US20200199321A1 - Foam composition, foam member and method of manufacture - Google Patents

Foam composition, foam member and method of manufacture Download PDF

Info

Publication number
US20200199321A1
US20200199321A1 US16/720,955 US201916720955A US2020199321A1 US 20200199321 A1 US20200199321 A1 US 20200199321A1 US 201916720955 A US201916720955 A US 201916720955A US 2020199321 A1 US2020199321 A1 US 2020199321A1
Authority
US
United States
Prior art keywords
foam
water
fine powder
foam composition
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US16/720,955
Inventor
Katsunobu Mochizuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Sports Co Ltd
Original Assignee
Bridgestone Sports Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Sports Co Ltd filed Critical Bridgestone Sports Co Ltd
Assigned to BRIDGESTONE SPORTS CO., LTD. reassignment BRIDGESTONE SPORTS CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MOCHIZUKI, KATSUNOBU
Publication of US20200199321A1 publication Critical patent/US20200199321A1/en
Priority to US18/223,795 priority Critical patent/US20230357526A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/26Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a solid phase from a macromolecular composition or article, e.g. leaching out
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B37/00Solid balls; Rigid hollow balls; Marbles
    • A63B37/0003Golf balls
    • A63B37/0023Covers
    • A63B37/0024Materials other than ionomers or polyurethane
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B37/00Solid balls; Rigid hollow balls; Marbles
    • A63B37/0003Golf balls
    • A63B37/007Characteristics of the ball as a whole
    • A63B37/0077Physical properties
    • A63B37/0094Rebound resilience
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/04Foams characterised by the foaming process characterised by the elimination of a liquid or solid component, e.g. precipitation, leaching out, evaporation
    • C08J2201/042Elimination of an organic solid phase
    • C08J2201/0422Elimination of an organic solid phase containing oxygen atoms, e.g. saccharose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/04Foams characterised by the foaming process characterised by the elimination of a liquid or solid component, e.g. precipitation, leaching out, evaporation
    • C08J2201/044Elimination of an inorganic solid phase
    • C08J2201/0444Salts
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/04Foams characterised by the foaming process characterised by the elimination of a liquid or solid component, e.g. precipitation, leaching out, evaporation
    • C08J2201/044Elimination of an inorganic solid phase
    • C08J2201/0444Salts
    • C08J2201/0446Elimination of NaCl only
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2207/00Foams characterised by their intended use
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2375/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2375/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2375/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2375/04Polyurethanes
    • C08J2375/08Polyurethanes from polyethers

Definitions

  • the present invention relates to a foam composition, a foam member and a method of manufacture thereof. More particularly, the invention relates to a foam composition, a foam member obtained from the foam composition that can be suitably used as a golf ball member such as the intermediate layer or cover of a golf ball, and a method for manufacturing the foam member.
  • Golf balls are required to have, among other characteristics, a good flight and stopping performance and a good scuff resistance. That is, golf balls have been developed so as to fly well on shots with a driver and also be receptive to backspin on approach shots. To this end, many cover materials with a high resilience and a good scuff resistance have been developed as golf ball members. However, when the resilience and scuff resistance of a golf ball member such as the cover are increased, the ball ends up flying too far on approach shots and lacks delicate controllability. Methods such as that of lowering the molecular weight of the cover material have been studied as ways of lowering the rebound resilience of golf ball members such as the cover.
  • cover member used in a golf ball is a foam body (porous body)
  • a blowing agent such as an organic blowing agent or sodium hydrogen carbonate (sodium bicarbonate) is included in the cover-forming material. Molding methods involving the use of such a chemical blowing agent require close control of the temperature, pressure and equipment systems during molding. Also, obtaining a foam body that is uniform throughout the interior of the cover or other golf ball member is very difficult.
  • the invention provides a foam composition which includes a polymer material and a leachable water-soluble fine powder.
  • the polymer material is polyurethane or polyurea.
  • the water-soluble fine powder has an average particle size of from 1 to 800 ⁇ m.
  • the water-soluble fine powder has a melting point of at least 100° C.
  • the water-soluble fine powder is at least one selected from the group consisting of sodium chloride, calcium chloride, potassium chloride, magnesium chloride, sodium sulfate, potassium sulfate, magnesium sulfate, sodium nitrate, calcium nitrate, potassium nitrate, sodium tetraborate, potassium tetraborate, calcium tetraborate, soluble starch, monosaccharides, disaccharides, trisaccharides, oligosaccharides, polysaccharides, and hydrates thereof.
  • the content of the water-soluble fine powder is from 1 to 600 parts by weight per 100 parts by weight of the polymer material.
  • the water-soluble powder has a solubility in water of at least 1 g per 100 g of water at 20° C.
  • the foam composition when molded, yields a foam-molded body having a specific gravity of from 0.2 to 1.2.
  • the foam composition when molded, yields a foam-molded body having a rebound resilience, as measured in accordance with JIS-K 6255, of from 9 to 62%.
  • the invention provides a method for producing a foam member, which method includes the steps of: molding the foam composition according to the first aspect of the invention so as to obtain a solid molded body; and then leaching out and removing the water-soluble fine powder, thereby giving a foam-molded body.
  • the invention provides a foam member that can be used as an encasing member formed at a surface or periphery of a core material, which foam member is a foam-molded body obtained by the method according to the second aspect of the invention.
  • the foam member is a golf ball cover.
  • foam body porous body
  • the foam body can be suitably used in particular as a golf ball member for obtaining a golf ball which has a good controllability on approach shots.
  • the foam composition of the invention includes a polymer material and a leachable water-soluble fine powder.
  • the polymer material is not particularly limited.
  • the polymer material required for satisfying the desired properties in the target product having a foam body (foam member) that is molded using a foam composition can be suitably selected from among known thermoplastic resins, thermoplastic elastomers, thermoset resins and thermoset elastomers.
  • the polymer material that serves as the base material may be, for example, a rubber material or a thermoplastic or thermoset polyurethane elastomer, polyester elastomer, ionomeric resin, polyolefin elastomer or polyurea. These may be used singly or two or more may be used in admixture. In those cases in particular where the foam body is to be used as an encasing member such as a golf ball cover, preferred use can be made of polyurethane or polyurea.
  • the rubber material can be obtained by vulcanizing a rubber composition containing a base rubber as the chief component.
  • This rubber material is formed using a rubber composition containing, for example, a base rubber, a co-crosslinking agent, a crosslink initiator, a metal oxide and an antioxidant. It is preferable to use polybutadiene as the base rubber of the rubber composition.
  • the polyurethane and polyurea are described in detail below.
  • the polyurethane has a structure which includes soft segments composed of a polymeric polyol (polymeric glycol) that is a long-chain polyol, and hard segments composed of a chain extender and a polyisocyanate.
  • the polymeric polyol serving as a starting material may be any that has hitherto been used in the art relating to polyurethane materials, and is not particularly limited. This is exemplified by polyester polyols, polyether polyols, polycarbonate polyols, polyester polycarbonate polyols, polyolefin polyols, conjugated diene polymer-based polyols, castor oil-based polyols, silicone-based polyols and vinyl polymer-based polyols.
  • polyester polyols that may to be used include adipate-type polyols such as polyethylene adipate glycol, polypropylene adipate glycol, polybutadiene adipate glycol and polyhexa methylene adipate glycol; and lactone-type polyols such as polycaprolactone polyol.
  • polyether polyols include poly(ethylene glycol), polypropylene glycol), poly(tetramethylene glycol) and poly(methyltetramethylene glycol). Such long-chain polyols may be used singly, or two or more may be used in combination.
  • the long-chain polyol preferably has a number-average molecular weight in the range of 1,000 to 5,000.
  • a long-chain polyol having a number-average molecular weight in this range golf balls made with a polyurethane composition that have excellent properties, including a good rebound and a good productivity can be reliably obtained.
  • the number-average molecular weight of the long-chain polyol is more preferably in the range of 1,500 to 4,000, and even more preferably in the range of 1,700 to 3,500.
  • number-average molecular weight refers to the number-average molecular weight calculated based on the hydroxyl value measured in accordance with JIS-K 1557.
  • the chain extender is not particularly limited; any chain extender that has hitherto been employed in the art relating to polyurethanes may be suitably used in this invention, low-molecular-weight compounds with a molecular weight of 2,000 or less which have on the molecule two or more active hydrogen atoms capable of reacting with isocyanate groups may be used. Of these, preferred use can be made of aliphatic diols having from 2 to 12 carbon atoms. Specific examples include 1,4-butylene glycol, 1,2-ethylene glycol, 1,3-hutanediol, 1,6-hexanediol and 2,2-dimethyl-1, 3-propanediol. Of these, the use of 1,4-butylene glycol is especially preferred.
  • any polyisocyanate hitherto employed in the art relating to polyurethanes may he suitably used without particular limitation as the polyisocyanate.
  • use can he made of one or more selected from the group consisting of 4,4′-diphenylmethane diisocyanate:, 2,4-toluene diisocyanate, 2,6-toluene diisocyanate, p-phenylene diisocyanate, xylylene diisocyanate, 1,5-naphthylene diisocyanate, tetramethylxylene diisocyanate, hydrogenated xylylene diisocyanate, dicyclohexylmethane diisocyanate, tetramethylene diisocyanate, hexamethylene diisocyanate, isophorone diisocyanate, norhomene diisocyanate, trimethylhexamethylene diisocyanate, 1,4-bis(isocyanatomethyl)cyclohex
  • the ratio of active hydrogen atoms to isocyanate groups in the polyurethane-forming reaction may be suitably adjusted within a preferred range.
  • the method for preparing the polyurethane is not particularly limited. Preparation using the long-chain polyol, chain extender and polyisocyanate may be carried out by either a prepolymer process or a one-shot process via a known urethane-forming reaction. Of these, melt polymerization in the substantial absence of solvent is preferred. Production by continuous melt polymerization using a multiple screw extruder is especially preferred.
  • thermoplastic polyurethane material may be a commercial product, examples of which include those available under the trade name Pandex from DIC Covestro Polymer, Ltd., and those available under the trade name Resamine from Dainichiseika Color & Chemicals Mfg. Co., Ltd.
  • the polyurea is a resin composition composed primarily of urea linkages formed by reacting (i) an isocyanate with (ii) an amine-terminated compound. This resin composition is described in detail below.
  • Suitable use can be made here of an isocyanate that is used in the prior art relating to polyurethanes, although the isocyanate is not particularly limited. Use may be made of isocyanates similar to those mentioned above in connection with the polyurethane material.
  • An amine-terminated compound is a compound having an amino group at the end of the molecular chain.
  • the long-chain polyamines and/or amine curing agents shown below may be used.
  • a long-chain polyamine is an amine compound which has on the molecule at least two amino groups capable of reacting with isocyanate groups, and which has a number-average molecular weight of from 1,000 to 5,000.
  • the number-average molecular weight is more preferably from 1,500 to 4,000, and even more preferably from 1,900 to 3,000.
  • Examples of such long-chain polyamines include, but are not limited to, amine-terminated hydrocarbons, amine: terminated polyethers, amine-terminated polyesters, amine-terminated polycarbonates, amine-terminated polycaprolactones, and mixtures thereof. These long-chain polyamines may be used singly, or two or more may be used in combination.
  • An amine curing agent is an amine compound which has on the molecule at least two amino groups capable of reacting with isocyanate groups and which has a number-average molecular weight of less than 1,000, In this invention, the number-average molecular weight is more preferably less than 800, and even more preferably less than 600.
  • amine curing agents include, but are not limited to, ethylenediamine, hexamethylenediamine, 1-methyl-2,6-cyclohexyldiamine, tetrahydroxypropylene ethylenediamine, 2,2,4- and 2,4,4-trimethyl-1,6-hexanediamine, 4,4′-bis(sec-butylamino)dicyclohexylmethane, 1,4-bis sec-butylamino cyclohexane, 1,2-bis(sec-butylamino)cyclohexane, derivatives of 4,4′-butylamino)dicyclohexyl methane, 4,4′-dicyclohexylmethanediamine, 1,4-cyclohexane bis(methylamine), 1,3-cyclohexane bis(methylamine), diethylene glycol di(aminopropyl)ether, 2-methylpentamethylenediamine, diaminocyclohexane, diethylenetriamine,
  • a polyol may also be included in the polyurea.
  • the polyol is not particularly limited, but is preferably one that has hitherto been used in the art relating to polyurethanes. Specific examples include the long-chain polyols and/or polyol curing agents mentioned below.
  • the long-chain polyol may be any that has hitherto been used in the art relating to polyurethanes. Examples include, but are not limited to, polyester polyols, polyether polyols, polycarbonate polyols, polyester polycarbonate polyols, polyolefin-based polyols, conjugated diene polymer-based polyols, castor oil-based polyols, silicone-based polyols and vinyl polymer-based polyols. These long-chain polyols may be used singly or two or more may be used in combination.
  • the long-chain polyol has a number-average molecular weight of preferably from 1,000 to 5,000, and more preferably from 1,700 to 3,500. In this average molecular weight range, an even better resilience and productivity are obtained.
  • the polyol curing agent is preferably one that has hitherto been used in the art relating to polyurethanes, but is not subject to any particular limitation.
  • use may be made of a low-molecular-weight compound having on the molecule at least two active hydrogen atoms capable of reacting with isocyanate groups, and having a molecular weight of less than 1,000.
  • the use of aliphatic diols having from 2 to 12 carbon atoms is preferred. Specific examples include 1,4-butylene glycol, 1,2-ethylene glycol, 1,3-butanediol, 1,6-hexanediol and 2,2-dimethyl-1,3-propanediol.
  • the use of 1,4-butylene glycol is especially preferred.
  • the polyol curing agent has a number-average molecular weight of preferably less than 800, and more preferably less than 600.
  • a known method may be used to produce the polyurea.
  • a prepolymer process, a one-shot process or some other known method may be suitably selected for this purpose.
  • the content to thereof is suitably selected according to the required properties of the manufactured article that is desired.
  • the lower limit is at least 50 wt %, preferably at least 60 wt %, and more preferably at least 80 wt %, per 100 wt % of the composition.
  • the water-soluble fine powder has an average particle size of preferably from 1 to 800 ⁇ m, more preferably from 2 to 600 ⁇ m, and even more preferably from 5 to 400 ⁇ m.
  • the water-soluble fine powder has a melting point of preferably at least 100° C., more preferably at least 200° C., and even more preferably at least 300° C. In order to keep the polymer material from melting at the molding temperature, it is preferable for this melting point to be higher than the molding temperature of the polymer material.
  • the molding temperature of golf balls is from 150 to 270° C. Examples of fine powders having a melting point higher than this temperature include sodium chloride (800° C.), potassium chloride (776° C.) and magnesium chloride (714° C.).
  • the water-soluble fine powder used In order for the water-soluble fine powder used to be easily leached out and removed, it should have a solubility per 100 g of water at 20° C. of preferably at least 1 g, more preferably at least 10 g, and even more preferably at least 30 g.
  • a water-soluble compound such as salt or sugar may typically be used as the water-soluble fine powder.
  • a compound that is easily rendered into a fine powder, does not dissolve at the molding and processing temperatures of the thermoplastic resin, and moreover can easily be extracted with water after molding is preferred.
  • the water-soluble fine powder may be selected from the group consisting of sodium chloride, calcium chloride, potassium chloride, magnesium chloride, sodium sulfate, potassium sulfate, magnesium sulfate, sodium nitrate, calcium nitrate, potassium nitrate, sodium tetraborate, potassium tetraborate, calcium tetraborate, soluble starch, monosaccharides, disaccharides, trisaccharides, oligosaccharides, polysaccharides, and to hydrates thereof. These may be used singly or two or more may be used in admixture. The use of sodium chloride, sodium sulfate, sodium nitrate, calcium chloride and magnesium chloride is especially preferred.
  • the amount of water-soluble fine powder included in the foam composition is suitably selected according to the foam morphology—such as expansion ratio and foam cell size—desired in the foam member, but is typically from 1 to 600 parts by weight, and preferably from 1 to 400 parts by weight, per 100 parts by weight of the above polymer material used in the invention.
  • the content per 100 parts by weight of polyurethane resin is typically from 1 to 600 parts by weight, preferably from 1 to 400 parts by weight, more preferably from 1 to 200 parts by weight, and even more preferably from 1 to 100 parts by weight.
  • the content per 100 parts by weight of the polyurethane resin is preferably from 100 to 500 parts by weight, and more preferably from 200 to 400 parts by weight.
  • additives other than the above ingredients may be optionally included in the inventive composition.
  • pigments, dispersants, antioxidants, light stabilizers, ultraviolet absorbers and internal mold lubricants may be suitably included.
  • blowing agents such as chemical blowing agents are not included in this invention.
  • the foam composition can be obtained by mixing together and incorporating the above ingredients using any of various types of mixers, such as a kneading-type single-screw or twin-screw extruder, a Banbury mixer or a kneader.
  • mixers such as a kneading-type single-screw or twin-screw extruder, a Banbury mixer or a kneader.
  • the foam composition is molded to form a solid molded body and the water-soluble fine powder contained within the solid molded body is subsequently leached out and removed, thereby obtaining an open-cell or closed-cell porous body (foam body) in which the particle shapes of the water-soluble fine powder have become pores.
  • the method used to mold the foam composition may be suitably selected according to the shape and nature of the manufactured article, which is a molded product.
  • the method used to mold a golf ball cover may entail feeding the above-described foam composition to an injection molding machine and injecting the molten foamable composition over the core so as to mold a cover.
  • the molding temperature varies with the foam composition that is used; for polyurethane or polyurea, the molding temperature is typically in the range of 150 to 270° C.
  • Another method that may be used is one in which the molten foam composition is shaped by pressing within a mold so as to obtain foam-molded bodies in the shape of half-cups, following which the core is enveloped by two such foam-molded half-cups and heat and pressure are applied in a press or the like, thereby molding a golf ball cover.
  • the water-soluble fine powder included in the molded material thus obtained from the foam composition is leached out and removed.
  • the specific method for doing so involves leaching out the water-soluble fine powder with water having a temperature of between about 5° C. and about 100° C., preferably between about 10° C. and about 80° C., and more preferably between about 20° C. and about 60° C.
  • the water-soluble powder is preferable for the water-soluble powder to be capable of being leached out and removed in a short time at a high temperature, such as by immersion for a length of time during which the water-soluble fine powder can be fully leached out and removed with water at the above temperature, the length of time being typically from 10 minutes to 12 hours, preferably from 30 minutes to 8 hours, and more preferably from 1 to 6 hours.
  • Methods for accelerating such leaching and removal may also be suitably selected and added. Examples include, but are not limited to, physical methods of removal such as shaking, stirring, rocking, aeration, microbubbles, ultrasound, high-pressure spraying and brushing.
  • the foam-molded body can be obtained by thorough drying.
  • the specific drying method used is not particularly limited, although the desired foam-molded body can be obtained after adhering water is thoroughly removed by using a dryer or a dehumidifying dryer to carry out drying at a temperature of, for example, up to 120° C. preferably up to 80° C., and more preferably up to 60° C.
  • the morphology of the foam cells in the molded material obtained from the foam composition is suitably selected according to the particle size and content of the water-soluble fine powder to be included in the polymer material.
  • the to resulting composition is molded as a golf ball cover material and the sodium chloride is subsequently leached out with cold or hot water, at a low sodium chloride content, only the sodium chloride present at the surface of the golf ball cover leaches out and pore formation occurs only at the surface, with sodium chloride remaining behind at the interior.
  • the molded material (foam body) obtained from the foam composition has a specific gravity of preferably from 0.2 to 1.2.
  • the specific gravity In cases where the molded material is used as a cover member in golf balls, from the standpoint of both maintaining a good scuff resistance and keeping the initial velocity on approach shots low, it is generally preferable for the specific gravity to be from 1.0 to 1.2. In cases where the desired properties include a softer feel at impact and greater softness of appearance, the specific gravity is more preferably 1.0 or less.
  • this foam body When used in manufactured golf balls, from the standpoint of the flight performance, spin performance, etc. of the ball, this foam body has a rebound resilience, as measured in accordance with MS-K 6255, which is preferably from 9 to 62%, and more preferably from 20 to 60%.
  • the foam member (foam-molded body) obtained as described above is preferably used in particular as an encasing member that is formed at a surface or periphery of a member serving as a core material.
  • exemplary applications include, aside from golf balls, various other types of balls such as baseballs, billiard balls and bowling balls, as well as grips, electrical cable, fabric articles such as gloves and shoes, and also tires and rollers.
  • the core material is a single-layer or multilayer core made of rubber or the like, and the foam member corresponds to an encasing layer (also referred to as, for example, an intermediate layer, envelope layer or cover layer) which directly or indirectly encases this core.
  • a golf ball core-forming rubber composition formulated as shown in Table 1 and common to all of the Examples was prepared and then molded and vulcanized to produce a 38.6 mm diameter core.
  • This intermediate layer resin material was a blend of 50 parts by weight of a sodium-neutralized ethylene-unsaturated carboxylic acid copolymer having an acid content of 18 wt % and 50 parts by weight of a zinc-neutralized ethylene-unsaturated carboxylic acid copolymer having an acid content of 15 wt % (for a combined amount of 100 parts by weight).
  • This resin material was injection molded over a core having a diameter of 38.6 mm, thereby producing an intermediate layer-encased sphere having an intermediate layer with a thickness of 1.25 mm.
  • thermoplastic polyurethane (Shore D hardness, 40) available under the trade name Pandex from DIC Covestro Polymer, Ltd. was used as the thermoplastic polyurethane elastomer, and sodium chloride (average particle size, 350 ⁇ m; melting point, 800° C.; solubility in water, 36 g/100 g (20° C.)) was added thereto as the water-soluble fine powder.
  • sodium chloride average particle size, 350 ⁇ m; melting point, 800° C.; solubility in water, 36 g/100 g (20° C.)
  • cover-forming resin compositions for the respective Examples were prepared by suitably varying the amount of water-soluble fine powder added.
  • the blend in Table 1 was kneaded in a mixer, following which it was formed into a 2 mm thick sheet by pressing with a heated press. The sheet was then immersed for four hours in hot water having a temperature of 55° C., after which it was dried for 12 hours at 55° C., thereby obtaining the desired foam sheet sample.
  • the above intermediate layer-encased sphere (diameter, 41.1 mm; weight, 40.8 g) was peripherally encased by the cover-forming resin composition.
  • the resulting sphere encased by a cover (outermost layer) having a thickness after molding of 0.8 mm was subsequently immersed for four hours in hot water having a temperature of 55° C. and then dried at 55° C. for 12 hours.
  • the cover-encased sphere thus obtained was then painted, thereby producing a three-piece golf ball having a diameter of 42.7 mm.
  • the golf balls produced as described above in the Examples and Comparative Example 1 were evaluated by the following methods for feel at impact, scuff resistance, and ball initial velocity and controllability on approach shots. The results are shown in Table 3.
  • a sand wedge (SW) was mounted on a golf swing robot, and the initial velocity of the ball immediately after being struck at a head speed (HS) of 20 m/s was measured with an apparatus for measuring the initial conditions.
  • the amount of decrease in the ball initial velocity ( ⁇ V) in each Example was computed relative to, as the standard, the initial velocity to of the ball in Comparative Example 1.
  • the golf balls were held isothermally at 23° C. and five balls of each type were hit at a head speed of 33 m/s using as the club a pitching wedge mounted on a swing robot machine.
  • the damage to the ball from the impact was visually rated according to the following criteria.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physical Education & Sports Medicine (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

A foam composition that includes a polymer material such as polyurethane or polyurea and a leachable water-soluble fine powder is provided. This composition can he used in a relatively simple process to obtain a foam body (porous body) that is uniform only at the surface or uniform throughout. The foam body can be suitably used as a golf ball member in golf balls required to have good controllability on approach shots. Also provided is a method for producing a foam member, which method includes the steps of to molding the foam composition to obtain a solid molded body, and then leaching out and removing the water-soluble fine powder so as to obtain a foam-molded body.

Description

    CROSS-REFERENCE TO RELATED APPLICATION
  • This non-provisional application claims priority under 35 U.S.C. § 119(a) on Patent Application No. 2018-239788 filed in Japan on Dec. 21, 2018, the entire contents of which are hereby incorporated by reference.
  • TECHNICAL FIELD
  • The present invention relates to a foam composition, a foam member and a method of manufacture thereof. More particularly, the invention relates to a foam composition, a foam member obtained from the foam composition that can be suitably used as a golf ball member such as the intermediate layer or cover of a golf ball, and a method for manufacturing the foam member.
  • BACKGROUND ART
  • Golf balls are required to have, among other characteristics, a good flight and stopping performance and a good scuff resistance. That is, golf balls have been developed so as to fly well on shots with a driver and also be receptive to backspin on approach shots. To this end, many cover materials with a high resilience and a good scuff resistance have been developed as golf ball members. However, when the resilience and scuff resistance of a golf ball member such as the cover are increased, the ball ends up flying too far on approach shots and lacks delicate controllability. Methods such as that of lowering the molecular weight of the cover material have been studied as ways of lowering the rebound resilience of golf ball members such as the cover. However, when the molecular weight is lowered, the scuff resistance and moldability of the cover material tend to worsen. Accordingly, there exists a desire among professional golfers and skilled amateurs for a golf ball which, in addition to having a cover or other golf ball member of high resilience and good scuff resistance, also is endowed with a better controllability on approach shots.
  • Art in which the cover member used in a golf ball is a foam body (porous body) has hitherto been described in a number of patent publications, including JP-A 2005-46299 (corresponding to US 2004/266559 A1) and JP-A H01-212577 (corresponding to U.S. Pat. No. 4,274,637 A). However, in such art, a blowing agent such as an organic blowing agent or sodium hydrogen carbonate (sodium bicarbonate) is included in the cover-forming material. Molding methods involving the use of such a chemical blowing agent require close control of the temperature, pressure and equipment systems during molding. Also, obtaining a foam body that is uniform throughout the interior of the cover or other golf ball member is very difficult. In addition, in most foamed molding processes, a skin layer to forms at the surface of the member, making it necessary to, for example, abrade the surface of the foamed golf ball cover in order to remove the skin layer and expose the foam face at the ball surface. In golf balls produced by such a process, the cover surface often is not a uniform foam body, making it difficult to supply, in golf balls for which close control of the diameter, weight and the like is required, a stable golf ball product.
  • SUMMARY OF THE INVENTION
  • It is therefore an object of the present invention to provide a foam composition from which a foam body (porous body) that is uniform only at the surface or uniform throughout can be obtained by a relatively simple method without the use of a blowing agent. Another object of the invention is to provide a golf ball member that is made using such a foam composition.
  • As a result of extensive investigations. I have discovered that, in order to obtain a foam body (porous body) which is uniform only at the surface or uniform throughout without the use of a blowing agent, by including a leachable water-soluble fine powder within the polymer material serving as the base material of the golf ball member and by molding the foam composition and subsequently leaching out and removing this water-soluble fine powder, an open-cell or closed-cell porous body is obtained in which the particulate shape of the water-soluble fine powder becomes the pores. Moreover, I have found that this method is relatively simple and industrially advantageous.
  • Accordingly, in a first aspect, the invention provides a foam composition which includes a polymer material and a leachable water-soluble fine powder.
  • In a preferred embodiment of the foam composition according to the first aspect of the invention, the polymer material is polyurethane or polyurea.
  • In another preferred embodiment of the foam composition, the water-soluble fine powder has an average particle size of from 1 to 800 μm.
  • In yet another preferred embodiment, the water-soluble fine powder has a melting point of at least 100° C.
  • In still another preferred embodiment, the water-soluble fine powder is at least one selected from the group consisting of sodium chloride, calcium chloride, potassium chloride, magnesium chloride, sodium sulfate, potassium sulfate, magnesium sulfate, sodium nitrate, calcium nitrate, potassium nitrate, sodium tetraborate, potassium tetraborate, calcium tetraborate, soluble starch, monosaccharides, disaccharides, trisaccharides, oligosaccharides, polysaccharides, and hydrates thereof.
  • In a further preferred embodiment, the content of the water-soluble fine powder is from 1 to 600 parts by weight per 100 parts by weight of the polymer material. In a still further preferred embodiment, the water-soluble powder has a solubility in water of at least 1 g per 100 g of water at 20° C.
  • In a yet further preferred embodiment, the foam composition, when molded, yields a foam-molded body having a specific gravity of from 0.2 to 1.2.
  • In still another preferred embodiment, the foam composition, when molded, yields a foam-molded body having a rebound resilience, as measured in accordance with JIS-K 6255, of from 9 to 62%.
  • In a second aspect, the invention provides a method for producing a foam member, which method includes the steps of: molding the foam composition according to the first aspect of the invention so as to obtain a solid molded body; and then leaching out and removing the water-soluble fine powder, thereby giving a foam-molded body.
  • In a third aspect, the invention provides a foam member that can be used as an encasing member formed at a surface or periphery of a core material, which foam member is a foam-molded body obtained by the method according to the second aspect of the invention.
  • In a preferred embodiment of the third aspect of the invention, the foam member is a golf ball cover.
  • ADVANTAGEOUS EFFECTS OF THE INVENTION
  • With the foam composition of the invention, it is possible to obtain a foam body (porous body) that is uniform only at the surface or uniform throughout by a relatively simple process without using a blowing agent. The foam body can be suitably used in particular as a golf ball member for obtaining a golf ball which has a good controllability on approach shots.
  • DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • The objects, features and advantages of the invention will become more apparent to from the following detailed description.
  • The foam composition of the invention includes a polymer material and a leachable water-soluble fine powder.
  • In the present invention, the polymer material is not particularly limited. However, the polymer material required for satisfying the desired properties in the target product having a foam body (foam member) that is molded using a foam composition can be suitably selected from among known thermoplastic resins, thermoplastic elastomers, thermoset resins and thermoset elastomers.
  • For example, in cases where the foam body is to be used as a golf ball member, the polymer material that serves as the base material may be, for example, a rubber material or a thermoplastic or thermoset polyurethane elastomer, polyester elastomer, ionomeric resin, polyolefin elastomer or polyurea. These may be used singly or two or more may be used in admixture. In those cases in particular where the foam body is to be used as an encasing member such as a golf ball cover, preferred use can be made of polyurethane or polyurea.
  • The rubber material can be obtained by vulcanizing a rubber composition containing a base rubber as the chief component. This rubber material is formed using a rubber composition containing, for example, a base rubber, a co-crosslinking agent, a crosslink initiator, a metal oxide and an antioxidant. It is preferable to use polybutadiene as the base rubber of the rubber composition.
  • The polyurethane and polyurea are described in detail below.
  • Polyurethane
  • The polyurethane has a structure which includes soft segments composed of a polymeric polyol (polymeric glycol) that is a long-chain polyol, and hard segments composed of a chain extender and a polyisocyanate. Here, the polymeric polyol serving as a starting material may be any that has hitherto been used in the art relating to polyurethane materials, and is not particularly limited. This is exemplified by polyester polyols, polyether polyols, polycarbonate polyols, polyester polycarbonate polyols, polyolefin polyols, conjugated diene polymer-based polyols, castor oil-based polyols, silicone-based polyols and vinyl polymer-based polyols. Specific examples of polyester polyols that may to be used include adipate-type polyols such as polyethylene adipate glycol, polypropylene adipate glycol, polybutadiene adipate glycol and polyhexa methylene adipate glycol; and lactone-type polyols such as polycaprolactone polyol. Examples of polyether polyols include poly(ethylene glycol), polypropylene glycol), poly(tetramethylene glycol) and poly(methyltetramethylene glycol). Such long-chain polyols may be used singly, or two or more may be used in combination.
  • The long-chain polyol preferably has a number-average molecular weight in the range of 1,000 to 5,000. By using a long-chain polyol having a number-average molecular weight in this range, golf balls made with a polyurethane composition that have excellent properties, including a good rebound and a good productivity can be reliably obtained. The number-average molecular weight of the long-chain polyol is more preferably in the range of 1,500 to 4,000, and even more preferably in the range of 1,700 to 3,500.
  • Here and below, “number-average molecular weight” refers to the number-average molecular weight calculated based on the hydroxyl value measured in accordance with JIS-K 1557.
  • The chain extender is not particularly limited; any chain extender that has hitherto been employed in the art relating to polyurethanes may be suitably used in this invention, low-molecular-weight compounds with a molecular weight of 2,000 or less which have on the molecule two or more active hydrogen atoms capable of reacting with isocyanate groups may be used. Of these, preferred use can be made of aliphatic diols having from 2 to 12 carbon atoms. Specific examples include 1,4-butylene glycol, 1,2-ethylene glycol, 1,3-hutanediol, 1,6-hexanediol and 2,2-dimethyl-1, 3-propanediol. Of these, the use of 1,4-butylene glycol is especially preferred.
  • Any polyisocyanate hitherto employed in the art relating to polyurethanes may he suitably used without particular limitation as the polyisocyanate. For example, use can he made of one or more selected from the group consisting of 4,4′-diphenylmethane diisocyanate:, 2,4-toluene diisocyanate, 2,6-toluene diisocyanate, p-phenylene diisocyanate, xylylene diisocyanate, 1,5-naphthylene diisocyanate, tetramethylxylene diisocyanate, hydrogenated xylylene diisocyanate, dicyclohexylmethane diisocyanate, tetramethylene diisocyanate, hexamethylene diisocyanate, isophorone diisocyanate, norhomene diisocyanate, trimethylhexamethylene diisocyanate, 1,4-bis(isocyanatomethyl)cyclohexane and dimer acid diisocyanate. However, depending on the type of isocyanate, crosslinking to reactions during injection molding may be difficult to control.
  • The ratio of active hydrogen atoms to isocyanate groups in the polyurethane-forming reaction may be suitably adjusted within a preferred range. Specifically, in preparing a polyurethane by reacting the above long-chain polyol, polyisocyanate and chain extender, it is preferable to use the respective components in proportions such that the amount of isocyanate groups included in the polyisocyanate per mole of active hydrogen atoms on the long-chain polyol and the chain extender is from 0.95 to 1.05 moles.
  • The method for preparing the polyurethane is not particularly limited. Preparation using the long-chain polyol, chain extender and polyisocyanate may be carried out by either a prepolymer process or a one-shot process via a known urethane-forming reaction. Of these, melt polymerization in the substantial absence of solvent is preferred. Production by continuous melt polymerization using a multiple screw extruder is especially preferred.
  • It is preferable to use a thermoplastic polyurethane material as the polyurethane. The thermoplastic polyurethane material may be a commercial product, examples of which include those available under the trade name Pandex from DIC Covestro Polymer, Ltd., and those available under the trade name Resamine from Dainichiseika Color & Chemicals Mfg. Co., Ltd.
  • Polyurea
  • The polyurea is a resin composition composed primarily of urea linkages formed by reacting (i) an isocyanate with (ii) an amine-terminated compound. This resin composition is described in detail below.
  • (i) Isocyanate
  • Suitable use can be made here of an isocyanate that is used in the prior art relating to polyurethanes, although the isocyanate is not particularly limited. Use may be made of isocyanates similar to those mentioned above in connection with the polyurethane material.
  • (ii) Amine-Terminated Compound
  • An amine-terminated compound is a compound having an amino group at the end of the molecular chain. In this invention, the long-chain polyamines and/or amine curing agents shown below may be used.
  • A long-chain polyamine is an amine compound which has on the molecule at least two amino groups capable of reacting with isocyanate groups, and which has a number-average molecular weight of from 1,000 to 5,000. In this invention, the number-average molecular weight is more preferably from 1,500 to 4,000, and even more preferably from 1,900 to 3,000, Examples of such long-chain polyamines include, but are not limited to, amine-terminated hydrocarbons, amine: terminated polyethers, amine-terminated polyesters, amine-terminated polycarbonates, amine-terminated polycaprolactones, and mixtures thereof. These long-chain polyamines may be used singly, or two or more may be used in combination.
  • An amine curing agent is an amine compound which has on the molecule at least two amino groups capable of reacting with isocyanate groups and which has a number-average molecular weight of less than 1,000, In this invention, the number-average molecular weight is more preferably less than 800, and even more preferably less than 600. Specific examples of such amine curing agents include, but are not limited to, ethylenediamine, hexamethylenediamine, 1-methyl-2,6-cyclohexyldiamine, tetrahydroxypropylene ethylenediamine, 2,2,4- and 2,4,4-trimethyl-1,6-hexanediamine, 4,4′-bis(sec-butylamino)dicyclohexylmethane, 1,4-bis sec-butylamino cyclohexane, 1,2-bis(sec-butylamino)cyclohexane, derivatives of 4,4′-butylamino)dicyclohexyl methane, 4,4′-dicyclohexylmethanediamine, 1,4-cyclohexane bis(methylamine), 1,3-cyclohexane bis(methylamine), diethylene glycol di(aminopropyl)ether, 2-methylpentamethylenediamine, diaminocyclohexane, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, propylenediamine, 1,3-diaminopropane, dimethylaminopropylamine, diethylaminopropylamine, dipropylenetriamine, imidobis(propylamine), monoethanolamine, diethanolamine, triethanolamine, monoisopropanolamine, diisopropanolamine, isophoronediamine, 4,4′-methylenebis(2-chloroaniline), 3,5-dimethylthio-2,4-toluenediamine, 3,5-dimethylthio-2,6-toluenediamine, 3,5-diethylthio-2,4-toluenediamine, 3,5-diethylthio-2,6-toluenediamine, 4,4′-bis(sec-butylamino)diphenylmethane and derivatives thereof, 1,4-bis(sec-butylamino)benzene, 1,2-bis(sec-butylamino)benzene, N,N′-dialkylaminodiphenylmethane, N,N,N′,N′-tetrakis(2-hydroxypropyl)ethylenediamine, trimethylene glycol di-p-aminobenzoate, polytetramethylene oxide di-p-aminobenzoate, 4,4′-methylenebis(3-chloro-2,6-diethyleneaniline), 4,4′-methylenebis(2,6-diethylaniline), m-phenylenediamine, p-phenylenediamine and mixtures thereof. These amine curing agents may be used singly or two or more may be used in combination.
  • (iii) Polyol
  • Although not an essential ingredient, in addition to the above-described components (i) and (ii), a polyol may also be included in the polyurea. The polyol is not particularly limited, but is preferably one that has hitherto been used in the art relating to polyurethanes. Specific examples include the long-chain polyols and/or polyol curing agents mentioned below.
  • The long-chain polyol may be any that has hitherto been used in the art relating to polyurethanes. Examples include, but are not limited to, polyester polyols, polyether polyols, polycarbonate polyols, polyester polycarbonate polyols, polyolefin-based polyols, conjugated diene polymer-based polyols, castor oil-based polyols, silicone-based polyols and vinyl polymer-based polyols. These long-chain polyols may be used singly or two or more may be used in combination.
  • The long-chain polyol has a number-average molecular weight of preferably from 1,000 to 5,000, and more preferably from 1,700 to 3,500. In this average molecular weight range, an even better resilience and productivity are obtained.
  • The polyol curing agent is preferably one that has hitherto been used in the art relating to polyurethanes, but is not subject to any particular limitation. In this invention, use may be made of a low-molecular-weight compound having on the molecule at least two active hydrogen atoms capable of reacting with isocyanate groups, and having a molecular weight of less than 1,000. Of these, the use of aliphatic diols having from 2 to 12 carbon atoms is preferred. Specific examples include 1,4-butylene glycol, 1,2-ethylene glycol, 1,3-butanediol, 1,6-hexanediol and 2,2-dimethyl-1,3-propanediol. The use of 1,4-butylene glycol is especially preferred. The polyol curing agent has a number-average molecular weight of preferably less than 800, and more preferably less than 600.
  • A known method may be used to produce the polyurea. A prepolymer process, a one-shot process or some other known method may be suitably selected for this purpose.
  • When the above polyurethane or other resin is used as the base resin, the content to thereof is suitably selected according to the required properties of the manufactured article that is desired. The lower limit is at least 50 wt %, preferably at least 60 wt %, and more preferably at least 80 wt %, per 100 wt % of the composition.
  • This invention, along with using the above polymer material, includes a leachable water-soluble fine powder within the foam composition. The water-soluble fine powder has an average particle size of preferably from 1 to 800 μm, more preferably from 2 to 600 μm, and even more preferably from 5 to 400 μm. As used herein, the average particle size (also called, for example, the “characteristic diameter”) refers to the value determined by sampling 30 large particles from an enlarged image of the water-soluble powder obtained under, for example, an optical microscope, measuring the vertical and horizontal dimensions and determining their average for each particle, summing these particle-specific average values and dividing the total by n=30 (“n” being the number of measured particles).
  • The water-soluble fine powder has a melting point of preferably at least 100° C., more preferably at least 200° C., and even more preferably at least 300° C. In order to keep the polymer material from melting at the molding temperature, it is preferable for this melting point to be higher than the molding temperature of the polymer material. The molding temperature of golf balls is from 150 to 270° C. Examples of fine powders having a melting point higher than this temperature include sodium chloride (800° C.), potassium chloride (776° C.) and magnesium chloride (714° C.).
  • In order for the water-soluble fine powder used to be easily leached out and removed, it should have a solubility per 100 g of water at 20° C. of preferably at least 1 g, more preferably at least 10 g, and even more preferably at least 30 g.
  • A water-soluble compound such as salt or sugar may typically be used as the water-soluble fine powder. A compound that is easily rendered into a fine powder, does not dissolve at the molding and processing temperatures of the thermoplastic resin, and moreover can easily be extracted with water after molding is preferred.
  • The water-soluble fine powder may be selected from the group consisting of sodium chloride, calcium chloride, potassium chloride, magnesium chloride, sodium sulfate, potassium sulfate, magnesium sulfate, sodium nitrate, calcium nitrate, potassium nitrate, sodium tetraborate, potassium tetraborate, calcium tetraborate, soluble starch, monosaccharides, disaccharides, trisaccharides, oligosaccharides, polysaccharides, and to hydrates thereof. These may be used singly or two or more may be used in admixture. The use of sodium chloride, sodium sulfate, sodium nitrate, calcium chloride and magnesium chloride is especially preferred.
  • The amount of water-soluble fine powder included in the foam composition is suitably selected according to the foam morphology—such as expansion ratio and foam cell size—desired in the foam member, but is typically from 1 to 600 parts by weight, and preferably from 1 to 400 parts by weight, per 100 parts by weight of the above polymer material used in the invention. For example, in cases where a golf ball cover material is to be rendered into a foam member, from the standpoint of the desired feel of the ball at impact and its controllability on approach shots, the content per 100 parts by weight of polyurethane resin is typically from 1 to 600 parts by weight, preferably from 1 to 400 parts by weight, more preferably from 1 to 200 parts by weight, and even more preferably from 1 to 100 parts by weight. In cases where a golf ball cover material is to be rendered into a visually recognizable foam member, from the standpoint of the desired feel at impact, sense of softness obtained from the appearance and controllability on approach shots, the content per 100 parts by weight of the polyurethane resin is preferably from 100 to 500 parts by weight, and more preferably from 200 to 400 parts by weight.
  • In addition, various additives other than the above ingredients may be optionally included in the inventive composition. For example, pigments, dispersants, antioxidants, light stabilizers, ultraviolet absorbers and internal mold lubricants may be suitably included. Various blowing agents such as chemical blowing agents are not included in this invention.
  • The foam composition can be obtained by mixing together and incorporating the above ingredients using any of various types of mixers, such as a kneading-type single-screw or twin-screw extruder, a Banbury mixer or a kneader.
  • In this invention, the foam composition is molded to form a solid molded body and the water-soluble fine powder contained within the solid molded body is subsequently leached out and removed, thereby obtaining an open-cell or closed-cell porous body (foam body) in which the particle shapes of the water-soluble fine powder have become pores.
  • The method used to mold the foam composition may be suitably selected according to the shape and nature of the manufactured article, which is a molded product. For example, the method used to mold a golf ball cover may entail feeding the above-described foam composition to an injection molding machine and injecting the molten foamable composition over the core so as to mold a cover. In this case, the molding temperature varies with the foam composition that is used; for polyurethane or polyurea, the molding temperature is typically in the range of 150 to 270° C. Another method that may be used is one in which the molten foam composition is shaped by pressing within a mold so as to obtain foam-molded bodies in the shape of half-cups, following which the core is enveloped by two such foam-molded half-cups and heat and pressure are applied in a press or the like, thereby molding a golf ball cover.
  • The water-soluble fine powder included in the molded material thus obtained from the foam composition is leached out and removed. The specific method for doing so, although not particularly limited, involves leaching out the water-soluble fine powder with water having a temperature of between about 5° C. and about 100° C., preferably between about 10° C. and about 80° C., and more preferably between about 20° C. and about 60° C. From the standpoint of the efficiency of the operation, it is preferable for the water-soluble powder to be capable of being leached out and removed in a short time at a high temperature, such as by immersion for a length of time during which the water-soluble fine powder can be fully leached out and removed with water at the above temperature, the length of time being typically from 10 minutes to 12 hours, preferably from 30 minutes to 8 hours, and more preferably from 1 to 6 hours. Methods for accelerating such leaching and removal may also be suitably selected and added. Examples include, but are not limited to, physical methods of removal such as shaking, stirring, rocking, aeration, microbubbles, ultrasound, high-pressure spraying and brushing. After the water-soluble fine powder has been leached out and removed, the foam-molded body can be obtained by thorough drying. The specific drying method used is not particularly limited, although the desired foam-molded body can be obtained after adhering water is thoroughly removed by using a dryer or a dehumidifying dryer to carry out drying at a temperature of, for example, up to 120° C. preferably up to 80° C., and more preferably up to 60° C.
  • The morphology of the foam cells in the molded material obtained from the foam composition is suitably selected according to the particle size and content of the water-soluble fine powder to be included in the polymer material. For example, in cases where sodium chloride is mixed as the water-soluble fine powder into polyurethane, the to resulting composition is molded as a golf ball cover material and the sodium chloride is subsequently leached out with cold or hot water, at a low sodium chloride content, only the sodium chloride present at the surface of the golf ball cover leaches out and pore formation occurs only at the surface, with sodium chloride remaining behind at the interior. On the other hand, at a high sodium chloride content, mutually adjoining sodium chloride particles contiguously leach out, forming an open-cell foam body, with substantially all of the sodium chloride leaching out and being removed. It should be noted, however, that the sodium chloride, which has become even finer due to shear stresses, etc. that are applied when incorporating the sodium chloride into the polyurethane and when molding golf ball covers (as the foam-molded material) from the polyurethane and sodium chloride-containing foam composition, is taken up within the urethane. Some of this sodium chloride that has been taken up within the urethane does not come into contact with water and thus remains behind.
  • The molded material (foam body) obtained from the foam composition has a specific gravity of preferably from 0.2 to 1.2. In cases where the molded material is used as a cover member in golf balls, from the standpoint of both maintaining a good scuff resistance and keeping the initial velocity on approach shots low, it is generally preferable for the specific gravity to be from 1.0 to 1.2. In cases where the desired properties include a softer feel at impact and greater softness of appearance, the specific gravity is more preferably 1.0 or less.
  • When used in manufactured golf balls, from the standpoint of the flight performance, spin performance, etc. of the ball, this foam body has a rebound resilience, as measured in accordance with MS-K 6255, which is preferably from 9 to 62%, and more preferably from 20 to 60%.
  • In this invention, the foam member (foam-molded body) obtained as described above is preferably used in particular as an encasing member that is formed at a surface or periphery of a member serving as a core material. Exemplary applications include, aside from golf balls, various other types of balls such as baseballs, billiard balls and bowling balls, as well as grips, electrical cable, fabric articles such as gloves and shoes, and also tires and rollers. In the case of golf balls, the core material is a single-layer or multilayer core made of rubber or the like, and the foam member corresponds to an encasing layer (also referred to as, for example, an intermediate layer, envelope layer or cover layer) which directly or indirectly encases this core.
  • EXAMPLES
  • The following Examples and Comparative Examples are provided to illustrate the invention, and are not intended to limit the scope thereof.
  • Examples 1 to 10, Comparative Example 1
  • A golf ball core-forming rubber composition formulated as shown in Table 1 and common to all of the Examples was prepared and then molded and vulcanized to produce a 38.6 mm diameter core.
  • TABLE 1
    Rubber composition parts by weight
    cis-1,4-Polybutadiene 100
    Zinc acrylate 27
    Zinc oxide 4.0
    Barium sulfate 16.5
    Antioxidant 0.2
    Organic peroxide (1) 0.6
    Organic peroxide (2) 1.2
    Zinc salt of pentachlorothiophenol 0.3
    Zinc stearate 1.0
  • Details on the above core material are given below.
    • Cis-1,4-Polybutadiene: Available under the trade name “BR 01” from JSR Corporation
    • Zinc acrylate: From Nippon Shokuhai Co., Ltd.
    • Zinc oxide: From Sakai Chemical Co., Ltd.
    • Barium sulfate: From Sakai Chemical Co., Ltd.
    • Antioxidant: Available under the trade name “Nocrac NS6” from Ouchi Shinko Chemical Industry Co., Ltd.
    • Organic peroxide (1): Dicumyl peroxide, available under the trade name “Percumyl D” from NOF Corporation
    • Organic peroxid A mixture of 1,1-di(tert-butylperoxy)cyclohexane and silica, available under the trade name “Perhexa C-40” from NOF Corporation
    • Zinc stearate: Available from NOF Corporation
  • Next, an intermediate layer-forming resin material common to all of the Examples was formulated. This intermediate layer resin material was a blend of 50 parts by weight of a sodium-neutralized ethylene-unsaturated carboxylic acid copolymer having an acid content of 18 wt % and 50 parts by weight of a zinc-neutralized ethylene-unsaturated carboxylic acid copolymer having an acid content of 15 wt % (for a combined amount of 100 parts by weight). This resin material was injection molded over a core having a diameter of 38.6 mm, thereby producing an intermediate layer-encased sphere having an intermediate layer with a thickness of 1.25 mm.
  • Preparation of Cover-Forming Resin Composition
  • In all of the Examples, an ether-type thermoplastic polyurethane (Shore D hardness, 40) available under the trade name Pandex from DIC Covestro Polymer, Ltd. was used as the thermoplastic polyurethane elastomer, and sodium chloride (average particle size, 350 μm; melting point, 800° C.; solubility in water, 36 g/100 g (20° C.)) was added thereto as the water-soluble fine powder. As shown in Table 2 below, cover-forming resin compositions for the respective Examples were prepared by suitably varying the amount of water-soluble fine powder added.
  • TABLE 2
    Content (pbw) No. 1 No. 2 No. 3 No. 4 No. 5 No. 6 No. 7 No. 8 No. 9 No. 10 No. 11
    Thermoplastic polyurethane 100 100 100 100 100 100 100 100 100 100 100
    elastomer (TPU)
    Water-soluble fine powder 0 5 10 20 30 40 50 100 200 400 600
    Sheet Specific gravity 1.12 1.12 1.12 1.11 1.09 1.06 1.05 1.03 0.31 0.26 0.24
    properties Rebound resilience (%) 55 50 50 43 40 40 37 28 9 9 9
    Δ value 0 −5 −5 −12 −15 −15 −18 −27 −46 −46 −46
    (difference with No. 1)
  • Fabrication of Sheet Samples for Evaluation
  • The blend in Table 1 was kneaded in a mixer, following which it was formed into a 2 mm thick sheet by pressing with a heated press. The sheet was then immersed for four hours in hot water having a temperature of 55° C., after which it was dried for 12 hours at 55° C., thereby obtaining the desired foam sheet sample.
  • Production of Golf Balls
  • Next, the above intermediate layer-encased sphere (diameter, 41.1 mm; weight, 40.8 g) was peripherally encased by the cover-forming resin composition. The resulting sphere encased by a cover (outermost layer) having a thickness after molding of 0.8 mm was subsequently immersed for four hours in hot water having a temperature of 55° C. and then dried at 55° C. for 12 hours. The cover-encased sphere thus obtained was then painted, thereby producing a three-piece golf ball having a diameter of 42.7 mm.
  • The golf balls produced as described above in the Examples and Comparative Example 1 were evaluated by the following methods for feel at impact, scuff resistance, and ball initial velocity and controllability on approach shots. The results are shown in Table 3.
  • Initial Velocity of Ball on Approach Shots
  • A sand wedge (SW) was mounted on a golf swing robot, and the initial velocity of the ball immediately after being struck at a head speed (HS) of 20 m/s was measured with an apparatus for measuring the initial conditions. The amount of decrease in the ball initial velocity (ΔV) in each Example was computed relative to, as the standard, the initial velocity to of the ball in Comparative Example 1.
  • Evaluation of Controllability on Approach Shots
  • Sensory evaluations of the ball controllability on approach shots were carried out as follows. The club used was a sand wedge (SW).
  • Excellent (Exc): Controllability was very good.
  • Good: Controllability was good.
  • No Good (NG): Controllability was somewhat poor.
  • Evaluation of Feel on Approach Shots
  • Sensory evaluations of the ball feel at impact on approach shots were carried out. The club used was a sand wedge (SW).
  • Excellent (Exc): Very soft feel at impact; easy to feel sweet spot.
  • Good: Soft feel at impact; easy to feel sweet spot.
  • No Good (NG): Rapid ball separation from club; cannot feel sweet spot.
  • Evaluation of Scuff Resistance
  • The golf balls were held isothermally at 23° C. and five balls of each type were hit at a head speed of 33 m/s using as the club a pitching wedge mounted on a swing robot machine. The damage to the ball from the impact was visually rated according to the following criteria.
  • Excellent (Exc): Slight scuffing or substantially no apparent scuffing.
  • Good: Slight fraying of surface or slight dimple damage.
  • No Good (NG): Dimples completely obliterated in places.
  • TABLE 3
    Comp.
    Ex. Example
    1 1 2 3 4 5 6 7 8 9 10
    Cover formulation No. 1 No. 2 No. 3 No. 4 No. 5 No. 6 No. 7 No. 8 No. 9 No. 10 No. 11
    Ball Approach Initial velocity 19.08 18.99 18.70 18.70 18.70 17.99 17.94 17.94 17.61 17.29 16.91
    performance shots (m/s)
    ΔV 0 −0.09 −0.38 −0.38 −0.38 −1.09 −1.14 −1.14 −1.47 −1.79 −2.17
    Controllability NG good good good good good good good Exc Exc Exc
    Feel NG good good good good good good good Exc Exc Exc
    Scuff resistance Exc Exc Exc Exc Exc Exc Exc Exc good good good
    ΔV: Initial velocity difference with Comparative Example 1.
  • Japanese Patent Application No. 2018-239788 is incorporated herein by reference.
  • Although some preferred embodiments have been described, many modifications and variations may be made thereto in light of the above teachings. It is therefore to be understood that the invention may be practiced otherwise than as specifically described without departing from the scope of the appended claims.

Claims (12)

1. A foam composition comprising a polymer material and a leachable water-soluble fine powder.
2. The foam composition of 1, wherein the polymer material is polyurethane or polyurea.
3. The foam composition of claim 1, wherein the water-soluble fine powder has an average particle size of from 1 to 800 μm.
4. The foam composition of claim 1, wherein the water-soluble fine powder has a melting point of at least 100° C.
5. The foam composition of claim 1, wherein the water-soluble fine powder is at least one selected from the group consisting of sodium chloride, calcium chloride, potassium chloride, magnesium chloride, sodium sulfate, potassium sulfate, magnesium sulfate, sodium nitrate, calcium nitrate, potassium nitrate, sodium tetraborate, potassium tetraborate, calcium tetraborate, soluble starch, monosaccharides, disaccharides, trisaccharides, oligosaccharides, polysaccharides, and hydrates thereof.
6. The foam composition of claim 1, wherein the content of the water-soluble fine powder is from 1 to 600 parts by weight per 100 parts by weight of the polymer material.
7. The foam composition of claim 1, wherein the water-soluble powder has a solubility in water of at least 1 g per 100 g of water at 20° C.
8. The foam composition of claim 1 which, when molded, yields a foam-molded body having a specific gravity of from 0,2 to 1.2.
9. The foam composition of claim 1 which, when molded, yields a foam-molded body having a rebound resilience, as measured in accordance with JIS-K 6255, of from 9 to 62%.
10. A method for producing a foam member, which method comprises the steps of, in order:
molding the foam composition of claim 1 so as to obtain a solid molded body; and
leaching out and removing the water-soluble fine powder, thereby giving a foam-molded body.
11. A foam member that can be used as an encasing member formed at a surface or periphery of a core material, which foam member is a foam-molded body obtained by the method of claim 10.
12. The foam member of claim 11 which is a golf ball cover.
US16/720,955 2018-12-21 2019-12-19 Foam composition, foam member and method of manufacture Abandoned US20200199321A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/223,795 US20230357526A1 (en) 2018-12-21 2023-07-19 Foam composition, foam member and method of manufacture

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018239788A JP7379818B2 (en) 2018-12-21 2018-12-21 Manufacturing method of porous member
JP2018-239788 2018-12-21

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/223,795 Division US20230357526A1 (en) 2018-12-21 2023-07-19 Foam composition, foam member and method of manufacture

Publications (1)

Publication Number Publication Date
US20200199321A1 true US20200199321A1 (en) 2020-06-25

Family

ID=71098276

Family Applications (2)

Application Number Title Priority Date Filing Date
US16/720,955 Abandoned US20200199321A1 (en) 2018-12-21 2019-12-19 Foam composition, foam member and method of manufacture
US18/223,795 Pending US20230357526A1 (en) 2018-12-21 2023-07-19 Foam composition, foam member and method of manufacture

Family Applications After (1)

Application Number Title Priority Date Filing Date
US18/223,795 Pending US20230357526A1 (en) 2018-12-21 2023-07-19 Foam composition, foam member and method of manufacture

Country Status (2)

Country Link
US (2) US20200199321A1 (en)
JP (1) JP7379818B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210387057A1 (en) * 2020-06-11 2021-12-16 Bridgestone Sports Co., Ltd. Golf ball and method of manufacture
CN116656002A (en) * 2023-07-26 2023-08-29 四川大学 Low-density high-porosity polyurethane foam material and preparation method thereof

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE757690A (en) * 1969-10-20 1971-04-19 Minnesota Mining & Mfg MICROPOROUS FILMS AND METHODS FOR THEIR MANUFACTURE
NL7403783A (en) * 1974-03-20 1975-09-23 Porvair Ltd WATER VAPOR PERMISSIBLE SHEET MATERIAL.
US4226886A (en) * 1979-02-16 1980-10-07 Micro-Cel Systems, Inc. Self-metering liquid retentive pad and process for producing same
US4431193A (en) * 1981-08-25 1984-02-14 Questor Corporation Golf ball and method of making same
FR2643823B1 (en) * 1989-03-03 1992-05-15 Adidas Chaussures SPORTS OR LEISURE BALLS, COMPRISING AN OUTER LAYER OF FULL SKIN FOAM AND THEIR PROCESS
JPH03174457A (en) * 1989-12-01 1991-07-29 Kanebo Ltd Preparation of polyurethane sponge
JP2001081227A (en) 1999-09-16 2001-03-27 Aion Kk Polymeric compound porous body and its preparation
JP4194441B2 (en) 2003-07-28 2008-12-10 Sriスポーツ株式会社 Golf ball
JP2013155822A (en) 2012-01-31 2013-08-15 Nok Corp Metal base gasket and method for manufacturing the same
US10793694B2 (en) 2015-06-01 2020-10-06 Jsp Corporation Expanded thermoplastic polyurethane particles and expanded thermoplastic polyurethane particle molded article
JP2018135458A (en) 2017-02-22 2018-08-30 株式会社ヘキサケミカル Thermoplastic resin composition for foam molding and method for producing foamed body

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210387057A1 (en) * 2020-06-11 2021-12-16 Bridgestone Sports Co., Ltd. Golf ball and method of manufacture
CN116656002A (en) * 2023-07-26 2023-08-29 四川大学 Low-density high-porosity polyurethane foam material and preparation method thereof

Also Published As

Publication number Publication date
JP7379818B2 (en) 2023-11-15
US20230357526A1 (en) 2023-11-09
JP2020100733A (en) 2020-07-02

Similar Documents

Publication Publication Date Title
JP5970019B2 (en) Core assembly for a golf ball comprising a foam-like inner core and a thermoplastic outer core layer
JP5953327B2 (en) Multilayer core with foamed inner core for golf balls
US20230357526A1 (en) Foam composition, foam member and method of manufacture
JP6259350B2 (en) Multi-layer core for golf balls comprising foam-like and thermosetting layers
JP6089192B2 (en) Multi-layer golf ball with selectively weight-distributed foam center
JP6259355B2 (en) Golf ball core with foam-like center and thermoplastic outer layer
US10137334B2 (en) Golf ball manufacturing method
US20180178068A1 (en) Golf balls having foam inner core and thermoset outer core layer
JP2011078761A (en) Golf ball
US20200406104A1 (en) Golf ball
US10987547B2 (en) Golf ball
US10888740B2 (en) Resin composition for golf balls, and golf ball
US9776046B2 (en) Golf ball
US20200368586A1 (en) Resin composition for golf balls
US10335641B2 (en) Golf ball
US10232227B2 (en) Golf ball and method of manufacture
JP2019093116A (en) Durable large and regulation-weight golf ball incorporating foamed intermediate layer
US20210387057A1 (en) Golf ball and method of manufacture
US10722760B2 (en) Resin composition for golf balls, and golf ball
JP2016010431A (en) Golf ball
US20230390611A1 (en) Golf ball
JP6375723B2 (en) Golf ball manufacturing method

Legal Events

Date Code Title Description
AS Assignment

Owner name: BRIDGESTONE SPORTS CO., LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MOCHIZUKI, KATSUNOBU;REEL/FRAME:051336/0229

Effective date: 20191118

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: ADVISORY ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION