US20200180975A1 - Eutectic salts - Google Patents

Eutectic salts Download PDF

Info

Publication number
US20200180975A1
US20200180975A1 US16/709,470 US201916709470A US2020180975A1 US 20200180975 A1 US20200180975 A1 US 20200180975A1 US 201916709470 A US201916709470 A US 201916709470A US 2020180975 A1 US2020180975 A1 US 2020180975A1
Authority
US
United States
Prior art keywords
fluoride
salt
chloride
uranium
mol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US16/709,470
Inventor
John Benson
Matthew Memmott
Kraig Farrar
Original Assignee
Alpha Tech Research Corp.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alpha Tech Research Corp. filed Critical Alpha Tech Research Corp.
Priority to US16/709,470 priority Critical patent/US20200180975A1/en
Publication of US20200180975A1 publication Critical patent/US20200180975A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G43/00Compounds of uranium
    • C01G43/04Halides of uranium
    • C01G43/06Fluorides
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C15/00Cooling arrangements within the pressure vessel containing the core; Selection of specific coolants
    • G21C15/28Selection of specific coolants ; Additions to the reactor coolants, e.g. against moderator corrosion
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D15/00Lithium compounds
    • C01D15/04Halides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D3/00Halides of sodium, potassium or alkali metals in general
    • C01D3/02Fluorides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D3/00Halides of sodium, potassium or alkali metals in general
    • C01D3/04Chlorides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F11/00Compounds of calcium, strontium, or barium
    • C01F11/20Halides
    • C01F11/22Fluorides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F5/00Compounds of magnesium
    • C01F5/26Magnesium halides
    • C01F5/30Chlorides
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C19/00Arrangements for treating, for handling, or for facilitating the handling of, fuel or other materials which are used within the reactor, e.g. within its pressure vessel
    • G21C19/28Arrangements for introducing fluent material into the reactor core; Arrangements for removing fluent material from the reactor core
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C3/00Reactor fuel elements and their assemblies; Selection of substances for use as reactor fuel elements
    • G21C3/42Selection of substances for use as reactor fuel
    • G21C3/44Fluid or fluent reactor fuel
    • G21C3/54Fused salt, oxide or hydroxide compositions
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C5/00Moderator or core structure; Selection of materials for use as moderator
    • G21C5/18Moderator or core structure; Selection of materials for use as moderator characterised by the provision of more than one active zone
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C1/00Reactor types
    • G21C1/02Fast fission reactors, i.e. reactors not using a moderator ; Metal cooled reactors; Fast breeders
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C19/00Arrangements for treating, for handling, or for facilitating the handling of, fuel or other materials which are used within the reactor, e.g. within its pressure vessel
    • G21C19/28Arrangements for introducing fluent material into the reactor core; Arrangements for removing fluent material from the reactor core
    • G21C19/30Arrangements for introducing fluent material into the reactor core; Arrangements for removing fluent material from the reactor core with continuous purification of circulating fluent material, e.g. by extraction of fission products deterioration or corrosion products, impurities, e.g. by cold traps
    • G21C19/307Arrangements for introducing fluent material into the reactor core; Arrangements for removing fluent material from the reactor core with continuous purification of circulating fluent material, e.g. by extraction of fission products deterioration or corrosion products, impurities, e.g. by cold traps specially adapted for liquids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Definitions

  • Molten salt reactors are a class of nuclear fission reactors in which the primary nuclear reactor coolant and/or the fuel is a molten salt mixture. Molten salt reactors offer multiple advantages over conventional nuclear power plants.
  • eutectic salts that may be used in a molten salt reactor.
  • the eutectic salt may include: a salt mixture comprising one or more salts selected from the group consisting of sodium fluoride, potassium fluoride, aluminum fluoride, zirconium fluoride, lithium fluoride, beryllium fluoride, rubidium fluoride, magnesium fluoride, calcium fluoride, and uranium fluoride.
  • the eutectic salt has a melting point less than about 800° C.
  • the salt mixture comprises sodium fluoride and potassium fluoride. In some embodiments, the salt mixture comprises sodium fluoride (40-60 mol %) and potassium fluoride (40-60 mol %).
  • the salt mixture comprises sodium fluoride, potassium fluoride, and magnesium fluoride. In some embodiments, the salt mixture comprises sodium fluoride (40-60 mol %), potassium fluoride (40-70 mol %), and magnesium fluoride (0-20 mol %).
  • the salt mixture comprises sodium fluoride, potassium fluoride, and calcium fluoride. In some embodiments, the salt mixture comprises sodium fluoride (40-60 mol %), potassium fluoride (40-70 mol %), and calcium fluoride (0-20 mol %).
  • the salt mixture comprises sodium fluoride (40-60 mol %), potassium fluoride (40-70 mol %), magnesium fluoride (0-20 mol %), and calcium fluoride (0-20 mol %).
  • the salt mixture comprises lithium fluoride, sodium fluoride and potassium fluoride.
  • the uranium fluoride comprises uranium-233 or uranium-235.
  • the melting point of the eutectic salt is less than about 750° C. In some embodiments, the melting point of the eutectic salt is less than about 650° C. In some embodiments, the melting point of the eutectic salt is less than about 550° C. In some embodiments, the melting point of the eutectic salt is about 710° C.
  • Some embodiments include a molten salt system comprising a reactor with a salt mixture.
  • the salt mixture includes uranium and a eutectic salt.
  • the eutectic salt may include one or more of sodium fluoride, potassium fluoride, aluminum fluoride, zirconium fluoride, lithium fluoride, beryllium fluoride, rubidium fluoride, magnesium fluoride, calcium fluoride, sodium chloride, potassium chloride, aluminum chloride, zirconium chloride, lithium chloride, beryllium chloride, rubidium chloride, magnesium chloride, and calcium chloride.
  • the eutectic salt may have a melting point less than about 800° C.
  • the melting point of the eutectic salt is less than about 750° C. In some embodiments, the melting point of the eutectic salt is less than about 650° C. In some embodiments, the melting point of the eutectic salt is less than about 550° C. In some embodiments, the melting point of the eutectic salt is about 710° C.
  • Some embodiments include a eutectic salt comprising uranium, and one or more salts selected from the group consisting of sodium fluoride, potassium fluoride, lithium fluoride, sodium chloride, potassium chloride, and magnesium chloride.
  • the eutectic salt has a melting point less than about 800° C.
  • the melting point of the eutectic salt is less than about 750° C. In some embodiments, the melting point of the eutectic salt is less than about 650° C. In some embodiments, the melting point of the eutectic salt is less than about 550° C. In some embodiments, the melting point of the eutectic salt is about 710° C.
  • the eutectic salt comprises sodium fluoride and potassium fluoride.
  • the salt mixture comprises sodium fluoride (40-60 mol %) and potassium fluoride (40-60 mol %).
  • the eutectic salt comprises sodium fluoride, potassium fluoride, and magnesium fluoride.
  • the salt mixture comprises sodium fluoride (40-60 mol %), potassium fluoride (40-70 mol %), and magnesium fluoride (0-20 mol %).
  • the eutectic salt comprises sodium fluoride, potassium fluoride, and calcium fluoride.
  • the salt mixture comprises sodium fluoride (40-60 mol %), potassium fluoride (40-70 mol %), and calcium fluoride (0-20 mol %).
  • the salt mixture comprises sodium fluoride (40-60 mol %), potassium fluoride (40-70 mol %), magnesium fluoride (0-20 mol %), and calcium fluoride (0-20 mol %).
  • FIG. 1 is a diagram of a molten salt reactor system according to some embodiments.
  • FIG. 2 is a diagram of a chemical separation subsystem of a molten salt reactor according to some embodiments.
  • FIG. 3 is a diagram of a chemical separation subsystem of a molten salt reactor with the electrode in a raised position within the chemical separation chamber according to some embodiments.
  • FIG. 4 is a diagram of a chemical separation subsystem of a molten salt reactor with the electrode in a lowered position and disposed within the solvent pool according to some embodiments.
  • FIG. 5 is a diagram of a chemical separation subsystem attached with molten salt reactor according to some embodiments.
  • FIG. 6 is another diagram of a chemical separation subsystem attached with molten salt reactor according to some embodiments.
  • FIG. 7 is a flowchart representing a process of using an electrode to remove fission products from a molten salt reactor according to some embodiments.
  • a molten salt reactor may include a nuclear fission reactor in which the reactor coolant, or even the fuel itself, is a molten salt mixture.
  • molten salt reactors can run at higher temperatures than water-cooled reactors for a higher thermodynamic efficiency, while staying at or near ambient pressure.
  • the fuel in a molten salt reactor may include a molten mixture of fluoride salts (e.g., sodium fluoride and magnesium fluoride) with dissolved uranium (U-235 or U-233) fluorides (UF x ).
  • the uranium may be low-enriched uranium (where 5% or less of the Uranium is U-235), uranium-233, uranium-235, uranium 238, or high enriched uranium (where 5% or more of the Uranium is U-235).
  • the rate of fission in a molten salt reactor can be inherently stable.
  • FIG. 1 is a diagram of a molten salt reactor system 100 according to some embodiments.
  • the molten salt reactor system 100 may include a reactor 102 , a chemical separation subsystem (e.g., including chemical separation chamber 120 ), safety systems (e.g., including emergency dump tanks 165 ), and turbines 145 .
  • a chemical separation subsystem e.g., including chemical separation chamber 120
  • safety systems e.g., including emergency dump tanks 165
  • turbines 145 e.g., including turbines 145 .
  • the reactor 102 may include any type of molten salt fission device or system whether or not it includes a reactor.
  • the reactor 102 may include a liquid-salt very-high-temperature reactor, a liquid fluoride reactor, a liquid fluoride thorium reactor, a liquid chloride reactor, a sodium chloride reactor, a magnesium chloride reactor, a potassium chloride reactor, a liquid chloride thorium reactor, a liquid salt breeder reactor, a liquid salt solid fuel reactor, a high flux water reactor with a uranium-salt or thorium salt target, etc.
  • the reactor 102 may employ one or more molten salts with a fissile material.
  • the molten salt may include any salt comprising Fluorine, Chlorine, Lithium, Sodium, Potassium, Beryllium, Zirconium, Rubidium, Magnesium etc., or any combination thereof.
  • Some examples of molten salts may include LiF, LiF—BeF 2 , 2LiF—BeF 2 , LiF—BeF 2 —ZrF 4 , NaF—BeF 2 , LiF—NaF—BeF 2 , LiF—ZrF 4 , LiF—NaF—ZrF 4 , KF—ZrF 4 , RbF—ZrF 4 , LiF—KF, LiF—RbF, LiF—NaF—KF, LiF—NaF—RbF, BeF 2 —NaF, NaF—BeF 2 , LiF—NaF—KF, NaF—MgF, NaF—MgF—KF etc.
  • the molten salt may include sodium fluoride, potassium fluoride, aluminum fluoride, zirconium fluoride, lithium fluoride, beryllium fluoride, rubidium fluoride, magnesium fluoride, and/or calcium fluoride
  • the molten salt may include any of the following possible salt eutectics. Many other eutectics may be possible. The following examples also include the melting point of the example eutectics. The molar ratios are examples only. Various other eutectics may be used.
  • the salt eutectic may include a mixture of UrF 4 and ThF 4 with a total mole ratio of about 41% (mol %) and NaF with a mole ratio of about 59%.
  • the total mole ratio, for example, of the UrF 4 and ThF 4 mixture may be about 41%.
  • the ratio UrF 4 and ThF 4 within the mixture may include any ratio.
  • the UrF 4 and ThF 4 mixture may include about 50% UrF 4 and about 50% ThF 4 , or the mixture may include about 25% UrF 4 and about 75% ThF 4 , or the mixture may include about 75% UrF 4 and about 25% ThF 4 , or the mixture may include about 10% UrF 4 and about 90% ThF 4 , or the mixture may include about 90% UrF 4 and about 10% ThF 4 , etc.
  • the salt eutectic may include a mixture of UrF 4 and ThF 4 with a total mole ratio of about 40%-60% (mol %) and NaF with a mole ratio of about 60%-40%.
  • the reactor 102 may include a reactor blanket 105 that surrounds a reactor core 110 .
  • a plurality of rods 115 may be disposed within the reactor core 110 .
  • the reactor core 110 may include a Uranium rich molten salt such as, for example, UF 4 —FLiBe.
  • the reactor blanket 105 may include a breeding actinide salt that can produce Uranium for the reactor core 110 .
  • the reactor blanket 105 may include a thorium rich fluoride salt.
  • the reactor blanket 105 may include thorium-232, which through neutron irradiation becomes thorium-233. Thorium-233 has a half-life of 22 minutes and through beta decay becomes protactinium-233. Then, through a second beta decay protactinium-233, which has a half-life of 26.97 days, becomes uranium-233, which is additional fuel for the reactor core 110 .
  • the rods 115 may include any material that may act as a neutron energy moderator such as, for example, graphite, ZrH x , light water, heavy water, beryllium, etc.
  • the neutron energy moderator may be selected or not used at all based on the desire for thermal, epithermal, or fast spectrum neutrons within the reactor core 110 .
  • the reactor system 100 may include a chemical separation subsystem.
  • the chemical separation subsystem may include a chemical separation chamber 120 and/or a chemical separation loop 125 .
  • the chemical separation subsystem may be used to extract fission products and purify the base salts.
  • a list of fission products can be found, for example, at https://www-nds.iaea.org/wimsd/fpyield.htm#T1 and/or at https ://www-nds.iaea.org/wimsd/fpyield.htm#T2.
  • the chemical separation subsystem may remove fission products without removing actinides (e.g., Uranium 233, Uranium 235, and/or Plutonium 239, etc.) from the reactor core 110 .
  • FIGS. 2, 3, and 4 illustrate examples of a chemical separation subsystem.
  • the safety subsystem may include an emergency dump conduit 170 , a freeze plug 160 , and a plurality of emergency dump tanks 165 .
  • the emergency dump tanks 165 are connected with the reactor core 110 via the dump conduit 170 .
  • the freeze plug 160 may be an active element that keeps the fissile material within the reactor core 110 unless there is an emergency. If the freeze plug 160 , for example, loses power or is otherwise triggered, the dump conduit is opened and the fissile material in the reactor core 110 is dumped into the dump tanks 165 .
  • the dump tanks 165 may include materials such as, for example, energy moderating materials.
  • the dump tanks 165 for example, may be placed in a location where any reactions can be controlled.
  • the dump tanks 165 for example, may be sized to preclude the possibility of a sustained reaction.
  • FIG. 2 is a diagram of a chemical separation subsystem 200 of a molten salt reactor according to some embodiments.
  • the chemical separation subsystem 200 includes a molten salt chemical separation channel 205 that can conduct molten salt from a molten salt chamber (e.g., reactor core 110 ).
  • the molten salt chemical separation channel 205 may connect with the molten salt loop conduit 220 , which may channel molten salt from the molten salt chamber to the molten salt chemical separation channel 205 .
  • the chemical separation channel 205 may feed molten salt into the molten salt reservoir 210 , 215 .
  • the molten salt reservoir 210 , 215 may fill or partially fill with molten salt via the molten salt chemical separation channel 205 .
  • bismuth or other chemicals may be constrained, placed, or disposed within the molten salt reservoir 210 , 215 by a membrane or mesh, for example, to chemically remove additional fission products.
  • Molten salt may flow through the molten salt reservoir 210 , 215 and return to the molten salt chamber via molten salt return conduit 245 .
  • the surface level 225 of the molten salt within the molten salt chemical separation channel 205 may separate the molten salt chemical separation channel 205 and the chemical separation chamber 260 .
  • the chemical separation chamber 260 may be filled with an inert gas or a vacuum that may, for example, keep the molten salt surface 225 from being exposed to unwanted reactions or oxidation.
  • an electrode 230 may be dipped within the molten salt within the molten salt chemical separation channel 205 .
  • the electrode 230 may include Uranium.
  • the electrode may be coupled with a raise and swivel gantry 235 .
  • the raise and swivel gantry 235 may be a mechanical mechanism that can raise (see FIG. 3 ), swivel, and lower (see FIG. 4 ) the electrode 230 into a solvent receptacle 240 .
  • the solvent receptacle 240 may include a solvent.
  • the solvent may comprise any solvent that includes Ethelyn glycol.
  • the solvent may be held at or near about room temperature.
  • the raise and swivel gantry 235 may include a one or more of motors, actuators, gears, pulleys, solenoids, cables, etc. that can effectuate the movement of the electrode 230 .
  • an electrical potential may be placed on the electrode 230 while the electrode is in contact with the molten salt (e.g., actinide bearing salt). In some embodiments, an electrical potential may not be required and the electrode 230 will merely be a conductor while the electrode is in contact with the molten salt. In some embodiments, the electric potential may be a direct current or an alternating current electrical potential. A second electrode may be in contact with the molten salt to complete the circuit.
  • the molten salt e.g., actinide bearing salt.
  • the second electrode can be an electrode coupled with any portion of the chemical separation subsystem 200 and/or may be part of a vessel wall of the chemical separation subsystem 200 such as, for example, the second electrode may be part of the vessel wall of the molten salt chemical separation channel 205 and/or the vessel wall of the molten salt loop conduit 220 .
  • the electric potential between the electrode 230 and the second electrode may produce an electrochemical reaction between fission products within the molten salt and the electrode 230 .
  • the electrochemical reaction may cause fission products to be plated on the electrode 230 .
  • the magnitude of the electric potential, the magnitude of the current applied to the electric potential, the composition of the molten salt, the type and composition of the fission products dissolved in the salt, and/or the material comprising the electrode 230 may determine the reactants that react with the electrode 230 . Additionally or alternatively, in some embodiments, the frequency of an alternating electric potential, the frequency of the alternating current applied to the electric potential, the composition of the molten salt, and/or the material comprising the electrode 230 may determine the reactants that react with the electrode 230
  • the raise and swivel gantry 235 may be disposed partially within the chemical separation chamber 260 .
  • one or more of motors, actuators, gears, pulleys, solenoids, cables, etc. may be coupled with and/or part of the raise and swivel gantry 235 .
  • the one or more of motors, actuators, gears, pulleys, solenoids, cables, etc. may be disposed external to the chemical separation chamber 260 that cause the raise and swivel gantry 235 to raise and/or swivel the electrode 230 .
  • the chemical separation chamber 260 may include a getter plug 250 .
  • the getter plug 250 may include magnesium carbonate, depleted uranium, silver, or copper etc., and collect various chemicals, especially gasses such as tritium, hydrogen, deuterium, iodine, xenon, etc.
  • the getter plug 250 may use a pneumatic or mechanical system to remove and replace the (potentially saturated) getter in order to pull out chemicals from the chemical separation chamber 260 .
  • the chemical separation chamber 260 may include a gaseous release port 255 .
  • the gaseous release port 255 may collect gaseous products from the chemical separation chamber 260 such as, for example, krypton, xenon, iodine, helium etc.
  • FIG. 3 is a diagram of a chemical separation subsystem 200 of a molten salt reactor with the electrode 230 in a raised position within the chemical separation chamber 260 according to some embodiments.
  • the one or more of motors, actuators, gears, pulleys, solenoids, cables, etc. have been engaged to raise the raise and swivel gantry 235 .
  • FIG. 4 is a diagram of a chemical separation subsystem 200 of a molten salt reactor with the electrode 230 in a lowered position and disposed within the solvent receptacle 240 according to some embodiments.
  • the electric potential between the electrode 230 and the second electrode may be reversed and produce an electrochemical reaction between the fission products on the electrode and the solvent within the solvent receptacle 240 .
  • the frequency or magnitude of the potential between the electrode 230 and the second electrode may be changed to produce an electrochemical reaction between the fission products on the electrode and the solvent within the solvent receptacle 240 .
  • the fission products may be released, dissolved, and/or deposited into the solvent.
  • the solvent receptacle 240 may be coupled with a solvent processing subsystem such as, for example, via a tube and/or a solenoid that allows solvent to flow from the solvent receptacle 240 to the solvent processing subsystem.
  • a solvent processing subsystem such as, for example, via a tube and/or a solenoid that allows solvent to flow from the solvent receptacle 240 to the solvent processing subsystem.
  • the fission products may be separated from the solvent and/or further processed.
  • FIG. 5 is a diagram of a chemical separation subsystem 200 attached with molten salt reactor 260 (e.g., reactor 102 ) according to some embodiments.
  • FIG. 6 is another diagram of a chemical separation subsystem 200 attached with molten salt reactor 260 according to some embodiments.
  • the chemical separation subsystem 200 may be coupled with the molten salt reactor 260 via the molten salt return conduit 245 and/or the molten salt loop conduit 220 .
  • FIG. 7 is a flowchart representing a process 700 for using an electrode to remove fission products from a molten salt reactor according to some embodiments.
  • an electrode may be exposed to a molten salt.
  • the electrode for example, may include electrode 230 .
  • the molten salt may include but not be limited to any molten salt described in this document.
  • an electrical potential is provided to the electrode.
  • the electrical potential may vary in voltage and/or frequency depending on the type of molten salts, the molten salt mixture, and/or the type of fission products desired to extract from the molten salt.
  • the electric potential may be a potential between the electrode and a second electrode disposed elsewhere in the molten salt.
  • the electric potential between the electrode and the second electrode may produce an electrochemical reaction between fission products within the molten salt and the electrode.
  • the electrochemical reaction may cause fission products to be plated on the electrode.
  • the electrode may be removed from the molten salt. This can be accomplished in any number of ways.
  • the electrode may be removed using a raise and swivel gantry.
  • the electrode may be removed using one or more of motors, actuators, gears, pulleys, solenoids, etc.
  • the electrode may be removed from the molten salt by removing the molten salt.
  • the electrode may be exposed to a solvent.
  • the electrode can be moved to a solvent receptacle.
  • the chamber where the electrode is disposed may be filled with a solvent after the molten salt has been removed.
  • the electrode may be exposed to an electrical potential.
  • the electrical potential provided while the electrode is disposed in the solvent may be reversed relative to the electrical potential provided at block 710 .
  • the electrical potential may vary in voltage and/or frequency depending on the solvent composition and/or the type of fission products.
  • the electric potential for example, may be a potential between the electrode and a third electrode disposed elsewhere in the solvent. The electric potential between the electrode and the third electrode may produce an electrochemical reaction between fission products plated on the electrode such that the fission products are dissolved in the solvent.
  • the electrode may be removed from the solvent.
  • the process 700 may be repeated any number of times.
  • the process 700 may also include additional blocks or steps.
  • any number of blocks of the process 700 may be removed or deleted.
  • an electrode may be held stationary within a chemical separation subsystem.
  • Molten salt and solvent may alternately flow into the chemical separation subsystem as electrical potential on the electrode is correspondingly reversed to collect fission material from the molten salt and dissolve fission material in the solvent.
  • the term “substantially” means within 5% or 10% of the value referred to or within manufacturing tolerances. Unless otherwise specified, the term “about” means within 5% or 10% of the value referred to or within manufacturing tolerances.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • High Energy & Nuclear Physics (AREA)
  • General Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Materials Engineering (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Electrolytic Production Of Metals (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Structure Of Emergency Protection For Nuclear Reactors (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

Some embodiments include a molten salt system comprising a reactor with a salt mixture. In some embodiments, the salt mixture includes uranium and a eutectic salt. The eutectic salt may include one or more of sodium fluoride, potassium fluoride, aluminum fluoride, zirconium fluoride, lithium fluoride, beryllium fluoride, rubidium fluoride, magnesium fluoride, calcium fluoride, sodium chloride, potassium chloride, aluminum chloride, zirconium chloride, lithium chloride, beryllium chloride, rubidium chloride, magnesium chloride, and calcium chloride. The eutectic salt may have a melting point less than about 800° C.

Description

    BACKGROUND
  • Molten salt reactors are a class of nuclear fission reactors in which the primary nuclear reactor coolant and/or the fuel is a molten salt mixture. Molten salt reactors offer multiple advantages over conventional nuclear power plants.
  • SUMMARY
  • Some embodiments of the disclosure include eutectic salts that may be used in a molten salt reactor. The eutectic salt, for example, may include: a salt mixture comprising one or more salts selected from the group consisting of sodium fluoride, potassium fluoride, aluminum fluoride, zirconium fluoride, lithium fluoride, beryllium fluoride, rubidium fluoride, magnesium fluoride, calcium fluoride, and uranium fluoride. In some embodiments, the eutectic salt has a melting point less than about 800° C.
  • In some embodiments, the salt mixture comprises sodium fluoride and potassium fluoride. In some embodiments, the salt mixture comprises sodium fluoride (40-60 mol %) and potassium fluoride (40-60 mol %).
  • In some embodiments, the salt mixture comprises sodium fluoride, potassium fluoride, and magnesium fluoride. In some embodiments, the salt mixture comprises sodium fluoride (40-60 mol %), potassium fluoride (40-70 mol %), and magnesium fluoride (0-20 mol %).
  • In some embodiments, the salt mixture comprises sodium fluoride, potassium fluoride, and calcium fluoride. In some embodiments, the salt mixture comprises sodium fluoride (40-60 mol %), potassium fluoride (40-70 mol %), and calcium fluoride (0-20 mol %).
  • In some embodiments, the salt mixture comprises sodium fluoride (40-60 mol %), potassium fluoride (40-70 mol %), magnesium fluoride (0-20 mol %), and calcium fluoride (0-20 mol %).
  • In some embodiments, the salt mixture comprises lithium fluoride, sodium fluoride and potassium fluoride.
  • In some embodiments, the uranium fluoride comprises uranium-233 or uranium-235.
  • In some embodiments, the melting point of the eutectic salt is less than about 750° C. In some embodiments, the melting point of the eutectic salt is less than about 650° C. In some embodiments, the melting point of the eutectic salt is less than about 550° C. In some embodiments, the melting point of the eutectic salt is about 710° C.
  • Some embodiments include a molten salt system comprising a reactor with a salt mixture. In some embodiments, the salt mixture includes uranium and a eutectic salt. The eutectic salt may include one or more of sodium fluoride, potassium fluoride, aluminum fluoride, zirconium fluoride, lithium fluoride, beryllium fluoride, rubidium fluoride, magnesium fluoride, calcium fluoride, sodium chloride, potassium chloride, aluminum chloride, zirconium chloride, lithium chloride, beryllium chloride, rubidium chloride, magnesium chloride, and calcium chloride. The eutectic salt may have a melting point less than about 800° C.
  • In some embodiments, the melting point of the eutectic salt is less than about 750° C. In some embodiments, the melting point of the eutectic salt is less than about 650° C. In some embodiments, the melting point of the eutectic salt is less than about 550° C. In some embodiments, the melting point of the eutectic salt is about 710° C.
  • Some embodiments include a eutectic salt comprising uranium, and one or more salts selected from the group consisting of sodium fluoride, potassium fluoride, lithium fluoride, sodium chloride, potassium chloride, and magnesium chloride. In some embodiments, the eutectic salt has a melting point less than about 800° C.
  • In some embodiments, the melting point of the eutectic salt is less than about 750° C. In some embodiments, the melting point of the eutectic salt is less than about 650° C. In some embodiments, the melting point of the eutectic salt is less than about 550° C. In some embodiments, the melting point of the eutectic salt is about 710° C.
  • In some embodiments, the eutectic salt comprises sodium fluoride and potassium fluoride. In some embodiments, the salt mixture comprises sodium fluoride (40-60 mol %) and potassium fluoride (40-60 mol %).
  • In some embodiments, the eutectic salt comprises sodium fluoride, potassium fluoride, and magnesium fluoride. In some embodiments, the salt mixture comprises sodium fluoride (40-60 mol %), potassium fluoride (40-70 mol %), and magnesium fluoride (0-20 mol %).
  • In some embodiments, the eutectic salt comprises sodium fluoride, potassium fluoride, and calcium fluoride. In some embodiments, the salt mixture comprises sodium fluoride (40-60 mol %), potassium fluoride (40-70 mol %), and calcium fluoride (0-20 mol %).
  • In some embodiments, the salt mixture comprises sodium fluoride (40-60 mol %), potassium fluoride (40-70 mol %), magnesium fluoride (0-20 mol %), and calcium fluoride (0-20 mol %).
  • BRIEF DESCRIPTION OF THE FIGURES
  • These and other features, aspects, and advantages of the present disclosure are better understood when the following Detailed Description is read with reference to the accompanying drawings.
  • FIG. 1 is a diagram of a molten salt reactor system according to some embodiments.
  • FIG. 2 is a diagram of a chemical separation subsystem of a molten salt reactor according to some embodiments.
  • FIG. 3 is a diagram of a chemical separation subsystem of a molten salt reactor with the electrode in a raised position within the chemical separation chamber according to some embodiments.
  • FIG. 4 is a diagram of a chemical separation subsystem of a molten salt reactor with the electrode in a lowered position and disposed within the solvent pool according to some embodiments.
  • FIG. 5 is a diagram of a chemical separation subsystem attached with molten salt reactor according to some embodiments.
  • FIG. 6 is another diagram of a chemical separation subsystem attached with molten salt reactor according to some embodiments.
  • FIG. 7 is a flowchart representing a process of using an electrode to remove fission products from a molten salt reactor according to some embodiments.
  • DETAILED DESCRIPTION
  • Specific eutectic salts and/or associated systems and methods are disclosed for use in a molten salt reactor. A molten salt reactor may include a nuclear fission reactor in which the reactor coolant, or even the fuel itself, is a molten salt mixture. In some embodiments, molten salt reactors can run at higher temperatures than water-cooled reactors for a higher thermodynamic efficiency, while staying at or near ambient pressure. In some embodiments, the fuel in a molten salt reactor may include a molten mixture of fluoride salts (e.g., sodium fluoride and magnesium fluoride) with dissolved uranium (U-235 or U-233) fluorides (UFx). In some embodiments, the uranium may be low-enriched uranium (where 5% or less of the Uranium is U-235), uranium-233, uranium-235, uranium 238, or high enriched uranium (where 5% or more of the Uranium is U-235). In some embodiments, the rate of fission in a molten salt reactor can be inherently stable.
  • FIG. 1 is a diagram of a molten salt reactor system 100 according to some embodiments. The molten salt reactor system 100 may include a reactor 102, a chemical separation subsystem (e.g., including chemical separation chamber 120), safety systems (e.g., including emergency dump tanks 165), and turbines 145.
  • The reactor 102 may include any type of molten salt fission device or system whether or not it includes a reactor. The reactor 102 may include a liquid-salt very-high-temperature reactor, a liquid fluoride reactor, a liquid fluoride thorium reactor, a liquid chloride reactor, a sodium chloride reactor, a magnesium chloride reactor, a potassium chloride reactor, a liquid chloride thorium reactor, a liquid salt breeder reactor, a liquid salt solid fuel reactor, a high flux water reactor with a uranium-salt or thorium salt target, etc. The reactor 102, for example, may employ one or more molten salts with a fissile material. The molten salt, for example, may include any salt comprising Fluorine, Chlorine, Lithium, Sodium, Potassium, Beryllium, Zirconium, Rubidium, Magnesium etc., or any combination thereof. Some examples of molten salts may include LiF, LiF—BeF2, 2LiF—BeF2, LiF—BeF2—ZrF4, NaF—BeF2, LiF—NaF—BeF2, LiF—ZrF4, LiF—NaF—ZrF4, KF—ZrF4, RbF—ZrF4, LiF—KF, LiF—RbF, LiF—NaF—KF, LiF—NaF—RbF, BeF2—NaF, NaF—BeF2, LiF—NaF—KF, NaF—MgF, NaF—MgF—KF etc. In some embodiments, the molten salt may include sodium fluoride, potassium fluoride, aluminum fluoride, zirconium fluoride, lithium fluoride, beryllium fluoride, rubidium fluoride, magnesium fluoride, and/or calcium fluoride
  • In some embodiments, the molten salt may include any of the following possible salt eutectics. Many other eutectics may be possible. The following examples also include the melting point of the example eutectics. The molar ratios are examples only. Various other eutectics may be used.
      • LiF—NaF (60-40 mol %) 652° C.
      • LiF—KF (50-50 mol %) 492° C.
      • LiF—NaF—KF (46.5-11.5-42 mol %) 454° C.
      • LiF—NaF—CaF2 (53-36-11 mol %) 616° C.
      • LiF—NaF—MgF2—CaF2 (˜50-˜30-˜10-˜10 mol %)˜600° C.
      • LiF—MgF2—CaF2 (˜65-˜12-˜23 mol %) 650-725° C.
      • LiF—BeF2 (66.5-33.5 mol %) 454° C.
      • NaF—BeF2 (69-31 mol %) 570° C.
      • LiF—NaF—BeF2 (15-58-27 mol %) 480° C.
      • LiF—NaF—ZrF4 (37-52-11 mol %) 604° C.
      • LiF—ThF4 (71-29 mol %) 565° C.
      • NaF—ThF4 (77.5-22.5 mol %) 618° C.
      • NaF—ThF4 (63-37 mol %) 690° C.
      • NaF—ThF4 (59-41 mol %) 705° C.
      • LiF—UF4 (73-27 mol %) 490° C.
      • NaF—UF4 (78.5-21.5 mol %) 618° C.
      • LiF—NaF—UF4 (24.3-43.5-32.2 mol %) 445° C.
  • In some embodiments, the salt eutectic may include a mixture of UrF4 and ThF4 with a total mole ratio of about 41% (mol %) and NaF with a mole ratio of about 59%. The total mole ratio, for example, of the UrF4 and ThF4 mixture may be about 41%. The ratio UrF4 and ThF4 within the mixture may include any ratio. For example, the UrF4 and ThF4 mixture may include about 50% UrF4 and about 50% ThF4, or the mixture may include about 25% UrF4 and about 75% ThF4, or the mixture may include about 75% UrF4 and about 25% ThF4, or the mixture may include about 10% UrF4 and about 90% ThF4, or the mixture may include about 90% UrF4 and about 10% ThF4, etc.
  • In some embodiments, the salt eutectic may include a mixture of UrF4 and ThF4 with a total mole ratio of about 40%-60% (mol %) and NaF with a mole ratio of about 60%-40%.
  • The reactor 102 may include a reactor blanket 105 that surrounds a reactor core 110. A plurality of rods 115 may be disposed within the reactor core 110. The reactor core 110, for example, may include a Uranium rich molten salt such as, for example, UF4—FLiBe. The reactor blanket 105 may include a breeding actinide salt that can produce Uranium for the reactor core 110. The reactor blanket 105 may include a thorium rich fluoride salt. For example, the reactor blanket 105 may include thorium-232, which through neutron irradiation becomes thorium-233. Thorium-233 has a half-life of 22 minutes and through beta decay becomes protactinium-233. Then, through a second beta decay protactinium-233, which has a half-life of 26.97 days, becomes uranium-233, which is additional fuel for the reactor core 110.
  • The rods 115 may include any material that may act as a neutron energy moderator such as, for example, graphite, ZrHx, light water, heavy water, beryllium, etc. The neutron energy moderator may be selected or not used at all based on the desire for thermal, epithermal, or fast spectrum neutrons within the reactor core 110.
  • In some embodiments, the reactor system 100 may include a chemical separation subsystem. The chemical separation subsystem, for example, may include a chemical separation chamber 120 and/or a chemical separation loop 125. The chemical separation subsystem, for example, may be used to extract fission products and purify the base salts. A list of fission products can be found, for example, at https://www-nds.iaea.org/wimsd/fpyield.htm#T1 and/or at https ://www-nds.iaea.org/wimsd/fpyield.htm#T2. The chemical separation subsystem, for example, may remove fission products without removing actinides (e.g., Uranium 233, Uranium 235, and/or Plutonium 239, etc.) from the reactor core 110. FIGS. 2, 3, and 4 illustrate examples of a chemical separation subsystem.
  • The safety subsystem may include an emergency dump conduit 170, a freeze plug 160, and a plurality of emergency dump tanks 165. The emergency dump tanks 165 are connected with the reactor core 110 via the dump conduit 170. The freeze plug 160 may be an active element that keeps the fissile material within the reactor core 110 unless there is an emergency. If the freeze plug 160, for example, loses power or is otherwise triggered, the dump conduit is opened and the fissile material in the reactor core 110 is dumped into the dump tanks 165. The dump tanks 165 may include materials such as, for example, energy moderating materials. The dump tanks 165, for example, may be placed in a location where any reactions can be controlled. The dump tanks 165, for example, may be sized to preclude the possibility of a sustained reaction.
  • FIG. 2 is a diagram of a chemical separation subsystem 200 of a molten salt reactor according to some embodiments. The chemical separation subsystem 200 includes a molten salt chemical separation channel 205 that can conduct molten salt from a molten salt chamber (e.g., reactor core 110). The molten salt chemical separation channel 205 may connect with the molten salt loop conduit 220, which may channel molten salt from the molten salt chamber to the molten salt chemical separation channel 205. The chemical separation channel 205 may feed molten salt into the molten salt reservoir 210, 215. The molten salt reservoir 210, 215 may fill or partially fill with molten salt via the molten salt chemical separation channel 205. In some embodiments, bismuth or other chemicals may be constrained, placed, or disposed within the molten salt reservoir 210, 215 by a membrane or mesh, for example, to chemically remove additional fission products. Molten salt may flow through the molten salt reservoir 210, 215 and return to the molten salt chamber via molten salt return conduit 245.
  • In some embodiments, the surface level 225 of the molten salt within the molten salt chemical separation channel 205 may separate the molten salt chemical separation channel 205 and the chemical separation chamber 260. In some embodiments, the chemical separation chamber 260 may be filled with an inert gas or a vacuum that may, for example, keep the molten salt surface 225 from being exposed to unwanted reactions or oxidation.
  • In some embodiments, an electrode 230 may be dipped within the molten salt within the molten salt chemical separation channel 205. The electrode 230 may include Uranium. The electrode may be coupled with a raise and swivel gantry 235. The raise and swivel gantry 235 may be a mechanical mechanism that can raise (see FIG. 3), swivel, and lower (see FIG. 4) the electrode 230 into a solvent receptacle 240. The solvent receptacle 240 may include a solvent. In some embodiments, the solvent may comprise any solvent that includes Ethelyn glycol. In some embodiments, the solvent may be held at or near about room temperature. The raise and swivel gantry 235 may include a one or more of motors, actuators, gears, pulleys, solenoids, cables, etc. that can effectuate the movement of the electrode 230.
  • In some embodiments, an electrical potential may be placed on the electrode 230 while the electrode is in contact with the molten salt (e.g., actinide bearing salt). In some embodiments, an electrical potential may not be required and the electrode 230 will merely be a conductor while the electrode is in contact with the molten salt. In some embodiments, the electric potential may be a direct current or an alternating current electrical potential. A second electrode may be in contact with the molten salt to complete the circuit. The second electrode can be an electrode coupled with any portion of the chemical separation subsystem 200 and/or may be part of a vessel wall of the chemical separation subsystem 200 such as, for example, the second electrode may be part of the vessel wall of the molten salt chemical separation channel 205 and/or the vessel wall of the molten salt loop conduit 220. The electric potential between the electrode 230 and the second electrode may produce an electrochemical reaction between fission products within the molten salt and the electrode 230. In some embodiments, the electrochemical reaction may cause fission products to be plated on the electrode 230.
  • In some embodiments, the magnitude of the electric potential, the magnitude of the current applied to the electric potential, the composition of the molten salt, the type and composition of the fission products dissolved in the salt, and/or the material comprising the electrode 230 may determine the reactants that react with the electrode 230. Additionally or alternatively, in some embodiments, the frequency of an alternating electric potential, the frequency of the alternating current applied to the electric potential, the composition of the molten salt, and/or the material comprising the electrode 230 may determine the reactants that react with the electrode 230
  • In some embodiments, the raise and swivel gantry 235 may be disposed partially within the chemical separation chamber 260. In some embodiments, one or more of motors, actuators, gears, pulleys, solenoids, cables, etc. may be coupled with and/or part of the raise and swivel gantry 235. In some embodiments, the one or more of motors, actuators, gears, pulleys, solenoids, cables, etc. may be disposed external to the chemical separation chamber 260 that cause the raise and swivel gantry 235 to raise and/or swivel the electrode 230.
  • In some embodiments, the chemical separation chamber 260 may include a getter plug 250. The getter plug 250, for example, may include magnesium carbonate, depleted uranium, silver, or copper etc., and collect various chemicals, especially gasses such as tritium, hydrogen, deuterium, iodine, xenon, etc. In some embodiments, the getter plug 250 may use a pneumatic or mechanical system to remove and replace the (potentially saturated) getter in order to pull out chemicals from the chemical separation chamber 260.
  • In some embodiments, the chemical separation chamber 260 may include a gaseous release port 255. The gaseous release port 255, for example, may collect gaseous products from the chemical separation chamber 260 such as, for example, krypton, xenon, iodine, helium etc.
  • FIG. 3 is a diagram of a chemical separation subsystem 200 of a molten salt reactor with the electrode 230 in a raised position within the chemical separation chamber 260 according to some embodiments. In this figure, the one or more of motors, actuators, gears, pulleys, solenoids, cables, etc. have been engaged to raise the raise and swivel gantry 235.
  • FIG. 4 is a diagram of a chemical separation subsystem 200 of a molten salt reactor with the electrode 230 in a lowered position and disposed within the solvent receptacle 240 according to some embodiments. In some embodiments, when the electrode 230 is in the lowered position and disposed within the solvent receptacle 240, the electric potential between the electrode 230 and the second electrode may be reversed and produce an electrochemical reaction between the fission products on the electrode and the solvent within the solvent receptacle 240. In some embodiments, when the electrode 230 is in the lowered position and disposed within the solvent receptacle 240, the frequency or magnitude of the potential between the electrode 230 and the second electrode may be changed to produce an electrochemical reaction between the fission products on the electrode and the solvent within the solvent receptacle 240. In some embodiments the fission products may be released, dissolved, and/or deposited into the solvent.
  • In some embodiments, the solvent receptacle 240 may be coupled with a solvent processing subsystem such as, for example, via a tube and/or a solenoid that allows solvent to flow from the solvent receptacle 240 to the solvent processing subsystem. In some embodiments, the fission products may be separated from the solvent and/or further processed.
  • FIG. 5 is a diagram of a chemical separation subsystem 200 attached with molten salt reactor 260 (e.g., reactor 102) according to some embodiments. FIG. 6 is another diagram of a chemical separation subsystem 200 attached with molten salt reactor 260 according to some embodiments. In some embodiments, the chemical separation subsystem 200 may be coupled with the molten salt reactor 260 via the molten salt return conduit 245 and/or the molten salt loop conduit 220.
  • FIG. 7 is a flowchart representing a process 700 for using an electrode to remove fission products from a molten salt reactor according to some embodiments. At block 705 an electrode may be exposed to a molten salt. The electrode, for example, may include electrode 230. The molten salt may include but not be limited to any molten salt described in this document.
  • At block 710 an electrical potential is provided to the electrode. The electrical potential, for example, may vary in voltage and/or frequency depending on the type of molten salts, the molten salt mixture, and/or the type of fission products desired to extract from the molten salt. The electric potential, for example, may be a potential between the electrode and a second electrode disposed elsewhere in the molten salt. The electric potential between the electrode and the second electrode may produce an electrochemical reaction between fission products within the molten salt and the electrode. In some embodiments, the electrochemical reaction may cause fission products to be plated on the electrode.
  • At block 715 the electrode may be removed from the molten salt. This can be accomplished in any number of ways. For example, the electrode may be removed using a raise and swivel gantry. As another example, the electrode may be removed using one or more of motors, actuators, gears, pulleys, solenoids, etc. As another example, the electrode may be removed from the molten salt by removing the molten salt.
  • At block 720 the electrode may be exposed to a solvent. For example, the electrode can be moved to a solvent receptacle. As another example, the chamber where the electrode is disposed may be filled with a solvent after the molten salt has been removed.
  • At block 725 the electrode may be exposed to an electrical potential. In some embodiments, the electrical potential provided while the electrode is disposed in the solvent may be reversed relative to the electrical potential provided at block 710. In some embodiments, the electrical potential, for example, may vary in voltage and/or frequency depending on the solvent composition and/or the type of fission products. The electric potential, for example, may be a potential between the electrode and a third electrode disposed elsewhere in the solvent. The electric potential between the electrode and the third electrode may produce an electrochemical reaction between fission products plated on the electrode such that the fission products are dissolved in the solvent.
  • At block 730 the electrode may be removed from the solvent.
  • The process 700 may be repeated any number of times. The process 700 may also include additional blocks or steps. In addition or alternatively, any number of blocks of the process 700 may be removed or deleted.
  • In some embodiments, an electrode may be held stationary within a chemical separation subsystem. Molten salt and solvent may alternately flow into the chemical separation subsystem as electrical potential on the electrode is correspondingly reversed to collect fission material from the molten salt and dissolve fission material in the solvent.
  • Unless otherwise specified, the term “substantially” means within 5% or 10% of the value referred to or within manufacturing tolerances. Unless otherwise specified, the term “about” means within 5% or 10% of the value referred to or within manufacturing tolerances.
  • The conjunction “or” is inclusive.
  • Numerous specific details are set forth herein to provide a thorough understanding of the claimed subject matter. However, those skilled in the art will understand that the claimed subject matter may be practiced without these specific details. In other instances, methods, apparatuses or systems that would be known by one of ordinary skill have not been described in detail so as not to obscure claimed subject matter.
  • The system or systems discussed herein are not limited to any particular hardware architecture or configuration.
  • The use of “adapted to” or “configured to” herein is meant as open and inclusive language that does not foreclose devices adapted to or configured to perform additional tasks or steps. Additionally, the use of “based on” is meant to be open and inclusive, in that a process, step, calculation, or other action “based on” one or more recited conditions or values may, in practice, be based on additional conditions or values beyond those recited. Headings, lists, and numbering included herein are for ease of explanation only and are not meant to be limiting.
  • While the present subject matter has been described in detail with respect to specific embodiments thereof, it will be appreciated that those skilled in the art, upon attaining an understanding of the foregoing, may readily produce alterations to, variations of, and equivalents to such embodiments. Accordingly, it should be understood that the present disclosure has been presented for purposes of example rather than limitation, and does not preclude inclusion of such modifications, variations and/or additions to the present subject matter as would be readily apparent to one of ordinary skill in the art.

Claims (21)

That which is claimed:
1. A eutectic salt comprising:
a salt mixture comprising:
uranium, and
one or more salts selected from the group consisting of sodium fluoride, potassium fluoride, aluminum fluoride, zirconium fluoride, lithium fluoride, beryllium fluoride, rubidium fluoride, magnesium fluoride, calcium fluoride, sodium chloride, potassium chloride, aluminum chloride, zirconium chloride, lithium chloride, beryllium chloride, rubidium chloride, magnesium chloride, and calcium chloride;
wherein the eutectic salt has a melting point less than about 800° C.
2. The eutectic salt according to claim 1, wherein the salt mixture comprises uranium fluoride.
3. The eutectic salt according to claim 1, wherein the salt mixture comprises uranium chloride.
4. The eutectic salt according to claim 1, wherein the salt mixture comprises sodium fluoride and potassium fluoride.
5. The eutectic salt according to claim 1, wherein the salt mixture comprises sodium fluoride with a molarity of 40-60 mol % and potassium fluoride with a molarity of 40-60 mol %.
6. The eutectic salt according to claim 1, wherein the salt mixture comprises sodium fluoride, potassium fluoride, and magnesium fluoride.
7. The eutectic salt according to claim 1, wherein the salt mixture comprises sodium fluoride with a molarity of 40-60 mol %, potassium fluoride with a molarity of 40-70 mol %, and magnesium fluoride with a molarity of 0-20 mol %.
8. The eutectic salt according to claim 1, wherein the salt mixture comprises sodium fluoride, potassium fluoride, and calcium fluoride.
9. The eutectic salt according to claim 1, wherein the salt mixture comprises sodium fluoride with a molarity of 40-60 mol %, potassium fluoride with a molarity of 40-70 mol %, and calcium fluoride with a molarity of 0-20 mol %.
10. The eutectic salt according to claim 1, wherein the salt mixture comprises sodium fluoride with a molarity of 40-60 mol %, potassium fluoride with a molarity of 40-70 mol %, magnesium fluoride with a molarity of 0-20 mol %, and calcium fluoride with a molarity of 0-20 mol %.
11. The eutectic salt according to claim 1, wherein the salt mixture comprises lithium fluoride, sodium fluoride and potassium fluoride.
12. The eutectic salt according to claim 1, wherein the uranium fluoride comprises unenriched uranium.
13. The eutectic salt according to claim 1, wherein the uranium comprises uranium-233.
14. The eutectic salt according to claim 1, wherein the melting point of the eutectic salt is less than about 600° C.
15. The eutectic salt according to claim 1, wherein the melting point of the eutectic salt is less than about 710° C.
16. A molten salt system comprising:
a reactor;
a salt mixture disposed within the reactor, the salt mixture comprising:
uranium, and
one or more eutectic salt selected from the group consisting of sodium fluoride, potassium fluoride, aluminum fluoride, zirconium fluoride, lithium fluoride, beryllium fluoride, rubidium fluoride, magnesium fluoride, calcium fluoride, sodium chloride, potassium chloride, aluminum chloride, zirconium chloride, lithium chloride, beryllium chloride, rubidium chloride, magnesium chloride, and calcium chloride;
wherein the eutectic salt has a melting point less than about 800° C.
17. The molten salt system according to claim 16, wherein the uranium fluoride comprises unenriched uranium.
18. The molten salt system according to claim 16, wherein the uranium comprises uranium-233.
19. A eutectic salt comprising:
a salt mixture comprising:
uranium, and
one or more salts selected from the group consisting of sodium fluoride, potassium fluoride, lithium fluoride, sodium chloride, potassium chloride, and magnesium chloride;
wherein the eutectic salt has a melting point less than about 710° C.
20. The eutectic salt according to claim 19, wherein the uranium fluoride comprises unenriched uranium.
21. The eutectic salt according to claim 19, wherein the uranium comprises uranium-233.
US16/709,470 2018-12-10 2019-12-10 Eutectic salts Abandoned US20200180975A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/709,470 US20200180975A1 (en) 2018-12-10 2019-12-10 Eutectic salts

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US201862777595P 2018-12-10 2018-12-10
US201862777603P 2018-12-10 2018-12-10
US201862777612P 2018-12-10 2018-12-10
US201962927098P 2019-10-28 2019-10-28
US201962927094P 2019-10-28 2019-10-28
US16/709,470 US20200180975A1 (en) 2018-12-10 2019-12-10 Eutectic salts

Publications (1)

Publication Number Publication Date
US20200180975A1 true US20200180975A1 (en) 2020-06-11

Family

ID=70971647

Family Applications (3)

Application Number Title Priority Date Filing Date
US16/709,470 Abandoned US20200180975A1 (en) 2018-12-10 2019-12-10 Eutectic salts
US16/709,449 Active US11136245B2 (en) 2018-12-10 2019-12-10 Salt wall in a molten salt reactor
US17/493,838 Abandoned US20220250936A1 (en) 2018-12-10 2021-10-04 Salt wall in a molten salt reactor

Family Applications After (2)

Application Number Title Priority Date Filing Date
US16/709,449 Active US11136245B2 (en) 2018-12-10 2019-12-10 Salt wall in a molten salt reactor
US17/493,838 Abandoned US20220250936A1 (en) 2018-12-10 2021-10-04 Salt wall in a molten salt reactor

Country Status (2)

Country Link
US (3) US20200180975A1 (en)
WO (2) WO2020123513A2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220250936A1 (en) * 2018-12-10 2022-08-11 Alpha Tech Research Corp Salt wall in a molten salt reactor
WO2023067312A1 (en) * 2021-10-19 2023-04-27 Uk Atomic Energy Authority Molten salt composition
US11931763B2 (en) 2019-11-08 2024-03-19 Abilene Christian University Identifying and quantifying components in a high-melting-point liquid

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023539930A (en) * 2020-09-09 2023-09-20 リチャード スコット,イアン Molten salt coolant for nuclear reactors
GB2602339A (en) * 2020-12-23 2022-06-29 Richard Scott Ian Molten salt coolant for nuclear reactor
GB2598739A (en) * 2020-09-09 2022-03-16 Richard Scott Ian Molten salt coolant for nuclear reactor
WO2023049690A1 (en) 2021-09-21 2023-03-30 Abilene Christian University Stabilizing face ring joint flange and assembly thereof
US12012827B1 (en) 2023-09-11 2024-06-18 Natura Resources LLC Nuclear reactor integrated oil and gas production systems and methods of operation

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008060663A2 (en) * 2006-04-14 2008-05-22 Thorenco, Llc Compact neutron generator for medical and commercial isotope production, fission product purification and controlled gamma reactions for direct electric power generation
JP2010540962A (en) * 2007-10-04 2010-12-24 ローレンス・リバモア・ナショナル・セキュリティ・エルエルシー Control of laser inertial confinement fusion and fission power plants

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2920024A (en) 1956-07-27 1960-01-05 Barton Charles Julian Molten fluoride nuclear reactor fuel
BE559845A (en) 1956-08-06
US3473897A (en) 1968-07-18 1969-10-21 Atomic Energy Commission Method for separating uranium and protactinium from spent molten fluoride salt mixtures containing rare earth fission products
FR2359484A1 (en) * 1976-07-22 1978-02-17 Electricite De France INTEGRATED HEAT EXCHANGE DEVICE FOR MOLTEN SALT NUCLEAR REACTOR
US6471922B1 (en) * 1999-03-01 2002-10-29 The Regents Of The University Of California Actinide removal from spent salts
US6911134B2 (en) 2002-09-06 2005-06-28 The University Of Chicago Three-electrode metal oxide reduction cell
JP2006213972A (en) 2005-02-04 2006-08-17 Central Res Inst Of Electric Power Ind Scraping blade in precipitate scraping type electrolyzer
US10056160B2 (en) * 2013-08-05 2018-08-21 Terrestrial Energy Inc. Integral molten salt reactor
US8734738B1 (en) * 2012-11-01 2014-05-27 U.S. Department Of Energy Molten salt extraction of transuranic and reactive fission products from used uranium oxide fuel
US9368244B2 (en) * 2013-09-16 2016-06-14 Robert Daniel Woolley Hybrid molten salt reactor with energetic neutron source
CN107112054A (en) * 2014-12-29 2017-08-29 泰拉能源公司 nuclear material processing
US11276503B2 (en) * 2014-12-29 2022-03-15 Terrapower, Llc Anti-proliferation safeguards for nuclear fuel salts
WO2017199059A2 (en) 2015-11-05 2017-11-23 Elysium Industries Limited Corrosion reduction in a molten salt reactor
US20170271033A1 (en) 2015-11-05 2017-09-21 Elysium Industries Limited Froth separation in a molten salt reactor
GB201806071D0 (en) * 2018-04-13 2018-05-30 Rolls Royce Power Eng Plc Apparatus
US20190371482A1 (en) 2018-05-30 2019-12-05 Alpha Tech Research Corp Electrochemical Separation Mechanism in a Molten Salt Reactor
US20200180975A1 (en) * 2018-12-10 2020-06-11 Alpha Tech Research Corp. Eutectic salts
CA3203864A1 (en) * 2020-12-31 2022-07-07 Alpha Tech Research Corp. Pool type liquid metal cooled molten salt reactor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008060663A2 (en) * 2006-04-14 2008-05-22 Thorenco, Llc Compact neutron generator for medical and commercial isotope production, fission product purification and controlled gamma reactions for direct electric power generation
JP2010540962A (en) * 2007-10-04 2010-12-24 ローレンス・リバモア・ナショナル・セキュリティ・エルエルシー Control of laser inertial confinement fusion and fission power plants

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220250936A1 (en) * 2018-12-10 2022-08-11 Alpha Tech Research Corp Salt wall in a molten salt reactor
US11931763B2 (en) 2019-11-08 2024-03-19 Abilene Christian University Identifying and quantifying components in a high-melting-point liquid
WO2023067312A1 (en) * 2021-10-19 2023-04-27 Uk Atomic Energy Authority Molten salt composition

Also Published As

Publication number Publication date
WO2020123509A1 (en) 2020-06-18
WO2020123513A3 (en) 2020-08-13
US20220250936A1 (en) 2022-08-11
US11136245B2 (en) 2021-10-05
WO2020123513A2 (en) 2020-06-18
US20200185115A1 (en) 2020-06-11

Similar Documents

Publication Publication Date Title
US20200180975A1 (en) Eutectic salts
CA3110330C (en) Electrochemical separation mechanism in a molten salt reactor
RU2603844C1 (en) Method of nitride spent nuclear fuel recycling in salt melts
Galashev Processing of fast neutron reactor fuel by electrorefining: Thematic overview
CA2020601A1 (en) Actinide recovery
US3577225A (en) Method for separating uranium, protactinium, and rare earth fission products from spent molten fluoride salt reactor fuels
Burris et al. Proposed pyrometallurgical process for rapid recycle of discharged fuel materials from the integral fast reactor.[Metal fuel]
Goff et al. Dry processing of used nuclear fuel
JPH07120580A (en) Nuclear fuel cycle
Park et al. Effects of operating conditions on molten-salt electrorefining for zirconium recovery from irradiated Zircaloy-4 cladding of pressurized water reactor
US11894154B2 (en) Modular, integrated, automated, compact, and proliferation-hardened method to chemically recycle used nuclear fuel (UNF) originating from nuclear reactors to recover a mixture of transuranic (TRU) elements for advanced reactor fuel to recycle uranium and zirconium
Stevenson Development of a novel electrochemical pyroprocessing methodology for spent nuclear fuels
Davis Studies of Used Fuel Fluorination and U Extraction Based on Molten Salt Technology for Advanced Molten Salt Fuel Fabrication
Lee et al. Progress in pyroprocessing technology at KAERI
Voigt et al. Liquid‐metal extraction for processing of spent fuel
Beneˇs et al. Molten salt reactor fuels 6
Holcomb Development Principles for Thermal-Spectrum Molten-Salt Breeder Reactors
Kaufmann Reactor Fuels
Baral Melting Temperature Variation and Electrochemical Study of Lanthanide Elements in LiCl-KCl Eutectic Molten Salt
Poole et al. Properties of some plutonium fuels
Middleburgh Atomistic Scale Simulation of Materials for Future Nuclear Reactors
Mayer et al. Fused Oxide Reactor Fuels
Bates et al. Nonaqueous reprocessing method for thorium-based fuels
Grimes Chemical Basis for Molten-Salt Reactors
Lodding ISOTOPE TRANSPORT PHENOMENA IN LIQUID METALS (thesis)

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION