US20200300980A1 - Lidar system with a mode field expander - Google Patents
Lidar system with a mode field expander Download PDFInfo
- Publication number
- US20200300980A1 US20200300980A1 US16/359,217 US201916359217A US2020300980A1 US 20200300980 A1 US20200300980 A1 US 20200300980A1 US 201916359217 A US201916359217 A US 201916359217A US 2020300980 A1 US2020300980 A1 US 2020300980A1
- Authority
- US
- United States
- Prior art keywords
- optical
- mode field
- optical beam
- target
- signal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/48—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
- G01S7/481—Constructional features, e.g. arrangements of optical elements
- G01S7/4811—Constructional features, e.g. arrangements of optical elements common to transmitter and receiver
- G01S7/4812—Constructional features, e.g. arrangements of optical elements common to transmitter and receiver transmitted and received beams following a coaxial path
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/48—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
-
- G01S17/325—
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/02—Systems using the reflection of electromagnetic waves other than radio waves
- G01S17/06—Systems determining position data of a target
- G01S17/08—Systems determining position data of a target for measuring distance only
- G01S17/32—Systems determining position data of a target for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
- G01S17/34—Systems determining position data of a target for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/02—Systems using the reflection of electromagnetic waves other than radio waves
- G01S17/06—Systems determining position data of a target
- G01S17/42—Simultaneous measurement of distance and other co-ordinates
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/48—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
- G01S7/481—Constructional features, e.g. arrangements of optical elements
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/48—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
- G01S7/481—Constructional features, e.g. arrangements of optical elements
- G01S7/4814—Constructional features, e.g. arrangements of optical elements of transmitters alone
- G01S7/4815—Constructional features, e.g. arrangements of optical elements of transmitters alone using multiple transmitters
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/48—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
- G01S7/481—Constructional features, e.g. arrangements of optical elements
- G01S7/4817—Constructional features, e.g. arrangements of optical elements relating to scanning
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/48—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
- G01S7/481—Constructional features, e.g. arrangements of optical elements
- G01S7/4818—Constructional features, e.g. arrangements of optical elements using optical fibres
Definitions
- the present disclosure relates generally to light detection and ranging (LIDAR) that provides range (and for some types a simultaneous measurement of velocity) across two dimensions.
- LIDAR light detection and ranging
- Fast-scanning mirrors are the primary components used to illuminate a scene in most conventional LIDAR systems.
- One mirror typically scans quickly along the X direction (azimuth), while another mirror scans slowly along the Y direction (elevation).
- Light emission and detection from target reflections are done coaxially, typically via a single mode fiber.
- the collected light has a measured delay or an altered frequency signature that is used to extract range, and potentially velocity, information.
- a 3D point cloud can be established when the point-wise detected range information is combined with angular position feedback from the scanning mirrors.
- the mirror's angular velocity is increased, especially that of the scanner in faster scan direction (X scanner in our case).
- the target signal from distant objects is severely degraded.
- Signal degradation is mainly due to the difference in angular position of the scanner mirror from the launch time of the optical signal (pulsed or frequency swept) to the collection time of the same signal from a distant scattering target.
- This slight angular change causes a walk-off of the target signal at the fiber tip decreasing the coupling efficiency, which manifests itself as a weaker signal detection.
- Such degradation becomes more severe as the fiber diameter decreases, e.g. a single mode fiber with ⁇ 10 ⁇ m diameter, or as the mirror's angular velocity increases.
- the present disclosure includes, without limitation, the following example implementations.
- Some example implementations provide a light detection and ranging (LIDAR) apparatus including an optical source to emit an optical beam towards a target and a mode field expander operatively coupled to the optical source to expand a mode area of the optical beam.
- LIDAR light detection and ranging
- Some example implementations provide a method including generating, by an optical source of a light detection and ranging (LIDAR) system, an optical beam towards a target and converting, by a mode field expander operatively coupled to the optical source, a mode area associated with the optical beam.
- LIDAR light detection and ranging
- FIG. 1 illustrates a LIDAR system according to example implementations of the present disclosure.
- FIG. 2 illustrates aspects of a LIDAR system in accordance with embodiments of the present disclosure.
- FIG. 3 illustrates aspects of a LIDAR system in accordance with other embodiments of the present disclosure.
- FIG. 4 illustrates aspects of a LIDAR system in accordance with some embodiments of the present disclosure.
- FIG. 5A is an illustration of an example of a mode field expander expanding a mode area of an outgoing optical beam in accordance with embodiments of the disclosure.
- FIG. 5B is an illustration of an example of a mode field expander reducing a mode area of an incoming target signal in accordance with embodiments of the disclosure.
- FIG. 6 depicts a flow diagram of a method for utilizing a mode field expander to convert the mode area of incoming and outgoing light of a LIDAR system in accordance with implementations of the present disclosure.
- Example implementations of the present disclosure are directed to an improved scanning LIDAR system.
- Example implementations of the present disclosure are based on a type of LIDAR that uses frequency modulation (FM) and coherent detection to overcome the shortcomings of traditional LIDAR systems and the limitations of prior FM LIDAR systems.
- FM LIDAR systems suffer from significant losses in the beam's return path; thus, such systems, which are often quite bulky, require a higher average beam output power to measure distances comparable to time-of-flight (TOF) LIDAR systems.
- TOF time-of-flight
- the range is limited by the operating distance for eye-safe output powers.
- Example implementations of the present disclosure are configured to simultaneously measure the range and velocity by scanning illumination beams over an environment and combining returning light (also referred to as “target signals” hereafter) with a local oscillator (LO) signal.
- LO local oscillator
- signal degradation resulting from the difference in angular position of the scanner mirror from the launch time of the optical signal to the collection time of the target signal (also referred to as “lag angle” hereafter) is worsened as the diameter of fiber or waveguides of an FM LIDAR system decrease.
- the detected portion of mode area of the target signal also decreases.
- minimally reflective targets at a distance may be more difficult to detect by the FM LIDAR system as the diameter of the fiber or waveguides decrease because the mode area of incoming light is restricted by the diameter of the fiber/waveguides.
- the incoming light's chief ray is displaced off center with respect to the optical axis of the fiber tip. This displacement results in a reduced coupling efficiency of the incoming light (e.g., target signal) into the single-mode fiber/waveguide of the components of the LIDAR system. Accordingly, to compensate for these effects, it may be desirable to increase the diameter of the fiber/waveguides of the FM LIDAR system. For example, it may be desirable to use multi-mode fiber in an FM LIDAR system rather than a single-mode fiber, which has a smaller diameter than multi-mode fiber.
- Example implementations of the present disclosure address the above and other deficiencies by an FM LIDAR system by converting the mode area of a target signal using a mode field expander.
- An optical source of the FM LIDAR system generates an optical beam towards a target via single-mode fiber.
- a mode field converter is operatively coupled to the optical source via a single-mode fiber/waveguide to receive the optical beam.
- the mode field expander increases the mode area of the optical beam as the optical beam passes through the mode field expander towards the target.
- the optical beam having the larger mode area travels to the target, where a portion of the optical beam is reflected back towards the FM LIDAR system by the target as a target signal.
- the target signal is received by the larger mode area portion of the mode field expander.
- the mode field expander decreases the mode area of the target signal to correspond to the mode area of the single mode fiber/waveguide, increasing the coupling efficiency of the target signal and the single-mode fiber/waveguide and reducing losses in the target signal.
- the target signal is then combined with a LO signal and the combined signal is provided to photodetector for analysis.
- the performance of the FM LIDAR system is improved. Because the mode field converter increases the mode area of the optical beam and receives a larger mode area of the target signal, the effects of signal degradation and aberrations on the combined signal are reduced. Furthermore, utilizing a mode field expander allows the use of conventional single-mode fiber/waveguide components in the FM LIDAR system while eliminating the reduced coupling efficiency of the target signal and the single-mode fiber/waveguide, improving the manufacturing capabilities and performance of the FM LIDAR system.
- embodiments of the disclosure describe a mode field expander being utilized by a FM LIDAR system
- aspects of the disclosure may be utilized by other types of LIDAR systems, such as time of flight (TOF) LIDAR systems.
- TOF time of flight
- FIG. 1 illustrates a LIDAR system 100 according to example implementations of the present disclosure.
- the LIDAR system 100 includes one or more of each of a number of components, but may include fewer or additional components than shown in FIG. 1 .
- the LIDAR system 100 may be implemented in any sensing market, such as, but not limited to, transportation, manufacturing, metrology, medical, and security systems.
- the described beam delivery system becomes the front-end of frequency modulated continuous-wave (FMCW) devices that can assist with spatial awareness for automated driver assist systems, or self-driving vehicles.
- the LIDAR system 100 includes optical circuits 101 .
- the optical circuits 101 may include a combination of active optical components and passive optical components. Active optical components may generate, amplify, or detect optical signals and the like.
- the active optical circuit includes optical beams at different wavelengths, one or more optical amplifiers, one or more optical detectors, or the like.
- Passive optical circuits may include one or more optical fibers to carry optical signals, and route and manipulate optical signals to appropriate input/output ports of the active optical circuit.
- the passive optical circuits may also include one or more fiber components such as taps, wavelength division multiplexers, splitters/combiners, polarization beam splitters, collimators or the like.
- the passive optical circuits may include components to transform the polarization state and direct received polarized light to optical detectors using a PBS.
- An optical scanner 102 may include one or more scanning mirrors that are rotatable along respective orthogonal axes to steer optical signals to scan an environment according to a scanning pattern.
- the scanning mirrors may be rotatable by one or more galvanometers.
- other types of optical scanners may be used, such as acousto-optic, electro-optic, resonant or polygonal scanners.
- the optical scanner 102 collects light incident upon any objects in the environment into a return optical beam that is returned to the passive optical circuit component of the optical circuits 101 .
- the return optical beam may be directed to an optical detector by a polarization beam splitter or an optical circulator.
- the optical scanning system may include components such as a quarter-wave plate, lens, anti-reflective coated window or the like.
- the LIDAR system 100 includes a LIDAR control systems 110 .
- the LIDAR control systems 110 may include a processing device for the LIDAR system 100 .
- the processing device may be one or more general-purpose processing devices such as a microprocessor, central processing unit, or the like. More particularly, the processing device may be complex instruction set computing (CISC) microprocessor, reduced instruction set computer (RISC) microprocessor, very long instruction word (VLIW) microprocessor, or processor implementing other instruction sets, or processors implementing a combination of instruction sets.
- the processing device may also be one or more special-purpose processing devices such as an application specific integrated circuit (ASIC), a field programmable gate array (FPGA), a digital signal processor (DSP), network processor, or the like.
- ASIC application specific integrated circuit
- FPGA field programmable gate array
- DSP digital signal processor
- the LIDAR control systems 110 may include a signal processing unit 112 such as a digital signal processor.
- the LIDAR control systems 110 are configured to output digital control signals to control optical drivers 103 .
- the digital control signals may be converted to analog signals through signal conversion unit 106 .
- the signal conversion unit 106 may include a digital-to-analog converter.
- the optical drivers 103 may then provide drive signals to active components of optical circuits 101 to drive optical sources such as optical beams and amplifiers. In some embodiments, several optical drivers 103 and signal conversion units 106 may be provided to drive multiple optical sources.
- the LIDAR control systems 110 are also configured to output digital control signals for the optical scanner 102 .
- a motion control system 105 may control the galvanometers of the optical scanner 102 based on control signals received from the LIDAR control systems 110 .
- a digital-to-analog converter may convert coordinate routing information from the LIDAR control systems 110 to signals interpretable by the galvanometers in the optical scanner 102 .
- a motion control system 105 may also return information to the LIDAR control systems 110 about the position or operation of components of the optical scanner 102 .
- an analog-to-digital converter may in turn convert information about the galvanometers' position to a signal interpretable by the LIDAR control systems 110 .
- the LIDAR control systems 110 are further configured to analyze incoming digital signals.
- the LIDAR system 100 includes optical receivers 104 to measure one or more beams received by optical circuits 101 .
- a reference beam receiver may measure the amplitude of a reference beam from the active optical circuit, and an analog-to-digital converter converts signals from the reference receiver to signals interpretable by the LIDAR control systems 110 .
- Target receivers measure the optical signal that carries information about the range and velocity of a target in the form of a beat frequency, modulated optical signal. The reflected beam may be mixed with a second signal from a local oscillator.
- the optical receivers 104 may include a high-speed analog-to-digital converter to convert signals from the target receiver to signals interpretable by the LIDAR control systems 110 .
- the LIDAR system 100 may additionally include one or more imaging devices 108 configured to capture images of the environment, a global positioning system 109 configured to provide a geographic location of the system, or other sensor inputs.
- the LIDAR system 100 may also include an image processing system 114 .
- the image processing system 114 can be configured to receive the images and geographic location, and send the images and location or information related thereto to the LIDAR control systems 110 or other systems connected to the LIDAR system 100 .
- the LIDAR system 100 is configured to use nondegenerate optical sources to simultaneously measure range and velocity across two dimensions. This capability allows for real-time, long range measurements of range, velocity, azimuth, and elevation of the surrounding environment.
- the system points multiple modulated optical beams to the same target.
- the scanning process begins with the optical drivers 103 and LIDAR control systems 110 .
- the LIDAR control systems 110 instruct the optical drivers 103 to independently modulate one or more optical beams, and these modulated signals propagate through the passive optical circuit to the collimator.
- the collimator directs the light at the optical scanning system that scans the environment over a preprogrammed pattern defined by the motion control subsystem.
- the optical circuits may also include a polarization wave plate to transform the polarization of the light as it leaves the optical circuits 101 .
- the polarization wave plate may be a quarter-wave plate or a half-wave plate.
- a portion of the polarized light may also be reflected back to the optical circuits 101 .
- lensing or collimating systems may have natural reflective properties or a reflective coating to reflect a portion of the light back to the optical circuits 101 .
- Optical signals reflected back from the environment pass through the optical circuits 101 to the receivers. Because the polarization of the light has been transformed, it may be reflected by a polarization beam splitter along with the portion of polarized light that was reflected back to the optical circuits 101 . Accordingly, rather than returning to the same fiber or waveguide as an optical source, the reflected light is reflected to separate optical receivers. These signals interfere with one another and generate a combined signal. Each beam signal that returns from the target produces a time-shifted waveform. The temporal phase difference between the two waveforms generates a beat frequency measured on the optical receivers (photodetectors). The combined signal can then be reflected to the optical receivers 104 . Configuration of optical circuits 101 for polarizing and directing beams to the optical receivers 104 are described further below.
- the analog signals from the optical receivers 104 are converted to digital signals using ADCs.
- the digital signals are then sent to the LIDAR control systems 110 .
- a signal processing unit 112 may then receive the digital signals and interpret them.
- the signal processing unit 112 also receives position data from the motion control system 105 and galvanometer (not shown) as well as image data from the image processing system 114 .
- the signal processing unit 112 can then generate a 3D point cloud with information about range and velocity of points in the environment as the optical scanner 102 scans additional points.
- the signal processing unit 112 can also overlay a 3D point cloud data with the image data to determine velocity and distance of objects in the surrounding area.
- the system also processes the satellite-based navigation location data to provide a precise global location.
- FIG. 2 illustrates aspects of a LIDAR system 200 in accordance with embodiments of the present disclosure.
- one or more components of LIDAR system 200 may be implemented in a photonic chip 230 .
- an optical source 202 generates an optical beam 218 .
- multiple optical sources may be used to generate multiple optical beams.
- the multiple optical beams may have different wavelengths from one another. For example, a first optical source may generate a first optical beam having a first wavelength and a second optical source may generate a second optical beam having a second wavelength that is different than the first wavelength.
- the optical beam 218 is provided to a beam separator 204 that is operatively coupled to the optical source 202 .
- the beam separator 204 separates a first portion of the optical beam 218 in a first direction towards a target and a second portion of the optical beam in a second direction as a local oscillator signal 228 .
- the beam separator 204 may be a 90/10 beam separator.
- the beam separator 204 may be a 50/50 beam separator.
- the first portion of the optical beam 218 is provided to an optical amplifier 206 that is operatively coupled to the beam separator 204 .
- the optical amplifier 206 amplifies light signals of the optical beam 218 .
- the LIDAR system 200 may further include at least one optical device to route the optical beam 218 towards lens 212 and route the target signal 222 to the photodetector 226 .
- the optical device(s) include a polarization beam splitter (PBS) 208 and a polarization wave plate (PWP) 214 .
- PBS polarization beam splitter
- PWP polarization wave plate
- Other examples of suitable optical device(s) may include an optical circulator or an optical splitter/combiner.
- the optical beam 218 may pass through a polarization beam splitter (PBS) 208 that is operatively coupled to the optical amplifier 206 as non-polarized light.
- the optical beam 218 may enter into a mode field expander 210 that is operatively coupled to the PBS 208 .
- the mode field expander 210 may convert the mode area of the optical beam 218 based on the direction the optical beam passes through the mode field expander 210 . For example, when the optical beam 218 passes through the mode field expander 210 in a first direction, the mode field expander 210 may expand the mode area of the optical beam 218 and when the optical beam passes through the mode field expander 210 in the opposite direction, the mode field expander 210 may reduce the mode area of the optical beam 218 .
- the mode field expander 210 may be an adiabatic mode expander. In some embodiments, the mode field expander 210 may be any component configured to convert the mode area of the optical beam 218 . Referring to FIG. 2 , as the optical beam 218 passes through the mode field expander 210 towards the target 220 , the mode field expander 210 may expand the mode area of the optical beam 218 . Aspects of the mode field expander 210 will be discussed in further detail at FIGS. 4A and 4B below.
- the optical beam 218 may be provided to a lens 212 to focus/collimate the optical beam 218 .
- the optical beam 218 may be provided to a polarization wave plate (PWP) 214 that transforms the polarization of the optical beam 218 .
- PWP polarization wave plate
- the polarization of the optical beam 218 may be transformed to a circular polarization.
- an optical isolator may be utilized to transform the polarization of the optical beam 218 and/or redirect the optical beam 218 rather than a PWP and/or PBS.
- the optical beam 218 may be transmitted towards a target 220 via a scanner 216 (e.g., optical scanner 102 of FIG. 1 ).
- a scanner 216 e.g., optical scanner 102 of FIG. 1
- the optical beam 218 hits the target 220
- a portion of the beam is returned back to the LIDAR system 200 as a target signal 222 .
- the target signal 222 passes through the scanner 216 , PWP 214 and lens 212 , where the target signal is received by the mode field expander 210 .
- the mode field expander 210 may reduce the mode area of the target signal 222 .
- the mode field expander 210 may reduce the mode area of the target signal 222 to correspond to the mode area of a single-mode fiber/waveguide.
- the target signal 222 is received by PBS 208 . Because the polarization of the target signal 222 is transformed by PWP 214 , the target signal 222 is reflected by PBS 208 rather than passing through PBS 208 . The target signal 222 is reflected by PBS 208 towards a beam combiner 224 .
- the beam combiner 224 receives the target signal 222 and the local oscillator signal 228 and produces a combined signal that includes both the target signal 222 and the local oscillator signal 228 . In embodiments, the beam combiner 224 may be a 50/50 or 90/10 beam combiner.
- the combined signal is then received by a photodetector 226 for subsequent analysis, as previously described.
- FIG. 3 illustrates aspects of a LIDAR system 300 in accordance with other embodiments of the present disclosure.
- the components of LIDAR system 300 may be similar to the components of LIDAR system 200 .
- the local oscillator signal 228 may be reproduced by a reflective surface of PWP 214 .
- PWP 214 may reflect a portion of the optical beam in a direction towards optical source 202 .
- a separate mirror, micro-lens array, filter or reflective coating on PWP 214 may be used. The reflected portion of the optical beam becomes the local oscillator signal 228 for interference with the returned target signal 222 .
- PBS 208 reflects the local oscillator signal 228 in a direction towards beam combiner 224 rather than allowing the local oscillator signal 228 to pass through PBS 208 .
- FIG. 4 illustrates aspects of a LIDAR system 400 in accordance with some embodiments of the present disclosure.
- the components of LIDAR system 400 may be similar to the components of LIDAR system 200 .
- the mode field adapter 210 is placed in the path of the target signal 222 after the target signal 222 has been directed by PBS 208 towards photodetector 226 .
- the mode field expander 210 expands the mode area of the target signal 222 .
- the target signal 222 is provided to a beam combiner 224 , where the target signal 222 having the expanded mode area is combined with local oscillator signal 228 .
- the combined signal is then provided to photodetector 226 for subsequent analysis.
- FIG. 5A is an illustration 500 of an example of a mode field expander expanding a mode area of an outgoing optical beam in accordance with embodiments of the disclosure.
- the mode field expander 210 may be an adiabatic mode expander (AME). The conversion of the mode area preserves the low loss single-mode properties of the optical beam 218 .
- AME adiabatic mode expander
- FIG. 5B is an illustration 550 of an example of a mode field expander reducing a mode area of an incoming target signal in accordance with embodiments of the disclosure.
- the mode area of the target signal 222 is reduced to the mode area of the single-mode fiber/waveguides of LIDAR system components. Reducing the mode area of the target signal 222 to the mode area of the single-mode fiber/waveguides increases the coupling efficiency of the target signal 222 and the single-mode fiber/waveguides while providing a low loss of the target signal 222 .
- FIG. 6 depicts a flow diagram of a method 600 for utilizing a mode field expander to convert the mode area of incoming and outgoing light of a LIDAR system in accordance with implementations of the present disclosure.
- various portions of method 600 may be performed by LIDAR systems 100 , 200 , 300 and/or 400 of FIGS. 1, 2, 3 and 4 respectively.
- method 600 illustrates example functions used by various embodiments. Although specific function blocks (“blocks”) are disclosed in method 600 , such blocks are examples. That is, embodiments are well suited to performing various other blocks or variations of the blocks recited in method 600 . It is appreciated that the blocks in method 600 may be performed in an order different than presented, and that not all of the blocks in method 600 may be performed.
- an optical source generates an optical beam towards a target.
- a mode field expander expands a mode area associated with the optical beam as the optical beam travels towards the target.
- the mode field expander may expand the mode area of the optical beam to a fundamental mode of a large mode area waveguide/fiber.
- the mode field expander receives a target signal associated with a reflection of the optical beam by the target. The reflected target signal may be captured using the large mode area portion of the mode field expander.
- the mode field expander reduces the mode area of the target signal as the target signal returns from the target.
- the mode field expander may reduce the mode area of the target signal to correspond to the mode area of the single-mode fiber/waveguide components of the LIDAR system.
- a beam combiner generates a combined signal including the target signal and a local oscillator signal.
- the local oscillator signal and target signal may be combined by lensing optics of the LIDAR system. Accordingly, in such embodiments, block 610 may not be performed.
- the combined signal is provided to a photodetector for analysis.
- the term “or” is intended to mean an inclusive “or” rather than an exclusive “or”. That is, unless specified otherwise, or clear from context, “X includes A or B” is intended to mean any of the natural inclusive permutations. That is, if X includes A; X includes B; or X includes both A and B, then “X includes A or B” is satisfied under any of the foregoing instances.
- the articles “a” and “an” as used in this application and the appended claims should generally be construed to mean “one or more” unless specified otherwise or clear from context to be directed to a singular form.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Computer Networks & Wireless Communication (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Electromagnetism (AREA)
- Optical Radar Systems And Details Thereof (AREA)
- Mechanical Optical Scanning Systems (AREA)
Abstract
Description
- The present disclosure relates generally to light detection and ranging (LIDAR) that provides range (and for some types a simultaneous measurement of velocity) across two dimensions.
- Fast-scanning mirrors are the primary components used to illuminate a scene in most conventional LIDAR systems. One mirror typically scans quickly along the X direction (azimuth), while another mirror scans slowly along the Y direction (elevation). Light emission and detection from target reflections are done coaxially, typically via a single mode fiber. The collected light has a measured delay or an altered frequency signature that is used to extract range, and potentially velocity, information. A 3D point cloud can be established when the point-wise detected range information is combined with angular position feedback from the scanning mirrors.
- To achieve higher frame rates, the mirror's angular velocity is increased, especially that of the scanner in faster scan direction (X scanner in our case). When using the mirrors with a high angular velocity and single-mode fiber-based detection, the target signal from distant objects is severely degraded. Signal degradation is mainly due to the difference in angular position of the scanner mirror from the launch time of the optical signal (pulsed or frequency swept) to the collection time of the same signal from a distant scattering target. This slight angular change causes a walk-off of the target signal at the fiber tip decreasing the coupling efficiency, which manifests itself as a weaker signal detection. Such degradation becomes more severe as the fiber diameter decreases, e.g. a single mode fiber with ˜10 μm diameter, or as the mirror's angular velocity increases.
- The present disclosure includes, without limitation, the following example implementations.
- Some example implementations provide a light detection and ranging (LIDAR) apparatus including an optical source to emit an optical beam towards a target and a mode field expander operatively coupled to the optical source to expand a mode area of the optical beam.
- Some example implementations provide a method including generating, by an optical source of a light detection and ranging (LIDAR) system, an optical beam towards a target and converting, by a mode field expander operatively coupled to the optical source, a mode area associated with the optical beam.
- These and other features, aspects, and advantages of the present disclosure will be apparent from a reading of the following detailed description together with the accompanying figures, which are briefly described below. The present disclosure includes any combination of two, three, four or more features or elements set forth in this disclosure, regardless of whether such features or elements are expressly combined or otherwise recited in a specific example implementation described herein. This disclosure is intended to be read holistically such that any separable features or elements of the disclosure, in any of its aspects and example implementations, should be viewed as combinable unless the context of the disclosure clearly dictates otherwise.
- It will therefore be appreciated that this Brief Summary is provided merely for purposes of summarizing some example implementations so as to provide a basic understanding of some aspects of the disclosure. Accordingly, it will be appreciated that the above described example implementations are merely examples and should not be construed to narrow the scope or spirit of the disclosure in any way. Other example implementations, aspects, and advantages will become apparent from the following detailed description taken in conjunction with the accompanying figures which illustrate, by way of example, the principles of some described example implementations.
- Embodiments and implementations of the present disclosure will be understood more fully from the detailed description given below and from the accompanying drawings of various aspects and implementations of the disclosure, which, however, should not be taken to limit the disclosure to the specific embodiments or implementations, but are for explanation and understanding only.
-
FIG. 1 illustrates a LIDAR system according to example implementations of the present disclosure. -
FIG. 2 illustrates aspects of a LIDAR system in accordance with embodiments of the present disclosure. -
FIG. 3 illustrates aspects of a LIDAR system in accordance with other embodiments of the present disclosure. -
FIG. 4 illustrates aspects of a LIDAR system in accordance with some embodiments of the present disclosure. -
FIG. 5A is an illustration of an example of a mode field expander expanding a mode area of an outgoing optical beam in accordance with embodiments of the disclosure. -
FIG. 5B is an illustration of an example of a mode field expander reducing a mode area of an incoming target signal in accordance with embodiments of the disclosure. -
FIG. 6 depicts a flow diagram of a method for utilizing a mode field expander to convert the mode area of incoming and outgoing light of a LIDAR system in accordance with implementations of the present disclosure. - Example implementations of the present disclosure are directed to an improved scanning LIDAR system. Example implementations of the present disclosure are based on a type of LIDAR that uses frequency modulation (FM) and coherent detection to overcome the shortcomings of traditional LIDAR systems and the limitations of prior FM LIDAR systems. Historically, FM LIDAR systems suffer from significant losses in the beam's return path; thus, such systems, which are often quite bulky, require a higher average beam output power to measure distances comparable to time-of-flight (TOF) LIDAR systems. However, the range is limited by the operating distance for eye-safe output powers.
- Example implementations of the present disclosure are configured to simultaneously measure the range and velocity by scanning illumination beams over an environment and combining returning light (also referred to as “target signals” hereafter) with a local oscillator (LO) signal.
- As described above, signal degradation resulting from the difference in angular position of the scanner mirror from the launch time of the optical signal to the collection time of the target signal (also referred to as “lag angle” hereafter) is worsened as the diameter of fiber or waveguides of an FM LIDAR system decrease. As the diameter decreases, the detected portion of mode area of the target signal also decreases. Furthermore, minimally reflective targets at a distance may be more difficult to detect by the FM LIDAR system as the diameter of the fiber or waveguides decrease because the mode area of incoming light is restricted by the diameter of the fiber/waveguides. Because the mode area of incoming light is larger than the single mode fiber/waveguides, the incoming light's chief ray is displaced off center with respect to the optical axis of the fiber tip. This displacement results in a reduced coupling efficiency of the incoming light (e.g., target signal) into the single-mode fiber/waveguide of the components of the LIDAR system. Accordingly, to compensate for these effects, it may be desirable to increase the diameter of the fiber/waveguides of the FM LIDAR system. For example, it may be desirable to use multi-mode fiber in an FM LIDAR system rather than a single-mode fiber, which has a smaller diameter than multi-mode fiber. However, conventional components of an FM LIDAR system are manufactured using single-mode fiber/waveguides, limiting the diameter of the fiber/waveguides of a conventional FM LIDAR system. Moreover, the highest spatial overlap (e.g., highest mixing efficiency) between the LO signal and target beam is achieved when the LO signal and target beam are mixed (e.g., combined) in a single mode fiber.
- Example implementations of the present disclosure address the above and other deficiencies by an FM LIDAR system by converting the mode area of a target signal using a mode field expander. An optical source of the FM LIDAR system generates an optical beam towards a target via single-mode fiber. A mode field converter is operatively coupled to the optical source via a single-mode fiber/waveguide to receive the optical beam. The mode field expander increases the mode area of the optical beam as the optical beam passes through the mode field expander towards the target. The optical beam having the larger mode area travels to the target, where a portion of the optical beam is reflected back towards the FM LIDAR system by the target as a target signal.
- The target signal is received by the larger mode area portion of the mode field expander. The mode field expander decreases the mode area of the target signal to correspond to the mode area of the single mode fiber/waveguide, increasing the coupling efficiency of the target signal and the single-mode fiber/waveguide and reducing losses in the target signal. The target signal is then combined with a LO signal and the combined signal is provided to photodetector for analysis.
- Accordingly, by using a mode field expander to convert the mode area of the optical beam and target signal, the performance of the FM LIDAR system is improved. Because the mode field converter increases the mode area of the optical beam and receives a larger mode area of the target signal, the effects of signal degradation and aberrations on the combined signal are reduced. Furthermore, utilizing a mode field expander allows the use of conventional single-mode fiber/waveguide components in the FM LIDAR system while eliminating the reduced coupling efficiency of the target signal and the single-mode fiber/waveguide, improving the manufacturing capabilities and performance of the FM LIDAR system.
- Although embodiments of the disclosure describe a mode field expander being utilized by a FM LIDAR system, aspects of the disclosure may be utilized by other types of LIDAR systems, such as time of flight (TOF) LIDAR systems.
-
FIG. 1 illustrates a LIDARsystem 100 according to example implementations of the present disclosure. The LIDARsystem 100 includes one or more of each of a number of components, but may include fewer or additional components than shown inFIG. 1 . The LIDARsystem 100 may be implemented in any sensing market, such as, but not limited to, transportation, manufacturing, metrology, medical, and security systems. For example, in the automotive industry, the described beam delivery system becomes the front-end of frequency modulated continuous-wave (FMCW) devices that can assist with spatial awareness for automated driver assist systems, or self-driving vehicles. As shown, theLIDAR system 100 includesoptical circuits 101. Theoptical circuits 101 may include a combination of active optical components and passive optical components. Active optical components may generate, amplify, or detect optical signals and the like. In some examples, the active optical circuit includes optical beams at different wavelengths, one or more optical amplifiers, one or more optical detectors, or the like. - Passive optical circuits may include one or more optical fibers to carry optical signals, and route and manipulate optical signals to appropriate input/output ports of the active optical circuit. The passive optical circuits may also include one or more fiber components such as taps, wavelength division multiplexers, splitters/combiners, polarization beam splitters, collimators or the like. In some embodiments, as discussed further below, the passive optical circuits may include components to transform the polarization state and direct received polarized light to optical detectors using a PBS.
- An
optical scanner 102 may include one or more scanning mirrors that are rotatable along respective orthogonal axes to steer optical signals to scan an environment according to a scanning pattern. For instance, the scanning mirrors may be rotatable by one or more galvanometers. In some embodiments, other types of optical scanners may be used, such as acousto-optic, electro-optic, resonant or polygonal scanners. Theoptical scanner 102 collects light incident upon any objects in the environment into a return optical beam that is returned to the passive optical circuit component of theoptical circuits 101. For example, the return optical beam may be directed to an optical detector by a polarization beam splitter or an optical circulator. In addition to the mirrors and galvanometers, the optical scanning system may include components such as a quarter-wave plate, lens, anti-reflective coated window or the like. - To control and support the
optical circuits 101 andoptical scanner 102, theLIDAR system 100 includes aLIDAR control systems 110. TheLIDAR control systems 110 may include a processing device for theLIDAR system 100. In embodiments, the processing device may be one or more general-purpose processing devices such as a microprocessor, central processing unit, or the like. More particularly, the processing device may be complex instruction set computing (CISC) microprocessor, reduced instruction set computer (RISC) microprocessor, very long instruction word (VLIW) microprocessor, or processor implementing other instruction sets, or processors implementing a combination of instruction sets. The processing device may also be one or more special-purpose processing devices such as an application specific integrated circuit (ASIC), a field programmable gate array (FPGA), a digital signal processor (DSP), network processor, or the like. - In some embodiments, the
LIDAR control systems 110 may include a signal processing unit 112 such as a digital signal processor. TheLIDAR control systems 110 are configured to output digital control signals to controloptical drivers 103. In some embodiments, the digital control signals may be converted to analog signals throughsignal conversion unit 106. For example, thesignal conversion unit 106 may include a digital-to-analog converter. Theoptical drivers 103 may then provide drive signals to active components ofoptical circuits 101 to drive optical sources such as optical beams and amplifiers. In some embodiments, severaloptical drivers 103 andsignal conversion units 106 may be provided to drive multiple optical sources. - The
LIDAR control systems 110 are also configured to output digital control signals for theoptical scanner 102. Amotion control system 105 may control the galvanometers of theoptical scanner 102 based on control signals received from theLIDAR control systems 110. For example, a digital-to-analog converter may convert coordinate routing information from theLIDAR control systems 110 to signals interpretable by the galvanometers in theoptical scanner 102. In some embodiments, amotion control system 105 may also return information to theLIDAR control systems 110 about the position or operation of components of theoptical scanner 102. For example, an analog-to-digital converter may in turn convert information about the galvanometers' position to a signal interpretable by theLIDAR control systems 110. - The
LIDAR control systems 110 are further configured to analyze incoming digital signals. In this regard, theLIDAR system 100 includesoptical receivers 104 to measure one or more beams received byoptical circuits 101. For example, a reference beam receiver may measure the amplitude of a reference beam from the active optical circuit, and an analog-to-digital converter converts signals from the reference receiver to signals interpretable by theLIDAR control systems 110. Target receivers measure the optical signal that carries information about the range and velocity of a target in the form of a beat frequency, modulated optical signal. The reflected beam may be mixed with a second signal from a local oscillator. Theoptical receivers 104 may include a high-speed analog-to-digital converter to convert signals from the target receiver to signals interpretable by theLIDAR control systems 110. - In some applications, the
LIDAR system 100 may additionally include one ormore imaging devices 108 configured to capture images of the environment, aglobal positioning system 109 configured to provide a geographic location of the system, or other sensor inputs. TheLIDAR system 100 may also include animage processing system 114. Theimage processing system 114 can be configured to receive the images and geographic location, and send the images and location or information related thereto to theLIDAR control systems 110 or other systems connected to theLIDAR system 100. - In operation according to some examples, the
LIDAR system 100 is configured to use nondegenerate optical sources to simultaneously measure range and velocity across two dimensions. This capability allows for real-time, long range measurements of range, velocity, azimuth, and elevation of the surrounding environment. In some example implementations, the system points multiple modulated optical beams to the same target. - In some examples, the scanning process begins with the
optical drivers 103 andLIDAR control systems 110. TheLIDAR control systems 110 instruct theoptical drivers 103 to independently modulate one or more optical beams, and these modulated signals propagate through the passive optical circuit to the collimator. The collimator directs the light at the optical scanning system that scans the environment over a preprogrammed pattern defined by the motion control subsystem. The optical circuits may also include a polarization wave plate to transform the polarization of the light as it leaves theoptical circuits 101. In embodiments, the polarization wave plate may be a quarter-wave plate or a half-wave plate. A portion of the polarized light may also be reflected back to theoptical circuits 101. For example lensing or collimating systems may have natural reflective properties or a reflective coating to reflect a portion of the light back to theoptical circuits 101. - Optical signals reflected back from the environment pass through the
optical circuits 101 to the receivers. Because the polarization of the light has been transformed, it may be reflected by a polarization beam splitter along with the portion of polarized light that was reflected back to theoptical circuits 101. Accordingly, rather than returning to the same fiber or waveguide as an optical source, the reflected light is reflected to separate optical receivers. These signals interfere with one another and generate a combined signal. Each beam signal that returns from the target produces a time-shifted waveform. The temporal phase difference between the two waveforms generates a beat frequency measured on the optical receivers (photodetectors). The combined signal can then be reflected to theoptical receivers 104. Configuration ofoptical circuits 101 for polarizing and directing beams to theoptical receivers 104 are described further below. - The analog signals from the
optical receivers 104 are converted to digital signals using ADCs. The digital signals are then sent to theLIDAR control systems 110. A signal processing unit 112 may then receive the digital signals and interpret them. In some embodiments, the signal processing unit 112 also receives position data from themotion control system 105 and galvanometer (not shown) as well as image data from theimage processing system 114. The signal processing unit 112 can then generate a 3D point cloud with information about range and velocity of points in the environment as theoptical scanner 102 scans additional points. The signal processing unit 112 can also overlay a 3D point cloud data with the image data to determine velocity and distance of objects in the surrounding area. The system also processes the satellite-based navigation location data to provide a precise global location. -
FIG. 2 illustrates aspects of aLIDAR system 200 in accordance with embodiments of the present disclosure. In embodiments, one or more components ofLIDAR system 200 may be implemented in aphotonic chip 230. As shown, anoptical source 202 generates anoptical beam 218. In some embodiments, multiple optical sources may be used to generate multiple optical beams. In embodiments, the multiple optical beams may have different wavelengths from one another. For example, a first optical source may generate a first optical beam having a first wavelength and a second optical source may generate a second optical beam having a second wavelength that is different than the first wavelength. Theoptical beam 218 is provided to abeam separator 204 that is operatively coupled to theoptical source 202. Thebeam separator 204 separates a first portion of theoptical beam 218 in a first direction towards a target and a second portion of the optical beam in a second direction as alocal oscillator signal 228. In some embodiments, thebeam separator 204 may be a 90/10 beam separator. In embodiments, thebeam separator 204 may be a 50/50 beam separator. - The first portion of the
optical beam 218 is provided to anoptical amplifier 206 that is operatively coupled to thebeam separator 204. Theoptical amplifier 206 amplifies light signals of theoptical beam 218. TheLIDAR system 200 may further include at least one optical device to route theoptical beam 218 towardslens 212 and route thetarget signal 222 to thephotodetector 226. As shown, the optical device(s) include a polarization beam splitter (PBS) 208 and a polarization wave plate (PWP) 214. Other examples of suitable optical device(s) may include an optical circulator or an optical splitter/combiner. - The
optical beam 218 may pass through a polarization beam splitter (PBS) 208 that is operatively coupled to theoptical amplifier 206 as non-polarized light. Theoptical beam 218 may enter into amode field expander 210 that is operatively coupled to thePBS 208. Themode field expander 210 may convert the mode area of theoptical beam 218 based on the direction the optical beam passes through themode field expander 210. For example, when theoptical beam 218 passes through themode field expander 210 in a first direction, themode field expander 210 may expand the mode area of theoptical beam 218 and when the optical beam passes through themode field expander 210 in the opposite direction, themode field expander 210 may reduce the mode area of theoptical beam 218. In embodiments, themode field expander 210 may be an adiabatic mode expander. In some embodiments, themode field expander 210 may be any component configured to convert the mode area of theoptical beam 218. Referring toFIG. 2 , as theoptical beam 218 passes through themode field expander 210 towards thetarget 220, themode field expander 210 may expand the mode area of theoptical beam 218. Aspects of themode field expander 210 will be discussed in further detail atFIGS. 4A and 4B below. - The
optical beam 218 may be provided to alens 212 to focus/collimate theoptical beam 218. Theoptical beam 218 may be provided to a polarization wave plate (PWP) 214 that transforms the polarization of theoptical beam 218. For example, the polarization of theoptical beam 218 may be transformed to a circular polarization. In some embodiments, an optical isolator may be utilized to transform the polarization of theoptical beam 218 and/or redirect theoptical beam 218 rather than a PWP and/or PBS. - Upon transforming the polarization of the light, the
optical beam 218 may be transmitted towards atarget 220 via a scanner 216 (e.g.,optical scanner 102 ofFIG. 1 ). When theoptical beam 218 hits thetarget 220, a portion of the beam is returned back to theLIDAR system 200 as atarget signal 222. Thetarget signal 222 passes through thescanner 216,PWP 214 andlens 212, where the target signal is received by themode field expander 210. Because thetarget signal 222 is moving in the opposite direction through themode field expander 210 as theoptical beam 218, themode field expander 210 may reduce the mode area of thetarget signal 222. In embodiments, themode field expander 210 may reduce the mode area of thetarget signal 222 to correspond to the mode area of a single-mode fiber/waveguide. - After passing through the
mode field expander 210, thetarget signal 222 is received byPBS 208. Because the polarization of thetarget signal 222 is transformed byPWP 214, thetarget signal 222 is reflected byPBS 208 rather than passing throughPBS 208. Thetarget signal 222 is reflected byPBS 208 towards abeam combiner 224. Thebeam combiner 224 receives thetarget signal 222 and thelocal oscillator signal 228 and produces a combined signal that includes both thetarget signal 222 and thelocal oscillator signal 228. In embodiments, thebeam combiner 224 may be a 50/50 or 90/10 beam combiner. The combined signal is then received by aphotodetector 226 for subsequent analysis, as previously described. -
FIG. 3 illustrates aspects of aLIDAR system 300 in accordance with other embodiments of the present disclosure. The components ofLIDAR system 300 may be similar to the components ofLIDAR system 200. However, rather than utilizing a beam separator (e.g., beam separator 204) to produce alocal oscillator signal 228, thelocal oscillator signal 228 may be reproduced by a reflective surface ofPWP 214. For example,PWP 214 may reflect a portion of the optical beam in a direction towardsoptical source 202. In some embodiments, a separate mirror, micro-lens array, filter or reflective coating onPWP 214 may be used. The reflected portion of the optical beam becomes thelocal oscillator signal 228 for interference with the returnedtarget signal 222. - Similar to the
target signal 222 inFIG. 2 , because the polarization of thelocal oscillator signal 228 has been transformed,PBS 208 reflects thelocal oscillator signal 228 in a direction towardsbeam combiner 224 rather than allowing thelocal oscillator signal 228 to pass throughPBS 208. -
FIG. 4 illustrates aspects of aLIDAR system 400 in accordance with some embodiments of the present disclosure. The components ofLIDAR system 400 may be similar to the components ofLIDAR system 200. However, rather than having themode field expander 210 in the path of theoptical beam 218 and thetarget signal 222, themode field adapter 210 is placed in the path of thetarget signal 222 after thetarget signal 222 has been directed byPBS 208 towardsphotodetector 226. - As the
target signal 222 passes through themode field expander 210, themode field expander 210 expands the mode area of thetarget signal 222. Thetarget signal 222 is provided to abeam combiner 224, where thetarget signal 222 having the expanded mode area is combined withlocal oscillator signal 228. The combined signal is then provided tophotodetector 226 for subsequent analysis. -
FIG. 5A is anillustration 500 of an example of a mode field expander expanding a mode area of an outgoing optical beam in accordance with embodiments of the disclosure. - Referring to
FIG. 5A , as anoptical beam 218 passes through themode field expander 210, the mode area of theoptical beam 218 is converted to the fundamental mode of a larger mode area fiber/waveguide. In embodiments, themode field expander 210 may be an adiabatic mode expander (AME). The conversion of the mode area preserves the low loss single-mode properties of theoptical beam 218. -
FIG. 5B is anillustration 550 of an example of a mode field expander reducing a mode area of an incoming target signal in accordance with embodiments of the disclosure. - Referring to
FIG. 5B , as atarget signal 222 passes through themode field expander 210, the mode area of thetarget signal 222 is reduced to the mode area of the single-mode fiber/waveguides of LIDAR system components. Reducing the mode area of thetarget signal 222 to the mode area of the single-mode fiber/waveguides increases the coupling efficiency of thetarget signal 222 and the single-mode fiber/waveguides while providing a low loss of thetarget signal 222. -
FIG. 6 depicts a flow diagram of amethod 600 for utilizing a mode field expander to convert the mode area of incoming and outgoing light of a LIDAR system in accordance with implementations of the present disclosure. In embodiments, various portions ofmethod 600 may be performed byLIDAR systems FIGS. 1, 2, 3 and 4 respectively. - With reference to
FIG. 6 ,method 600 illustrates example functions used by various embodiments. Although specific function blocks (“blocks”) are disclosed inmethod 600, such blocks are examples. That is, embodiments are well suited to performing various other blocks or variations of the blocks recited inmethod 600. It is appreciated that the blocks inmethod 600 may be performed in an order different than presented, and that not all of the blocks inmethod 600 may be performed. - At
block 602, an optical source generates an optical beam towards a target. Atblock 604, a mode field expander expands a mode area associated with the optical beam as the optical beam travels towards the target. For example, the mode field expander may expand the mode area of the optical beam to a fundamental mode of a large mode area waveguide/fiber. Atblock 606, the mode field expander receives a target signal associated with a reflection of the optical beam by the target. The reflected target signal may be captured using the large mode area portion of the mode field expander. - At
block 608, the mode field expander reduces the mode area of the target signal as the target signal returns from the target. In embodiments, the mode field expander may reduce the mode area of the target signal to correspond to the mode area of the single-mode fiber/waveguide components of the LIDAR system. Atblock 610, a beam combiner generates a combined signal including the target signal and a local oscillator signal. For some embodiments, such as the embodiment described atFIG. 3 , the local oscillator signal and target signal may be combined by lensing optics of the LIDAR system. Accordingly, in such embodiments, block 610 may not be performed. Atblock 612, the combined signal is provided to a photodetector for analysis. - The preceding description sets forth numerous specific details such as examples of specific systems, components, methods, and so forth, in order to provide a good understanding of several embodiments of the present disclosure. It will be apparent to one skilled in the art, however, that at least some embodiments of the present disclosure may be practiced without these specific details. In other instances, well-known components or methods are not described in detail or are presented in simple block diagram format in order to avoid unnecessarily obscuring the present disclosure. Thus, the specific details set forth are merely exemplary. Particular embodiments may vary from these exemplary details and still be contemplated to be within the scope of the present disclosure.
- Reference throughout this specification to “one embodiment” or “an embodiment” means that a particular feature, structure, or characteristic described in connection with the embodiments included in at least one embodiment. Thus, the appearances of the phrase “in one embodiment” or “in an embodiment” in various places throughout this specification are not necessarily all referring to the same embodiment. In addition, the term “or” is intended to mean an inclusive “or” rather than an exclusive or.
- Although the operations of the methods herein are shown and described in a particular order, the order of the operations of each method may be altered so that certain operations may be performed in an inverse order or so that certain operation may be performed, at least in part, concurrently with other operations. In another embodiment, instructions or sub-operations of distinct operations may be in an intermittent or alternating manner.
- The above description of illustrated implementations of the invention, including what is described in the Abstract, is not intended to be exhaustive or to limit the invention to the precise forms disclosed. While specific implementations of, and examples for, the invention are described herein for illustrative purposes, various equivalent modifications are possible within the scope of the invention, as those skilled in the relevant art will recognize. The words “example” or “exemplary” are used herein to mean serving as an example, instance, or illustration. Any aspect or design described herein as “example” or “exemplary” is not necessarily to be construed as preferred or advantageous over other aspects or designs. Rather, use of the words “example” or “exemplary” is intended to present concepts in a concrete fashion. As used in this application, the term “or” is intended to mean an inclusive “or” rather than an exclusive “or”. That is, unless specified otherwise, or clear from context, “X includes A or B” is intended to mean any of the natural inclusive permutations. That is, if X includes A; X includes B; or X includes both A and B, then “X includes A or B” is satisfied under any of the foregoing instances. In addition, the articles “a” and “an” as used in this application and the appended claims should generally be construed to mean “one or more” unless specified otherwise or clear from context to be directed to a singular form. Moreover, use of the term “an embodiment” or “one embodiment” or “an implementation” or “one implementation” throughout is not intended to mean the same embodiment or implementation unless described as such. Furthermore, the terms “first,” “second,” “third,” “fourth,” etc. as used herein are meant as labels to distinguish among different elements and may not necessarily have an ordinal meaning according to their numerical designation.
Claims (20)
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/359,217 US11385332B2 (en) | 2019-03-20 | 2019-03-20 | LIDAR system with a mode field expander |
PCT/US2020/020665 WO2020236241A2 (en) | 2019-03-20 | 2020-03-02 | Lidar system with a mode field expander |
JP2021556887A JP7419394B2 (en) | 2019-03-20 | 2020-03-02 | LIDAR system with mode field expander |
CN202080036907.7A CN113841062B (en) | 2019-03-20 | 2020-03-02 | LIDAR system with mode field expander |
KR1020217033808A KR102628929B1 (en) | 2019-03-20 | 2020-03-02 | LIDAR system with mode field expander |
EP20772141.6A EP3942325A2 (en) | 2019-03-20 | 2020-03-02 | Lidar system with a mode field expander |
US17/826,774 US11965983B2 (en) | 2019-03-20 | 2022-05-27 | Techniques for mode area expansion of optical beam in a LIDAR system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/359,217 US11385332B2 (en) | 2019-03-20 | 2019-03-20 | LIDAR system with a mode field expander |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/826,774 Continuation US11965983B2 (en) | 2019-03-20 | 2022-05-27 | Techniques for mode area expansion of optical beam in a LIDAR system |
Publications (2)
Publication Number | Publication Date |
---|---|
US20200300980A1 true US20200300980A1 (en) | 2020-09-24 |
US11385332B2 US11385332B2 (en) | 2022-07-12 |
Family
ID=72515712
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/359,217 Active 2040-09-26 US11385332B2 (en) | 2019-03-20 | 2019-03-20 | LIDAR system with a mode field expander |
US17/826,774 Active US11965983B2 (en) | 2019-03-20 | 2022-05-27 | Techniques for mode area expansion of optical beam in a LIDAR system |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/826,774 Active US11965983B2 (en) | 2019-03-20 | 2022-05-27 | Techniques for mode area expansion of optical beam in a LIDAR system |
Country Status (6)
Country | Link |
---|---|
US (2) | US11385332B2 (en) |
EP (1) | EP3942325A2 (en) |
JP (1) | JP7419394B2 (en) |
KR (1) | KR102628929B1 (en) |
CN (1) | CN113841062B (en) |
WO (1) | WO2020236241A2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10948598B1 (en) * | 2020-11-25 | 2021-03-16 | Aeva, Inc. | Coherent LiDAR system utilizing polarization-diverse architecture |
US11105904B1 (en) * | 2020-10-30 | 2021-08-31 | Aeva, Inc. | Techniques for mitigating lag-angle effects for LIDARs scans |
US11467271B2 (en) * | 2019-12-23 | 2022-10-11 | Silc Technologies, Inc. | Lidar system with separation of signals by polarization angle |
US11536813B1 (en) * | 2022-06-16 | 2022-12-27 | Aeva, Inc. | Techniques for descan compensation in a FMCW LiDAR system |
CN116087915A (en) * | 2023-04-10 | 2023-05-09 | 深圳市速腾聚创科技有限公司 | Optical chip, laser radar, automatic driving system and movable equipment |
US11675085B1 (en) * | 2022-10-31 | 2023-06-13 | Aeva, Inc. | Techniques for beam pattern adjustments in a LIDAR system |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116087914B (en) * | 2023-04-10 | 2023-08-04 | 深圳市速腾聚创科技有限公司 | Laser radar and mobile device |
Family Cites Families (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4846571A (en) | 1986-11-03 | 1989-07-11 | Raytheon Company | AM-FM laser |
JPH08122057A (en) * | 1994-10-27 | 1996-05-17 | Kubota Corp | Optical range-finding device |
US6122106A (en) * | 1998-08-07 | 2000-09-19 | Raytheon Company | Displaced aperture beamsplitter for laser transmitter/receiver opto-mechanical system |
US6157756A (en) * | 1998-08-21 | 2000-12-05 | Ishiwata; Samford P. | Laser beam expander and beam profile converter |
JP2002098762A (en) * | 2000-09-26 | 2002-04-05 | Nikon Corp | Electro-optical distance measuring instrument |
US6556282B2 (en) * | 2001-09-04 | 2003-04-29 | Rosemount Aerospace, Inc. | Combined LOAS and LIDAR system |
JP3824218B2 (en) * | 2002-04-16 | 2006-09-20 | 三菱電機株式会社 | Coherent laser radar system |
CN100401095C (en) * | 2002-05-29 | 2008-07-09 | 肯特·L·戴尼斯 | System and method for measuring velocity using frequency modulation of laser output |
US7202942B2 (en) * | 2003-05-28 | 2007-04-10 | Doppler, Ltd. | System and method for measuring velocity using frequency modulation of laser output |
JP5478888B2 (en) * | 2005-11-10 | 2014-04-23 | オプテイカル・エア・データ・システムズ,エルエルシー | Transceiver consisting of a single aperture, multiple optical waveguide |
US7920763B1 (en) * | 2007-02-09 | 2011-04-05 | Agiltron, Inc. | Mode field expanded fiber collimator |
CN103946716B (en) * | 2011-12-21 | 2016-05-11 | 三菱电机株式会社 | Laser radar apparatus |
FR2987905B1 (en) * | 2012-03-08 | 2015-03-20 | Commissariat Energie Atomique | DEVICE FOR CONVERTING THE TRANSVERSE SPATIAL PROFILE OF INTENSITY OF A LUMINOUS BEAM, PREFERABLY USING A MICROSTRUCTURED OPTICAL FIBER |
KR101991405B1 (en) * | 2012-09-19 | 2019-06-20 | 삼성전자주식회사 | Beam shaper, a laser annealing system with the same, and method of fabricating a reflective photomask using this system |
US9618619B2 (en) * | 2012-11-21 | 2017-04-11 | Nikon Corporation | Radar systems with dual fiber coupled lasers |
US9322992B2 (en) | 2013-01-29 | 2016-04-26 | Vencore Labs, Inc. | Devices and methods for multimode light detection |
US9813158B2 (en) * | 2016-01-22 | 2017-11-07 | Nec Corporation | Multimode elliptical core optical data transmission |
US10114172B2 (en) * | 2016-06-20 | 2018-10-30 | Ofs Fitel, Llc | Multimode beam combiner |
KR20180001359A (en) | 2016-06-27 | 2018-01-04 | 에이치제이씨(주) | Bolt masking cap and manufacturing apparatus of bolt masking thereof |
KR20180013598A (en) | 2016-07-29 | 2018-02-07 | 삼성전자주식회사 | Beam steering device and optical apparatus including the same |
US10447013B2 (en) * | 2017-07-19 | 2019-10-15 | Axalume, Inc. | High-power packaged laser array |
US11187807B2 (en) | 2017-07-24 | 2021-11-30 | Intel Corporation | Precisely controlled chirped diode laser and coherent lidar system |
US10222474B1 (en) * | 2017-12-13 | 2019-03-05 | Soraa Laser Diode, Inc. | Lidar systems including a gallium and nitrogen containing laser light source |
-
2019
- 2019-03-20 US US16/359,217 patent/US11385332B2/en active Active
-
2020
- 2020-03-02 KR KR1020217033808A patent/KR102628929B1/en active IP Right Grant
- 2020-03-02 WO PCT/US2020/020665 patent/WO2020236241A2/en unknown
- 2020-03-02 CN CN202080036907.7A patent/CN113841062B/en active Active
- 2020-03-02 EP EP20772141.6A patent/EP3942325A2/en active Pending
- 2020-03-02 JP JP2021556887A patent/JP7419394B2/en active Active
-
2022
- 2022-05-27 US US17/826,774 patent/US11965983B2/en active Active
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11467271B2 (en) * | 2019-12-23 | 2022-10-11 | Silc Technologies, Inc. | Lidar system with separation of signals by polarization angle |
US11105904B1 (en) * | 2020-10-30 | 2021-08-31 | Aeva, Inc. | Techniques for mitigating lag-angle effects for LIDARs scans |
US11422243B2 (en) | 2020-10-30 | 2022-08-23 | Aeva, Inc. | Techniques for using waveguide angles in a LIDAR system |
US10948598B1 (en) * | 2020-11-25 | 2021-03-16 | Aeva, Inc. | Coherent LiDAR system utilizing polarization-diverse architecture |
US11047983B1 (en) | 2020-11-25 | 2021-06-29 | Aeva, Inc. | Coherent LiDAR system utilizing a non-reciprocal optical element |
US12066536B2 (en) | 2020-11-25 | 2024-08-20 | Aeva, Inc. | LiDAR system with optical circulator |
US11536813B1 (en) * | 2022-06-16 | 2022-12-27 | Aeva, Inc. | Techniques for descan compensation in a FMCW LiDAR system |
US11977187B2 (en) | 2022-06-16 | 2024-05-07 | Aeva, Inc. | Techniques for FMCW LiDAR system descan compensation |
US11675085B1 (en) * | 2022-10-31 | 2023-06-13 | Aeva, Inc. | Techniques for beam pattern adjustments in a LIDAR system |
US12055636B2 (en) | 2022-10-31 | 2024-08-06 | Aeva, Inc. | Techniques for adjusting a beam pattern in a LIDAR system |
CN116087915A (en) * | 2023-04-10 | 2023-05-09 | 深圳市速腾聚创科技有限公司 | Optical chip, laser radar, automatic driving system and movable equipment |
Also Published As
Publication number | Publication date |
---|---|
EP3942325A2 (en) | 2022-01-26 |
CN113841062B (en) | 2024-03-01 |
KR102628929B1 (en) | 2024-01-23 |
US11385332B2 (en) | 2022-07-12 |
CN113841062A (en) | 2021-12-24 |
JP7419394B2 (en) | 2024-01-22 |
WO2020236241A3 (en) | 2020-12-30 |
KR20210137567A (en) | 2021-11-17 |
WO2020236241A2 (en) | 2020-11-26 |
US20220291354A1 (en) | 2022-09-15 |
US11965983B2 (en) | 2024-04-23 |
JP2022527888A (en) | 2022-06-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US12078759B2 (en) | Techniques for spectral scanning in a LIDAR system | |
US11754681B2 (en) | LIDAR system with a multi-mode waveguide photodetector | |
US11965983B2 (en) | Techniques for mode area expansion of optical beam in a LIDAR system | |
US11709240B2 (en) | Descan compensation in scanning LIDAR | |
US11768280B2 (en) | Use of conjugate focal plane to generate target information in a LIDAR system | |
US11105904B1 (en) | Techniques for mitigating lag-angle effects for LIDARs scans | |
US20240248187A1 (en) | Techniques for scan pattern beam alignment | |
US20230049443A1 (en) | Techniques for processing a target return signal using free-space optics | |
US11536813B1 (en) | Techniques for descan compensation in a FMCW LiDAR system | |
US20240255722A1 (en) | Techniques for alignment of target and local oscillator beams to photodiode detector | |
US11698444B1 (en) | Techniques for enhancing LO and RX overlap in FMCW lidars using birefringent crystals |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: AEVA, INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BEHZADI, BEHSAN;GAGNE, KEITH;AVCI, OGUZHAN;AND OTHERS;REEL/FRAME:048649/0665 Effective date: 20190318 |
|
FEPP | Fee payment procedure |
Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
FEPP | Fee payment procedure |
Free format text: ENTITY STATUS SET TO SMALL (ORIGINAL EVENT CODE: SMAL); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |