US20200300562A1 - A tank assembly - Google Patents

A tank assembly Download PDF

Info

Publication number
US20200300562A1
US20200300562A1 US16/358,030 US201916358030A US2020300562A1 US 20200300562 A1 US20200300562 A1 US 20200300562A1 US 201916358030 A US201916358030 A US 201916358030A US 2020300562 A1 US2020300562 A1 US 2020300562A1
Authority
US
United States
Prior art keywords
heat exchanger
engagement elements
tank assembly
exchanger tank
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US16/358,030
Inventor
Mauro Josue Carrera
Enrique Bustamante
Eduardo Barrios
Hector Gerardo Salazar
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Valeo North America Inc
Original Assignee
Valeo North America Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo North America Inc filed Critical Valeo North America Inc
Priority to US16/358,030 priority Critical patent/US20200300562A1/en
Assigned to VALEO NORTH AMERICA, INC. reassignment VALEO NORTH AMERICA, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BARRIOS, EDUARDO, BUSTAMANTE, ENRIQUE, CARRERA, MAURO JOSUE, SALAZAR, HECTOR GERARDO
Publication of US20200300562A1 publication Critical patent/US20200300562A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0219Arrangements for sealing end plates into casing or header box; Header box sub-elements
    • F28F9/0224Header boxes formed by sealing end plates into covers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/008Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for vehicles
    • F28D2021/0082Charged air coolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/008Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for vehicles
    • F28D2021/0084Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/008Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for vehicles
    • F28D2021/0085Evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/008Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for vehicles
    • F28D2021/0091Radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F2009/0285Other particular headers or end plates
    • F28F2009/0292Other particular headers or end plates with fins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2225/00Reinforcing means
    • F28F2225/08Reinforcing means for header boxes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2275/00Fastening; Joining
    • F28F2275/08Fastening; Joining by clamping or clipping
    • F28F2275/085Fastening; Joining by clamping or clipping with snap connection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2275/00Fastening; Joining
    • F28F2275/12Fastening; Joining by methods involving deformation of the elements
    • F28F2275/122Fastening; Joining by methods involving deformation of the elements by crimping, caulking or clinching
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2275/00Fastening; Joining
    • F28F2275/20Fastening; Joining with threaded elements

Definitions

  • the present disclosure relates to a heat exchanger, particularly, the present disclosure relates to a heat exchanger tank assembly for the heat exchanger.
  • Conventional heat exchanger generally includes a pair of spaced apart headers, formed on end portions of a heat exchanger core configured of a plurality of heat exchange elements such as for example, plates and tubes, and a plurality of fin elements lodged between the adjacent heat exchanger elements.
  • the heat exchange elements connect the headers and configure adjacent yet separated spaces between the headers for facilitating heat exchange between heat exchanging fluids flowing through the respective separated spaces.
  • the heat exchanger further includes a pair of heat exchanger tanks, hereinafter referred to as tanks, wherein each tank is crimped to a corresponding header for configuring a sealed connection there between for forming a header-tank assembly.
  • the headers facilitate fluid communication of heat exchange fluid received in the corresponding tanks and the heat exchanger elements.
  • the tanks are capable of receiving heat exchanging fluid, often pressurized heat exchanging fluid at regular time intervals and as such are subjected to cyclic loading.
  • the headers distribute the heat exchange fluid received in the corresponding tanks to the heat exchanger elements.
  • the tank is generally of reinforced plastic material, such as for example, PA 66, GF 30-40 or PPA GF 45% in case the tank is required to be formed of stronger material, for example in case the tank is for a water Charge Air Cooler.
  • the cyclic loads acting on the tank may cause top walls and side walls of the tank to budge outward, resulting in stresses on tank foot regions or crimped portions of the tank as well as the header channels receiving the tank foot regions, thereby resulting in failures, such as for example, lateral un-crimping between the tank and the corresponding header and formation of groove cracks on the header.
  • failures such as for example, lateral un-crimping between the tank and the corresponding header and formation of groove cracks on the header.
  • CACs Charge Air Coolers
  • Such failures may cause leakage of heat exchange fluid from the tank, such as for example, air mixture in case the heat exchanger is water Charge Air Cooler (CAC), water-glycol mixture in case the heat exchanger is a radiator and refrigerant in case the heat exchanger is an evaporator or a condenser.
  • CAC Water Charge Air Cooler
  • the continuous leakage of the heat exchange fluid from the tank may result in problems such as pressure loss inside the tank, the tank requiring frequent refilling and inefficient operation of the heat exchanger due to insufficient heat exchange fluid in the heat exchange circuit.
  • the level of heat exchange fluid may drop below critical levels that may in turn cause complications such as complete breakdown of associated critical elements that may fail due to non-performance of the heat exchanger.
  • the heat exchanger is a Charge Air Cooler
  • the inefficient or non-performance of Charge Air Cooler may adversely impact the performance and efficiency of the engine
  • the heat exchanger is a radiator
  • the dropping of heat exchange fluid levels below critical level may render the radiator inefficient in removing heat from the engine, thereby resulting in engine seizure due to excessive heat.
  • the cyclic loads acting on the tank may cause vertical deformation of the tank and may also cause shearing stresses at the tank foot regions.
  • structural failure of the tank may require replacement of the entire heat exchanger instead of replacement of the tank alone.
  • a tank assembly that enables the tank to withstand cyclic pressures acting on the internal walls of the tank and that prevents vertical deformation and outward bulging or deformation of the tank, shearing stresses at the tank foot regions and other stresses at the tank foot regions as well as the header channels receiving the tank foot regions that cause failure of the tank and other issues. Further, there is a need for a tank assembly that exhibits improved pressure cycle resistance, burst test resistance, vibration resistance. Further, there is a need for a tank assembly that can withstand high operational pressures, is durable and exhibits improved service life and is convenient to manufacture.
  • An object of the present invention is to provide a tank assembly that not only holds and urges foot regions of a tank against the header but also holds and urges top portions of the tank against the header, thereby ultimately reducing vertical deformation of the tank, shear stresses and other stresses at tank foot regions and the header channels receiving the tank foot regions.
  • Another object of the present invention is to provide a tank assembly that obviates the drawbacks associated with vertical deformation and lateral or outward deformation of the tank.
  • Still another object of the present invention is to provide a tank assembly that exhibits improved pressure cycle resistance, burst test resistance, vibration resistance.
  • Another object of the present invention is to provide a tank assembly that can withstand high operational pressures, is durable and exhibits improved service life and is convenient to manufacture.
  • Still another object of the present invention is to provide a tank assembly that is simple in construction and use.
  • Yet another object of the present invention is to provide a tank assembly that prevents structural failures in the tank, thereby eliminating leakage of heat exchange fluid that can be either air or coolant, from the tank caused due to structural failures.
  • some elements or parameters may be indexed, such as a first element and a second element.
  • this indexation is only meant to differentiate and name elements which are similar but not identical. No idea of priority should be inferred from such indexation, as these terms may be switched without betraying the invention. Additionally, this indexation does not imply any order in mounting or use of the elements of the invention.
  • a tank assembly is disclosed in accordance with an embodiment of the present invention.
  • the tank assembly includes a heat exchanger tank and at least one side plate.
  • Each heat exchanger tank includes a pair of foot portions and a pair of top portions.
  • the foot portions are crimped to a corresponding header of a heat exchanger core.
  • the top portions are configured with first engagement elements.
  • the at least one side plates is disposed on at least one side of the heat exchanger core and is configured with second engagement elements.
  • the second engagement elements engage with the corresponding first engagement elements to urge the heat exchanger tank towards the header.
  • the foot portions are received in corresponding header channels.
  • the engagement between the first engagement elements and the second engagement elements prevent vertical deformation of the heat exchanger tanks and reduce stresses on the foot portions and header channels.
  • the first engagement elements are integrally formed on the top portions and are extending sideways and outwardly there from.
  • the first engagement elements are securely mounted on the top portions and are extending sideways and outwardly there from.
  • the first engagement elements are snap fit engagement elements that configure snap fit engagement with corresponding complimentary second engagement elements.
  • the first engagement elements are of a material exhibiting spring properties, wherein the material is selected from a group consisting of metals, plastics and composites.
  • the first engagement elements are in the form of pockets formed on the top portions.
  • At least a portion of the at least one side plate extends above the headers and the second engagement elements configured thereon engage with the first engagement elements configured on the top portions.
  • the first engagement elements extend at least till the headers to engage with the corresponding second engagement elements configured on portion of the at least one side plate.
  • the second engagement elements are in the form of apertures formed on the at least one side plate and that engageably receive the snap fit engagement elements.
  • the second engagement elements are snap fit engagement elements that extend inwardly from the at least one side plates and configure snap fit engagement with the pockets fouled on the top portions.
  • the second engagement elements are of a material exhibiting spring properties, wherein the material is selected from a group consisting of metals, plastics and composites.
  • the first and second engagement elements are first holed flanges configured on the top portions and second holed flanges configured on the at least one side plate respectively, the first holed flanges and the second holed flanges are held together by nut and bolt arrangement.
  • FIG. 1 illustrates an isometric view of a heat exchanger configured with a heat exchanger tank assembly in accordance with an embodiment of the present invention
  • FIG. 2 a illustrates a side view of the heat exchanger configured with the heat exchanger tank assembly of FIG. 1 ;
  • FIG. 2 b illustrates a portion of a cross sectional view of the heat exchanger tank assembly, along section lines A-A′ depicted in FIG. 2 a;
  • FIG. 3 a illustrates a sectional view of the heat exchanger tank assembly along one sectional plane
  • FIG. 3 b illustrates a sectional view of the heat exchanger tank assembly along another sectional plane
  • FIG. 4 a illustrates a schematic representation of a heat exchanger tank assembly in accordance with another embodiment of the present invention, wherein engagement between snap fit engagement elements depending from top portion of tank and engagement elements configured at least one side plate urge and hold the heat exchanger tank against the header;
  • FIG. 4 b illustrates a schematic representation of a heat exchanger tank assembly in accordance with still another embodiment of the present invention, wherein nut and bolt arrangement facilitate urging and holding of the heat exchanger tank against the header.
  • a tank assembly of the present invention not only holds and urges foot regions of a tank against the header but also holds and urges top portions of the tank against the header to reduce vertical deformation of the heat exchanger tanks and stresses at tank foot portions and the header channels receiving the tank foot portions.
  • the heat exchanger tank assembly is used in vehicle heat exchangers such as Charger Air Coolers (CAC), radiators, condensers, evaporators.
  • CAC Charger Air Coolers
  • the tank assembly of the present invention is also applicable for use in other systems and is not limited for use in vehicle heat exchangers only.
  • such tank assembly of the present invention is also applicable in any other systems or applications in which the tank assembly is required to hold liquid, particularly, high pressure fluid and withstand cyclic pressures.
  • FIG. 1 illustrates an isometric view of a heat exchanger with a heat exchanger tank assembly 100 a in accordance with an embodiment of the present invention.
  • FIG. 2 a illustrates a side view of the heat exchanger with the heat exchanger tank assembly 100 a .
  • first and the second tank assemblies 100 a and 100 b respectively are commonly identical, every embodiment disclosed henceforth for the first tank assembly 100 a , the elements configuring the first tank assembly 100 a and engagement elements for urging and holding a heat exchanger tank 10 a of the first tank assembly 100 a against a corresponding header 20 a , also referred to as a first header 20 a , may also be applicable for the second tank assembly 100 b , elements configuring the second tank assembly 100 b , and engagement elements for urging and holding a heat exchanger tank 10 b of the second tank assembly 100 b against a corresponding header 20 b , referred to as a second header 20 b and for sake of brevity of present document, only the first tank assembly 100 a is illustrated in the Figures and described in the description.
  • the heat exchanger tank assembly 100 a includes the heat exchanger tank 10 a and at least one side plate 30 a .
  • each tank 10 a includes a pair of bottom portions, also referred to as foot portions 12 a and a pair of top portions 14 a .
  • the foot portions 12 a are crimped to the corresponding header 20 a of a heat exchanger core 30 .
  • the top portions 14 a are configured with first engagement elements 16 a .
  • the first engagement elements 16 a are integrally formed on the top portions 14 a and are extending sideways and outwardly there from. In one embodiment, the first engagement elements 16 a are securely mounted on the top portions 14 a and are extending sideways and outwardly there from. In another example as illustrated in FIG.
  • the first engagement elements 16 a are snap fit engagement elements that are capable of configuring snap fit engagement with corresponding complimentary second engagement elements 32 a formed on the at least one side plate 30 a that is formed on at least one side of the heat exchanger core 30 .
  • the second engagement elements 32 a are in the form of apertures formed on a portion of at least one side plate 30 a extending above the headers 20 a that are capable of engageably receiving the snap fit engagement elements.
  • first engagement elements 116 a are snap fit engagement elements depending from the top portions 14 a of the heat exchanger tank 10 a and that extend at least till the headers 20 a to engage with corresponding second engagement elements 132 a configured on portion of the at least one side plate 30 a .
  • the second engagement elements 132 a are slotted flanges, wherein the slots are capable receiving the snap fit engagement elements 116 a and configuring snap fit engagement with the snap fit engagement elements 116 a .
  • the first engagement elements 16 a are so spaced along the length of the tank 10 a such that the engagement elements 16 a are capable of configuring snap fit engagement with the corresponding complimentary spaced apart second engagement elements 32 a formed on the at least one side plate 30 a .
  • the first engagement elements 16 a are snap fit engagement elements configured on both sides of the heat exchanger tank 10 a that engage with the corresponding apertures configured on the side plates 30 a configured on both sides of the heat exchanger core 30 .
  • the heat exchanger tank 10 a is securely urged and held against the header 20 a from both sides to configure better connection between the heat exchanger tank 10 a and the header 20 a .
  • the first engagement elements 16 a are of a material exhibiting spring properties and selected from a group consisting of metals, plastics and composites.
  • the first engagement elements 16 a are in the form of pockets formed on the top portions 14 a that engageably receive the second engagement elements 32 a in the form of snap fit engagement elements extending inwardly from the portion of the side plates 30 a extending above and beyond the headers 20 a to configure snap fit engagement there-with.
  • the first engagement elements 16 a extend below the headers 20 a to engage with the second engagement elements 32 a configured on portion of the at least one side plate 30 a disposed below the headers 20 a .
  • the first and second engagement elements are first holed flanges 216 a configured on the top portions 14 a and second holed flanges 232 a configured on the at least one side plate 30 a respectively, wherein the first holed flanges 216 a and the second holed flanges 232 a are held together by nut 218 a and bolt 219 a arrangement.
  • the side plates 30 a form part of heat exchanger housing that receives therein the heat exchanger core 30 .
  • the side plates 30 a are disposed at opposite sides of the heat exchanger core 30 .
  • At least a portion of at least one or preferably, each of the side plates 30 a extend above and beyond the headers 20 a and is configured with second engagement elements 32 a that engage with corresponding first engagement elements 16 a to urge the heat exchanger tank 10 a , particularly, the top portions 14 a of the respective heat exchanger tank 10 a towards the corresponding headers 20 a , thereby preventing vertical deformation of the heat exchanger tanks 10 a and also reducing stresses on the foot portions 12 a , 12 b and header channels 22 a receiving and crimping the foot portions 12 a .
  • the second engagement elements 32 a is of a material exhibiting spring properties and is selected from a group consisting of metals, plastics and composites.
  • the present invention is not limited to any particular configuration, number, placement and material of the first engagement elements 16 a configured on the top portions 14 a of the respective heat exchanger tanks 10 a , 10 b and the complimentary second engagement elements 32 a formed on the at least one side plate 30 a or preferably both side plates 30 a disposed on opposite sides of the heat exchanger core 30 as far as these are capable of configuring snap fit engagement there-between for urging and securely holding the heat exchanger tank 10 a towards the header 20 a , thereby preventing vertical deformation of the heat exchanger tanks 10 a and also reducing stresses on the foot portions 12 a and the header channels 22 a receiving and crimping the foot portions 12 a.
  • a similar heat exchanger tank assembly 100 b referred to as the second tank assembly 100 b is configured at opposite end portion of the heat exchanger core 30 , wherein a second header 20 b is crimped on a corresponding second heat exchanger tank 10 b , particularly, foot portions 12 b of the second heat exchanger tank 10 b similar to the way in which the first header 20 a is crimped to the first heat exchanger tank 10 a , particularly, the foot portions 12 a of the first heat exchanger tank 10 a .
  • first engagement elements 16 b configured on top portions 14 b of the second heat exchanger tank 10 b engage with corresponding second engagement elements 32 b configured on the at least one side plate 30 a or preferably both the side plates 30 a disposed on opposite sides of the heat exchanger core 30 similar to the manner in which the first engagement elements 16 a configured on the top portions 14 a of the first heat exchanger tank 10 a engage with the corresponding second engagement elements 32 a configured on the at least one side plate 30 a or preferably both the side plates 30 a disposed on opposite sides of the heat exchanger core 30 for urging and securely holding the second heat exchanger tank 10 b against the second header 20 b .
  • first and second holed flanges 216 a and 232 a formed on the top portion 14 a of the heat exchanger tank 10 a and the side plate 30 a respectively there are first and second holed flanges 216 b and 232 b formed on the top portion 14 b of the heat exchanger tank 10 b and the side plate 30 a respectively.
  • the second holed flanges 216 b and 232 b are held together by nut 218 b and bolt 219 b arrangement.
  • first and second engagement elements 116 b and 132 b there are corresponding first and second engagement elements 116 b and 132 b .
  • the details regarding such engagement between the first engagement elements 16 b and the second engagement elements 32 b and different possible variations of such engagement are not elaborately disclosed in the present document for the sake of brevity of the present document.
  • the heat exchanger tank assembly comprises a heat exchanger tank and at least a pair of side plates.
  • Each heat exchanger tank includes at least a pair of foot portions and at least a pair of top portions.
  • the foot portions are crimped to corresponding headers of a heat exchanger core.
  • the top portions are configured with first engagement elements.
  • the at least one pair of side plates is disposed on at least one side of the heat exchanger core and is configured with second engagement elements.
  • the second engagement elements engage with the corresponding first engagement elements to urge the heat exchanger tank towards the header, thereby preventing vertical deformation of the heat exchanger tanks and also reducing stresses on the foot portions and header channels receiving and crimping the foot portions.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

A tank assembly includes a heat exchanger tank and at least one side plate. Each heat exchanger tank includes a pair of foot portions and a pair of top portions. The foot portions are crimped to a corresponding header of a heat exchanger core. The top portions are configured with first engagement elements. The at least one side plate is disposed on at least one side of the heat exchanger core and is configured with second engagement elements. The second engagement elements engage with the corresponding first engagement elements to urge the heat exchanger tank towards the header.

Description

    FIELD OF THE INVENTION
  • The present disclosure relates to a heat exchanger, particularly, the present disclosure relates to a heat exchanger tank assembly for the heat exchanger.
  • BACKGROUND
  • Conventional heat exchanger generally includes a pair of spaced apart headers, formed on end portions of a heat exchanger core configured of a plurality of heat exchange elements such as for example, plates and tubes, and a plurality of fin elements lodged between the adjacent heat exchanger elements. The heat exchange elements connect the headers and configure adjacent yet separated spaces between the headers for facilitating heat exchange between heat exchanging fluids flowing through the respective separated spaces. The heat exchanger further includes a pair of heat exchanger tanks, hereinafter referred to as tanks, wherein each tank is crimped to a corresponding header for configuring a sealed connection there between for forming a header-tank assembly. The headers facilitate fluid communication of heat exchange fluid received in the corresponding tanks and the heat exchanger elements. The tanks are capable of receiving heat exchanging fluid, often pressurized heat exchanging fluid at regular time intervals and as such are subjected to cyclic loading. The headers distribute the heat exchange fluid received in the corresponding tanks to the heat exchanger elements. The tank is generally of reinforced plastic material, such as for example, PA 66, GF 30-40 or PPA GF 45% in case the tank is required to be formed of stronger material, for example in case the tank is for a water Charge Air Cooler. In absence of any pressure relief features, the cyclic loads acting on the tank may cause top walls and side walls of the tank to budge outward, resulting in stresses on tank foot regions or crimped portions of the tank as well as the header channels receiving the tank foot regions, thereby resulting in failures, such as for example, lateral un-crimping between the tank and the corresponding header and formation of groove cracks on the header. Such problems are aggravated if the tanks are wider such as those used in Charge Air Coolers (CACs), wherein large inside surface area of the tanks cause a substantial upward and outward movement of the walls of the tanks that further increases the stresses on the crimped portions thereof, thereby resulting in failures. Such failures may cause leakage of heat exchange fluid from the tank, such as for example, air mixture in case the heat exchanger is water Charge Air Cooler (CAC), water-glycol mixture in case the heat exchanger is a radiator and refrigerant in case the heat exchanger is an evaporator or a condenser. The continuous leakage of the heat exchange fluid from the tank may result in problems such as pressure loss inside the tank, the tank requiring frequent refilling and inefficient operation of the heat exchanger due to insufficient heat exchange fluid in the heat exchange circuit. In case leakage of the heat exchange fluid is left unattended and unchecked, the level of heat exchange fluid may drop below critical levels that may in turn cause complications such as complete breakdown of associated critical elements that may fail due to non-performance of the heat exchanger. For example, in case the heat exchanger is a Charge Air Cooler, the inefficient or non-performance of Charge Air Cooler may adversely impact the performance and efficiency of the engine, in case the heat exchanger is a radiator, the dropping of heat exchange fluid levels below critical level may render the radiator inefficient in removing heat from the engine, thereby resulting in engine seizure due to excessive heat. Further, the cyclic loads acting on the tank may cause vertical deformation of the tank and may also cause shearing stresses at the tank foot regions. As the tank is crimped to the corresponding header that is integrally formed on either one of the end portions of a heat exchanger core, structural failure of the tank may require replacement of the entire heat exchanger instead of replacement of the tank alone. As such failure of the tank is a critical issue and high expenses are involved in addressing tank failures. Few of the prior art discloses arrangement for addressing stress and deformation issues at the tank foot regions and the header channels receiving the tank foot regions. However, none of the prior art discloses any solution for preventing vertical deformation of the tank.
  • Accordingly, there is a need for a tank assembly that enables the tank to withstand cyclic pressures acting on the internal walls of the tank and that prevents vertical deformation and outward bulging or deformation of the tank, shearing stresses at the tank foot regions and other stresses at the tank foot regions as well as the header channels receiving the tank foot regions that cause failure of the tank and other issues. Further, there is a need for a tank assembly that exhibits improved pressure cycle resistance, burst test resistance, vibration resistance. Further, there is a need for a tank assembly that can withstand high operational pressures, is durable and exhibits improved service life and is convenient to manufacture.
  • SUMMARY OF THE INVENTION
  • An object of the present invention is to provide a tank assembly that not only holds and urges foot regions of a tank against the header but also holds and urges top portions of the tank against the header, thereby ultimately reducing vertical deformation of the tank, shear stresses and other stresses at tank foot regions and the header channels receiving the tank foot regions.
  • Another object of the present invention is to provide a tank assembly that obviates the drawbacks associated with vertical deformation and lateral or outward deformation of the tank.
  • Still another object of the present invention is to provide a tank assembly that exhibits improved pressure cycle resistance, burst test resistance, vibration resistance.
  • Another object of the present invention is to provide a tank assembly that can withstand high operational pressures, is durable and exhibits improved service life and is convenient to manufacture.
  • Still another object of the present invention is to provide a tank assembly that is simple in construction and use.
  • Yet another object of the present invention is to provide a tank assembly that prevents structural failures in the tank, thereby eliminating leakage of heat exchange fluid that can be either air or coolant, from the tank caused due to structural failures.
  • In the present description, some elements or parameters may be indexed, such as a first element and a second element. In this case, unless stated otherwise, this indexation is only meant to differentiate and name elements which are similar but not identical. No idea of priority should be inferred from such indexation, as these terms may be switched without betraying the invention. Additionally, this indexation does not imply any order in mounting or use of the elements of the invention.
  • A tank assembly is disclosed in accordance with an embodiment of the present invention. The tank assembly includes a heat exchanger tank and at least one side plate. Each heat exchanger tank includes a pair of foot portions and a pair of top portions. The foot portions are crimped to a corresponding header of a heat exchanger core. The top portions are configured with first engagement elements. The at least one side plates is disposed on at least one side of the heat exchanger core and is configured with second engagement elements. The second engagement elements engage with the corresponding first engagement elements to urge the heat exchanger tank towards the header.
  • Generally, the foot portions are received in corresponding header channels.
  • Particularly, the engagement between the first engagement elements and the second engagement elements prevent vertical deformation of the heat exchanger tanks and reduce stresses on the foot portions and header channels.
  • Specifically, the first engagement elements are integrally formed on the top portions and are extending sideways and outwardly there from.
  • Alternatively, the first engagement elements are securely mounted on the top portions and are extending sideways and outwardly there from.
  • Specifically, the first engagement elements are snap fit engagement elements that configure snap fit engagement with corresponding complimentary second engagement elements.
  • Particularly, the first engagement elements are of a material exhibiting spring properties, wherein the material is selected from a group consisting of metals, plastics and composites.
  • In accordance with one embodiment of the present invention, the first engagement elements are in the form of pockets formed on the top portions.
  • In accordance with an embodiment of the present invention, at least a portion of the at least one side plate extends above the headers and the second engagement elements configured thereon engage with the first engagement elements configured on the top portions.
  • In accordance with an alternate embodiment of the present invention, the first engagement elements extend at least till the headers to engage with the corresponding second engagement elements configured on portion of the at least one side plate.
  • Preferably, the second engagement elements are in the form of apertures formed on the at least one side plate and that engageably receive the snap fit engagement elements.
  • Alternatively, the second engagement elements are snap fit engagement elements that extend inwardly from the at least one side plates and configure snap fit engagement with the pockets fouled on the top portions.
  • Typically, the second engagement elements are of a material exhibiting spring properties, wherein the material is selected from a group consisting of metals, plastics and composites.
  • In accordance with an embodiment of the present invention, the first and second engagement elements are first holed flanges configured on the top portions and second holed flanges configured on the at least one side plate respectively, the first holed flanges and the second holed flanges are held together by nut and bolt arrangement.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Other characteristics, details and advantages of the invention can be inferred from the description of the invention hereunder. A more complete appreciation of the invention and many of the attendant advantages thereof will be readily obtained as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying figures, wherein:
  • FIG. 1 illustrates an isometric view of a heat exchanger configured with a heat exchanger tank assembly in accordance with an embodiment of the present invention;
  • FIG. 2a illustrates a side view of the heat exchanger configured with the heat exchanger tank assembly of FIG. 1;
  • FIG. 2b illustrates a portion of a cross sectional view of the heat exchanger tank assembly, along section lines A-A′ depicted in FIG. 2 a;
  • FIG. 3a illustrates a sectional view of the heat exchanger tank assembly along one sectional plane;
  • FIG. 3b illustrates a sectional view of the heat exchanger tank assembly along another sectional plane;
  • FIG. 4a illustrates a schematic representation of a heat exchanger tank assembly in accordance with another embodiment of the present invention, wherein engagement between snap fit engagement elements depending from top portion of tank and engagement elements configured at least one side plate urge and hold the heat exchanger tank against the header; and
  • FIG. 4b illustrates a schematic representation of a heat exchanger tank assembly in accordance with still another embodiment of the present invention, wherein nut and bolt arrangement facilitate urging and holding of the heat exchanger tank against the header.
  • It must be noted that the figures disclose the invention in a detailed enough way to be implemented, said figures helping to better define the invention if needs be. The invention should however not be limited to the embodiment disclosed in the description.
  • DETAILED DESCRIPTION
  • A tank assembly of the present invention not only holds and urges foot regions of a tank against the header but also holds and urges top portions of the tank against the header to reduce vertical deformation of the heat exchanger tanks and stresses at tank foot portions and the header channels receiving the tank foot portions. Although, as per the disclosures made in the present specification, the heat exchanger tank assembly is used in vehicle heat exchangers such as Charger Air Coolers (CAC), radiators, condensers, evaporators. However, the tank assembly of the present invention is also applicable for use in other systems and is not limited for use in vehicle heat exchangers only. Particularly, such tank assembly of the present invention is also applicable in any other systems or applications in which the tank assembly is required to hold liquid, particularly, high pressure fluid and withstand cyclic pressures.
  • FIG. 1 illustrates an isometric view of a heat exchanger with a heat exchanger tank assembly 100 a in accordance with an embodiment of the present invention. FIG. 2a illustrates a side view of the heat exchanger with the heat exchanger tank assembly 100 a. As the first and the second tank assemblies 100 a and 100 b respectively are commonly identical, every embodiment disclosed henceforth for the first tank assembly 100 a, the elements configuring the first tank assembly 100 a and engagement elements for urging and holding a heat exchanger tank 10 a of the first tank assembly 100 a against a corresponding header 20 a, also referred to as a first header 20 a, may also be applicable for the second tank assembly 100 b, elements configuring the second tank assembly 100 b, and engagement elements for urging and holding a heat exchanger tank 10 b of the second tank assembly 100 b against a corresponding header 20 b, referred to as a second header 20 b and for sake of brevity of present document, only the first tank assembly 100 a is illustrated in the Figures and described in the description.
  • The heat exchanger tank assembly 100 a includes the heat exchanger tank 10 a and at least one side plate 30 a. Referring to FIG. 2b , each tank 10 a includes a pair of bottom portions, also referred to as foot portions 12 a and a pair of top portions 14 a. The foot portions 12 a are crimped to the corresponding header 20 a of a heat exchanger core 30. The top portions 14 a are configured with first engagement elements 16 a. The first engagement elements 16 a are integrally formed on the top portions 14 a and are extending sideways and outwardly there from. In one embodiment, the first engagement elements 16 a are securely mounted on the top portions 14 a and are extending sideways and outwardly there from. In another example as illustrated in FIG. 2b and FIG. 3a , the first engagement elements 16 a are snap fit engagement elements that are capable of configuring snap fit engagement with corresponding complimentary second engagement elements 32 a formed on the at least one side plate 30 a that is formed on at least one side of the heat exchanger core 30. The second engagement elements 32 a are in the form of apertures formed on a portion of at least one side plate 30 a extending above the headers 20 a that are capable of engageably receiving the snap fit engagement elements. In still another example, as illustrated in FIG. 4a , first engagement elements 116 a are snap fit engagement elements depending from the top portions 14 a of the heat exchanger tank 10 a and that extend at least till the headers 20 a to engage with corresponding second engagement elements 132 a configured on portion of the at least one side plate 30 a. The second engagement elements 132 a are slotted flanges, wherein the slots are capable receiving the snap fit engagement elements 116 a and configuring snap fit engagement with the snap fit engagement elements 116 a. The first engagement elements 16 a are so spaced along the length of the tank 10 a such that the engagement elements 16 a are capable of configuring snap fit engagement with the corresponding complimentary spaced apart second engagement elements 32 a formed on the at least one side plate 30 a. Preferably, the first engagement elements 16 a are snap fit engagement elements configured on both sides of the heat exchanger tank 10 a that engage with the corresponding apertures configured on the side plates 30 a configured on both sides of the heat exchanger core 30. With such configuration, the heat exchanger tank 10 a is securely urged and held against the header 20 a from both sides to configure better connection between the heat exchanger tank 10 a and the header 20 a. The first engagement elements 16 a are of a material exhibiting spring properties and selected from a group consisting of metals, plastics and composites. In accordance with another embodiment of the present invention, the first engagement elements 16 a are in the form of pockets formed on the top portions 14 a that engageably receive the second engagement elements 32 a in the form of snap fit engagement elements extending inwardly from the portion of the side plates 30 a extending above and beyond the headers 20 a to configure snap fit engagement there-with. In accordance with another embodiment, the first engagement elements 16 a extend below the headers 20 a to engage with the second engagement elements 32 a configured on portion of the at least one side plate 30 a disposed below the headers 20 a. In accordance with still another embodiment of the present invention, the first and second engagement elements are first holed flanges 216 a configured on the top portions 14 a and second holed flanges 232 a configured on the at least one side plate 30 a respectively, wherein the first holed flanges 216 a and the second holed flanges 232 a are held together by nut 218 a and bolt 219 a arrangement.
  • The side plates 30 a form part of heat exchanger housing that receives therein the heat exchanger core 30. Particularly, the side plates 30 a are disposed at opposite sides of the heat exchanger core 30. At least a portion of at least one or preferably, each of the side plates 30 a extend above and beyond the headers 20 a and is configured with second engagement elements 32 a that engage with corresponding first engagement elements 16 a to urge the heat exchanger tank 10 a, particularly, the top portions 14 a of the respective heat exchanger tank 10 a towards the corresponding headers 20 a, thereby preventing vertical deformation of the heat exchanger tanks 10 a and also reducing stresses on the foot portions 12 a, 12 b and header channels 22 a receiving and crimping the foot portions 12 a. The second engagement elements 32 a is of a material exhibiting spring properties and is selected from a group consisting of metals, plastics and composites. With such configuration, the heat exchanger tank 10 a is urged and securely held against the header 20 a, the vertical deformation and outward bulging or deformation of the heat exchanger tank 10 a is prevented, shearing stresses at the tank foot portions 12 a and other stresses at the tank foot portions 12 a as well as the header channels 22 a receiving the tank foot portions 12 a is also prevented. Accordingly, service life and reliability of the heat exchanger tank assembly 100 a is improved and the heat exchanger tank assembly 100 a exhibits improved pressure cycle resistance, burst test resistance, vibration resistance. Further, with such configuration, the heat exchanger tank assembly 100 a is able to withstand high operational pressures and is durable.
  • However, the present invention is not limited to any particular configuration, number, placement and material of the first engagement elements 16 a configured on the top portions 14 a of the respective heat exchanger tanks 10 a, 10 b and the complimentary second engagement elements 32 a formed on the at least one side plate 30 a or preferably both side plates 30 a disposed on opposite sides of the heat exchanger core 30 as far as these are capable of configuring snap fit engagement there-between for urging and securely holding the heat exchanger tank 10 a towards the header 20 a, thereby preventing vertical deformation of the heat exchanger tanks 10 a and also reducing stresses on the foot portions 12 a and the header channels 22 a receiving and crimping the foot portions 12 a.
  • A similar heat exchanger tank assembly 100 b, referred to as the second tank assembly 100 b is configured at opposite end portion of the heat exchanger core 30, wherein a second header 20 b is crimped on a corresponding second heat exchanger tank 10 b, particularly, foot portions 12 b of the second heat exchanger tank 10 b similar to the way in which the first header 20 a is crimped to the first heat exchanger tank 10 a, particularly, the foot portions 12 a of the first heat exchanger tank 10 a. Also, first engagement elements 16 b configured on top portions 14 b of the second heat exchanger tank 10 b engage with corresponding second engagement elements 32 b configured on the at least one side plate 30 a or preferably both the side plates 30 a disposed on opposite sides of the heat exchanger core 30 similar to the manner in which the first engagement elements 16 a configured on the top portions 14 a of the first heat exchanger tank 10 a engage with the corresponding second engagement elements 32 a configured on the at least one side plate 30 a or preferably both the side plates 30 a disposed on opposite sides of the heat exchanger core 30 for urging and securely holding the second heat exchanger tank 10 b against the second header 20 b. Further, corresponding to the first and second holed flanges 216 a and 232 a formed on the top portion 14 a of the heat exchanger tank 10 a and the side plate 30 a respectively there are first and second holed flanges 216 b and 232 b formed on the top portion 14 b of the heat exchanger tank 10 b and the side plate 30 a respectively. The second holed flanges 216 b and 232 b are held together by nut 218 b and bolt 219 b arrangement. Further, corresponding to the first engagement elements 116 a and the second engagement elements 132 a, there are corresponding first and second engagement elements 116 b and 132 b. The details regarding such engagement between the first engagement elements 16 b and the second engagement elements 32 b and different possible variations of such engagement are not elaborately disclosed in the present document for the sake of brevity of the present document.
  • Several modifications and improvement might be applied by the person skilled in the art to the tank assembly as defined above, as long as the heat exchanger tank assembly comprises a heat exchanger tank and at least a pair of side plates. Each heat exchanger tank includes at least a pair of foot portions and at least a pair of top portions. The foot portions are crimped to corresponding headers of a heat exchanger core. The top portions are configured with first engagement elements. The at least one pair of side plates is disposed on at least one side of the heat exchanger core and is configured with second engagement elements. The second engagement elements engage with the corresponding first engagement elements to urge the heat exchanger tank towards the header, thereby preventing vertical deformation of the heat exchanger tanks and also reducing stresses on the foot portions and header channels receiving and crimping the foot portions.
  • Obviously, numerous modifications and variations of the present invention are possible in light of the above teachings. It is therefore to be understood that the invention may be practiced otherwise than as specifically described herein.
  • In any case, the invention cannot and should not be limited to the embodiments specifically described in this document, as other embodiments might exist. The invention shall spread to any equivalent means and any technically operating combination of means.

Claims (14)

What is claimed is:
1. A heat exchanger tank assembly comprising:
a heat exchanger tank comprising:
a pair of foot portions adapted to be crimped to a corresponding header of a heat exchanger core, and
a pair of top portions configured with first engagement elements; and
at least one side plate disposed on at least one side of the heat exchanger core and configured with second engagement elements, the second engagement elements engaging with the corresponding first engagement elements to urge and hold the heat exchanger tank towards the header.
2. The heat exchanger tank assembly as claimed in claim 1, wherein the foot portions are adapted to be received in corresponding header channels.
3. The heat exchanger tank assembly as claimed in claim 2, wherein engagement between the first engagement elements and the second engagement elements is adapted to prevent vertical deformation of the heat exchanger tanks and reduce stresses on the foot portions and the header channels.
4. The heat exchanger tank assembly as claimed in claim 1, wherein the first engagement elements are integrally formed on the top portions and are extending sideways and outwardly there from.
5. The heat exchanger tank assembly as claimed in claim 1, wherein the first engagement elements are securely mounted on the top portions and are extending sideways and outwardly there from.
6. The heat exchanger tank assembly as claimed in claim 1, wherein the first engagement elements are snap fit engagement elements adapted to configure snap fit engagement with the corresponding complimentary second engagement elements.
7. The heat exchanger tank assembly as claimed in claim 1, the first engagement elements are of a material exhibiting spring properties, wherein the material is selected from a group consisting of metals, plastics and composites.
8. The heat exchanger tank assembly as claimed in claim 1, wherein the first engagement elements are in the form of pockets formed on the top portions.
9. The heat exchanger tank assembly as claimed in claim 1, wherein at least a portion of the at least one side plate extends above and beyond the headers and the second engagement elements configured thereon are adapted to engage with the first engagement elements configured on the top portions.
10. The heat exchanger tank assembly as claimed in claim 1, wherein first engagement elements are adapted to extend at least till the headers to engage with corresponding second engagement elements configured on a portion of the at least one side plate.
11. The heat exchanger tank assembly as claimed in claim 6, wherein the second engagement elements are in the form of apertures formed on the at least one side plate adapted to engageably receive the snap fit engagement elements.
12. The heat exchanger tank assembly as claimed in claim 8, wherein the second engagement elements are snap fit engagement elements adapted to extend inwardly from the at least one side plate and configure snap fit engagement with the pockets formed on the top portions.
13. The heat exchanger tank assembly as claimed in claim 12, the second engagement elements are of a material exhibiting spring properties, wherein the material is selected from a group consisting of metals, plastics and composites.
14. The heat exchanger tank assembly as claimed in claim 1, wherein the first and second engagement elements are first holed flanges configured on the top portions and second holed flanges configured on the at least one side plate respectively, the first holed flanges and the second holed flanges are held together by nut and bolt arrangement.
US16/358,030 2019-03-19 2019-03-19 A tank assembly Abandoned US20200300562A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/358,030 US20200300562A1 (en) 2019-03-19 2019-03-19 A tank assembly

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US16/358,030 US20200300562A1 (en) 2019-03-19 2019-03-19 A tank assembly

Publications (1)

Publication Number Publication Date
US20200300562A1 true US20200300562A1 (en) 2020-09-24

Family

ID=72514040

Family Applications (1)

Application Number Title Priority Date Filing Date
US16/358,030 Abandoned US20200300562A1 (en) 2019-03-19 2019-03-19 A tank assembly

Country Status (1)

Country Link
US (1) US20200300562A1 (en)

Similar Documents

Publication Publication Date Title
US6082439A (en) Heat exchanger assembled without brazing in which adhesive is used to seal a combined portion and a core plate
US10018422B2 (en) Cooling module
US7156162B2 (en) Unit-type heat exchanger
US7568520B2 (en) Oil cooler
US10921068B2 (en) Integrated heat exchanger
US20130264039A1 (en) Heat exchanger assembly and method
US20110168364A1 (en) Heat exchanger
US20170211892A1 (en) Tube for heat exchanger
US20200191490A1 (en) Heat exchanger and air-conditioning system
CN112469954A (en) Header tank for heat exchanger with thermal decoupling
US20200300562A1 (en) A tank assembly
KR101833366B1 (en) Heat exchanger
JP3683001B2 (en) Double stacked heat exchanger
US20240159477A1 (en) Heat exchanger
US20240280335A1 (en) Heat exchanger
EP4023993A1 (en) A heat exchanger
US7992622B2 (en) Oil cooler fitting assembly
US11280562B2 (en) Heat exchanger tank with reinforcement element
US20220325964A1 (en) A header-tank assembly
EP3598051B1 (en) Reinforced heat exchanger comprising a stack of plates
EP3633308A1 (en) A heat exchanger tube manifold with external collars
EP3943861B1 (en) A heat exachanger
EP3936805A1 (en) Header stiffening outer insert
KR101960804B1 (en) Heat-exchanger for Motor Vehicle
JP2024049219A (en) Header tank for heat exchanger

Legal Events

Date Code Title Description
AS Assignment

Owner name: VALEO NORTH AMERICA, INC., MICHIGAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CARRERA, MAURO JOSUE;BUSTAMANTE, ENRIQUE;BARRIOS, EDUARDO;AND OTHERS;REEL/FRAME:049903/0795

Effective date: 20190710

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION