure CS 2 , a third cutting structure CS 3 and a fourth cutting structure CS 4 in the peripheral region PR, wherein the second cutting structure CS 2 is adjacent to the second bending part BP 2 and the third bending part BP 3 , the third cutting structure CS 3 is adjacent to the third bending part BP 3 and the fourth bending part BP 4 , and the fourth cutting structure CS 4 is adjacent to the fourth bending part BP 4 and the first bending part BP 1 .
  • the second cutting structure CS 2 is adjacent to the second bending part BP 2 and the third bending part BP 3
  • the third cutting structure CS 3 is adjacent to the third bending part BP 3 and the fourth bending part BP 4
  • the fourth cutting structure CS 4 is adjacent to the fourth bending part BP 4 and the first bending part BP 1 .
  • the second bending part BP 2 is situated between the first cutting structure CS 1 and the second cutting structure CS 2 in the second direction D 2
  • the fourth bending part BP 4 is situated between the third cutting structure CS 3 and the fourth cutting structure CS 4 in the second direction D 2
  • the first cutting structure CS 1 corresponds to the fourth cutting structure CS 4 in the first direction D 1
  • the second cutting structure CS 2 corresponds to the third cutting structure CS 3 in the first direction D 1 , but not limited thereto.
  • the positions of the bending parts may be designed based on the shape and/or the bending requirement of the electronic device 100 .
  • a top view shape of the cutting structure may be for example a sector, a triangle, a rectangle, a polygon, a shape having a curved edge (the curved edge may be for example a U-shaped edge, an elliptical arc, and a circular arc and so on) or any other suitable shape; or, the cutting structure may include a cutting line including a straight line and/or a curved line.
  • each of the top view shapes of the first cutting structure CS 1 , the second cutting structure CS 2 , the third cutting structure CS 3 and the fourth cutting structure CS 4 has the U-shaped edge, and the first cutting structure CS 1 , the second cutting structure CS 2 , the third cutting structure CS 3 and the fourth cutting structure CS 4 respectively have a first endpoint EP 1 , a second endpoint EP 2 , a third endpoint EP 3 and a fourth endpoint EP 4 at their deepest position (as shown in FIG. 1 ), but not limited thereto.
  • the top view shapes of the cutting structures may be the same or different.
  • the process may cut from the edge of the flexible substrate 110 to the endpoint of the cutting structure substantially along the first direction D 1 , but not limited thereto.
  • the cutting structure may be formed by cutting substantially along the second direction D 2 or any other suitable direction.
  • a straight line passing through the first endpoint EP 1 and the fourth endpoint EP 4 is defined as a first extending line EL 1
  • a straight line passing through the first endpoint EP 1 and the second endpoint EP 2 is defined as a second extending line EL 2
  • a straight line passing through the second endpoint EP 2 and the third endpoint EP 3 is defined as a third extending line EL 3
  • a straight line passing through the third endpoint EP 3 and the fourth endpoint EP 4 is defined as a fourth extending line EL 4 , wherein each extending lines EL 1 -EL 4 is a virtual line.
  • first extending line EL 1 and the third extending line EL 3 are parallel to the first direction D 1
  • second extending line EL 2 and the fourth extending line EL 4 are parallel to the second direction D 2 , but not limited thereto. Note that, in FIG.
  • the first bending part BP 1 is a portion of the flexible substrate 110 situated on the left side of the first extending line EL 1
  • the second bending part BP 2 is a portion of the flexible substrate 110 situated on the lower side of the second extending line EL 2 and between the first cutting structure CS 1 and the second cutting structure CS 2
  • the third bending part BP 3 is a portion of the flexible substrate 110 situated on the right side of the third extending line EL 3
  • the fourth bending part BP 4 is a portion of the flexible substrate 110 situated on the upper side of the fourth extending line EL 4 and between the third cutting structure CS 3 and the fourth cutting structure CS 4 , but the present invention is not limited thereto.
  • the first endpoint EP 1 and the fourth endpoint EP 4 may be aligned with the first edge S 1 of the active region AR in the first direction D 1
  • the second endpoint EP 2 and the third endpoint EP 3 may be aligned with the third edge S 3 of the active region AR in the first direction D 1
  • the third endpoint EP 3 and the fourth endpoint EP 4 may be aligned with the fourth edge S 4 of the active region AR in the second direction D 2 . Therefore, the first extending line EL 1 is aligned with the first edge S 1
  • the third extending line EL 3 is aligned with the third edge S 3
  • the fourth extending line EL 4 is aligned with the fourth edge S 4 .
  • the first bending part BP 1 , the third bending part BP 3 and the fourth bending part BP 4 are directly adjacent to the active region AR.
  • the first endpoint EP 1 and the second endpoint EP 2 are not aligned with the second edge S 2 of the active region AR in the second direction D 2 , a distance exists between the second extending line EL 2 and the second edge S 2 , such that a distance exists between the second bending part BP 2 and the active region AR, but the present invention is not limited thereto.
  • the disposing relation between the endpoint of the cutting structure and the edge of the active region AR may be designed based on requirements.
  • peripheral traces 128 are disposed in this distance.
  • the peripheral traces 128 are disposed between the active region AR and the cutting structures.
  • the peripheral traces 128 are disposed between the active region AR and the first cutting structure CS 1 , so as to be electrically connected between two driving components 124 , 126 .
  • a bending part may include a main bending portion and/or a corner portion, wherein the corner portion is situated at a corner of the flexible substrate 110 .
  • the first bending part BP 1 may include a first main bending portion MBP 1 , a first corner portion CR 1 and a fourth corner portion CR 4
  • the third bending part BP 3 may include a third main bending portion MBP 3 , a second corner portion CR 2 and a third corner portion CR 3
  • the second bending part BP 2 may include a second main bending portion MBP 2
  • the fourth bending part BP 4 may include a fourth main bending portion MBP 4 , but not limited thereto.
  • each of the bending parts may only include the main bending portion. In another embodiment, each of the bending parts may include the main bending portion and one corner portion. As shown in FIG. 1 , when the flexible substrate 110 is not bended, the main bending portion and the corner portion may be divided by the aforementioned extending lines.
  • the first main bending portion MBP 1 of the first bending part BP 1 and the third main bending portion MBP 3 of the third bending part BP 3 are situated between the second extending line EL 2 and the fourth extending line EL 4
  • the first corner portion CR 1 is situated on a side of the second extending line EL 2 opposite to the first main bending portion MBP 1
  • the second corner portion CR 2 is situated on a side of the second extending line EL 2 opposite to the third main bending portion MBP 3
  • the third corner portion CR 3 is situated on a side of the fourth extending line EL 4 opposite to the third main bending portion MBP 3
  • the fourth corner portion CR 4 is situated on a side of the fourth extending line EL 4 opposite to the first main bending portion MBP 1 .
  • first cutting structure CS 1 is disposed between the first corner portion CR 1 of the first bending part BP 1 and the second bending part BP 2
  • second cutting structure CS 2 is disposed between the second corner portion CR 2 of the third bending part BP 3 and the second bending part BP 2
  • third cutting structure CS 3 is disposed between the third corner portion CR 3 of the third bending part BP 3 and the fourth bending part BP 4
  • fourth cutting structure CS 4 is disposed between the fourth corner portion CR 4 of the first bending part BP 1 and the fourth bending part BP 4 .
  • Metal conductive pattern(s) or metal conductive structure(s) e.g.
  • the corner portion formed of the electronic component layer 120 ) disposed in the corner portion may be designed based on requirements. In some cases, the peripheral traces 128 are not disposed in the corner portion.
  • the corner portion may have a label or a mark configured to label the model number of the electronic device 100 or be an alignment mark (e.g. the mark 129 shown in FIG. 3 ), but not limited thereto. In another embodiment, the corner portion may neither have any metal conductive pattern nor metal conductive structure.
  • FIG. 4A to FIG. 4C are schematic diagrams respectively showing top views of a bending process of the electronic device according to the first embodiment of the present invention
  • FIG. 5 is a schematic diagram showing a cross-sectional view taken along a cross-sectional line A-A′ in FIG. 4C
  • FIG. 6A is a schematic diagram showing a cross-sectional view taken along a cross-sectional line B-B′ in FIG. 4C
  • FIG. 6B is a schematic diagram showing a cross-sectional view taken along a cross-sectional line C-C′ in FIG. 4C , wherein FIG. 4A to FIG. 4C show the electronic device 100 shown in FIG.
  • FIG. 4C also shows the electronic device 100 of the first embodiment in a completed bending status.
  • the second bending part BP 2 and the fourth bending part BP 4 are bended towards the active region AR and are bended backward to the back of the active region AR of the flexible substrate 110 (as shown in FIG. 4A );
  • the first bending part BP 1 and the third bending part BP 3 are bended towards the active region AR and are bended backward to the back of the active region AR of the flexible substrate 110 (as shown in FIG.
  • the first corner portion CR 1 , the second corner portion CR 2 , the third corner portion CR 3 and the fourth corner portion CR 4 are bended backward to the back of the active region AR of the flexible substrate 110 (as shown in FIG. 4C ), so as to complete the bending process of the electronic device 100 , but the bending sequence of the present invention is not limited thereto.
  • the bending process may be adjusted according to the design of the cutting structures and the bending requirements.
  • the first bending part BP 1 is bended towards backside of the active region AR according to the first extending line EL 1 parallel to the first direction D 1 (i.e. bending direction B 1 of FIG.
  • the second bending part BP 2 is bended towards backside of the active region AR according to the second extending line EL 2 parallel to the second direction D 2 (the bending direction B 2 of FIG. 1 )
  • the third bending part BP 3 is bended towards backside of the active region AR according to the third extending line EL 3 parallel to the first direction D 1 (the bending direction B 3 of FIG. 1 )
  • the fourth bending part BP 4 is bended towards backside of the active region AR according to the fourth extending line EL 4 parallel to the second direction D 2 (the bending direction B 4 of FIG. 1 ).
  • the first corner portion CR 1 and the second corner portion CR 2 are bended towards backside of the active region AR according to the second extending line EL 2 parallel to the second direction D 2
  • the third corner portion CR 3 and the fourth corner portion CR 4 are bended towards backside of the active region AR according to the fourth extending line EL 4 parallel to the second direction D 2 .
  • the first corner portion CR 1 may overlap the first main bending portion MBP 1 and the second main bending portion MBP 2 in the top view direction D 3
  • the second corner portion CR 2 may overlap the second main bending portion MBP 2 and the third main bending portion MBP 3 in the top view direction D 3
  • the third corner portion CR 3 may overlap the third main bending portion MBP 3 and the fourth main bending portion MBP 4 in the top view direction D 3
  • the fourth corner portion CR 4 may overlap the first main bending portion MBP 1 and the fourth main bending portion MBP 4 in the top view direction D 3 .
  • FIG. 4C , FIG. 6A and FIG. 6B according to the aforementioned bending sequence, at the upper-left corner of the flexible substrate 110 of the bended electronic device 100 , the active region AR, the fourth main bending portion MBP 4 , the first main bending portion MBP 1 and the fourth corner portion CR 4 are arranged in sequence from upper to lower (i.e. along the top view direction D 3 ), but not limited thereto.
  • This sequence (from upper to lower) may be changed based on the bending sequence of the electronic device 100 .
  • first bending part BP 1 and the third bending part BP 3 are bended firstly, and then the second bending part BP 2 , the first corner portion CR 1 , the second corner portion CR 2 , the fourth bending part BP 4 , the third corner portion CR 3 and the fourth corner portion CR 4 are bended, at the upper-left corner of the flexible substrate 110 of the bended electronic device 100 , the active region AR, the first main bending portion MBP 1 , the fourth corner portion CR 4 and the fourth main bending portion MBP 4 are arranged in sequence from upper to lower (i.e. along the top view direction D 3 ).
  • a distance between two of the portions of the flexible substrate 110 is just one kind of example in FIG. 5 , FIG. 6A and FIG. 6B .
  • two of the portions of the flexible substrate 110 may contact with each other.
  • the first main bending portion MBP 1 , the second main bending portion MBP 2 , the third main bending portion MBP 3 and the fourth main bending portion MBP 4 may be bended backward to the back of the active region AR of the flexible substrate 110 by bending one time, and each of the main bending portions MBP 1 -MBP 4 has a different bending direction with respect to the active region AR.
  • the first corner portion CR 1 , the second corner portion CR 2 , the third corner portion CR 3 and the fourth corner portion CR 4 may be bended backward to the back of the active region AR of the flexible substrate 110 by bending two times. Accordingly, in the aforementioned bending process, the peripheral region PR is bended backward to the back of the active region AR, so as to reduce the border of the electronic device 100 and downsize the electronic device 100 .
  • the border represents a region between the active region AR and outer edges (the outer edge lines ED shown in FIG. 4C to FIG. 6B ) of the electronic device 100 after bending the electronic device 100 .
  • the traces and the electronic components 122 may be damaged or broken after the traces and the electronic components 122 are bended at least two times (e.g. a stress applied on the traces or the electronic components 122 is greater due to multiple bends, so as to make them be damaged or broken), such that the yield of the electronic device is influenced.
  • each of the bending parts in the peripheral region PR may be bended according to the extending lines when bending the peripheral region PR, such that the main bending portions having the peripheral trace 128 and/or the electronic components 122 are only bended merely one time, so as to enhance the yield of the peripheral traces 128 and improve qualities of the electronic device 100 .
  • the first extending line EL 1 , the third extending line EL 3 and the fourth extending line EL 4 are respectively aligned with the first edge S 1 , the third edge S 3 and the fourth edge S 4 of the active region AR, such that the first main bending portion MBP 1 of the first bending part BP 1 , the third main bending portion MBP 3 of the third bending part BP 3 and the fourth main bending portion MBP 4 of the fourth bending part BP 4 are directly adjacent to the active region AR.
  • the first side region PS 1 , the third side region PS 3 and the fourth side region PS 4 are totally bended backward to the back of the active region AR.
  • the second extending line EL 2 and the second edge S 2 i.e.
  • the border SE represents a region between the active region AR and the lower outer edge line ED after the electronic device 100 is bended, but not limited thereto.
  • three of the outer edge lines ED may be respectively aligned with the first edge S 1 , the third edge S 3 and the fourth edge S 4 of the active region AR, and a distance may exist between the other one of the outer edge lines ED and the second edge S 2 of the active region AR, but not limited thereto.
  • a portion of the first side region PS 1 , a portion of the third side region PS 3 and a portion of the fourth side region PS 4 may not be bended backward to the back of the active region AR.
  • the left side of the first edge S 1 , the right side of the third edge S 3 and the upper side of the fourth edge S 4 may not have a border (or may have a very small border), and the lower side of the active region AR (the lower side of the second edge S 2 ) may have a narrow border SE.
  • the peripheral region PR on the lower side of the active region AR of this embodiment i.e.
  • the intensive peripheral traces 128 may not be bended, so as to decrease the damage probability of the peripheral traces 128 .
  • the peripheral traces 128 may be formed of a bendable material, such as nanometer silver, but not limited thereto.
  • a radius of curvature of the bending part may range from 0.1 mm to 10 mm, from 0.2 mm to 5 mm or from 0.5 mm to 5 mm, but not limited thereto.
  • the radius of curvature of the second bending part BP 2 and the radius of curvature of the fourth bending part BP 4 may be smaller than the radius of curvature of the first bending part BP 1 and the radius of curvature of the third bending part BP 3 (referring to FIG. 6A and FIG. 6B ), but not limited thereto.
  • the electronic device 100 has the border in the peripheral region PR adjacent to the round corner of the active region AR, but not limited thereto.
  • the portion of the peripheral region PR adjacent to the round corner of the active region AR may be bended backward to the back of the active region AR.
  • the peripheral traces 128 may be formed of the bendable material.
  • the electronic device of the present invention is not limited to the above embodiments. Further embodiments of the present invention are described below. For ease of comparison, same components will be labeled with the same symbol in the following. The following descriptions relate the differences between each of the embodiments, and repeated parts will not be redundantly described.
  • FIG. 7 is a schematic diagram showing a top view of an electronic device which is not bended according to a second embodiment of the present invention
  • FIG. 8 is a schematic diagram showing a top view of the bended electronic device according to the second embodiment of the present invention
  • FIG. 9A is a schematic diagram showing a cross-sectional view taken along a cross-sectional line D-D′ in FIG. 8
  • FIG. 9B is a schematic diagram showing a cross-sectional view taken along a cross-sectional line E-E′ in FIG. 8 .
  • each of the cutting structures of the electronic device 200 of this embodiment is rectangle, and each of the bending parts only has the main bending portion and does not have the corner portion. That is to say, when the flexible substrate 110 is not bended, in the second direction D 2 , the first bending part BP 1 and the second bending part BP 2 are staggered, the first bending part BP 1 and the fourth bending part BP 4 are staggered, the third bending part BP 3 and the second bending part BP 2 are staggered, and the third bending part BP 3 and the fourth bending part BP 4 are staggered.
  • the second bending part BP 2 and the fourth bending part BP 4 are bended firstly, and then the first bending part BP 1 and the third bending part BP 3 are bended, such that the first bending part BP 1 and the third bending part BP 3 are situated behind the second bending part BP 2 and the fourth bending part BP 4 , but not limited thereto.
  • first endpoint EP 1 of the first cutting structure CS 1 and the second endpoint EP 2 of the second cutting structure CS 2 are aligned with the second edge S 2 of the active region AR in the second direction D 2 . That is to say, the second extending line EL 2 is aligned with the second edge S 2 . Therefore, after the second main bending portion MBP 2 is bended backward to the back of the active region AR, the second side region PS 2 of the peripheral region PR may be totally bended backward to the back of the active region AR (as shown in FIG. 7 ).
  • the left side of the first edge S 1 , the lower side of the second edge S 2 , the right side of the third edge S 3 and the upper side of the fourth edge S 4 shown in FIG. 8 may not have a border (or may have a very small border).
  • FIG. 10 is a schematic diagram showing a top view of an electronic device which is not bended according to a third embodiment of the present invention.
  • the difference between this embodiment and the first embodiment is that each of the cutting structures of the electronic device 300 is a straight cutting line, and each of the cutting lines is cut from edges of the flexible substrate 110 which are parallel to the first direction D 1 .
  • the first bending part BP 1 may include the first main bending portion MBP 1
  • the second bending part BP 2 may include the second main bending portion MBP 2
  • the third bending part BP 3 may include the third main bending portion MBP 3
  • the fourth bending part BP 4 may include the fourth main bending portion MBP 4 , the third corner portion CR 3 and the fourth corner portion CR 4 .
  • the first bending part BP 1 is bended towards the backside of active region AR according to the first extending line EL 1
  • the second bending part BP 2 is bended towards the backside of active region AR according to the second extending line EL 2
  • the third bending part BP 3 is bended towards the backside of active region AR according to the third extending line EL 3
  • the fourth bending part BP 4 is bended towards the backside of active region AR according to the fourth extending line EL 4
  • the first corner portion CR 1 and the fourth corner portion CR 4 are bended towards the backside of active region AR according to the first extending line EL 1
  • the second corner portion CR 2 and the third corner portion CR 3 are bended towards the backside of active region AR according to the third extending line EL 3
  • the bending sequence is not limited thereto.
  • FIG. 11 is a schematic diagram showing a top view of an electronic device which is not bended according to a fourth embodiment of the present invention.
  • the difference between this embodiment and the first embodiment is that the cutting structures of the electronic device 400 of this embodiment have different types.
  • the third cutting structure CS 3 may be a curved cutting line
  • the fourth cutting structure CS 4 may be a sector (e.g. the upper-left corner of the electronic device 400 is cut off)
  • the first cutting structure CS 1 and the second cutting structure CS 2 may be formed by cutting a plurality of holes, wherein the holes may be arranged linearly, but not limited thereto.
  • the holes may be arranged in any other type, and each of the cutting structures may be adjusted to any other type or changed the top view shape.
  • the plurality of holes may be formed firstly, and then, the cutting structures CS 1 -CS 2 may be formed by cutting the holes with a tool. Because of the design of the fourth cutting structure CS 4 , the electronic device 400 may not have the fourth corner portion CR 4 , and the fourth endpoint EP 4 of this embodiment is situated at the intersection of the first extending line EL 1 and the fourth extending line EL 4 .
  • the first cutting structure CS 1 and the third cutting structure CS 3 are cut from edges of the flexible substrate 110 which are parallel to the second direction D 2
  • the second cutting structure CS 2 is cut along the second direction D 2 from an edge of the flexible substrate 110 parallel to the first direction D 1
  • the first bending part BP 1 may include the first main bending portion MBP 1 and the first corner portion CR 1
  • the second bending part BP 2 may include the second main bending portion MBP 2 and the second corner portion CR 2
  • the third bending part BP 3 may include the third main bending portion MBP 3 and the third corner portion CR 3
  • the fourth bending part BP 4 may only include the fourth main bending portion MBP 4 .
  • the first bending part BP 1 is bended towards the backside of active region AR according to the first extending line EL 1
  • the second bending part BP 2 is bended towards the backside of active region AR according to the second extending line EL 2
  • the third bending part BP 3 is bended towards the backside of active region AR according to the third extending line EL 3
  • the fourth bending part BP 4 is bended towards the backside of active region AR according to the fourth extending line EL 4
  • the first corner portion CR 1 is bended towards the backside of active region AR according to the second extending line EL 2
  • the second corner portion CR 2 is bended towards the backside of active region AR according to the third extending line EL 3
  • the third corner portion CR 3 is bended towards the backside of active region AR according to the fourth extending line EL 4
  • the bending sequence is not limited thereto.
  • the peripheral region of the present invention is bended backward to the back of the active region by the bending process to reduce the border and downsize the electronic device. Furthermore, because the flexible substrate has the cutting structures in the peripheral region to determine the extending lines and separate the bending parts, when performing the bending process on the peripheral region, each of the bending parts of the peripheral region may be bended backward according to the corresponding extending line, such that the main bending portions having the peripheral traces and/or the electronic components are only bended one time, so as to enhance the yield of the peripheral traces and the yield of the electronic device.

Abstract

An electronic device includes a flexible substrate and a peripheral trace. The flexible substrate includes an active region and a peripheral region situated outside of the active region. The flexible substrate includes a first bending part, a second bending part and a first cutting structure in the peripheral region. The first bending part is disposed on a first side region of the peripheral region and extending along a first direction. The second bending part is disposed on a second side region of the peripheral region and extending along a second direction not parallel to the first direction, and the second side region is adjacent to the first side region. The first cutting structure is adjacent to the first bending part and the second bending part. The peripheral trace is disposed on the flexible substrate and disposed between the active region and the first cutting structure.

Description

    CROSS REFERENCE TO RELATED APPLICATION
  • This application claims the benefit of priority of China Application Serial No. 201910262389.X, which was filed on Apr. 2, 2019. The entirety of the above-mentioned patent application is hereby incorporated herein by reference and made a part of this specification.
  • BACKGROUND OF THE INVENTION 1. Field of the Invention
  • The present invention relates to an electronic device, and more particularly to an electronic device having a bending part in a peripheral region.
  • 2. Description of the Prior Art
  • Nowadays, electronic devices have become an indispensable item in society. For example, since the electronic device such as a display device or a touch display device has the characteristics of thin appearance, light weight, low power consumption and no radiation pollution, it has been widely used in many kinds of electronic products, such as notebooks, smart phones, watches, and display devices in vehicles, for transmitting and displaying information more conveniently. In order to make the size of the electronic device smaller for meeting requirements and expectations of the users, border of the electronic device (such as the region of the display device which the peripheral circuit and/or peripheral chip is disposed in) may be reduced. However, the reliability of such electronic device manufactured by the conventional techniques is low (for example, the trace of the electronic device may be broken to be an open circuit), or the degree of reducing the border by the conventional techniques is insufficient.
  • SUMMARY OF THE INVENTION
  • The present invention provides an electronic device, wherein a peripheral region of a flexible substrate has a bending part and a cutting structure adjacent to the bending part, such that the peripheral region of the flexible substrate can be bended to reduce the border and downsized the electronic device under the condition that the reliability of the electronic device is not affected.
  • An embodiment of the present invention provides an electronic device including a flexible substrate and a peripheral trace. The flexible substrate includes an active region and a peripheral region situated outside of the active region. The flexible substrate includes a first bending part, a second bending part and a first cutting structure in the peripheral region. The first bending part is disposed on a first side region of the peripheral region and extending along a first direction. The second bending part is disposed on a second side region of the peripheral region and extending along a second direction not parallel to the first direction, and the second side region is adjacent to the first side region. The first cutting structure is adjacent to the first bending part and the second bending part. The peripheral trace is disposed on the flexible substrate and disposed between the active region and the first cutting structure.
  • The peripheral region of the present invention is bended backward to the back of the active region to reduce the border and size of the electronic device by bending ways. Furthermore, the flexible substrate has the cutting structures in the peripheral region which can determine the extending lines and separate the bending parts, when the bending ways are proceeded on the peripheral region, at least one of the bending parts of the peripheral region may be bended according to the corresponding extending line, such that the main bending portions having the peripheral traces and/or the electronic components are only bended one time, so as to enhance the yield of the peripheral traces and further improve qualities of the electronic device.
  • These and other objectives of the present invention will no doubt become obvious to those of ordinary skill in the art after reading the following detailed description of the preferred embodiment that is illustrated in the various figures and drawings.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a schematic diagram showing a top view of an electronic device which is not bended according to a first embodiment of the present invention.
  • FIG. 2 is a schematic diagram showing a cross-sectional view of the electronic device which is not bended according to the first embodiment of the present invention.
  • FIG. 3 is an enlarged diagram of a corner in FIG. 1.
  • FIG. 4A to FIG. 4C are schematic diagrams respectively showing top views of a bending process of the electronic device according to the first embodiment of the present invention.
  • FIG. 5 is a schematic diagram showing a cross-sectional view taken along a cross-sectional line A-A′ in FIG. 4C.
  • FIG. 6A is a schematic diagram showing a cross-sectional view taken along a cross-sectional line B-B′ in FIG. 4C.
  • FIG. 6B is a schematic diagram showing a cross-sectional view taken along a cross-sectional line C-C′ in FIG. 4C.
  • FIG. 7 is a schematic diagram showing a top view of an electronic device which is not bended according to a second embodiment of the present invention.
  • FIG. 8 is a schematic diagram showing a top view of the bended electronic device according to the second embodiment of the present invention.
  • FIG. 9A is a schematic diagram showing a cross-sectional view taken along a cross-sectional line D-D′ in FIG. 8.
  • FIG. 9B is a schematic diagram showing a cross-sectional view taken along a cross-sectional line E-E′ in FIG. 8.
  • FIG. 10 is a schematic diagram showing a top view of an electronic device which is not bended according to a third embodiment of the present invention.
  • FIG. 11 is a schematic diagram showing a top view of an electronic device which is not bended according to a fourth embodiment of the present invention.
  • DETAILED DESCRIPTION
  • To provide a better understanding of the present invention to those skilled in the art, some embodiments will be detailed in the following description. The embodiments of the present invention are illustrated in the accompanying drawings with numbered elements to elaborate on the contents and effects to be achieved. It should be noted that the drawings are simplified schematics, and therefore show only the components and combinations associated with the present invention, so as to provide a clearer description for the basic structure or implementing method of the present invention. The components would be more complex in reality. In addition, for ease of explanation, the components shown in the drawings may not represent their actual number, shape, and dimensions; details may be adjusted according to design requirements.
  • Note that the terms “back”, “rear”, “backward” and “behind” described herein refer to the relative relationship in a top view direction. For instance, if one structure is situated at the rear of one film, the film is upper than the structure in the top view direction.
  • Referring to FIG. 1 to FIG. 3, FIG. 1 is a schematic diagram showing a top view of an electronic device which is not bended according to a first embodiment of the present invention, FIG. 2 is a schematic diagram showing a cross-sectional view of the electronic device which is not bended according to the first embodiment of the present invention, and FIG. 3 is an enlarged diagram of a corner in FIG. 1. Note that the electronic device 100 may be such as a flexible display device (e.g. a liquid crystal display (LCD), a micro light emitting diode display (micro LED display), an active-matrix organic light emitting diode display (AMOLED display) and so on), a flexible touch pad, a flexible touch display device or any other suitable flexible electronic device, but the present invention is not limited thereto. In some cases, the electronic device 100 may be an inflexible electronic device. As shown in FIG. 1 to FIG. 3, the electronic device 100 includes a flexible substrate 110 and an electronic component layer 120. The flexible substrate 110 is configured to be served as a substrate of the electronic device 100, and has an active region AR and a peripheral region PR situated outside of the active region AR. For instance, if the electronic device 100 is a display device, the active region AR may be served as a display region for displaying images, and components, structures and films configured to assist the display region in displaying images may be situated in the peripheral region PR. In this embodiment, the peripheral region PR surrounds the active region AR. For example, the peripheral region PR may include a first side region PS1, a second side region PS2 which is adjacent to the first side region PS1, a third side region PS3 which is adjacent to the second side region PS2 and a fourth side region PS4 which is adjacent to the first side region PS1 and the third side region PS3, and the side regions PS1-PS4 are combined to surround the active region AR, but not limited thereto. Then, the active region AR may have a first edge S1 facing the first side region PS1, a second edge S2 facing the second side region PS2, a third edge S3 facing the third side region PS3 and a fourth edge S4 facing the fourth side region PS4, but not limited thereto. Note that, in the peripheral region PR, the first side region PS1, the second side region PS2, the third side region PS3 and the fourth side region PS4 are respectively disposed on a side of different edges of the active region AR. For instance, the first side region PS1 is a region on the left side of the first edge S1 of the active region AR (i.e. a region of the peripheral region PR on the left side of the active region AR in FIG. 1), the second side region PS2 is a region on the lower side of the second edge S2 of the active region AR (i.e. a region of the peripheral region PR on the lower side of the active region AR in FIG. 1), the third side region PS3 is a region on the right side of the third edge S3 of the active region AR (i.e. a region of the peripheral region PR on the right side of the active region AR in FIG. 1), and the fourth side region PS4 is a region on the upper side of the fourth edge S4 of the active region AR (i.e. a region of the peripheral region PR on the upper side of the active region AR in FIG. 1). Moreover, the electronic device 100 and the active region AR may be any other suitable shape. For example, the electronic device 100 of this embodiment is rectangular, such that the first side region PS1 and the third side region PS3 extend along a first direction D1, the second side region PS2 and the fourth side region PS4 extend along a second direction D2, the first edge S1 and the third edge S3 are parallel to the first direction D1, and the second edge S2 and the fourth edge S4 are parallel to the second direction D2. In this embodiment, the first direction D1 is not parallel to the second direction D2 (e.g. the first direction D1 is perpendicular to the second direction D2), but not limited thereto. In addition, the flexible substrate 110 may include such as polyimide (PI), polyethylene terephthalate (PET) or any other suitable flexible material.
  • The electronic component layer 120 is disposed on the flexible substrate 110, and includes a plurality of electronic components 122. The electronic components 122 may include active components, passive components or any other suitable electronic components. The electronic components 122 may be correspondingly altered based on the type of the electronic device 100, such that the electronic device 100 may have a function of displaying images, a function of touch sensing and/or any other suitable function. For instance, if the electronic device 100 is a display device, the electronic component layer 120 in the active region AR may include the active components such as thin film transistors and light emitting components (e.g. light emitting diodes, organic light emitting diode) and the passive components such as capacitors or resistors, and the electronic component layer 120 in the peripheral region PR may include the peripheral traces, driving component(s) (such as a gate driving circuit, a source driving circuit and/or an integrated circuit (IC)) and/or any other suitable components. The driving component may be electrically connected to the active component in the active region AR or another driving component through the peripheral trace. Note that, in FIG. 1 to FIG. 3, the range of the active region AR is only shown in FIG. 1, one driving component 124 is exemplarily shown in the peripheral region PR of FIG. 1 to serve as one of the electronic components of the peripheral region PR (in FIG. 1, the driving component 124 is disposed in the second side region PS2 for example), the electronic components 122 of the electronic component layer 120 in FIG. 2 exemplarily show the active components in the active region AR and one driving component 124 in the peripheral region PR, and FIG. 3 enlarges the lower-left corner shown in FIG. 1 and shows the peripheral traces 128 and the driving components 124, 126 of the electronic component layer 120, so as to make the figures clear. The driving components 124 may be an integrated circuit for example, and the driving components 126 may be a gate driving circuit for example. The number of the driving components 124 and the number of the driving components 126 are not limited by FIG. 1 and FIG. 2. In addition, the electronic device 100 may optionally include any other required structure(s) and/or any other required film(s), such as a color filter layer, a light shielding layer, an alignment layer, a common electrode layer, a pixel electrode layer, a display medium layer, a polarizer and/or an opposite substrate. For instance, the electronic device 100 may further include a peripheral light shielding layer 130 disposed in the peripheral region PR and configured to shield the peripheral region PR for determining the range of the active region AR. In this embodiment, the active region AR may be surrounded by the peripheral light shielding layer 130 according to a top view direction D3, and the peripheral light shielding layer 130 may be disposed on the flexible substrate 110, but not limited thereto. In another embodiment, the peripheral light shielding layer 130 may be disposed on the opposite substrate opposite to the flexible substrate 110. Moreover, in another embodiment, since the almost entire peripheral region PR may be bended backward to the back of the active region AR (that is, the electronic component layer 120 disposed in the peripheral region PR may be situated at the back of the active region AR almost after being bended), there is no need to deploy a peripheral light shielding layer, so as to advantage the manufacturing process and the cost.
  • In the peripheral region PR, the flexible substrate 110 may have at least one cutting structure and at least two bending parts. Each cutting structure is situated between two bending parts, so as to separate two bending parts from each other and determine the region of the adjacent bending parts. The bending part is configured to be bended towards the backside of the active region AR. In this embodiment, the flexible substrate 110 may have a first bending part BP1 and a second bending part BP2 in the peripheral region PR, and may optionally have a third bending part BP3 and a fourth bending part BP4 in the peripheral region PR. The first bending part BP1 may be disposed in the first side region PS1, the second bending part BP2 may be disposed in the second side region PS2, the third bending part BP3 may be disposed in the third side region PS3, the fourth bending part BP4 may be disposed in the fourth side region PS4, the first bending part BP1 and the third bending part BP3 may extend along the first direction D1, and the second bending part BP2 and the fourth bending part BP4 may extend along the second direction D2, but not limited thereto. The electronic device 100 having different shapes may have the bending parts of corresponding designs. Furthermore, the flexible substrate 110 has the first cutting structure CS1 in the peripheral region PR, and the first cutting structure CS1 is adjacent to the first bending part BP1 and the second bending part BP2. That is to say, the first bending part BP1 and the second bending part BP2 is divided by the first cutting structure CS1. For example, the second bending part BP2 shown in FIG. 1 is adjacent to the first cutting structure CS1 in the second direction D2; that is to say, an end of the second bending part BP2 in the second direction D2 is separated from the first bending part BP1 by the first cutting structure CS1, but not limited thereto. The flexible substrate 110 may optionally have a second cutting structure CS2, a third cutting structure CS3 and a fourth cutting structure CS4 in the peripheral region PR, wherein the second cutting structure CS2 is adjacent to the second bending part BP2 and the third bending part BP3, the third cutting structure CS3 is adjacent to the third bending part BP3 and the fourth bending part BP4, and the fourth cutting structure CS4 is adjacent to the fourth bending part BP4 and the first bending part BP1. For instance, in FIG. 1, the second bending part BP2 is situated between the first cutting structure CS1 and the second cutting structure CS2 in the second direction D2, the fourth bending part BP4 is situated between the third cutting structure CS3 and the fourth cutting structure CS4 in the second direction D2, the first cutting structure CS1 corresponds to the fourth cutting structure CS4 in the first direction D1, and the second cutting structure CS2 corresponds to the third cutting structure CS3 in the first direction D1, but not limited thereto. The positions of the bending parts may be designed based on the shape and/or the bending requirement of the electronic device 100. In addition, a top view shape of the cutting structure may be for example a sector, a triangle, a rectangle, a polygon, a shape having a curved edge (the curved edge may be for example a U-shaped edge, an elliptical arc, and a circular arc and so on) or any other suitable shape; or, the cutting structure may include a cutting line including a straight line and/or a curved line. In this embodiment, each of the top view shapes of the first cutting structure CS1, the second cutting structure CS2, the third cutting structure CS3 and the fourth cutting structure CS4 has the U-shaped edge, and the first cutting structure CS1, the second cutting structure CS2, the third cutting structure CS3 and the fourth cutting structure CS4 respectively have a first endpoint EP1, a second endpoint EP2, a third endpoint EP3 and a fourth endpoint EP4 at their deepest position (as shown in FIG. 1), but not limited thereto. In another embodiment, the top view shapes of the cutting structures may be the same or different. When manufacturing the cutting structure, for example, the process may cut from the edge of the flexible substrate 110 to the endpoint of the cutting structure substantially along the first direction D1, but not limited thereto. In another embodiment, the cutting structure may be formed by cutting substantially along the second direction D2 or any other suitable direction.
  • Note that, before bending the bending parts, a straight line passing through the first endpoint EP1 and the fourth endpoint EP4 is defined as a first extending line EL1, a straight line passing through the first endpoint EP1 and the second endpoint EP2 is defined as a second extending line EL2, a straight line passing through the second endpoint EP2 and the third endpoint EP3 is defined as a third extending line EL3, and a straight line passing through the third endpoint EP3 and the fourth endpoint EP4 is defined as a fourth extending line EL4, wherein each extending lines EL1-EL4 is a virtual line. In this embodiment, the first extending line EL1 and the third extending line EL3 are parallel to the first direction D1, and the second extending line EL2 and the fourth extending line EL4 are parallel to the second direction D2, but not limited thereto. Note that, in FIG. 1, the first bending part BP1 is a portion of the flexible substrate 110 situated on the left side of the first extending line EL1, the second bending part BP2 is a portion of the flexible substrate 110 situated on the lower side of the second extending line EL2 and between the first cutting structure CS1 and the second cutting structure CS2, the third bending part BP3 is a portion of the flexible substrate 110 situated on the right side of the third extending line EL3, and the fourth bending part BP4 is a portion of the flexible substrate 110 situated on the upper side of the fourth extending line EL4 and between the third cutting structure CS3 and the fourth cutting structure CS4, but the present invention is not limited thereto.
  • Moreover, in this embodiment, the first endpoint EP1 and the fourth endpoint EP4 may be aligned with the first edge S1 of the active region AR in the first direction D1, the second endpoint EP2 and the third endpoint EP3 may be aligned with the third edge S3 of the active region AR in the first direction D1, and the third endpoint EP3 and the fourth endpoint EP4 may be aligned with the fourth edge S4 of the active region AR in the second direction D2. Therefore, the first extending line EL1 is aligned with the first edge S1, the third extending line EL3 is aligned with the third edge S3, and the fourth extending line EL4 is aligned with the fourth edge S4. That is to say, the first bending part BP1, the third bending part BP3 and the fourth bending part BP4 are directly adjacent to the active region AR. On the other hand, since the first endpoint EP1 and the second endpoint EP2 are not aligned with the second edge S2 of the active region AR in the second direction D2, a distance exists between the second extending line EL2 and the second edge S2, such that a distance exists between the second bending part BP2 and the active region AR, but the present invention is not limited thereto. The disposing relation between the endpoint of the cutting structure and the edge of the active region AR may be designed based on requirements.
  • In addition, as shown in FIG. 3, to prevent the peripheral traces 128 from breaking by cutting processes while forming the cutting structure, a distance exists between the cutting structure and the active region AR, and the peripheral traces 128 are disposed in this distance. In other words, the peripheral traces 128 are disposed between the active region AR and the cutting structures. For example, the peripheral traces 128 are disposed between the active region AR and the first cutting structure CS1, so as to be electrically connected between two driving components 124, 126.
  • In this embodiment, a bending part may include a main bending portion and/or a corner portion, wherein the corner portion is situated at a corner of the flexible substrate 110. As an example, as shown in FIG. 1, the first bending part BP1 may include a first main bending portion MBP1, a first corner portion CR1 and a fourth corner portion CR4, the third bending part BP3 may include a third main bending portion MBP3, a second corner portion CR2 and a third corner portion CR3, the second bending part BP2 may include a second main bending portion MBP2, and the fourth bending part BP4 may include a fourth main bending portion MBP4, but not limited thereto. In one embodiment, each of the bending parts may only include the main bending portion. In another embodiment, each of the bending parts may include the main bending portion and one corner portion. As shown in FIG. 1, when the flexible substrate 110 is not bended, the main bending portion and the corner portion may be divided by the aforementioned extending lines. In detail, the first main bending portion MBP1 of the first bending part BP1 and the third main bending portion MBP3 of the third bending part BP3 are situated between the second extending line EL2 and the fourth extending line EL4, the first corner portion CR1 is situated on a side of the second extending line EL2 opposite to the first main bending portion MBP1, the second corner portion CR2 is situated on a side of the second extending line EL2 opposite to the third main bending portion MBP3, the third corner portion CR3 is situated on a side of the fourth extending line EL4 opposite to the third main bending portion MBP3, and the fourth corner portion CR4 is situated on a side of the fourth extending line EL4 opposite to the first main bending portion MBP1. Furthermore, the first cutting structure CS1 is disposed between the first corner portion CR1 of the first bending part BP1 and the second bending part BP2, the second cutting structure CS2 is disposed between the second corner portion CR2 of the third bending part BP3 and the second bending part BP2, the third cutting structure CS3 is disposed between the third corner portion CR3 of the third bending part BP3 and the fourth bending part BP4, and the fourth cutting structure CS4 is disposed between the fourth corner portion CR4 of the first bending part BP1 and the fourth bending part BP4. Metal conductive pattern(s) or metal conductive structure(s) (e.g. formed of the electronic component layer 120) disposed in the corner portion may be designed based on requirements. In some cases, the peripheral traces 128 are not disposed in the corner portion. In this embodiment, the corner portion may have a label or a mark configured to label the model number of the electronic device 100 or be an alignment mark (e.g. the mark 129 shown in FIG. 3), but not limited thereto. In another embodiment, the corner portion may neither have any metal conductive pattern nor metal conductive structure.
  • Referring to FIG. 4A to FIG. 6B together with referring to FIG. 1, FIG. 4A to FIG. 4C are schematic diagrams respectively showing top views of a bending process of the electronic device according to the first embodiment of the present invention, FIG. 5 is a schematic diagram showing a cross-sectional view taken along a cross-sectional line A-A′ in FIG. 4C, FIG. 6A is a schematic diagram showing a cross-sectional view taken along a cross-sectional line B-B′ in FIG. 4C, and FIG. 6B is a schematic diagram showing a cross-sectional view taken along a cross-sectional line C-C′ in FIG. 4C, wherein FIG. 4A to FIG. 4C show the electronic device 100 shown in FIG. 1 bended at different stages in the bending process, and FIG. 4C also shows the electronic device 100 of the first embodiment in a completed bending status. In the bending process of the electronic device 100 of this embodiment, the second bending part BP2 and the fourth bending part BP4 are bended towards the active region AR and are bended backward to the back of the active region AR of the flexible substrate 110 (as shown in FIG. 4A); next, the first bending part BP1 and the third bending part BP3 are bended towards the active region AR and are bended backward to the back of the active region AR of the flexible substrate 110 (as shown in FIG. 4B); and finally, the first corner portion CR1, the second corner portion CR2, the third corner portion CR3 and the fourth corner portion CR4 are bended backward to the back of the active region AR of the flexible substrate 110 (as shown in FIG. 4C), so as to complete the bending process of the electronic device 100, but the bending sequence of the present invention is not limited thereto. The bending process may be adjusted according to the design of the cutting structures and the bending requirements. In this embodiment, the first bending part BP1 is bended towards backside of the active region AR according to the first extending line EL1 parallel to the first direction D1 (i.e. bending direction B1 of FIG. 1), the second bending part BP2 is bended towards backside of the active region AR according to the second extending line EL2 parallel to the second direction D2 (the bending direction B2 of FIG. 1), the third bending part BP3 is bended towards backside of the active region AR according to the third extending line EL3 parallel to the first direction D1 (the bending direction B3 of FIG. 1), and the fourth bending part BP4 is bended towards backside of the active region AR according to the fourth extending line EL4 parallel to the second direction D2 (the bending direction B4 of FIG. 1). The first corner portion CR1 and the second corner portion CR2 are bended towards backside of the active region AR according to the second extending line EL2 parallel to the second direction D2, and the third corner portion CR3 and the fourth corner portion CR4 are bended towards backside of the active region AR according to the fourth extending line EL4 parallel to the second direction D2.
  • As shown in FIG. 4C, FIG. 5, FIG. 6A and FIG. 6B, after completing the bending process of the electronic device 100, the first corner portion CR1 may overlap the first main bending portion MBP1 and the second main bending portion MBP2 in the top view direction D3, the second corner portion CR2 may overlap the second main bending portion MBP2 and the third main bending portion MBP3 in the top view direction D3, the third corner portion CR3 may overlap the third main bending portion MBP3 and the fourth main bending portion MBP4 in the top view direction D3, and the fourth corner portion CR4 may overlap the first main bending portion MBP1 and the fourth main bending portion MBP4 in the top view direction D3. In FIG. 4C, FIG. 6A and FIG. 6B, according to the aforementioned bending sequence, at the upper-left corner of the flexible substrate 110 of the bended electronic device 100, the active region AR, the fourth main bending portion MBP4, the first main bending portion MBP1 and the fourth corner portion CR4 are arranged in sequence from upper to lower (i.e. along the top view direction D3), but not limited thereto. This sequence (from upper to lower) may be changed based on the bending sequence of the electronic device 100. For instance, in another embodiment, if the first bending part BP1 and the third bending part BP3 are bended firstly, and then the second bending part BP2, the first corner portion CR1, the second corner portion CR2, the fourth bending part BP4, the third corner portion CR3 and the fourth corner portion CR4 are bended, at the upper-left corner of the flexible substrate 110 of the bended electronic device 100, the active region AR, the first main bending portion MBP1, the fourth corner portion CR4 and the fourth main bending portion MBP4 are arranged in sequence from upper to lower (i.e. along the top view direction D3). Furthermore, in the top view direction D3, a distance between two of the portions of the flexible substrate 110 is just one kind of example in FIG. 5, FIG. 6A and FIG. 6B. In another embodiment, two of the portions of the flexible substrate 110 may contact with each other. According to the above-mentioned, the first main bending portion MBP1, the second main bending portion MBP2, the third main bending portion MBP3 and the fourth main bending portion MBP4 may be bended backward to the back of the active region AR of the flexible substrate 110 by bending one time, and each of the main bending portions MBP1-MBP4 has a different bending direction with respect to the active region AR. The first corner portion CR1, the second corner portion CR2, the third corner portion CR3 and the fourth corner portion CR4 may be bended backward to the back of the active region AR of the flexible substrate 110 by bending two times. Accordingly, in the aforementioned bending process, the peripheral region PR is bended backward to the back of the active region AR, so as to reduce the border of the electronic device 100 and downsize the electronic device 100. Note that the border represents a region between the active region AR and outer edges (the outer edge lines ED shown in FIG. 4C to FIG. 6B) of the electronic device 100 after bending the electronic device 100.
  • In the conventional bending techniques, if the cutting structure does not exist in the peripheral region PR of the flexible substrate 110, when the bending process is performed on the peripheral region PR, some regions having the traces or the electronic components 122 may be bended at least two times. Thus, the traces and the electronic components 122 may be damaged or broken after the traces and the electronic components 122 are bended at least two times (e.g. a stress applied on the traces or the electronic components 122 is greater due to multiple bends, so as to make them be damaged or broken), such that the yield of the electronic device is influenced. In addition, if the cutting structure does not exist, the position of the region bended at least two times cannot be anticipated, such that it is hard to design the traces to avoid the region bended at least two times. In the present invention, since the flexible substrate 110 has the cutting structures in the peripheral region PR for determining the extending lines and dividing the peripheral region PR into different bending parts, each of the bending parts in the peripheral region PR may be bended according to the extending lines when bending the peripheral region PR, such that the main bending portions having the peripheral trace 128 and/or the electronic components 122 are only bended merely one time, so as to enhance the yield of the peripheral traces 128 and improve qualities of the electronic device 100.
  • Moreover, in this embodiment, because the first extending line EL1, the third extending line EL3 and the fourth extending line EL4 are respectively aligned with the first edge S1, the third edge S3 and the fourth edge S4 of the active region AR, such that the first main bending portion MBP1 of the first bending part BP1, the third main bending portion MBP3 of the third bending part BP3 and the fourth main bending portion MBP4 of the fourth bending part BP4 are directly adjacent to the active region AR. Thus, after the first bending part BP1, the third bending part BP3 and the fourth bending part BP4 are bended backward to the back of the active region AR of the flexible substrate 110, the first side region PS1, the third side region PS3 and the fourth side region PS4 are totally bended backward to the back of the active region AR. On the other hand, because a distance exists between the second extending line EL2 and the second edge S2 (i.e. a distance exists between the second main bending portion MBP2 of the second bending part BP2 and the active region AR), after the second main bending portion MBP2 is bended backward to the back of the active region AR, a portion of the second side region PS2 would not be bended backward to the back of the active region AR, and this portion may be the border SE (the border SE represents a region between the active region AR and the lower outer edge line ED after the electronic device 100 is bended), but not limited thereto. In other words, in this embodiment, three of the outer edge lines ED may be respectively aligned with the first edge S1, the third edge S3 and the fourth edge S4 of the active region AR, and a distance may exist between the other one of the outer edge lines ED and the second edge S2 of the active region AR, but not limited thereto. In another embodiment, a portion of the first side region PS1, a portion of the third side region PS3 and a portion of the fourth side region PS4 may not be bended backward to the back of the active region AR.
  • In particular, in this embodiment, referring to FIG. 4C, the left side of the first edge S1, the right side of the third edge S3 and the upper side of the fourth edge S4 may not have a border (or may have a very small border), and the lower side of the active region AR (the lower side of the second edge S2) may have a narrow border SE. Moreover, since a portion of the peripheral region PR on the lower side of the active region AR of this embodiment (i.e. a portion of the second side region PS2 of the peripheral region PR) is not bended, and the dense peripheral traces 128 are normally disposed on this portion to be electrically connected to the driving components 124, 126 or the electronic components 122, the intensive peripheral traces 128 may not be bended, so as to decrease the damage probability of the peripheral traces 128. Note that if the intensive peripheral traces 128 need to be bended, the peripheral traces 128 may be formed of a bendable material, such as nanometer silver, but not limited thereto.
  • After bending the electronic device 100, a radius of curvature of the bending part may range from 0.1 mm to 10 mm, from 0.2 mm to 5 mm or from 0.5 mm to 5 mm, but not limited thereto. Furthermore, since the second bending part BP2 and the fourth bending part BP4 of this embodiment are bended firstly, after bending the electronic device 100, the radius of curvature of the second bending part BP2 and the radius of curvature of the fourth bending part BP4 may be smaller than the radius of curvature of the first bending part BP1 and the radius of curvature of the third bending part BP3 (referring to FIG. 6A and FIG. 6B), but not limited thereto.
  • Moreover, because the shape of the active region AR of this embodiment is a rectangle having round corners, the electronic device 100 has the border in the peripheral region PR adjacent to the round corner of the active region AR, but not limited thereto. In another embodiment, the portion of the peripheral region PR adjacent to the round corner of the active region AR may be bended backward to the back of the active region AR. In this case, if the peripheral traces 128 are disposed on the portion of the peripheral region PR adjacent to the round corner of the active region AR, and this portion needs to be bended backward to the back of the active region AR, the peripheral traces 128 may be formed of the bendable material.
  • The electronic device of the present invention is not limited to the above embodiments. Further embodiments of the present invention are described below. For ease of comparison, same components will be labeled with the same symbol in the following. The following descriptions relate the differences between each of the embodiments, and repeated parts will not be redundantly described.
  • Referring to FIG. 7 to FIG. 9B, FIG. 7 is a schematic diagram showing a top view of an electronic device which is not bended according to a second embodiment of the present invention, FIG. 8 is a schematic diagram showing a top view of the bended electronic device according to the second embodiment of the present invention, FIG. 9A is a schematic diagram showing a cross-sectional view taken along a cross-sectional line D-D′ in FIG. 8, and FIG. 9B is a schematic diagram showing a cross-sectional view taken along a cross-sectional line E-E′ in FIG. 8. As shown in FIG. 7 to FIG. 9B, the difference between this embodiment and the first embodiment is that each of the cutting structures of the electronic device 200 of this embodiment is rectangle, and each of the bending parts only has the main bending portion and does not have the corner portion. That is to say, when the flexible substrate 110 is not bended, in the second direction D2, the first bending part BP1 and the second bending part BP2 are staggered, the first bending part BP1 and the fourth bending part BP4 are staggered, the third bending part BP3 and the second bending part BP2 are staggered, and the third bending part BP3 and the fourth bending part BP4 are staggered. Thus, after bending the bending parts of this embodiment, no portion of the flexible substrate 110 is bended two times or more. Similarly, as shown in FIG. 7 to FIG. 9B, In the bending process of the electronic device 200 of this embodiment, for instance, the second bending part BP2 and the fourth bending part BP4 are bended firstly, and then the first bending part BP1 and the third bending part BP3 are bended, such that the first bending part BP1 and the third bending part BP3 are situated behind the second bending part BP2 and the fourth bending part BP4, but not limited thereto. Moreover, another difference between this embodiment and the first embodiment is that the first endpoint EP1 of the first cutting structure CS1 and the second endpoint EP2 of the second cutting structure CS2 are aligned with the second edge S2 of the active region AR in the second direction D2. That is to say, the second extending line EL2 is aligned with the second edge S2. Therefore, after the second main bending portion MBP2 is bended backward to the back of the active region AR, the second side region PS2 of the peripheral region PR may be totally bended backward to the back of the active region AR (as shown in FIG. 7). As the result, the left side of the first edge S1, the lower side of the second edge S2, the right side of the third edge S3 and the upper side of the fourth edge S4 shown in FIG. 8 may not have a border (or may have a very small border).
  • Referring to FIG. 10, FIG. 10 is a schematic diagram showing a top view of an electronic device which is not bended according to a third embodiment of the present invention. As shown in FIG. 10, the difference between this embodiment and the first embodiment is that each of the cutting structures of the electronic device 300 is a straight cutting line, and each of the cutting lines is cut from edges of the flexible substrate 110 which are parallel to the first direction D1. Thus, the first bending part BP1 may include the first main bending portion MBP1, the second bending part BP2 may include the second main bending portion MBP2, the first corner portion CR1 and the second corner portion CR2, the third bending part BP3 may include the third main bending portion MBP3, and the fourth bending part BP4 may include the fourth main bending portion MBP4, the third corner portion CR3 and the fourth corner portion CR4. In the bending process of the electronic device 300 of this embodiment, the first bending part BP1 is bended towards the backside of active region AR according to the first extending line EL1, the second bending part BP2 is bended towards the backside of active region AR according to the second extending line EL2, the third bending part BP3 is bended towards the backside of active region AR according to the third extending line EL3, the fourth bending part BP4 is bended towards the backside of active region AR according to the fourth extending line EL4, the first corner portion CR1 and the fourth corner portion CR4 are bended towards the backside of active region AR according to the first extending line EL1, and the second corner portion CR2 and the third corner portion CR3 are bended towards the backside of active region AR according to the third extending line EL3, but the bending sequence is not limited thereto.
  • Referring to FIG. 11, FIG. 11 is a schematic diagram showing a top view of an electronic device which is not bended according to a fourth embodiment of the present invention. As shown in FIG. 11, the difference between this embodiment and the first embodiment is that the cutting structures of the electronic device 400 of this embodiment have different types. In this embodiment, the third cutting structure CS3 may be a curved cutting line, the fourth cutting structure CS4 may be a sector (e.g. the upper-left corner of the electronic device 400 is cut off), and the first cutting structure CS1 and the second cutting structure CS2 may be formed by cutting a plurality of holes, wherein the holes may be arranged linearly, but not limited thereto. The holes may be arranged in any other type, and each of the cutting structures may be adjusted to any other type or changed the top view shape. Regarding the first cutting structure CS1 and the second cutting structure CS2 of this embodiment, the plurality of holes may be formed firstly, and then, the cutting structures CS1-CS2 may be formed by cutting the holes with a tool. Because of the design of the fourth cutting structure CS4, the electronic device 400 may not have the fourth corner portion CR4, and the fourth endpoint EP4 of this embodiment is situated at the intersection of the first extending line EL1 and the fourth extending line EL4. Furthermore, in this embodiment, the first cutting structure CS1 and the third cutting structure CS3 are cut from edges of the flexible substrate 110 which are parallel to the second direction D2, and the second cutting structure CS2 is cut along the second direction D2 from an edge of the flexible substrate 110 parallel to the first direction D1. Therefore, the first bending part BP1 may include the first main bending portion MBP1 and the first corner portion CR1, the second bending part BP2 may include the second main bending portion MBP2 and the second corner portion CR2, the third bending part BP3 may include the third main bending portion MBP3 and the third corner portion CR3, and the fourth bending part BP4 may only include the fourth main bending portion MBP4. In the bending process of the electronic device 400 of this embodiment, the first bending part BP1 is bended towards the backside of active region AR according to the first extending line EL1, the second bending part BP2 is bended towards the backside of active region AR according to the second extending line EL2, the third bending part BP3 is bended towards the backside of active region AR according to the third extending line EL3, the fourth bending part BP4 is bended towards the backside of active region AR according to the fourth extending line EL4, the first corner portion CR1 is bended towards the backside of active region AR according to the second extending line EL2, the second corner portion CR2 is bended towards the backside of active region AR according to the third extending line EL3, and the third corner portion CR3 is bended towards the backside of active region AR according to the fourth extending line EL4, but the bending sequence is not limited thereto.
  • In summary, the peripheral region of the present invention is bended backward to the back of the active region by the bending process to reduce the border and downsize the electronic device. Furthermore, because the flexible substrate has the cutting structures in the peripheral region to determine the extending lines and separate the bending parts, when performing the bending process on the peripheral region, each of the bending parts of the peripheral region may be bended backward according to the corresponding extending line, such that the main bending portions having the peripheral traces and/or the electronic components are only bended one time, so as to enhance the yield of the peripheral traces and the yield of the electronic device.
  • Those skilled in the art will readily observe that numerous modifications and alterations of the device and method may be made while retaining the teachings of the invention. Accordingly, the above disclosure should be construed as limited only by the metes and bounds of the appended claims.

Claims (20)

What is claimed is:
1. An electronic device, comprising:
a flexible substrate comprising an active region and a peripheral region situated outside of the active region, wherein the flexible substrate comprises:
a first bending part in the peripheral region, the first bending part being disposed on a first side region of the peripheral region and extending along a first direction;
a second bending part in the peripheral region, the second bending part being disposed on a second side region of the peripheral region and extending along a second direction not parallel to the first direction, wherein the second side region is adjacent to the first side region; and
a first cutting structure in the peripheral region, wherein the first cutting structure is adjacent to the first bending part and the second bending part; and
a peripheral trace disposed on the flexible substrate and disposed between the active region and the first cutting structure.
2. The electronic device of claim 1, wherein the first cutting structure comprises an endpoint, the first bending part is bended towards the active region according to a first extending line passing through the endpoint and parallel to the first direction, and the second bending part is bended towards the active region according a second extending line passing through the endpoint and parallel to the second direction.
3. The electronic device of claim 2, wherein the active region comprises a first edge parallel to the first direction, the first edge faces the first bending part, and the first extending line is aligned with the first edge.
4. The electronic device of claim 3, wherein the active region comprises a second edge, wherein the second edge is parallel to the second direction and adjacent to the first edge, the second edge faces the second bending part, and the second extending line is aligned with the second edge.
5. The electronic device of claim 2, wherein the active region comprises a second edge parallel to the second direction, the second edge faces the second bending part, and a distance exists between the second extending line and the second edge.
6. The electronic device of claim 1, wherein the first bending part and the second bending part are staggered in the second direction when the flexible substrate is not bended.
7. The electronic device of claim 1, wherein the first bending part comprises a corner portion, and the first cutting structure is situated between the corner portion and the second bending part when the flexible substrate is not bended.
8. The electronic device of claim 7, wherein when the first bending part and the second bending part are bended, the corner portion is bended, and the corner portion overlaps the second bending part and other portion of the first bending part in a top view direction.
9. The electronic device of claim 7, wherein the corner portion has a label or a mark.
10. The electronic device of claim 1, wherein the first cutting structure comprises a cutting line.
11. The electronic device of claim 10, wherein the first cutting structure is formed by cutting a plurality of holes.
12. The electronic device of claim 11, wherein the plurality of holes are arranged linearly.
13. The electronic device of claim 1, wherein a top view shape of the first cutting structure is a sector, a triangle, a rectangle, a polygon or a shape having a curved edge.
14. The electronic device of claim 1, wherein the flexible substrate further comprises a second cutting structure, a third cutting structure and a fourth cutting structure in the peripheral region, the flexible substrate further comprises a third bending part and a fourth bending part, the second cutting structure is adjacent to the second bending part and the third bending part, the third cutting structure is adjacent to the third bending part and the fourth bending part, and the fourth cutting structure is adjacent to the fourth bending part and the first bending part.
15. The electronic device of claim 14, wherein the first cutting structure corresponds to the fourth cutting structure in the first direction.
16. The electronic device of claim 14, wherein the first cutting structure, the second cutting structure, the third cutting structure and the fourth cutting structure have different types.
17. The electronic device of claim 1, wherein when the first bending part and the second bending part are bended, a radius of curvature of the first bending part and a radius of curvature of the second bending part range from 0.1 mm to 10 mm.
18. The electronic device of claim 1, further comprising a distance exists between the first cutting structure and the active region, wherein the peripheral traces are disposed in the distance.
19. The electronic device of claim 1, further comprising a peripheral light shielding layer, wherein the active region is surrounded by the peripheral light shielding layer according to a top view direction.
20. The electronic device of claim 1, wherein the electronic device is a flexible display device, a flexible touch pad or a flexible touch display device.
US16/822,047 2019-04-02 2020-03-18 Electronic device Abandoned US20200321361A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/876,593 US11894385B2 (en) 2019-04-02 2022-07-29 Electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910262389.XA CN111766964B (en) 2019-04-02 2019-04-02 Electronic device
CN201910262389.X 2019-04-02

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/876,593 Continuation US11894385B2 (en) 2019-04-02 2022-07-29 Electronic device

Publications (1)

Publication Number Publication Date
US20200321361A1 true US20200321361A1 (en) 2020-10-08

Family

ID=72663528

Family Applications (2)

Application Number Title Priority Date Filing Date
US16/822,047 Abandoned US20200321361A1 (en) 2019-04-02 2020-03-18 Electronic device
US17/876,593 Active US11894385B2 (en) 2019-04-02 2022-07-29 Electronic device

Family Applications After (1)

Application Number Title Priority Date Filing Date
US17/876,593 Active US11894385B2 (en) 2019-04-02 2022-07-29 Electronic device

Country Status (2)

Country Link
US (2) US20200321361A1 (en)
CN (1) CN111766964B (en)

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4961965B2 (en) * 2006-11-15 2012-06-27 株式会社ニコン Subject tracking program, subject tracking device, and camera
WO2008126250A1 (en) 2007-03-30 2008-10-23 Pioneer Corporation Light emitting device
JP4717946B2 (en) * 2007-03-30 2011-07-06 パイオニア株式会社 Light emitting device
US20120156402A1 (en) * 2010-04-05 2012-06-21 Elmer's Products, Inc. Printing substrate with integrated frame
DE102011100425A1 (en) * 2011-05-03 2012-11-08 August Faller Kg Folding box with a blister pack contained therein
TWI523762B (en) * 2011-12-16 2016-03-01 世洋科技股份有限公司 Protector for portable electronic device and manufacture method thereof
US9419065B2 (en) 2012-08-07 2016-08-16 Apple Inc. Flexible displays
KR102117890B1 (en) * 2012-12-28 2020-06-02 엘지디스플레이 주식회사 Flexible display device and method for manufacturing the same
CN103972264A (en) * 2013-01-25 2014-08-06 财团法人工业技术研究院 Flexible electronic device
CN204405995U (en) * 2014-09-12 2015-06-17 康佳集团股份有限公司 A kind of direct-light type LED backlight module and liquid crystal display
CN104965330B (en) * 2015-07-10 2018-11-23 昆山龙腾光电有限公司 Display module and its assemble method
CN105448204A (en) * 2016-01-07 2016-03-30 友达光电股份有限公司 Display device
KR102543983B1 (en) 2016-07-08 2023-06-15 삼성디스플레이 주식회사 Display device and manufacturing method thereof
TWI651021B (en) 2016-11-28 2019-02-11 財團法人工業技術研究院 Flexible electronic device
CN106894595A (en) * 2017-02-22 2017-06-27 河北腾翔金属制品有限公司 A kind of metal lagging and production method
JP7029894B2 (en) * 2017-07-11 2022-03-04 株式会社ジャパンディスプレイ Display device
CN107584248B (en) * 2017-09-01 2019-10-18 区德庆 A kind of lamp panel production method
CN108389876A (en) * 2018-02-08 2018-08-10 武汉华星光电半导体显示技术有限公司 A kind of flexible display panels and flexible display
US10950685B2 (en) 2018-03-29 2021-03-16 Innolux Corporation Tiled electronic device
CN109285454B (en) * 2018-09-21 2021-06-22 云谷(固安)科技有限公司 Cover plate structure, display device and cover plate structure manufacturing method
CN109192078B (en) * 2018-11-12 2021-01-26 京东方科技集团股份有限公司 Flexible panel, preparation method thereof and display device
CN109240013B (en) * 2018-11-27 2022-03-11 上海中航光电子有限公司 Display panel and display device
CN109449194A (en) * 2018-12-17 2019-03-08 武汉华星光电半导体显示技术有限公司 It is displayed in full screen panel

Also Published As

Publication number Publication date
US11894385B2 (en) 2024-02-06
US20220367527A1 (en) 2022-11-17
CN111766964B (en) 2024-03-15
CN111766964A (en) 2020-10-13

Similar Documents

Publication Publication Date Title
US20220164067A1 (en) Touch sensor and display device including the same
CN110928437B (en) Touch sensing unit and display device including the same
JP6205598B2 (en) Display device
CN111198632A (en) Touch sensing unit and display device including the same
JP2011028535A (en) Electrostatic capacitance input device and electro-optical device having input device
CN108268164B (en) Touch control display device
US20210191549A1 (en) Display device
US11449163B2 (en) Display device
US20160313834A1 (en) Display device
KR20160077961A (en) Touch panel integrated organic light emitting display device
US10845907B2 (en) Display panel
US10615183B2 (en) Electronic device
US20200321361A1 (en) Electronic device
US20230118970A1 (en) Touch sensing unit and display device including the same
CN114967964A (en) Touch sensor and image display device including the same
US11488985B2 (en) Semiconductor device
US9652102B2 (en) Touch panel
US11775098B2 (en) Flexible electronic device
CN111694461B (en) Touch sensing unit and display device including the same
US20230214048A1 (en) Display Apparatus
US11880520B2 (en) Display device
US20220320062A1 (en) Display panel
US20220335883A1 (en) Display device and manufacturing method of the same
JP7270170B2 (en) touch sensor
US20240094855A1 (en) Touch Substrate, Display Panel, and Electronic Device

Legal Events

Date Code Title Description
AS Assignment

Owner name: HANNSTAR DISPLAY CORPORATION, TAIWAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CHEN, YEN-CHUNG;REEL/FRAME:052144/0294

Effective date: 20190827

Owner name: HANNSTAR DISPLAY (NANJING) CORPORATION, CHINA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CHEN, YEN-CHUNG;REEL/FRAME:052144/0294

Effective date: 20190827

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION