US20200220534A1 - Semiconductor device and semiconductor package - Google Patents

Semiconductor device and semiconductor package Download PDF

Info

Publication number
US20200220534A1
US20200220534A1 US16/563,677 US201916563677A US2020220534A1 US 20200220534 A1 US20200220534 A1 US 20200220534A1 US 201916563677 A US201916563677 A US 201916563677A US 2020220534 A1 US2020220534 A1 US 2020220534A1
Authority
US
United States
Prior art keywords
source
inductor
gate
drain
transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US16/563,677
Other versions
US10720914B1 (en
Inventor
Masahiro Koyama
Kentaro IKEDA
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Electronic Devices and Storage Corp
Original Assignee
Toshiba Corp
Toshiba Electronic Devices and Storage Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Electronic Devices and Storage Corp filed Critical Toshiba Corp
Assigned to TOSHIBA ELECTRONIC DEVICES & STORAGE CORPORATION, KABUSHIKI KAISHA TOSHIBA reassignment TOSHIBA ELECTRONIC DEVICES & STORAGE CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: Ikeda, Kentaro, KOYAMA, MASAHIRO
Publication of US20200220534A1 publication Critical patent/US20200220534A1/en
Application granted granted Critical
Publication of US10720914B1 publication Critical patent/US10720914B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/08Modifications for protecting switching circuit against overcurrent or overvoltage
    • H03K17/081Modifications for protecting switching circuit against overcurrent or overvoltage without feedback from the output circuit to the control circuit
    • H03K17/0814Modifications for protecting switching circuit against overcurrent or overvoltage without feedback from the output circuit to the control circuit by measures taken in the output circuit
    • H03K17/08142Modifications for protecting switching circuit against overcurrent or overvoltage without feedback from the output circuit to the control circuit by measures taken in the output circuit in field-effect transistor switches
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/04Modifications for accelerating switching
    • H03K17/041Modifications for accelerating switching without feedback from the output circuit to the control circuit
    • H03K17/0412Modifications for accelerating switching without feedback from the output circuit to the control circuit by measures taken in the control circuit
    • H03K17/04123Modifications for accelerating switching without feedback from the output circuit to the control circuit by measures taken in the control circuit in field-effect transistor switches
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/18Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49517Additional leads
    • H01L23/4952Additional leads the additional leads being a bump or a wire
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49575Assemblies of semiconductor devices on lead frames
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/10Modifications for increasing the maximum permissible switched voltage
    • H03K17/102Modifications for increasing the maximum permissible switched voltage in field-effect transistor switches
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/567Circuits characterised by the use of more than one type of semiconductor device, e.g. BIMOS, composite devices such as IGBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/0212Auxiliary members for bonding areas, e.g. spacers
    • H01L2224/02122Auxiliary members for bonding areas, e.g. spacers being formed on the semiconductor or solid-state body
    • H01L2224/02163Auxiliary members for bonding areas, e.g. spacers being formed on the semiconductor or solid-state body on the bonding area
    • H01L2224/02165Reinforcing structures
    • H01L2224/02166Collar structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/0601Structure
    • H01L2224/0603Bonding areas having different sizes, e.g. different heights or widths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4911Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain
    • H01L2224/49111Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain the connectors connecting two common bonding areas, e.g. Litz or braid wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19105Disposition of discrete passive components in a side-by-side arrangement on a common die mounting substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19107Disposition of discrete passive components off-chip wires
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • Embodiments of the present disclosure relate to a semiconductor device.
  • a group III nitride for example, a gallium nitride (GaN)-based semiconductor is expected as a material for a next-generation power semiconductor device.
  • the GaN-based semiconductor has a band gap wider than that of a silicon (Si) semiconductor. For this reason, in the GaN-based semiconductor device, the power semiconductor device can be made smaller in size and higher in breakdown voltage compared to the Si semiconductor device. Accordingly, a parasitic capacitance can be reduced, and thus a high-speed driven power semiconductor device can be realized.
  • a high electron mobility transistor In a GaN-based transistor, generally, a high electron mobility transistor (HEMT) structure which uses a two-dimensional electron gas (2DEG) as a carrier is applied.
  • HEMT high electron mobility transistor
  • 2DEG two-dimensional electron gas
  • a normal HEMT is a normally-on transistor which is conducted even when a voltage is not applied to a gate.
  • FIG. 1 is a circuit diagram of a semiconductor device according to one embodiment
  • FIG. 2 is a circuit diagram of a semiconductor device according to one comparative example
  • FIG. 3 is a view illustrating a current path of the semiconductor device of FIG. 1 ;
  • FIG. 4 is a view illustrating a current path of the semiconductor device of FIG. 2 ;
  • FIGS. 5A, 5B, and 5C are views in which a gate voltage waveform and a gate current waveform of the semiconductor device are compared between FIGS. 1 and 2 ;
  • FIGS. 6A, 6B, and 6C are sectional views of a normally-on transistor, a normally-off transistor, and first and second rectifier elements;
  • FIG. 7 is a schematic layout diagram of the semiconductor device according to the present embodiment.
  • FIG. 8 is a circuit diagram of a semiconductor device according to one modification.
  • FIG. 9 is a schematic layout diagram of the semiconductor device of FIG. 8 .
  • a semiconductor device has:
  • a normally-off transistor which comprises a first source, a first drain, and a first gate
  • a normally-on transistor which comprises a second source connected electrically to the first drain, a second drain, and a second gate;
  • a gate drive circuit which drives the first gate and the second gate
  • a first rectifier element which comprises a first anode connected electrically to the second gate and a first cathode connected electrically to the first source or the first drain;
  • a second rectifier element which comprises a second anode connected electrically to the gate drive circuit and a second cathode connected electrically to the first gate;
  • a second inductor which is connected electrically between a reference potential node of the gate drive circuit and the first source
  • the semiconductor device in the present specification is a concept including a power module in which a plurality of semiconductor elements such as a discrete semiconductor are combined, an intelligent power module in which a drive circuit of driving these elements or a self-protection function is incorporated in a plurality of elements such as a discrete semiconductor, or the entire system including the power module and the intelligent power module.
  • GaN-based semiconductor is a generic term for a group III-IV semiconductor which includes gallium nitride (GaN), aluminum nitride (AlN), indium nitride (InN), and an intermediate composition thereof.
  • FIG. 1 is a circuit diagram of a semiconductor device 1 according to one embodiment.
  • the semiconductor device 1 of FIG. 1 for example, at least partial configuration of the power module having a rated voltage of 600 V to 1200 V is illustrated.
  • the semiconductor device 1 of FIG. 1 includes a normally-off transistor 2 , a normally-on transistor 3 , a gate drive circuit 4 , a first resistor 5 , a second resistor 6 , a first capacitor 7 , a first rectifier element 8 , a second rectifier element 9 , a first inductor 10 , a second inductor 11 , a second capacitor 12 , and a third inductor 13 .
  • the normally-off transistor 2 includes a first source 2 a , a first drain 2 b , and a first gate 2 c .
  • the normally-off transistor 2 is a transistor in which a drain current does not flow in a case where a voltage is not applied to the first gate 2 c .
  • the normally-off transistor 2 is a vertical metal oxide semiconductor field effect transistor (MOSFET) which uses a silicon (Si) semiconductor.
  • MOSFET vertical metal oxide semiconductor field effect transistor
  • the normally-off transistor 2 includes a parasitic body diode (not illustrated).
  • the breakdown voltage of the normally-off transistor 2 is 10 V to 30 V or less, for example.
  • the normally-on transistor 3 includes a second source 3 a , a second drain 3 b , and a second gate 3 c which are electrically connected to the first drain 2 b of the normally-off transistor 2 .
  • the normally-on transistor 3 is a transistor in which a drain current flows even in a case where a voltage is not applied to a gate.
  • the normally-on transistor 3 is a HEMT which uses a GaN-based semiconductor.
  • the breakdown voltage of the normally-on transistor 3 is higher than the breakdown voltage of the normally-off transistor 2 .
  • the breakdown voltage of the normally-on transistor 3 is 600 V to 1200 V.
  • Both the normally-off transistor 2 and the normally-on transistor 3 are N type.
  • the semiconductor device 1 of FIG. 1 realizes a normally-off operation.
  • the cascode connection means that the first source 2 a of the normally-off transistor 2 and the second drain 3 b of the normally-on transistor 3 are connected electrically.
  • a parasitic inductance is generated when the first source 2 a and the second drain 3 b are connected by a bonding wire 50 or the like.
  • the parasitic inductance which is present between the first source 2 a and the second drain 3 b is called the first inductor 10 .
  • the gate drive circuit 4 drives the first gate 2 c of the normally-off transistor 2 and the second gate 3 c of the normally-on transistor 3 . More specifically, the gate drive circuit 4 outputs a signal for driving the first gate 2 c and the second gate 3 c on the basis of the signal output from a signal source 17 .
  • the signal source 17 outputs a signal such as a square wave.
  • the gate drive circuit 4 may be an IC in which a plurality of semiconductor elements in the gate drive circuit 4 are formed on the same semiconductor substrate to be packaged or an electronic circuit substrate in which a plurality of semiconductor elements in the gate drive circuit 4 are mounted.
  • the gate drive circuit 4 has a reference potential node Vs.
  • the reference potential node Vs is electrically connected to a grounding node of 0 V.
  • an input/output part of an optional semiconductor element is called a node.
  • the node may be a terminal or a connection place such as a contact or the bonding wire 50 where an electrical connection to another semiconductor element is performed.
  • the first resistor 5 is connected between the output node of the gate drive circuit 4 and the first gate 2 c .
  • the first resistor 5 is a gate resistor of the normally-off transistor 2 .
  • the output node of the gate drive circuit 4 means a node which outputs a signal for driving the first gate 2 c and the second gate 3 c.
  • the second resistor 6 and the first capacitor 7 are connected in series between the output node of the gate drive circuit 4 and the second gate 3 c .
  • the second resistor 6 is a gate resistor of the normally-on transistor 3 .
  • the first resistor 5 and the second resistor 6 may include a parasitic resistor of the bonding wire 50 or a wiring pattern.
  • the first rectifier element 8 includes a first anode 8 a electrically connected to the second gate 3 c and a first cathode 8 b electrically connected to the first source 2 a or the first drain 2 b .
  • the first rectifier element 8 may be a diode or a diode-connected transistor.
  • FIG. 1 illustrates an example in which the first cathode 8 b of the first rectifier element 8 is connected to the first drain 2 b.
  • the second rectifier element 9 includes a second anode 9 a electrically connected to the output node of the gate drive circuit 4 and a second cathode 9 b electrically connected to the first gate 2 c .
  • the second rectifier element 9 may be a diode or a diode-connected transistor.
  • the second rectifier element 9 is connected in parallel with the first resistor 5 .
  • the first inductor 10 is connected between the first drain 2 b and the second source 3 a .
  • the first inductor 10 may include a parasitic inductance of the bonding wire 50 , the wiring pattern, or the like.
  • the second inductor 11 is electrically connected between the reference potential node Vs of the gate drive circuit 4 and the first source 2 a .
  • the second inductor 11 may include the parasitic inductance of the bonding wire 50 connected to the reference potential node Vs of the gate drive circuit 4 or the wiring pattern.
  • the second capacitor 12 and the third inductor 13 are connected in series between the first source 2 a and the second source 3 a . More specifically, the second capacitor 12 is connected between one end part of the third inductor 13 and the second source 3 a .
  • the second inductor 11 is connected to the connection node of the other end part of the third inductor 13 and the reference potential node Vs of the gate drive circuit 4 .
  • the third inductor 13 may include the parasitic inductance of the bonding wire 50 connected to the first source 2 a of the normally-off transistor 2 or the wiring pattern.
  • the second capacitor 12 desirably has a capacitance equal to or more than that of the first capacitor 7 .
  • the semiconductor device 1 of FIG. 1 may include a fourth inductor 14 .
  • the fourth inductor 14 is connected between the other end part of the second capacitor 12 and one end part of the third inductor 13 .
  • the semiconductor device 1 of FIG. 1 may include a third capacitor (not illustrated) connected between the second gate 3 c of the normally-on transistor 3 and the first drain 2 b of the normally-off transistor 2 .
  • the third capacitor may include a parasitic capacity.
  • the semiconductor device 1 of FIG. 1 includes a source terminal 15 and a drain terminal 16 .
  • the source terminal 15 is electrically connected to one end part of the third inductor 13 .
  • the source terminal 15 may be connected to the reference potential node such as a grounding node or connected to various semiconductor elements.
  • the source terminal 15 is connected to the second drain 3 b in another semiconductor device 1 .
  • the drain terminal 16 is connected to the drain of the normally-on transistor 3 .
  • the drain terminal 16 may be connected to a power supply voltage node or connected to various semiconductor elements.
  • the gate drive circuit 4 outputs a square-wave signal of alternately repeating 0 V and a voltage Va which can allow the normally-off transistor 2 to be turned on.
  • the normally-off transistor 2 is turned on, and when the voltage 0 V is input to the first gate 2 c , the normally-off transistor 2 is turned off.
  • the gate drive circuit 4 When the gate drive circuit 4 outputs the voltage Va, the voltage of one end part of the first capacitor 7 increases, and a current flows to the source terminal 15 through the first rectifier element 8 .
  • the voltage according to the forward voltage VF of the first rectifier element 8 is input to the second gate 3 c . Therefore, the normally-on transistor 3 is turned on.
  • the normally-off transistor 2 when the semiconductor device 1 according to the present embodiment transits from off to on, the normally-off transistor 2 is desirably turned on prior to the normally-on transistor 3 . This is because there is a concern that if the normally-on transistor 3 is turned on previously, a high voltage is applied to a connection part between the first drain 2 b and the second source 3 a , and the property of the normally-off transistor 2 having a low breakdown voltage is deteriorated.
  • the semiconductor device 1 of the present embodiment when the semiconductor device 1 transits from the OFF state to the ON state, a current flows through the second rectifier element 9 provided in parallel with the first resistor 5 . For this reason, the charging of the first gate 2 c is not affected by the first resistor 5 . Accordingly, it is possible to quickly charge the first gate 2 c .
  • the normally-off transistor 2 can be reliably turned on prior to the normally-on transistor 3 , and there is no concern that a high voltage exceeding the breakdown voltage is applied to the first drain 2 b of the normally-off transistor 2 .
  • the off timing of the normally-off transistor 2 and the off timing of the normally-on transistor 3 can be delayed by a desirable time. Accordingly, when the semiconductor device 1 transits from the ON state to the OFF state, the normally-on transistor 3 can be turned off prior to the normally-off transistor 2 .
  • FIG. 2 is a circuit diagram of the semiconductor device 1 according to one comparative example.
  • the connection place of one end part of the second inductor 11 is different from that of the semiconductor device 1 of FIG. 1 . More specifically, one end part of the second inductor 11 of FIG. 2 is electrically connected to the connection node of the third inductor 13 and the fourth inductor 14 .
  • one end part of the second inductor 11 is electrically connected to the first source 2 a of the normally-on transistor 3 .
  • FIG. 3 is a view illustrating the current path of the semiconductor device 1 of FIG. 1
  • FIG. 4 is a view illustrating the current path of the semiconductor device 1 of FIG. 2 .
  • a current flows to the source terminal 15 through between the first drain 2 b and the first source 2 a of the normally-on transistor 3 and between the second drain 3 b and the second source 3 a of the normally-off transistor 2 .
  • the current path is a main circuit current path.
  • a first current path 52 through which a current flows along the main circuit current path 51 and another current path bypassing from the first current path 52 are included in addition to the main circuit current path 51 .
  • the current path is called a second current path 53 in the semiconductor device 1 of FIG. 1 and is called a third current path 54 in the semiconductor device 1 of FIG. 4 .
  • the path through which a current flows is partially different between the second current path 53 and the third current path 54 .
  • Both of the second current path 53 and the third current path 54 are common in that the both current paths are a path from the second source 3 a of the normally-on transistor 3 to the second capacitor 12 ⁇ the fourth inductor 14 ⁇ the third inductor 13 ⁇ the reference potential node Vs of the gate drive circuit 4 . Accordingly, it is possible to bypass the source inductance of the normally-on transistor 3 to form Kelvin connection.
  • the delay time taken when the normally-on transistor 3 transits from on to off and from off to on can be shortened, and the ringing of the current flowing through the second gate 3 c of the normally-on transistor 3 can be suppressed.
  • the semiconductor device 1 of FIG. 1 is characterized in that the delay time during the transition of the normally-on transistor 3 can be shortened further to reduce the switching loss.
  • the first current path 52 in the semiconductor devices 1 of FIGS. 1 and 2 is a current path passing through the second resistor 6 ⁇ the second gate 3 c of the normally-on transistor 3 ⁇ the parasitic capacity (third capacitor) in the second source 3 a ⁇ the first drain 2 b —the first source 2 a of the normally-off transistor 2 ⁇ the second inductor 11 in order.
  • the semiconductor device 1 of FIG. 1 includes the second current path 53 .
  • the second current path 53 is a current path passing through the second source 3 a of the normally-on transistor 3 ⁇ the second capacitor 12 ⁇ the fourth inductor 14 ⁇ the third inductor 13 ⁇ the second inductor 11 in order.
  • the direction of the current flowing through the third inductor 13 is reverse in the main circuit current path 51 and the second current path 53 . Accordingly, the drive current flowing through the second gate 3 c of the normally-on transistor 3 is hardly affected by the change of the current flowing through the first current path 52 , and a transition rate of the current and the voltage flowing through the second gate 3 c of the normally-on transistor 3 can be improved.
  • the reason that the second source 3 a of the normally-on transistor 3 is Kelvin-connected is to prevent that the drive current is modulated by the electromotive force generated in the source inductance according to the time change of the current flowing through the main circuit current path 51 (first current path 52 ). As illustrated in FIG.
  • the direction of the current flowing through the third inductor 13 is reverse in the main circuit current path 51 and the second current path 53 .
  • the transition rate of the normally-on transistor 3 is increased, the switching loss can be also reduced.
  • the semiconductor device 1 of FIG. 2 includes the third current path 54 as illustrated in FIG. 4 .
  • the third current path 54 is a current path passing through the second source 3 a of the normally-on transistor 3 ⁇ the second capacitor 12 ⁇ the fourth inductor 14 ⁇ the second inductor 11 in order.
  • a current does not flow through the third inductor 13 .
  • a current flows only in the direction of the current of the main circuit current path 51 and the first current path 52 .
  • the transition rate when the normally-on transistor 3 transits from off to on decreases compared to the semiconductor device 1 of FIG. 1 .
  • FIG. 5A is a view in which the gate current waveform when the normally-on transistor 3 transits from off to on is compared between the semiconductor devices 1 of FIGS. 1 and 2 .
  • a horizontal axis is time
  • a vertical axis is a current value.
  • the gate current waveform of the semiconductor device of FIG. 1 is indicated by a solid line
  • the gate current waveform of the semiconductor device of FIG. 2 is indicated by a broken line.
  • FIG. 5B is a view obtained by enlarging a partial time area of FIG. 5A .
  • the transition rate is improved clearly compared to the semiconductor device 1 of FIG. 2 .
  • the ringing of the gate current in the frame 18 is also suppressed compared to one comparative example.
  • FIG. 5C is a view in which the gate current waveform when the normally-on transistor 3 transits from on to off is compared, and the gate voltage waveform is compared between the semiconductor devices 1 of FIGS. 1 and 2 .
  • the waveform of the gate current and the gate voltage is changed more steeply than that in the semiconductor device 1 of FIG. 2 , thus the transition rate is improved.
  • FIG. 6A is a schematic sectional view of the normally-on transistor 3 .
  • the normally-on transistor 3 of FIG. 6A has a structure in which a buffer layer 22 , a GaN layer 23 , and an AlGaN layer 24 are laminated in order on a Si substrate 21 .
  • the normally-on transistor 3 of FIG. 6A is an example of a lateral transistor in which channels are formed substantially parallel to a lamination surface, and the second gate 3 c , the second drain 3 b , and the second source 3 a are arranged on the upper side of the AlGaN layer 24 .
  • the normally-on transistor 3 according to the present embodiment may be a vertical transistor in which the second drain 3 b is provided on the opposite side to the second gate 3 c and the second source 3 a.
  • FIG. 6B is a schematic sectional view of the normally-off transistor 2 .
  • a source diffusion region 25 is formed on the Si substrate 21 .
  • the first source 2 a and the first gate 2 b are arranged on the source diffusion region 25
  • the first drain 2 c is arranged through a drain diffusion region 26 on the opposite surface side.
  • FIG. 6C is a schematic sectional view of the first and second rectifier elements 8 and 9 .
  • FIG. 6C illustrates an example in which the first and second rectifier elements 8 and 9 are formed in a vertical structure.
  • An anode region 46 is arranged on an anode electrode 45
  • a cathode region 48 is arranged through a pn junction layer 47 on the anode region 46 .
  • the cathode region 48 and a cathode electrode 49 are connected electrically by the bonding wire 50 .
  • FIG. 7 is a schematic layout diagram of the semiconductor device 1 according to the present embodiment.
  • a first drain region 32 for the first drain 2 b , a second drain region 33 electrically connected to the drain terminal 16 , a first source region 34 electrically connected to the source terminal 15 , a second source region 35 for the second source 3 a , a Kelvin source region 36 , and first to fifth wiring pattern regions 37 to 41 are arranged on a base substrate.
  • the normally-on transistor 3 having the cross-sectional structure of FIG. 6A and the normally-off transistor 2 having the cross-sectional structure of FIG. 6B are arranged on the first drain region 32 .
  • the normally-off transistor 2 is arranged such that the first drain 2 b comes into contact with the first drain region 32 .
  • the second capacitor 12 is arranged to come into contact with the second source region 35 and the first source region 34 .
  • an output node of a gate driver (not illustrated) is connected electrically to the first wiring pattern region 37 .
  • the second resistor 6 is arranged to come into contact with the first wiring pattern region 37 and the second wiring pattern region 38 .
  • the first capacitor 7 is arranged to come into contact with the second wiring pattern region 38 and the third wiring pattern region 39 .
  • the anode surface of the first rectifier element 8 is in contact on the third wiring pattern region 39 .
  • the cathode 8 b of the first rectifier element 8 is connected to the first drain region 32 through the bonding wire 50 .
  • the Kelvin source region 36 is connected to the first source 2 a of the normally-off transistor 2 through the bonding wire 50 .
  • the second rectifier element 9 is arranged to come into contact with the first wiring pattern region 37 and the fourth wiring pattern region 40 .
  • the anode surface of the second rectifier element 9 is in contact on the first wiring pattern region 37 and the fourth wiring pattern region 40 .
  • the cathode 9 b of the second rectifier element 9 is connected to the fifth wiring pattern region 41 through the bonding wire 50 .
  • the first resistor 5 is arranged to come into contact with the fourth wiring pattern region 40 and the fifth wiring pattern region 41 , and the second rectifier element 9 is arranged in parallel with the first resistor 5 .
  • a characteristic configuration in the layout diagram of FIG. 7 is that the direction of the current flowing on the first current path 52 (main circuit current path 51 ) and the direction of the current flowing on the second current path 53 are different in the bonding wire 50 which connects the first source 2 a of the normally-off transistor 2 and the first source region 34 .
  • the direction of the current flowing through the bonding wire 50 is reverse in the first current path 52 and the second current path 53 , the transition rate during the transition from off to on and from on to off of the semi conductor device of FIG. 1 can increase.
  • the semiconductor device 1 of FIG. 1 is an example in which the cathode 8 b of the first rectifier element 8 in which the anode 8 a is connected to the second gate 3 c of the normally-on transistor 3 is connected electrically to the second source 3 a of the normally-on transistor 3 .
  • the cathode 8 b of the first rectifier element 8 may be connected electrically to the first source 2 a of the normally-off transistor 2 .
  • FIG. 9 a layout diagram corresponding to the semiconductor device 1 of FIG. 8 is illustrated as in FIG. 9 .
  • the cathode of the first rectifier element 8 is connected to the Kelvin source region 36 through the bonding wire 50 .
  • the first current path 52 and the second current path 53 are provided in addition to the main circuit current path 51 , and the direction in which the current passing through the main circuit current path 51 passes through the third inductor 13 and the current direction in which the current passing through the second current path 53 passes through the third inductor 13 are reverse to each other.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Electronic Switches (AREA)
  • Power Conversion In General (AREA)

Abstract

A semiconductor device has a normally-off transistor which comprises a first source, a first drain, and a first gate, a normally-on transistor which comprises a second source connected electrically to the first drain, a second drain, and a second gate, a gate drive circuit which drives the first gate and the second gate, a first resistor which is connected between an output node of the gate drive circuit and the first gate, a second resistor and a first capacitor which are connected in series between the output node and the second gate, a first rectifier element which comprises a first anode and a first cathode, a second rectifier element which comprises a second anode and a second cathode, a first inductor, a second inductor, and a second capacitor and a third inductor which are connected in series between the first source and the second source.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This application is based upon and claims the benefit of priority from the prior Japanese Patent Application No. 2019-280, filed on Jan. 4, 2019, the entire contents of which are incorporated herein by reference.
  • FIELD
  • Embodiments of the present disclosure relate to a semiconductor device.
  • BACKGROUND
  • A group III nitride, for example, a gallium nitride (GaN)-based semiconductor is expected as a material for a next-generation power semiconductor device. The GaN-based semiconductor has a band gap wider than that of a silicon (Si) semiconductor. For this reason, in the GaN-based semiconductor device, the power semiconductor device can be made smaller in size and higher in breakdown voltage compared to the Si semiconductor device. Accordingly, a parasitic capacitance can be reduced, and thus a high-speed driven power semiconductor device can be realized.
  • In a GaN-based transistor, generally, a high electron mobility transistor (HEMT) structure which uses a two-dimensional electron gas (2DEG) as a carrier is applied. A normal HEMT is a normally-on transistor which is conducted even when a voltage is not applied to a gate.
  • In a power supply circuit or the like which handles a large amount of electric power of several hundreds V to one thousand V, a normally-off operation is required with emphasis on safety. In this regard, a circuit configuration is proposed in which the normally-on GaN-based transistor and the normally-off Si transistor are cascode-connected to realize the normally-off operation.
  • In the case of a circuit configuration in which a main circuit current flowing between a drain and a source and a drive current flowing between a gate and a source share a source inductance, the drive current is modulated due to the influence of an electromotive force which is generated in the source inductance according to the time change of the main circuit current. Accordingly, there occurs a problem of a delay that a rising speed or a falling speed of the power semiconductor device is slowed down or a ringing that a drain current or a source voltage is sharply changed with time. In this regard, a circuit configuration with Kelvin connection is proposed in which the main circuit current and the gate drive current do not share the source inductance.
  • However, even in the circuit configuration using Kelvin connection, the problem that the drive current is modulated due to the influence of the main circuit current cannot be resolved completely, and the problem that the rising speed or the falling speed of the normally-on transistor is slowed down still occurs. The decrease of the rising speed or the falling speed of the normally-on transistor may cause the increase of the switching loss. Thus, proper measures are required.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a circuit diagram of a semiconductor device according to one embodiment;
  • FIG. 2 is a circuit diagram of a semiconductor device according to one comparative example;
  • FIG. 3 is a view illustrating a current path of the semiconductor device of FIG. 1;
  • FIG. 4 is a view illustrating a current path of the semiconductor device of FIG. 2;
  • FIGS. 5A, 5B, and 5C are views in which a gate voltage waveform and a gate current waveform of the semiconductor device are compared between FIGS. 1 and 2;
  • FIGS. 6A, 6B, and 6C are sectional views of a normally-on transistor, a normally-off transistor, and first and second rectifier elements;
  • FIG. 7 is a schematic layout diagram of the semiconductor device according to the present embodiment;
  • FIG. 8 is a circuit diagram of a semiconductor device according to one modification; and
  • FIG. 9 is a schematic layout diagram of the semiconductor device of FIG. 8.
  • DETAILED DESCRIPTION
  • According to one embodiment, a semiconductor device has:
  • a normally-off transistor which comprises a first source, a first drain, and a first gate;
  • a normally-on transistor which comprises a second source connected electrically to the first drain, a second drain, and a second gate;
  • a gate drive circuit which drives the first gate and the second gate;
  • a first resistor which is connected between an output node of the gate drive circuit and the first gate;
  • a second resistor and a first capacitor which are connected in series between the output node and the second gate;
  • a first rectifier element which comprises a first anode connected electrically to the second gate and a first cathode connected electrically to the first source or the first drain;
  • a second rectifier element which comprises a second anode connected electrically to the gate drive circuit and a second cathode connected electrically to the first gate;
  • a first inductor which is connected between the first drain and the second source;
  • a second inductor which is connected electrically between a reference potential node of the gate drive circuit and the first source; and
  • a second capacitor and a third inductor which are connected in series between the first source and the second source.
  • Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. In the following embodiments, the description will be given mainly about characteristic configurations and operations in the semiconductor device. However, the semiconductor device may include configurations and operations omitted in the descriptions below.
  • The semiconductor device in the present specification is a concept including a power module in which a plurality of semiconductor elements such as a discrete semiconductor are combined, an intelligent power module in which a drive circuit of driving these elements or a self-protection function is incorporated in a plurality of elements such as a discrete semiconductor, or the entire system including the power module and the intelligent power module.
  • In the present specification, the term “GaN-based semiconductor” is a generic term for a group III-IV semiconductor which includes gallium nitride (GaN), aluminum nitride (AlN), indium nitride (InN), and an intermediate composition thereof.
  • FIG. 1 is a circuit diagram of a semiconductor device 1 according to one embodiment. In the semiconductor device 1 of FIG. 1, for example, at least partial configuration of the power module having a rated voltage of 600 V to 1200 V is illustrated. The semiconductor device 1 of FIG. 1 includes a normally-off transistor 2, a normally-on transistor 3, a gate drive circuit 4, a first resistor 5, a second resistor 6, a first capacitor 7, a first rectifier element 8, a second rectifier element 9, a first inductor 10, a second inductor 11, a second capacitor 12, and a third inductor 13.
  • The normally-off transistor 2 includes a first source 2 a, a first drain 2 b, and a first gate 2 c. The normally-off transistor 2 is a transistor in which a drain current does not flow in a case where a voltage is not applied to the first gate 2 c. For example, the normally-off transistor 2 is a vertical metal oxide semiconductor field effect transistor (MOSFET) which uses a silicon (Si) semiconductor. Incidentally, the normally-off transistor 2 includes a parasitic body diode (not illustrated). The breakdown voltage of the normally-off transistor 2 is 10 V to 30 V or less, for example.
  • The normally-on transistor 3 includes a second source 3 a, a second drain 3 b, and a second gate 3 c which are electrically connected to the first drain 2 b of the normally-off transistor 2. The normally-on transistor 3 is a transistor in which a drain current flows even in a case where a voltage is not applied to a gate. For example, the normally-on transistor 3 is a HEMT which uses a GaN-based semiconductor. The breakdown voltage of the normally-on transistor 3 is higher than the breakdown voltage of the normally-off transistor 2. For example, the breakdown voltage of the normally-on transistor 3 is 600 V to 1200 V. Both the normally-off transistor 2 and the normally-on transistor 3 are N type.
  • When the normally-off transistor 2 and the normally-on transistor 3 are cascode-connected, the semiconductor device 1 of FIG. 1 realizes a normally-off operation. Herein, the cascode connection means that the first source 2 a of the normally-off transistor 2 and the second drain 3 b of the normally-on transistor 3 are connected electrically. In actual, a parasitic inductance is generated when the first source 2 a and the second drain 3 b are connected by a bonding wire 50 or the like. In the present specification, the parasitic inductance which is present between the first source 2 a and the second drain 3 b is called the first inductor 10.
  • The gate drive circuit 4 drives the first gate 2 c of the normally-off transistor 2 and the second gate 3 c of the normally-on transistor 3. More specifically, the gate drive circuit 4 outputs a signal for driving the first gate 2 c and the second gate 3 c on the basis of the signal output from a signal source 17. For example, the signal source 17 outputs a signal such as a square wave.
  • The gate drive circuit 4 may be an IC in which a plurality of semiconductor elements in the gate drive circuit 4 are formed on the same semiconductor substrate to be packaged or an electronic circuit substrate in which a plurality of semiconductor elements in the gate drive circuit 4 are mounted. The gate drive circuit 4 has a reference potential node Vs. For example, the reference potential node Vs is electrically connected to a grounding node of 0 V.
  • Incidentally, in the present specification, an input/output part of an optional semiconductor element is called a node. The node may be a terminal or a connection place such as a contact or the bonding wire 50 where an electrical connection to another semiconductor element is performed.
  • The first resistor 5 is connected between the output node of the gate drive circuit 4 and the first gate 2 c. The first resistor 5 is a gate resistor of the normally-off transistor 2. The output node of the gate drive circuit 4 means a node which outputs a signal for driving the first gate 2 c and the second gate 3 c.
  • The second resistor 6 and the first capacitor 7 are connected in series between the output node of the gate drive circuit 4 and the second gate 3 c. The second resistor 6 is a gate resistor of the normally-on transistor 3. The first resistor 5 and the second resistor 6 may include a parasitic resistor of the bonding wire 50 or a wiring pattern.
  • The first rectifier element 8 includes a first anode 8 a electrically connected to the second gate 3 c and a first cathode 8 b electrically connected to the first source 2 a or the first drain 2 b. The first rectifier element 8 may be a diode or a diode-connected transistor. FIG. 1 illustrates an example in which the first cathode 8 b of the first rectifier element 8 is connected to the first drain 2 b.
  • The second rectifier element 9 includes a second anode 9 a electrically connected to the output node of the gate drive circuit 4 and a second cathode 9 b electrically connected to the first gate 2 c. The second rectifier element 9 may be a diode or a diode-connected transistor. The second rectifier element 9 is connected in parallel with the first resistor 5.
  • The first inductor 10 is connected between the first drain 2 b and the second source 3 a. As described above, the first inductor 10 may include a parasitic inductance of the bonding wire 50, the wiring pattern, or the like.
  • The second inductor 11 is electrically connected between the reference potential node Vs of the gate drive circuit 4 and the first source 2 a. The second inductor 11 may include the parasitic inductance of the bonding wire 50 connected to the reference potential node Vs of the gate drive circuit 4 or the wiring pattern.
  • The second capacitor 12 and the third inductor 13 are connected in series between the first source 2 a and the second source 3 a. More specifically, the second capacitor 12 is connected between one end part of the third inductor 13 and the second source 3 a. The second inductor 11 is connected to the connection node of the other end part of the third inductor 13 and the reference potential node Vs of the gate drive circuit 4. The third inductor 13 may include the parasitic inductance of the bonding wire 50 connected to the first source 2 a of the normally-off transistor 2 or the wiring pattern. The second capacitor 12 desirably has a capacitance equal to or more than that of the first capacitor 7.
  • The semiconductor device 1 of FIG. 1 may include a fourth inductor 14. The fourth inductor 14 is connected between the other end part of the second capacitor 12 and one end part of the third inductor 13.
  • Furthermore, the semiconductor device 1 of FIG. 1 may include a third capacitor (not illustrated) connected between the second gate 3 c of the normally-on transistor 3 and the first drain 2 b of the normally-off transistor 2. The third capacitor may include a parasitic capacity.
  • The semiconductor device 1 of FIG. 1 includes a source terminal 15 and a drain terminal 16. The source terminal 15 is electrically connected to one end part of the third inductor 13. The source terminal 15 may be connected to the reference potential node such as a grounding node or connected to various semiconductor elements. For example, in a case where a plurality of the semiconductor devices 1 of FIG. 1 is cascaded, the source terminal 15 is connected to the second drain 3 b in another semiconductor device 1. The drain terminal 16 is connected to the drain of the normally-on transistor 3. The drain terminal 16 may be connected to a power supply voltage node or connected to various semiconductor elements.
  • Next, the operation of the semiconductor device 1 according to the present embodiment will be described. For example, the gate drive circuit 4 outputs a square-wave signal of alternately repeating 0 V and a voltage Va which can allow the normally-off transistor 2 to be turned on. When the voltage Va is input to the first gate 2 c, the normally-off transistor 2 is turned on, and when the voltage 0 V is input to the first gate 2 c, the normally-off transistor 2 is turned off.
  • When the gate drive circuit 4 outputs the voltage Va, the voltage of one end part of the first capacitor 7 increases, and a current flows to the source terminal 15 through the first rectifier element 8. The voltage according to the forward voltage VF of the first rectifier element 8 is input to the second gate 3 c. Therefore, the normally-on transistor 3 is turned on.
  • When the output signal of the gate drive circuit 4 is changed from Va to 0 V, the voltage of the second gate 3 c connected to the first capacitor 7 decreases from VF by Va to be a negative voltage (VF−Va). Therefore, the normally-on transistor 3 is turned off.
  • Herein, when the semiconductor device 1 according to the present embodiment transits from off to on, the normally-off transistor 2 is desirably turned on prior to the normally-on transistor 3. This is because there is a concern that if the normally-on transistor 3 is turned on previously, a high voltage is applied to a connection part between the first drain 2 b and the second source 3 a, and the property of the normally-off transistor 2 having a low breakdown voltage is deteriorated.
  • In the semiconductor device 1 of the present embodiment, when the semiconductor device 1 transits from the OFF state to the ON state, a current flows through the second rectifier element 9 provided in parallel with the first resistor 5. For this reason, the charging of the first gate 2 c is not affected by the first resistor 5. Accordingly, it is possible to quickly charge the first gate 2 c. Thus, when the semiconductor device 1 transits from the OFF state to the ON state, the normally-off transistor 2 can be reliably turned on prior to the normally-on transistor 3, and there is no concern that a high voltage exceeding the breakdown voltage is applied to the first drain 2 b of the normally-off transistor 2.
  • When the first resistor 5 and the second resistor 6 are provided, the off timing of the normally-off transistor 2 and the off timing of the normally-on transistor 3 can be delayed by a desirable time. Accordingly, when the semiconductor device 1 transits from the ON state to the OFF state, the normally-on transistor 3 can be turned off prior to the normally-off transistor 2.
  • FIG. 2 is a circuit diagram of the semiconductor device 1 according to one comparative example. In the semiconductor device 1 of FIG. 2, the connection place of one end part of the second inductor 11 is different from that of the semiconductor device 1 of FIG. 1. More specifically, one end part of the second inductor 11 of FIG. 2 is electrically connected to the connection node of the third inductor 13 and the fourth inductor 14. On the other hand, in the semiconductor device 1 of FIG. 1, one end part of the second inductor 11 is electrically connected to the first source 2 a of the normally-on transistor 3.
  • FIG. 3 is a view illustrating the current path of the semiconductor device 1 of FIG. 1, and FIG. 4 is a view illustrating the current path of the semiconductor device 1 of FIG. 2. In both of the semiconductor devices 1 of FIGS. 1 and 2, at the time of the ON state, a current flows to the source terminal 15 through between the first drain 2 b and the first source 2 a of the normally-on transistor 3 and between the second drain 3 b and the second source 3 a of the normally-off transistor 2. The current path is a main circuit current path.
  • In both of the semiconductor devices 1 of FIGS. 3 and 4, a first current path 52 through which a current flows along the main circuit current path 51 and another current path bypassing from the first current path 52 are included in addition to the main circuit current path 51. The current path is called a second current path 53 in the semiconductor device 1 of FIG. 1 and is called a third current path 54 in the semiconductor device 1 of FIG. 4. The path through which a current flows is partially different between the second current path 53 and the third current path 54.
  • Both of the second current path 53 and the third current path 54 are common in that the both current paths are a path from the second source 3 a of the normally-on transistor 3 to the second capacitor 12→ the fourth inductor 14→ the third inductor 13→ the reference potential node Vs of the gate drive circuit 4. Accordingly, it is possible to bypass the source inductance of the normally-on transistor 3 to form Kelvin connection. When the current path is provided as above, the delay time taken when the normally-on transistor 3 transits from on to off and from off to on can be shortened, and the ringing of the current flowing through the second gate 3 c of the normally-on transistor 3 can be suppressed.
  • Compared to the semiconductor device 1 of FIG. 2, the semiconductor device 1 of FIG. 1 is characterized in that the delay time during the transition of the normally-on transistor 3 can be shortened further to reduce the switching loss.
  • More specifically, as illustrated in the arrows of FIGS. 3 and 4, the first current path 52 in the semiconductor devices 1 of FIGS. 1 and 2 is a current path passing through the second resistor 6→ the second gate 3 c of the normally-on transistor 3→ the parasitic capacity (third capacitor) in the second source 3 a→ the first drain 2 b—the first source 2 a of the normally-off transistor 2→ the second inductor 11 in order.
  • Additionally, the semiconductor device 1 of FIG. 1 includes the second current path 53. The second current path 53 is a current path passing through the second source 3 a of the normally-on transistor 3→ the second capacitor 12→ the fourth inductor 14→ the third inductor 13→ the second inductor 11 in order.
  • In this way, in the semiconductor device 1 of FIG. 1, the direction of the current flowing through the third inductor 13 is reverse in the main circuit current path 51 and the second current path 53. Accordingly, the drive current flowing through the second gate 3 c of the normally-on transistor 3 is hardly affected by the change of the current flowing through the first current path 52, and a transition rate of the current and the voltage flowing through the second gate 3 c of the normally-on transistor 3 can be improved. The reason that the second source 3 a of the normally-on transistor 3 is Kelvin-connected is to prevent that the drive current is modulated by the electromotive force generated in the source inductance according to the time change of the current flowing through the main circuit current path 51 (first current path 52). As illustrated in FIG. 3, in the semiconductor device 1 of FIG. 1, the direction of the current flowing through the third inductor 13 is reverse in the main circuit current path 51 and the second current path 53. Thus, it is possible to suppress the electromotive force generated in the source inductance, and as a result, to increase a transition rate when the second gate 3 c of the normally-on transistor 3 transits from off to on or from on to off. When the transition rate of the normally-on transistor 3 is increased, the switching loss can be also reduced.
  • On the other hand, the semiconductor device 1 of FIG. 2 includes the third current path 54 as illustrated in FIG. 4. The third current path 54 is a current path passing through the second source 3 a of the normally-on transistor 3→ the second capacitor 12→ the fourth inductor 14→ the second inductor 11 in order.
  • In the third current path 54 in the semiconductor device 1 of FIG. 2, a current does not flow through the third inductor 13. Thus, in the third inductor 13, a current flows only in the direction of the current of the main circuit current path 51 and the first current path 52. Thus, the transition rate when the normally-on transistor 3 transits from off to on decreases compared to the semiconductor device 1 of FIG. 1.
  • FIG. 5A is a view in which the gate current waveform when the normally-on transistor 3 transits from off to on is compared between the semiconductor devices 1 of FIGS. 1 and 2. In FIG. 5A, a horizontal axis is time, and a vertical axis is a current value. In FIGS. 5A to 5C, the gate current waveform of the semiconductor device of FIG. 1 is indicated by a solid line, and the gate current waveform of the semiconductor device of FIG. 2 is indicated by a broken line.
  • FIG. 5B is a view obtained by enlarging a partial time area of FIG. 5A. As understood from the waveform of the gate current and the gate voltage in the frame of FIG. 5B, in the semiconductor device 1 of FIG. 1, the transition rate is improved clearly compared to the semiconductor device 1 of FIG. 2. In addition, the ringing of the gate current in the frame 18 is also suppressed compared to one comparative example.
  • FIG. 5C is a view in which the gate current waveform when the normally-on transistor 3 transits from on to off is compared, and the gate voltage waveform is compared between the semiconductor devices 1 of FIGS. 1 and 2. In a case where the normally-on transistor 3 transits from on to off, in the semiconductor device 1 of FIG. 1, the waveform of the gate current and the gate voltage is changed more steeply than that in the semiconductor device 1 of FIG. 2, thus the transition rate is improved.
  • FIG. 6A is a schematic sectional view of the normally-on transistor 3. The normally-on transistor 3 of FIG. 6A has a structure in which a buffer layer 22, a GaN layer 23, and an AlGaN layer 24 are laminated in order on a Si substrate 21. The normally-on transistor 3 of FIG. 6A is an example of a lateral transistor in which channels are formed substantially parallel to a lamination surface, and the second gate 3 c, the second drain 3 b, and the second source 3 a are arranged on the upper side of the AlGaN layer 24. Incidentally, the normally-on transistor 3 according to the present embodiment may be a vertical transistor in which the second drain 3 b is provided on the opposite side to the second gate 3 c and the second source 3 a.
  • FIG. 6B is a schematic sectional view of the normally-off transistor 2. In the normally-off transistor 2 of FIG. 6B, a source diffusion region 25 is formed on the Si substrate 21. The first source 2 a and the first gate 2 b are arranged on the source diffusion region 25, and the first drain 2 c is arranged through a drain diffusion region 26 on the opposite surface side.
  • FIG. 6C is a schematic sectional view of the first and second rectifier elements 8 and 9. FIG. 6C illustrates an example in which the first and second rectifier elements 8 and 9 are formed in a vertical structure. An anode region 46 is arranged on an anode electrode 45, and a cathode region 48 is arranged through a pn junction layer 47 on the anode region 46. The cathode region 48 and a cathode electrode 49 are connected electrically by the bonding wire 50.
  • FIG. 7 is a schematic layout diagram of the semiconductor device 1 according to the present embodiment. A first drain region 32 for the first drain 2 b, a second drain region 33 electrically connected to the drain terminal 16, a first source region 34 electrically connected to the source terminal 15, a second source region 35 for the second source 3 a, a Kelvin source region 36, and first to fifth wiring pattern regions 37 to 41 are arranged on a base substrate.
  • The normally-on transistor 3 having the cross-sectional structure of FIG. 6A and the normally-off transistor 2 having the cross-sectional structure of FIG. 6B are arranged on the first drain region 32. The normally-off transistor 2 is arranged such that the first drain 2 b comes into contact with the first drain region 32. The second capacitor 12 is arranged to come into contact with the second source region 35 and the first source region 34.
  • In FIG. 7, an output node of a gate driver (not illustrated) is connected electrically to the first wiring pattern region 37. The second resistor 6 is arranged to come into contact with the first wiring pattern region 37 and the second wiring pattern region 38. The first capacitor 7 is arranged to come into contact with the second wiring pattern region 38 and the third wiring pattern region 39.
  • The anode surface of the first rectifier element 8 is in contact on the third wiring pattern region 39. The cathode 8 b of the first rectifier element 8 is connected to the first drain region 32 through the bonding wire 50. The Kelvin source region 36 is connected to the first source 2 a of the normally-off transistor 2 through the bonding wire 50.
  • The second rectifier element 9 is arranged to come into contact with the first wiring pattern region 37 and the fourth wiring pattern region 40. The anode surface of the second rectifier element 9 is in contact on the first wiring pattern region 37 and the fourth wiring pattern region 40. The cathode 9 b of the second rectifier element 9 is connected to the fifth wiring pattern region 41 through the bonding wire 50. The first resistor 5 is arranged to come into contact with the fourth wiring pattern region 40 and the fifth wiring pattern region 41, and the second rectifier element 9 is arranged in parallel with the first resistor 5.
  • A characteristic configuration in the layout diagram of FIG. 7 is that the direction of the current flowing on the first current path 52 (main circuit current path 51) and the direction of the current flowing on the second current path 53 are different in the bonding wire 50 which connects the first source 2 a of the normally-off transistor 2 and the first source region 34. When the direction of the current flowing through the bonding wire 50 is reverse in the first current path 52 and the second current path 53, the transition rate during the transition from off to on and from on to off of the semi conductor device of FIG. 1 can increase.
  • The semiconductor device 1 of FIG. 1 is an example in which the cathode 8 b of the first rectifier element 8 in which the anode 8 a is connected to the second gate 3 c of the normally-on transistor 3 is connected electrically to the second source 3 a of the normally-on transistor 3. However, as illustrated in a circuit diagram of a semiconductor device according to one modification of FIG. 8, the cathode 8 b of the first rectifier element 8 may be connected electrically to the first source 2 a of the normally-off transistor 2.
  • For example, a layout diagram corresponding to the semiconductor device 1 of FIG. 8 is illustrated as in FIG. 9. In FIG. 9, the cathode of the first rectifier element 8 is connected to the Kelvin source region 36 through the bonding wire 50.
  • Even in the layout diagram of FIG. 9, similarly with FIG. 7, the direction of the current flowing on the main circuit current path 51 and the direction of the current flowing on the second current path 53 are different in the bonding wire 50 which connects the first source 2 a of the normally-off transistor 2 and the first source region 34, and the transition rate is obtained similarly with the layout diagram of FIG. 7.
  • In this way, in the present embodiment, in the semiconductor device 1 in which the normally-on transistor 3 and the normally-off transistor 2 are cascode-connected, the first current path 52 and the second current path 53 are provided in addition to the main circuit current path 51, and the direction in which the current passing through the main circuit current path 51 passes through the third inductor 13 and the current direction in which the current passing through the second current path 53 passes through the third inductor 13 are reverse to each other. Thus, it is possible to increase the transition rate of the gate current and the gate voltage flowing through the first gate 2 c of the normally-on transistor 3.
  • While certain embodiments have been described, these embodiments have been presented by way of example only, and are not intended to limit the scope of the inventions. Indeed, the novel methods and systems described herein may be embodied in a variety of other forms; furthermore, various omissions, substitutions and changes in the form of the methods and systems described herein may be made without departing from the spirit of the inventions. The accompanying claims and their equivalents are intended to cover such forms or modifications as would fall within the scope and spirit of the inventions.

Claims (14)

1. A semiconductor device comprising:
a normally-off transistor which comprises a first source, a first drain, and a first gate;
a normally-on transistor which comprises a second source connected electrically to the first drain, a second drain, and a second gate;
a gate drive circuit which drives the first gate and the second gate;
a first resistor which is connected between an output node of the gate drive circuit and the first gate;
a second resistor and a first capacitor which are connected in series between the output node and the second gate;
a first rectifier element which comprises a first anode connected electrically to the second gate and a first cathode connected electrically to the first source or the first drain;
a second rectifier element which comprises a second anode connected electrically to the gate drive circuit and a second cathode connected electrically to the first gate;
a first inductor which is connected between the first drain and the second source;
a second inductor which is connected electrically between a reference potential node of the gate drive circuit and the first source; and
a second capacitor and a third inductor which are connected in series between the first source and the second source.
2. The semiconductor device according to claim 1, wherein
the second capacitor is connected between one end part of the third inductor and the second source, and
the second inductor is connected between another end part of the third inductor and the reference potential node.
3. The semiconductor device according to claim 2, further comprising:
a fourth inductor which is connected between the second capacitor and the one end part of the third inductor, wherein
the second capacitor, the fourth inductor, and the third inductor are connected in series between the first source and the second source.
4. The semiconductor device according to claim 1, further comprising:
a main circuit current path through which a current flows in an order of the second source, the first inductor, the first drain, the first source, and the second inductor;
a first current path through which a current flows in an order of the second resistor, the first capacitor, the first inductor, the first drain, the first source, and the second inductor; and
a second current path through which a current flows in an order of the second source, the second capacitor, the third inductor, and the second inductor.
5. The semiconductor device according to claim 1, further comprising:
a first drain region, a second drain region, a source region, and a Kelvin source region which are arranged separately in places different from each other on a semiconductor substrate, wherein
the first drain is connected electrically to the first drain region,
the first inductor is a parasitic inductor of a first wiring which electrically connects the first drain region and the second source,
the second inductor is a parasitic inductor of a second wiring which electrically connects the first source and the Kelvin source region, and
the third inductor is a parasitic inductor of a third wiring which electrically connects the first source and the source region.
6. The semiconductor device according to claim 5, further comprising:
a fourth wiring which electrically connects the first cathode and the first drain region.
7. The semiconductor device according to claim 5, further comprising:
a fifth wiring which electrically connects the first cathode and the Kelvin source region.
8. A semiconductor package comprising:
a normally-off transistor which comprises a first source, a first drain, and a first gate;
a normally-on transistor which comprises a second source connected electrically to the first drain, a second drain, and a second gate;
a first resistor which is connected between an output node of a gate drive circuit which drives the first gate and the second gate, and the first gate;
a second resistor and a first capacitor which are connected in series between the output node and the second gate;
a first capacitor which is connected electrically between the output node of the gate drive circuit and the second gate;
a first rectifier element which comprises a first anode connected electrically to the second gate and a first cathode connected electrically to the first source or the first drain;
a second rectifier element which comprises a second anode connected electrically to the gate drive circuit and a second cathode connected electrically to the first gate;
a first inductor which is connected between the first drain and the second source;
a second inductor which is connected electrically between a reference potential node of the gate drive circuit and the first source; and
a second capacitor and a third inductor which are connected in series between the first source and the second source.
9. The semiconductor package according to claim 8, wherein
the second capacitor is connected between one end part of the third inductor and the second source, and
the second inductor is connected between another end part of the third inductor and the reference potential node.
10. The semiconductor package according to claim 9, further comprising:
a fourth inductor which is connected between the second capacitor and the one end part of the third inductor, wherein
the second capacitor, the fourth inductor, and the third inductor are connected in series between the first source and the second source.
11. The semiconductor package according to claim 8, further comprising:
a main circuit current path through which a current flows in an order of the second source, the first inductor, the first drain, the first source, and the second inductor;
a first current path through which a current flows in an order of the second resistor, the first capacitor, the first inductor, the first drain, the first source, and the second inductor; and
a second current path through which a current flows in an order of the second source, the second capacitor, the third inductor, and the second inductor.
12. The semiconductor package according to claim 8, further comprising:
a first drain region, a second drain region, a source region, and a Kelvin source region which are arranged separately in places different from each other on a semiconductor substrate, wherein
the first drain is connected electrically to the first drain region,
the first inductor is a parasitic inductor of a first wiring which electrically connects the first drain region and the second source,
the second inductor is a parasitic inductor of a second wiring which electrically connects the first source and the Kelvin source region, and
the third inductor is a parasitic inductor of a third wiring which electrically connects the first source and the source region.
13. The semiconductor package according to claim 12, further comprising:
a fourth wiring which electrically connects the first cathode and the first drain region.
14. The semiconductor package according to claim 12, further comprising:
a fifth wiring which electrically connects the first cathode and the Kelvin source region.
US16/563,677 2019-01-04 2019-09-06 Semiconductor device and semiconductor package Active US10720914B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019000280A JP7224918B2 (en) 2019-01-04 2019-01-04 Semiconductor devices and semiconductor packages
JP2019-000280 2019-01-04

Publications (2)

Publication Number Publication Date
US20200220534A1 true US20200220534A1 (en) 2020-07-09
US10720914B1 US10720914B1 (en) 2020-07-21

Family

ID=71404490

Family Applications (1)

Application Number Title Priority Date Filing Date
US16/563,677 Active US10720914B1 (en) 2019-01-04 2019-09-06 Semiconductor device and semiconductor package

Country Status (3)

Country Link
US (1) US10720914B1 (en)
JP (1) JP7224918B2 (en)
CN (1) CN111415916B (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220224326A1 (en) * 2019-05-08 2022-07-14 Webasto SE Device for controlling semiconductor circuit breakers in the high-voltage range
US11482918B2 (en) * 2017-12-12 2022-10-25 Rohm Co., Ltd. Gate drive circuit
US20230178490A1 (en) * 2021-12-03 2023-06-08 Delta Electronics, Inc. Power module
US20230412171A1 (en) * 2022-06-17 2023-12-21 Psemi Corporation Inductive drain and/or body ladders in rf switch stacks
US11973495B2 (en) 2020-12-11 2024-04-30 Psemi Corporation RF switch stack with charge redistribution
US12057827B2 (en) 2020-06-15 2024-08-06 Psemi Corporation RF switch stack with charge control elements

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11069640B2 (en) 2019-06-14 2021-07-20 Cree Fayetteville, Inc. Package for power electronics
JP7510804B2 (en) * 2020-07-09 2024-07-04 ローム株式会社 Power Control Unit
JP7293176B2 (en) * 2020-09-11 2023-06-19 株式会社東芝 semiconductor equipment
TWI810702B (en) * 2021-11-05 2023-08-01 國立陽明交通大學 Power module
JP7388749B2 (en) * 2021-12-24 2023-11-29 株式会社パウデック semiconductor circuit
CN117938135B (en) * 2024-01-24 2024-09-13 中山大学 Direct drive circuit structure based on depletion type power field effect transistor device

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10229633A1 (en) * 2002-07-02 2004-01-29 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Control for a half-bridge inverter
JP5996465B2 (en) * 2013-03-21 2016-09-21 株式会社東芝 Semiconductor device
JP6223729B2 (en) * 2013-06-25 2017-11-01 株式会社東芝 Semiconductor device
JP6255997B2 (en) 2013-12-27 2018-01-10 富士通株式会社 Semiconductor device
JP6203097B2 (en) * 2014-03-20 2017-09-27 株式会社東芝 Semiconductor device
JP2016139996A (en) * 2015-01-28 2016-08-04 株式会社東芝 Semiconductor device
JP2016139997A (en) * 2015-01-28 2016-08-04 株式会社東芝 Semiconductor device
JP6639103B2 (en) * 2015-04-15 2020-02-05 株式会社東芝 Switching unit and power supply circuit
WO2017009990A1 (en) 2015-07-15 2017-01-19 株式会社 東芝 Semiconductor device
WO2017043611A1 (en) 2015-09-10 2017-03-16 古河電気工業株式会社 Power device
JP6645924B2 (en) * 2016-07-12 2020-02-14 株式会社東芝 Semiconductor device and power converter
JP6868809B2 (en) * 2016-08-31 2021-05-12 パナソニックIpマネジメント株式会社 Switching circuit
JP6800906B2 (en) * 2018-03-22 2020-12-16 株式会社東芝 Semiconductor devices and semiconductor packages

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11482918B2 (en) * 2017-12-12 2022-10-25 Rohm Co., Ltd. Gate drive circuit
US20220224326A1 (en) * 2019-05-08 2022-07-14 Webasto SE Device for controlling semiconductor circuit breakers in the high-voltage range
US11894838B2 (en) * 2019-05-08 2024-02-06 Webasto SE Device for controlling semiconductor circuit breakers in the high-voltage range
US12057827B2 (en) 2020-06-15 2024-08-06 Psemi Corporation RF switch stack with charge control elements
US11973495B2 (en) 2020-12-11 2024-04-30 Psemi Corporation RF switch stack with charge redistribution
US20230178490A1 (en) * 2021-12-03 2023-06-08 Delta Electronics, Inc. Power module
US20230412171A1 (en) * 2022-06-17 2023-12-21 Psemi Corporation Inductive drain and/or body ladders in rf switch stacks
US11923838B2 (en) * 2022-06-17 2024-03-05 Psemi Corporation Inductive drain and/or body ladders in RF switch stacks

Also Published As

Publication number Publication date
JP7224918B2 (en) 2023-02-20
JP2020109909A (en) 2020-07-16
US10720914B1 (en) 2020-07-21
CN111415916B (en) 2023-10-24
CN111415916A (en) 2020-07-14

Similar Documents

Publication Publication Date Title
US10720914B1 (en) Semiconductor device and semiconductor package
US9653449B2 (en) Cascoded semiconductor device
US9276569B2 (en) Semiconductor device
US9654001B2 (en) Semiconductor device
JP6223918B2 (en) Semiconductor device
JP6558359B2 (en) Semiconductor device
US9123536B2 (en) Semiconductor device
JP2006351691A (en) Semiconductor device
US11309884B1 (en) Switching circuits having drain connected ferrite beads
US10658356B2 (en) Semiconductor device and semiconductor package
JP2014054173A (en) Integrated group iii-v power stage
US11508647B2 (en) Semiconductor device
US20150053994A1 (en) Diode circuit and dc to dc converter
US20130249606A1 (en) Fet drive circuit and fet module
US10771057B1 (en) Semiconductor device
JP7003194B2 (en) Semiconductor package

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

AS Assignment

Owner name: KABUSHIKI KAISHA TOSHIBA, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KOYAMA, MASAHIRO;IKEDA, KENTARO;REEL/FRAME:051436/0214

Effective date: 20190913

Owner name: TOSHIBA ELECTRONIC DEVICES & STORAGE CORPORATION, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KOYAMA, MASAHIRO;IKEDA, KENTARO;REEL/FRAME:051436/0214

Effective date: 20190913

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4