US20200187978A1 - Alternative use for Hydrogel Intrasaccular Occlusion Device with Vertically Oriented Reinforcement Members for Structural Support - Google Patents
Alternative use for Hydrogel Intrasaccular Occlusion Device with Vertically Oriented Reinforcement Members for Structural Support Download PDFInfo
- Publication number
- US20200187978A1 US20200187978A1 US16/783,000 US202016783000A US2020187978A1 US 20200187978 A1 US20200187978 A1 US 20200187978A1 US 202016783000 A US202016783000 A US 202016783000A US 2020187978 A1 US2020187978 A1 US 2020187978A1
- Authority
- US
- United States
- Prior art keywords
- hydrogel
- aneurysm
- treatment
- mesh
- vertically oriented
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/32—Surgical cutting instruments
- A61B17/3205—Excision instruments
- A61B17/3207—Atherectomy devices working by cutting or abrading; Similar devices specially adapted for non-vascular obstructions
- A61B17/320758—Atherectomy devices working by cutting or abrading; Similar devices specially adapted for non-vascular obstructions with a rotating cutting instrument, e.g. motor driven
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/12—Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
- A61B17/12022—Occluding by internal devices, e.g. balloons or releasable wires
- A61B17/12027—Type of occlusion
- A61B17/12031—Type of occlusion complete occlusion
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/12—Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
- A61B17/12022—Occluding by internal devices, e.g. balloons or releasable wires
- A61B17/12099—Occluding by internal devices, e.g. balloons or releasable wires characterised by the location of the occluder
- A61B17/12109—Occluding by internal devices, e.g. balloons or releasable wires characterised by the location of the occluder in a blood vessel
- A61B17/12113—Occluding by internal devices, e.g. balloons or releasable wires characterised by the location of the occluder in a blood vessel within an aneurysm
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/12—Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
- A61B17/12022—Occluding by internal devices, e.g. balloons or releasable wires
- A61B17/12099—Occluding by internal devices, e.g. balloons or releasable wires characterised by the location of the occluder
- A61B17/12122—Occluding by internal devices, e.g. balloons or releasable wires characterised by the location of the occluder within the heart
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/12—Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
- A61B17/12022—Occluding by internal devices, e.g. balloons or releasable wires
- A61B17/12131—Occluding by internal devices, e.g. balloons or releasable wires characterised by the type of occluding device
- A61B17/1214—Coils or wires
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/12—Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
- A61B17/12022—Occluding by internal devices, e.g. balloons or releasable wires
- A61B17/12131—Occluding by internal devices, e.g. balloons or releasable wires characterised by the type of occluding device
- A61B17/12168—Occluding by internal devices, e.g. balloons or releasable wires characterised by the type of occluding device having a mesh structure
- A61B17/12172—Occluding by internal devices, e.g. balloons or releasable wires characterised by the type of occluding device having a mesh structure having a pre-set deployed three-dimensional shape
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/12—Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
- A61B17/12022—Occluding by internal devices, e.g. balloons or releasable wires
- A61B17/12131—Occluding by internal devices, e.g. balloons or releasable wires characterised by the type of occluding device
- A61B17/12168—Occluding by internal devices, e.g. balloons or releasable wires characterised by the type of occluding device having a mesh structure
- A61B17/12177—Occluding by internal devices, e.g. balloons or releasable wires characterised by the type of occluding device having a mesh structure comprising additional materials, e.g. thrombogenic, having filaments, having fibers or being coated
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/12—Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
- A61B17/12022—Occluding by internal devices, e.g. balloons or releasable wires
- A61B17/12131—Occluding by internal devices, e.g. balloons or releasable wires characterised by the type of occluding device
- A61B17/12181—Occluding by internal devices, e.g. balloons or releasable wires characterised by the type of occluding device formed by fluidized, gelatinous or cellular remodelable materials, e.g. embolic liquids, foams or extracellular matrices
- A61B17/1219—Occluding by internal devices, e.g. balloons or releasable wires characterised by the type of occluding device formed by fluidized, gelatinous or cellular remodelable materials, e.g. embolic liquids, foams or extracellular matrices expandable in contact with liquids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/82—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/852—Two or more distinct overlapping stents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/82—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/86—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
- A61F2/90—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
- A61F2/91—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L29/00—Materials for catheters, medical tubing, cannulae, or endoscopes or for coating catheters
- A61L29/14—Materials characterised by their function or physical properties, e.g. lubricating compositions
- A61L29/145—Hydrogels or hydrocolloids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L31/00—Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
- A61L31/02—Inorganic materials
- A61L31/022—Metals or alloys
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L31/00—Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
- A61L31/04—Macromolecular materials
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L31/00—Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
- A61L31/08—Materials for coatings
- A61L31/10—Macromolecular materials
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L31/00—Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
- A61L31/12—Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
- A61L31/125—Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L31/00—Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
- A61L31/14—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L31/00—Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
- A61L31/14—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
- A61L31/145—Hydrogels or hydrocolloids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L31/00—Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
- A61L31/14—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
- A61L31/146—Porous materials, e.g. foams or sponges
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L31/00—Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
- A61L31/14—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
- A61L31/16—Biologically active materials, e.g. therapeutic substances
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/22—Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
- A61B17/22031—Gripping instruments, e.g. forceps, for removing or smashing calculi
- A61B17/22032—Gripping instruments, e.g. forceps, for removing or smashing calculi having inflatable gripping elements
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B2017/00477—Coupling
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B2017/00831—Material properties
- A61B2017/00867—Material properties shape memory effect
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B2017/00831—Material properties
- A61B2017/00893—Material properties pharmaceutically effective
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B2017/00831—Material properties
- A61B2017/00898—Material properties expandable upon contact with fluid
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/12—Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
- A61B17/12022—Occluding by internal devices, e.g. balloons or releasable wires
- A61B2017/1205—Introduction devices
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/12—Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
- A61B17/12022—Occluding by internal devices, e.g. balloons or releasable wires
- A61B2017/1205—Introduction devices
- A61B2017/12054—Details concerning the detachment of the occluding device from the introduction device
- A61B2017/1209—Details concerning the detachment of the occluding device from the introduction device detachable by electrical current or potential, e.g. electroactive polymer
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/32—Surgical cutting instruments
- A61B17/3205—Excision instruments
- A61B17/3207—Atherectomy devices working by cutting or abrading; Similar devices specially adapted for non-vascular obstructions
- A61B2017/320716—Atherectomy devices working by cutting or abrading; Similar devices specially adapted for non-vascular obstructions comprising means for preventing embolism by dislodged material
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/10—Computer-aided planning, simulation or modelling of surgical operations
- A61B2034/101—Computer-aided simulation of surgical operations
- A61B2034/105—Modelling of the patient, e.g. for ligaments or bones
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/20—Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
- A61B2034/2046—Tracking techniques
- A61B2034/2048—Tracking techniques using an accelerometer or inertia sensor
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/20—Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
- A61B2034/2046—Tracking techniques
- A61B2034/2051—Electromagnetic tracking systems
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/20—Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
- A61B2034/2046—Tracking techniques
- A61B2034/2061—Tracking techniques using shape-sensors, e.g. fiber shape sensors with Bragg gratings
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/39—Markers, e.g. radio-opaque or breast lesions markers
- A61B2090/3966—Radiopaque markers visible in an X-ray image
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B2217/00—General characteristics of surgical instruments
- A61B2217/002—Auxiliary appliance
- A61B2217/005—Auxiliary appliance with suction drainage system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B2217/00—General characteristics of surgical instruments
- A61B2217/002—Auxiliary appliance
- A61B2217/007—Auxiliary appliance with irrigation system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/82—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/86—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
- A61F2/90—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/82—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2002/823—Stents, different from stent-grafts, adapted to cover an aneurysm
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/82—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2002/826—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents more than one stent being applied sequentially
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2210/00—Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2210/0076—Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof multilayered, e.g. laminated structures
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2220/00—Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2220/0025—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
- A61F2220/0033—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements made by longitudinally pushing a protrusion into a complementary-shaped recess, e.g. held by friction fit
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2250/00—Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2250/0058—Additional features; Implant or prostheses properties not otherwise provided for
- A61F2250/006—Additional features; Implant or prostheses properties not otherwise provided for modular
- A61F2250/0063—Nested prosthetic parts
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2430/00—Materials or treatment for tissue regeneration
- A61L2430/06—Materials or treatment for tissue regeneration for cartilage reconstruction, e.g. meniscus
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L29/00—Materials for catheters, medical tubing, cannulae, or endoscopes or for coating catheters
- A61L29/14—Materials characterised by their function or physical properties, e.g. lubricating compositions
- A61L29/16—Biologically active materials, e.g. therapeutic substances
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M25/00—Catheters; Hollow probes
- A61M25/0043—Catheters; Hollow probes characterised by structural features
- A61M2025/0057—Catheters delivering medicament other than through a conventional lumen, e.g. porous walls or hydrogel coatings
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2210/00—Anatomical parts of the body
- A61M2210/12—Blood circulatory system
- A61M2210/125—Heart
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M25/00—Catheters; Hollow probes
- A61M25/10—Balloon catheters
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M37/00—Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
Definitions
- the present disclosure relates to the field of endovascular treatment. More particularly, the present invention uses a modified hydrogel intrasaccular occlusion device tool designed to implement an endovascular treatment to facilitate aneurysm treatment while ameliorating or eliminating aneurysm recurrence.
- the present invention is a device for use with an intrasaccular occlusion tool to safely and effectively implement an endovascular treatment of aneurysms while ameliorating or eliminating aneurysm recurrence.
- the prior art includes endovascular devices have provided high density, mesh-like metallic materials across the aneurysm neck, in place of coil technology. It has also taught in vivo preclinical performance of a self-expanding intrasaccular embolization devices (see Preliminary Results of the Luna Aneurysm Embolization System in a Rabbit Model: A New Intrasaccular Aneurysm Occlusion Device by S. C. Kwon in the American Journal of Neuroradiology A.1NR 201 1 32: 602-606).
- the Woven EndoBridge is a novel device for the treatment of wide-necked intracranial bifurcation aneurysms.
- WEB Woven EndoBridge
- WO2011/057002 A2 filed Nov. 4, 2010, published May 12, 2011 Sequent Medical Inc. Multiple layer filamentary devices or treatment of vascular defects.
- the two most frequent ways that web devices fail and thereby result in an aneurysm recur are (1) web device collapse and/or compression and (2) distal migration of the web device into the aneurysm. Additionally, in a ruptured aneurysms there is concern the aneurysm does not close and/or thrombose quickly enough with web devices which has sometimes resulted in recurrent aneurysm rupture after treatment.
- the present invention is an alternative use for hydrogel intrasaccular occlusion devices is capable of ameliorating said two most frequent web device failure.
- LAA left atrial appendage
- the Watchman device is generally associated with high cost, with a U.S. list price of $23,500 for each device, and $1,500 for each delivery system.
- the larger the hole the more risk of complication. Said risk includes the risk of stroke associated with atrial fibrillation.
- the present invention offers a method of serving the same purpose as a Watchman but with a dramatically smaller hole.
- Endovascular surgery is a minimally invasive procedure used to treat problems affecting the blood vessels, such as an aneurysm, which is a swelling or “ballooning” of the blood vessel.
- the surgery typically involves making a small incision near each hip to access the blood vessels.
- Endovascular procedures may result in endo-leaks.
- Said endo-leaks typically involve continued flow of blood outside a covered stent. Unwanted Flow is maintained between the outside of the covered stent and the vessel wall, including the aneurysm sac and/or a fistula, if those are the pathology being covered/treated, respectively. This results in continued filling of the pathology that was treated, with continued associated risk to the patient.
- These endo-leaks occur most often from one of two causes (+/ ⁇ combination of the two): 1. there can be poor apposition of the wall of the covered stent to the vessel wall, most often at the ends of the stent, especially the proximal end (the end from which blood flow comes).
- aneurysm crosses multiple vessel branches, and so when a covered stent is used to treat the aneurysm, these branches are covered. Often some of these branches will start to flow retrograde, and the aneurysm sac can continue to fill—it can even continue to expand and/or rupture
- Endo-leaks can be caused by many factors. Some, such as incorrectly sized stents, can be corrected. Others, such as irregular vessels, branches feeding behind the covered stent (as above), and bends in the vessel at the ideal stent landing zone, often cannot be easily ameliorated.
- the outside of the covered stent can be lined with an adhered hydrogel that once implanted will expand to fill any potential spaces between the vessel wall and the material of the covered stent, thus closing any potential persistent channels outside the stent.
- a second possible solution to eliminate or ameliorate endo-leaks may be implemented as follows: the outside of the covered stent can be lined with an adhered hydrogel that once implanted will expand to fill any potential spaces between the vessel wall and/or the wall of the aneurysm sac said stent is treating, and the material of the covered stent, thus closing the aneurysm sac and preventing further flow into it.
- a third possible solution to eliminate or ameliorate endo-leaks may be implemented as follows: combining the two-implementation noted above.
- Stents and other endovascular devices have issues in that they are thrombogenic when they are first inserted, until they are incorporated into the vessel/endothelialized, or in some cases such as mechanical cardiac valves, forever. This results in significant rates of thrombotic complications, including thrombosed vessels resulting in stroke, myocardial infarction, or other ischemic complications. In order to minimize such risks patients are routinely started on antiplatelet therapy, often dual antiplatelet therapy with agents such as Plavix or Brilinta, and aspirin. In addition, other endovascular devices, particularly those implanted in the heart such as mechanical heart valves, tend to cause a different type of clot that necessitates the use of anticoagulants to protect against clot formation.
- stent and other foreign body devices when implanted in the body cause a local tissue reaction that can result in local tissue overgrowth. This can result in the development of in-stent stenosis or other issues with scarring. Hydrogel is more inert, and would reduce such tissue reaction, if the hydrogel instead was in contact with the local tissue.
- the present invention teaches placing a thin coating of hydrogel on the entire surface of any endovascular device exposed to the inner surface of the blood vessel and/or blood products.
- the present invention also teaches placing a thin layer (one (1) nanometer to one (1) centimeter) of hydrogel over a portion of such a device as well. Do so will reduce but not completely eliminate the risk of thrombus formation. By completely covering these devices with the thin layer of hydrogel a significantly reduce the rate of thrombus formation may be achieved. This will also reduce the need for anti-platelet and or anticoagulant.
- the hydrogel can also simultaneously fill any spaces between said stent and the vessel wall, reducing the incidence of endo-leaks, while also helping secure the stent in place, reducing the incidence of stent migration.
- a gel is a solid jelly-like material that can have properties ranging from soft and weak to hard.
- a hydrogel is a network of polymer chains that are hydrophilic, sometimes found as a colloidal gel in which water is the dispersion medium. These may be woven and/or adhered the metal structures as well.
- hydrogel has been shown to offers relief from pain for hours after application.
- the expansion of the hydrogel after it is implant into the body may increase the coverage of a metal mesh implanted and thereby decrease permeability of blood into the aneurysm, promoting faster thrombosis and healing of the aneurysm.
- Hydrogel dressings consist of 90 percent water in a gel base, and serves to help monitor fluid exchange from within the wound surface.
- the application of hydrogel assists in protecting areas adversely affected during endovascular treatments from wound infection and promotes efficient healing.
- Hydrogel dressings generally come in three different forms (which constitute various release mechanisms), including: amorphous hydrogel: a free-flowing gel, distributed in tubes, foil packets and spray bottles; impregnated hydrogel: typically saturated onto a gauze pad, nonwoven sponge ropes and/or strips; and sheet hydrogel: a combination of gel held together by a thin fiber mesh.
- the present disclosure relates to the field of endovascular treatment. More particularly, the present invention modifies a hydrogel intrasaccular occlusion device such as disclosed in provisional patent application Ser. No. 62/497,851, by providing expanded hydrogel extends outside the device on the sides of the device, and inside the device. Such modifications are designed to implement an endovascular treatment to ameliorating or eliminating aneurysm recurrence.
- the existing hydrogel intrasaccular occlusion device tool such as disclosed in provisional patent application Ser. No. 62/497,851 envisions adding a hydrogel to a mesh-like saccular aneurysm embolization device, such as the Sequent Web, the Luna Aneurysm Embolization system or similar devices or systems.
- the hydrogel expands and further decreases the permeability of the device to blood. This can facilitate more immediate thrombosis of the aneurysm, resulting in more immediate reduction in the risk of the aneurysm rupturing.
- the present invention can be used to close an LAA. It has specific advantages when compared to the Watchman device.
- Watchman is delivered through a “transseptal” approach, coming from the femoral vein, into R atrium of heart, and across the atrial septum (a hole needs to be made) and into the left atrium, from where the left atrial appendage is then accessed.
- the current Watchman is delivered through a 14Fr system. So compared to the present invention, a much larger hole in the femoral vein, with corresponding increased risk of bleeding complications and/or vessel injury must be made.
- the present invention can be delivered through systems smaller than 4Fr (sometimes as small as 2.1Fr; but probably not that small for the 21-33 mm wide device needed in the left atrial appendage).
- the current invention can be delivered in appropriate sizes through systems from 2Fr to 11 Fr.
- the present invention is capable of larger webs that can easily be delivered through catheters considerably smaller than the current 14Fr Watchman. This will allow the current invention to be more effective in eliminating or ameliorating blood clots from entering the bloodstream and potentially causing a stroke.
- the present invention uses a device designed to facilitate endovascular treatment by adding hydrogel along the metal struts/web of the device and using it to prevent episodes of distal migration due to addition of hydrogel. This is achieved by providing expanded hydrogel extends outside the device on the sides of the device. Said extensions will help “grip” the aneurysm walls and minimize the incidence of migration. Additionally, said extensions to help speed thrombosis and minimize risk of collapse, the center open space within the web can have added strands and/or struts and/or bars of hydrogel. Said extensions can be oriented vertically for added support, to further minimize the risk of device collapse.
- the present invention in all embodiments will be partially or fully covered by a thin coating of hydrogel.
- Said coating acts as both a medication delivery system and a barrier to reduce the thrombogenicity of the stent, reducing thrombotic complications, and reducing the need for antiplatelets (with their associated potential hemorrhagic complications—especially in patients with a recent bleed in their brain).
- the present invention teaches the affixation of at least one hydrogel layer that expands in vivo to any or all surfaces of a mesh intrasaccular device made of at least one material adapted to close an outpouching in the body such as an aneurysm, the left atrial appendage, or diverticulae of other organs.
- hydrogel coating will be in a non-hydrated state and will expand in use, upon exposure to bodily fluid.
- the current device may be used to treat both venous and arterial aneurysms. It may be used in the brain, the peripheral vasculature, and the arterial vasculature.
- FIG. 1 showing at distal end of wire ( 12 ) deployed device ( 10 ) designed to implement an endovascular treatment mesh ( 20 ) at treatment site with hydrogel coating ( 22 ).
- FIG. 2 showing at distal end of wire ( 12 ) showing un-deployed device designed to implement an endovascular treatment mesh ( 20 ) with hydrogel coating ( 22 ).
- FIG. 3 showing at distal end of wire ( 12 ) deployed device designed to implement an endovascular treatment mesh ( 20 ) with hydrogel coating ( 22 ), further including vertically oriented elements ( 50 ) of reinforced mesh.
- hydrogel coating ( 22 ) depicted as mis-formed circles or beads in the foregoing figures is representative only, and the mis-formed circles shown are not drawn to scale. Nor is the hydrogel coating ( 22 ) that completely covers an entire device or delivery system shown.
- the present disclosure teaches the placement of amorphous hydrogel ( 22 ) within or coating surfaces of intrasaccular occlusion devices, which are delivered proximally to target vessels using wire delivery systems ( 12 ).
- Said intrasaccular occlusion devices are typically housed in intrasaccular tools during the transport process.
- Said amorphous hydrogel ( 22 ) is adhered to select surfaces of said device ( 20 ) designed to implement an endovascular treatment and is contained by said device designed to implement an endovascular treatment.
- said amorphous hydrogel ( 22 ) is adhered to select surfaces of said device ( 20 ) designed to implement an endovascular treatment or is contained by said device designed to implement an endovascular treatment.
- the metal mesh device ( 2 ) such as the Sequent Web or Luna Aneurysm Embolization system or similar system is deployed in the body
- the exposure of the adhered added hydrogel with the device to the blood and temperature in the body causes it to expand further, decreasing the permeability of the device to blood and promoting more immediate thrombosis of the aneurysm or other vascular outpouching, which results in more immediate decrease in the risk of the aneurysm rupturing or clots forming and embolizing.
- the present invention uses a device designed to facilitate endovascular treatment by coating hydrogel along the metal struts/web of the device and uses it to prevent episodes of distal migration due to addition of hydrogel. This is achieved by providing expanded hydrogel extends outside the device on the sides of the device. Said extensions will help “grip” the aneurysm walls and minimize the incidence of migration. Additionally, said extensions help speed thrombosis and minimize risk of collapse.
- the center open space within the web can have added strands and/or struts and/or bars of hydrogel as well. Said extensions can be oriented vertically for added support. Said extensions can be oriented in either direction as well.
- said extensions which may be made of hydrogel coated metal, metal alloys, or plastic, or other stiff material. All said reinforced elements may be further enhanced by the addition of additional hydrogel proximal to said reinforcement elements.
- the present invention can be used with hydrogel.
- Each embodiment may be used to treat brain aneurysms, and heart ailments.
- the preferred embodiment would include substantially parallel, vertically oriented elongated support extensions and reinforcements attached or woven into the treatment mesh.
- said vertically oriented support extensions and reinforcements may be attached to or imbedded into the inside of the treatment mesh, outside of the treatment mesh, or both inside and outside of the treatment mesh.
- said substantially parallel vertically oriented support extensions and reinforcements would curve to conform to the shape of said treatment mesh.
- the array of distal ends of said substantially parallel vertically oriented support extensions and reinforcements are substantially oriented upon a plane. Said plane is has substantially the same orientation as the opening of the aneurysm into which the device was deployed.
- Said vertically oriented support extensions and reinforcements may be attached or joined to said treatment mesh via ties, spot welds, pocket enclosures, biocompatible adhesive, or any other technique known in the art for affixing elements of surgical implant devices.
- All of the above extensions may be added with a hydrogel coating on all parts. All of the above extensions may be added with a hydrogel coating on some parts. In some embodiments all of the above extensions may be added without a hydrogel coating on some parts. In some embodiments any of the above extensions may be added without any hydrogel coating at all.
- All of the above extensions may be covered in a thin coating of hydrogel on the entire surface of any endovascular device exposed to the inner surface of the blood vessel and/or blood products, by placing a thin layer of hydrogen over a portion of such a device as well.
- all surfaces of the present invention and devices which deploy the present invention would be cover with a thin layer of hydrogel and thereby covering all metals, and/or plastics, and/or polyesters, and/or Dacron surfaces.
- a thin coating of hydrogel is placed on all surfaces, including the surface pressing on the vessel wall, it will reduce the rate of intimal hyperplasia caused by the vessel reacting to the foreign body.
- intimal hyperplasia causes vessel narrowing and/or occlusions, which in turn causes sub-optimal outcomes, including in some case the death of the patent.
- a thin coating of hydrogel is placed on all surfaces of all devices which deliver the claim 1 devices (an extension element for an intrasaccular occlusion tool designed to ameliorating aneurysm recurrences by deploying an amorphous hydrogel), then said hydrogel may be use to both prevent blood metal thrombosis and as a delivery mechanism for medications, which can be immediate release or controlled sustained slow release (embedded in stents or other devices).
- hydrogel lining to nonvascular stents may also reduce rates of in stent stenosis; and may help anchor the stent in place and prevent stent migration.
- coatings in addition to a thin coating of hydrogel are added to said thin coating of hydrogel.
- Said additional coating additives embed said thin coating of hydrogel with compounds for local delivery, short release or sustained release.
- said additional coating include chemotherapy compounds in said thin coating of hydrogel.
- Said chemotherapy compounds embedded a device may be use in the carotid artery for a brain tumor in that vascular distribution, or in Right renal artery for a right kidney tumor, or in right pulmonary artery for a right lung mass: this could allow sustained delivery locally, while minimizing the systemic dose and associated side effects.
- Said hydrogel thin coating may be impregnated with pharmaceutical compounds.
- Said compounds may include, but are not limited to nimodipine, verapamil, Cardene, nitroglycerin, and nitroprusside. Said compounds may be formulated for immediate release or controlled sustained slow release.
- the said thin coating of hydrogel might include a vasodilator compound that slowly releases over 3 weeks can be embedded in a stent for placement in the common or internal carotid arteries on both sides, including the placement in one or both vertebral arteries.
- vasodilators that can be embedded include nimodipine, verapamil, Cardene, nitroglycerin, and nitroprusside.
- An embodiment of treatment mesh ( 20 ) is substantially spherical or circumferential upon deployment.
- a preferred embodiment of treatment mesh ( 20 ) is designed to be implemented at a treatment site with a hydrogel coating ( 22 ).
- Deployed device ( 10 ) is distally attached to a delivery system which may be as simple as a wire ( 12 ) but may be an intravascular tool (not shown) such as a nonvascular stent. In the preferred embodiment, such delivery tools would also be coated with a thin coating of hydrogel ( 22 ), preferably having a thickness of one nanometer to one centimeter.
- Said thickness is determined by the internal diameter of the target area, and the outer dimension of treatment mesh ( 20 ).
- FIG. 2 depicts the same treatment mesh ( 20 ) prior to deployment, as well as wire ( 12 ).
- the coating must be sufficiently thin so that the un-hydrated hydrogel ( 22 ) will allow treatment mesh ( 20 ) to proceed proximally to the target area in an undeployed state. For example, if the internal target area of the vessel has a diameter of 1.1 cm, and the largest dimension of the undeployed mesh ( 20 ) is one centimeter, then the preferred thickness of the hydrogel ( 22 ) coating for this situation is 0.1 cm.
- FIG. 3 also shows the non-spherical embodiment of treatment mesh ( 20 ) of the current invention, having hydrogel coating ( 22 ), and further including vertically oriented reinforcement members ( 50 ). In the preferred embodiment, all elements including reinforcement member ( 50 ) and wire ( 12 ) are coated with hydrogel ( 22 ).
- wire ( 12 ) may be included with or substituted by another endovascular delivery device (not shown) which, in the preferred embodiments, are also coated with hydrogel ( 22 ) in a thickness adapted to the size of the vasculature.
- amorphous hydrogel is deployed upon an intrasaccular occlusion device as follows:
- the present invention can alternatively be used by embedding or impregnating pharmaceutical compounds medications in a stent for local delivery, short release or sustained release using permanent nondegradable hydrogel or biodegradable hydrogel.
- the following are nonlimiting embodiments.
- vasodilator that slowly releases over time can be embedded in a stent for placement in the common or internal carotid arteries on both sides, +/ ⁇ placement in one or both vertebral arteries.
- vasodilators that can be embedded include nimodipine, verapamil, Cardene, nitroglycerin, and nitroprusside.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Vascular Medicine (AREA)
- Heart & Thoracic Surgery (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Epidemiology (AREA)
- Molecular Biology (AREA)
- Medical Informatics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Reproductive Health (AREA)
- Chemical & Material Sciences (AREA)
- Dispersion Chemistry (AREA)
- Cardiology (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Transplantation (AREA)
- Neurosurgery (AREA)
- Medicinal Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Composite Materials (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Surgical Instruments (AREA)
- Prostheses (AREA)
Abstract
Description
- This continuation-in-part application claiming priority to U.S. utility application Ser. No. 15/932,399, which claims priority to provisional patent application Ser. No. 62/497,851 filed Dec. 5, 2016 (5 Dec. 2016) for a “Hydrogel Intrasaccular Occlusion Device” (Walzman) and to non-provisional patent application Ser. No. 15/732,365 filed Oct. 30, 2017 (30 Oct. 2017) for an “Alternate use for Hydrogel Intrasaccular Occlusion Device”.
- None
- The present disclosure relates to the field of endovascular treatment. More particularly, the present invention uses a modified hydrogel intrasaccular occlusion device tool designed to implement an endovascular treatment to facilitate aneurysm treatment while ameliorating or eliminating aneurysm recurrence.
- The present invention is a device for use with an intrasaccular occlusion tool to safely and effectively implement an endovascular treatment of aneurysms while ameliorating or eliminating aneurysm recurrence. The prior art includes endovascular devices have provided high density, mesh-like metallic materials across the aneurysm neck, in place of coil technology. It has also taught in vivo preclinical performance of a self-expanding intrasaccular embolization devices (see Preliminary Results of the Luna Aneurysm Embolization System in a Rabbit Model: A New Intrasaccular Aneurysm Occlusion Device by S. C. Kwon in the American Journal of Neuroradiology A.1NR 201 1 32: 602-606). While the devices identified in the prior art achieved high rates of complete angiographic occlusion, medical difficulties still arose due to inadvertent and/or unintended fluid exchange at and for near the site where the devices noted in the prior art were used. Recent data has shown the web devices have been associated with a very high rate of aneurysm recurrence, as high as 20 to 60 percent.
- For example, the Woven EndoBridge (WEB) is a novel device for the treatment of wide-necked intracranial bifurcation aneurysms. As reported by Clajus in J Neurolntervent Surg (doi:10.1136/neurintsurg-2016-012276) in an article titled “Initial and mid-term results from 108 consecutive patients with cerebral aneurysms treated with the WEB device” the value of webbing generally and WEB in particular, was demonstrated when reporting ‘real-world experience’ in the use of all iterations of WEB devices (available in Europe) in ruptured and unruptured aneurysms.
- Other references of note include:
- U.S. Pat. No. 3,874,388, filed Feb. 12, 1973, published Apr. 1, 1975 Ochsner Med Found Alton Shunt defect closure system;
- U.S. Pat. No. 4,282,875, filed Jan. 24, 1979, published Aug. 11, 1981 Serbinenko Fedor A. Occlusive device;
- U.S. Pat. No. 4,346,712, filed Feb. 13, 1980, published Aug. 31, 1982 Kuraray Company, Ltd. Releasable balloon catheter;
- U.S. Pat. No. 4,402,319, filed Dec. 30, 1981, published Sep. 6, 1983 Kuraray Co., Ltd. Releasable balloon catheter
- U.S. Pat. No. 4,619,246, filed May 20, 1985, published Oct. 28, 1986 William Cook, Europe A/S Collapsible filter basket;
- U.S. Pat. No. 4,675,361, filed Jun. 24, 1983, published Jun. 23, 1987 Thoratec Laboratories Corp. Polymer systems suitable for blood-contacting surfaces of a biomedical device, and methods for forming;
- U.S. Pat. No. 5,165,421, filed Jul. 20, 1990, published Nov. 24, 1992 Lake Region Manufacturing Co., Inc. Hollow lumen cable apparatus;
- U.S. Pat. No. 5,263,963, filed Apr. 8, 1991, published Nov. 23, 1993 Advanced Cardiovascular Systems, Inc. Expandable cage catheter for repairing a damaged blood vessel;
- U.S. Pat. No. 5,334,210, filed Apr. 9, 1993, published Aug. 2, 1994 Cook Incorporated Vascular occlusion assembly;
- U.S. Pat. No. 5,733,294, filed Feb. 28, 1996, published Mar. 31, 1998 B. Braun Medical, Inc. Self-expanding cardiovascular occlusion device, method of using and method of making the same;
- U.S. Pat. No. 5,907,893, filed Jan. 31, 1997, published Jun. 1, 1999 Medtronic, Inc. Methods for the manufacture of radially expansible stents;
- U.S. Pat. No. 6,221,086, filed May 18, 1999, published Apr. 24, 2001 B. Braun Medical Sas Covered self-expanding vascular occlusion device;
- U.S. Pat. No. 6,375,670, filed Aug. 25, 2000, published Apr. 23, 2002 Prodesco, Inc. Intraluminal filter;
- U.S. Pat. No. 6,605,102, filed Nov. 12, 1996, published Aug. 12, 2003 Ev3, Inc. Intravascular trap and method of trapping particles in bodily fluids;
- U.S. Pat. No. 7,575,582, filed May 16, 2006, published Aug. 18, 2009 Micrus Corporation Apparatus for deployment of micro-coil using a catheter;
- US2008/0033341, filed Aug. 6, 2007, published Feb. 7, 2008 Bay Holdings Ltd. Methods and devices for reducing or blocking blood flow to a selected blood vessel or part thereof;
- US2010/0069948, filed Sep. 11, 2009, published Mar. 18, 2010 Micrus Endovascular Corporation Self-expandable aneurysm filling device, system and method of placement; and
- WO2011/057002 A2, filed Nov. 4, 2010, published May 12, 2011 Sequent Medical Inc. Multiple layer filamentary devices or treatment of vascular defects.
- The two most frequent ways that web devices fail and thereby result in an aneurysm recur are (1) web device collapse and/or compression and (2) distal migration of the web device into the aneurysm. Additionally, in a ruptured aneurysms there is concern the aneurysm does not close and/or thrombose quickly enough with web devices which has sometimes resulted in recurrent aneurysm rupture after treatment. The present invention is an alternative use for hydrogel intrasaccular occlusion devices is capable of ameliorating said two most frequent web device failure.
- The prior art includes “Left atrial appendage occlusion device,” WO 2013/126523 A1 (Erzberger et al.), a device known as Watchman. This is a type of left atrial appendage (LAA) closure technology consisting of a delivery catheter and a device that is permanently implanted in the LAA of the heart. This device prevents LAA blood clots from entering the bloodstream and potentially causing a stroke.
- The Watchman device is generally associated with high cost, with a U.S. list price of $23,500 for each device, and $1,500 for each delivery system.
- The Watchman device is currently delivered through a 14 Fr (Trench′-Fr-3 Fr=1 mm. diameter) delivery system, and requires a hole of 14 Fr or larger to be made in the femoral vein and the atrial septum for delivery. The larger the hole, the more risk of complication. Said risk includes the risk of stroke associated with atrial fibrillation. The present invention offers a method of serving the same purpose as a Watchman but with a dramatically smaller hole.
- Endovascular surgery is a minimally invasive procedure used to treat problems affecting the blood vessels, such as an aneurysm, which is a swelling or “ballooning” of the blood vessel. The surgery typically involves making a small incision near each hip to access the blood vessels.
- Endovascular procedures may result in endo-leaks. Said endo-leaks typically involve continued flow of blood outside a covered stent. Unwanted Flow is maintained between the outside of the covered stent and the vessel wall, including the aneurysm sac and/or a fistula, if those are the pathology being covered/treated, respectively. This results in continued filling of the pathology that was treated, with continued associated risk to the patient. These endo-leaks occur most often from one of two causes (+/− combination of the two): 1. there can be poor apposition of the wall of the covered stent to the vessel wall, most often at the ends of the stent, especially the proximal end (the end from which blood flow comes). This results in continued flow of blood between the stent and the vessel wall, outside the stent. 2. In some large aneurysms, such as aortic aneurysms, the aneurysm crosses multiple vessel branches, and so when a covered stent is used to treat the aneurysm, these branches are covered. Often some of these branches will start to flow retrograde, and the aneurysm sac can continue to fill—it can even continue to expand and/or rupture
- Endo-leaks can be caused by many factors. Some, such as incorrectly sized stents, can be corrected. Others, such as irregular vessels, branches feeding behind the covered stent (as above), and bends in the vessel at the ideal stent landing zone, often cannot be easily ameliorated.
- One possible solution to eliminate or ameliorate endo-leaks may be implemented as follows: the outside of the covered stent can be lined with an adhered hydrogel that once implanted will expand to fill any potential spaces between the vessel wall and the material of the covered stent, thus closing any potential persistent channels outside the stent.
- A second possible solution to eliminate or ameliorate endo-leaks may be implemented as follows: the outside of the covered stent can be lined with an adhered hydrogel that once implanted will expand to fill any potential spaces between the vessel wall and/or the wall of the aneurysm sac said stent is treating, and the material of the covered stent, thus closing the aneurysm sac and preventing further flow into it.
- A third possible solution to eliminate or ameliorate endo-leaks may be implemented as follows: combining the two-implementation noted above.
- These three solutions may be implemented with existing stent structure because most covered stents consist of Dacron or Polyester and thus suitable for covering with hydrogel.
- Stents and other endovascular devices have issues in that they are thrombogenic when they are first inserted, until they are incorporated into the vessel/endothelialized, or in some cases such as mechanical cardiac valves, forever. This results in significant rates of thrombotic complications, including thrombosed vessels resulting in stroke, myocardial infarction, or other ischemic complications. In order to minimize such risks patients are routinely started on antiplatelet therapy, often dual antiplatelet therapy with agents such as Plavix or Brilinta, and aspirin. In addition, other endovascular devices, particularly those implanted in the heart such as mechanical heart valves, tend to cause a different type of clot that necessitates the use of anticoagulants to protect against clot formation. Although the medications reduce the rate of clot formation, they do not eliminate clot formation altogether and patients can still suffer complications from clotting. Additionally, all these medications have significant rates of bleeding complications. Hydrogel Is more inert and does not cause thrombus formation/induction.
- Additionally, stent and other foreign body devices when implanted in the body cause a local tissue reaction that can result in local tissue overgrowth. This can result in the development of in-stent stenosis or other issues with scarring. Hydrogel is more inert, and would reduce such tissue reaction, if the hydrogel instead was in contact with the local tissue.
- The present invention teaches placing a thin coating of hydrogel on the entire surface of any endovascular device exposed to the inner surface of the blood vessel and/or blood products.
- The present invention also teaches placing a thin layer (one (1) nanometer to one (1) centimeter) of hydrogel over a portion of such a device as well. Do so will reduce but not completely eliminate the risk of thrombus formation. By completely covering these devices with the thin layer of hydrogel a significantly reduce the rate of thrombus formation may be achieved. This will also reduce the need for anti-platelet and or anticoagulant.
- The reduction in the use of anti-platelet and or anticoagulant is a non-obvious benefit of the use of hydrogel as taught above because anti-platelet and anticoagulant medications have significant associated morbidity as well. By eliminating the need for them we can reduce said morbidity further. The hydrogel coating would also reduce the tissue reaction and associated complications such as in-stent stenosis.
- The hydrogel can also simultaneously fill any spaces between said stent and the vessel wall, reducing the incidence of endo-leaks, while also helping secure the stent in place, reducing the incidence of stent migration.
- The present invention substantially fulfills the forgoing unmet needs. A gel is a solid jelly-like material that can have properties ranging from soft and weak to hard. A hydrogel is a network of polymer chains that are hydrophilic, sometimes found as a colloidal gel in which water is the dispersion medium. These may be woven and/or adhered the metal structures as well. In addition to aiding the wound treatment hydrogel has been shown to offers relief from pain for hours after application. Furthermore, the expansion of the hydrogel after it is implant into the body may increase the coverage of a metal mesh implanted and thereby decrease permeability of blood into the aneurysm, promoting faster thrombosis and healing of the aneurysm.
- Hydrogel dressings consist of 90 percent water in a gel base, and serves to help monitor fluid exchange from within the wound surface. The application of hydrogel assists in protecting areas adversely affected during endovascular treatments from wound infection and promotes efficient healing. Hydrogel dressings generally come in three different forms (which constitute various release mechanisms), including: amorphous hydrogel: a free-flowing gel, distributed in tubes, foil packets and spray bottles; impregnated hydrogel: typically saturated onto a gauze pad, nonwoven sponge ropes and/or strips; and sheet hydrogel: a combination of gel held together by a thin fiber mesh.
- A study published in the Journal of the American College of Cardiology: Basic to Translational Science, reported that an inject-able gel can maintain its healing characteristics. In particular, rebuilding of muscular structures was reported from a gel originally derived from a pig's cardiac muscle tissue, which was stripped of cells until all that was left was an extracellular matrix. A 2010 study in the Journal of Cell Science noted that an element of gel used in the aforementioned Journal of the American College of Cardiology study was responsible for tissue regeneration and re-growth: One non-limiting version of a hydrogel that expands in the body is a co-polymer of acrylamide and sodium acrylate cross linked.
- The present disclosure relates to the field of endovascular treatment. More particularly, the present invention modifies a hydrogel intrasaccular occlusion device such as disclosed in provisional patent application Ser. No. 62/497,851, by providing expanded hydrogel extends outside the device on the sides of the device, and inside the device. Such modifications are designed to implement an endovascular treatment to ameliorating or eliminating aneurysm recurrence. The existing hydrogel intrasaccular occlusion device tool such as disclosed in provisional patent application Ser. No. 62/497,851 envisions adding a hydrogel to a mesh-like saccular aneurysm embolization device, such as the Sequent Web, the Luna Aneurysm Embolization system or similar devices or systems. Once done, and deployed in the body the hydrogel expands and further decreases the permeability of the device to blood. This can facilitate more immediate thrombosis of the aneurysm, resulting in more immediate reduction in the risk of the aneurysm rupturing.
- The present invention can be used to close an LAA. It has specific advantages when compared to the Watchman device. In particular, Watchman is delivered through a “transseptal” approach, coming from the femoral vein, into R atrium of heart, and across the atrial septum (a hole needs to be made) and into the left atrium, from where the left atrial appendage is then accessed. The current Watchman is delivered through a 14Fr system. So compared to the present invention, a much larger hole in the femoral vein, with corresponding increased risk of bleeding complications and/or vessel injury must be made. Additionally, a much smaller hole in the septum can be used for access if implanting the present invention in the left atrial appendage, via a transseptal approach, instead of the Watchman. The present invention can be delivered through systems smaller than 4Fr (sometimes as small as 2.1Fr; but probably not that small for the 21-33 mm wide device needed in the left atrial appendage). The current invention can be delivered in appropriate sizes through systems from 2Fr to 11 Fr.
- The present invention is capable of larger webs that can easily be delivered through catheters considerably smaller than the current 14Fr Watchman. This will allow the current invention to be more effective in eliminating or ameliorating blood clots from entering the bloodstream and potentially causing a stroke.
- The present invention uses a device designed to facilitate endovascular treatment by adding hydrogel along the metal struts/web of the device and using it to prevent episodes of distal migration due to addition of hydrogel. This is achieved by providing expanded hydrogel extends outside the device on the sides of the device. Said extensions will help “grip” the aneurysm walls and minimize the incidence of migration. Additionally, said extensions to help speed thrombosis and minimize risk of collapse, the center open space within the web can have added strands and/or struts and/or bars of hydrogel. Said extensions can be oriented vertically for added support, to further minimize the risk of device collapse.
- The present invention in all embodiments will be partially or fully covered by a thin coating of hydrogel. Said coating acts as both a medication delivery system and a barrier to reduce the thrombogenicity of the stent, reducing thrombotic complications, and reducing the need for antiplatelets (with their associated potential hemorrhagic complications—especially in patients with a recent bleed in their brain).
- The present invention teaches the affixation of at least one hydrogel layer that expands in vivo to any or all surfaces of a mesh intrasaccular device made of at least one material adapted to close an outpouching in the body such as an aneurysm, the left atrial appendage, or diverticulae of other organs. For purposes of this invention, hydrogel coating will be in a non-hydrated state and will expand in use, upon exposure to bodily fluid.
- The current device may be used to treat both venous and arterial aneurysms. It may be used in the brain, the peripheral vasculature, and the arterial vasculature.
- The invention will be better understood and objects other than those set forth above will become apparent when consideration is given to the following detail description thereof. Such description makes reference to the annexed drawings wherein:
-
FIG. 1 showing at distal end of wire (12) deployed device (10) designed to implement an endovascular treatment mesh (20) at treatment site with hydrogel coating (22). -
FIG. 2 showing at distal end of wire (12) showing un-deployed device designed to implement an endovascular treatment mesh (20) with hydrogel coating (22). -
FIG. 3 showing at distal end of wire (12) deployed device designed to implement an endovascular treatment mesh (20) with hydrogel coating (22), further including vertically oriented elements (50) of reinforced mesh. - The hydrogel coating (22) depicted as mis-formed circles or beads in the foregoing figures is representative only, and the mis-formed circles shown are not drawn to scale. Nor is the hydrogel coating (22) that completely covers an entire device or delivery system shown.
- The present disclosure teaches the placement of amorphous hydrogel (22) within or coating surfaces of intrasaccular occlusion devices, which are delivered proximally to target vessels using wire delivery systems (12). Said intrasaccular occlusion devices are typically housed in intrasaccular tools during the transport process.
- Coating said intrasaccular occlusion devices, particularly an extension such as treatment mesh (20), allows for the implementation of a therapeutic endovascular treatment.
- Said amorphous hydrogel (22) is adhered to select surfaces of said device (20) designed to implement an endovascular treatment and is contained by said device designed to implement an endovascular treatment. Alternatively, said amorphous hydrogel (22) is adhered to select surfaces of said device (20) designed to implement an endovascular treatment or is contained by said device designed to implement an endovascular treatment. These alternatives are not necessarily mutually exclusive.
- When said coated device is designed to implement an endovascular treatment is proximately positioned at the treatment point, and the metal mesh device (2) such as the Sequent Web or Luna Aneurysm Embolization system or similar system is deployed in the body, the exposure of the adhered added hydrogel with the device to the blood and temperature in the body causes it to expand further, decreasing the permeability of the device to blood and promoting more immediate thrombosis of the aneurysm or other vascular outpouching, which results in more immediate decrease in the risk of the aneurysm rupturing or clots forming and embolizing.
- The present invention uses a device designed to facilitate endovascular treatment by coating hydrogel along the metal struts/web of the device and uses it to prevent episodes of distal migration due to addition of hydrogel. This is achieved by providing expanded hydrogel extends outside the device on the sides of the device. Said extensions will help “grip” the aneurysm walls and minimize the incidence of migration. Additionally, said extensions help speed thrombosis and minimize risk of collapse. The center open space within the web can have added strands and/or struts and/or bars of hydrogel as well. Said extensions can be oriented vertically for added support. Said extensions can be oriented in either direction as well.
- More particularly, said extensions which may be made of hydrogel coated metal, metal alloys, or plastic, or other stiff material. All said reinforced elements may be further enhanced by the addition of additional hydrogel proximal to said reinforcement elements.
- The present invention can be used with hydrogel. Each embodiment may be used to treat brain aneurysms, and heart ailments.
- The preferred embodiment would include substantially parallel, vertically oriented elongated support extensions and reinforcements attached or woven into the treatment mesh. However, said vertically oriented support extensions and reinforcements may be attached to or imbedded into the inside of the treatment mesh, outside of the treatment mesh, or both inside and outside of the treatment mesh. Upon deployment of said substantially parallel vertically oriented support extensions and reinforcements said substantially parallel vertically oriented support extensions and reinforcements would curve to conform to the shape of said treatment mesh. Also, upon deployment, the array of distal ends of said substantially parallel vertically oriented support extensions and reinforcements are substantially oriented upon a plane. Said plane is has substantially the same orientation as the opening of the aneurysm into which the device was deployed. Said vertically oriented support extensions and reinforcements may be attached or joined to said treatment mesh via ties, spot welds, pocket enclosures, biocompatible adhesive, or any other technique known in the art for affixing elements of surgical implant devices.
- All of the above extensions may be added with a hydrogel coating on all parts. All of the above extensions may be added with a hydrogel coating on some parts. In some embodiments all of the above extensions may be added without a hydrogel coating on some parts. In some embodiments any of the above extensions may be added without any hydrogel coating at all.
- All of the above extensions may be covered in a thin coating of hydrogel on the entire surface of any endovascular device exposed to the inner surface of the blood vessel and/or blood products, by placing a thin layer of hydrogen over a portion of such a device as well.
- In the preferred embodiment of the current invention endovascular devices that can be covered with such a layer of hydrogel include metal stents, covered stents, cardiac valves, left atrial appendage occlusion devices such as the Watchman, intra-saccular aneurysm devices, pressure monitors, wires/Leeds Etc. In short, all surfaces of the present invention and devices which deploy the present invention would be cover with a thin layer of hydrogel and thereby covering all metals, and/or plastics, and/or polyesters, and/or Dacron surfaces.
- In the preferred embodiment of the current invention a thin coating of hydrogel is placed on all surfaces, including the surface pressing on the vessel wall, it will reduce the rate of intimal hyperplasia caused by the vessel reacting to the foreign body. This result is also a non-obvious benefit of the use of hydrogel because intimal hyperplasia causes vessel narrowing and/or occlusions, which in turn causes sub-optimal outcomes, including in some case the death of the patent.
- In the preferred embodiment of the current invention a thin coating of hydrogel is placed on all surfaces of all devices which deliver the claim 1 devices (an extension element for an intrasaccular occlusion tool designed to ameliorating aneurysm recurrences by deploying an amorphous hydrogel), then said hydrogel may be use to both prevent blood metal thrombosis and as a delivery mechanism for medications, which can be immediate release or controlled sustained slow release (embedded in stents or other devices).
- For example, hydrogel lining to nonvascular stents, some embodiments include biliary and ureter stents—may also reduce rates of in stent stenosis; and may help anchor the stent in place and prevent stent migration.
- In some embodiments of the current invention, coatings in addition to a thin coating of hydrogel are added to said thin coating of hydrogel. Said additional coating additives embed said thin coating of hydrogel with compounds for local delivery, short release or sustained release.
- In some embodiments said additional coating include chemotherapy compounds in said thin coating of hydrogel. Said chemotherapy compounds embedded a device may be use in the carotid artery for a brain tumor in that vascular distribution, or in Right renal artery for a right kidney tumor, or in right pulmonary artery for a right lung mass: this could allow sustained delivery locally, while minimizing the systemic dose and associated side effects.
- Said hydrogel thin coating may be impregnated with pharmaceutical compounds. Said compounds may include, but are not limited to nimodipine, verapamil, Cardene, nitroglycerin, and nitroprusside. Said compounds may be formulated for immediate release or controlled sustained slow release.
- Alternatively, to minimize the risk of severe symptomatic vasospasm in aneurysmal subarachnoid hemorrhage (a typical bleed from a ruptured brain aneurysm) the said thin coating of hydrogel might include a vasodilator compound that slowly releases over 3 weeks can be embedded in a stent for placement in the common or internal carotid arteries on both sides, including the placement in one or both vertebral arteries. Non-limiting examples of vasodilators that can be embedded include nimodipine, verapamil, Cardene, nitroglycerin, and nitroprusside.
- As more particularly shown in
FIG. 1 , delivery wire (12) with mesh device (20) disposed at the distal end of said wire (12). An embodiment of treatment mesh (20) is substantially spherical or circumferential upon deployment. A preferred embodiment of treatment mesh (20) is designed to be implemented at a treatment site with a hydrogel coating (22). Deployed device (10) is distally attached to a delivery system which may be as simple as a wire (12) but may be an intravascular tool (not shown) such as a nonvascular stent. In the preferred embodiment, such delivery tools would also be coated with a thin coating of hydrogel (22), preferably having a thickness of one nanometer to one centimeter. Said thickness is determined by the internal diameter of the target area, and the outer dimension of treatment mesh (20).FIG. 2 depicts the same treatment mesh (20) prior to deployment, as well as wire (12). The coating must be sufficiently thin so that the un-hydrated hydrogel (22) will allow treatment mesh (20) to proceed proximally to the target area in an undeployed state. For example, if the internal target area of the vessel has a diameter of 1.1 cm, and the largest dimension of the undeployed mesh (20) is one centimeter, then the preferred thickness of the hydrogel (22) coating for this situation is 0.1 cm. -
FIG. 3 also shows the non-spherical embodiment of treatment mesh (20) of the current invention, having hydrogel coating (22), and further including vertically oriented reinforcement members (50). In the preferred embodiment, all elements including reinforcement member (50) and wire (12) are coated with hydrogel (22). - In the foregoing embodiments, wire (12) may be included with or substituted by another endovascular delivery device (not shown) which, in the preferred embodiments, are also coated with hydrogel (22) in a thickness adapted to the size of the vasculature.
- The present invention may be used according to the following method. To use the present invention to ameliorate aneurysm recurrences, amorphous hydrogel is deployed upon an intrasaccular occlusion device as follows:
-
- (a) providing an insertion rod having a first end and a second end, and
- (b) said intrasaccular occlusion tool connected to the first end of the insertion rod,
- (c) said intrasaccular occlusion tool having an outer surface and an inner surface,
- (d) said outer surface coated with said amorphous hydrogel, and
- (e) said intrasaccular occlusion tool being moveable between a retracted position and a deployed position;
- (f) inserting said intrasaccular occlusion tool and a portion of the insertion rod into the brain using arterial pathways while said intrasaccular occlusion tool is in a retracted position;
- (g) deploying said intrasaccular occlusion tool inside an aneurism such that said intrasaccular occlusion tool is configured to provide a seal between said aneurism and said arterial pathway; and
- (h) securing the perimeter of said outer surface of said intrasaccular occlusion tool against a wall of said aneurism.
- The present invention can alternatively be used by embedding or impregnating pharmaceutical compounds medications in a stent for local delivery, short release or sustained release using permanent nondegradable hydrogel or biodegradable hydrogel. The following are nonlimiting embodiments.
- Placing a stent with chemotherapy embedded into carotid artery for a brain tumor in that vascular distribution, or in Right renal artery for a right kidney tumor, or in right pulmonary artery for a right lung mass. This could allow sustained delivery locally, while minimizing the systemic dose and associated side effects.
- Similarly, to minimize the risk of severe symptomatic vasospasm in aneurysmal subarachnoid hemorrhage (a typical bleed from a ruptured brain aneurysm), a vasodilator that slowly releases over time can be embedded in a stent for placement in the common or internal carotid arteries on both sides, +/− placement in one or both vertebral arteries. Nonlimiting examples of vasodilators that can be embedded include nimodipine, verapamil, Cardene, nitroglycerin, and nitroprusside.
- Although the invention has been described in detail in the foregoing embodiments and methods for the purpose of illustration, it is to be understood that such detail is solely for that purpose, and that variations can be made therein by those skilled in the art without departing from the spirit and scope of the invention, except as it may be described by the claims set forth in this application.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/783,000 US11660111B2 (en) | 2016-12-05 | 2020-02-05 | Alternative use for hydrogel intrasaccular occlusion device with vertically oriented reinforcement members for structural support |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201662497851P | 2016-12-05 | 2016-12-05 | |
US15/732,365 US10448970B2 (en) | 2016-12-05 | 2017-10-30 | Alternative use for hydrogel intrasaccular occlusion device with telescoping central support element |
US201715732399A | 2017-11-07 | 2017-11-07 | |
US16/783,000 US11660111B2 (en) | 2016-12-05 | 2020-02-05 | Alternative use for hydrogel intrasaccular occlusion device with vertically oriented reinforcement members for structural support |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US201715732399A Continuation-In-Part | 2016-12-05 | 2017-11-07 |
Publications (2)
Publication Number | Publication Date |
---|---|
US20200187978A1 true US20200187978A1 (en) | 2020-06-18 |
US11660111B2 US11660111B2 (en) | 2023-05-30 |
Family
ID=72266018
Family Applications (6)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/932,392 Active 2038-04-02 US10603070B2 (en) | 2016-12-05 | 2018-02-23 | Alternative use for hydrogel intrasaccular occlusion device with a spring for structural support |
US15/932,400 Active 2038-04-02 US10561441B2 (en) | 2016-12-05 | 2018-02-23 | Alternative use for hydrogel intrasaccular occlusion device with an umbrella member for structural support |
US15/932,394 Abandoned US20180193024A1 (en) | 2016-12-05 | 2018-02-23 | Alternative us of hydrogel intrasaccular occlusion device with center supporting bar for structrual support |
US15/932,393 Abandoned US20180206848A1 (en) | 2016-12-05 | 2018-02-23 | Alternative Use for Hydrogel Intrasaccular Occlusion Device with Radial Bars for Structural Support |
US15/932,399 Active US11090078B2 (en) | 2016-12-05 | 2018-02-23 | Alternative use for hydrogel intrasaccular occlusion device with vertically oriented reinforcement members for structural support |
US16/783,000 Active 2038-09-26 US11660111B2 (en) | 2016-12-05 | 2020-02-05 | Alternative use for hydrogel intrasaccular occlusion device with vertically oriented reinforcement members for structural support |
Family Applications Before (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/932,392 Active 2038-04-02 US10603070B2 (en) | 2016-12-05 | 2018-02-23 | Alternative use for hydrogel intrasaccular occlusion device with a spring for structural support |
US15/932,400 Active 2038-04-02 US10561441B2 (en) | 2016-12-05 | 2018-02-23 | Alternative use for hydrogel intrasaccular occlusion device with an umbrella member for structural support |
US15/932,394 Abandoned US20180193024A1 (en) | 2016-12-05 | 2018-02-23 | Alternative us of hydrogel intrasaccular occlusion device with center supporting bar for structrual support |
US15/932,393 Abandoned US20180206848A1 (en) | 2016-12-05 | 2018-02-23 | Alternative Use for Hydrogel Intrasaccular Occlusion Device with Radial Bars for Structural Support |
US15/932,399 Active US11090078B2 (en) | 2016-12-05 | 2018-02-23 | Alternative use for hydrogel intrasaccular occlusion device with vertically oriented reinforcement members for structural support |
Country Status (1)
Country | Link |
---|---|
US (6) | US10603070B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11284901B2 (en) | 2014-04-30 | 2022-03-29 | Cerus Endovascular Limited | Occlusion device |
US11406404B2 (en) | 2020-02-20 | 2022-08-09 | Cerus Endovascular Limited | Clot removal distal protection methods |
US11471162B2 (en) | 2015-12-07 | 2022-10-18 | Cerus Endovascular Limited | Occlusion device |
US11648013B2 (en) | 2016-03-11 | 2023-05-16 | Cerus Endovascular Limited | Occlusion device |
US11812971B2 (en) | 2017-08-21 | 2023-11-14 | Cerus Endovascular Limited | Occlusion device |
Families Citing this family (41)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8425549B2 (en) | 2002-07-23 | 2013-04-23 | Reverse Medical Corporation | Systems and methods for removing obstructive matter from body lumens and treating vascular defects |
US9675476B2 (en) | 2004-05-25 | 2017-06-13 | Covidien Lp | Vascular stenting for aneurysms |
AU2005247490B2 (en) | 2004-05-25 | 2011-05-19 | Covidien Lp | Flexible vascular occluding device |
WO2010120926A1 (en) | 2004-05-25 | 2010-10-21 | Chestnut Medical Technologies, Inc. | Vascular stenting for aneurysms |
US8152833B2 (en) | 2006-02-22 | 2012-04-10 | Tyco Healthcare Group Lp | Embolic protection systems having radiopaque filter mesh |
WO2009132045A2 (en) | 2008-04-21 | 2009-10-29 | Nfocus Neuromedical, Inc. | Braid-ball embolic devices and delivery systems |
WO2009140437A1 (en) | 2008-05-13 | 2009-11-19 | Nfocus Neuromedical, Inc. | Braid implant delivery systems |
US8409269B2 (en) | 2009-12-21 | 2013-04-02 | Covidien Lp | Procedures for vascular occlusion |
CA2812012C (en) | 2010-09-10 | 2018-01-02 | Medina Medical, Inc. | Devices and methods for the treatment of vascular defects |
US8998947B2 (en) | 2010-09-10 | 2015-04-07 | Medina Medical, Inc. | Devices and methods for the treatment of vascular defects |
US9351859B2 (en) | 2010-12-06 | 2016-05-31 | Covidien Lp | Vascular remodeling device |
US9089332B2 (en) | 2011-03-25 | 2015-07-28 | Covidien Lp | Vascular remodeling device |
BR112013028603A2 (en) | 2011-05-11 | 2017-01-17 | Covidien Lp | vascular remodeling device |
WO2013049448A1 (en) | 2011-09-29 | 2013-04-04 | Covidien Lp | Vascular remodeling device |
US9072620B2 (en) | 2011-11-04 | 2015-07-07 | Covidien Lp | Protuberant aneurysm bridging device deployment method |
US9011480B2 (en) | 2012-01-20 | 2015-04-21 | Covidien Lp | Aneurysm treatment coils |
US9452070B2 (en) | 2012-10-31 | 2016-09-27 | Covidien Lp | Methods and systems for increasing a density of a region of a vascular device |
EP2919668A2 (en) | 2012-11-13 | 2015-09-23 | Covidien LP | Occlusive devices |
EP2967576B1 (en) | 2013-03-15 | 2023-02-15 | Covidien LP | Delivery and detachment mechanisms for vascular implants |
CN108433769B (en) | 2013-03-15 | 2021-06-08 | 柯惠有限合伙公司 | Occlusion device |
WO2015073704A1 (en) | 2013-11-13 | 2015-05-21 | Covidien Lp | Galvanically assisted attachment of medical devices to thrombus |
US9713475B2 (en) | 2014-04-18 | 2017-07-25 | Covidien Lp | Embolic medical devices |
US9814466B2 (en) | 2014-08-08 | 2017-11-14 | Covidien Lp | Electrolytic and mechanical detachment for implant delivery systems |
US10314593B2 (en) | 2015-09-23 | 2019-06-11 | Covidien Lp | Occlusive devices |
US10478194B2 (en) | 2015-09-23 | 2019-11-19 | Covidien Lp | Occlusive devices |
CN108882976B (en) | 2016-03-24 | 2021-06-04 | 柯惠有限合伙公司 | Thin wall configuration for vascular flow diversion |
US10828039B2 (en) | 2016-06-27 | 2020-11-10 | Covidien Lp | Electrolytic detachment for implantable devices |
US10828037B2 (en) | 2016-06-27 | 2020-11-10 | Covidien Lp | Electrolytic detachment with fluid electrical connection |
US11051822B2 (en) | 2016-06-28 | 2021-07-06 | Covidien Lp | Implant detachment with thermal activation |
US10478195B2 (en) | 2016-08-04 | 2019-11-19 | Covidien Lp | Devices, systems, and methods for the treatment of vascular defects |
US10576099B2 (en) | 2016-10-21 | 2020-03-03 | Covidien Lp | Injectable scaffold for treatment of intracranial aneurysms and related technology |
US10675036B2 (en) | 2017-08-22 | 2020-06-09 | Covidien Lp | Devices, systems, and methods for the treatment of vascular defects |
US11065009B2 (en) | 2018-02-08 | 2021-07-20 | Covidien Lp | Vascular expandable devices |
US11065136B2 (en) | 2018-02-08 | 2021-07-20 | Covidien Lp | Vascular expandable devices |
US10905432B2 (en) | 2018-08-22 | 2021-02-02 | Covidien Lp | Aneurysm treatment coils and associated systems and methods of use |
US10912569B2 (en) | 2018-08-22 | 2021-02-09 | Covidien Lp | Aneurysm treatment coils and associated systems and methods of use |
CN111388043A (en) | 2018-12-17 | 2020-07-10 | 柯惠有限合伙公司 | Occlusion device |
US11305387B2 (en) | 2019-11-04 | 2022-04-19 | Covidien Lp | Systems and methods for treating aneurysms |
US11931041B2 (en) | 2020-05-12 | 2024-03-19 | Covidien Lp | Devices, systems, and methods for the treatment of vascular defects |
CN112274206B (en) * | 2020-12-29 | 2021-05-25 | 北京泰杰伟业科技有限公司 | Conveying system of turbulent flow device |
CN114469227B (en) * | 2022-01-04 | 2024-01-12 | 艾柯医疗器械(北京)股份有限公司 | Turbulence device in bag |
Family Cites Families (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3874388A (en) | 1973-02-12 | 1975-04-01 | Ochsner Med Found Alton | Shunt defect closure system |
US4282875A (en) | 1979-01-24 | 1981-08-11 | Serbinenko Fedor A | Occlusive device |
US4346712A (en) | 1979-04-06 | 1982-08-31 | Kuraray Company, Ltd. | Releasable balloon catheter |
US4675361A (en) | 1980-02-29 | 1987-06-23 | Thoratec Laboratories Corp. | Polymer systems suitable for blood-contacting surfaces of a biomedical device, and methods for forming |
DK151404C (en) | 1984-05-23 | 1988-07-18 | Cook Europ Aps William | FULLY FILTER FOR IMPLANTATION IN A PATIENT'S BLOOD |
US5165421A (en) | 1987-09-30 | 1992-11-24 | Lake Region Manufacturing Co., Inc. | Hollow lumen cable apparatus |
US5263963A (en) | 1989-09-08 | 1993-11-23 | Advanced Cardiovascular Systems, Inc. | Expandable cage catheter for repairing a damaged blood vessel |
US5135516A (en) | 1989-12-15 | 1992-08-04 | Boston Scientific Corporation | Lubricious antithrombogenic catheters, guidewires and coatings |
US5334210A (en) | 1993-04-09 | 1994-08-02 | Cook Incorporated | Vascular occlusion assembly |
EP1695673A3 (en) | 1994-07-08 | 2009-07-08 | ev3 Inc. | Intravascular filtering device |
ATE250928T1 (en) | 1995-07-12 | 2003-10-15 | Cygnus Therapeutic Systems | HYDROGEL PLASTER |
WO1997027959A1 (en) | 1996-01-30 | 1997-08-07 | Medtronic, Inc. | Articles for and methods of making stents |
US5733294A (en) | 1996-02-28 | 1998-03-31 | B. Braun Medical, Inc. | Self expanding cardiovascular occlusion device, method of using and method of making the same |
US5925060A (en) | 1998-03-13 | 1999-07-20 | B. Braun Celsa | Covered self-expanding vascular occlusion device |
US6478773B1 (en) | 1998-12-21 | 2002-11-12 | Micrus Corporation | Apparatus for deployment of micro-coil using a catheter |
EP1109499B1 (en) * | 1998-09-04 | 2007-08-15 | Boston Scientific Limited | Detachable aneurysm neck closure patch |
US7052711B2 (en) | 1999-09-02 | 2006-05-30 | Rice University | Nitric oxide-producing hydrogel materials |
US6375670B1 (en) | 1999-10-07 | 2002-04-23 | Prodesco, Inc. | Intraluminal filter |
KR100644194B1 (en) | 2005-08-02 | 2006-11-10 | 휴메드 주식회사 | Device for treatment of an aortic aneurysm |
US20070078480A1 (en) * | 2005-10-04 | 2007-04-05 | Boston Scientific Scimed, Inc. | Self-expanding biodegradable or water-soluble vaso-occlusive devices |
US20080033341A1 (en) | 2006-08-04 | 2008-02-07 | Bay Holdings Ltd. | Methods and devices for reducing or blocking blood flow to a selected blood vessel or part thereof |
MX2010001629A (en) | 2007-08-10 | 2010-08-09 | Alessandro Sannino | Polymer hydrogels and methods of preparation thereof. |
CA2699259A1 (en) * | 2007-09-11 | 2009-03-19 | Nfocus Neuromedical Inc. | Aneurysm cover device for embolic delivery and retention |
US20160374690A9 (en) * | 2010-10-21 | 2016-12-29 | Robert A. Connor | Devices and Methods for Occluding a Cerebral Aneurysm |
US20100069948A1 (en) | 2008-09-12 | 2010-03-18 | Micrus Endovascular Corporation | Self-expandable aneurysm filling device, system and method of placement |
WO2010147658A1 (en) | 2009-06-17 | 2010-12-23 | Gore Enterprise Holdings, Inc. | Medical device fixation anchor suited for balloon expandable stents |
WO2011057002A2 (en) | 2009-11-05 | 2011-05-12 | Sequent Medical Inc. | Multiple layer filamentary devices or treatment of vascular defects |
US9814562B2 (en) | 2009-11-09 | 2017-11-14 | Covidien Lp | Interference-relief type delivery detachment systems |
US10010327B2 (en) | 2010-12-16 | 2018-07-03 | Lawrence Livermore National Security, Llc | Expandable implant and implant system |
US20120283811A1 (en) | 2011-05-02 | 2012-11-08 | Cook Medical Technologies Llc | Biodegradable, bioabsorbable stent anchors |
US9629635B2 (en) | 2014-04-14 | 2017-04-25 | Sequent Medical, Inc. | Devices for therapeutic vascular procedures |
RU2721288C2 (en) | 2014-09-17 | 2020-05-18 | Метэктив Медикал, Инк. | Medical device for saccular aneurysm treatment |
-
2018
- 2018-02-23 US US15/932,392 patent/US10603070B2/en active Active
- 2018-02-23 US US15/932,400 patent/US10561441B2/en active Active
- 2018-02-23 US US15/932,394 patent/US20180193024A1/en not_active Abandoned
- 2018-02-23 US US15/932,393 patent/US20180206848A1/en not_active Abandoned
- 2018-02-23 US US15/932,399 patent/US11090078B2/en active Active
-
2020
- 2020-02-05 US US16/783,000 patent/US11660111B2/en active Active
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11284901B2 (en) | 2014-04-30 | 2022-03-29 | Cerus Endovascular Limited | Occlusion device |
US11389174B2 (en) | 2014-04-30 | 2022-07-19 | Cerus Endovascular Limited | Occlusion device |
US12029431B2 (en) | 2014-04-30 | 2024-07-09 | Stryker Ireland Technology, Ltd. | Occlusion device |
US11471162B2 (en) | 2015-12-07 | 2022-10-18 | Cerus Endovascular Limited | Occlusion device |
US12076022B2 (en) | 2015-12-07 | 2024-09-03 | Stryker Ireland Technology Ltd. | Occlusion device |
US11648013B2 (en) | 2016-03-11 | 2023-05-16 | Cerus Endovascular Limited | Occlusion device |
US11812971B2 (en) | 2017-08-21 | 2023-11-14 | Cerus Endovascular Limited | Occlusion device |
US11406404B2 (en) | 2020-02-20 | 2022-08-09 | Cerus Endovascular Limited | Clot removal distal protection methods |
Also Published As
Publication number | Publication date |
---|---|
US20180193024A1 (en) | 2018-07-12 |
US11660111B2 (en) | 2023-05-30 |
US20180206848A1 (en) | 2018-07-26 |
US20180214158A1 (en) | 2018-08-02 |
US11090078B2 (en) | 2021-08-17 |
US20180193023A1 (en) | 2018-07-12 |
US10561441B2 (en) | 2020-02-18 |
US20180193025A1 (en) | 2018-07-12 |
US10603070B2 (en) | 2020-03-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11660111B2 (en) | Alternative use for hydrogel intrasaccular occlusion device with vertically oriented reinforcement members for structural support | |
US10448970B2 (en) | Alternative use for hydrogel intrasaccular occlusion device with telescoping central support element | |
US20180206851A1 (en) | Hydrogel intrasaccular occlusion device | |
US9622753B2 (en) | Aneurysm treatment device and method of use | |
US11382636B2 (en) | Mesh cap for ameliorating outpouchings | |
JP6110427B2 (en) | System and method for sealing an anatomical opening | |
US20040111112A1 (en) | Method and apparatus for retaining embolic material | |
JP4850481B2 (en) | Expandable stent with stabilized portion | |
US20140025151A1 (en) | Retrievable stent for intracranial aneurysms | |
US10028745B2 (en) | Advanced endovascular clip and method of using same | |
Kilic et al. | Coronary covered stents | |
JP4090991B2 (en) | Aneurysm treatment device | |
US10543015B2 (en) | Mesh disc for saccular aneurysms and cover for saccular out-pouching | |
US20050021072A1 (en) | Method and system for delivering an implant utilizing a lumen reducing member | |
US20080228259A1 (en) | Endovascular devices and methods to protect aneurysmal wall | |
JPH0654854A (en) | Hydrogel interplantation matter in vessel | |
JP2004223268A (en) | Method for producing intravascular inflammatory response by bioabsorbable polymer based coil | |
US20050137570A1 (en) | Activatable bioactive implantable medical device and method of use | |
US20210307761A1 (en) | Coated Endovascular Intrasaccular Occlusion Device Method of Use | |
JP2022511315A (en) | Self-adjusting stent assembly and kit containing it | |
US20180207326A1 (en) | Coated endovascular devices | |
Jamil et al. | Stents and stent mimickers in endovascular management of wide-neck intracranial aneurysms | |
Kılıç et al. | Coronary covered stents | |
Vulev et al. | Endovascular Treatment of Internal Carotid and Vertebral Artery Aneurysms Using Covered Stents | |
Schob et al. | Conclusions: Implantation of the p48MW/p48MW HPC is safe and effective for treatment of distally located cerebral aneurysms. Considering the reported rates of |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FEPP | Fee payment procedure |
Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
FEPP | Fee payment procedure |
Free format text: ENTITY STATUS SET TO SMALL (ORIGINAL EVENT CODE: SMAL); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: APPLICATION DISPATCHED FROM PREEXAM, NOT YET DOCKETED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: AWAITING TC RESP, ISSUE FEE PAYMENT VERIFIED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: WITHDRAW FROM ISSUE AWAITING ACTION |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |