US20200198812A1 - A multiple payload set and method for assembly - Google Patents

A multiple payload set and method for assembly Download PDF

Info

Publication number
US20200198812A1
US20200198812A1 US16/633,795 US201716633795A US2020198812A1 US 20200198812 A1 US20200198812 A1 US 20200198812A1 US 201716633795 A US201716633795 A US 201716633795A US 2020198812 A1 US2020198812 A1 US 2020198812A1
Authority
US
United States
Prior art keywords
attachment means
gse
payload
dispenser
multiple payload
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US16/633,795
Inventor
Magnus THENANDER
Johan ÖHLIN
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beyond Gravity Sweden AB
Original Assignee
RUAG Space AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RUAG Space AB filed Critical RUAG Space AB
Assigned to RUAG SPACE AB reassignment RUAG SPACE AB ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ÖHLIN, Johan, THENANDER, Magnus
Publication of US20200198812A1 publication Critical patent/US20200198812A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G5/00Ground equipment for vehicles, e.g. starting towers, fuelling arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/002Launch systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/64Systems for coupling or separating cosmonautic vehicles or parts thereof, e.g. docking arrangements
    • B64G1/641Interstage or payload connectors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/64Systems for coupling or separating cosmonautic vehicles or parts thereof, e.g. docking arrangements
    • B64G1/641Interstage or payload connectors
    • B64G1/643Interstage or payload connectors for arranging multiple satellites in a single launcher
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/64Systems for coupling or separating cosmonautic vehicles or parts thereof, e.g. docking arrangements
    • B64G1/641Interstage or payload connectors
    • B64G1/643Interstage or payload connectors for arranging multiple satellites in a single launcher
    • B64G1/644Interstage or payload connectors for arranging multiple satellites in a single launcher arranged for independent deployment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/10Artificial satellites; Systems of such satellites; Interplanetary vehicles
    • B64G1/1085Swarms and constellations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/64Systems for coupling or separating cosmonautic vehicles or parts thereof, e.g. docking arrangements
    • B64G1/645Separators

Definitions

  • the present disclosure relates to a multiple payload set for a launch vehicle.
  • the multiple payload set comprises a plurality of payloads.
  • the disclosure further relates to a payload dispenser comprising a multiple payload set.
  • the disclosure further relates to a ground support equipment arranged to transport the multiple payload set and a method for using the ground support equipment during transport and assembly of the multiple payload set to the payload dispenser.
  • An object of the present disclosure is to provide a method for integration of a multiple payload set to a dispenser in a launch vehicle.
  • the multiple payload set comprises a plurality of payloads.
  • the disclosure further relates to a payload dispenser comprising a multiple payload set.
  • the disclosure further relates to a ground support equipment arranged to transport the multiple payload set and a method for using the ground support equipment during transport and assembly where the previously mentioned problems are avoided.
  • the plurality of payloads is interconnected via a non-self-supported connection structure before assembly of the multiple payload set to the dispenser body.
  • Each payload comprises first attachment means attachable to the connection structure.
  • the connection structure comprises second attachment means attachable to a ground support equipment, GSE, during attachment of the multiple payload set to the dispenser body.
  • the benefit of the multiple payload set is that a large number of payloads can be mounted at the dispenser body at the same time.
  • the number of payloads can vary, but the more payloads that can be pre-connected via the connection structure the better the efficiency during assembly.
  • connection structure refers to that the structure between the payloads cannot support the multiple payload set to be lifted and maneuvered.
  • the connection structure is intended to be as light weight as possible to reduce weight but should support and collect signal cords inter-connecting the payloads and connecting the payloads to a control unit.
  • the signal cords can be wire, optical fiber or any other suitable cord or bus.
  • One reason for connecting the payloads is to enable the possibility to release the payloads in a certain order.
  • connection structure is a rail structure.
  • rail structure refers to an array of interconnected elongated portions.
  • the elongated portion may be a tube-like element with a cross-section being circular, oval, and polygonal or a combination thereof.
  • the tube-like element can be at least partly open along its elongated direction.
  • the tube-like element at least partly, may comprise U-shaped portions.
  • the tube-like element comprises openings in connection to another tube-like element being connected to it.
  • the connected tube-like elements create the rail structure.
  • connection structure is designed to align the payloads according to a predetermined pattern.
  • the alignment can be done by applying the connection structure in a firm construction jig having a predetermined pattern in which the connection structure fits.
  • the payloads are then applied to the connection structure in a predetermined pattern according to the jig pattern.
  • the GSE can then be applied to the multiple payload set via the second attachment means to reinforce and secure the multiple payload set to enable transport and maneuverability of the multiple payload set without jeopardizing the connection structure.
  • the second attachment means are arranged in connection to the first attachment means.
  • the connection structure comprises reinforcement means arranged to mechanically connect the second attachment means to the first attachment means to form a load bearing structure.
  • the connection structure comprises at least one reinforced portion in the position where the first attachment means is attached to the connection structure.
  • the first attachment means is thus attached to the reinforcement means which in turn connects the first attachment means to the second attachment means so that the GSE can lift the multiple payload set via the second attachment means.
  • the first attachment means are also attachment means for the multiple payload set to the dispenser body.
  • the first attachment means can be bolt that runs from and/or through the payload and/or through the reinforcement means and/or through the dispenser body.
  • the first attachment means has fastening means that secures the first attachment means in position, for example a nut or a similar devise that can secure the multiple payload set in position on the dispenser body.
  • the first attachment means are separation devices that are interconnected to each other for enabling separation of the payload from the dispenser body and from the connection structure.
  • Each separation device comprises two portions interconnected to each other and secured to each other via a secure and release means that upon activation separates the two portions.
  • each payload comprises at least one first attachment means.
  • first attachment means gives a good symmetry and control when separating the payload.
  • the payload and multiple payload set is not restricted to four attachment means.
  • the number of second attachment means is dependent on the design of the GSE, but a maximum number of second attachment means corresponds to the number of first attachment means.
  • the GSE could be designed and arranged to attach to one or more second attachment means on each side of the multiple payload set on order to secure a tilting/lifting operation.
  • the second attachment means secures the multiple payload set in a X-Y plane hindering movement of the multiple payload set in the X-Y plane with relation to the GSE.
  • the GSE is designed and arranged to interconnect all payloads in the multiple payload set accordingly.
  • the GSE has an elongation in the X-direction and a width in the Y-direction.
  • the GSE is designed and arranged to create a bearing structure in the X-Y plane to hinder that the multiple payload set moves in a Z direction being perpendicular to the X-Y plane.
  • the GSE is to be designed and arranged to connect solely to the second attachment means.
  • the GSE is designed and arranged to bear against further parts of the multiple payload set in addition to just the second attachment means.
  • the GSE comprises at least two longitudinally extending construction elements, hereinafter called longitudinal beams, and at least two laterally extending beams, hereinafter called lateral beams.
  • the GSE is arranged to be assembled in connection to an assembled multiple payload set.
  • the different portions, i.e. the beams, of the GSE is connected to the multiple payload set according to the above and secured with relation to each other forming a stiff and rigid GSE that can transport and maneuver the multiple payload set.
  • the GSE can either be assembled before being connected to the multiple payload set or after being connected to the multiple payload set.
  • One advantage with the GSE is its versatility that allows for the possibility to use the GSE regardless of the situation of the multiple payload set.
  • the multiple payload set After the multiple payload set has been transported and maneuvered into position on the dispenser body, the multiple payload set is secured to the dispenser body and the GSE shall be removed.
  • the GSE is arranged to be knocked down into a collapsed state where at least parts of the assembled GSE are detached from each other.
  • the GSE is designed and arranged to fit between two neighboring payloads so that the parts/beams can be removed in that space.
  • the beams in the assembled state form a frame designed to fit to carry the subset of payloads, and in a collapsed state the longitudinal beams and/or the laterally extending beams are designed to fit and be removed between two neighboring payloads attached to the payload dispenser.
  • the beams in the GSE may comprise beam portions arranged to be attached to each other to form the beams.
  • the beams can be disassembled into the beam portions to allow for easy removal of the portions.
  • the beams and beam portions can thus be arranged to be removed between two adjacent payloads, but may also be removed by extraction between the payloads and the dispenser body.
  • the beam can be formed as one single entity or may be formed by a number of parts, for example as a framework of parts that gives a lightweight but strong construction.
  • the different beams or portions of the different beams may be formed as a single entity while other beams or portions of the different beams may be formed by a number of parts.
  • the longitudinally extending beams comprise third attachment means attachable to the second attachment means in the multiple payload set.
  • the third attachment means are designed and arranged to correspond to the design and arrangement of the second attachment means in order to secure the multiple payload set in the X-Y plane and in the Z-direction when attached.
  • the second attachment means and the third attachment means can be in any suitable form that allows for easy attachment and detachment of the multiple payload set.
  • the invention refers also to a payload dispenser comprising a multiple payload set according to what has been described above.
  • the payload dispenser comprises rail unit ring brackets mounted onto an envelope surface of the dispenser body.
  • the rail unit ring bracket can have different purposes depending on design of the multiple payload set and the dispenser body.
  • the rail unit ring bracket can serve as a reinforcement structure for the dispenser body.
  • the rail unit ring bracket can also have specially designed parts that allows for easy attachment of the payload assemblies to the dispenser body.
  • the rail unit ring brackets comprise through opening for receiving the first attachment means on the multiple payload set during attachment of the multiple payload set to the dispenser body.
  • the dispenser body is formed of one or more ring shaped bodies.
  • the ring shaped body can have a circular cross-section or an oval cross-section or a polygonal cross-section or may be formed in any suitable shape corresponding to the design of the dispenser body.
  • cross-section refers to a plane running through the entire rail unit ring bracket, i.e. in the radial direction with respect to a centrum axle coinciding with the height direction of the dispenser body.
  • the dispenser body comprises a plurality of panels, wherein at least one panel comprises at least one multiple payload set mounted onto the panel.
  • the panels are attachable to each other forming a self-supporting dispenser.
  • the panel built dispenser body may have a polygonal cross-section should the panels be flat, but may have circular or oval cross-section should the panels have an arched surface.
  • the invention also refers a method for assembling a payload dispenser, wherein the method comprises the following steps:
  • FIG. 1 schematically shows a perspective view of a dispenser body
  • FIG. 2 a schematically shows a side view of a number of payloads and a side view of a connection structure before the payloads are connected to the connection structure;
  • FIG. 2 b schematically shows a side view of a number of payloads connected to the connection structure
  • FIG. 2 c schematically shows a front view of FIG. 2 b
  • FIG. 3 a schematically shows a back view of a multiple payload set
  • FIG. 3 b schematically shows a side view of the multiple payload set in FIG. 3 a;
  • FIG. 4 a schematically shows a side view of a multiple payload set according to FIGS. 2 b and 3 b with two payloads connected to the connection structure;
  • FIG. 4 b schematically shows a front view of a ground support equipment, GSE, before attachment of the payload to the GSE;
  • FIG. 4 c schematically shows a front view of two payload assemblies attached to the ground support equipment, GSE, before
  • FIG. 5 a schematically shows a front view of an assembled GSE according to one example
  • FIG. 5 b schematically shows a front view of a dis-assembled GSE according to FIG. 5 a;
  • FIG. 6 a schematically shows a front view of an assembled GSE according to one example
  • FIG. 6 b schematically shows a front view of a dis-assembled GSE according to FIG. 6 a;
  • FIG. 7 schematically shows a rail unit ring bracket according to one example attached to the dispenser body in FIG. 1 ;
  • FIG. 8 schematically shows a top view of an assembled payload dispenser according to one example
  • FIG. 9 schematically shows a side view of the assembled payload dispenser according to FIG. 8 .
  • FIG. 10 schematically shows a top view of an assembled payload dispenser according to one example
  • FIG. 11 schematically shows a side view of the assembled payload dispenser according to FIG. 10 , and wherein;
  • FIG. 12 schematically shows a flow chart of a method.
  • the dispenser body is limited in a radial direction R by an envelope surface of the dispenser body 1 .
  • the radial direction R is a direction perpendicular to the longitudinal direction X.
  • the dispenser body 1 comprises a through channel 4 in the longitudinal direction X.
  • the dispenser body 1 has an inner surface 5 facing towards the channel 4 and an outer surface 6 facing away from a centre of the dispenser body 1 .
  • FIG. 1 a number of rail unit ring brackets 11 , shown in FIG. 7 , are mounted onto the envelope surface 12 of the dispenser body 1 .
  • the rail unit ring brackets 11 comprise through openings 13 for receiving the first attachment means 17 , see FIG. 8 , on the multiple payload set 3 during attachment of the multiple payload set 3 to the dispenser body 1 .
  • the rail unit ring bracket through openings 13 are aligned with openings 14 in the dispenser body for allowing the first attachment means 17 to extend into the channel 4 so that the first attachment means 17 can be secured in position to the dispenser body 1 .
  • the first attachment means 17 can be secured in position against the inner surface 5 of the dispenser body 1 via a nut and bolt arrangement.
  • the first attachment means 17 can be secured in position to the dispenser body 1 via the rail unit ring brackets 11 .
  • the multiple payload set 3 can be mounted onto the dispenser body 1 either directly or via adapters.
  • FIG. 2 a schematically shows a side view of a number of payloads 2 and a side view of a connection structure 16 before the payloads are connected to the connection structure 16 .
  • FIG. 2 b schematically shows a side view of a number of payloads 2 connected to the connection structure 16 .
  • FIG. 2 c schematically shows a front view of FIG. 2 b .
  • FIGS. 2 a -2 c schematically shows a multiple payload set 3 for a launch vehicle.
  • the multiple payload set 3 comprises a plurality of payloads 2 .
  • the payloads 2 are interconnected via a non-self-supported connection structure 16 before assembly of the multiple payload set 3 to the dispenser body 1 .
  • FIG. 3 a schematically shows a back view of a part of the multiple payload set in FIGS. 2 a -2 c with one payload 2 attached to the connection structure 16 .
  • the second attachment means 18 are arranged in connection to the first attachment means 17 and the connection structure comprises reinforcement means 15 arranged to mechanically connect the second attachment means 18 to the first attachment means 17 to form a load bearing structure 20 .
  • the second attachment means 18 are formed such that the GSE 19 can easily be connected and disconnected.
  • the load bearing structure 20 shall transfer load from the payload 2 to the GSE 19 in order to hold the payload assemblies 3 in place when the GSE 19 is moved horizontally and also tilted vertically with the payload assemblies 3 attached to the GSE 19 .
  • the GSE 19 shall be stiff enough to allow for moving the payload assemblies 3 accordingly without compromising the non-self-supported connection structure between the payloads 2 .
  • the non-self-supported connection structure 16 may be a tube or the like that can house cables, contacts, attachment means etc.
  • the connection structure 16 is a rail structure interconnecting the payloads 2 .
  • the cables connect various applications within and between each multiple payload set.
  • the payload assemblies 3 can be attached to the dispenser body 1 via separation devices, i.e. the first attachment means 17 , which separates dependent on a signal from a control unit (not shown).
  • the connection of all separation devices to the control unit allows for timing of the separation of payloads 2 .
  • each multiple payload set 3 comprises first attachment means 17 for attachment to the dispenser body 1 during attachment of the multiple payload set 3 to the dispenser body 1 .
  • the multiple payload set 3 comprises four first attachment means 17 , four second attachment means 18 and four reinforcement means 25 for creating the load bearing structure 20 . It should be noted that a different number of first attachment means 17 , second attachment means 18 and reinforcement means 25 are possible.
  • FIG. 3 b schematically shows a side view of the multiple payload set 3 in FIG. 3 a .
  • FIG. 3 b shows that the second attachment means 18 are made in the form of hooks that can engage the GSE 19 .
  • the second attachment means 18 can be arranged in other forms than hooks as long as the second attachment means 18 cooperates with third attachment means 24 of the GSE 19 .
  • FIG. 4 a schematically shows a side view of two payloads 2 connected to the connection structure 16 according to FIGS. 2 b , 2 c, and FIG. 4 b schematically shows a front view of a ground support equipment, GSE, 19 before attachment of the multiple payload set 3 to the GSE.
  • GSE ground support equipment
  • FIG. 4 c schematically shows a front view of two payload assemblies 3 attached to the ground support equipment, GSE, 19 before attachment of the payload assemblies to the dispenser body 1 .
  • FIG. 5 a schematically shows a front view of an assembled GSE 19 according to one example.
  • FIG. 5 a shows that the GSE 19 comprises two longitudinally extending beams 21 and five laterally extending beams 22 .
  • the laterally extending beams 22 give the GSE 19 support and strength to manoeuvre the payload assemblies without compromising the connection structure.
  • the number of laterally extending beams 22 can vary dependent on the design. Should the longitudinally extending beams 21 be formed as a framework of beams, then the number of laterally extending beams 22 can be less.
  • FIG. 6 a shows a front view of an assembled GSE 19 according with only two laterally extending beams 22 .
  • FIGS. 5 a and 6 a shows the GSE 19 in an assembled state where the beams ( 21 ; 22 ) form a frame designed to fit and carry the subset of payloads.
  • FIGS. 5 b and 6 b show a front view of a dis-assembled GSE 19 according to FIGS. 5 a and 5 b respectively.
  • the longitudinal beams 21 are designed to fit and be removed between two neighbouring payloads 2 attached to the payload dispenser body 1 .
  • FIG. 6 b shows that the longitudinal beams 21 comprise beam portions arranged to be attached to each other to form the longitudinal beam 21 .
  • the longitudinal beam 21 can be disassembled into the beam portions to allow for easy removal of the portions.
  • FIG. 6 b also shows that the lateral beams 22 comprises beam portions for the same purpose. The lateral beams and beam portions may also be arranged to be removed between two adjacent payloads.
  • the longitudinally extending beams 21 comprise third attachment means 24 attachable to the second attachment means 18 in the multiple payload set 3 .
  • the third attachment means 24 can as an alternative be positioned on the laterally extending beams 22 or a combination of the longitudinally extending beams 21 and the laterally extending beams 22 .
  • FIG. 7 schematically shows a rail unit ring bracket 11 according to one example attached to the dispenser body 1 in FIG. 1 .
  • the rail unit ring bracket 11 comprises through openings 13 for receiving the first attachment means 17 , see FIG. 8 , on the multiple payload set 3 during attachment of the multiple payload set 3 to the dispenser body.
  • the rail unit ring bracket through openings 13 are aligned with through openings 14 in the dispenser body 1 for allowing the first attachment means 17 to extend into the channel 4 so that the first attachment means 17 can be secured in position to the dispenser body 1 .
  • the rail unit ring bracket 11 comprises an assembly surface 23 arranged to receive the multiple payload set. In FIG. 7 , the assembly surface 23 is flat, but other shapes are possible to accommodate and fit against the multiple payload set 3 .
  • the multiple payload set 3 may comprise an assembly surface that corresponds in shape to the assembly surface 23 of the rail unit ring bracket 11 .
  • the through openings 13 for receiving first attachment means 17 are positioned in the assembly surface.
  • the through openings 13 for receiving first attachment means 17 are positioned outside the assembly surface 23 .
  • the rail unit ring bracket 11 surrounds the dispenser body 1 and reinforces the dispenser body 1 .
  • FIG. 8 schematically shows a top view of an assembled payload dispenser 15 according to one example including a dispenser body according to FIG. 1 and rail unit ring brackets 11 according to FIG. 7 .
  • FIG. 8 shows the first attachment means 17 running through the multiple payload set and the dispenser body 1 attaching the multiple payload set 3 to the dispenser body 1 .
  • FIG. 9 schematically shows a side view of the assembled payload dispenser 3 according to FIG. 8 .
  • FIG. 10 schematically shows a top view of an assembled payload dispenser 15 according to one example where the dispenser body 1 comprises a plurality of panels 9 , wherein at least one panel 9 comprises at least one multiple payload set mounted onto the panel.
  • the panels are attachable to each other forming a self-supporting dispenser.
  • FIG. 11 schematically shows a side view of the assembled payload dispenser 15 according to FIG. 10 .
  • FIG. 12 schematically shows a flow chart of a method for assembling a payload dispenser 15 according to what has been discussed in connection to FIGS. 1-11 .
  • the method comprises the following steps:

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Automatic Assembly (AREA)

Abstract

A multiple payload set for a launch vehicle, wherein the multiple payload set includes a plurality of payloads. The plurality of payloads is interconnected via a non-self-supported connection structure before assembly of the multiple payload set to a dispenser body. Each payload includes first attachment means attachable to the connection structure. The connection structure includes second attachment means attachable to a ground support equipment, GSE, during attachment of the multiple payload set to the dispenser body.

Description

    TECHNICAL FIELD
  • The present disclosure relates to a multiple payload set for a launch vehicle. The multiple payload set comprises a plurality of payloads. The disclosure further relates to a payload dispenser comprising a multiple payload set. The disclosure further relates to a ground support equipment arranged to transport the multiple payload set and a method for using the ground support equipment during transport and assembly of the multiple payload set to the payload dispenser.
  • BACKGROUND
  • It is today desirable to launch many payloads from each launch vehicle in order to maximize the use of the launch vehicle. The advance in technology allows for smaller payloads, for example satellites, to carry out the same task as yesterday's payloads which enables the possibility to launch more payloads without increasing the weight too much. Furthermore, there is a desire to launch a large plurality of payloads in the form of satellites that are spread out in orbit to cover a large area on the ground. The number of payloads can be hundreds and more. The present assembly of payloads onto a dispenser body is done by attaching the payloads one by one and attaching suitable connections between the payloads during assembly. There is of course a need to minimize the space between the payloads in order to be able to fit as many payloads as possible to the dispenser body. Hence, one problem originates from the fact that it becomes very difficult and time consuming in practice to mount one satellite at a time on the dispenser body due to a very limited space between the payloads. Hence, there is a need to find an improved assembly of payloads to a dispenser body that remedies the above deficiencies.
  • SUMMARY
  • An object of the present disclosure is to provide a method for integration of a multiple payload set to a dispenser in a launch vehicle. The multiple payload set comprises a plurality of payloads. The disclosure further relates to a payload dispenser comprising a multiple payload set. The disclosure further relates to a ground support equipment arranged to transport the multiple payload set and a method for using the ground support equipment during transport and assembly where the previously mentioned problems are avoided. This object is at least partly achieved by the features of the independent claims. The dependent claims contain further developments of the multiple payload set, the payload dispenser and the method for assembly.
  • The plurality of payloads is interconnected via a non-self-supported connection structure before assembly of the multiple payload set to the dispenser body. Each payload comprises first attachment means attachable to the connection structure. The connection structure comprises second attachment means attachable to a ground support equipment, GSE, during attachment of the multiple payload set to the dispenser body.
  • The benefit of the multiple payload set is that a large number of payloads can be mounted at the dispenser body at the same time. The number of payloads can vary, but the more payloads that can be pre-connected via the connection structure the better the efficiency during assembly.
  • Here, non-self-supported connection structure refers to that the structure between the payloads cannot support the multiple payload set to be lifted and maneuvered. The connection structure is intended to be as light weight as possible to reduce weight but should support and collect signal cords inter-connecting the payloads and connecting the payloads to a control unit. The signal cords can be wire, optical fiber or any other suitable cord or bus. One reason for connecting the payloads is to enable the possibility to release the payloads in a certain order.
  • According to one example, the connection structure is a rail structure. Here, rail structure refers to an array of interconnected elongated portions. The elongated portion may be a tube-like element with a cross-section being circular, oval, and polygonal or a combination thereof. The tube-like element can be at least partly open along its elongated direction. Hence, the tube-like element, at least partly, may comprise U-shaped portions. The tube-like element comprises openings in connection to another tube-like element being connected to it. The connected tube-like elements create the rail structure.
  • According to one example, the connection structure is designed to align the payloads according to a predetermined pattern. The alignment can be done by applying the connection structure in a firm construction jig having a predetermined pattern in which the connection structure fits. The payloads are then applied to the connection structure in a predetermined pattern according to the jig pattern. The GSE can then be applied to the multiple payload set via the second attachment means to reinforce and secure the multiple payload set to enable transport and maneuverability of the multiple payload set without jeopardizing the connection structure.
  • The second attachment means are arranged in connection to the first attachment means. The connection structure comprises reinforcement means arranged to mechanically connect the second attachment means to the first attachment means to form a load bearing structure. Hence, the connection structure comprises at least one reinforced portion in the position where the first attachment means is attached to the connection structure. The first attachment means is thus attached to the reinforcement means which in turn connects the first attachment means to the second attachment means so that the GSE can lift the multiple payload set via the second attachment means. According to one example, the first attachment means are also attachment means for the multiple payload set to the dispenser body. The first attachment means can be bolt that runs from and/or through the payload and/or through the reinforcement means and/or through the dispenser body. The first attachment means has fastening means that secures the first attachment means in position, for example a nut or a similar devise that can secure the multiple payload set in position on the dispenser body. According to one example, the first attachment means are separation devices that are interconnected to each other for enabling separation of the payload from the dispenser body and from the connection structure. Each separation device comprises two portions interconnected to each other and secured to each other via a secure and release means that upon activation separates the two portions.
  • Depending on design, each payload comprises at least one first attachment means. However, it has been shown that four first attachment means gives a good symmetry and control when separating the payload. However, the payload and multiple payload set is not restricted to four attachment means. The number of second attachment means is dependent on the design of the GSE, but a maximum number of second attachment means corresponds to the number of first attachment means. The GSE could be designed and arranged to attach to one or more second attachment means on each side of the multiple payload set on order to secure a tilting/lifting operation. Here, the second attachment means secures the multiple payload set in a X-Y plane hindering movement of the multiple payload set in the X-Y plane with relation to the GSE. The GSE is designed and arranged to interconnect all payloads in the multiple payload set accordingly. The GSE has an elongation in the X-direction and a width in the Y-direction. The GSE is designed and arranged to create a bearing structure in the X-Y plane to hinder that the multiple payload set moves in a Z direction being perpendicular to the X-Y plane. According to one example, the GSE is to be designed and arranged to connect solely to the second attachment means. According to one example, the GSE is designed and arranged to bear against further parts of the multiple payload set in addition to just the second attachment means.
  • The GSE comprises at least two longitudinally extending construction elements, hereinafter called longitudinal beams, and at least two laterally extending beams, hereinafter called lateral beams. The GSE is arranged to be assembled in connection to an assembled multiple payload set. The different portions, i.e. the beams, of the GSE is connected to the multiple payload set according to the above and secured with relation to each other forming a stiff and rigid GSE that can transport and maneuver the multiple payload set. Depending on how the multiple payload set is done and how the multiple payload set is oriented, the GSE can either be assembled before being connected to the multiple payload set or after being connected to the multiple payload set. One advantage with the GSE is its versatility that allows for the possibility to use the GSE regardless of the situation of the multiple payload set.
  • After the multiple payload set has been transported and maneuvered into position on the dispenser body, the multiple payload set is secured to the dispenser body and the GSE shall be removed. The GSE is arranged to be knocked down into a collapsed state where at least parts of the assembled GSE are detached from each other. The GSE is designed and arranged to fit between two neighboring payloads so that the parts/beams can be removed in that space.
  • Hence, in the assembled state the beams form a frame designed to fit to carry the subset of payloads, and in a collapsed state the longitudinal beams and/or the laterally extending beams are designed to fit and be removed between two neighboring payloads attached to the payload dispenser.
  • However, the beams in the GSE may comprise beam portions arranged to be attached to each other to form the beams. The beams can be disassembled into the beam portions to allow for easy removal of the portions. The beams and beam portions can thus be arranged to be removed between two adjacent payloads, but may also be removed by extraction between the payloads and the dispenser body.
  • The beam can be formed as one single entity or may be formed by a number of parts, for example as a framework of parts that gives a lightweight but strong construction. The different beams or portions of the different beams may be formed as a single entity while other beams or portions of the different beams may be formed by a number of parts.
  • According to one example, the longitudinally extending beams comprise third attachment means attachable to the second attachment means in the multiple payload set. The third attachment means are designed and arranged to correspond to the design and arrangement of the second attachment means in order to secure the multiple payload set in the X-Y plane and in the Z-direction when attached. The second attachment means and the third attachment means can be in any suitable form that allows for easy attachment and detachment of the multiple payload set.
  • As mentioned above, the invention refers also to a payload dispenser comprising a multiple payload set according to what has been described above.
  • According to one example, the payload dispenser comprises rail unit ring brackets mounted onto an envelope surface of the dispenser body. The rail unit ring bracket can have different purposes depending on design of the multiple payload set and the dispenser body. The rail unit ring bracket can serve as a reinforcement structure for the dispenser body. The rail unit ring bracket can also have specially designed parts that allows for easy attachment of the payload assemblies to the dispenser body.
  • According to one example, the rail unit ring brackets comprise through opening for receiving the first attachment means on the multiple payload set during attachment of the multiple payload set to the dispenser body.
  • The dispenser body is formed of one or more ring shaped bodies. The ring shaped body can have a circular cross-section or an oval cross-section or a polygonal cross-section or may be formed in any suitable shape corresponding to the design of the dispenser body. Here, cross-section refers to a plane running through the entire rail unit ring bracket, i.e. in the radial direction with respect to a centrum axle coinciding with the height direction of the dispenser body.
  • According to one example, the dispenser body comprises a plurality of panels, wherein at least one panel comprises at least one multiple payload set mounted onto the panel. The panels are attachable to each other forming a self-supporting dispenser. The panel built dispenser body may have a polygonal cross-section should the panels be flat, but may have circular or oval cross-section should the panels have an arched surface.
  • The invention also refers a method for assembling a payload dispenser, wherein the method comprises the following steps:
      • attaching a plurality of payloads to a non-self-supported connection structure via first attachment means creating a multiple payload set;
      • attaching a ground support equipment, GSE, to the connection structure, the GSE, comprising third attachment means and the connection structure comprising second attachment means comprised in the connection structure being connected to the first attachment means via reinforcement means, wherein the third attachment means are attached to the second attachment means when attaching the GSE to the connection structure;
      • transporting the ground support equipment, GSE, and the attached multiple payload set;
      • maneuvering the ground support equipment, GSE, and the attached multiple payload set into position with relation to a dispenser body;
      • attaching the multiple payload set to the dispenser body via the first attachment means;
      • knocking down the GSE and removing the GSE pieces from the payload dispenser by detachment of the third attachment means from the second attachment means.
    BRIEF DESCRIPTION OF DRAWINGS
  • The disclosure will be described in greater detail in the following, with reference to the attached drawings, in which
  • FIG. 1 schematically shows a perspective view of a dispenser body;
  • FIG. 2a schematically shows a side view of a number of payloads and a side view of a connection structure before the payloads are connected to the connection structure;
  • FIG. 2b schematically shows a side view of a number of payloads connected to the connection structure;
  • FIG. 2c schematically shows a front view of FIG. 2 b;
  • FIG. 3a schematically shows a back view of a multiple payload set;
  • FIG. 3b schematically shows a side view of the multiple payload set in FIG. 3 a;
  • FIG. 4a schematically shows a side view of a multiple payload set according to FIGS. 2b and 3b with two payloads connected to the connection structure;
  • FIG. 4b schematically shows a front view of a ground support equipment, GSE, before attachment of the payload to the GSE;
  • FIG. 4c schematically shows a front view of two payload assemblies attached to the ground support equipment, GSE, before
  • FIG. 5a schematically shows a front view of an assembled GSE according to one example;
  • FIG. 5b schematically shows a front view of a dis-assembled GSE according to FIG. 5 a;
  • FIG. 6a schematically shows a front view of an assembled GSE according to one example;
  • FIG. 6b schematically shows a front view of a dis-assembled GSE according to FIG. 6 a;
  • FIG. 7 schematically shows a rail unit ring bracket according to one example attached to the dispenser body in FIG. 1;
  • FIG. 8 schematically shows a top view of an assembled payload dispenser according to one example;
  • FIG. 9 schematically shows a side view of the assembled payload dispenser according to FIG. 8,
  • FIG. 10 schematically shows a top view of an assembled payload dispenser according to one example;
  • FIG. 11 schematically shows a side view of the assembled payload dispenser according to FIG. 10, and wherein;
  • FIG. 12 schematically shows a flow chart of a method.
  • DESCRIPTION OF EXAMPLE EMBODIMENTS
  • Various aspects of the disclosure will hereinafter be described in conjunction with the appended drawings to illustrate and not to limit the disclosure, wherein like designations denote like elements, and variations of the described aspects are not restricted to the specifically shown embodiments, but are applicable on other variations of the disclosure.
  • FIG. 1 schematically shows a perspective view of a dispenser body 1 for a launch vehicle (not shown). The dispenser body 1 is arranged to carry a payload 2 and multiple payload set 3, see FIG. 2, to be dispensed from the launch vehicle at a predetermined point in time. In FIG. 1 the dispenser body 1 has a circular cross-section, but alternatives to this are possible. For example, the dispenser body 1 may have a polygonal cross-section as shown in FIG. 10 or an oval cross-section (not shown) or any other suitable shape. The dispenser unit may be uniform in a longitudinal direction X or may vary in shape in the longitudinal direction X. Here, longitudinal direction X refers to a height direction of the dispenser body 1. The dispenser body is limited in a radial direction R by an envelope surface of the dispenser body 1. Here, the radial direction R is a direction perpendicular to the longitudinal direction X. The dispenser body 1 comprises a through channel 4 in the longitudinal direction X. The dispenser body 1 has an inner surface 5 facing towards the channel 4 and an outer surface 6 facing away from a centre of the dispenser body 1.
  • The dispenser body 1 can be made in one piece, as shown in FIG. 1, or may be made from a number of dispenser body elements 7. The dispenser body elements 7 may be ring formed parts that are stacked onto and attached to each other in the longitudinal direction along laterally extending joints 8, see for example FIG. 11. The dispenser body elements 7 may be panels 9 that are attached to each other along longitudinally extending joints 10 as seen in FIG. 10. The dispenser body 1 may also be built from a combination of ring formed parts and panels, for example as shown in FIGS. 10 and 11 combined.
  • In FIG. 1 a number of rail unit ring brackets 11, shown in FIG. 7, are mounted onto the envelope surface 12 of the dispenser body 1. The rail unit ring brackets 11 comprise through openings 13 for receiving the first attachment means 17, see FIG. 8, on the multiple payload set 3 during attachment of the multiple payload set 3 to the dispenser body 1. The rail unit ring bracket through openings 13 are aligned with openings 14 in the dispenser body for allowing the first attachment means 17 to extend into the channel 4 so that the first attachment means 17 can be secured in position to the dispenser body 1. For example, the first attachment means 17 can be secured in position against the inner surface 5 of the dispenser body 1 via a nut and bolt arrangement. According to another example, the first attachment means 17 can be secured in position to the dispenser body 1 via the rail unit ring brackets 11. According to another example, see for example according to FIG. 10, the multiple payload set 3 can be mounted onto the dispenser body 1 either directly or via adapters.
  • FIG. 2a schematically shows a side view of a number of payloads 2 and a side view of a connection structure 16 before the payloads are connected to the connection structure 16.
  • FIG. 2b schematically shows a side view of a number of payloads 2 connected to the connection structure 16.
  • FIG. 2c schematically shows a front view of FIG. 2b . FIGS. 2a-2c schematically shows a multiple payload set 3 for a launch vehicle. The multiple payload set 3 comprises a plurality of payloads 2. The payloads 2 are interconnected via a non-self-supported connection structure 16 before assembly of the multiple payload set 3 to the dispenser body 1.
  • FIG. 3a schematically shows a back view of a part of the multiple payload set in FIGS. 2a-2c with one payload 2 attached to the connection structure 16.
  • FIG. 3a shows that each payload 2 comprises first attachment means 17 attachable to the connection structure 16. The connection structure comprises second attachment means 18 attachable to a ground support equipment, GSE, 19 before and during attachment of the multiple payload set to the dispenser body 1. The GSE 19 is shown in FIGS. 4, 5 a, 5 b, 6 a and 6 b.
  • The second attachment means 18 are arranged in connection to the first attachment means 17 and the connection structure comprises reinforcement means 15 arranged to mechanically connect the second attachment means 18 to the first attachment means 17 to form a load bearing structure 20. The second attachment means 18 are formed such that the GSE 19 can easily be connected and disconnected. The load bearing structure 20 shall transfer load from the payload 2 to the GSE 19 in order to hold the payload assemblies 3 in place when the GSE 19 is moved horizontally and also tilted vertically with the payload assemblies 3 attached to the GSE 19. The GSE 19 shall be stiff enough to allow for moving the payload assemblies 3 accordingly without compromising the non-self-supported connection structure between the payloads 2.
  • The non-self-supported connection structure 16 may be a tube or the like that can house cables, contacts, attachment means etc. According to one example, the connection structure 16 is a rail structure interconnecting the payloads 2. In the example, the cables connect various applications within and between each multiple payload set. For example, the payload assemblies 3 can be attached to the dispenser body 1 via separation devices, i.e. the first attachment means 17, which separates dependent on a signal from a control unit (not shown). The connection of all separation devices to the control unit allows for timing of the separation of payloads 2. According to one example, there are four separation devices per multiple payload set 3 for symmetry reasons. Hence, each multiple payload set 3 comprises first attachment means 17 for attachment to the dispenser body 1 during attachment of the multiple payload set 3 to the dispenser body 1.
  • According to FIG. 3a the multiple payload set 3 comprises four first attachment means 17, four second attachment means 18 and four reinforcement means 25 for creating the load bearing structure 20. It should be noted that a different number of first attachment means 17, second attachment means 18 and reinforcement means 25 are possible.
  • FIG. 3b schematically shows a side view of the multiple payload set 3 in FIG. 3a . FIG. 3b shows that the second attachment means 18 are made in the form of hooks that can engage the GSE 19. The second attachment means 18 can be arranged in other forms than hooks as long as the second attachment means 18 cooperates with third attachment means 24 of the GSE 19.
  • FIG. 4a schematically shows a side view of two payloads 2 connected to the connection structure 16 according to FIGS. 2b , 2 c, and FIG. 4b schematically shows a front view of a ground support equipment, GSE, 19 before attachment of the multiple payload set 3 to the GSE.
  • FIG. 4c schematically shows a front view of two payload assemblies 3 attached to the ground support equipment, GSE, 19 before attachment of the payload assemblies to the dispenser body 1.
  • FIG. 5a schematically shows a front view of an assembled GSE 19 according to one example. FIG. 5a shows that the GSE 19 comprises two longitudinally extending beams 21 and five laterally extending beams 22. The laterally extending beams 22 give the GSE 19 support and strength to manoeuvre the payload assemblies without compromising the connection structure. The number of laterally extending beams 22 can vary dependent on the design. Should the longitudinally extending beams 21 be formed as a framework of beams, then the number of laterally extending beams 22 can be less. For example, FIG. 6a shows a front view of an assembled GSE 19 according with only two laterally extending beams 22.
  • FIGS. 5a and 6a shows the GSE 19 in an assembled state where the beams (21; 22) form a frame designed to fit and carry the subset of payloads. FIGS. 5b and 6b show a front view of a dis-assembled GSE 19 according to FIGS. 5a and 5b respectively. In the collapsed state the longitudinal beams 21 are designed to fit and be removed between two neighbouring payloads 2 attached to the payload dispenser body 1. FIG. 6b shows that the longitudinal beams 21 comprise beam portions arranged to be attached to each other to form the longitudinal beam 21. The longitudinal beam 21 can be disassembled into the beam portions to allow for easy removal of the portions. FIG. 6b also shows that the lateral beams 22 comprises beam portions for the same purpose. The lateral beams and beam portions may also be arranged to be removed between two adjacent payloads.
  • According to one example, the longitudinally extending beams 21 comprise third attachment means 24 attachable to the second attachment means 18 in the multiple payload set 3. The third attachment means 24 can as an alternative be positioned on the laterally extending beams 22 or a combination of the longitudinally extending beams 21 and the laterally extending beams 22.
  • FIG. 7 schematically shows a rail unit ring bracket 11 according to one example attached to the dispenser body 1 in FIG. 1. The rail unit ring bracket 11 comprises through openings 13 for receiving the first attachment means 17, see FIG. 8, on the multiple payload set 3 during attachment of the multiple payload set 3 to the dispenser body. The rail unit ring bracket through openings 13 are aligned with through openings 14 in the dispenser body 1 for allowing the first attachment means 17 to extend into the channel 4 so that the first attachment means 17 can be secured in position to the dispenser body 1. The rail unit ring bracket 11 comprises an assembly surface 23 arranged to receive the multiple payload set. In FIG. 7, the assembly surface 23 is flat, but other shapes are possible to accommodate and fit against the multiple payload set 3. The multiple payload set 3 may comprise an assembly surface that corresponds in shape to the assembly surface 23 of the rail unit ring bracket 11. In FIG. 7, the through openings 13 for receiving first attachment means 17 are positioned in the assembly surface. According to another example, the through openings 13 for receiving first attachment means 17 are positioned outside the assembly surface 23.
  • According to one example, the rail unit ring bracket 11 surrounds the dispenser body 1 and reinforces the dispenser body 1.
  • FIG. 8 schematically shows a top view of an assembled payload dispenser 15 according to one example including a dispenser body according to FIG. 1 and rail unit ring brackets 11 according to FIG. 7. FIG. 8 shows the first attachment means 17 running through the multiple payload set and the dispenser body 1 attaching the multiple payload set 3 to the dispenser body 1.
  • FIG. 9 schematically shows a side view of the assembled payload dispenser 3 according to FIG. 8.
  • FIG. 10 schematically shows a top view of an assembled payload dispenser 15 according to one example where the dispenser body 1 comprises a plurality of panels 9, wherein at least one panel 9 comprises at least one multiple payload set mounted onto the panel. The panels are attachable to each other forming a self-supporting dispenser.
  • FIG. 11 schematically shows a side view of the assembled payload dispenser 15 according to FIG. 10.
  • FIG. 12 schematically shows a flow chart of a method for assembling a payload dispenser 15 according to what has been discussed in connection to FIGS. 1-11. The method comprises the following steps:
  • Box 121:
      • attaching a plurality of payloads to a non-self-supported connection structure (16) via first attachment means (17) creating a multiple payload set (3);
  • Box 122:
      • attaching a ground support equipment, GSE, (19) to the connection structure (16), the GSE, (19) comprising third attachment means (24) and the connection structure (16) comprising second attachment means (18) comprised in the connection structure (16) being connected to the first attachment means (17) via reinforcement means (25), wherein the third attachment means (24) are attached to the second attachment means (18) when attaching the GSE (19) to the connection structure (16);
  • Box 123:
      • transporting the ground support equipment, GSE, (19) and the attached multiple payload set (3);
  • Box 124:
      • maneuvering the ground support equipment, GSE, (19) and the attached multiple payload set (3) into position with relation to a dispenser body (1);
  • Box 125:
      • attaching the multiple payload set (3) to the dispenser body (1) via the first attachment means (17);
  • Box 126:
      • knocking down the GSE (19) and removing the GSE pieces from the payload dispenser by detachment of the third attachment means (24) from the second attachment means (18).
  • It will be appreciated that the above description is merely exemplary in nature and is not intended to limit the present disclosure, its application or uses.
  • While specific examples have been described in the specification and illustrated in the drawings, it will be understood by those of ordinary skill in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the present disclosure as defined in the claims. Furthermore, modifications may be made to adapt a particular situation or material to the teachings of the present disclosure without departing from the essential scope thereof. Therefore, it is intended that the present disclosure not be limited to the particular examples illustrated by the drawings and described in the specification as the best mode presently contemplated for carrying out the teachings of the present disclosure, but that the scope of the present disclosure will include any embodiments falling within the foregoing description and the appended claims. Reference signs mentioned in the claims should not be seen as limiting the extent of the matter protected by the claims, and their sole function is to make claims easier to understand.
  • REFERENCE SIGNS
    • 1. dispenser body
    • 2. payload
    • 3. multiple payload set
    • 4. channel
    • 5. inner surface of dispenser body
    • 6. outer surface of dispenser body
    • 7. dispenser body elements
    • 8. laterally extending joints
    • 9. panels
    • 10. longitudinally extending joints
    • 11. rail unit ring brackets
    • 12. envelope surface
    • 13. through openings in rail unit ring brackets
    • 14. through openings in dispenser body
    • 15. assembled payload dispenser
    • 16. non-self-supported connection structure
    • 17. first attachment means
    • 18. second attachment means
    • 19. ground support equipment, GSE
    • 20. load bearing structure
    • 21. two longitudinally extending beams
    • 22. laterally extending beams
    • 23. rail unit ring bracket assembly surface
    • 24. third attachment means
    • 25. reinforcement means

Claims (14)

1. A multiple payload set for a launch vehicle, the multiple payload set includes a plurality of payloads, wherein the plurality of payloads are interconnected via a non-self-supported connection structure before assembly of the multiple payload set to a dispenser body, wherein each payload includes first attachment means attachable to the connection structure, wherein the connection structure includes second attachment means attachable to a ground support equipment, GSE, during attachment of the multiple payload set to the dispenser body.
2. A multiple payload set according to claim 1, wherein the connection structure is designed to align the payloads according to a predetermined pattern.
3. A multiple payload set according to claim 1, wherein the second attachment means are arranged in connection to the first attachment means and wherein the connection structure includes reinforcement means arranged to mechanically connect the second attachment means to the first attachment means to form a load bearing structure.
4. A multiple payload set according to claim 1, wherein each payload includes the first attachment means and wherein the connection structure includes a maximum number of second attachment means corresponding to the number of first attachment means.
5. A multiple payload set according to claim 1, wherein the first attachment means are separation devices.
6. A multiple payload set according to claim 1, wherein the connection structure is a rail structure.
7. A payload dispenser comprising a multiple payload set according to claim 1.
8. A payload dispenser according to claim 7, wherein the payload dispenser includes rail unit ring brackets mounted onto an envelope surface of the dispenser body.
9. A payload dispenser according to claim 8, wherein the rail unit ring brackets includes through openings for receiving the first attachment means on the multiple payload set during attachment of the multiple payload set to the dispenser body.
10. A payload dispenser according to claim 7, wherein the dispenser body is formed of one or more ring shaped bodies.
11. A payload dispenser according to claim 7, wherein the dispenser body includes a plurality of panels, wherein at least one panel includes at least one multiple payload set mounted onto the panel, wherein the panels are attachable to each other forming a self-supporting dispenser.
12. Ground support equipment, GSE, for a multiple payload set according to claim 1, wherein the GSE includes at least two longitudinally extending beams and at least two laterally extending beams, wherein in an assembled state the beams form a frame designed to fit to carry the subset of payloads, and wherein in a collapsed state the longitudinal beams and/or the laterally extending beams are designed to fit and be removed between two neighboring payloads attached to the payload dispenser.
13. A GSE according to claim 12, wherein the longitudinally extending beams includes third attachment means attachable to the second attachment means in the multiple payload set.
14. A method for assembling a payload dispenser, the method comprising:
attaching a plurality of payloads to a non-self-supported connection structure via first attachment means creating a multiple payload set;
attaching a ground support equipment, GSE, to the connection structure, the GSE, comprising third attachment means and the connection structure comprising second attachment means comprised in the connection structure being connected to the first attachment means via reinforcement means, wherein the third attachment means are attached to the second attachment means when attaching the GSE to the connection structure;
transporting the ground support equipment, GSE, and the attached multiple payload set;
maneuvering the ground support equipment, GSE, and the attached multiple payload set into position with relation to a dispenser body;
attaching the multiple payload set to the dispenser body via the first attachment means; and
knocking down the GSE and removing the GSE pieces from the payload dispenser by detachment of the third attachment means from the second attachment means.
US16/633,795 2017-07-28 2017-07-28 A multiple payload set and method for assembly Abandoned US20200198812A1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/SE2017/050797 WO2019022655A1 (en) 2017-07-28 2017-07-28 A multiple payload set and method for assembly

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/SE2017/050797 A-371-Of-International WO2019022655A1 (en) 2017-07-28 2017-07-28 A multiple payload set and method for assembly

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/857,464 Continuation US20220332442A1 (en) 2017-07-28 2022-07-05 Assembly comprising a multiple payload set and ground support equipment

Publications (1)

Publication Number Publication Date
US20200198812A1 true US20200198812A1 (en) 2020-06-25

Family

ID=65040696

Family Applications (2)

Application Number Title Priority Date Filing Date
US16/633,795 Abandoned US20200198812A1 (en) 2017-07-28 2017-07-28 A multiple payload set and method for assembly
US17/857,464 Pending US20220332442A1 (en) 2017-07-28 2022-07-05 Assembly comprising a multiple payload set and ground support equipment

Family Applications After (1)

Application Number Title Priority Date Filing Date
US17/857,464 Pending US20220332442A1 (en) 2017-07-28 2022-07-05 Assembly comprising a multiple payload set and ground support equipment

Country Status (3)

Country Link
US (2) US20200198812A1 (en)
EP (1) EP3658464B1 (en)
WO (1) WO2019022655A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220332442A1 (en) * 2017-07-28 2022-10-20 Ruag Space Ab Assembly comprising a multiple payload set and ground support equipment

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113148226B (en) * 2021-03-26 2022-10-25 上海卫星工程研究所 One-rocket multi-satellite launching system with separation device and separation method
EP4079643A1 (en) * 2021-04-23 2022-10-26 RUAG Space AB A separation adapter and method for attaching a payload onto a payload dispenser
CN114044174A (en) * 2021-12-20 2022-02-15 北京微分航宇科技有限公司 Multi-star distributor of beam-slab combined structure

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4932607A (en) * 1988-08-19 1990-06-12 Martin Marietta Corporation Universal erection and processing system for launching a space vehicle
US5411226A (en) * 1993-10-13 1995-05-02 Martin Marietta Corporation Spacecraft adapter and dispenser
FR2717770B1 (en) * 1994-03-22 1996-06-14 Aerospatiale Multisatellite distributor for launcher.
US5720450A (en) * 1995-03-06 1998-02-24 Motorola, Inc. Precision alignment and movement restriction safeguard mechanism for loading multiple satellites into a launch vehicle
US6138951A (en) * 1998-08-10 2000-10-31 Mcdonnell Douglas Corporation Spacecraft dispensing system
FR2809375B1 (en) * 2000-05-25 2002-10-11 Aerospatiale Matra Lanceurs St METHOD AND DEVICE FOR INTEGRATING SATELLITES ON A LAUNCHER
US7900547B2 (en) * 2008-01-17 2011-03-08 The Boeing Company System and method for preparing a launch device
KR20110076159A (en) * 2009-12-29 2011-07-06 한국항공우주연구원 Mechanical ground support equipment for satellite
KR20120138163A (en) * 2011-06-14 2012-12-24 한국항공우주연구원 Fairing horizontal assembly unit
KR101498829B1 (en) * 2013-12-10 2015-03-05 한국항공우주연구원 Manual driving apparatus of multi-purpose trolley and multi-purpose trolley
US9718566B2 (en) * 2015-04-30 2017-08-01 Worldvu Satellites Limited Stackable satellites and method of stacking same
US9463882B1 (en) * 2015-04-30 2016-10-11 Worldvu Satellites Limited System and method for assembling and deploying satellites
US10486837B2 (en) * 2015-06-22 2019-11-26 Worldvu Satellites Limited Payload dispensing system
US9796488B2 (en) * 2015-10-02 2017-10-24 The Boeing Company Dual port payload attach ring compatible satellite
US11208218B2 (en) * 2016-05-06 2021-12-28 Xtenti, LLC Modular and configurable spacecraft attachment and deployment assemblies
KR101880579B1 (en) * 2016-10-24 2018-07-20 한국항공우주연구원 Payload mounting apparatus
US10538348B2 (en) * 2016-12-19 2020-01-21 Vector Launch Inc. Triggered satellite deployment mechanism
US10604280B2 (en) * 2017-03-03 2020-03-31 U.S.A. As Represented By The Administrator Of The National Aeronautics And Space Administration Capsulation satellite system
US10633123B2 (en) * 2017-04-05 2020-04-28 Space Systems/Loral, Llc Exoskeletal launch support structure
WO2018208193A1 (en) * 2017-05-10 2018-11-15 Ruag Space Ab Payload dispenser
EP3658464B1 (en) * 2017-07-28 2024-02-14 Beyond Gravity Sweden AB A multiple payload set and method for assembly

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220332442A1 (en) * 2017-07-28 2022-10-20 Ruag Space Ab Assembly comprising a multiple payload set and ground support equipment

Also Published As

Publication number Publication date
EP3658464B1 (en) 2024-02-14
EP3658464A1 (en) 2020-06-03
WO2019022655A1 (en) 2019-01-31
EP3658464A4 (en) 2021-06-02
US20220332442A1 (en) 2022-10-20

Similar Documents

Publication Publication Date Title
US20220332442A1 (en) Assembly comprising a multiple payload set and ground support equipment
JP6448855B2 (en) A spacecraft with pillars for forming a stack, a stack with at least two such spacecraft installed in a launcher, and a method for lowering a spacecraft
JP7145975B2 (en) Efficient satellite architecture concepts for single or stacked multiple launches
US7874516B2 (en) Structural frame for an aircraft fuselage
CN110525688B (en) On-orbit reconfigurable extensible satellite system
US10486837B2 (en) Payload dispensing system
US8468674B2 (en) Device and method for supplying structural components to an assembly zone
US8904736B2 (en) Vehicle and mast mounting assembly therefor
RU2469918C2 (en) Aircraft one-piece engine mount assembly and lengthwise lift beam
JP2018514441A (en) Stackable satellite and method of stacking stackable satellites
CN113464371B (en) Method and tool for assembling tower elements
US20160288931A1 (en) Satellite frame and method of making a satellite
US20170005400A1 (en) Pre-assembled cell site sector
US20180334827A1 (en) Non-disruptive reinforcement of telecommunications towers
CN109050989B (en) Double-star point type adapter
CN107336847B (en) Satellite control moment gyro group mounting structure
CN104648694B (en) Torsion spring driven moonlet borne expandable plane structure and mounting method thereof
AU2020447274A1 (en) Tool for securing and turning over for assembling photovoltaic solar tracker sections, system and associated assembly method
US20180002145A1 (en) Installation and support method including a tower crane for supporting a high-voltage line electric cable
CN218617222U (en) Single-star connecting ring and single-star connecting device
CN216660318U (en) Load releasing mechanism for modular conveyor
CN212022963U (en) Undercarriage mounting structure and unmanned aerial vehicle
US11858667B1 (en) Satellite dispenser
US20220259862A1 (en) Foldable truss structure, in particular for solar tracker
CN116835004A (en) Super-large-span solar unmanned aerial vehicle temporary air drop system

Legal Events

Date Code Title Description
AS Assignment

Owner name: RUAG SPACE AB, SWEDEN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:THENANDER, MAGNUS;OEHLIN, JOHAN;REEL/FRAME:051609/0615

Effective date: 20200117

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION