US20200263331A1 - High-density warp-fiber woven fabric and methods of manufacturing the same - Google Patents

High-density warp-fiber woven fabric and methods of manufacturing the same Download PDF

Info

Publication number
US20200263331A1
US20200263331A1 US16/795,815 US202016795815A US2020263331A1 US 20200263331 A1 US20200263331 A1 US 20200263331A1 US 202016795815 A US202016795815 A US 202016795815A US 2020263331 A1 US2020263331 A1 US 2020263331A1
Authority
US
United States
Prior art keywords
fabric
warp
frame
height
thread count
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
US16/795,815
Inventor
Mohit Kumar Jain
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Indo Count Industries Ltd
Original Assignee
Indo Count Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Indo Count Industries Ltd filed Critical Indo Count Industries Ltd
Priority to US16/795,815 priority Critical patent/US20200263331A1/en
Assigned to Indo Count Industries Ltd. reassignment Indo Count Industries Ltd. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: JAIN, MOHIT KUMAR
Publication of US20200263331A1 publication Critical patent/US20200263331A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47GHOUSEHOLD OR TABLE EQUIPMENT
    • A47G9/00Bed-covers; Counterpanes; Travelling rugs; Sleeping rugs; Sleeping bags; Pillows
    • A47G9/02Bed linen; Blankets; Counterpanes
    • A47G9/0238Bed linen
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D13/00Woven fabrics characterised by the special disposition of the warp or weft threads, e.g. with curved weft threads, with discontinuous warp threads, with diagonal warp or weft
    • D03D13/008Woven fabrics characterised by the special disposition of the warp or weft threads, e.g. with curved weft threads, with discontinuous warp threads, with diagonal warp or weft characterised by weave density or surface weight
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03CSHEDDING MECHANISMS; PATTERN CARDS OR CHAINS; PUNCHING OF CARDS; DESIGNING PATTERNS
    • D03C9/00Healds; Heald frames
    • D03C9/06Heald frames
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D13/00Woven fabrics characterised by the special disposition of the warp or weft threads, e.g. with curved weft threads, with discontinuous warp threads, with diagonal warp or weft
    • D03D13/004Woven fabrics characterised by the special disposition of the warp or weft threads, e.g. with curved weft threads, with discontinuous warp threads, with diagonal warp or weft with weave pattern being non-standard or providing special effects
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/20Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads
    • D03D15/208Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads cellulose-based
    • D03D15/217Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads cellulose-based natural from plants, e.g. cotton
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03CSHEDDING MECHANISMS; PATTERN CARDS OR CHAINS; PUNCHING OF CARDS; DESIGNING PATTERNS
    • D03C2700/00Shedding mechanisms
    • D03C2700/01Shedding mechanisms using heald frames
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D1/00Woven fabrics designed to make specified articles
    • D03D1/0017Woven household fabrics
    • D03D2700/0174
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2201/00Cellulose-based fibres, e.g. vegetable fibres
    • D10B2201/01Natural vegetable fibres
    • D10B2201/02Cotton
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2503/00Domestic or personal
    • D10B2503/06Bed linen

Definitions

  • the present invention relates generally to the field of home textiles, and more particularly to flat bedding products such as high thread count sheets.
  • Fabric for bedding sheets is identified by its “thread count” (TC), which is the sum of the threads (warp/vertical and weft/horizontal) counted in one square inch (a one-inch by one-inch square area) of the fabric.
  • TC thread count
  • a 600 thread count fabric has 600 threads (warp plus weft) per square inch of the fabric.
  • High thread count sheets are defined in the industry as having a thread count of 400 or more.
  • Conventional high thread count bedsheets are limited in the number/density of warp threads because of the thickness of conventional warp threads and the density of conventional comb reeds (i.e., the width of the dents or gaps in the reeds) through which they pass.
  • the number of warp threads per inch of woven fabric (the warp-thread density) is identified as “ends per inch” (EPI), and the number of weft threads per inch of woven fabric (the weft-thread density) is identified as “picks per inch” (PPI).
  • EPI ends per inch
  • PPI picks per inch
  • Conventional high thread count bedsheet fabrics of the highest quality have a warp-to-weft ratio (EPI/PPI) of about 0.56/1.0 with an EPI of about 216 or a warp-to-weft ratio (EPI/PPI) of about 0.64/1.0 with an EPI of about 235.
  • the present invention relates to a high thread count woven fabric for use in bedding products.
  • the high thread count fabric includes a 5-end sateen weave formed from a plurality of interwoven cotton warp and weft threads, wherein the EPI warp-thread density is at least about 260 and the EPI/PPI warp-to-weft ratio is typically about 21% higher than in conventional high thread count fabrics.
  • a method of making the high thread count fabric includes setting up a weaving machine with a shed height and a backrest adjustment as described and shown herein to facilitate weaving the fabric with the high density of warp threads.
  • the resulting fabric sheet has higher reed which makes it balance constructed fabric with a square weave geometry compared to conventional sheets of the same thread count, which results in sheets with attributes such as improved sheen, durability, and handle.
  • This provides silk-like sheets of 100% cotton or a cotton-blended fabric achieved by optimizing the warp density by unique machine settings as described and shown herein.
  • the high definition “sateen stripe” sheets of the invention have great definition due to the contact of shiny surfaces to non-shiny surfaces of the same fabric on the same side. This gives an ultimate luxury feeling in the fabric sheets of the invention.
  • the fabric sheets of the invention can be made using other fibers and blends, including cotton fibers blended with fibers of silk, wool, TENCEL, modal, viscose, bamboo, linen, polyester, and/or other fibers, and/or any combination thereof.
  • FIG. 1 is a process flow diagram of a method of manufacturing a high-density warp-fiber woven fabric according to an example embodiment of the invention.
  • FIG. 2 is a perspective view of an example weaving machine for use in the method of FIG. 1 .
  • FIG. 3 is a perspective view of an example weaving machine with a shed-height set-up for use in the method of FIG. 1 .
  • FIG. 4 is a perspective view of an example weaving machine with a backrest set-up for use in the method of FIG. 1 .
  • FIG. 5 is a weave configuration diagram for use in setting up a weaving machine for use in the method of FIG. 1 .
  • FIGS. 1-5 show a method 100 of manufacturing a high-density warp-fiber woven fabric 110 according to an example embodiment of the invention.
  • the resulting special high thread count (high TC) fabric 110 is typically used to make flat woven bedding products such as sheets, pillow cases, comforters, blankets, duvets, and duvet covers, and even mattress covers and skirts, though it can be used in other applications.
  • the method 100 includes at 102 selecting the fibers to be used, including the warp and weft fibers.
  • the term “fibers” is intended to be synonymous with terms including threads, yarns, and the like for weaving textile fabrics.
  • the warp fibers selected are typically 100-percent cotton, for example conventional long-staple cotton threads (e.g., ring-spun compact yarn) or other types of conventional single-ply cotton threads including cotton blends with other fibers such as polyester, wool, silk, tencel, etc.
  • the weft fibers selected are 100-percent cotton, for example the same fibers used in the warp direction or other conventional cotton threads.
  • the weaving machine is set up to specifications for weaving the special fabric 110 .
  • An example/representative weaving machine 150 that can be used in the process is shown in FIG. 2 .
  • Suitable weaving machines include air-jet looms, rapier looms, projectile looms, and other conventional weaving machinery.
  • the weaving machine 150 can be set up in a conventional manner with common settings well known in the art of weaving cotton fabrics for bedsheets.
  • the weaving machine 150 is set up with special settings for the shed height 152 (see FIG. 3 ) and the backrest 154 (see FIG. 4 ) and with a special weave configuration 170 (see FIG. 5 ).
  • the shed height 152 can be set higher than normal, at about 55 mm to about 60 mm, typically at about 60 mm, whereas normal for sateen sheets is about 50 mm.
  • the backrest 154 is set lower than normal, at about 35 mm to about 45 mm, typically at about 40 mm, whereas normal for sateen sheets is about 30 mm.
  • the weave configuration 170 is set up as 5-end sateen, typically using multi-pick insertion.
  • the heald frame height is specially set, for example with the first heald frame height at about 72 mm to about 74 mm (whereas 74 mm is normal), the second heald frame height at about 70 mm to about 72 mm (whereas 72 mm is normal), the third heald frame height at about 68 mm to about 70 mm (whereas 70 mm is normal), the fourth heald frame height at about 66 mm to 70 mm (whereas 68 mm is normal), and the fifth heald frame height at about 72 mm (whereas 72 mm is normal).
  • the other loom settings e.g., backrest depth
  • the 5-end sateen weave configuration 170 is a simple draft and forms the basis of many others drafts.
  • each respective warp thread/fiber is drawn on a respective shaft, thus, the first warp thread/fiber is drawn through the first heald shaft, the second warp thread/fiber is drawn through the second heald shaft, and so on, with the number of heald shafts equalling the number of warp threads/fibers.
  • the warp density is limited due to workability issues with the weaving machine, specifically, a thread-to-thread gap should be maintained between the warp yarns/threads/fibers being run on the weaving machine to avoid thread-to-thread abrasion and weakening/breakage during the weaving process.
  • the density of the warp fibers can be increased using the 5-end sateen weave configuration 170 to make the fabric with the higher warp density which results in the stable sateen fabric with exceptional lasting sheen.
  • the frame-to-frame crossing position is typically kept lower than normal at about 290 to 300, typically about 295, compared to 300 to 310 in conventional flat woven fabrics like sateen or satin.
  • the denting order is five warp fibers 102 per dent (gap) of the reed 156 , which provides for an increased warp fiber density.
  • this increased warp fiber density produces increase vibrations in the weaving machine 150 and increased surface abrasion of the warp fibers 102 .
  • a liner can be provided on a drive roller (not shown) positioned adjacent the cloth roller beam 158 and around which the raw fabric runs.
  • the liner can be emery paper or another conventional frictional lining material known in the art.
  • the weaving machine 150 is operated to weave the fibers 102 into unfinished/greige high thread count fabric at 108 .
  • the unfinished/greige fabric 108 is finished by for example bleaching, dyeing, stentering, sanforizing, calendering, and/or other conventional techniques for make the high thread count fabric 110 , which can then be made into flat woven bedding products such those described herein.
  • the high thread count fabric 110 has a higher density of warp fibers than conventional sheets.
  • the special fabric 110 has an EPI (warp-thread density) of about 260 warp threads per inch.
  • the special fabric 110 comprises an EPI of 260 warp threads per inch.
  • the special fabric 110 may have an EPI of about 240 to about 260 warp threads per inch, This is a significant increase over conventional high-thread count bedsheets, which have an EPI of about 216 warp threads per inch at the most for the highest quality sheets.
  • the higher density of warp fibers in the high thread count fabric 110 results in a squarer weave geometry, which improves the sheen of the fabric, the durability of the fabric sheets, and the handle of the fabric sheet products.
  • the high thread count fabric 110 has a higher warp-to-weft ratio (EPI/PPI) than conventional sheets.
  • the special fabric 110 has a weft-thread density (PPI) of about 340.
  • the special fabric comprises a PPI of 340 weft threads per inch.
  • the special fabric 110 may have a PPI of about 325 to about 355 weft threads per inch, for example about 240 picks (60/4) for 500 thread count (TC), about 340 picks (85/4) for 600 TC, about 440 picks (74/6) for 700 TC, and about 540 picks (90/6) for 800 TC.
  • the special fabric 110 has a warp-to-weft ratio (EPI/PPI) or, for example, about 0.76/1.0 (e.g., 76%) according to example embodiments of the present invention. This is a significant increase (typically about 21%) over conventional high thread count bedsheets, which have a warp-to-weft ratio of about 0.56/1.0 (e.g., 56%) at the most for the highest quality sheets.
  • EPI/PPI warp-to-weft ratio
  • EPI warp-thread density
  • EPI/PPI warp-to-weft ratio
  • the higher warp-thread density and the higher warp-to-weft ratio results in the special fabric 110 being much softer and having much more sheen than conventional high-thread count bedsheets.
  • the test was done to compare the high thread count fabric 110 and a conventional high thread count bedsheet by testing their surface indexes.
  • the test showed that the high thread count fabric 110 has a surface index of 2.20 and the conventional high thread count bedsheet has a surface index of 3.40.
  • the significantly lower surface index of the special fabric 110 indicates a much softer and higher quality fabric.
  • the surface index value for the high thread count fabrics of the present invention is generally between about 1.95 to about 2.20.
  • Tables A-C Additional details of example weaving settings and resulting fabric properties for the high thread count fabric 110 are provided in Tables A-C below.
  • Table A highlights some typical/representative weave settings such as the shed height adjustment 152 , backrest adjustment 154 , frame-to-frame crossing position, weave configuration 170 , frame heald heights utilized in the fabrication of the high thread count woven fabric 110 as described herein.
  • Table A also shows the typical/representative resulting fabric properties, such as the denting order, EPI, PPI, construction, thread count, and surface index value, for the selected weave settings.
  • Table A further includes common values or ranges of the same weave settings and resulting fabric properties for conventional woven fabrics relative to those of the high thread count fabric 110 .
  • Table B provides other examples of high thread count fabrics fabricated with weaving settings with values representative of high thread count fabrics 110 as described in Table A and else herein which further shows that fabrics fabricated with such weaving settings achieve significantly lower surface index values, relative to conventional high thread count fabrics, indicating softer and higher quality fabric.
  • Table C provides example properties of high thread count fabrics fabricated with weaving settings outside the ranges or configurations of the HD warp fiber woven fabric 110 as described in Table B and else herein. Table C shows that weaving settings outside the values or ranges for HD warp fiber woven fabric 110 results in significantly higher surface index values which indicates less soft and lower quality fabrics.
  • the high thread count fabric represented by Example 1 in Table C has a surface index value of 3.20
  • Example 2 has a surface index value of 3.50
  • Example 3 has a surface index value of 4.80.
  • Table B shows example HD warp-fiber woven fabrics having surface index values of 1.95, 2.00 and 2.20, representing a minimum improvement of at least 31% and a maximum improvement of at least 59% in surface index value.
  • Example 2 Example 3 Outside Outside Outside Range Range Range Settings Shed Height Adjust- 45 mm 50 mm 50 mm ment Back Rest Adjustment 25 mm 50 mm 30 mm Frame-to-Frame 310 305 300-310 Crossing Position Emery Paper Yes No No Weave 5-End Sateen 5-End Sateen 7-End Sateen Frame Heald Heights 1st 72 mm 74 mm 74 mm 2nd 70 mm 72 mm 72 mm 3rd 68 mm 70 mm 70 mm 4th 66 mm 68 mm 68 mm 5th 72 mm 72 mm 72 mm 72 mm Denting Order 5 warp per dent 5 warp per dent 5 warp per dent EPI 216 216 236 PPI 385 384 364 Construction 80 s ⁇ 120 s/ 80 s ⁇ 100 s/ 100 s ⁇ 100 s/ 216 ⁇ 77/5 216 ⁇ 64/6 236 ⁇ 91/4 Thread Count 600 600 600 Surface Index Value 3.20 3.50 4.80
  • the weaving settings can vary the surface index values of the high thread count fabrics. Specifically, proper weave settings are critical to producing high thread count fabrics with surface index values lower than those of conventional high thread count fabrics—generally, 3.40.
  • Weave settings for the high density warp fiber woven fabric 110 as described herein provides significant improvements in the surface index value and the overall quality of high thread count fabrics. More specifically, the use of the preferred weaving settings, and ranges thereof, namely, the shed height adjustment, backrest adjustment, frame-to-frame crossing position, use of emery paper, weave configuration, EPI, PPI and frame heald heights as described herein, provides high thread count fabrics with surface index values in the preferred range between about 1.95 and about 2.20.

Abstract

A high thread count woven fabric for use in bedding products includes a 5-end sateen weave formed from a plurality of interwoven cotton warp and weft threads, wherein the number of warp threads per square inch of the fabric is at least about 240 and the number of the weft threads per square inch is about 9% to about 21% A higher than in conventional high thread count fabrics. A method of making the high thread count fabric includes setting up a weaving machine with a shed height and a backrest adjustment as described and shown herein to facilitate weaving the fabric with the high density of warp threads.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application claims priority to U.S. Provisional Patent Application Ser. No. 62/808,009 filed Feb. 20, 2019, the entirety of which is hereby incorporated by reference herein.
  • TECHNICAL FIELD
  • The present invention relates generally to the field of home textiles, and more particularly to flat bedding products such as high thread count sheets.
  • BACKGROUND
  • Fabric for bedding sheets is identified by its “thread count” (TC), which is the sum of the threads (warp/vertical and weft/horizontal) counted in one square inch (a one-inch by one-inch square area) of the fabric. In other words, a 600 thread count fabric has 600 threads (warp plus weft) per square inch of the fabric. High thread count sheets are defined in the industry as having a thread count of 400 or more. Conventional high thread count bedsheets are limited in the number/density of warp threads because of the thickness of conventional warp threads and the density of conventional comb reeds (i.e., the width of the dents or gaps in the reeds) through which they pass. The number of warp threads per inch of woven fabric (the warp-thread density) is identified as “ends per inch” (EPI), and the number of weft threads per inch of woven fabric (the weft-thread density) is identified as “picks per inch” (PPI). Conventional high thread count bedsheet fabrics of the highest quality have a warp-to-weft ratio (EPI/PPI) of about 0.56/1.0 with an EPI of about 216 or a warp-to-weft ratio (EPI/PPI) of about 0.64/1.0 with an EPI of about 235.
  • Improvements in woven-fabric bedsheets are desired. It is to the provision of solutions to this and other needs that the present invention is primarily directed.
  • SUMMARY
  • Generally described, the present invention relates to a high thread count woven fabric for use in bedding products. According to one example, the high thread count fabric includes a 5-end sateen weave formed from a plurality of interwoven cotton warp and weft threads, wherein the EPI warp-thread density is at least about 260 and the EPI/PPI warp-to-weft ratio is typically about 21% higher than in conventional high thread count fabrics.
  • A method of making the high thread count fabric includes setting up a weaving machine with a shed height and a backrest adjustment as described and shown herein to facilitate weaving the fabric with the high density of warp threads.
  • The resulting fabric sheet has higher reed which makes it balance constructed fabric with a square weave geometry compared to conventional sheets of the same thread count, which results in sheets with attributes such as improved sheen, durability, and handle.
  • This provides silk-like sheets of 100% cotton or a cotton-blended fabric achieved by optimizing the warp density by unique machine settings as described and shown herein.
  • This results in a resulting fabric sheet with a long-lasting sheen, even after repeated washes, which overcomes a problem in conventional sateen sheets, as once the end customer uses and launders conventional sheets they start losing their sheen.
  • This also results in improved pilling performance in the high-density (HD) sateen sheets of the invention because of the higher warp density compared to conventional sateen sheets which have an unbalanced construction resulting in inferior pilling results after use and washing.
  • In addition, the high definition “sateen stripe” sheets of the invention have great definition due to the contact of shiny surfaces to non-shiny surfaces of the same fabric on the same side. This gives an ultimate luxury feeling in the fabric sheets of the invention.
  • Moreover, the fabric sheets of the invention can be made using other fibers and blends, including cotton fibers blended with fibers of silk, wool, TENCEL, modal, viscose, bamboo, linen, polyester, and/or other fibers, and/or any combination thereof.
  • These and other aspects, features, and advantages of the invention will be understood with reference to the drawing figures and detailed description herein, and will be realized by means of the various elements and combinations particularly pointed out in the appended claims. It is to be understood that both the foregoing general description and the following brief description of the drawings and detailed description of example embodiments are explanatory of example embodiments of the invention, and are not restrictive of the invention, as claimed.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a process flow diagram of a method of manufacturing a high-density warp-fiber woven fabric according to an example embodiment of the invention.
  • FIG. 2 is a perspective view of an example weaving machine for use in the method of FIG. 1.
  • FIG. 3 is a perspective view of an example weaving machine with a shed-height set-up for use in the method of FIG. 1.
  • FIG. 4 is a perspective view of an example weaving machine with a backrest set-up for use in the method of FIG. 1.
  • FIG. 5 is a weave configuration diagram for use in setting up a weaving machine for use in the method of FIG. 1.
  • DETAILED DESCRIPTION OF EXAMPLE EMBODIMENTS
  • The present invention may be understood more readily by reference to the following detailed description of example embodiments taken in connection with the accompanying drawing figures, which form a part of this disclosure. It is to be understood that this invention is not limited to the specific devices, methods, conditions or parameters described and/or shown herein, and that the terminology used herein is for the purpose of describing particular embodiments by way of example only and is not intended to be limiting of the claimed invention. Any and all patents and other publications identified in this specification are incorporated by reference as though fully set forth herein.
  • Also, as used in the specification including the appended claims, the singular forms “a,” “an,” and “the” include the plural, and reference to a particular numerical value includes at least that particular value, unless the context clearly dictates otherwise. Ranges may be expressed herein as from “about” or “approximately” one particular value and/or to “about” or “approximately” another particular value. When such a range is expressed, another embodiment includes from the one particular value and/or to the other particular value. Similarly, when values are expressed as approximations, by use of the antecedent “about,” it will be understood that the particular value forms another embodiment.
  • With reference now to the drawing figures, wherein like reference numbers represent corresponding parts throughout the several views, FIGS. 1-5 show a method 100 of manufacturing a high-density warp-fiber woven fabric 110 according to an example embodiment of the invention. The resulting special high thread count (high TC) fabric 110 is typically used to make flat woven bedding products such as sheets, pillow cases, comforters, blankets, duvets, and duvet covers, and even mattress covers and skirts, though it can be used in other applications.
  • As shown in FIG. 1, the method 100 includes at 102 selecting the fibers to be used, including the warp and weft fibers. As used herein, the term “fibers” is intended to be synonymous with terms including threads, yarns, and the like for weaving textile fabrics. The warp fibers selected are typically 100-percent cotton, for example conventional long-staple cotton threads (e.g., ring-spun compact yarn) or other types of conventional single-ply cotton threads including cotton blends with other fibers such as polyester, wool, silk, tencel, etc. And the weft fibers selected are 100-percent cotton, for example the same fibers used in the warp direction or other conventional cotton threads.
  • At 104, the weaving machine is set up to specifications for weaving the special fabric 110. An example/representative weaving machine 150 that can be used in the process is shown in FIG. 2. Suitable weaving machines include air-jet looms, rapier looms, projectile looms, and other conventional weaving machinery. Other than as expressly set forth herein, the weaving machine 150 can be set up in a conventional manner with common settings well known in the art of weaving cotton fabrics for bedsheets.
  • In order to weave the special fabric 110, the weaving machine 150 is set up with special settings for the shed height 152 (see FIG. 3) and the backrest 154 (see FIG. 4) and with a special weave configuration 170 (see FIG. 5). The shed height 152 can be set higher than normal, at about 55 mm to about 60 mm, typically at about 60 mm, whereas normal for sateen sheets is about 50 mm. The backrest 154 is set lower than normal, at about 35 mm to about 45 mm, typically at about 40 mm, whereas normal for sateen sheets is about 30 mm. And the weave configuration 170 is set up as 5-end sateen, typically using multi-pick insertion. In some embodiments, the heald frame height is specially set, for example with the first heald frame height at about 72 mm to about 74 mm (whereas 74 mm is normal), the second heald frame height at about 70 mm to about 72 mm (whereas 72 mm is normal), the third heald frame height at about 68 mm to about 70 mm (whereas 70 mm is normal), the fourth heald frame height at about 66 mm to 70 mm (whereas 68 mm is normal), and the fifth heald frame height at about 72 mm (whereas 72 mm is normal). The other loom settings (e.g., backrest depth) can be conventional for weaving sateen fabrics.
  • The 5-end sateen weave configuration 170 is a simple draft and forms the basis of many others drafts. In this configuration 170, each respective warp thread/fiber is drawn on a respective shaft, thus, the first warp thread/fiber is drawn through the first heald shaft, the second warp thread/fiber is drawn through the second heald shaft, and so on, with the number of heald shafts equalling the number of warp threads/fibers. When weaving high thread count fabrics, the warp density is limited due to workability issues with the weaving machine, specifically, a thread-to-thread gap should be maintained between the warp yarns/threads/fibers being run on the weaving machine to avoid thread-to-thread abrasion and weakening/breakage during the weaving process. But for weaving the special fabric 110, the density of the warp fibers can be increased using the 5-end sateen weave configuration 170 to make the fabric with the higher warp density which results in the stable sateen fabric with exceptional lasting sheen.
  • In addition, the frame-to-frame crossing position is typically kept lower than normal at about 290 to 300, typically about 295, compared to 300 to 310 in conventional flat woven fabrics like sateen or satin.
  • With the 5-end sateen weave configuration, the denting order is five warp fibers 102 per dent (gap) of the reed 156, which provides for an increased warp fiber density. However, this increased warp fiber density produces increase vibrations in the weaving machine 150 and increased surface abrasion of the warp fibers 102. These problems are overcome by the special settings for the shed height 152 and the backrest 154 of the weaving machine 150, as described herein.
  • In addition, the increased density of the warp fibers 102 passing through the reed 156 can produce increased tension in the warp fibers which can in turn cause slippage of the resulting special fabric 110 as it is reeled in onto the cloth beam 158. To eliminate or minimize such slippage, a liner can be provided on a drive roller (not shown) positioned adjacent the cloth roller beam 158 and around which the raw fabric runs. The liner can be emery paper or another conventional frictional lining material known in the art.
  • Continuing with the process 100 of FIG. 1, with the weaving machine 150 specially set up at 104, then at 106 the weaving machine 150 is operated to weave the fibers 102 into unfinished/greige high thread count fabric at 108. Next, at 108 the unfinished/greige fabric 108 is finished by for example bleaching, dyeing, stentering, sanforizing, calendering, and/or other conventional techniques for make the high thread count fabric 110, which can then be made into flat woven bedding products such those described herein.
  • In this way, the high thread count fabric 110 has a higher density of warp fibers than conventional sheets. In example embodiments, for example, the special fabric 110 has an EPI (warp-thread density) of about 260 warp threads per inch. According to one example embodiment, the special fabric 110 comprises an EPI of 260 warp threads per inch. In other example embodiments, for example, the special fabric 110 may have an EPI of about 240 to about 260 warp threads per inch, This is a significant increase over conventional high-thread count bedsheets, which have an EPI of about 216 warp threads per inch at the most for the highest quality sheets. In addition, the higher density of warp fibers in the high thread count fabric 110 (compared to conventional flat woven sheeting fabrics) results in a squarer weave geometry, which improves the sheen of the fabric, the durability of the fabric sheets, and the handle of the fabric sheet products.
  • In addition, the high thread count fabric 110 has a higher warp-to-weft ratio (EPI/PPI) than conventional sheets. In example embodiments, the special fabric 110 has a weft-thread density (PPI) of about 340. According to one example embodiment, the special fabric comprises a PPI of 340 weft threads per inch. In other example embodiments, for example, the special fabric 110 may have a PPI of about 325 to about 355 weft threads per inch, for example about 240 picks (60/4) for 500 thread count (TC), about 340 picks (85/4) for 600 TC, about 440 picks (74/6) for 700 TC, and about 540 picks (90/6) for 800 TC. Based on the EPI being 260 as described herein, the special fabric 110 has a warp-to-weft ratio (EPI/PPI) or, for example, about 0.76/1.0 (e.g., 76%) according to example embodiments of the present invention. This is a significant increase (typically about 21%) over conventional high thread count bedsheets, which have a warp-to-weft ratio of about 0.56/1.0 (e.g., 56%) at the most for the highest quality sheets.
  • It will be noted that a lower PPI could be used to produce a higher EPI/PPI ratio, but such a sheet would be low thread count and not have a balanced square weave geometry, and thus would be of low quality. This is in contrast to the fabric 110 with its higher EPI/PPI ratio, high thread count, and balanced square weave geometry, and thus its high quality.
  • The higher EPI (warp-thread density) and the higher warp-to-weft ratio (EPI/PPI) results in the special fabric 110 being a much more balanced fabric. That is, the thread counts in the warp and weft direction are much closer to each other, so that the warp-to-weft ratio is much closer to even (1.0/1.0). This results in the special fabric 110 having improved performance, for example it is stronger and has a longer life.
  • In addition, the higher warp-thread density and the higher warp-to-weft ratio results in the special fabric 110 being much softer and having much more sheen than conventional high-thread count bedsheets. This is demonstrated by testing done by Hohenstein Laboratories GmbH & Co. KG of Bonnigheim, Germany on 11 Nov. 2016, which test report is marked “Exhibit A,” filed herewith, and incorporated by reference herein. The test was done to compare the high thread count fabric 110 and a conventional high thread count bedsheet by testing their surface indexes. The test showed that the high thread count fabric 110 has a surface index of 2.20 and the conventional high thread count bedsheet has a surface index of 3.40. The significantly lower surface index of the special fabric 110, relative to the conventional high thread count bedsheet, indicates a much softer and higher quality fabric. According to other example embodiments (as will be described below), the surface index value for the high thread count fabrics of the present invention is generally between about 1.95 to about 2.20.
  • Additional details of example weaving settings and resulting fabric properties for the high thread count fabric 110 are provided in Tables A-C below. Table A highlights some typical/representative weave settings such as the shed height adjustment 152, backrest adjustment 154, frame-to-frame crossing position, weave configuration 170, frame heald heights utilized in the fabrication of the high thread count woven fabric 110 as described herein. Table A also shows the typical/representative resulting fabric properties, such as the denting order, EPI, PPI, construction, thread count, and surface index value, for the selected weave settings. Table A further includes common values or ranges of the same weave settings and resulting fabric properties for conventional woven fabrics relative to those of the high thread count fabric 110.
  • Table B provides other examples of high thread count fabrics fabricated with weaving settings with values representative of high thread count fabrics 110 as described in Table A and else herein which further shows that fabrics fabricated with such weaving settings achieve significantly lower surface index values, relative to conventional high thread count fabrics, indicating softer and higher quality fabric.
  • Table C provides example properties of high thread count fabrics fabricated with weaving settings outside the ranges or configurations of the HD warp fiber woven fabric 110 as described in Table B and else herein. Table C shows that weaving settings outside the values or ranges for HD warp fiber woven fabric 110 results in significantly higher surface index values which indicates less soft and lower quality fabrics. For example, the high thread count fabric represented by Example 1 in Table C has a surface index value of 3.20, Example 2 has a surface index value of 3.50, and Example 3 has a surface index value of 4.80. In comparison, Table B shows example HD warp-fiber woven fabrics having surface index values of 1.95, 2.00 and 2.20, representing a minimum improvement of at least 31% and a maximum improvement of at least 59% in surface index value.
  • TABLE A
    Conventional High HD Warp-Fiber
    Thread Count Fabric Woven Fabric
    Settings
    Shed Height 50 mm 55 mm-60 mm
    Adjustment
    Back Rest Adjust- 30 mm 35 mm-45 mm
    ment
    Frame-to-Frame 300-310 290-300
    Crossing Position
    Emery Paper No Yes
    Weave 5-End Sateen 5-End Sateen
    Frame Heald
    Heights
    1st 74 mm 72 mm-74 mm
    2nd 72 mm 70 mm-72 mm
    3rd 70 mm 68 mm-70 mm
    4th 68 mm 66 mm-70 mm
    5th 72 mm 72 mm
    Denting Order 5 warp per dent 5 warp per dent
    EPI 216 260
    PPI 384 340
    Construction 80 s × 100 s/216 × 96/4 80 s × 100 s/260 × 85/4
    Thread Count 600 600
    Surface Index    3.40 1.95-2.20
    Value
  • TABLE B
    HD Warp-Fiber HD Warp-Fiber HD Warp-Fiber
    Woven Fabric Woven Fabric Woven Fabric
    Example 1 Example 2 Example 3
    Settings
    Shed Height 60 mm 57.5 mm   60 mm
    Adjustment
    Back Rest Adjustment 40 mm 41.25 mm   45 mm
    Frame-to-Frame 295   292.5 291
    Crossing Position
    Emery Paper Yes Yes Yes
    Weave 5-End Sateen 5-End Sateen 5-End Sateen
    Frame Heald Heights
    1st 72 mm 72 mm 74 mm
    2nd 70 mm 70 mm 72 mm
    3rd 68 mm 68 mm 70 mm
    4th 66 mm 66 mm 70 mm
    5th 72 mm 72 mm 72 mm
    Denting Order 5 warp per dent 5 warp per dent 5 warp per dent
    EPI 260 260 260
    PPI 340 340 340
    Construction 80 s × 100 s/ 80 s × 100 s/ 80 s × 100 s/
    260 × 85/4 260 × 85/4 260 × 85/4
    Thread Count 600 600 600
    Surface Index Value    2.20    2.00    1.95
  • TABLE C
    Example 1 Example 2 Example 3
    Outside Outside Outside
    Range Range Range
    Settings
    Shed Height Adjust- 45 mm 50 mm 50 mm
    ment
    Back Rest Adjustment 25 mm 50 mm 30 mm
    Frame-to-Frame 310 305 300-310
    Crossing Position
    Emery Paper Yes No No
    Weave 5-End Sateen 5-End Sateen 7-End Sateen
    Frame Heald Heights
    1st 72 mm 74 mm 74 mm
    2nd 70 mm 72 mm 72 mm
    3rd 68 mm 70 mm 70 mm
    4th 66 mm 68 mm 68 mm
    5th 72 mm 72 mm 72 mm
    Denting Order 5 warp per dent 5 warp per dent 5 warp per dent
    EPI 216 216 236
    PPI 385 384 364
    Construction 80 s × 120 s/ 80 s × 100 s/ 100 s × 100 s/
    216 × 77/5 216 × 64/6 236 × 91/4
    Thread Count 600 600 600
    Surface Index Value    3.20    3.50    4.80
  • As highlighted in Tables A-C, the weaving settings can vary the surface index values of the high thread count fabrics. Specifically, proper weave settings are critical to producing high thread count fabrics with surface index values lower than those of conventional high thread count fabrics—generally, 3.40. Weave settings for the high density warp fiber woven fabric 110 as described herein provides significant improvements in the surface index value and the overall quality of high thread count fabrics. More specifically, the use of the preferred weaving settings, and ranges thereof, namely, the shed height adjustment, backrest adjustment, frame-to-frame crossing position, use of emery paper, weave configuration, EPI, PPI and frame heald heights as described herein, provides high thread count fabrics with surface index values in the preferred range between about 1.95 and about 2.20. As shown in Table C, high thread count fabrics produced with one or more weaving settings outside the weaving settings for high density warp fiber woven fabrics 110 (see Table A) fail to achieve surface index values within the preferred range. Thus, the use of at least one or some of the preferred weaving settings for high density fiber woven fabrics as shown in Table A is critical to producing significantly improved high thread count fabrics.
  • While the invention has been described with reference to example embodiments, it will be understood by those skilled in the art that a variety of modifications, additions and deletions are within the scope of the invention, as defined by the following claims.

Claims (20)

What is claimed is:
1. A high thread count fabric comprising a 5 end sateen weave formed from a plurality of interwoven warp and weft threads, the warp threads comprising at least about 65% of the number of weft threads per one square inch of fabric.
2. A high thread count flat woven bedding product made from the fabric of claim 1.
3. A method of making the fabric of claim 1, including setting up a weaving machine with a shed height and a backrest adjustment as described and shown herein.
4. A method of making the fabric of claim 1, comprising a surface index value ranging from 2.2 to 2.5 which is achieved by using yarn in a higher density.
5. A method of making the fabric of claim 1, wherein in order to control vibration in warp sheet and warp breakage in higher thread density flat fabric level 2 is to be selected to weave the fabric on a weaving machine.
6. A method of making the fabric of claim 1, wherein a frame to frame crossing position is kept at 290 to 300 compared to 300 to 310 in conventional flat woven fabric like sateen or satin.
7. A method of making the fabric of claim 1, wherein a long lasting sheen is achieved by using a higher number of threads per inch in warp compared to conventional sateen sheets.
8. A method of making the fabric of claim 1, wherein a silk kind of sheen is achieved in a 100% cotton or cotton blended flat woven fabric like sateen or satin.
9. A high density warp fiber fabric comprising a thread count of at least 400 and a surface index value between 1.95 and 2.20, inclusively.
10. A high density warp fiber fabric of claim 9, further comprising a warp-thread density between 240 warp threads per inch and 260 warp threads per inch, inclusively.
11. A high density warp fiber fabric of claim 9, further comprising a weft-thread density between 325 weft threads per inch and 355 weft threads per inch, inclusively.
12. A high density warp fiber fabric of claim 9, further comprising a denting order of 5 warp per dent.
13. A method of fabricating the fabric of claim 9, including a weaving setting wherein the weaving setting comprising a shed height between 55 mm and 60 mm, a backrest between 35 mm and 45 mm, a frame-to-frame crossing position between 290 and 300.
14. A method of fabricating the fabric of claim 12, the weave setting further comprising a 5-end sateen weave configuration.
15. A method of fabricating the fabric of claim 12, the weave setting further comprising a first frame heald height between 72 mm and 74 mm, a second frame heald height between 70 mm and 72 mm, a third frame heald height between 28 mm and 70 mm, a fourth heald height between 66 mm and 70 mm, and a fifth heald height of 72 mm.
16. A method of fabricating a high density warp fiber fabric comprising
selecting warp and weft fibers for weaving;
configuring a weaving machine, wherein configuring the weaving machine includes setting a weave configuration as a 5-end sateen weave;
weaving the fibers into an unfinished high thread count fabric; and
finishing the high thread count fabric.
17. A method of fabricating a high density warp fiber fabric of claim 16, wherein configuring the weaving machine further includes setting a shed height adjustment between 55 mm and 60 mm.
18. A method of fabricating a high density warp fiber fabric of claim 16, wherein configuring the weaving machine further includes setting a backrest adjustment between 35 mm and 45 mm.
19. A method of fabricating a high density warp fiber fabric of claim 16, wherein configuring the weaving machine further includes setting a frame-to-frame crossing position between 290 and 300.
20. A method of fabricating a high density warp fiber fabric of claim 16, wherein configuring the weaving machine further includes setting a first frame heald height between 72 mm and 74 mm, a second frame heald height between 70 mm and 72 mm, a third frame heald height between 28 mm and 70 mm, a fourth heald height between 66 mm and 70 mm, and a fifth heald height of 72 mm.
US16/795,815 2019-02-20 2020-02-20 High-density warp-fiber woven fabric and methods of manufacturing the same Pending US20200263331A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/795,815 US20200263331A1 (en) 2019-02-20 2020-02-20 High-density warp-fiber woven fabric and methods of manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201962808009P 2019-02-20 2019-02-20
US16/795,815 US20200263331A1 (en) 2019-02-20 2020-02-20 High-density warp-fiber woven fabric and methods of manufacturing the same

Publications (1)

Publication Number Publication Date
US20200263331A1 true US20200263331A1 (en) 2020-08-20

Family

ID=70108253

Family Applications (1)

Application Number Title Priority Date Filing Date
US16/795,815 Pending US20200263331A1 (en) 2019-02-20 2020-02-20 High-density warp-fiber woven fabric and methods of manufacturing the same

Country Status (2)

Country Link
US (1) US20200263331A1 (en)
GB (2) GB202002346D0 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115652499A (en) * 2022-05-06 2023-01-31 江苏明源纺织有限公司 Pure cotton extra-high warp density fabric and processing method thereof

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3858623A (en) * 1969-06-10 1975-01-07 Huyck Corp Papermakers fabrics
FR2175017B1 (en) * 1972-03-07 1976-11-05 Toray Industries
CA2313995A1 (en) * 2000-02-22 2001-08-22 Lincoln Fabrics, Ltd. Ballistic resistant fabric
US20110275263A1 (en) * 2010-05-10 2011-11-10 Shulong Li Flame resistant textile materials
CN203373503U (en) * 2013-07-01 2014-01-01 吴江绵亿纺织有限公司 High-count and high-density nano-technological bedding article fabric
US11168414B2 (en) * 2013-08-15 2021-11-09 Arun Agarwal Selective abrading of a surface of a woven textile fabric with proliferated thread count based on simultaneous insertion within a single pick insertion event of a loom apparatus multiple adjacent parallel yarns drawn from a multi-pick yarn package
US20170088985A1 (en) * 2015-09-25 2017-03-30 Welspun India Limited Chambray fabric, bedding articles, and related manufacturing methods
WO2017141107A1 (en) * 2016-02-16 2017-08-24 Indo Count Industries Ltd. Extra long staple cotton woven fabric and fabrication method
US20180340273A1 (en) * 2017-05-24 2018-11-29 Welspun India Limited Hydroentangled woven fabric
US11624133B2 (en) * 2018-04-04 2023-04-11 Vishal Pacheriwala Woven fabric made of cotton or regenerated cellulose fibers or a combination thereof and polyesters
US20210340695A1 (en) * 2018-04-16 2021-11-04 Indo Count Industries Ltd. Fibers, woven fabrics including the fibers, and methods of manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115652499A (en) * 2022-05-06 2023-01-31 江苏明源纺织有限公司 Pure cotton extra-high warp density fabric and processing method thereof

Also Published As

Publication number Publication date
GB202002387D0 (en) 2020-04-08
GB202002346D0 (en) 2020-04-08
GB2583568B (en) 2023-07-12
GB2583568A (en) 2020-11-04

Similar Documents

Publication Publication Date Title
KR102058415B1 (en) Stretch wovens with a control yarn system
US7762287B2 (en) Stretch wovens with separated elastic yarn system
US7143790B2 (en) Warp-stretch woven fabrics comprising polyester bicomponent filaments
US20180080151A1 (en) Performance fabrics and related articles
US20210010170A1 (en) Triblend cotton fabric
EP3447179A1 (en) Hydroentangled woven fabric
US20200263331A1 (en) High-density warp-fiber woven fabric and methods of manufacturing the same
CN110241504B (en) Loop fabric and weaving method thereof
AU2021266240A1 (en) High thread/ yarn count woven textile fabric and process of preparation thereof
CN107475856B (en) Design and production process of star rain crepe fabric
US10260177B2 (en) Textile material and fabrication method
KR20120112881A (en) Warp-stretch woven fabrics comprising polyester bicomponent filaments
CN114086290B (en) Design and weaving method of surface-to-inner layer-changing super-soft multi-layer fabric
EP1826303A1 (en) Bath linen for personal use, particularly for drying, and production method thereof
Kim et al. Mechanical properties of worsted fabrics for emotional garment to the rapier loom characteristics
US2090547A (en) Blanket
US11624133B2 (en) Woven fabric made of cotton or regenerated cellulose fibers or a combination thereof and polyesters
JP7074540B2 (en) Clothing
US11795588B2 (en) Fabric made of multi-filament polyester warp yarns of yarn size of 75 denier or above and cellulose fiber weft yarns
US20230295847A1 (en) Fabric made of multi-filament polyester warp yarns of yarn size of 75 denier or above and cellulose fiber weft yarns
US11613831B2 (en) High thread/yarn count woven textile fabric and process of preparation thereof
CN220349263U (en) High-toughness tensile polyester taff
US11293120B2 (en) Total fit cotton fabric
WO2024009282A1 (en) Flat woven fabric bedding articles with durable drop area, and related processes
CN111016333A (en) Terylene linen-like fabric and weaving method thereof

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

AS Assignment

Owner name: INDO COUNT INDUSTRIES LTD., INDIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:JAIN, MOHIT KUMAR;REEL/FRAME:052862/0403

Effective date: 20200603

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED