US20200156316A1 - System for additive manufacturing - Google Patents

System for additive manufacturing Download PDF

Info

Publication number
US20200156316A1
US20200156316A1 US16/580,765 US201916580765A US2020156316A1 US 20200156316 A1 US20200156316 A1 US 20200156316A1 US 201916580765 A US201916580765 A US 201916580765A US 2020156316 A1 US2020156316 A1 US 2020156316A1
Authority
US
United States
Prior art keywords
nose
outlet
matrix
distal end
head
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US16/580,765
Other versions
US20210094230A9 (en
Inventor
Kenneth Lyle Tyler
Andrew John Overby
Ryan C. Stockett
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Continuous Composites Inc
Original Assignee
Continuous Composites Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US15/730,774 external-priority patent/US20180126639A1/en
Application filed by Continuous Composites Inc filed Critical Continuous Composites Inc
Priority to US16/580,765 priority Critical patent/US20210094230A9/en
Publication of US20200156316A1 publication Critical patent/US20200156316A1/en
Publication of US20210094230A9 publication Critical patent/US20210094230A9/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/205Means for applying layers
    • B29C64/209Heads; Nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/118Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using filamentary material being melted, e.g. fused deposition modelling [FDM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/307Handling of material to be used in additive manufacturing
    • B29C64/321Feeding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing
    • B29C64/393Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes

Definitions

  • the present disclosure relates generally to a manufacturing system and, more particularly, to a system for manufacturing system.
  • Extrusion manufacturing is a known process for producing continuous structures.
  • a liquid matrix e.g., a thermoset resin or a heated thermoplastic
  • the material upon exiting the die, cures and hardens into a final form.
  • UV light and/or ultrasonic vibrations are used to speed the cure of the liquid matrix as it exits the die.
  • the structures produced by the extrusion manufacturing process can have any continuous length, with a straight or curved profile, a consistent cross-sectional shape, and excellent surface finish.
  • extrusion manufacturing can be an efficient way to continuously manufacture structures, the resulting structures may lack the strength required for some applications.
  • Pultrusion manufacturing is a known process for producing high-strength structures.
  • individual fiber strands, braids of strands, and/or woven fabrics are coated with or otherwise impregnated with a liquid matrix (e.g., a thermoset resin or a heated thermoplastic) and pulled through a stationary die where the liquid matrix cures and hardens into a final form.
  • a liquid matrix e.g., a thermoset resin or a heated thermoplastic
  • UV light and/or ultrasonic vibrations are used in some pultrusion applications to speed the cure of the liquid matrix as it exits the die.
  • the structures produced by the pultrusion manufacturing process have many of the same attributes of extruded structures, as well as increased strength due to the integrated fibers.
  • pultrusion manufacturing can be an efficient way to continuously manufacture high-strength structures
  • the resulting structures may lack the form (shape, size, and/or precision) required for some applications.
  • ensuring adequate wetting and bonding between adjacent fibers can be problematic.
  • the disclosed system is directed to addressing one or more of the problems set forth above and/or other problems of the prior art.
  • the present disclosure is directed to a system for additive manufacturing.
  • the system may include an outlet through which a composite material is discharged, and a nose that is a component separate from the outlet and located at a distal end of the outlet.
  • the nose may be biased axially relative to the outlet, from a retracted position to an extended position. The nose extends axially past the distal end of the outlet in the extended position.
  • the present disclosure is directed to another system for additive manufacturing.
  • the system may include an outlet through which a composite material is discharged, and a nose that is a component separate from the outlet and located at a distal end of the outlet.
  • a material forming the outlet may be harder than a material forming the nose.
  • the nose may extend axially past the distal end of the outlet.
  • FIG. 1 is an isometric illustration of an exemplary disclosed additive manufacturing system
  • FIGS. 2, 3, 4, and 5 are cross-sectional illustrations of exemplary disclosed print heads that may be utilized with the additive manufacturing system of FIG. 1 .
  • FIG. 1 illustrates an exemplary system 10 , which may be used to manufacture a composite structure 12 having any desired cross-sectional shape (e.g., ellipsoidal, polygonal, etc.).
  • System 10 may include at least a moveable support 14 and a print head (“head”) 16 .
  • Support 14 may be coupled to and configured to move head 16 .
  • support 14 is a robotic arm capable of moving head 16 in multiple directions during fabrication of structure 12 , such that a resulting longitudinal axis of structure 12 is three-dimensional. It is contemplated, however, that support 14 could alternatively be a gantry, a hybrid gantry/arm, or another type of movement system that is capable of moving head 16 in multiple directions during fabrication of structure 12 .
  • support 14 is shown as being capable of multi-axis movement (e.g., movement about six or more axes), it is contemplated that any other type of support 14 capable of moving head 16 in the same or in a different manner could also be utilized, if desired.
  • a drive may mechanically couple head 16 to support 14 and may include components that cooperate to move and/or supply power or materials to head 16 .
  • Head 16 may be configured to receive or otherwise contain a matrix.
  • the matrix may include any type of material (e.g., a liquid resin, such as a zero-volatile organic compound resin; a powdered metal; a solid filament; etc.) that is curable.
  • Exemplary matrixes include thermosets, single- or multi-part epoxy resins, polyester resins, cationic epoxies, acrylated epoxies, urethanes, esters, thermoplastics, photopolymers, polyepoxides, thiols, alkenes, thiol-enes, reversible resins (e.g., Triazolinedione, a covalent-adaptable network, a spatioselective reversible resin, etc.) and more.
  • reversible resins e.g., Triazolinedione, a covalent-adaptable network, a spatioselective reversible resin, etc.
  • the matrix inside head 16 may be pressurized, for example by an external device (e.g., an extruder or another type of pump—not shown) that is fluidly connected to head 16 via a corresponding conduit (not shown).
  • the matrix pressure may be generated completely inside of head 16 by a similar type of device.
  • the matrix may be gravity-fed through and/or mixed within head 16 .
  • the matrix inside head 16 may need to be kept cool and/or dark to inhibit premature curing; while in other instances, the matrix may need to be kept warm for similar reasons. In either situation, head 16 may be specially configured (e.g., insulated, temperature-controlled, shielded, etc.) to provide for these needs.
  • the matrix may be used to coat, encase, or otherwise at least partially surround or saturate (e.g., wet) any number of continuous reinforcements (e.g., separate fibers, tows, rovings, ribbons, and/or sheets of material) and, together with the reinforcements, make up at least a portion (e.g., a wall) of composite structure 12 .
  • the reinforcements may be stored within (e.g., on separate internal spools) or otherwise passed through head 16 (e.g., fed from one or more external spools).
  • the reinforcements may be of the same type and have the same diameter and cross-sectional shape (e.g., circular, square, flat, hollow, solid, etc.), or of a different type with different diameters and/or cross-sectional shapes.
  • the reinforcements may include, for example, carbon fibers, vegetable fibers, wood fibers, mineral fibers, glass fibers, metallic wires, optical tubes, etc. It should be noted that the term “reinforcement” is meant to encompass both structural and non-structural types of continuous materials that can be at least partially encased in the matrix discharging from head 16 .
  • the reinforcements may be exposed to (e.g., at least partially coated or impregnated with) the matrix while the reinforcements are inside head 16 , while the reinforcements are being passed to head 16 (e.g., as a prepreg material), and/or while the reinforcements are discharging from head 16 , as desired.
  • the matrix, dry reinforcements, and/or reinforcements that are already exposed to the matrix may be transported into head 16 in any manner apparent to one skilled in the art.
  • the matrix and reinforcement may be discharged from head 16 via at least two different modes of operation.
  • a first mode of operation the matrix and reinforcement are extruded (e.g., pushed under pressure and/or mechanical force) from head 16 , as head 16 is moved by support 14 to create the 3-dimensional shape of structure 12 .
  • a second mode of operation at least the reinforcement is pulled from head 16 , such that a tensile stress is created in the reinforcement during discharge.
  • the matrix may cling to the reinforcement and thereby also be pulled from head 16 along with the reinforcement, and/or the matrix may be discharged from head 16 under pressure along with the pulled reinforcement.
  • the resulting tension in the reinforcement may increase a strength of structure 12 (e.g., by aligning the reinforcements, inhibiting buckling, equally distributing loads, etc.), while also allowing for a greater length of unsupported structure 12 to have a straighter trajectory (e.g., by creating moments that oppose gravity).
  • the reinforcement may be pulled from head 16 as a result of head 16 moving away from an anchor point 18 .
  • a length of matrix-impregnated reinforcement may be pulled and/or pushed from head 16 , deposited onto a stationary or moveable anchor point 18 , and cured, such that the discharged material adheres to anchor point 18 .
  • head 16 may be moved away from anchor point 18 , and the relative movement may cause additional reinforcement to be pulled from head 16 .
  • the movement of the reinforcement through head 16 could be assisted (e.g., via internal feed mechanisms), if desired.
  • the discharge rate of the reinforcement from head 16 may primarily be the result of relative movement between head 16 and anchor point 18 , such that tension is created within the reinforcement.
  • any number of reinforcements may be passed axially through head 16 and be discharged together with at least a partial coating of matrix.
  • one or more cure enhancers e.g., one or more light sources, ultrasonic emitters, lasers, heaters, catalyst dispensers, microwave generators, etc.
  • a cure energy e.g., light energy, electromagnetic radiation, vibrations, heat, a chemical catalyst or hardener, or other form of actively-applied energy.
  • the cure energy may trigger a chemical reaction, increase a rate of chemical reaction already occurring within the matrix, sinter the material, harden the material, or otherwise cause the material to cure as it discharges from head 16 .
  • a controller 22 may be provided and communicatively coupled with support 14 , head 16 , and/or any number and type of cure enhancers 20 .
  • Controller 22 may embody a single processor or multiple processors that include a means for controlling an operation of system 10 .
  • Controller 22 may include one or more general- or special-purpose processors or microprocessors.
  • Controller 22 may further include or be associated with a memory for storing data such as, for example, design limits, performance characteristics, operational instructions, matrix characteristics, reinforcement characteristics, characteristics of structure 12 , and corresponding parameters of each component of system 10 .
  • Various other known circuits may be associated with controller 22 , including power supply circuitry, signal-conditioning circuitry, solenoid/motor driver circuitry, communication circuitry, and other appropriate circuitry.
  • controller 22 may be capable of communicating with other components of system 10 via wired and/or wireless transmission.
  • One or more maps may be stored in the memory of controller 22 and used during fabrication of structure 12 .
  • Each of these maps may include a collection of data in the form of models, lookup tables, graphs, and/or equations.
  • the maps are used by controller 22 to determine desired characteristics of cure enhancers 20 , the associated matrix, and/or the associated reinforcements at different locations within structure 12 .
  • the characteristics may include, among others, a type, quantity, and/or configuration of reinforcement and/or matrix to be discharged at a particular location within structure 12 , and/or an amount, intensity, shape, and/or location of desired curing.
  • Controller 22 may then correlate operation of support 14 (e.g., the location and/or orientation of head 16 ) and/or the discharge of material from head 16 (a type of material, desired performance of the material, cross-linking requirements of the material, a discharge rate, etc.) with the operation of cure enhancers 20 , such that structure 12 is produced in a desired manner.
  • support 14 e.g., the location and/or orientation of head 16
  • discharge of material from head 16 a type of material, desired performance of the material, cross-linking requirements of the material, a discharge rate, etc.
  • Head 16 may be an assembly of multiple components that cooperate to discharge matrix-coated reinforcements. These components may include, among other things, a matrix reservoir 24 and an outlet (e.g., a nozzle) 26 .
  • Matrix reservoir 24 may be configured to hold a finite supply of matrix material sufficient to wet a desired length of reinforcements passing therethrough. In some embodiments, matrix reservoir 24 may be automatically replenished with matrix (e.g., based on a sensed amount of matrix remaining in reservoir 24 ).
  • Outlet 26 may be located at a discharge end of matrix reservoir 24 and configured to receive the matrix-coated reinforcements therefrom.
  • Cure enhancer(s) 20 may be mounted at the discharge end of matrix reservoir 24 and adjacent (e.g., at a trailing edge of and/or around) outlet 26 .
  • outlet 26 of head 16 may include unique features that are configured to improve a quality of the material discharging from head 16 .
  • the matrix-coated reinforcements may include voids (e.g., air bubbles), ridges, frayed ends, or other irregularities that inhibit adhesion between fibers or create uneven and rough surface textures.
  • compressing e.g., pressing the material into an adjacent layer
  • a nose 30 may be slidingly located around outlet 26 .
  • Nose 30 may be configured to slide in an axial direction of outlet 26 between a retracted (i.e., non-compacting) position located closest to matrix reservoir 24 and extended (i.e., compacting) position located furthest from matrix reservoir 24 .
  • nose 30 may extend axially past a terminal end of outlet 26 when at the extended location.
  • an outer end surface of nose 30 may be generally flush (e.g., within engineering tolerances) with the terminal end of outlet 26 during compacting of the matrix-coated reinforcements.
  • Nose 30 may be biased toward the extended position (e.g., via one or more springs 32 ). With this arrangement, nose 30 may ride over and exert a flattening or compacting force on the material discharging through outlet 26 , just prior to the material being exposed to cure energy from cure enhancer(s) 20 .
  • the compressing force may function to press out air bubbles, improve resin impregnation, consolidate loose fibers, and otherwise smooth surface features.
  • nose 30 is ring-like (e.g., annularly surrounding outlet 26 ) and flat at the outer end surface.
  • a radial outer edge at the end surface may be rounded or chamfered, to reduce a likelihood of catching on, cutting, or otherwise damaging structure 12 .
  • a radial inner edge at the end surface may also be rounded or chamfered to inhibit catching, cutting, or breaking of the continuous reinforcement passing therethrough, if desired.
  • nose 30 may have a complimentary shape (e.g., a continuing radius or chamfer), if desired.
  • a material that forms nose 30 may be relatively softer than a material forming outlet 26 (e.g., at least the nozzle tip), such that nose 30 may wear away faster than outlet 26 .
  • the outlet material may be harder than the nose material by at least 10%, when using conventional hardness scales known in the art (e.g., when using the Brinell Hardness Scale, the Rockwell Hardness Scale, the Knoop Hardness Scale, the Vickers Hardness Scale, etc.).
  • outlet 26 may be fabricated from stainless steel or aluminum, while nose 30 may be fabricated from rubber, plastic, or other polymer. In this arrangement, nose 30 may function as a replaceable sacrificial layer that protects outlet 26 from excessive wear.
  • nose 30 may have a generally square cross-sectional shape in the embodiments of FIGS. 2 and 3 , nose 30 could have other shapes, if desired.
  • FIG. 4 illustrates nose 30 as being conical or frustoconical, with a smaller axial end surface.
  • nose 30 may wear away and no longer have a shape and/or texture required for efficiently engaging the material discharging through outlet 26 .
  • head 16 may be maneuvered (e.g., via support 14 ) over the top of a resurfacer 34 that is configured to restore an outer profile of nose 30 to a near-original shape, size, and/or texture.
  • resurfacer 34 resembles a sharpener having one or more blades 36 that are positioned and/or oriented at precise locations for the particular configuration of nose 30 .
  • resurfacer 34 could embody a sander, a hot iron, a mold, or another similar device.
  • nose 30 may be coated with a substance that inhibits the matrix material from sticking to nose 30 during the compacting operation described above.
  • nose 30 may be coated with a release wax, petroleum jelly, a PTFE coating, etc.
  • resurfacer 34 may be further capable of reapplying that coating.
  • resurfacer 34 may include a spray jet, an orifice, or another mechanism (not shown) that advances the coating onto nose 30 when nose 30 is brought near and/or into contact with resurfacer 34 .
  • Resurfacer 34 may be mounted on or adjacent support 14 (referring to FIG. 1 ), for example connected to a build chamber floor, wall, or other similar structure.
  • FIG. 5 illustrates another embodiment of print head 16 that may be used in conjunction with system 10 .
  • nose 30 does not annularly surround outlet 26 .
  • nose 30 may be connected at an axial end of outlet 26 such that nose 30 functions as an extension of outlet 26 .
  • springs 32 may be omitted.
  • Resilience of nose 30 in this embodiment, may primarily be associated with the material of nose 30 .
  • nose 30 may be fabricated from an elastomeric material. It should be noted, however, that an axial distance between the extended (i.e., non-compacting) and retracted (i.e., compacting) positions may be less for this embodiment.
  • the disclosed systems may be used to continuously manufacture composite structures having any desired cross-sectional size, shape, length, density, and/or strength.
  • the composite structures may include any number of different reinforcements of the same or different types, diameters, shapes, configurations, and consists, each coated with a common matrix material.
  • the disclosed heads may allow for compaction and/or smoothing of structural surfaces and, thereby, an increased strength and/or performance. Operation of system 10 will now be described in detail.
  • information regarding a desired structure 12 may be loaded into system 10 (e.g., into controller 22 that is responsible for regulating operations of support 14 and/or head 16 ).
  • This information may include, among other things, a size (e.g., diameter, wall thickness, length, etc.), a contour (e.g., a trajectory), surface features (e.g., ridge size, location, thickness, length; flange size, location, thickness, length; etc.), connection geometry (e.g., locations and sizes of couplings, tees, splices, etc.), desired weave patterns, weave transition locations, location-specific matrix stipulations, location-specific reinforcement stipulations, density stipulations, etc.
  • a size e.g., diameter, wall thickness, length, etc.
  • a contour e.g., a trajectory
  • surface features e.g., ridge size, location, thickness, length; flange size, location, thickness, length; etc.
  • connection geometry e.g
  • this information may alternatively or additionally be loaded into system 10 at different times and/or continuously during the manufacturing event, if desired.
  • one or more different reinforcements and/or matrix materials may be selectively installed and/or continuously supplied into system 10 .
  • Installation of the reinforcements may be performed by passing the reinforcements down through matrix reservoir 24 , and then threading the reinforcements through outlet 26 and nose 30 .
  • Installation of the matrix material may include filling head 16 and/or coupling of an extruder (not shown) to head 16 .
  • Head 16 may then be moved by support 14 under the regulation of controller 22 to cause matrix-coated reinforcements to be placed against or on a corresponding anchor point 18 .
  • Cure enhancers 20 may then be selectively activated to cause hardening of the matrix material surrounding the reinforcements, thereby bonding the reinforcements to anchor point 18 .
  • the component information may then be used to control operation of systems 10 and 12 .
  • the reinforcements may be pulled and/or pushed from head 16 (along with the matrix material), while support 14 selectively moves head 16 in a desired manner during curing, such that an axis of the resulting structure 12 follows a desired trajectory (e.g., a free-space, unsupported, 3-D trajectory).
  • a desired trajectory e.g., a free-space, unsupported, 3-D trajectory
  • the reinforcements may pass under nose 30 and be flattened and/or compressed into a desired thickness and/or contour.
  • structure 12 may be disconnected (e.g., severed) from head 16 in any desired manner.

Abstract

A system is disclosed for additive manufacturing of a composite structure. The system may include an outlet through which a composite material is discharged, and a nose that is a component separate from the outlet and located at a distal end of the outlet. The nose may be biased axially relative to the outlet, from a retracted position to an extended position. The nose extends axially past the distal end of the outlet in the extended position.

Description

    RELATED APPLICATIONS
  • This application is based on and claims the benefit of priority from U.S. Provisional Application No. 62/769,498 that was filed on Nov. 19, 2018, the contents of which are expressly incorporated herein by reference.
  • TECHNICAL FIELD
  • The present disclosure relates generally to a manufacturing system and, more particularly, to a system for manufacturing system.
  • BACKGROUND
  • Extrusion manufacturing is a known process for producing continuous structures. During extrusion manufacturing, a liquid matrix (e.g., a thermoset resin or a heated thermoplastic) is pushed through a die having a desired cross-sectional shape and size. The material, upon exiting the die, cures and hardens into a final form. In some applications, UV light and/or ultrasonic vibrations are used to speed the cure of the liquid matrix as it exits the die. The structures produced by the extrusion manufacturing process can have any continuous length, with a straight or curved profile, a consistent cross-sectional shape, and excellent surface finish. Although extrusion manufacturing can be an efficient way to continuously manufacture structures, the resulting structures may lack the strength required for some applications.
  • Pultrusion manufacturing is a known process for producing high-strength structures. During pultrusion manufacturing, individual fiber strands, braids of strands, and/or woven fabrics are coated with or otherwise impregnated with a liquid matrix (e.g., a thermoset resin or a heated thermoplastic) and pulled through a stationary die where the liquid matrix cures and hardens into a final form. As with extrusion manufacturing, UV light and/or ultrasonic vibrations are used in some pultrusion applications to speed the cure of the liquid matrix as it exits the die. The structures produced by the pultrusion manufacturing process have many of the same attributes of extruded structures, as well as increased strength due to the integrated fibers. Although pultrusion manufacturing can be an efficient way to continuously manufacture high-strength structures, the resulting structures may lack the form (shape, size, and/or precision) required for some applications. In addition, during conventional multi-fiber pultrusion, ensuring adequate wetting and bonding between adjacent fibers can be problematic.
  • The disclosed system is directed to addressing one or more of the problems set forth above and/or other problems of the prior art.
  • SUMMARY
  • In one aspect, the present disclosure is directed to a system for additive manufacturing. The system may include an outlet through which a composite material is discharged, and a nose that is a component separate from the outlet and located at a distal end of the outlet. The nose may be biased axially relative to the outlet, from a retracted position to an extended position. The nose extends axially past the distal end of the outlet in the extended position.
  • In another aspect, the present disclosure is directed to another system for additive manufacturing. The system may include an outlet through which a composite material is discharged, and a nose that is a component separate from the outlet and located at a distal end of the outlet. A material forming the outlet may be harder than a material forming the nose. The nose may extend axially past the distal end of the outlet.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is an isometric illustration of an exemplary disclosed additive manufacturing system; and
  • FIGS. 2, 3, 4, and 5 are cross-sectional illustrations of exemplary disclosed print heads that may be utilized with the additive manufacturing system of FIG. 1.
  • DETAILED DESCRIPTION
  • FIG. 1 illustrates an exemplary system 10, which may be used to manufacture a composite structure 12 having any desired cross-sectional shape (e.g., ellipsoidal, polygonal, etc.). System 10 may include at least a moveable support 14 and a print head (“head”) 16. Support 14 may be coupled to and configured to move head 16. In the disclosed embodiment of FIG. 1, support 14 is a robotic arm capable of moving head 16 in multiple directions during fabrication of structure 12, such that a resulting longitudinal axis of structure 12 is three-dimensional. It is contemplated, however, that support 14 could alternatively be a gantry, a hybrid gantry/arm, or another type of movement system that is capable of moving head 16 in multiple directions during fabrication of structure 12. Although support 14 is shown as being capable of multi-axis movement (e.g., movement about six or more axes), it is contemplated that any other type of support 14 capable of moving head 16 in the same or in a different manner could also be utilized, if desired. In some embodiments, a drive may mechanically couple head 16 to support 14 and may include components that cooperate to move and/or supply power or materials to head 16.
  • Head 16 may be configured to receive or otherwise contain a matrix. The matrix may include any type of material (e.g., a liquid resin, such as a zero-volatile organic compound resin; a powdered metal; a solid filament; etc.) that is curable. Exemplary matrixes include thermosets, single- or multi-part epoxy resins, polyester resins, cationic epoxies, acrylated epoxies, urethanes, esters, thermoplastics, photopolymers, polyepoxides, thiols, alkenes, thiol-enes, reversible resins (e.g., Triazolinedione, a covalent-adaptable network, a spatioselective reversible resin, etc.) and more. In one embodiment, the matrix inside head 16 may be pressurized, for example by an external device (e.g., an extruder or another type of pump—not shown) that is fluidly connected to head 16 via a corresponding conduit (not shown). In another embodiment, however, the matrix pressure may be generated completely inside of head 16 by a similar type of device. In yet other embodiments, the matrix may be gravity-fed through and/or mixed within head 16. In some instances, the matrix inside head 16 may need to be kept cool and/or dark to inhibit premature curing; while in other instances, the matrix may need to be kept warm for similar reasons. In either situation, head 16 may be specially configured (e.g., insulated, temperature-controlled, shielded, etc.) to provide for these needs.
  • The matrix may be used to coat, encase, or otherwise at least partially surround or saturate (e.g., wet) any number of continuous reinforcements (e.g., separate fibers, tows, rovings, ribbons, and/or sheets of material) and, together with the reinforcements, make up at least a portion (e.g., a wall) of composite structure 12. The reinforcements may be stored within (e.g., on separate internal spools) or otherwise passed through head 16 (e.g., fed from one or more external spools). When multiple reinforcements are simultaneously used, the reinforcements may be of the same type and have the same diameter and cross-sectional shape (e.g., circular, square, flat, hollow, solid, etc.), or of a different type with different diameters and/or cross-sectional shapes. The reinforcements may include, for example, carbon fibers, vegetable fibers, wood fibers, mineral fibers, glass fibers, metallic wires, optical tubes, etc. It should be noted that the term “reinforcement” is meant to encompass both structural and non-structural types of continuous materials that can be at least partially encased in the matrix discharging from head 16.
  • The reinforcements may be exposed to (e.g., at least partially coated or impregnated with) the matrix while the reinforcements are inside head 16, while the reinforcements are being passed to head 16 (e.g., as a prepreg material), and/or while the reinforcements are discharging from head 16, as desired. The matrix, dry reinforcements, and/or reinforcements that are already exposed to the matrix (e.g., wetted reinforcements) may be transported into head 16 in any manner apparent to one skilled in the art.
  • The matrix and reinforcement may be discharged from head 16 via at least two different modes of operation. In a first mode of operation, the matrix and reinforcement are extruded (e.g., pushed under pressure and/or mechanical force) from head 16, as head 16 is moved by support 14 to create the 3-dimensional shape of structure 12. In a second mode of operation, at least the reinforcement is pulled from head 16, such that a tensile stress is created in the reinforcement during discharge. In this mode of operation, the matrix may cling to the reinforcement and thereby also be pulled from head 16 along with the reinforcement, and/or the matrix may be discharged from head 16 under pressure along with the pulled reinforcement. In the second mode of operation, where the matrix material is being pulled from head 16 with the reinforcement, the resulting tension in the reinforcement may increase a strength of structure 12 (e.g., by aligning the reinforcements, inhibiting buckling, equally distributing loads, etc.), while also allowing for a greater length of unsupported structure 12 to have a straighter trajectory (e.g., by creating moments that oppose gravity).
  • The reinforcement may be pulled from head 16 as a result of head 16 moving away from an anchor point 18. In particular, at the start of structure-formation, a length of matrix-impregnated reinforcement may be pulled and/or pushed from head 16, deposited onto a stationary or moveable anchor point 18, and cured, such that the discharged material adheres to anchor point 18. Thereafter, head 16 may be moved away from anchor point 18, and the relative movement may cause additional reinforcement to be pulled from head 16. It should be noted that the movement of the reinforcement through head 16 could be assisted (e.g., via internal feed mechanisms), if desired. However, the discharge rate of the reinforcement from head 16 may primarily be the result of relative movement between head 16 and anchor point 18, such that tension is created within the reinforcement.
  • Any number of reinforcements may be passed axially through head 16 and be discharged together with at least a partial coating of matrix. At discharge (or shortly thereafter), one or more cure enhancers (e.g., one or more light sources, ultrasonic emitters, lasers, heaters, catalyst dispensers, microwave generators, etc.) 20 may expose the matrix coating to a cure energy (e.g., light energy, electromagnetic radiation, vibrations, heat, a chemical catalyst or hardener, or other form of actively-applied energy). The cure energy may trigger a chemical reaction, increase a rate of chemical reaction already occurring within the matrix, sinter the material, harden the material, or otherwise cause the material to cure as it discharges from head 16.
  • A controller 22 may be provided and communicatively coupled with support 14, head 16, and/or any number and type of cure enhancers 20. Controller 22 may embody a single processor or multiple processors that include a means for controlling an operation of system 10. Controller 22 may include one or more general- or special-purpose processors or microprocessors. Controller 22 may further include or be associated with a memory for storing data such as, for example, design limits, performance characteristics, operational instructions, matrix characteristics, reinforcement characteristics, characteristics of structure 12, and corresponding parameters of each component of system 10. Various other known circuits may be associated with controller 22, including power supply circuitry, signal-conditioning circuitry, solenoid/motor driver circuitry, communication circuitry, and other appropriate circuitry. Moreover, controller 22 may be capable of communicating with other components of system 10 via wired and/or wireless transmission.
  • One or more maps may be stored in the memory of controller 22 and used during fabrication of structure 12. Each of these maps may include a collection of data in the form of models, lookup tables, graphs, and/or equations. In the disclosed embodiment, the maps are used by controller 22 to determine desired characteristics of cure enhancers 20, the associated matrix, and/or the associated reinforcements at different locations within structure 12. The characteristics may include, among others, a type, quantity, and/or configuration of reinforcement and/or matrix to be discharged at a particular location within structure 12, and/or an amount, intensity, shape, and/or location of desired curing. Controller 22 may then correlate operation of support 14 (e.g., the location and/or orientation of head 16) and/or the discharge of material from head 16 (a type of material, desired performance of the material, cross-linking requirements of the material, a discharge rate, etc.) with the operation of cure enhancers 20, such that structure 12 is produced in a desired manner.
  • Head 16 may be an assembly of multiple components that cooperate to discharge matrix-coated reinforcements. These components may include, among other things, a matrix reservoir 24 and an outlet (e.g., a nozzle) 26. Matrix reservoir 24 may be configured to hold a finite supply of matrix material sufficient to wet a desired length of reinforcements passing therethrough. In some embodiments, matrix reservoir 24 may be automatically replenished with matrix (e.g., based on a sensed amount of matrix remaining in reservoir 24). Outlet 26 may be located at a discharge end of matrix reservoir 24 and configured to receive the matrix-coated reinforcements therefrom. Cure enhancer(s) 20 may be mounted at the discharge end of matrix reservoir 24 and adjacent (e.g., at a trailing edge of and/or around) outlet 26.
  • An exemplary head 16 is disclosed in detail in FIGS. 2 and 3. As shown in these figures, outlet 26 of head 16 may include unique features that are configured to improve a quality of the material discharging from head 16. In particular, in some situations, it may be possible for the matrix-coated reinforcements to include voids (e.g., air bubbles), ridges, frayed ends, or other irregularities that inhibit adhesion between fibers or create uneven and rough surface textures. In these situations, compressing (e.g., pressing the material into an adjacent layer) the discharged material prior to and/or during curing may improve the quality of structure 12. For this purpose, a nose 30 may be slidingly located around outlet 26. Nose 30 may be configured to slide in an axial direction of outlet 26 between a retracted (i.e., non-compacting) position located closest to matrix reservoir 24 and extended (i.e., compacting) position located furthest from matrix reservoir 24. As shown in FIG. 2, nose 30 may extend axially past a terminal end of outlet 26 when at the extended location. As shown in FIG. 3, an outer end surface of nose 30 may be generally flush (e.g., within engineering tolerances) with the terminal end of outlet 26 during compacting of the matrix-coated reinforcements.
  • Nose 30 may be biased toward the extended position (e.g., via one or more springs 32). With this arrangement, nose 30 may ride over and exert a flattening or compacting force on the material discharging through outlet 26, just prior to the material being exposed to cure energy from cure enhancer(s) 20. The compressing force may function to press out air bubbles, improve resin impregnation, consolidate loose fibers, and otherwise smooth surface features.
  • In the embodiment of FIGS. 2 and 3, nose 30 is ring-like (e.g., annularly surrounding outlet 26) and flat at the outer end surface. A radial outer edge at the end surface may be rounded or chamfered, to reduce a likelihood of catching on, cutting, or otherwise damaging structure 12. Similarly, a radial inner edge at the end surface may also be rounded or chamfered to inhibit catching, cutting, or breaking of the continuous reinforcement passing therethrough, if desired. In these embodiments, nose 30 may have a complimentary shape (e.g., a continuing radius or chamfer), if desired.
  • A material that forms nose 30 may be relatively softer than a material forming outlet 26 (e.g., at least the nozzle tip), such that nose 30 may wear away faster than outlet 26. For example, the outlet material may be harder than the nose material by at least 10%, when using conventional hardness scales known in the art (e.g., when using the Brinell Hardness Scale, the Rockwell Hardness Scale, the Knoop Hardness Scale, the Vickers Hardness Scale, etc.). In one example, outlet 26 may be fabricated from stainless steel or aluminum, while nose 30 may be fabricated from rubber, plastic, or other polymer. In this arrangement, nose 30 may function as a replaceable sacrificial layer that protects outlet 26 from excessive wear.
  • While nose 30 may have a generally square cross-sectional shape in the embodiments of FIGS. 2 and 3, nose 30 could have other shapes, if desired. For example, FIG. 4 illustrates nose 30 as being conical or frustoconical, with a smaller axial end surface.
  • Over a period of use, nose 30 may wear away and no longer have a shape and/or texture required for efficiently engaging the material discharging through outlet 26. When this occurs, head 16 may be maneuvered (e.g., via support 14) over the top of a resurfacer 34 that is configured to restore an outer profile of nose 30 to a near-original shape, size, and/or texture. In the embodiment of FIG. 4, resurfacer 34 resembles a sharpener having one or more blades 36 that are positioned and/or oriented at precise locations for the particular configuration of nose 30. In other embodiments, however, resurfacer 34 could embody a sander, a hot iron, a mold, or another similar device.
  • It is contemplated that nose 30 may be coated with a substance that inhibits the matrix material from sticking to nose 30 during the compacting operation described above. For example, nose 30 may be coated with a release wax, petroleum jelly, a PTFE coating, etc. In this situation, resurfacer 34 may be further capable of reapplying that coating. For example, resurfacer 34 may include a spray jet, an orifice, or another mechanism (not shown) that advances the coating onto nose 30 when nose 30 is brought near and/or into contact with resurfacer 34. Resurfacer 34 may be mounted on or adjacent support 14 (referring to FIG. 1), for example connected to a build chamber floor, wall, or other similar structure.
  • FIG. 5 illustrates another embodiment of print head 16 that may be used in conjunction with system 10. In this embodiment, nose 30 does not annularly surround outlet 26. In contrast, nose 30 may be connected at an axial end of outlet 26 such that nose 30 functions as an extension of outlet 26. In this embodiment, since nose 30 may always protrude past outlet 26, springs 32 may be omitted. Resilience of nose 30, in this embodiment, may primarily be associated with the material of nose 30. For example, nose 30 may be fabricated from an elastomeric material. It should be noted, however, that an axial distance between the extended (i.e., non-compacting) and retracted (i.e., compacting) positions may be less for this embodiment.
  • INDUSTRIAL APPLICABILITY
  • The disclosed systems may be used to continuously manufacture composite structures having any desired cross-sectional size, shape, length, density, and/or strength. The composite structures may include any number of different reinforcements of the same or different types, diameters, shapes, configurations, and consists, each coated with a common matrix material. In addition, the disclosed heads may allow for compaction and/or smoothing of structural surfaces and, thereby, an increased strength and/or performance. Operation of system 10 will now be described in detail.
  • At a start of a manufacturing event, information regarding a desired structure 12 may be loaded into system 10 (e.g., into controller 22 that is responsible for regulating operations of support 14 and/or head 16). This information may include, among other things, a size (e.g., diameter, wall thickness, length, etc.), a contour (e.g., a trajectory), surface features (e.g., ridge size, location, thickness, length; flange size, location, thickness, length; etc.), connection geometry (e.g., locations and sizes of couplings, tees, splices, etc.), desired weave patterns, weave transition locations, location-specific matrix stipulations, location-specific reinforcement stipulations, density stipulations, etc. It should be noted that this information may alternatively or additionally be loaded into system 10 at different times and/or continuously during the manufacturing event, if desired. Based on the component information, one or more different reinforcements and/or matrix materials may be selectively installed and/or continuously supplied into system 10.
  • Installation of the reinforcements may be performed by passing the reinforcements down through matrix reservoir 24, and then threading the reinforcements through outlet 26 and nose 30. Installation of the matrix material may include filling head 16 and/or coupling of an extruder (not shown) to head 16.
  • Head 16 may then be moved by support 14 under the regulation of controller 22 to cause matrix-coated reinforcements to be placed against or on a corresponding anchor point 18. Cure enhancers 20 may then be selectively activated to cause hardening of the matrix material surrounding the reinforcements, thereby bonding the reinforcements to anchor point 18.
  • The component information may then be used to control operation of systems 10 and 12. For example, the reinforcements may be pulled and/or pushed from head 16 (along with the matrix material), while support 14 selectively moves head 16 in a desired manner during curing, such that an axis of the resulting structure 12 follows a desired trajectory (e.g., a free-space, unsupported, 3-D trajectory). As the separate reinforcements are pulled through head 16, the reinforcements may pass under nose 30 and be flattened and/or compressed into a desired thickness and/or contour. Once structure 12 has grown to a desired length, structure 12 may be disconnected (e.g., severed) from head 16 in any desired manner.
  • It will be apparent to those skilled in the art that various modifications and variations can be made to the disclosed systems and head. Other embodiments will be apparent to those skilled in the art from consideration of the specification and practice of the disclosed systems and heads. It is intended that the specification and examples be considered as exemplary only, with a true scope being indicated by the following claims and their equivalents.

Claims (20)

What is claimed is:
1. A system for additively manufacturing, comprising:
an outlet through which a composite material is discharged; and
a nose that is a component separate from the outlet and located at a distal end of the outlet, wherein:
the nose is biased axially relative to the outlet, from a retracted position to an extended position; and
the nose extends axially past the distal end of the outlet in the extended position.
2. The system of claim 1, further including at least one spring configured to bias the nose axially relative to the outlet.
3. The system of claim 1, further including a matrix reservoir located at a side of the outlet opposite the nose, the matrix reservoir configured to wet a continuous reinforcement with a matrix to form the composite material.
4. The system of claim 3, further including a cure enhancer configured to expose the matrix in the composite material to a cure energy after the nose has passed over the composite material.
5. The system of claim 4, further including a support configured to move the matrix reservoir, the outlet, and nose together.
6. The system of claim 5, further including a controller in communication with the cure enhancer and the support, the controller being configured to coordinate operations of the support and the cure enhancer based on specifications for a structure to be manufactured from the composite material.
7. The system of claim 5, wherein the support is located at a side of the matrix reservoir opposite the outlet.
8. The system of claim 1, wherein the nose annularly surrounds the distal end of the outlet.
9. The system of claim 1, wherein the nose extends axially from the distal end of the outlet.
10. The system of claim 1, further including a coating on an outer end surface of the nose, the coating configured to inhibit the composite material from sticking to the nose.
11. The system of claim 1, wherein a material forming the outlet is harder than a material forming the nose.
12. The system of claim 11, wherein:
the material forming the outlet is one of stainless steel or aluminum; and
the material forming the nose is a polymer.
13. The system of claim 1, wherein during operation, an end surface of the nose is generally flush with an end surface of the outlet.
14. The system of claim 1, further including a resurfacer configured to restore an outer profile of the nose.
15. The system of claim 1, wherein the nose is biased via a material characteristic of the nose.
16. The system of claim 15, wherein the nose is fabricated from an elastomeric material.
17. The system of claim 1, wherein an outer radial edge at an axial end surface of the nose is at least one of rounded and chamfered.
18. The system of claim 1, wherein an inner radial edge at an axial end surface of the nose is at least one of rounded and chamfered.
19. The system of claim 18, wherein an inner radial edge of the outlet at the distal end has a shape complimentary to the inner radial edge at the axial end surface of the nose.
20. A system for additively manufacturing, comprising:
an outlet through which a composite material is discharged; and
a nose that is a component separate from the outlet and located at a distal end of the outlet, wherein:
a material forming the outlet is harder than a material forming the nose; and
the nose extends axially past the distal end of the outlet.
US16/580,765 2016-11-04 2019-09-24 System for additive manufacturing Abandoned US20210094230A9 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/580,765 US20210094230A9 (en) 2016-11-04 2019-09-24 System for additive manufacturing

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201662417709P 2016-11-04 2016-11-04
US15/730,774 US20180126639A1 (en) 2016-11-04 2017-10-12 Additive manufacturing system having compaction nose
US201862769498P 2018-11-19 2018-11-19
US16/580,765 US20210094230A9 (en) 2016-11-04 2019-09-24 System for additive manufacturing

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US15/730,774 Continuation-In-Part US20180126639A1 (en) 2016-11-04 2017-10-12 Additive manufacturing system having compaction nose

Publications (2)

Publication Number Publication Date
US20200156316A1 true US20200156316A1 (en) 2020-05-21
US20210094230A9 US20210094230A9 (en) 2021-04-01

Family

ID=70726162

Family Applications (3)

Application Number Title Priority Date Filing Date
US16/580,765 Abandoned US20210094230A9 (en) 2016-11-04 2019-09-24 System for additive manufacturing
US16/660,519 Active 2040-06-18 US11292192B2 (en) 2018-11-19 2019-10-22 System for additive manufacturing
US17/652,376 Pending US20220176627A1 (en) 2018-11-19 2022-02-24 System for additive manufacturing

Family Applications After (2)

Application Number Title Priority Date Filing Date
US16/660,519 Active 2040-06-18 US11292192B2 (en) 2018-11-19 2019-10-22 System for additive manufacturing
US17/652,376 Pending US20220176627A1 (en) 2018-11-19 2022-02-24 System for additive manufacturing

Country Status (1)

Country Link
US (3) US20210094230A9 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210387411A1 (en) * 2020-06-11 2021-12-16 Savannah River Nuclear Solutions, Llc Fused Deposition Modeling Mixing Extruder Coupled to an External Energy Source

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220080660A1 (en) * 2020-09-11 2022-03-17 Continuous Composites Inc. Print head for additive manufacturing system
US11926099B2 (en) 2021-04-27 2024-03-12 Continuous Composites Inc. Additive manufacturing system
CN113619116B (en) * 2021-09-14 2023-02-28 深圳市赛柏敦自动化设备有限公司 Carbon fiber 3D prints laying machine

Family Cites Families (178)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3286305A (en) 1964-09-03 1966-11-22 Rexall Drug Chemical Apparatus for continuous manufacture of hollow articles
BE791272A (en) 1971-11-13 1973-03-01 Castro Nunez Elem Huecos CONTINUOUS MANUFACTURING MACHINE FOR HOLLOW ELEMENTS
US3984271A (en) 1973-06-25 1976-10-05 Owens-Corning Fiberglas Corporation Method of manufacturing large diameter tubular structures
US3993726A (en) 1974-01-16 1976-11-23 Hercules Incorporated Methods of making continuous length reinforced plastic articles
DE3424269C2 (en) 1984-06-30 1994-01-27 Krupp Ag Device for producing reinforced profiles and reinforced hoses
US4643940A (en) 1984-08-06 1987-02-17 The Dow Chemical Company Low density fiber-reinforced plastic composites
US4851065A (en) 1986-01-17 1989-07-25 Tyee Aircraft, Inc. Construction of hollow, continuously wound filament load-bearing structure
DE3619981A1 (en) 1986-06-13 1987-12-17 Freudenberg Carl Fa METHOD AND DEVICE FOR PRODUCING A THREAD-REINFORCED HOSE FROM POLYMER MATERIAL
US5037691A (en) 1986-09-15 1991-08-06 Compositech, Ltd. Reinforced plastic laminates for use in the production of printed circuit boards and process for making such laminates and resulting products
DE3835575A1 (en) 1988-10-19 1990-04-26 Bayer Ag COMPOSITES
US5121329A (en) 1989-10-30 1992-06-09 Stratasys, Inc. Apparatus and method for creating three-dimensional objects
DE4102257A1 (en) 1991-01-23 1992-07-30 Artos Med Produkte Appts. for mfg. reinforced components in laser-cured polymer - has laser-curable polymer in bath, laser directed at polymer surface where fibres pass through polymer and are guided relative to laser beam angle
US5296335A (en) 1993-02-22 1994-03-22 E-Systems, Inc. Method for manufacturing fiber-reinforced parts utilizing stereolithography tooling
US5746967A (en) 1995-06-26 1998-05-05 Fox Lite, Inc. Method of curing thermoset resin with visible light
US6144008A (en) 1996-11-22 2000-11-07 Rabinovich; Joshua E. Rapid manufacturing system for metal, metal matrix composite materials and ceramics
US5866058A (en) 1997-05-29 1999-02-02 Stratasys Inc. Method for rapid prototyping of solid models
IL121458A0 (en) 1997-08-03 1998-02-08 Lipsker Daniel Rapid prototyping
US5936861A (en) 1997-08-15 1999-08-10 Nanotek Instruments, Inc. Apparatus and process for producing fiber reinforced composite objects
US6073670A (en) * 1997-10-31 2000-06-13 Isogrid Composites, Inc. Multiple fiber placement head arrangement for placing fibers into channels of a mold
US6261675B1 (en) 1999-03-23 2001-07-17 Hexcel Corporation Core-crush resistant fabric and prepreg for fiber reinforced composite sandwich structures
CA2388046A1 (en) 1999-11-05 2001-05-17 Z Corporation Material systems and methods of three-dimensional printing
US6501554B1 (en) 2000-06-20 2002-12-31 Ppt Vision, Inc. 3D scanner and method for measuring heights and angles of manufactured parts
US6799081B1 (en) 2000-11-15 2004-09-28 Mcdonnell Douglas Corporation Fiber placement and fiber steering systems and corresponding software for composite structures
US6471800B2 (en) 2000-11-29 2002-10-29 Nanotek Instruments, Inc. Layer-additive method and apparatus for freeform fabrication of 3-D objects
US6797220B2 (en) 2000-12-04 2004-09-28 Advanced Ceramics Research, Inc. Methods for preparation of three-dimensional bodies
US6803003B2 (en) 2000-12-04 2004-10-12 Advanced Ceramics Research, Inc. Compositions and methods for preparing multiple-component composite materials
US20020113331A1 (en) 2000-12-20 2002-08-22 Tan Zhang Freeform fabrication method using extrusion of non-cross-linking reactive prepolymers
US6899777B2 (en) 2001-01-02 2005-05-31 Advanced Ceramics Research, Inc. Continuous fiber reinforced composites and methods, apparatuses, and compositions for making the same
US20030044539A1 (en) 2001-02-06 2003-03-06 Oswald Robert S. Process for producing photovoltaic devices
WO2002070222A1 (en) 2001-03-01 2002-09-12 Schroeder Ernest C Apparatus and method of fabricating fiber reinforced plastic parts
US6767619B2 (en) 2001-05-17 2004-07-27 Charles R. Owens Preform for manufacturing a material having a plurality of voids and method of making the same
US6866807B2 (en) 2001-09-21 2005-03-15 Stratasys, Inc. High-precision modeling filament
CA2369710C (en) 2002-01-30 2006-09-19 Anup Basu Method and apparatus for high resolution 3d scanning of objects having voids
US6934600B2 (en) 2002-03-14 2005-08-23 Auburn University Nanotube fiber reinforced composite materials and method of producing fiber reinforced composites
US7229586B2 (en) 2002-05-07 2007-06-12 Dunlap Earl N Process for tempering rapid prototype parts
US7572403B2 (en) 2003-09-04 2009-08-11 Peihua Gu Multisource and multimaterial freeform fabrication
US7293590B2 (en) 2003-09-22 2007-11-13 Adc Acquisition Company Multiple tape laying apparatus and method
US7063118B2 (en) 2003-11-20 2006-06-20 Adc Acquisition Company Composite tape laying apparatus and method
US7039485B2 (en) 2004-03-12 2006-05-02 The Boeing Company Systems and methods enabling automated return to and/or repair of defects with a material placement machine
US7824001B2 (en) 2004-09-21 2010-11-02 Z Corporation Apparatus and methods for servicing 3D printers
US7680555B2 (en) 2006-04-03 2010-03-16 Stratasys, Inc. Auto tip calibration in an extrusion apparatus
US7555404B2 (en) 2007-08-09 2009-06-30 The Boeing Company Methods and systems for automated ply boundary and orientation inspection
WO2009052263A1 (en) 2007-10-16 2009-04-23 Ingersoll Machine Tools, Inc. Fiber placement machine platform system having interchangeable head and creel assemblies
DE102008022946B4 (en) 2008-05-09 2014-02-13 Fit Fruth Innovative Technologien Gmbh Apparatus and method for applying powders or pastes
KR100995983B1 (en) 2008-07-04 2010-11-23 재단법인서울대학교산학협력재단 Cross printing method and apparatus of circuit board
MX2012002615A (en) 2009-09-04 2012-04-20 Bayer Materialscience Llc Automated processes for the production of polyurethane wind turbine blades.
US8221669B2 (en) 2009-09-30 2012-07-17 Stratasys, Inc. Method for building three-dimensional models in extrusion-based digital manufacturing systems using ribbon filaments
DE102009052835A1 (en) 2009-11-13 2011-05-19 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Method for producing a component from a fiber-reinforced material
US9086033B2 (en) 2010-09-13 2015-07-21 Experimental Propulsion Lab, Llc Additive manufactured propulsion system
US8920697B2 (en) 2010-09-17 2014-12-30 Stratasys, Inc. Method for building three-dimensional objects in extrusion-based additive manufacturing systems using core-shell consumable filaments
KR101172859B1 (en) 2010-10-04 2012-08-09 서울대학교산학협력단 Ultra precision machining apparatus using nano-scale three dimensional printing and method using the same
DE102011109369A1 (en) 2011-08-04 2013-02-07 Arburg Gmbh + Co Kg Method and device for producing a three-dimensional object with fiber feed
US9457521B2 (en) 2011-09-01 2016-10-04 The Boeing Company Method, apparatus and material mixture for direct digital manufacturing of fiber reinforced parts
PL2589481T3 (en) 2011-11-04 2016-06-30 Ralph Peter Hegler Device for continuously manufacturing a composite pipe with connection sleeve
US20130164498A1 (en) 2011-12-21 2013-06-27 Adc Acquisition Company Thermoplastic composite prepreg for automated fiber placement
US10518490B2 (en) 2013-03-14 2019-12-31 Board Of Regents, The University Of Texas System Methods and systems for embedding filaments in 3D structures, structural components, and structural electronic, electromagnetic and electromechanical components/devices
US9884318B2 (en) 2012-02-10 2018-02-06 Adam Perry Tow Multi-axis, multi-purpose robotics automation and quality adaptive additive manufacturing
US8919410B2 (en) 2012-03-08 2014-12-30 Fives Machining Systems, Inc. Small flat composite placement system
US9764378B2 (en) 2012-04-04 2017-09-19 Massachusetts Institute Of Technology Methods and apparatus for actuated fabricator
DE102012007439A1 (en) 2012-04-13 2013-10-17 Compositence Gmbh Laying head and apparatus and method for building a three-dimensional preform for a component made of a fiber composite material
GB201210850D0 (en) 2012-06-19 2012-08-01 Eads Uk Ltd Thermoplastic polymer powder
GB201210851D0 (en) 2012-06-19 2012-08-01 Eads Uk Ltd Extrusion-based additive manufacturing system
JP2015534006A (en) 2012-07-20 2015-11-26 エムエージー エアロスペイス インダストリーズ, エルエルシィ Composite material element for transporting waste, composite element for transporting water for aircraft, and method of manufacturing
US9172829B2 (en) 2012-07-31 2015-10-27 Makerbot Industries, Llc Three-dimensional printer with laser line scanner
US8962717B2 (en) 2012-08-20 2015-02-24 Basf Se Long-fiber-reinforced flame-retardant polyesters
US9511543B2 (en) 2012-08-29 2016-12-06 Cc3D Llc Method and apparatus for continuous composite three-dimensional printing
US9233506B2 (en) 2012-12-07 2016-01-12 Stratasys, Inc. Liquefier assembly for use in additive manufacturing system
US20140232035A1 (en) 2013-02-19 2014-08-21 Hemant Bheda Reinforced fused-deposition modeling
EP2969538B1 (en) 2013-03-15 2019-10-30 Seriforge Inc. Method for producing composite preforms
US9539762B2 (en) 2013-03-22 2017-01-10 Markforged, Inc. 3D printing with kinematic coupling
US9688028B2 (en) 2013-03-22 2017-06-27 Markforged, Inc. Multilayer fiber reinforcement design for 3D printing
US9694544B2 (en) 2013-03-22 2017-07-04 Markforged, Inc. Methods for fiber reinforced additive manufacturing
US9186846B1 (en) 2013-03-22 2015-11-17 Markforged, Inc. Methods for composite filament threading in three dimensional printing
EP4008521B1 (en) 2013-03-22 2024-01-03 Markforged, Inc. Three dimensional printing of reinforced filament
US20170173868A1 (en) 2013-03-22 2017-06-22 Markforged, Inc. Continuous and random reinforcement in a 3d printed part
US11237542B2 (en) 2013-03-22 2022-02-01 Markforged, Inc. Composite filament 3D printing using complementary reinforcement formations
US10682844B2 (en) 2013-03-22 2020-06-16 Markforged, Inc. Embedding 3D printed fiber reinforcement in molded articles
US9126367B1 (en) 2013-03-22 2015-09-08 Markforged, Inc. Three dimensional printer for fiber reinforced composite filament fabrication
US9956725B2 (en) 2013-03-22 2018-05-01 Markforged, Inc. Three dimensional printer for fiber reinforced composite filament fabrication
US9815268B2 (en) 2013-03-22 2017-11-14 Markforged, Inc. Multiaxis fiber reinforcement for 3D printing
US9156205B2 (en) 2013-03-22 2015-10-13 Markforged, Inc. Three dimensional printer with composite filament fabrication
US9126365B1 (en) 2013-03-22 2015-09-08 Markforged, Inc. Methods for composite filament fabrication in three dimensional printing
US10259160B2 (en) 2013-03-22 2019-04-16 Markforged, Inc. Wear resistance in 3D printing of composites
US9579851B2 (en) 2013-03-22 2017-02-28 Markforged, Inc. Apparatus for fiber reinforced additive manufacturing
US9186848B2 (en) 2013-03-22 2015-11-17 Markforged, Inc. Three dimensional printing of composite reinforced structures
US9149988B2 (en) 2013-03-22 2015-10-06 Markforged, Inc. Three dimensional printing
US10059057B2 (en) 2013-05-31 2018-08-28 United Technologies Corporation Continuous fiber-reinforced component fabrication
WO2014197732A2 (en) 2013-06-05 2014-12-11 Markforged, Inc. Methods for fiber reinforced additive manufacturing
US10618217B2 (en) 2013-10-30 2020-04-14 Branch Technology, Inc. Cellular fabrication and apparatus for additive manufacturing
JP6588901B2 (en) 2013-10-30 2019-10-09 ライング オーローク オーストラリア プロプライエタリー リミテッド Manufacturing method of object
ES2879847T3 (en) 2013-10-30 2021-11-23 Branch Tech Inc Additive manufacturing of buildings and other structures
WO2015073992A1 (en) 2013-11-15 2015-05-21 Fleming Robert J Shape forming process and application thereof for creating structural elements and designed objects
US20160243762A1 (en) 2013-11-15 2016-08-25 Fleming Robert J Automated design, simulation, and shape forming process for creating structural elements and designed objects
US20160297104A1 (en) 2013-11-19 2016-10-13 Guill Tool & Engineering Coextruded, multilayer and multicomponent 3d printing inputs field
WO2015130401A2 (en) 2013-12-26 2015-09-03 Texas Tech University System Microwave-induced localized heating of cnt filled polymer composites for enhanced inter-bead diffusive bonding of fused filament fabricated parts
US10611098B2 (en) 2014-01-17 2020-04-07 G6 Materials Corp. Fused filament fabrication using multi-segment filament
EP3102411A4 (en) 2014-02-04 2017-11-29 Samir Shah Device and method of manufacturing customizable three-dimensional objects
EP3122542B1 (en) 2014-03-28 2019-06-05 Ez Print, LLC 3d print bed having permanent coating
WO2015164954A1 (en) 2014-04-30 2015-11-05 Magna International Inc. Apparatus and process for forming three-dimensional objects
WO2015182675A1 (en) 2014-05-27 2015-12-03 学校法人日本大学 Three-dimensional printing system, three-dimensional printing method, molding device, fiber-containing object, and production method therefor
US20160012935A1 (en) 2014-07-11 2016-01-14 Empire Technology Development Llc Feedstocks for additive manufacturing and methods for their preparation and use
US9808991B2 (en) 2014-07-29 2017-11-07 Cc3D Llc. Method and apparatus for additive mechanical growth of tubular structures
DE102014215935A1 (en) 2014-08-12 2016-02-18 Airbus Operations Gmbh Apparatus and method for manufacturing components from a fiber reinforced composite material
IL282056B (en) 2014-08-21 2022-09-01 Mosaic Mfg Ltd Series enabled multi-material extrusion technology
US9931778B2 (en) 2014-09-18 2018-04-03 The Boeing Company Extruded deposition of fiber reinforced polymers
US10118375B2 (en) 2014-09-18 2018-11-06 The Boeing Company Extruded deposition of polymers having continuous carbon nanotube reinforcements
EP3218160A4 (en) 2014-11-14 2018-10-17 Nielsen-Cole, Cole Additive manufacturing techniques and systems to form composite materials
EP3227090B1 (en) 2014-12-01 2019-01-30 SABIC Global Technologies B.V. Rapid nozzle cooling for additive manufacturing
US20170259507A1 (en) 2014-12-01 2017-09-14 Sabic Global Technologies B.V. Additive manufacturing process automation systems and methods
CN107000318B (en) 2014-12-01 2018-08-21 沙特基础工业全球技术有限公司 The nozzle tool that increasing material manufacturing is squeezed out for material changes
US10226103B2 (en) 2015-01-05 2019-03-12 Markforged, Inc. Footwear fabrication by composite filament 3D printing
FR3031471A1 (en) 2015-01-09 2016-07-15 Daher Aerospace PROCESS FOR THE PRODUCTION OF A COMPLEX COMPOSITE WORKPIECE, IN PARTICULAR A THERMOPLASTIC MATRIX AND PIECE OBTAINED BY SUCH A METHOD
US20160263823A1 (en) 2015-03-09 2016-09-15 Frederick Matthew Espiau 3d printed radio frequency absorber
US20160271876A1 (en) 2015-03-22 2016-09-22 Robert Bruce Lower Apparatus and method of embedding cable in 3D printed objects
CN107428061A (en) 2015-03-31 2017-12-01 京洛株式会社 The manufacture method of lines resin-formed body, the forming method of three-dimensional body and lines resin-formed body
KR101714772B1 (en) * 2015-04-28 2017-03-09 주식회사 키스타 Three-dimensional product manufacturing robot for plastic formable materials
WO2016196382A1 (en) 2015-06-01 2016-12-08 Velo3D, Inc. Three-dimensional printing and three-dimensional objects formed using the same
DE102015109855A1 (en) 2015-06-19 2016-12-22 Airbus Operations Gmbh Method for producing components, in particular elongated profiles from strip-shaped, pre-impregnated fibers (prepreg)
US10874483B2 (en) 2015-07-07 2020-12-29 Align Technology, Inc. Direct fabrication of attachment templates with adhesive
US10201409B2 (en) 2015-07-07 2019-02-12 Align Technology, Inc. Dental appliance having ornamental design
US11571278B2 (en) 2015-07-07 2023-02-07 Align Technology, Inc. Systems, apparatuses and methods for dental appliances with integrally formed features
US11045282B2 (en) 2015-07-07 2021-06-29 Align Technology, Inc. Direct fabrication of aligners with interproximal force coupling
US10959810B2 (en) 2015-07-07 2021-03-30 Align Technology, Inc. Direct fabrication of aligners for palate expansion and other applications
US10492888B2 (en) 2015-07-07 2019-12-03 Align Technology, Inc. Dental materials using thermoset polymers
WO2017006178A1 (en) 2015-07-07 2017-01-12 Align Technology, Inc. Systems, apparatuses and methods for substance delivery from dental appliances and for ornamental designs on dental appliances
CN109874326A (en) 2015-07-09 2019-06-11 萨姆希3D有限公司 Method and apparatus for 3 D-printing
US20170015060A1 (en) 2015-07-17 2017-01-19 Lawrence Livermore National Security, Llc Additive manufacturing continuous filament carbon fiber epoxy composites
US9944016B2 (en) 2015-07-17 2018-04-17 Lawrence Livermore National Security, Llc High performance, rapid thermal/UV curing epoxy resin for additive manufacturing of short and continuous carbon fiber epoxy composites
US9926796B2 (en) 2015-07-28 2018-03-27 General Electric Company Ply, method for manufacturing ply, and method for manufacturing article with ply
US10195784B2 (en) 2015-07-31 2019-02-05 The Boeing Company Systems for additively manufacturing composite parts
US10232570B2 (en) 2015-07-31 2019-03-19 The Boeing Company Systems for additively manufacturing composite parts
US10343355B2 (en) 2015-07-31 2019-07-09 The Boeing Company Systems for additively manufacturing composite parts
US10201941B2 (en) 2015-07-31 2019-02-12 The Boeing Company Systems for additively manufacturing composite parts
US10112380B2 (en) 2015-07-31 2018-10-30 The Boeing Company Methods for additively manufacturing composite parts
US10232550B2 (en) * 2015-07-31 2019-03-19 The Boeing Company Systems for additively manufacturing composite parts
US10343330B2 (en) 2015-07-31 2019-07-09 The Boeing Company Systems for additively manufacturing composite parts
US10582619B2 (en) 2015-08-24 2020-03-03 Board Of Regents, The University Of Texas System Apparatus for wire handling and embedding on and within 3D printed parts
US10464268B2 (en) 2015-08-25 2019-11-05 The Boeing Company Composite feedstock strips for additive manufacturing and methods of forming thereof
EP3341179A4 (en) 2015-08-25 2019-10-30 University of South Carolina Integrated robotic 3d printing system for printing of fiber reinforced parts
US10357924B2 (en) 2015-08-25 2019-07-23 The Boeing Company Composite feedstock strips for additive manufacturing and methods of forming thereof
US10336056B2 (en) 2015-08-31 2019-07-02 Colorado School Of Mines Hybrid additive manufacturing method
GB201516943D0 (en) 2015-09-24 2015-11-11 Victrex Mfg Ltd Polymeric materials
US10000357B2 (en) * 2015-10-13 2018-06-19 Fives Machining Systems, Inc. Passive tensioning system for composite material payout control
US10207426B2 (en) 2015-10-14 2019-02-19 Northrop Grumman Systems Corporation Continuous fiber filament for fused deposition modeling (FDM) additive manufactured (AM) structures
US11097440B2 (en) 2015-11-05 2021-08-24 United States Of America As Represented By The Administrator Of Nasa Cutting mechanism for carbon nanotube yarns, tapes, sheets and polymer composites thereof
US10500836B2 (en) 2015-11-06 2019-12-10 United States Of America As Represented By The Administrator Of Nasa Adhesion test station in an extrusion apparatus and methods for using the same
US10513080B2 (en) 2015-11-06 2019-12-24 United States Of America As Represented By The Administrator Of Nasa Method for the free form fabrication of articles out of electrically conductive filaments using localized heating
US9889606B2 (en) 2015-11-09 2018-02-13 Nike, Inc. Tack and drag printing
US10894353B2 (en) 2015-11-09 2021-01-19 United States Of America As Represented By The Administrator Of Nasa Devices and methods for additive manufacturing using flexible filaments
EP3168034A1 (en) 2015-11-12 2017-05-17 Fraunhofer Gesellschaft zur Förderung der angewandten Forschung e.V. Device for additive production of a component
ITUB20155642A1 (en) 2015-11-17 2017-05-17 Milano Politecnico Equipment and method for three-dimensional printing of continuous fiber composite materials
EP3377305B1 (en) 2015-11-17 2023-01-25 Zephyros Inc. Additive manufacturing materials system
US10150262B2 (en) 2015-11-20 2018-12-11 The Boeing Company System and method for cutting material in continuous fiber reinforced additive manufacturing
US20170151728A1 (en) 2015-11-30 2017-06-01 Ut-Battelle, Llc Machine and a Method for Additive Manufacturing with Continuous Fiber Reinforcements
US10456968B2 (en) 2015-12-08 2019-10-29 Xerox Corporation Three-dimensional object printer with multi-nozzle extruders and dispensers for multi-nozzle extruders and printheads
US10173410B2 (en) 2015-12-08 2019-01-08 Northrop Grumman Systems Corporation Device and method for 3D printing with long-fiber reinforcement
US10335991B2 (en) 2015-12-08 2019-07-02 Xerox Corporation System and method for operation of multi-nozzle extrusion printheads in three-dimensional object printers
US10625466B2 (en) 2015-12-08 2020-04-21 Xerox Corporation Extrusion printheads for three-dimensional object printers
WO2017100783A1 (en) 2015-12-11 2017-06-15 Massachusetts Institute Of Technology Systems, devices, and methods for deposition-based three-dimensional printing
DE102015122647A1 (en) 2015-12-22 2017-06-22 Arburg Gmbh + Co. Kg Device and method for producing a three-dimensional object with a fiber feed device
US10369742B2 (en) 2015-12-28 2019-08-06 Southwest Research Institute Reinforcement system for additive manufacturing, devices and methods using the same
EP3402653B1 (en) 2016-01-12 2023-03-08 Markforged, Inc. Embedding 3d printed fiber reinforcement in molded articles
KR101755015B1 (en) 2016-01-14 2017-07-06 주식회사 키스타 Transformer controlling movement of head unit and tension and temperature of plastic formable material
KR101826970B1 (en) 2016-01-14 2018-02-07 주식회사 키스타 Raw material feeding apparatus for feeding raw material made of plastic formable materials, and three-dimensional product manufacturing robot having the same
KR101785703B1 (en) 2016-01-14 2017-10-17 주식회사 키스타 Head unit and head supply unit for controlling discharge of raw material made of plastic formable materials
CA3011260A1 (en) 2016-01-15 2017-07-20 Markforged, Inc. Continuous and random reinforcement in a 3d printed part
JP6602678B2 (en) 2016-01-22 2019-11-06 国立大学法人岐阜大学 Manufacturing method of three-dimensional structure
JP6251925B2 (en) 2016-01-22 2017-12-27 国立大学法人岐阜大学 Manufacturing method of three-dimensional structure and filament for 3D printer
MX2018009683A (en) 2016-02-11 2019-06-10 Kuster Martin Movable printing devices for three-dimensional printers.
WO2017142867A1 (en) 2016-02-15 2017-08-24 Georgia-Pacific Chemicals Llc Extrusion additive manufacturing of pellets or filaments of thermosetting resins
WO2017150186A1 (en) 2016-02-29 2017-09-08 学校法人日本大学 Three-dimensional printing apparatus and three-dimensional printing method
US10875288B2 (en) 2016-03-10 2020-12-29 Mantis Composites Inc. Additive manufacturing of composite materials
EP3219474B1 (en) 2016-03-16 2019-05-08 Airbus Operations GmbH Method and device for 3d-printing a fiber reinforced composite component by tape-laying
US10052813B2 (en) 2016-03-28 2018-08-21 Arevo, Inc. Method for additive manufacturing using filament shaping
US10234342B2 (en) 2016-04-04 2019-03-19 Xerox Corporation 3D printed conductive compositions anticipating or indicating structural compromise
US11167951B2 (en) * 2016-06-30 2021-11-09 Robert Bosch Tool Corporation Automatic mechanical spool changer for 3-D printers
US10953598B2 (en) * 2016-11-04 2021-03-23 Continuous Composites Inc. Additive manufacturing system having vibrating nozzle
GB2570654B (en) * 2018-01-31 2020-05-27 Generative Parametrics Ltd Filament drive apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210387411A1 (en) * 2020-06-11 2021-12-16 Savannah River Nuclear Solutions, Llc Fused Deposition Modeling Mixing Extruder Coupled to an External Energy Source

Also Published As

Publication number Publication date
US11292192B2 (en) 2022-04-05
US20220176627A1 (en) 2022-06-09
US20200156318A1 (en) 2020-05-21
US20210094230A9 (en) 2021-04-01

Similar Documents

Publication Publication Date Title
US20180126639A1 (en) Additive manufacturing system having compaction nose
US10940638B2 (en) Additive manufacturing system having finish-follower
US20220009165A1 (en) Additive manufacturing method for discharging interlocking continuous reinforcement
US11623393B2 (en) System, print head, and compactor for continuously manufacturing composite structure
US10906240B2 (en) Print head for additive manufacturing system
US20180065317A1 (en) Additive manufacturing system having in-situ fiber splicing
US20210094230A9 (en) System for additive manufacturing
US11000998B2 (en) Additive manufacturing system having in-head fiber-teasing

Legal Events

Date Code Title Description
AS Assignment

Owner name: CONTINUOUS COMPOSITES INC., IDAHO

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:TYLER, KENNETH LYLE;OVERBY, ANDREW JOHN;STOCKETT, RYAN C;SIGNING DATES FROM 20190919 TO 20190923;REEL/FRAME:050476/0197

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

AS Assignment

Owner name: CONTINUOUS COMPOSITES INC., IDAHO

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:TYLER, KENNETH LYLE;OVERBY, ANDREW JOHN;STOCKETT, RYAN C;SIGNING DATES FROM 20190919 TO 20190923;REEL/FRAME:053232/0371

STPP Information on status: patent application and granting procedure in general

Free format text: PRE-INTERVIEW COMMUNICATION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION