US20200179859A1 - Method and apparatus for integrating chemical and environmental sensors into an air purification filter through a reusable sensor post - Google Patents

Method and apparatus for integrating chemical and environmental sensors into an air purification filter through a reusable sensor post Download PDF

Info

Publication number
US20200179859A1
US20200179859A1 US16/780,025 US202016780025A US2020179859A1 US 20200179859 A1 US20200179859 A1 US 20200179859A1 US 202016780025 A US202016780025 A US 202016780025A US 2020179859 A1 US2020179859 A1 US 2020179859A1
Authority
US
United States
Prior art keywords
sensor
filter
receiving structure
service life
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US16/780,025
Inventor
Frank Ding
Amy E. Quiring
Michael Parham
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Scott Technologies Inc
Original Assignee
Scott Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Scott Technologies Inc filed Critical Scott Technologies Inc
Priority to US16/780,025 priority Critical patent/US20200179859A1/en
Publication of US20200179859A1 publication Critical patent/US20200179859A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/0084Filters or filtering processes specially modified for separating dispersed particles from gases or vapours provided with safety means
    • B01D46/0086Filter condition indicators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62BDEVICES, APPARATUS OR METHODS FOR LIFE-SAVING
    • A62B18/00Breathing masks or helmets, e.g. affording protection against chemical agents or for use at high altitudes or incorporating a pump or compressor for reducing the inhalation effort
    • A62B18/02Masks
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62BDEVICES, APPARATUS OR METHODS FOR LIFE-SAVING
    • A62B18/00Breathing masks or helmets, e.g. affording protection against chemical agents or for use at high altitudes or incorporating a pump or compressor for reducing the inhalation effort
    • A62B18/08Component parts for gas-masks or gas-helmets, e.g. windows, straps, speech transmitters, signal-devices
    • A62B18/088Devices for indicating filter saturation
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62BDEVICES, APPARATUS OR METHODS FOR LIFE-SAVING
    • A62B18/00Breathing masks or helmets, e.g. affording protection against chemical agents or for use at high altitudes or incorporating a pump or compressor for reducing the inhalation effort
    • A62B18/08Component parts for gas-masks or gas-helmets, e.g. windows, straps, speech transmitters, signal-devices
    • A62B18/10Valves
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62BDEVICES, APPARATUS OR METHODS FOR LIFE-SAVING
    • A62B19/00Cartridges with absorbing substances for respiratory apparatus
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62BDEVICES, APPARATUS OR METHODS FOR LIFE-SAVING
    • A62B23/00Filters for breathing-protection purposes
    • A62B23/02Filters for breathing-protection purposes for respirators
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62BDEVICES, APPARATUS OR METHODS FOR LIFE-SAVING
    • A62B7/00Respiratory apparatus
    • A62B7/10Respiratory apparatus with filter elements
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62BDEVICES, APPARATUS OR METHODS FOR LIFE-SAVING
    • A62B9/00Component parts for respiratory or breathing apparatus
    • A62B9/006Indicators or warning devices, e.g. of low pressure, contamination
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62BDEVICES, APPARATUS OR METHODS FOR LIFE-SAVING
    • A62B9/00Component parts for respiratory or breathing apparatus
    • A62B9/02Valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/0027Filters or filtering processes specially modified for separating dispersed particles from gases or vapours with additional separating or treating functions
    • B01D46/0036Filters or filtering processes specially modified for separating dispersed particles from gases or vapours with additional separating or treating functions by adsorption or absorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2411Filter cartridges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/42Auxiliary equipment or operation thereof
    • B01D46/429Means for wireless communication
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/42Auxiliary equipment or operation thereof
    • B01D46/44Auxiliary equipment or operation thereof controlling filtration
    • B01D46/444Auxiliary equipment or operation thereof controlling filtration by flow measuring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/42Auxiliary equipment or operation thereof
    • B01D46/44Auxiliary equipment or operation thereof controlling filtration
    • B01D46/448Auxiliary equipment or operation thereof controlling filtration by temperature measuring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/42Auxiliary equipment or operation thereof
    • B01D46/44Auxiliary equipment or operation thereof controlling filtration
    • B01D46/46Auxiliary equipment or operation thereof controlling filtration automatic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/0454Controlling adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/229Integrated processes (Diffusion and at least one other process, e.g. adsorption, absorption)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis

Definitions

  • the present disclosure relates to a method of integrating chemical and environmental sensors into an air purifying filter as an End-of-Service-Life-Indicator (referred to as ESLI hereafter) and/or Residual-Life-Indicator (referred to as RLI hereafter), and more particularly to a sensor post structure for hosting a plurality of sensors that provide residual life indication and end of service life indication for an air purifying cartridge.
  • ESLI End-of-Service-Life-Indicator
  • RLI Residual-Life-Indicator
  • Air purifying filters typically do not have an unlimited service life. End users of air purifying devices must manage cartridge change-out using objective information, data, or an end of service life indicator (ESLI).
  • ESLIs can provide important safety information to users of an air purifying apparatuses, particularly where the purifying device is being used to remove toxic gases from the air being breathed.
  • Commonly used approaches to ESLI include passive and active solutions. Active solutions often involve the use of electronic chemical sensors that are integrated into the sorbent bed of the filter. Placing chemical sensors within the sorbent bed is problematic, however, because the sensors can undesirably disturb air flow in the filter. As a result, the sensor may not detect actual impurity concentration for a majority of the air stream, which can result in false signals. In addition, the presence of the sensor inside the adsorbent bed may adversely affect the air purification outcome and results in shorter service life time of the filter cartridge.
  • an embedded sensor approach requires that the sensor be disposed along with the cartridge when the service life of the cartridge ends, which greatly increases costs. Embedding a sensor in the sorbent bed also can increase the chance of improper bed packing. Further, it may be technically challenging to mount multiple sensors at various bed locations.
  • a device and method are disclosed for embedding a chemical sensor inside the sorbent bed of a filter to provide information on the condition and usefulness of a filter used in a toxic environment.
  • the design includes a device and method for either disposable or non-disposable chemical sensors to provide enhanced reliability sensor technology.
  • a sensor device for filter end of service life indication.
  • the design may include a sensor post housing for insertion into a sorbent bed of a filter cartridge.
  • a chemical sensor may be disposed inside the sensor post housing.
  • a sensor conditioning board powered by a power supply, may be provided for conditioning and controlling the sensor and processing sensor data associated with the sensor post housing.
  • the sensor post housing may be positioned within a cavity formed in the filter bed.
  • the sensor device includes a receiving structure that is placed in the filter bed cavity for inserting the sensor post housing therein. The sensor device is particularly useful as a proactive ESLI.
  • a method for monitoring the end of service life of a filter using the above described sensor device includes attaching the sensor post housing to an inhalation valve support of a respirator or blower, and inserting the sensor post housing into a receiving structure to attach the filter to a mask. This can allow the opening of the sensor to align with the opening of the sensor post housing.
  • the disclosed method and device can be particularly useful as a proactive ESLI for an air purification filter.
  • the benefits of providing such a proactive end of service life indicator are that residual life indication (i.e., time remaining to breakthrough) can be provided much earlier than the actual contaminant breakthrough time. This can provide a user with a much bigger safety margin to wrap up work tasks safely prior to requiring evacuation of a contaminated area.
  • FIG. 1A is a side view of an exemplary embodiment of the disclosed sensor post
  • FIG. 1B is a top plan view of the sensor post of FIG. 1A ;
  • FIG. 2 is cross-section view of the sensor post taken alone line 2 - 2 ;
  • FIG. 3 is a cross sectional view of a filter containing the sensor post of FIG. 1A therein;
  • FIG. 4 is a side cutaway view of the sensor post of FIG. 1A inserted into a host cartridge attached to a mask body;
  • FIG. 5 is an isometric view of an inside portion of an empty filter cartridge showing a receiving structure for receiving the sensor post of FIG. 1A ;
  • FIG. 6 is an exploded isometric view of the sensor post of FIG. 1A ;
  • FIG. 7 is an alternative embodiment of the sensor post of FIG. 1A ;
  • FIG. 8 is a graph of experimental data representative of sensor post performance as an End-of-Service Life Indicator (ESLI) for a hydrogen sulfide filter cartridge.
  • ESLI End-of-Service Life Indicator
  • FIG. 9 is a graph of sensor-detected concentration over time, including ESLI prediction at various clock times and measured breakthrough.
  • the device may be a sensor device, or post, 10 having a hollow cylindrical sensor post housing 14 that supports a plurality of different types of sensors 20 that may be mounted at a variety of positions along the housing 14 .
  • the housing 14 can be mounted to a filter cartridge 60 ( FIG. 4 ) at a lower portion 12 of the housing 14 prior to engagement of the filter cartridge 60 onto a respirator 100 .
  • the sensor post housing 14 or sensor 20 includes a mechanical connection for attachment to an inhalation valve support of the respirator 100 .
  • the sensor post 10 may be fixed to the filter cartridge 60 .
  • the sensor post 10 may be positioned within the filter cartridge 60 so that the sensors 20 disposed in or on the sensor post 10 can sense conditions in the sorbent bed 62 of the filter and can provide information to a processing device that can use the sensed information to estimate the residual service life time of the filter cartridge.
  • the sensor post 10 may be received within a cavity formed in the adsorbent bed 62 of a filter cartridge 60 when the cartridge is mounted into the cartridge host 100 .
  • each of the sensor elements 20 on the sensor post 10 is positioned within the bed or adjacent to the bed, thus enabling the sensor elements 20 to detect key operational information regarding the air passing therethrough.
  • operational information include contaminant concentration(s) 22 , air humidity 26 , air temperature 24 and air flow rate 28 at different bed locations.
  • gases for which concentration information may be important include formaldehyde, cyclohexane, ammonia, hydrogen sulfide, sulfur dioxide, chlorine, hydrogen chloride and hydrogen cyanide.
  • Information provided by the sensors 20 can be used to provide the user with residual life time and end of service life warnings.
  • the sensor post 10 can be mounted onto a cartridge host 100 (e.g., a mask, a powered air purifying respirator (PAPR), a cartridge adaptor).
  • a plurality of sensors 20 can be mounted at different locations on or in the sensor post 10 .
  • the sensor post 10 is inserted into a filter cartridge 60 having a host sensor receptacle, which in one embodiment includes a receiving structure 50 , as shown in FIG. 5 . It will be appreciated that the described arrangement enables the sensor post 10 to be reused when the cartridge 60 reaches its service life and is discarded. Thus, the cartridge 60 can be disassembled and the sensor post 10 removed prior to discarding the cartridge.
  • the sensor post 10 serves to position the one or more sensors 20 at a variety of desired locations within the sorbent bed 62 , thus providing a wider range of information for the calculation of residual life time and end of service life indicator as compared to prior embedded designs.
  • the sensor post 10 may also function as a mounting guide to facilitate proper mounting of a cartridge onto a respirator or other host 100 (e.g., mask, cartridge adaptor, or powered air purifying respirators).
  • the sensor post 10 may include a housing 14 , which in the illustrated embodiment is a hollow cylindrical tube.
  • the sensor post 10 may have a plurality of sensors 20 mounted on or in the housing 14 at a variety of locations along the length of the housing.
  • a non-limiting exemplary listing of such sensors 20 includes a humidity sensor 26 , a temperature sensor 24 , a flowrate sensor 28 , as well as an array of chemical sensors 22 .
  • Other types of sensors can also be used, as will be appreciated by one of skill in the art.
  • the sensor post 10 has three chemical sensors 22 a , 22 b , 22 c mounted at spaced apart locations along a side wall of the housing 14 .
  • a humidity sensor 26 and a temperature sensor 24 are mounted on a top portion 13 of the post 10 ( FIG. 1B ), while a flowrate sensor 28 is mounted on the lower portion 12 of the post 10 .
  • the sensors 20 may be contained within, and protected by, the sensor post housing 14 .
  • the chemical sensors 22 may be isolated from each other by a plurality of sensor seals 30 .
  • seals 30 may comprise appropriate seal members or vapor dams effective to prevent the contaminants from bypassing the sorbent bed 62 along the sensor post wall 14 , and to isolate the conditioning board 40 ( FIG. 2 ) and other sensors from chemical contaminants that may corrode the board/sensors and/or adversely affect their operation.
  • the seals 30 comprise elastomeric o-rings.
  • a sensor signal conditioning board 40 may be positioned within the housing 14 to function as a sensor conditioner, sensor controller, sensor signal pre-conditioner for the chemical, humidity, temperature, and flowrate sensors 20
  • the signal conditioning board 40 is a printed circuit board.
  • the sensor condition board 40 may control operation of the sensors 20 and may process data received from the sensors 20 .
  • the signal conditioning board 40 may control the sensors, may process sensor signals, may execute instructions for calculating residual service life of the associated filter, and may produce signals representative of an end-of-service-life condition of the filter.
  • a power supply 45 either battery or externally provided, may be provided within the housing to power the sensor conditioning board 40 .
  • the signal conditioning board 40 may include one or more microprocessor units 140 .
  • Each microprocessor unit may include a microprocessor 142 and associated memory 144 .
  • the memory may be volatile, non-volatile, or a combination of both.
  • the conditioning board 40 may include any of a variety of analogue signal amplifier and signal filter, digital signal processors, and/or other signal conditioning elements to provide a desired pre-conditioned signal to a monitoring station.
  • these pre-conditioned signals may be transmitted to a mother unit which contains the proper service life calculation algorithm and which is responsible for providing proper RLI/ESLI warning information to the user.
  • these signals are read by a local microcomputer or microcontroller unit which is equipped with the proper RLI/ESLI calculation algorithm and which can give out proper RLI/ESLI warnings to the user.
  • the RLI/ESLI calculation algorithm may utilize the proper breakthrough models, such as the one developed by Ding et al, to model the evolution of the contaminant concentration profiles inside the bed, and hence calculate the residual life time of the filter cartridge based on the modeling of the evolution process of the contaminant concentration profiles.
  • This process is different from traditional RLI/ESLI calculation method in that it utilizes relevant adsorption process modeling to predict the RLI/ESLI before any breakthrough event happens. As a result, this method can give out proactive RLI/ESLI information much earlier than the actual breakthrough event, thus giving the user much more time to take according action to avoid potential health damage.
  • the host filter or host mask unit 100 comprise the monitoring station and may include a hard-wired or wireless receiver and warning information or alarm that can be tripped when an end-of-life condition is approaching.
  • the warning information may take the form of any visual, audio, or mechanical signals that can be noticed and understood by the user.
  • Such warning information may be generated by an electronic unit either mounted on the sensor post body 10 itself, or on a sensor post host unit such as a mask or a PAPR
  • Pre-conditioned signals and/or post conditioned warning signals may take the form of either digital or analog signals or both, and may be transmitted from the sensor post 10 to the host filter/mask via a communication port 42 .
  • the communication port 42 may be a hard-wired or wireless communication port for providing a variety of data from (or about) sensor devices 20 to the host filter or host mask unit 100 .
  • the communication port 42 includes a hard wired connection 41 .
  • the communication port may include a wireless transmitter 43 to wirelessly transmit pre-conditioned signals to the host filter/mask 100 .
  • the conditioned signals may be transmitted (via hard wire or wirelessly) to a separate alarm or monitoring station that is separate from the host filter or host mask unit 100 .
  • the wired or wireless communication port 42 may provide data exchange between the sensor post 10 and any monitoring mother unit mounted on the host filter/mask 100 or other physical units.
  • the warning signals transmitted via a proper unit and taken any visual, audio, or mechanical form, may convey the information of any of, but not limited to, the following: host filter type, host filter part number, host filter serial number, date of manufacturing, date of expiration, previous usage, residual life time, predicted end of service life time, environmental conditions, critical filter cartridge change out signal, critical immediate evacuation signal, etc.
  • the sensor post 10 may include a an end seal 44 to seal the interior of the sensor post housing 14 from the environment.
  • the seal 44 may be an epoxy seal.
  • the seal 44 may be an appropriate gasket or o-ring connection.
  • the communication port 42 may provide hard-wired or wireless digital communication signals to and from the sensor post 10 .
  • Digital communication signals may include, without limitation, model parameters, residual life time data, and end of service life time warning data.
  • the signal conditioning board 40 may include one or more non-volatile data storage memory units 144 to store this and other information, some or all of which may be modified via the one or more associated microprocessors 142 .
  • the filter 60 may include receiving structure 50 ( FIG. 5 ) for holding the sensor post 10 in a desired position with respect to an adjacent sorbent bed 62 .
  • the receiving structure 50 may, in one embodiment, form a cylindrical cavity within the sorbent bed 62 and may have one or more sensor orifices 18 disposed in a side wall 70 , and/or on a top surface 72 . Theses orifices 18 may be positioned directly adjacent the sensors 20 of the sensor post 10 when the post is positioned within the receiving structure 50 .
  • the orifices 18 may permit chemical vapor ingress into the cavity so that the chemical vapors can contact the sensors 20 of the sensor post.
  • the sensor post 10 may form a cavity in the sorbent bed 62 upon its insertion therein, without the use of a receiving structure.
  • the sensor post 10 may form a component part of the filter 60 .
  • a cavity may be pre-formed within the sorbent bed 62 of the filter 60 .
  • the sensor post 10 will be attached to a host 100 (e.g., a mask, an adaptor, or a PAPR unit), and then the combination will be engaged with a filter cartridge 60 . When a cartridge 60 is mounted onto a host 100 equipped with a sensor post 10 , the sensor post 10 is inserted into the sensor post cavity of the cartridge.
  • the top 13 of the sensor post 10 will align with top surface 72 of the mounting structure and each of the side sensor orifices 18 will be positioned adjacent respective sensors 20 and will be sealed from each other by adjacent sensor seals 30 .
  • the receiving structure 50 may result in certain interference to the air flow pattern inside the sorbent bed and have negative effect on the filter performance. For example, a small fraction of the air flow may creep through the bed along the wall of 50 without fully contacted with the adsorbent material. To prevent this from happening, the receiving structure 50 may be baffled around the contacting surface to block the air flow along the surface of 50 . As seen in FIG. 5 , which illustrates the interior of an empty filter cartridge in which receiving structure 50 is integrated into the cartridge, a plurality of baffling elements 52 surround the receiving structure 50 to prevent vapor passage through the baffled area.
  • the top surface 72 of the receiving structure 50 can be a screen, or a protective membrane, to protect the top 13 of the inserted sensor post 10 from particulate or liquid contaminants while still allowing vapor to permeate the screen/membrane to contact the sensors 24 , 26 disposed at the top of the sensor post 10 .
  • the filter cartridge 60 includes a breakable protective seal element on the opening of the receiving structure 50 to seal the inside of the receiving structure from the outside environment prior to insertion of the sensor post 10 . The seal element may be broken by the top 13 of the sensor post 10 when the post is inserted into the receiving structure. This seal allows the filter cartridges that have the sensor post receiving cavity built inside be used on normal air purification respirators on which no sensor post element is installed.
  • the signal conditioning board 40 may receive a plurality of signals from the various sensors disposed on the sensor post 10 .
  • the humidity 26 and temperature 24 sensors on the top of the sensor post 10 may provide humidity and temperature signals
  • a first chemical sensor 22 a may provide site concentration signals at a top portion of the sorbent bed 62 .
  • Additional chemical sensors 22 b , 22 c may provide signals regarding chemical vapor concentration at different sorbent bed levels.
  • Flowrate sensor 28 which may be mounted on a side wall of the sensor post housing 14 adjacent the outlet of the cartridge 60 may provide flowrate signals representative of the rate of air being drawn into the mask 100 or other host structure.
  • the conditioning board 40 can receive each of these signals and convert them into a desired form (e.g., analog voltage, analog current, digital, digital wireless, or other like transmitting form). One or more of these signals may be processed by the one or more microprocessor units 140 associated with the signal conditioning board 40 prior to transmission to the host filter 60 or other receiver via the communications port 42 .
  • a desired form e.g., analog voltage, analog current, digital, digital wireless, or other like transmitting form.
  • sensor post 10 is shown engaged with a host filter cartridge 60 and a mask body 100 .
  • a lower portion 12 of the sensor post 10 engages a portion of the mask body 100 while a top portion 13 of the post is received within the filter cartridge 60 .
  • the sensor post 10 can serve as a mounting guide to facilitate the proper mounting of the cartridge 60 on the host 100 .
  • the sensor post 10 may be initially mounted in the filter cartridge 60 and may be inserted into the mask body 100 as the cartridge is mounted to the mask body 100 .
  • the sensor post 10 may be initially mounted in the mask body 100 and may be inserted into the filter cartridge 60 as the cartridge is mounted to the mask body 100 .
  • the sensor post 10 may have one or more chemical sensors, shown as 22 a - c as an example embodiment, mounted along the length of the housing 14 , pair one or more of humidity and temperature sensors 24 , 26 mounted on the top portion 13 of the housing 14 , and a flowrate sensor 28 mounted adjacent the lower portion 12 of the housing.
  • Each of the chemical sensor 22 a - c may be isolated from the others via a pair of adjacent sensor seals 30 .
  • Internal to the sensor post 10 may be a signal conditioning board 40 that functions as a signal pre-conditioner for the chemical, humidity, temperature, and flowrate sensors. Pre-conditioned signals may be transmitted from the sensor post 10 via a hard wired or wireless connection in the manner previously described.
  • the internal volume of the sensor post 10 including the signal conditioning board 40 ) may be sealed from the surrounding environment by an end cap 44 (see FIG. 6 ) sealed to the housing 14 using epoxy, or a gasket or o-ring connection.
  • the host 100 e.g., a mask, an adaptor, or a PAPR unit
  • a sensor post 10 is equipped with a sensor post 10
  • a filter cartridge 60 is provided separately.
  • the sensor post 10 is aligned with the receiving structure 50 of the cartridge 60 to guide the cartridge 60 down into engagement with the host 100 .
  • the top of the sensor post 10 aligns with the top surface 72 of the receiving structure 50 .
  • this top surface 72 can be a screen or membrane that allows the temperature and humidity sensors 24 , 26 to obtain relevant information regarding the filter during operation.
  • each of the side sensor orifices 18 is positioned centrally with respect to each of the plurality of chemical sensors 22 a - 22 c , and sealed from adjacent chemical sensors via a pair of associated sensor seals 30 .
  • the invention includes the sensor device 10 for end of service life indication having the sensor post housing 14 for insertion directly into the sorbent bed 62 of the filter cartridge 60 .
  • the housing 14 may be formed to fit within a cavity that has been formed within the sorbent bed 62 .
  • the cavity may be pre-formed in the bed prior to insertion of the sensor post housing 14 .
  • the cavity may be formed in the bed through the process of inserting the housing 14 in the sorbent bed 62 .
  • the housing 14 alone may be provided as a part of the filter cartridge 60 , positioned within a cavity in the sorbent bed 62 .
  • the internal components of the sensor post 10 may then be inserted into the housing 14 to position the sensors 20 at desired positions within the sorbent bed 62 .
  • the chemical sensors 22 a - 22 c are sealed off from each other via seals 30 , which results in individual vapor “chambers” associated with each sensor, and each of the sensors 22 a - 22 c has access to the vapor space within the filter 60 via an associated orifice 18 (see FIG. 3 )
  • the individual vapor chambers may be formed by the outer surface of the housing 14 , an inner surface region of the receiving structure 50 of the filter cartridge 60 , and a pair of seals 30 .
  • the chemical sensors 22 a - 22 c may share a common vapor space, allowing a conduit for effective vapor flow therebetween.
  • the orifices 18 are positioned such that the maximum concentration level that the chemical sensors are exposed will not be reached at the end of the service life time, in order to protect the chemical sensor from exposing to too high chemical concentration levels to avoid or minimize saturation with contaminant from the environment.
  • FIG. 7 shows an alternative embodiment of a sensor post 150 having an exterior configuration that differs from that of sensor post 100 of FIG. 1A .
  • the sensor post 150 of this embodiment may have any and/or all of the functional features of the sensor post 10 described in relation to FIGS. 1-6 .
  • the sensor post 150 may include openings 116 in the housing 114 to enable the sensors disposed within the housing to access the environmental and/or toxic conditions outside of the sensor post housing 114 .
  • the openings 116 of sensor post 150 are positioned at or near the distal end 152 of the sensor post 150 .
  • the distal end 152 will be that portion of the sensor post 150 that is positioned within the filter cartridge 60 (see FIG. 4 ) in use.
  • the sensor post 150 may also include a communication port 154 disposed at a proximal end 156 of the sensor post 150 to enable signals generated by the sensors disposed in the housing 114 to be communicated to the host filter or host mask unit 100 (see FIG. 4 ).
  • this communication port 154 includes a hard wired portion.
  • the communication port 154 can be hard wired or wireless connection.
  • the housing 114 may include a keyed external geometry 158 for engaging a portion of the mask body 100 to position the distal end 152 of the post within the filter cartridge 60 .
  • the sensor post 150 of FIG. 7 may include any or all of the features of the sensor post 10 described in relation to FIGS. 1-6 .
  • the FIG. 7 embodiment illustrates that the external configuration of the sensor post can take any of a variety of desired external forms.
  • FIG. 8 is a graph illustrating exemplary experimental data representative of sensor post performance as an End-of-Service Life Indicator (ESLI) for a hydrogen sulfide filter cartridge.
  • the graph is an illustration of hydrogen sulfide gas concentration (in parts per million) vs. time (in minutes), and shows the efficacy of the sensor post in detecting hydrogen sulfide gas prior to filter breakthrough.
  • the sensor detects the presence of chemical prior to a chemical sensor placed at the outlet of the filter.
  • the permissible exposure limit (PEL) for hydrogen sulfide, 10 ppm is detected at 26.2 minutes which is 137 minutes prior to the time the chemical “breaks through” the filter at this concentration.
  • PEL permissible exposure limit
  • Table 1 below shows exemplary laboratory data demonstrating that the sensor post is capable of detecting particular chemicals prior to filter breakthrough, and that filter breakthrough with the sensor post does not degrade more than 11% overall for the chemicals presented.
  • the average breakthrough time of all five experiments is 95.5 minutes without the sensor post, labeled “baseline”.
  • the average breakthrough time of all five experiments is 84.8 minutes with the sensor post, labeled “filter outlet”.
  • the degradation is less than or equal to 11% as measured by these tests.
  • FIG. 9 plots the sensor detected concentration over time, including ESLI prediction at various clock times and measured breakthrough.
  • a single sensor post 10 with a single filter cartridge 60 . It will be appreciated, however, that more than one sensor post 10 may be used with a single filter cartridge 60 .
  • a sensor post 10 has been described with a certain arrangement of sensors, it will be appreciated that a variety of different sensor types, configurations and numbers can be used to provide a desired sensing platform.
  • a single sensor post may include a plurality of sensors, and that the programming of the signal conditioning board 40 may be such that only certain sensor signals are utilized for a particular filter cartridge application.
  • the illustrated embodiments are described as a cylindrical body that is inserted into a matching cylindrical hole. It will be appreciated, however, that the sensor device be made into any geometric shape, such as a rectangular or square rod, a hexagonal rod, etc. so long as it can be embedded into the bed and taken out freely without damage to the filter body. Furthermore, depending on the geometry of the object filter, the sensor device may not need to be inserted into a receptacle hole; rather, it can be partially embedded into an receptacle space, or even attached by the side of the filter, as long as the sensors be exposed to the media at a desired bed depth.
  • Some embodiments of the disclosed method and device may be implemented, for example, using a storage medium, a computer-readable medium or an article of manufacture which may store an instruction or a set of instructions that, if executed by a machine, may cause the machine to perform a method and/or operations in accordance with embodiments of the disclosure.
  • a machine may include, for example, any suitable processing platform, computing platform, computing device, processing device, computing system, processing system, computer, processor, or the like, and may be implemented using any suitable combination of hardware and/or software.
  • the computer-readable medium or article may include, for example, any suitable type of memory unit, memory device, memory article, memory medium, storage device, storage article, storage medium and/or storage unit, for example, memory (including non-transitory memory), removable or non-removable media, erasable or non-erasable media, writeable or re-writeable media, digital or analog media, hard disk, floppy disk, Compact Disk Read Only Memory (CD-ROM), Compact Disk Recordable (CD-R), Compact Disk Rewriteable (CD-RW), optical disk, magnetic media, magneto-optical media, removable memory cards or disks, various types of Digital Versatile Disk (DVD), a tape, a cassette, or the like.
  • memory including non-transitory memory
  • removable or non-removable media erasable or non-erasable media, writeable or re-writeable media, digital or analog media
  • hard disk floppy disk
  • CD-ROM Compact Disk Read Only Memory
  • CD-R Compact Disk Recordable
  • the instructions may include any suitable type of code, such as source code, compiled code, interpreted code, executable code, static code, dynamic code, encrypted code, and the like, implemented using any suitable high-level, low-level, object-oriented, visual, compiled and/or interpreted programming language.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Pulmonology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Geometry (AREA)
  • Zoology (AREA)
  • Immunology (AREA)
  • Electrochemistry (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

A sensor device is disclosed for providing end of service life indication for an air purification filter. The sensor device has a cylindrical housing for insertion into a sorbent bed of a filter, and can be removed from the bed and reused at the end of the filter service. One or more sensors inside the housing are configured to sense physical/chemical characteristics of air passing through the sorbent bed, and to provide associated data to a sensor conditioning board within the housing. The sensor conditioning board processes the received data and conditions the data as desired. The housing is receivable in a cavity formed in the filter bed. A receiving structure receives the housing therein. Data from the one or more sensors can be used to calculate predicted end of service life of the filter. Other embodiments are described and claimed.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation of U.S. patent application Ser. No. 15/237,782 filed Aug. 16, 2016, which is a continuation of U.S. patent application Ser. No. 13/760,298 filed Feb. 6, 2013, which is a continuation of International Patent Application No. PCT/US2011/046199 filed Aug. 2, 2011, which claims the benefit of U.S. Provisional Patent Application No. 61/434,755, filed Jan. 20, 2011, and U.S. Provisional Patent Application No. 61/371,427, filed Aug. 6, 2010, all of which are incorporated herein by reference in their entireties.
  • FIELD OF THE DISCLOSURE
  • The present disclosure relates to a method of integrating chemical and environmental sensors into an air purifying filter as an End-of-Service-Life-Indicator (referred to as ESLI hereafter) and/or Residual-Life-Indicator (referred to as RLI hereafter), and more particularly to a sensor post structure for hosting a plurality of sensors that provide residual life indication and end of service life indication for an air purifying cartridge.
  • BACKGROUND OF THE DISCLOSURE
  • Air purifying filters typically do not have an unlimited service life. End users of air purifying devices must manage cartridge change-out using objective information, data, or an end of service life indicator (ESLI). ESLIs can provide important safety information to users of an air purifying apparatuses, particularly where the purifying device is being used to remove toxic gases from the air being breathed. Commonly used approaches to ESLI include passive and active solutions. Active solutions often involve the use of electronic chemical sensors that are integrated into the sorbent bed of the filter. Placing chemical sensors within the sorbent bed is problematic, however, because the sensors can undesirably disturb air flow in the filter. As a result, the sensor may not detect actual impurity concentration for a majority of the air stream, which can result in false signals. In addition, the presence of the sensor inside the adsorbent bed may adversely affect the air purification outcome and results in shorter service life time of the filter cartridge.
  • Furthermore, an embedded sensor approach requires that the sensor be disposed along with the cartridge when the service life of the cartridge ends, which greatly increases costs. Embedding a sensor in the sorbent bed also can increase the chance of improper bed packing. Further, it may be technically challenging to mount multiple sensors at various bed locations.
  • Accordingly, there is a need for an improved sorbent bed-embedded sensor design for use in air purifying filter apparatuses.
  • SUMMARY OF THE DISCLOSURE
  • A device and method are disclosed for embedding a chemical sensor inside the sorbent bed of a filter to provide information on the condition and usefulness of a filter used in a toxic environment. The design includes a device and method for either disposable or non-disposable chemical sensors to provide enhanced reliability sensor technology.
  • A sensor device is disclosed for filter end of service life indication. The design may include a sensor post housing for insertion into a sorbent bed of a filter cartridge. A chemical sensor may be disposed inside the sensor post housing. A sensor conditioning board, powered by a power supply, may be provided for conditioning and controlling the sensor and processing sensor data associated with the sensor post housing. The sensor post housing may be positioned within a cavity formed in the filter bed. In one embodiment, the sensor device includes a receiving structure that is placed in the filter bed cavity for inserting the sensor post housing therein. The sensor device is particularly useful as a proactive ESLI.
  • A method is disclosed for monitoring the end of service life of a filter using the above described sensor device. In one embodiment, the method includes attaching the sensor post housing to an inhalation valve support of a respirator or blower, and inserting the sensor post housing into a receiving structure to attach the filter to a mask. This can allow the opening of the sensor to align with the opening of the sensor post housing.
  • The disclosed method and device can be particularly useful as a proactive ESLI for an air purification filter. The benefits of providing such a proactive end of service life indicator are that residual life indication (i.e., time remaining to breakthrough) can be provided much earlier than the actual contaminant breakthrough time. This can provide a user with a much bigger safety margin to wrap up work tasks safely prior to requiring evacuation of a contaminated area.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • By way of example, a specific embodiment of the disclosed device will now be described, with reference to the accompanying drawings, in which:
  • FIG. 1A is a side view of an exemplary embodiment of the disclosed sensor post;
  • FIG. 1B is a top plan view of the sensor post of FIG. 1A;
  • FIG. 2 is cross-section view of the sensor post taken alone line 2-2;
  • FIG. 3 is a cross sectional view of a filter containing the sensor post of FIG. 1A therein;
  • FIG. 4 is a side cutaway view of the sensor post of FIG. 1A inserted into a host cartridge attached to a mask body;
  • FIG. 5 is an isometric view of an inside portion of an empty filter cartridge showing a receiving structure for receiving the sensor post of FIG. 1A;
  • FIG. 6 is an exploded isometric view of the sensor post of FIG. 1A;
  • FIG. 7 is an alternative embodiment of the sensor post of FIG. 1A;
  • FIG. 8 is a graph of experimental data representative of sensor post performance as an End-of-Service Life Indicator (ESLI) for a hydrogen sulfide filter cartridge; and
  • FIG. 9 is a graph of sensor-detected concentration over time, including ESLI prediction at various clock times and measured breakthrough.
  • DETAILED DESCRIPTION OF THE INVENTION
  • A device and method are disclosed for providing reusable sensors within a sorbent bed of an air purifying cartridge. Referring to FIG. 1A, the device may be a sensor device, or post, 10 having a hollow cylindrical sensor post housing 14 that supports a plurality of different types of sensors 20 that may be mounted at a variety of positions along the housing 14. In one embodiment, the housing 14 can be mounted to a filter cartridge 60 (FIG. 4) at a lower portion 12 of the housing 14 prior to engagement of the filter cartridge 60 onto a respirator 100. In alternative embodiments, the sensor post housing 14 or sensor 20 includes a mechanical connection for attachment to an inhalation valve support of the respirator 100. Alternatively, the sensor post 10 may be fixed to the filter cartridge 60. Desirably, the sensor post 10 may be positioned within the filter cartridge 60 so that the sensors 20 disposed in or on the sensor post 10 can sense conditions in the sorbent bed 62 of the filter and can provide information to a processing device that can use the sensed information to estimate the residual service life time of the filter cartridge.
  • The sensor post 10 may be received within a cavity formed in the adsorbent bed 62 of a filter cartridge 60 when the cartridge is mounted into the cartridge host 100. With proper mounting of the cartridge, each of the sensor elements 20 on the sensor post 10 is positioned within the bed or adjacent to the bed, thus enabling the sensor elements 20 to detect key operational information regarding the air passing therethrough. Examples of such operational information include contaminant concentration(s) 22, air humidity 26, air temperature 24 and air flow rate 28 at different bed locations. A non-limiting, exemplary listing of gases for which concentration information may be important include formaldehyde, cyclohexane, ammonia, hydrogen sulfide, sulfur dioxide, chlorine, hydrogen chloride and hydrogen cyanide. Information provided by the sensors 20 can be used to provide the user with residual life time and end of service life warnings.
  • As noted, the sensor post 10 can be mounted onto a cartridge host 100 (e.g., a mask, a powered air purifying respirator (PAPR), a cartridge adaptor). In addition, a plurality of sensors 20 can be mounted at different locations on or in the sensor post 10. In one embodiment, the sensor post 10 is inserted into a filter cartridge 60 having a host sensor receptacle, which in one embodiment includes a receiving structure 50, as shown in FIG. 5. It will be appreciated that the described arrangement enables the sensor post 10 to be reused when the cartridge 60 reaches its service life and is discarded. Thus, the cartridge 60 can be disassembled and the sensor post 10 removed prior to discarding the cartridge.
  • In addition to being insertable/removable in the manner previously specified, the sensor post 10 serves to position the one or more sensors 20 at a variety of desired locations within the sorbent bed 62, thus providing a wider range of information for the calculation of residual life time and end of service life indicator as compared to prior embedded designs. As will be described in greater detail later, the sensor post 10 may also function as a mounting guide to facilitate proper mounting of a cartridge onto a respirator or other host 100 (e.g., mask, cartridge adaptor, or powered air purifying respirators).
  • As seen in FIGS. 1A, 1B, 2, 4 and 6, the sensor post 10 may include a housing 14, which in the illustrated embodiment is a hollow cylindrical tube. The sensor post 10 may have a plurality of sensors 20 mounted on or in the housing 14 at a variety of locations along the length of the housing. A non-limiting exemplary listing of such sensors 20 includes a humidity sensor 26, a temperature sensor 24, a flowrate sensor 28, as well as an array of chemical sensors 22. Other types of sensors can also be used, as will be appreciated by one of skill in the art.
  • In one exemplary embodiment, the sensor post 10 has three chemical sensors 22 a, 22 b, 22 c mounted at spaced apart locations along a side wall of the housing 14. In addition, a humidity sensor 26 and a temperature sensor 24 are mounted on a top portion 13 of the post 10 (FIG. 1B), while a flowrate sensor 28 is mounted on the lower portion 12 of the post 10. The sensors 20 may be contained within, and protected by, the sensor post housing 14. Thus, while the sensors 20 themselves may access the environmental and/or toxic conditions outside of the sensor post housing 14 through discrete openings 16 in housing 14, the interior portions of the sensor post 10 are protected from such exposure. The chemical sensors 22 may be isolated from each other by a plurality of sensor seals 30. These seals 30 may comprise appropriate seal members or vapor dams effective to prevent the contaminants from bypassing the sorbent bed 62 along the sensor post wall 14, and to isolate the conditioning board 40 (FIG. 2) and other sensors from chemical contaminants that may corrode the board/sensors and/or adversely affect their operation. In one embodiment, the seals 30 comprise elastomeric o-rings.
  • Referring to FIG. 2, a sensor signal conditioning board 40 may be positioned within the housing 14 to function as a sensor conditioner, sensor controller, sensor signal pre-conditioner for the chemical, humidity, temperature, and flowrate sensors 20 In one embodiment, the signal conditioning board 40 is a printed circuit board. The sensor condition board 40 may control operation of the sensors 20 and may process data received from the sensors 20. For example, and without limitation, the signal conditioning board 40 may control the sensors, may process sensor signals, may execute instructions for calculating residual service life of the associated filter, and may produce signals representative of an end-of-service-life condition of the filter. A power supply 45, either battery or externally provided, may be provided within the housing to power the sensor conditioning board 40.
  • The signal conditioning board 40 may include one or more microprocessor units 140. Each microprocessor unit may include a microprocessor 142 and associated memory 144. The memory may be volatile, non-volatile, or a combination of both.
  • In addition, the conditioning board 40 may include any of a variety of analogue signal amplifier and signal filter, digital signal processors, and/or other signal conditioning elements to provide a desired pre-conditioned signal to a monitoring station. In one embodiment, these pre-conditioned signals may be transmitted to a mother unit which contains the proper service life calculation algorithm and which is responsible for providing proper RLI/ESLI warning information to the user. In another embodiment, these signals are read by a local microcomputer or microcontroller unit which is equipped with the proper RLI/ESLI calculation algorithm and which can give out proper RLI/ESLI warnings to the user. The RLI/ESLI calculation algorithm may utilize the proper breakthrough models, such as the one developed by Ding et al, to model the evolution of the contaminant concentration profiles inside the bed, and hence calculate the residual life time of the filter cartridge based on the modeling of the evolution process of the contaminant concentration profiles. This process is different from traditional RLI/ESLI calculation method in that it utilizes relevant adsorption process modeling to predict the RLI/ESLI before any breakthrough event happens. As a result, this method can give out proactive RLI/ESLI information much earlier than the actual breakthrough event, thus giving the user much more time to take according action to avoid potential health damage.
  • In one embodiment, the host filter or host mask unit 100 comprise the monitoring station and may include a hard-wired or wireless receiver and warning information or alarm that can be tripped when an end-of-life condition is approaching. The warning information may take the form of any visual, audio, or mechanical signals that can be noticed and understood by the user. Such warning information may be generated by an electronic unit either mounted on the sensor post body 10 itself, or on a sensor post host unit such as a mask or a PAPR
  • Pre-conditioned signals and/or post conditioned warning signals may take the form of either digital or analog signals or both, and may be transmitted from the sensor post 10 to the host filter/mask via a communication port 42. The communication port 42 may be a hard-wired or wireless communication port for providing a variety of data from (or about) sensor devices 20 to the host filter or host mask unit 100. Thus, in one embodiment, the communication port 42 includes a hard wired connection 41. Alternatively, the communication port may include a wireless transmitter 43 to wirelessly transmit pre-conditioned signals to the host filter/mask 100. Alternatively, or in addition, the conditioned signals may be transmitted (via hard wire or wirelessly) to a separate alarm or monitoring station that is separate from the host filter or host mask unit 100.
  • The wired or wireless communication port 42 may provide data exchange between the sensor post 10 and any monitoring mother unit mounted on the host filter/mask 100 or other physical units. The warning signals, transmitted via a proper unit and taken any visual, audio, or mechanical form, may convey the information of any of, but not limited to, the following: host filter type, host filter part number, host filter serial number, date of manufacturing, date of expiration, previous usage, residual life time, predicted end of service life time, environmental conditions, critical filter cartridge change out signal, critical immediate evacuation signal, etc.
  • To protect the inner components, including the signal conditioning board 40, from the gases that may be present within the filter 60 during operation, the sensor post 10 may include a an end seal 44 to seal the interior of the sensor post housing 14 from the environment. In one embodiment, the seal 44 may be an epoxy seal. Alternatively, the seal 44 may be an appropriate gasket or o-ring connection.
  • As previously noted, the communication port 42 may provide hard-wired or wireless digital communication signals to and from the sensor post 10. Digital communication signals may include, without limitation, model parameters, residual life time data, and end of service life time warning data. The signal conditioning board 40 may include one or more non-volatile data storage memory units 144 to store this and other information, some or all of which may be modified via the one or more associated microprocessors 142.
  • Referring to FIG. 3, a cross sectional view of a filter 60 is shown. The filter 60 may include receiving structure 50 (FIG. 5) for holding the sensor post 10 in a desired position with respect to an adjacent sorbent bed 62. The receiving structure 50 may, in one embodiment, form a cylindrical cavity within the sorbent bed 62 and may have one or more sensor orifices 18 disposed in a side wall 70, and/or on a top surface 72. Theses orifices 18 may be positioned directly adjacent the sensors 20 of the sensor post 10 when the post is positioned within the receiving structure 50. The orifices 18 may permit chemical vapor ingress into the cavity so that the chemical vapors can contact the sensors 20 of the sensor post.
  • In an alternative embodiment, the sensor post 10 may form a cavity in the sorbent bed 62 upon its insertion therein, without the use of a receiving structure. In this embodiment, the sensor post 10 may form a component part of the filter 60. In another alternative embodiment, a cavity may be pre-formed within the sorbent bed 62 of the filter 60. In some embodiments, the sensor post 10 will be attached to a host 100 (e.g., a mask, an adaptor, or a PAPR unit), and then the combination will be engaged with a filter cartridge 60. When a cartridge 60 is mounted onto a host 100 equipped with a sensor post 10, the sensor post 10 is inserted into the sensor post cavity of the cartridge. Where the filter cartridge 60 includes a receiving structure 50 and the cartridge is properly mounted to the host 100, the top 13 of the sensor post 10 will align with top surface 72 of the mounting structure and each of the side sensor orifices 18 will be positioned adjacent respective sensors 20 and will be sealed from each other by adjacent sensor seals 30.
  • As an alien object intruded into the sorbent bed, the receiving structure 50 may result in certain interference to the air flow pattern inside the sorbent bed and have negative effect on the filter performance. For example, a small fraction of the air flow may creep through the bed along the wall of 50 without fully contacted with the adsorbent material. To prevent this from happening, the receiving structure 50 may be baffled around the contacting surface to block the air flow along the surface of 50. As seen in FIG. 5, which illustrates the interior of an empty filter cartridge in which receiving structure 50 is integrated into the cartridge, a plurality of baffling elements 52 surround the receiving structure 50 to prevent vapor passage through the baffled area.
  • As shown in FIG. 3, the top surface 72 of the receiving structure 50 can be a screen, or a protective membrane, to protect the top 13 of the inserted sensor post 10 from particulate or liquid contaminants while still allowing vapor to permeate the screen/membrane to contact the sensors 24, 26 disposed at the top of the sensor post 10. In one embodiment, the filter cartridge 60 includes a breakable protective seal element on the opening of the receiving structure 50 to seal the inside of the receiving structure from the outside environment prior to insertion of the sensor post 10. The seal element may be broken by the top 13 of the sensor post 10 when the post is inserted into the receiving structure. This seal allows the filter cartridges that have the sensor post receiving cavity built inside be used on normal air purification respirators on which no sensor post element is installed.
  • In operation, the signal conditioning board 40 may receive a plurality of signals from the various sensors disposed on the sensor post 10. Thus, the humidity 26 and temperature 24 sensors on the top of the sensor post 10 may provide humidity and temperature signals, while a first chemical sensor 22 a may provide site concentration signals at a top portion of the sorbent bed 62. Additional chemical sensors 22 b, 22 c may provide signals regarding chemical vapor concentration at different sorbent bed levels. Flowrate sensor 28, which may be mounted on a side wall of the sensor post housing 14 adjacent the outlet of the cartridge 60 may provide flowrate signals representative of the rate of air being drawn into the mask 100 or other host structure.
  • The conditioning board 40 can receive each of these signals and convert them into a desired form (e.g., analog voltage, analog current, digital, digital wireless, or other like transmitting form). One or more of these signals may be processed by the one or more microprocessor units 140 associated with the signal conditioning board 40 prior to transmission to the host filter 60 or other receiver via the communications port 42.
  • Referring now to FIG. 4, sensor post 10 is shown engaged with a host filter cartridge 60 and a mask body 100. As can be seen, a lower portion 12 of the sensor post 10 engages a portion of the mask body 100 while a top portion 13 of the post is received within the filter cartridge 60. Thus arranged, as the cartridge 60 is mounted onto the host 100, the sensor post 10 can serve as a mounting guide to facilitate the proper mounting of the cartridge 60 on the host 100. In one embodiment, the sensor post 10 may be initially mounted in the filter cartridge 60 and may be inserted into the mask body 100 as the cartridge is mounted to the mask body 100. In another embodiment, the sensor post 10 may be initially mounted in the mask body 100 and may be inserted into the filter cartridge 60 as the cartridge is mounted to the mask body 100.
  • The sensor post 10 may have one or more chemical sensors, shown as 22 a-c as an example embodiment, mounted along the length of the housing 14, pair one or more of humidity and temperature sensors 24, 26 mounted on the top portion 13 of the housing 14, and a flowrate sensor 28 mounted adjacent the lower portion 12 of the housing. Each of the chemical sensor 22 a-c may be isolated from the others via a pair of adjacent sensor seals 30. Internal to the sensor post 10 may be a signal conditioning board 40 that functions as a signal pre-conditioner for the chemical, humidity, temperature, and flowrate sensors. Pre-conditioned signals may be transmitted from the sensor post 10 via a hard wired or wireless connection in the manner previously described. The internal volume of the sensor post 10, including the signal conditioning board 40) may be sealed from the surrounding environment by an end cap 44 (see FIG. 6) sealed to the housing 14 using epoxy, or a gasket or o-ring connection.
  • In one embodiment, the host 100 (e.g., a mask, an adaptor, or a PAPR unit) is equipped with a sensor post 10, and a filter cartridge 60 is provided separately. Thus, when the cartridge 60 is mounted onto the host 100, the sensor post 10 is aligned with the receiving structure 50 of the cartridge 60 to guide the cartridge 60 down into engagement with the host 100. Once the cartridge 60 is properly mounted to the host 100, the top of the sensor post 10 aligns with the top surface 72 of the receiving structure 50. As previously noted, this top surface 72 can be a screen or membrane that allows the temperature and humidity sensors 24, 26 to obtain relevant information regarding the filter during operation. In this position, each of the side sensor orifices 18 is positioned centrally with respect to each of the plurality of chemical sensors 22 a-22 c, and sealed from adjacent chemical sensors via a pair of associated sensor seals 30.
  • In one embodiment, the invention includes the sensor device 10 for end of service life indication having the sensor post housing 14 for insertion directly into the sorbent bed 62 of the filter cartridge 60. The housing 14 may be formed to fit within a cavity that has been formed within the sorbent bed 62. The cavity may be pre-formed in the bed prior to insertion of the sensor post housing 14. Alternatively, the cavity may be formed in the bed through the process of inserting the housing 14 in the sorbent bed 62.
  • In additional embodiments, the housing 14 alone may be provided as a part of the filter cartridge 60, positioned within a cavity in the sorbent bed 62. The internal components of the sensor post 10 may then be inserted into the housing 14 to position the sensors 20 at desired positions within the sorbent bed 62.
  • As previously noted, the chemical sensors 22 a-22 c are sealed off from each other via seals 30, which results in individual vapor “chambers” associated with each sensor, and each of the sensors 22 a-22 c has access to the vapor space within the filter 60 via an associated orifice 18 (see FIG. 3) The individual vapor chambers may be formed by the outer surface of the housing 14, an inner surface region of the receiving structure 50 of the filter cartridge 60, and a pair of seals 30. Alternatively, the chemical sensors 22 a-22 c may share a common vapor space, allowing a conduit for effective vapor flow therebetween.
  • In some embodiments, the orifices 18 are positioned such that the maximum concentration level that the chemical sensors are exposed will not be reached at the end of the service life time, in order to protect the chemical sensor from exposing to too high chemical concentration levels to avoid or minimize saturation with contaminant from the environment.
  • FIG. 7 shows an alternative embodiment of a sensor post 150 having an exterior configuration that differs from that of sensor post 100 of FIG. 1A. The sensor post 150 of this embodiment may have any and/or all of the functional features of the sensor post 10 described in relation to FIGS. 1-6. For example, the sensor post 150 may include openings 116 in the housing 114 to enable the sensors disposed within the housing to access the environmental and/or toxic conditions outside of the sensor post housing 114. In contrast to the embodiment of FIG. 1A, the openings 116 of sensor post 150 are positioned at or near the distal end 152 of the sensor post 150. The distal end 152 will be that portion of the sensor post 150 that is positioned within the filter cartridge 60 (see FIG. 4) in use.
  • The sensor post 150 may also include a communication port 154 disposed at a proximal end 156 of the sensor post 150 to enable signals generated by the sensors disposed in the housing 114 to be communicated to the host filter or host mask unit 100 (see FIG. 4). In the illustrated embodiment this communication port 154 includes a hard wired portion. As with the embodiment of FIG. 1A, the communication port 154 can be hard wired or wireless connection.
  • Between the distal and proximal ends 152, 156, the housing 114 may include a keyed external geometry 158 for engaging a portion of the mask body 100 to position the distal end 152 of the post within the filter cartridge 60.
  • As noted, the sensor post 150 of FIG. 7 may include any or all of the features of the sensor post 10 described in relation to FIGS. 1-6. The FIG. 7 embodiment illustrates that the external configuration of the sensor post can take any of a variety of desired external forms.
  • FIG. 8 is a graph illustrating exemplary experimental data representative of sensor post performance as an End-of-Service Life Indicator (ESLI) for a hydrogen sulfide filter cartridge. The graph is an illustration of hydrogen sulfide gas concentration (in parts per million) vs. time (in minutes), and shows the efficacy of the sensor post in detecting hydrogen sulfide gas prior to filter breakthrough. The sensor detects the presence of chemical prior to a chemical sensor placed at the outlet of the filter. As can be seen, the permissible exposure limit (PEL) for hydrogen sulfide, 10 ppm, is detected at 26.2 minutes which is 137 minutes prior to the time the chemical “breaks through” the filter at this concentration.
  • Table 1 below shows exemplary laboratory data demonstrating that the sensor post is capable of detecting particular chemicals prior to filter breakthrough, and that filter breakthrough with the sensor post does not degrade more than 11% overall for the chemicals presented. The average breakthrough time of all five experiments is 95.5 minutes without the sensor post, labeled “baseline”. The average breakthrough time of all five experiments is 84.8 minutes with the sensor post, labeled “filter outlet”. The degradation is less than or equal to 11% as measured by these tests.
  • TABLE 1
    RH Conc Tb, sensor Tb, filter Tb,
    Chem (%) (ppm) post outlet baseline
    C6H12
    50 1000 10.0 47.8 65.0
    80 1000 3.0 40.2 48.2
    H2S 50 1000 26.2 163.3 186.8
    NH3 50 1000 5.9 48.2 47.6
    50 300 26.8 124.7 130.0
  • Data shown in Table 2 below demonstrate the effectiveness of the sensor post when coupled with an ESLI estimation calculation and the impact of sensor location on prediction accuracy with time. Due to regulatory standards the estimated ESLI should be no more than 90% of the measured ESLI. In all cases presented below, this is the case. ESLI estimation increases with time and is dependent on sensor location. FIG. 9 plots the sensor detected concentration over time, including ESLI prediction at various clock times and measured breakthrough.
  • TABLE 2
    Chemical RH, % Flow, l/min Location Parameter Time (min)
    Ammonia 50 64 ½ of sorbent Clock Time (min) 20 30 40 50
    bed depth Estimated ESLI (min) 74 58 58 58
    Measured ESLI (min) 62
    H2S 50 64 ½ of sorbent Clock Time (min) 20 25 30 35 40
    bed depth Estimated ESLI (min) 28 36 41 42 42
    Measured ESLI (min) 46
    H2S 25 64 ½ of sorbent Clock Time (min) 20 25 30 35 40
    bed depth Estimated ESLI (min) 28 32 34 35 42
    Measured ESLI (min) 41
    H2S 85 64 ½ of sorbent Clock Time (min) 20 25 30 35 40
    bed depth Estimated ESLI (min) 30 36 34 50 42
    Actual ESLI (min) 47.5
    H2S 50 85 ½ of sorbent Clock Time (min) 15 20 25 27
    bed depth Estimated ESLI (min) 24 29 35 37
    Measured ESLI (min) 33
    H2S 50 50 ⅓ of sorbent Clock Time (min) 20 40 60 80 100
    bed depth Estimated ESLI (min) 43 70 84 85 82
    Measured ESLI (min) 121
  • The illustrated embodiments are described as utilizing a single sensor post 10 with a single filter cartridge 60. It will be appreciated, however, that more than one sensor post 10 may be used with a single filter cartridge 60. In addition, although a sensor post 10 has been described with a certain arrangement of sensors, it will be appreciated that a variety of different sensor types, configurations and numbers can be used to provide a desired sensing platform. In addition, it is not critical that all sensors provide data to the signal conditioning board at the same rate, nor that all sensors in the sensor post be utilized at the same time. Thus, it is contemplated that a single sensor post may include a plurality of sensors, and that the programming of the signal conditioning board 40 may be such that only certain sensor signals are utilized for a particular filter cartridge application.
  • The illustrated embodiments are described as a cylindrical body that is inserted into a matching cylindrical hole. It will be appreciated, however, that the sensor device be made into any geometric shape, such as a rectangular or square rod, a hexagonal rod, etc. so long as it can be embedded into the bed and taken out freely without damage to the filter body. Furthermore, depending on the geometry of the object filter, the sensor device may not need to be inserted into a receptacle hole; rather, it can be partially embedded into an receptacle space, or even attached by the side of the filter, as long as the sensors be exposed to the media at a desired bed depth.
  • Some embodiments of the disclosed method and device may be implemented, for example, using a storage medium, a computer-readable medium or an article of manufacture which may store an instruction or a set of instructions that, if executed by a machine, may cause the machine to perform a method and/or operations in accordance with embodiments of the disclosure. Such a machine may include, for example, any suitable processing platform, computing platform, computing device, processing device, computing system, processing system, computer, processor, or the like, and may be implemented using any suitable combination of hardware and/or software. The computer-readable medium or article may include, for example, any suitable type of memory unit, memory device, memory article, memory medium, storage device, storage article, storage medium and/or storage unit, for example, memory (including non-transitory memory), removable or non-removable media, erasable or non-erasable media, writeable or re-writeable media, digital or analog media, hard disk, floppy disk, Compact Disk Read Only Memory (CD-ROM), Compact Disk Recordable (CD-R), Compact Disk Rewriteable (CD-RW), optical disk, magnetic media, magneto-optical media, removable memory cards or disks, various types of Digital Versatile Disk (DVD), a tape, a cassette, or the like. The instructions may include any suitable type of code, such as source code, compiled code, interpreted code, executable code, static code, dynamic code, encrypted code, and the like, implemented using any suitable high-level, low-level, object-oriented, visual, compiled and/or interpreted programming language.
  • While certain embodiments of the disclosure have been described herein, it is not intended that the disclosure be limited thereto, as it is intended that the disclosure be as broad in scope as the art will allow and that the specification be read likewise. Therefore, the above description should not be construed as limiting, but merely as exemplifications of particular embodiments. Those skilled in the art will envision other modifications within the scope and spirit of the claims appended hereto.

Claims (20)

1. A method for monitoring a service life of a filter for a mask, the method comprising:
providing a sensor device having a sensor for detection of at least one chemical, the sensor being positioned in a device housing having at least one opening along an outer surface of the device housing;
embedding a receiving structure in a sorbent bed, the receiving structure including at least one opening extending from an inside of the receiving structure to an outside of the receiving structure, the opening of the receiving structure configured to allow vapor flow from the sorbent bed;
attaching at least a portion of the device housing onto an inhalation valve support from one of a respirator and a blower; and
inserting at least a portion of the device housing into the at least one receiving structure opening with attachment of the filter onto the mask, the at least one opening of the receiving structure aligning with the at least one opening of the device housing.
2. The method of claim 1, further comprising calculating the service life of the filter based on a trend read-out determined using data received from the sensor.
3. The method of claim 2, further comprising repeating the calculating at set time intervals.
4. The method of claim 2, wherein the calculating further comprises using an algorithm to calculate a residual service life of the filter and predict an end of service life time of the filter by modeling a collected chemical concentration profile into a predefined model, and using the model to predict an evolution progress of the concentration profile at any given time to provide the residual service life as well as the end of service life time.
5. The method of claim 2, further comprising transmitting data from the sensor device that indicates the service life of the filter.
6. The method of claim 1, wherein the receiving structure extends the length of the sorbent bed of the filter.
7. The method of claim 1, wherein the sensor comprises at least one chemical concentration sensor positioned along a length of the device housing, each of the sensors associated with an opening in the device housing.
8. The method of claim 1 further comprising sealing the outer surface of the device housing to the receiving structure of the sorbent bed.
9. A method for monitoring a service life of a filter, the method comprising:
providing a sensor device having a sensor for detection of at least one chemical, the sensor positioned in a device housing having at least one opening along an outer surface of the device housing;
embedding a receiving structure in a sorbent bed of the filter, the receiving structure extending the length of the sorbent bed of the filter and including at least one opening extending from an inside of the receiving structure to an outside of the receiving structure, the at least one opening of the receiving structure configured to allow vapor flow from the sorbent bed;
attaching the device housing onto an inhalation valve support from one of a respirator and a blower; and
inserting the device housing into the receiving structure while attaching the filter onto the mask, wherein the at least one opening of the receiving structure aligns with the at least one opening of the device housing.
10. The method of claim 9, further comprising calculating a service life of the filter based on a trend read-out determined using data received from the sensor.
11. The method of claim 10, further comprising repeating the calculating at set time intervals.
12. The method of claim 10, wherein the calculating further comprises using an algorithm to calculate a residual service life of the filter and predict an end of service life time of the filter by modeling a collected chemical concentration profile into a predefined model, and using the model to predict an evolution progress of the concentration profile at any given time to provide the residual service life as well as the end of service life time.
13. The method of claim 10, further comprising transmitting data from the sensor device that indicates the service life of the filter.
14. The method of claim 9, wherein the sensor comprises one or more chemical concentration sensors positioned along a length of the device housing, each of the sensors associated with an opening in the device housing.
15. A method for monitoring a service life of a filter for a mask, the method comprising:
providing a sensor device having a plurality of sensors for detection of at least one chemical, the plurality of sensors positioned in a device housing having at least one opening along an outer surface of the housing associated which each of the plurality of sensors;
positioning at plurality of seals adjacent an outer surface of the sensor housing to isolate at least one of the plurality of sensors from at least one other of the plurality of sensors;
providing a receiving structure in a sorbent bed, the receiving structure including at least one opening extending from an inside of the receiving structure to an outside of the receiving structure, the receiving structure opening configured to allow vapor flow from the sorbent bed;
attaching at least a portion of the device housing onto an inhalation support from one of a respirator and a blower; and
inserting at least a portion of the device housing into the at least one receiving structure opening with attachment of the filter onto the mask, the at least one opening of the receiving structure aligning with at least one opening of the plurality of openings of the device housing.
16. The method of claim 15, further comprising calculating the service life of the filter based on a trend read-out determined using data received from at least one sensor of the plurality of sensors.
17. The method of claim 16, further comprising repeating the calculating step at set time intervals.
18. The method of claim 16, further comprising transmitting data from the sensor device that indicates the service life of the filter.
19. The method of claim 15, wherein the receiving structure extends the length of the sorbent bed of the filter.
20. The method of claim 15, wherein the plurality of sensors comprise at least one chemical concentration sensor.
US16/780,025 2010-08-06 2020-02-03 Method and apparatus for integrating chemical and environmental sensors into an air purification filter through a reusable sensor post Abandoned US20200179859A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/780,025 US20200179859A1 (en) 2010-08-06 2020-02-03 Method and apparatus for integrating chemical and environmental sensors into an air purification filter through a reusable sensor post

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US37142710P 2010-08-06 2010-08-06
US201161434755P 2011-01-20 2011-01-20
PCT/US2011/046199 WO2012018766A2 (en) 2010-08-06 2011-08-02 Method and apparatus for integrating chemical and environmental sensors into an air purification filter through a reusable sensor post
US13/760,298 US9504859B2 (en) 2010-08-06 2013-02-06 Method and apparatus for integrating chemical and environmental sensors into an air purification filter through a reusable sensor port
US15/237,782 US10576407B2 (en) 2010-08-06 2016-08-16 Method and apparatus for integrating chemical and environmental sensors into an air purification filter through a reusable sensor post
US16/780,025 US20200179859A1 (en) 2010-08-06 2020-02-03 Method and apparatus for integrating chemical and environmental sensors into an air purification filter through a reusable sensor post

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US15/237,782 Continuation US10576407B2 (en) 2010-08-06 2016-08-16 Method and apparatus for integrating chemical and environmental sensors into an air purification filter through a reusable sensor post

Publications (1)

Publication Number Publication Date
US20200179859A1 true US20200179859A1 (en) 2020-06-11

Family

ID=45560017

Family Applications (4)

Application Number Title Priority Date Filing Date
US13/760,298 Active 2033-03-19 US9504859B2 (en) 2010-08-06 2013-02-06 Method and apparatus for integrating chemical and environmental sensors into an air purification filter through a reusable sensor port
US15/090,748 Abandoned US20160213954A1 (en) 2010-08-06 2016-04-05 Method and apparatus for integrating chemical and environmental sensors into an air purification filter through a reusable sensor post
US15/237,782 Expired - Fee Related US10576407B2 (en) 2010-08-06 2016-08-16 Method and apparatus for integrating chemical and environmental sensors into an air purification filter through a reusable sensor post
US16/780,025 Abandoned US20200179859A1 (en) 2010-08-06 2020-02-03 Method and apparatus for integrating chemical and environmental sensors into an air purification filter through a reusable sensor post

Family Applications Before (3)

Application Number Title Priority Date Filing Date
US13/760,298 Active 2033-03-19 US9504859B2 (en) 2010-08-06 2013-02-06 Method and apparatus for integrating chemical and environmental sensors into an air purification filter through a reusable sensor port
US15/090,748 Abandoned US20160213954A1 (en) 2010-08-06 2016-04-05 Method and apparatus for integrating chemical and environmental sensors into an air purification filter through a reusable sensor post
US15/237,782 Expired - Fee Related US10576407B2 (en) 2010-08-06 2016-08-16 Method and apparatus for integrating chemical and environmental sensors into an air purification filter through a reusable sensor post

Country Status (6)

Country Link
US (4) US9504859B2 (en)
CN (2) CN107441831A (en)
BR (1) BR112013002839B1 (en)
CA (1) CA2806457A1 (en)
GB (2) GB2542060B (en)
WO (1) WO2012018766A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12027029B2 (en) 2021-06-18 2024-07-02 Milwaukee Electric Tool Corporation Keep out zone system

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103189089A (en) * 2010-09-07 2013-07-03 耐斯特科技有限公司 Remaining service life indication for gas mask cartridges and canisters
CN104001559A (en) * 2013-02-27 2014-08-27 海尔集团公司 Biosafety cabinet able to remind filter's life
US9155988B2 (en) * 2013-03-14 2015-10-13 Universal Laser Systems, Inc. Multi-stage air filtration systems and associated apparatuses and methods
WO2014145074A1 (en) * 2013-03-15 2014-09-18 Makefield Llc Functional desiccants
US9494327B2 (en) * 2013-06-06 2016-11-15 Trane International Inc. UV lamp service life indicator device and method of using the same
DE102013018053B4 (en) * 2013-11-28 2016-04-21 Dräger Safety AG & Co. KGaA Blower filter device, respiratory protection system, deployment infrastructure and procedures
US11344752B2 (en) * 2014-05-16 2022-05-31 Scott Technologies, Inc. System and method for monitoring a service life of a filter with a respirator filter sampling port assembly
US20150367149A1 (en) * 2014-06-24 2015-12-24 The United States Of America As Represented By The Secretary, Department Of Health And Human Service Cobinamide-based materials for optical sensing and gas removal
US10335618B2 (en) * 2014-07-03 2019-07-02 Ling Zhou Breathing apparatus with ultraviolet light emitting diode
US9958397B1 (en) * 2014-07-03 2018-05-01 The United States Of America As Represented By The Secretary Of The Army Self-indicating porous metal hydroxides incorporating metal reactants for toxic chemical removal and sensing
EP3233243B1 (en) * 2014-12-18 2021-12-01 Koninklijke Philips N.V. An air purifier filter system, an air purifier and a method for controlling an air purifier
WO2016102028A1 (en) * 2014-12-24 2016-06-30 Honeywell International Inc. Humidity sensing system
US10569208B2 (en) 2015-09-25 2020-02-25 Sprimo, Inc. Filter customization systems and methods
KR101811336B1 (en) 2015-11-20 2017-12-26 울산과학기술원 Service life indicator for gas filters
US11291940B2 (en) 2016-03-08 2022-04-05 Koninklijke Philips N.V. Air purifier including air filter life-time indicator and method for determining the life-time of an air filter
US10888721B2 (en) * 2016-07-28 2021-01-12 Design West Technologies, Inc. Breath responsive powered air purifying respirator
JP7048183B2 (en) * 2016-08-08 2022-04-05 スリーエム イノベイティブ プロパティズ カンパニー Air filter status detection
US10617985B2 (en) * 2016-09-29 2020-04-14 Rosemount Inc. Gas sensor module with field replaceable, ingress protected, sensor filter
DE102017000976A1 (en) * 2017-02-03 2018-08-09 Mann + Hummel Gmbh Filter element, filter system with a filter element and method for producing a filter element
CN107121450B (en) * 2017-05-02 2021-05-04 北京小米移动软件有限公司 Air purification equipment and detection method and device of filter element
US20200225157A1 (en) * 2017-07-28 2020-07-16 Koninklijke Philips N.V. System and method for estimating a remaining lifetime of an aldehyde filter
TWI684730B (en) * 2017-08-08 2020-02-11 研能科技股份有限公司 Driving and information-transmission system of air-filtering protector
TWI650154B (en) * 2017-08-08 2019-02-11 研能科技股份有限公司 Air-filtering protector
TWI650152B (en) * 2017-08-08 2019-02-11 研能科技股份有限公司 Air-filtering protector
TWI651110B (en) * 2017-08-22 2019-02-21 研能科技股份有限公司 Air-filtering protector
US10958991B2 (en) 2017-09-15 2021-03-23 Mann+Hummel Gmbh Filter element sensor module having processing and wireless communication capabilities
US10704798B2 (en) 2018-04-09 2020-07-07 Wayne Roen Environmental monitoring system
DE102019106976B4 (en) * 2019-03-19 2021-04-22 Argo-Hytos Group Ag Filter cover, filter device, filter system and method for calculating the remaining service life of a filter element
US12072269B2 (en) * 2019-03-29 2024-08-27 Rosemount Inc. Self-contained calibration apparatus for gas sensor
TWI845846B (en) * 2021-06-22 2024-06-21 研能科技股份有限公司 Notification method of filter life
FR3139993B1 (en) * 2022-09-28 2024-09-20 Lair Liquide Sa Pour Letude Et Lexploitation Des Procedes Georges Claude Emergency oxygen distribution kit including oxygen storage cartridge

Family Cites Families (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1537519A (en) * 1924-12-05 1925-05-12 Yablick Max Indicating gas-mask canister
US2577606A (en) 1950-02-15 1951-12-04 American Optical Corp Filtering means for air supply devices
US3200387A (en) * 1961-08-11 1965-08-10 Selas Corp Of America Gas contaminant sensing device
US3911413A (en) 1974-02-08 1975-10-07 Richard A Wallace Thermally activated warning system
US4155358A (en) 1976-12-13 1979-05-22 Minnesota Mining And Manufacturing Company Respirator
DE2702193B2 (en) 1977-01-20 1979-02-01 Draegerwerk Ag, 2400 Luebeck Breathing apparatus with an oxygen-releasing chemical cartridge
US4146887A (en) 1977-08-05 1979-03-27 American Optical Corporation Respirator cartridge end-of-service life indicator
US4154586A (en) 1978-01-13 1979-05-15 American Optical Corporation Respirator cartridge end-of-service lift indicator system and method of making
US4365627A (en) 1980-09-22 1982-12-28 The Dow Chemical Company Filter-type respirator canister
US4530706A (en) 1981-10-19 1985-07-23 American Optical Corporation Respirator cartridge end-of-service life indicator
DE3445639C2 (en) * 1984-12-14 1987-02-12 Drägerwerk AG, 2400 Lübeck Colorimetric indicator for indicating the exhaustion status of gas filters
DE3613512C3 (en) 1986-04-22 1994-09-29 Auergesellschaft Gmbh Electrical warning device for displaying the state of exhaustion of a gas filter which retains harmful gases
SE454843B (en) 1986-10-30 1988-06-06 Sundstrom Safety Ab FILTER CONTAINER FOR AN ABSORPTION FILTER AND PARTICLE FILTER
US4847594A (en) 1988-03-28 1989-07-11 Transducer Research, Inc. Sensor for detecting the exhaustion of an adsorbent bed
US4886058A (en) 1988-05-17 1989-12-12 Minnesota Mining And Manufacturing Company Filter element
DE3818052A1 (en) 1988-05-27 1989-12-07 Geraetebau Gmbh RESPIRATORY MASK
DE4133235A1 (en) * 1991-10-07 1993-04-08 Draegerwerk Ag FAN-SUPPORTED BREATHING DEVICE WITH AN ADD-ON CONTROL UNIT
US5165395A (en) 1992-02-14 1992-11-24 Ricci Mark R Ultra-violet germicidal mask system
US5651810A (en) 1994-10-14 1997-07-29 Monsanto Company Apparatus and method for filtering and sampling airborne respiratory contaminants
US5666949A (en) * 1994-10-24 1997-09-16 Minnesota Mining And Manufacturing Company Exposure indicator with continuous alarm signal indicating multiple conditions
JP3566821B2 (en) 1995-11-14 2004-09-15 株式会社リコー Solid collection device
US6044842A (en) 1997-05-19 2000-04-04 Pereira; Michael Gasketless connecting adapter
US6375725B1 (en) 1997-11-21 2002-04-23 Institut National D'optique End-of-service indicator including porous waveguide for respirator cartridge
DE19849900C2 (en) * 1998-10-29 2002-07-11 Draeger Safety Ag & Co Kgaa Device and method for indicating filter exhaustion
US6530933B1 (en) 1998-12-31 2003-03-11 Teresa T. Yeung Methods and devices for fastening bulging or herniated intervertebral discs
US6497756B1 (en) 2000-09-12 2002-12-24 North Safety Products, Inc. Service life indicator for respirator cartridge
JP3763455B2 (en) * 2001-01-26 2006-04-05 オムロン株式会社 Chemical filter replacement time determination method
US6979361B2 (en) 2002-07-17 2005-12-27 Gueorgui Milev Mihayiov End of service life indicator for fluid filter
CA2492959A1 (en) 2002-07-19 2004-07-15 Smiths Detection-Pasadena, Inc. Non-specific sensor array detectors
US7927558B2 (en) 2003-02-18 2011-04-19 Microteq, Llc System and apparatus for detecting breach of exposure protection equipment
JP2004275638A (en) * 2003-03-19 2004-10-07 National Institute Of Industrial Health Gas mask and remaining capability indicating device for gas absorbing agent
US8722417B2 (en) 2003-04-28 2014-05-13 Invoy Technologies, L.L.C. Thermoelectric sensor for analytes in a fluid and related method
US7118608B2 (en) 2004-04-12 2006-10-10 Lovell William S Self-powered, wearable personal air purifier
DE102004019640A1 (en) 2004-04-22 2005-11-17 Siemens Ag Method for increasing the selectivity of FET-based gas sensors
US7442237B1 (en) * 2004-09-16 2008-10-28 The United States Of America As Represented By The Secretary Of The Army Multi-agent end-of-service-life indicator for respirator filters
US7503962B2 (en) 2005-12-16 2009-03-17 Attar Amir J End of service and residual life indicator
US20080119753A1 (en) 2006-11-16 2008-05-22 Cardiopulmonary Technologies, Inc. Premature infant side-stream respiratory gas monitoring sensor
GB0710338D0 (en) 2007-05-30 2007-07-11 Bioquell Uk Ltd Filters
US7749303B2 (en) * 2007-08-30 2010-07-06 The Boeing Company Service life indicator for chemical filters
CA2628699C (en) 2008-04-08 2015-03-24 Her Majesty The Queen As Represented By The Minister Of National Defence Of Her Majesty's Canadian Government Respirator end-of-service life probe
US7894069B2 (en) * 2008-04-09 2011-02-22 Her Majesty The Queen In Right Of Canada, As Represented By The Minister Of National Defence Of Her Majesty's Canadian Government Respirator end-of-service life probe
US7860662B2 (en) * 2008-12-17 2010-12-28 Scott Technologies, Inc. Systems and methods for determining filter service lives
US8336543B2 (en) 2009-05-22 2012-12-25 3M Innovative Properties Company Filter cartridge having cover for masking service life indicator
US8365723B2 (en) 2009-05-22 2013-02-05 3M Innovative Properties Company Filter cartridge having cone of visibility for end-of-service-life-indicator (ESLI)
JP6045496B2 (en) 2010-10-01 2016-12-14 スリーエム イノベイティブ プロパティズ カンパニー Portable monitor for end of life display
US9011584B2 (en) 2011-08-25 2015-04-21 Honeywell International Inc. End of service life indicator for respirator
US8574331B2 (en) 2011-10-26 2013-11-05 Elwha Llc Air-treatment mask systems, and related methods and air-treatment masks
US9283411B2 (en) 2013-04-19 2016-03-15 Honeywell International Inc. Gas sensing drift compensation using gas self-referencing for end of service life indication for respirators
US10213629B2 (en) 2013-07-19 2019-02-26 Honeywell International Inc. End of service life indicator for a respirator
US11344752B2 (en) 2014-05-16 2022-05-31 Scott Technologies, Inc. System and method for monitoring a service life of a filter with a respirator filter sampling port assembly
US20150346174A1 (en) 2014-05-30 2015-12-03 Industrial Hygiene Resources, Ltd. Exposure monitoring

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12027029B2 (en) 2021-06-18 2024-07-02 Milwaukee Electric Tool Corporation Keep out zone system

Also Published As

Publication number Publication date
GB2494606B (en) 2017-02-01
CN107441831A (en) 2017-12-08
GB2494606A (en) 2013-03-13
GB201300589D0 (en) 2013-02-27
GB2542060B (en) 2017-08-02
WO2012018766A2 (en) 2012-02-09
GB201621378D0 (en) 2017-02-01
CN103068465A (en) 2013-04-24
CN103068465B (en) 2017-08-29
BR112013002839B1 (en) 2020-02-18
US9504859B2 (en) 2016-11-29
US20160354718A1 (en) 2016-12-08
WO2012018766A3 (en) 2012-05-31
GB2542060A (en) 2017-03-08
CA2806457A1 (en) 2012-02-09
BR112013002839A2 (en) 2016-06-07
US10576407B2 (en) 2020-03-03
US20130146052A1 (en) 2013-06-13
US20160213954A1 (en) 2016-07-28

Similar Documents

Publication Publication Date Title
US20200179859A1 (en) Method and apparatus for integrating chemical and environmental sensors into an air purification filter through a reusable sensor post
US20120055815A1 (en) Remaining Service Life Indication System for Gas Masks Cartridges and Canisters
US7860662B2 (en) Systems and methods for determining filter service lives
US11344752B2 (en) System and method for monitoring a service life of a filter with a respirator filter sampling port assembly
US9079049B2 (en) Respirators with a sacrificial cartridge for end of service life indication
US9011584B2 (en) End of service life indicator for respirator
JP6226383B2 (en) Air purification device
AU2018244125B2 (en) Cap assembly for endoscope
CN221015250U (en) Anti-poison filter element with penetration indication function
JP2005538846A (en) Purifier
KR100522570B1 (en) A portable air cleaner purifying the contamination air
JP4302853B2 (en) How to monitor absorber breakthrough
US20190091496A1 (en) Resource depletion calculation and feedback for breathing equipment
TW201511821A (en) Apparatus for detoxifying harmful gas

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: APPLICATION DISPATCHED FROM PREEXAM, NOT YET DOCKETED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO PAY ISSUE FEE