US20200155287A1 - Flashlight device for curing light-curable materials, method and set - Google Patents

Flashlight device for curing light-curable materials, method and set Download PDF

Info

Publication number
US20200155287A1
US20200155287A1 US16/752,701 US202016752701A US2020155287A1 US 20200155287 A1 US20200155287 A1 US 20200155287A1 US 202016752701 A US202016752701 A US 202016752701A US 2020155287 A1 US2020155287 A1 US 2020155287A1
Authority
US
United States
Prior art keywords
light
housing
curable material
reservoir
recited
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US16/752,701
Inventor
Thomas Offermann
Dinko Jurcevic
Anke Viering
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE102010046993A external-priority patent/DE102010046993A1/en
Priority claimed from DE102010060422A external-priority patent/DE102010060422A1/en
Priority claimed from PCT/EP2011/004888 external-priority patent/WO2012041510A2/en
Application filed by Individual filed Critical Individual
Priority to US16/752,701 priority Critical patent/US20200155287A1/en
Publication of US20200155287A1 publication Critical patent/US20200155287A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C19/00Dental auxiliary appliances
    • A61C19/003Apparatus for curing resins by radiation
    • A61C19/004Hand-held apparatus, e.g. guns
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C19/00Dental auxiliary appliances
    • A61C19/003Apparatus for curing resins by radiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C5/00Filling or capping teeth
    • A61C5/60Devices specially adapted for pressing or mixing capping or filling materials, e.g. amalgam presses
    • A61C5/62Applicators, e.g. syringes or guns
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21LLIGHTING DEVICES OR SYSTEMS THEREOF, BEING PORTABLE OR SPECIALLY ADAPTED FOR TRANSPORTATION
    • F21L4/00Electric lighting devices with self-contained electric batteries or cells
    • F21L4/005Electric lighting devices with self-contained electric batteries or cells the device being a pocket lamp
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S6/00Lighting devices intended to be free-standing
    • F21S6/002Table lamps, e.g. for ambient lighting
    • F21S6/003Table lamps, e.g. for ambient lighting for task lighting, e.g. for reading or desk work, e.g. angle poise lamps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V33/00Structural combinations of lighting devices with other articles, not otherwise provided for
    • F21V33/008Leisure, hobby or sport articles, e.g. toys, games or first-aid kits; Hand tools; Toolboxes
    • F21V33/0084Hand tools; Toolboxes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/0075Reflectors for light sources for portable lighting devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/20Dichroic filters, i.e. devices operating on the principle of wave interference to pass specific ranges of wavelengths while cancelling others
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0005Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being of the fibre type
    • G02B6/0008Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being of the fibre type the light being emitted at the end of the fibre
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/262Optical details of coupling light into, or out of, or between fibre ends, e.g. special fibre end shapes or associated optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/3616Holders, macro size fixtures for mechanically holding or positioning fibres, e.g. on an optical bench
    • G02B6/3624Fibre head, e.g. fibre probe termination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/10Methods of surface bonding and/or assembly therefor

Definitions

  • the present invention relates to a flashlight device for curing light-curable materials, to a method of use thereof, and to a set.
  • Light-curable acrylic adhesives for use in the oral cavity are known from the dentistry sector. These adhesives are used primarily to produce temporary restorations. After they have been applied, they are cured by irradiation with UV light from UV lamps.
  • One object of the present invention is to propose a further light device and corresponding methods and a set.
  • the set includes a housing comprising a first end, a second end, and a reservoir, a light-curable material arranged in the reservoir, and a lamp configured to emit a light having a wavelength or a spectrum of wavelengths at which the light-curable material is selectively cured and to be coupled to the housing at the second end so that the light emitted by the lamp is only emitted in a direction which faces away from the first end.
  • the reservoir comprises an exit opening which is configured to selectively discharge the light-curable material at the first end.
  • the housing is completely impermeable to light.
  • FIG. 1 schematically shows, in simplified form, a device according to the present invention in a perspective view
  • FIG. 2 shows a section through the device according to the present invention as shown in FIG. 1 ;
  • FIG. 3 shows a further device according to the present invention in the form of a hook
  • FIG. 4 shows a flashlight device according to the present invention for curing the light-curable material, in the form of a lamp/magnifying glass combination
  • FIG. 5 shows a further device according to the present invention having a reservoir for the light-curable material and an LED lamp;
  • FIG. 6 shows the device of FIG. 5 in one possible use.
  • a flashlight device which comprises at least one unit for generating flashlight and at least one unit for focusing the generated flashlight.
  • a flashlight device will be understood to mean a gas discharge device for generating light.
  • the flashlight device is provided with a capacitor which is supplied by means of a battery or an accumulator.
  • the flashlight device is configured as a xenon gas discharge device or as a discharge device comprising another noble gas.
  • the emitted wave spectrum may be that of a xenon lamp.
  • the battery or the accumulator may be designed to be recharged by the user by means of induction.
  • a light-curable material will be understood to mean a material, for example an adhesive, the viscosity of which is deliberately increased in the context of curing only when irradiated with light. The increase in viscosity is very pronounced. The increase in viscosity may lead to a transition from the liquid or viscous state to the solid or sliceable state.
  • the light-curable material may be an acrylic-based material, a material containing acrylic components, or an acrylic adhesive. Examples of a possible, suitable light-curable material are “Vitralit® 9180 VL” and “Vitralit® 9188 VL” from the company Panacol-Elosol GmbH located in Steinbach, Germany.
  • a light-curable material will be understood to mean a photo-inducible material.
  • a focusing of light will be understood to mean a bundling or concentration of the exiting light energy or of significant portions thereof.
  • the bundling or concentration may be such that the light energy or light quanta exiting from the flashlight device or generated by the latter are directed in a targeted manner onto a spot or a surface area.
  • the surface area may have a size of 3 ⁇ 3 cm, 2 ⁇ 2 cm, 1 ⁇ 1 cm, 5 ⁇ 5 cm, intermediate ranges and combinations of the numerical values and ranges specified here.
  • the focusing unit has or is designed as a light guide or an optical fiber.
  • the light guide may be made of a transparent, light-permeable material, such as glass or plastic, or may comprise such a material.
  • the light guide may be an optical fiber.
  • a light guide is or comprises one, several or many glass fibers, polymeric optical fibers or other light-guiding components, for example made from plastic or fiberoptic components.
  • the light guide may be configured as a gradient index fiber or a step index fiber or in each case as a plurality thereof.
  • the light guide may be curved or straight.
  • the light guide may have a sheath to prevent light from exiting at a location other than the desired location.
  • the housing of the flashlight device may have, in a main section thereof, in particular therefore without taking account of the light guide, the form of a laser pointer or a pocket torch.
  • the flashlight device according to the invention has a protection unit. This is provided and arranged so as to protect the eyes of the user of the flashlight device against any entry of flashlight, or in any case to reduce the risk thereof. In this way, at least an unpleasant dazzling of the user by the curing by means of light can be prevented or reduced.
  • the protection unit is attached to the light guide. This may advantageously help to ensure that, when the light guide is replaced with another light guide, the protection unit is also exchanged. It is thus easy, without any additional effort, advantageously to replace both the light guide and the protection unit together.
  • the user can thus advantageously have in each case a light guide that is more suited to the specific intended use.
  • the light guide of the flashlight device according to the invention has at least one flexible section. Different emission directions of the generated light or flashlight can thus be set or achieved.
  • the light guide of the flashlight device according to the invention is flexible such that it can be deformed by hand, but at the same time is stiff so that it remains in this deformation after it has been deformed. This should apply at least to a range of possible deformations. According to the invention, it is not necessary that the light guide can retain its shape after every conceivable deformation.
  • the flashlight device according to the invention has the form of a pen or writing instrument in general, in particular one that is commercially available.
  • the flashlight device has a press-switch for switching on the flashlight by applying pressure thereto.
  • the press-switch is designed so as, when the pressure by which the flashlight has been switched on is ended, to move automatically from the on position, in which the flashlight is lit, to an off position, in which the flashlight is not lit.
  • the press-switch can thus automatically return to the off position.
  • the flashlight device has a unit by means of which the light emission can be initiated or triggered or started wirelessly. This can enable working with the flashlight device even from a certain distance. Moreover, in this embodiment, “hands-free” working may advantageously be possible.
  • the flashlight device according to the invention may include a tripod or a head mount, by which in each case the advantages known in this connection can be achieved.
  • the flashlight device has lenses, apertures or other such optical devices within a beam path for adjusting an exiting light quantity or for optical light amplification.
  • the focusing unit has or is a reflector unit.
  • said flashlight device has at least one filter or one filter attachment with a filter effect in the range from 390 to 500 nanometers (nm), in particular in the range from 450 to 480 nm, in particular at 470 nm, and in particular in a range from 400 to 410 nm, in particular at 405 nm.
  • the unit for generating flashlight is suitable and intended for generating a voltage in a range from 400 to 500 Volts.
  • said flashlight device has a unit by which it can be attached to the user thereof.
  • the attachment unit may be a head mount. It may be or comprise a headband, which may be flexible or rigid, for example as part of a helmet or a section thereof.
  • the use of such an attachment unit advantageously enables the user of the flashlight device to keep his hands free, but at least enables him not to have to hold the flashlight device with one hand during the curing of the light-curable material.
  • the present invention proposes a method for curing a light-curable material, which comprises using a flashlight device without a focusing unit or a flashlight device according to the invention having a focusing unit.
  • the present invention proposes a method for curing a light-curable material, which comprises using light guides between a first curing or contact or adhesive section (in short: section or sections), which is to be bonded to a second curing or contact or adhesive section by means of the light-curable material, and the second curing or contact or adhesive section.
  • the use is or comprises an introduction of the light guide or light guides.
  • the method according to the invention can also be carried out with light guides that have already been introduced beforehand.
  • the light guide is configured as one or more optical fibers.
  • the use of light guides introduced or to be introduced in this way may advantageously help to bring light, which is required for curing purposes, by means of the light guide, to locations at which otherwise no light or insufficient light would fall for curing or completely curing the light-curable material.
  • Such locations may accordingly be located far away from the point where the light exits from the flashlight device, for which reason the light intensity available for curing purposes is not sufficient for the desired curing.
  • they may also be difficult to expose to light due to a curvature or branching of the bonding region between the sections per se.
  • Such locations may be characterized by a large layer thickness.
  • the corresponding lamp/magnifying glass combination has both a magnifying glass and a curing lamp.
  • they may have a conventional reading or working lamp having any light spectrum, that is to say, for example, the known light spectrum.
  • the reading or working lamp emits no light or substantially no light that is used for curing purposes. In certain cases, therefore, it emits for example no light in the range from 390 to 405 nm, in particular no light in the range from 395 to 400 nm.
  • the elements of the lamp/magnifying glass combination may be provided in such a way as to be able to be replaced individually.
  • the set according to the invention comprises at least one flashlight device and a quantity of light-curable material which can be cured by means of the flashlight device according to the invention. In some embodiments, therefore, the set has everything that the customer needs for bonding, gluing, modeling, constructing and the like.
  • the set according to invention may comprise, besides the light-curable material and the flashlight device according to the invention, an additional LED lamp.
  • the additional LED lamp emits light of a wavelength or of a spectrum of wavelengths that is set to the wavelength(s) at which the light-curable material can be cured or can be cured particularly well.
  • the purchaser of a set according to the invention in these embodiments thus has the possibility of using two lamps which can supplement one another in terms of their use and performance spectrum.
  • the flashlight device according to the invention for small material thicknesses to be cured, and on the other hand an LED-based high-power polymerization lamp having a higher power and an associated shortened curing time.
  • the latter may be used particularly in the case of relatively large models or in the case of models having an above-average material thickness (layer thickness).
  • the method according to the invention relates to the use of a light-curable material for gluing or bonding or modeling, in particular in the industrial sector or in the non-commercial sector.
  • a flashlight device according to the invention or an LED lamp is used for curing purposes.
  • the LED lamp may emit predominantly or exclusively light having a wavelength of 405 nm. In this case, the light may have this wavelength due to the nature of the LED lighting element and/or due to a light filter that is optionally used.
  • the emitted light may be blue, or it may be white.
  • the preferred wavelength range of the light device may lie between 390 and 405, in particular between 395 and 400 nm.
  • the method according to the invention relates once again to the use of a light-curable material for gluing or bonding or modeling, in particular in the industrial sector or in the non-commercial sector.
  • a light-curable material for gluing or bonding or modeling, in particular in the industrial sector or in the non-commercial sector.
  • the method according to the invention comprises introducing the light-curable material into a liquid (for example water) or below a liquid level or using light-curable material that has already been introduced into a liquid or below a liquid level. It also comprises curing the light-curable material in the liquid or below the liquid level. This includes for example, but in a non-limiting manner, the curing of the light-curable material under water. A gluing, modeling, closing of gaps, cracks, etc. using the light-curable material is encompassed for example by the method according to the invention as described here.
  • the curing of the light-curable material may take place by means of a light source, which light source (or a section thereof such as a light exit point, for instance the end of a light guide) is located in or outside of the liquid (or below or above the liquid level).
  • the necessary light may thus be generated outside of the liquid and introduced into the liquid.
  • the necessary light may thus be generated within the liquid.
  • a liquid will be understood to mean a liquid mixture.
  • a liquid will be understood to mean water, for example water of a swimming pool.
  • the light source may in this case be a light source according to the invention of any type, or a different light source, in particular a light source described herein.
  • the device according to the invention is intended to be bonded to a structure, the device having at least one retention means or depression.
  • the retention means or depression is intended to accommodate a quantity of light-curable material, by means of which the device can be bonded to the structure.
  • the bonding takes place preferably between in each case at least one surface of the device and structure.
  • the surface of the device and the surface of the structure may in this case have surfaces of different roughness.
  • one or more retention means or depressions are open to the atmosphere in a direction facing toward the structure, based on the state in which the device and the structure are bonded to one another.
  • This opening allows light-curable material to be introduced into the retention means before being cured by light. It may also enable a bonding between the light-cured material which exists within the retention means or depression after the curing of the light-curable material and light-cured material which exists outside of the retention means and which is in double-sided contact both with the device and with the structure.
  • said device is intended to be bonded by means of a flashlight device according to the invention and/or a method according to the invention.
  • said device has at least one retention means which has or forms an undercut that is located completely or partially within the device.
  • the retention means may be a through-opening in the device. It may be a blind hole. In the case of a blind hole, the opening thereof preferably faces toward the structure in the state where the device is bonded to the latter.
  • the device according to the invention may be configured as a hook which is to be attached to a surface.
  • the basic material thereof is permeable to light, in particular in a wavelength range mentioned herein.
  • the device according to the invention may have, besides retention means or as an alternative thereto, perforations or blind holes which may likewise accommodate light-curable material.
  • said device is made of or comprises a first material, and is intended to be bonded by means of the light-curable material to a structure which is made of or comprises a second material.
  • the first and the second material are different from one another. Said difference may concern in particular the surface properties thereof, and more particularly the roughness thereof.
  • the device may be made of a smoother material or with a smoother surface than the structure or the surface thereof.
  • the device is or comprises a corner protector or a protection device of any type.
  • the device may be a corner protector or protection device for household furniture.
  • the device according to the invention may be as a corner protector for covering corners or edges of furniture.
  • the protective function of the device according to the invention may correspond to those corner protectors which are nowadays attached to furniture in order to protect children, with the aim of reducing the likelihood of children injuring themselves on the furniture.
  • the device according to the invention has at least one reservoir for a quantity of light-curable material and/or at least one light-emitting unit for curing the light-curable material.
  • the at least one light-emitting unit is an LED lamp.
  • the device according to the invention has a housing which is completely impermeable to light or which is impermeable to light at least in sections thereof.
  • the impermeability to light may in certain embodiments be completely or substantially limited to light of a wavelength that leads to the curing of the curable material.
  • the at least one reservoir is located entirely in an interior of the device.
  • the housing of the device has the form of a pen, a writing instrument in general or another hand tool.
  • the housing may have particularly ergonomic sections, for example a finger rest for the index finger and thumb.
  • the finger rest has a slip-resistant texture when gripped by the hand.
  • the finger rest has a surface texture in which it differs from other sections and/or from the main or largest sections of the device.
  • the at least one reservoir has a volume in the range between 2 to 10 milliliters (mL), in particular in the range between 2 to 6 mL, and in particular for 4 mL.
  • the reservoir preferably has an opening, through which the light-curable material can exit.
  • the size of the opening for example the cross-section of the opening, may be designed with a view to the metering of the reservoir volume, that is to say a small opening size for a fine metering and a larger opening for a rough metering.
  • the cross-section of the opening may be round or non-round.
  • the light-emitting unit may be an LED lamp. In some embodiments, this is an LED-based high-power polymerization lamp.
  • the LED lamp may emit predominantly or exclusively light having a wavelength of 405 nm. In this case, the light may have this wavelength due to the nature of the LED lighting element and/or due to a light filter that is optionally used.
  • the emitted light is blue in some embodiments according to the invention. Alternatively, it is white.
  • the preferred wavelength range of the light device may lie between 390 and 405, in particular between 395 and 400 nm.
  • the device has a metering mechanism for discharging light-curable material from the reservoir and/or from the device.
  • the metering mechanism is an expelling mechanism which does not or does not primarily serve for precise metering.
  • the metering mechanism is designed with a displacement unit and/or a pressing unit for exerting pressure on the reservoir. In some embodiments according to the invention, the metering mechanism is designed in a similar way to a mechanism of a pen and/or has a push-button.
  • the metering mechanism is a section of the housing that is deformable or that is designed in such a way that it can be deformed. In some embodiments, the metering mechanism is designed as a deformable reservoir for discharging the light-curable material.
  • the metering mechanism has at least one component which, for metering purposes, is designed to be displaceable relative to the (optionally to the rest of the) housing of the device.
  • the metering mechanism may be manually controlled or manually actuated.
  • a manually controlled metering mechanism may be a mechanism which releases a predefined volume by hand, for example by a pressure pulse on a piston.
  • a specific volume of light-curable material can be discharged by means of the metering mechanism.
  • the specific volume may be predefined by the size of the piston, which is activated for example by a press-switch or push-button.
  • the press-switch or push-button is preferably arranged on the opposite end face of the device, relative to the exit opening of the reservoir.
  • a manually controlled metering mechanism may also be a mechanism which displaces a specific volume by means of a rotary movement, preferably with individual stages during the rotation. This may take place, for example, by converting a rotary movement into a translational piston movement. The piston movement may deform the reservoir and thus cause a specific quantity of light-curable material to exit.
  • the manually controlled metering mechanism for rotary movement may be a rotary mechanism which is arranged as part of the housing on the opposite end face of the device relative to the reservoir opening.
  • the metering mechanism has at least one component that must be actuated for metering purposes.
  • the reservoir may be arranged in the housing in such a way that, as a result of a deformation of the housing, for instance due to pressure being exerted by the index finger and/or thumb in the region of the finger rest, the reservoir is likewise deformed. Light-curable material can exit as a result of this deformation of the reservoir.
  • the housing is deformable only in the region of the reservoir, in particular without being damaged and/or under use conditions. In other embodiments according to the invention, it is deformable to a greater extent or completely.
  • the device has the reservoir and the light-emitting unit, for example the at least one LED lamp, at two opposite ends (relative to a longitudinal axis of the device). These regions may also be referred to as end regions.
  • the device may be used on the one hand for discharging and metering the light-curable material, and on the other hand, when the device is rotated through for example 180 degrees about a central or transverse axis, for curing the light-curable material by means of the light-emitting unit, for example the LED lamp.
  • the light-emitting unit for example the LED lamp.
  • the light-emitting unit for example the LED lamp, can in some embodiments be removed from the device.
  • the light-emitting unit can then be used as a stand-alone unit as a curing lamp.
  • the light-emitting unit may be attached by means of an elastic clip-fastening or snap-fastening to the housing, which is configured for example as a plastic housing, preferably in such a way that it can be removed again therefrom without any damage being caused.
  • the device has a section for fitting an attachment onto the device, wherein a discharging and/or metering of the light-curable material is aided by the attachment.
  • the attachment may be designed as a nozzle for example.
  • the reservoir can be filled (for the first time or refilled) with light-curable material via the attachment.
  • the device has an adaptable connection or an attachment for discharging and metering the light-curable material and/or for filling the reservoir.
  • connection or the attachment may be able to be detached again, or it may alternatively not be able to be detached again.
  • a connection or attachment that cannot be detached again is formed by a snap-fastening, for example an elastic hook, which snaps in after being placed onto the device.
  • the connection or attachment that can be detached again is pushed on, screwed on, fixed by means of a bayonet fastening or connected by a different type of fastening.
  • connection or attachment that can be detached again may be detached again after a single use or after multiple uses.
  • a different adapter having in each case a different opening cross-section or opening profile for different metering quantities can be used depending on the application.
  • the same adapter or attachment as used for discharging and metering may be used for filling the reservoir.
  • a different adapter that is specifically suitable for filling purposes may also be used. This may have, for example, a specific shape for the placement and/or fixing of an external filling container.
  • the opening cross-section of the adapter may be much greater than that used for discharging and metering, in order to carry out the filling process rapidly so as, for example, largely to avoid premature curing by light components during the filling process.
  • the device has a closure cap which is placed onto the housing, in a manner such as to be able to be detached again, onto the end-face opening of the reservoir or the discharge path thereof.
  • the closure cap may be fixed onto or to the housing, in particular temporarily, by a friction pairing or another method or device known to the person skilled in the art.
  • This closure cap is preferably impermeable to light, at least for light having wavelength ranges at which the light-curable material cures.
  • the closure cap may be placed on with or without an adaptable connection for discharging and metering purposes.
  • the present invention proposes a method for discharging and/or for curing the light-curable material using a device according to the invention having at least one reservoir for a quantity of light-curable material and/or a light-emitting unit, in particular an LED lamp.
  • the discharging of the light-curable material may take place by applying manual pressure to the housing, to a pressing or displacement unit and/or to the reservoir.
  • metering can advantageously take place with the precision required for the respective application.
  • a manually controlled metering mechanism is actuated in order to discharge the light-curable material from the reservoir in a metered manner.
  • the method comprises a rotation, turning-over or tilting of the device about a transverse axis of the device, with subsequent activation of the curing by the light-emitting unit, for example the LED lamp.
  • the set comprises at least one device according to the invention and a quantity of light-curable material.
  • the set further comprises a closure cap for the device and/or one or more attachments for metering the light-curable material for the device.
  • the set according to the invention is packaged by means of visible packaging (which is also referred to as blister packaging), which comprises the device according to the invention having a reservoir and/or an LED lamp, a quantity of light-curable material and a closure cap for the device.
  • visible packaging which is also referred to as blister packaging
  • the device in question may be liquid-proof or waterproof.
  • liquid-proof or waterproof is to be understood to mean that the curing device can be used for repeated use in liquid or in water. This suitability may be brought about by means of suitable seals, coatings, insulations and/or the like.
  • the flashlight device By means of the flashlight device according to the invention, it is advantageously possible to glue or to permanently or temporarily bond objects to one another using cost-effective means.
  • the modeling it is possible to produce hooks or pegs, for example, in addition to depicting objects. Due to and depending on the light-curable materials used, it is possible to produce, for example, hooks or the like which adhere to glass, flows, wood, plastic, stone, etc.
  • the use of the method according to the invention differs from known methods and from the “conventional” adhesive systems of the prior art inter alia in that, according to the invention, there is no need to wait for the “adhesive” material used, that is to say the light-curable material, to cure. The bonding effect of the light-curable material is obtained virtually immediately.
  • bonding can take place in a time-saving manner by means of the method according to the invention.
  • These parts and elements can be placed in position and, once the position has been checked, are fixed to one another by targeted illumination.
  • the fixing takes place at the moment of curing. This may take place within a fraction of a second.
  • a primary fixing of elements can thus be achieved in the blink of an eye.
  • a primary fixing is achieved after just 300-500 ms.
  • the curing process is complete after approximately 5-8 s. Any subsequent reinforcements of the bonding sites can be taken care of without any time pressure.
  • the method according to the invention can be carried out without hesitation in rented homes and holiday homes, exhibitions and trade fairs and the like.
  • the cured adhesive can be removed without leaving any residue.
  • the method according to the invention can be used in crafts and model-making as well as in architecture, planning and engineering offices, in electronics and medical technology and even applications in the hobby and household sector.
  • a high viscosity of the light-curable material means a sufficient stability. This property, paired with the single moment of curing, offers the possibility of creating or building objects in layers.
  • the light-curable material used can optionally be post-processed by milling and polishing.
  • any objects such as jewelry, decorative articles, art, etc. can advantageously be duplicated.
  • the latter can be cured within the mold by the flashlight device according to the invention or by the LED standard lamp. Once the solid material has been removed from the mold, it can if necessary be briefly illuminated again from all sides. If desired, the finished “clone” can be subsequently worked on using tools.
  • the bonds achieved may be reversible.
  • the light-curable material used can be removed without leaving any residue and does not attack the surfaces of the objects.
  • the method according to the invention is therefore also highly suitable for the three-dimensional printing of objects or for constructing objects in some other way from the light-curable material used or for the additional processing thereof.
  • the light-curable material can easily be applied by holding and operating the device with one hand.
  • the applied material can then be cured by means of the LED lamp on the opposite end face of the device.
  • the sequence of activities, applying and then, after rotating the device, curing advantageously prevents the light-curable material from running out of the device even when no closure cap has been placed on a discharge opening of the reservoir. Said closure cap is not necessary during this handling, which can make it very easy and pleasant to work with the device according to the invention. Overall, the device is easy and safe to handle.
  • One possible use example of the present invention is the gluing-on of artificial fingernails, as is known in a nail studio.
  • the present invention can in this case advantageously contribute to a considerable time saving.
  • Another use example of the present invention is the gluing, repairing, attachment, etc. of objects such as tiles, fixings or the like, which are present in a liquid.
  • a crack in a tile can be fixed by means of the method according to the invention using the light-curable material under water and thus in the wet.
  • the invention there is no need to leave the water in order then to close the crack in a dry environment. This advantageously makes it possible to make a saving in terms of effort and costs in connection with work carried out on objects located underwater for example, such as the hull of a ship.
  • FIG. 1 schematically shows, in simplified form, a device according to the invention in the form of a corner protector 100 , in a perspective view. It is not only suitable but rather is expressly intended for being bonded to a structure (not shown in FIG. 1 ).
  • the corner protector 100 has two retention means 110 , wherein the number two is to be understood here to be purely by way of example.
  • the retention means 110 are intended to accommodate a quantity of light-curable material 120 .
  • the latter can be cured by means of the flashlight 105 in order to bond the corner protector 100 to the structure 200 .
  • the light-curable material 120 is shown darker in contrast in FIG. 1 relative to the rest of the corner protector 100 , which is transparent here by way of example.
  • the retention means 110 are designed as an undercut within the corner protector 100 .
  • the corner protector 100 after curing, to be held on the household furniture 200 even when the corner protector 100 has no surface properties for permanent or stable or reliable bonding by means of the light-curable material 120 .
  • the retention means 110 it may be possible to produce a reliable hold between the corner protector 100 and the structure 200 even when the light-curable material 120 is not suitable for generating an or a sufficiently stable adhesive bond between the corner protector 100 and the light-curable material 120 .
  • the bond is generated to a lesser extent or not at all by the adhesive effect between the corner protector 100 and the light-curable material 120 ; instead, it is generated by a force fit and/or form fit in that the light-curable material 120 cures in the retention means 110 and is bonded to the corner protector 100 by the curing.
  • the device which is configured by way of example as a corner protector 100 , may in this case be made of or comprise a first material; the structure 200 may be made of or comprise a second material, wherein the first and the second material are different from one another or are identical.
  • the structure 200 may be an item of household furniture or any other structure.
  • FIG. 3 shows a further device according to the invention in the form of a hook 300 .
  • the latter is shown as a side view in the left-hand diagram of FIG. 3 and as a front view in the right-hand diagram.
  • the hook 300 has a hook section 310 with a retention space 320 .
  • the hook 300 further has a base retention plate 330 .
  • the retention plate 330 contains perforations 340 .
  • the latter can accommodate excess light-curable material prior to the curing of the latter. In this way, the excess material is “cleared away”; it may also make its own contribution to the adhesive strength that can be achieved between the hook 300 and the wall surface (not shown).
  • FIG. 4 shows a flashlight device according to the invention for curing the light-curable material, in the form of a lamp/magnifying glass combination 400 .
  • the latter stands on a base 410 and is designed to be flexible in a region 420 .
  • the lamp/magnifying glass combination 400 carries one magnifying glass 430 or a plurality of magnifying glasses, optionally of different strength.
  • a first lamp 440 emits the light necessary for curing purposes.
  • a second, optional lamp 450 emits any desired light and can be used, for example, for working or illumination purposes. In certain embodiments, the second lamp 450 emits any desired light but not light used for curing purposes. In some embodiments, the second lamp 450 emits no or substantially no light in the wavelength range of the first lamp 440 .
  • a foot-operated switch, a hand-operated switch, an acoustic switch or the like may be provided for actuating the first lamp 440 .
  • the base 410 may be able to be attached by means of a clamp, a magnet, a pedestal or the like. It may have an anti-slip coating or may comprise an anti-slip material.
  • FIG. 5 shows a further device according to the invention in the form of a pen 500 having a reservoir 510 for the light-curable material 120 and having an LED lamp 520 as an example of a light-emitting unit.
  • the pen 500 is intended to be held by one hand.
  • a finger rest 530 which is not absolutely necessary, is provided for an advantageously precise and secure guidance and handling of the pen 500 by the hand.
  • the housing 540 of the pen 500 is advantageously impermeable to light and is made of plastic for production reasons.
  • the housing 540 is softer or more flexible in the region of the finger rest 530 than in the rest of the housing 540 .
  • pressure can be exerted on the housing 540 via the finger rest 530 and thus pressure can be exerted on the internal reservoir 510 .
  • the reservoir 510 is compressed in the middle and rear, closed part of the reservoir 510 .
  • the light-curable material 120 is discharged from the reservoir 510 through the exit opening or reservoir opening 515 out of the pen 500 .
  • the exit opening 515 is adjoined by an (optional, not absolutely necessary) adapter 550 which is intended to adapt or to hold a push-on or screw-on, preferably light-impermeable, nozzle 560 (as an example of an attachment).
  • a push-on or screw-on, preferably light-impermeable, nozzle 560 (as an example of an attachment).
  • the movement direction of the nozzle, both when being pushed on and when removing the nozzle 560 is illustrated by the arrow 565 .
  • the light-curable material 120 to be applied can be finely metered according to the nozzle opening cross-section.
  • the nozzle 560 can also be used to fill the reservoir 510 with light-curable material 120 .
  • a closure cap 570 can be pushed onto the housing 540 in one of the end regions of the device.
  • the closure cap 570 is, inter alia, impermeable to light so that, for example, remaining light-curable material 120 in the closure cap does not cure, for instance by means of ambient light.
  • the closure cap 570 can moreover offer advantageous protection against general dirt and can serve as protection during transport, etc.
  • the closure cap 570 is pushed on and/or removed in the illustrated direction 575 .
  • the LED lamp 520 is located at the other end region or end of the housing 540 , relative to the longitudinal axis 580 of the device.
  • This LED lamp 520 is, for example, inserted in the housing 540 . It is preferably fixed by means of an undercut in the housing 540 , which may be made of or comprises an elastic plastic. In certain embodiments, therefore, the LED lamp 520 can be removed from the device.
  • the LED lamp 520 can be switched on and off by finger pressure by means of a switch 525 . After being switched on, the LED lamp 520 may be lit permanently until it is switched off or may turn itself off again for example by means of a time control.
  • the LED lamp 520 can also be switched on in the housing 540 and can emit light outward, for example by means of a flap (not shown here).
  • the LED lamp 520 can thus optionally be operated internally, that is to say while remaining in the housing 540 , or externally, after being removed from the housing 540 , in order to cure the applied light-curable material 120 .
  • FIG. 6 shows the device of FIG. 5 in one possible use.
  • the pen 500 is held in the hand, the index finger and thumb of the hand are located on the finger rest 530 .
  • the index finger and thumb can exert pressure on the housing 540 , which is more flexible at this location, and on the reservoir 510 located therebelow. As a result of this pressure being exerted, the light-curable material 120 is transported or applied outward from the reservoir 510 through the nozzle 560 .
  • the pen By rotating the pen 500 about the transverse axis 585 (see also FIG. 5 ), the pen can be held the opposite way round in the hand 600 .
  • a curing of the applied light-curable material 120 is then possible for example when the internal LED lamp 520 is switched on and LED light can exit for example through an opening at the rear end of the pen 500 .
  • advantageously no additional light-curable material can drop out of the reservoir 510 counter to the force of gravity.

Landscapes

  • Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Dentistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Abstract

A set for at least one of gluing, bonding, modeling and repairing of an object. The set includes a housing with a first end, a second end, and a reservoir, a light-curable material arranged in the reservoir, and a lamp which emits a light having a wavelength or a spectrum of wavelengths at which the light-curable material is selectively cured and which is coupled to the housing at the second end so that the light emitted by the lamp is only emitted in a direction which faces away from the first end. The reservoir has an exit opening which selectively discharges the light-curable material at the first end. The housing is completely impermeable to light.

Description

    CROSS REFERENCE TO PRIOR APPLICATIONS
  • This application is a continuation of application Ser. No. 16/212,701, which is a continuation of application Ser. No. 15/585,339, filed on May 3, 2017, now abandoned, which is a continuation of application Ser. No. 14/796,532, filed on Jul. 10, 2015, now abandoned, which is a continuation of application Ser. No. 14/394,007, filed on Oct. 10, 2014, now abandoned, which is a U.S. National Phase application under 35 U.S.C. § 371 of International Application No. PCT/EP2011/004888, filed on Sep. 30, 2011, and which claims benefit to German Patent Application No. 10 2011 050 223.8, filed May 9, 2011, to German Patent Application No. 10 2010 060 422.4, filed Nov. 8, 2010, and to German Patent Application No. 10 2010 046 993.9, filed Sep. 30, 2010, the disclosures of which are expressly incorporated by reference herein. The International Application was published in German on Apr. 5, 2012 as WO 2012/041510 A2 under PCT Article 21(2).
  • FIELD
  • The present invention relates to a flashlight device for curing light-curable materials, to a method of use thereof, and to a set.
  • BACKGROUND
  • Light-curable acrylic adhesives for use in the oral cavity are known from the dentistry sector. These adhesives are used primarily to produce temporary restorations. After they have been applied, they are cured by irradiation with UV light from UV lamps.
  • One object of the present invention is to propose a further light device and corresponding methods and a set.
  • This object is achieved by a set for at least one of gluing, bonding, modeling and repairing of an object. The set includes a housing comprising a first end, a second end, and a reservoir, a light-curable material arranged in the reservoir, and a lamp configured to emit a light having a wavelength or a spectrum of wavelengths at which the light-curable material is selectively cured and to be coupled to the housing at the second end so that the light emitted by the lamp is only emitted in a direction which faces away from the first end. The reservoir comprises an exit opening which is configured to selectively discharge the light-curable material at the first end. The housing is completely impermeable to light.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The present invention is described in greater detail below on the basis of embodiments and of the drawings in which:
  • FIG. 1 schematically shows, in simplified form, a device according to the present invention in a perspective view;
  • FIG. 2 shows a section through the device according to the present invention as shown in FIG. 1;
  • FIG. 3 shows a further device according to the present invention in the form of a hook;
  • FIG. 4 shows a flashlight device according to the present invention for curing the light-curable material, in the form of a lamp/magnifying glass combination;
  • FIG. 5 shows a further device according to the present invention having a reservoir for the light-curable material and an LED lamp; and
  • FIG. 6 shows the device of FIG. 5 in one possible use.
  • DETAILED DESCRIPTION
  • In all the embodiments below, the use of the expression “may be” or “may have,” etc. is to be understood to be synonymous with “preferably is” or “preferably has.”
  • According to the invention, therefore, a flashlight device is proposed which comprises at least one unit for generating flashlight and at least one unit for focusing the generated flashlight.
  • Advantageous further developments of the present invention form the subject matter of dependent claims, the description below and the examples of embodiments.
  • In some embodiments according to the invention, a flashlight device will be understood to mean a gas discharge device for generating light. In some embodiments according to the invention, the flashlight device is provided with a capacitor which is supplied by means of a battery or an accumulator. In some embodiments according to the invention, the flashlight device is configured as a xenon gas discharge device or as a discharge device comprising another noble gas. The emitted wave spectrum may be that of a xenon lamp.
  • The battery or the accumulator may be designed to be recharged by the user by means of induction.
  • In some embodiments according to the invention, a light-curable material will be understood to mean a material, for example an adhesive, the viscosity of which is deliberately increased in the context of curing only when irradiated with light. The increase in viscosity is very pronounced. The increase in viscosity may lead to a transition from the liquid or viscous state to the solid or sliceable state. The light-curable material may be an acrylic-based material, a material containing acrylic components, or an acrylic adhesive. Examples of a possible, suitable light-curable material are “Vitralit® 9180 VL” and “Vitralit® 9188 VL” from the company Panacol-Elosol GmbH located in Steinbach, Germany. In some embodiments according to the invention, a light-curable material will be understood to mean a photo-inducible material.
  • In some embodiments according to the invention, a focusing of light will be understood to mean a bundling or concentration of the exiting light energy or of significant portions thereof. The bundling or concentration may be such that the light energy or light quanta exiting from the flashlight device or generated by the latter are directed in a targeted manner onto a spot or a surface area. The surface area may have a size of 3×3 cm, 2×2 cm, 1×1 cm, 5×5 cm, intermediate ranges and combinations of the numerical values and ranges specified here.
  • In some inventive embodiments of the flashlight device, the focusing unit has or is designed as a light guide or an optical fiber. The light guide may be made of a transparent, light-permeable material, such as glass or plastic, or may comprise such a material. The light guide may be an optical fiber.
  • In some embodiments according to the invention, a light guide is or comprises one, several or many glass fibers, polymeric optical fibers or other light-guiding components, for example made from plastic or fiberoptic components.
  • The light guide may be configured as a gradient index fiber or a step index fiber or in each case as a plurality thereof.
  • The light guide may be curved or straight. The light guide may have a sheath to prevent light from exiting at a location other than the desired location.
  • The housing of the flashlight device may have, in a main section thereof, in particular therefore without taking account of the light guide, the form of a laser pointer or a pocket torch.
  • In some embodiments according to the invention, the flashlight device according to the invention has a protection unit. This is provided and arranged so as to protect the eyes of the user of the flashlight device against any entry of flashlight, or in any case to reduce the risk thereof. In this way, at least an unpleasant dazzling of the user by the curing by means of light can be prevented or reduced. In some embodiments according to the invention, the protection unit is attached to the light guide. This may advantageously help to ensure that, when the light guide is replaced with another light guide, the protection unit is also exchanged. It is thus easy, without any additional effort, advantageously to replace both the light guide and the protection unit together.
  • If different light guides are provided, as is the case in some inventive embodiments of the flashlight device, the user can thus advantageously have in each case a light guide that is more suited to the specific intended use.
  • In some embodiments according to the invention, the light guide of the flashlight device according to the invention has at least one flexible section. Different emission directions of the generated light or flashlight can thus be set or achieved.
  • To this end, it may be particularly advantageous if the light guide of the flashlight device according to the invention is flexible such that it can be deformed by hand, but at the same time is stiff so that it remains in this deformation after it has been deformed. This should apply at least to a range of possible deformations. According to the invention, it is not necessary that the light guide can retain its shape after every conceivable deformation.
  • In some embodiments, the flashlight device according to the invention has the form of a pen or writing instrument in general, in particular one that is commercially available.
  • In some embodiments according to the invention, the flashlight device has a press-switch for switching on the flashlight by applying pressure thereto.
  • In some embodiments according to the invention, the press-switch is designed so as, when the pressure by which the flashlight has been switched on is ended, to move automatically from the on position, in which the flashlight is lit, to an off position, in which the flashlight is not lit. The press-switch can thus automatically return to the off position. In this embodiment, it may advantageously be possible to meter more accurately than with other types of switch the quantity of light desired for curing purposes.
  • In some embodiments according to the invention, the flashlight device has a unit by means of which the light emission can be initiated or triggered or started wirelessly. This can enable working with the flashlight device even from a certain distance. Moreover, in this embodiment, “hands-free” working may advantageously be possible.
  • The use of a tripod for the flashlight device or of a head mount for the flashlight device for attaching the latter to the head area of the user of the flashlight device is also encompassed by some embodiments of the invention. In some embodiments, therefore, the flashlight device according to the invention may include a tripod or a head mount, by which in each case the advantages known in this connection can be achieved.
  • In some embodiments according to the invention, the flashlight device has lenses, apertures or other such optical devices within a beam path for adjusting an exiting light quantity or for optical light amplification. The advantages that can be achieved with this are known to a person skilled in the art.
  • In some inventive embodiments of the flashlight device, the focusing unit has or is a reflector unit.
  • In some inventive embodiments of the flashlight device, said flashlight device has at least one filter or one filter attachment with a filter effect in the range from 390 to 500 nanometers (nm), in particular in the range from 450 to 480 nm, in particular at 470 nm, and in particular in a range from 400 to 410 nm, in particular at 405 nm.
  • In some inventive embodiments of the flashlight device, the unit for generating flashlight is suitable and intended for generating a voltage in a range from 400 to 500 Volts.
  • In certain inventive embodiments of the flashlight device, said flashlight device has a unit by which it can be attached to the user thereof. The attachment unit may be a head mount. It may be or comprise a headband, which may be flexible or rigid, for example as part of a helmet or a section thereof. The use of such an attachment unit advantageously enables the user of the flashlight device to keep his hands free, but at least enables him not to have to hold the flashlight device with one hand during the curing of the light-curable material.
  • The present invention proposes a method for curing a light-curable material, which comprises using a flashlight device without a focusing unit or a flashlight device according to the invention having a focusing unit.
  • The present invention proposes a method for curing a light-curable material, which comprises using light guides between a first curing or contact or adhesive section (in short: section or sections), which is to be bonded to a second curing or contact or adhesive section by means of the light-curable material, and the second curing or contact or adhesive section.
  • In certain embodiments, the use is or comprises an introduction of the light guide or light guides. However, the method according to the invention can also be carried out with light guides that have already been introduced beforehand.
  • In some embodiments according to the invention, the light guide is configured as one or more optical fibers.
  • In certain embodiments according to the invention, the use of light guides introduced or to be introduced in this way may advantageously help to bring light, which is required for curing purposes, by means of the light guide, to locations at which otherwise no light or insufficient light would fall for curing or completely curing the light-curable material. Such locations may accordingly be located far away from the point where the light exits from the flashlight device, for which reason the light intensity available for curing purposes is not sufficient for the desired curing. However, they may also be difficult to expose to light due to a curvature or branching of the bonding region between the sections per se. Such locations may be characterized by a large layer thickness.
  • In some flashlight devices according to the invention, these are part of a combination of lamp and magnifying glass. In this case, the corresponding lamp/magnifying glass combination has both a magnifying glass and a curing lamp. In addition, they may have a conventional reading or working lamp having any light spectrum, that is to say, for example, the known light spectrum. In some embodiments according to the invention, it is provided that the reading or working lamp emits no light or substantially no light that is used for curing purposes. In certain cases, therefore, it emits for example no light in the range from 390 to 405 nm, in particular no light in the range from 395 to 400 nm.
  • The elements of the lamp/magnifying glass combination may be provided in such a way as to be able to be replaced individually.
  • In some embodiments, the set according to the invention comprises at least one flashlight device and a quantity of light-curable material which can be cured by means of the flashlight device according to the invention. In some embodiments, therefore, the set has everything that the customer needs for bonding, gluing, modeling, constructing and the like.
  • In some embodiments, the set according to invention may comprise, besides the light-curable material and the flashlight device according to the invention, an additional LED lamp. The additional LED lamp emits light of a wavelength or of a spectrum of wavelengths that is set to the wavelength(s) at which the light-curable material can be cured or can be cured particularly well.
  • The purchaser of a set according to the invention in these embodiments thus has the possibility of using two lamps which can supplement one another in terms of their use and performance spectrum. This is on the one hand the flashlight device according to the invention for small material thicknesses to be cured, and on the other hand an LED-based high-power polymerization lamp having a higher power and an associated shortened curing time. The latter may be used particularly in the case of relatively large models or in the case of models having an above-average material thickness (layer thickness).
  • The method according to the invention relates to the use of a light-curable material for gluing or bonding or modeling, in particular in the industrial sector or in the non-commercial sector. In some embodiments according to the invention, preferably a known flashlight device, a flashlight device according to the invention or an LED lamp is used for curing purposes. The LED lamp may emit predominantly or exclusively light having a wavelength of 405 nm. In this case, the light may have this wavelength due to the nature of the LED lighting element and/or due to a light filter that is optionally used. The emitted light may be blue, or it may be white.
  • The preferred wavelength range of the light device may lie between 390 and 405, in particular between 395 and 400 nm.
  • The method according to the invention relates once again to the use of a light-curable material for gluing or bonding or modeling, in particular in the industrial sector or in the non-commercial sector. For curing purposes, use is optionally made of a known flashlight device, a flashlight device according to the invention or an LED lamp or any other suitable lamp or light source.
  • In some embodiments, the method according to the invention comprises introducing the light-curable material into a liquid (for example water) or below a liquid level or using light-curable material that has already been introduced into a liquid or below a liquid level. It also comprises curing the light-curable material in the liquid or below the liquid level. This includes for example, but in a non-limiting manner, the curing of the light-curable material under water. A gluing, modeling, closing of gaps, cracks, etc. using the light-curable material is encompassed for example by the method according to the invention as described here.
  • According to the invention, the curing of the light-curable material may take place by means of a light source, which light source (or a section thereof such as a light exit point, for instance the end of a light guide) is located in or outside of the liquid (or below or above the liquid level). The necessary light may thus be generated outside of the liquid and introduced into the liquid. The necessary light may thus be generated within the liquid.
  • In some embodiments according to the invention, a liquid will be understood to mean a liquid mixture. In some embodiments according to the invention, a liquid will be understood to mean water, for example water of a swimming pool.
  • The light source may in this case be a light source according to the invention of any type, or a different light source, in particular a light source described herein.
  • The device according to the invention is intended to be bonded to a structure, the device having at least one retention means or depression. The retention means or depression is intended to accommodate a quantity of light-curable material, by means of which the device can be bonded to the structure.
  • The bonding takes place preferably between in each case at least one surface of the device and structure.
  • The surface of the device and the surface of the structure may in this case have surfaces of different roughness.
  • In some inventive embodiments of the device, one or more retention means or depressions are open to the atmosphere in a direction facing toward the structure, based on the state in which the device and the structure are bonded to one another. This opening allows light-curable material to be introduced into the retention means before being cured by light. It may also enable a bonding between the light-cured material which exists within the retention means or depression after the curing of the light-curable material and light-cured material which exists outside of the retention means and which is in double-sided contact both with the device and with the structure.
  • In some inventive embodiments of the device, said device is intended to be bonded by means of a flashlight device according to the invention and/or a method according to the invention.
  • In some inventive embodiments of the device, said device has at least one retention means which has or forms an undercut that is located completely or partially within the device.
  • In this case, the retention means may be a through-opening in the device. It may be a blind hole. In the case of a blind hole, the opening thereof preferably faces toward the structure in the state where the device is bonded to the latter.
  • The device according to the invention may be configured as a hook which is to be attached to a surface. In certain embodiments, the basic material thereof is permeable to light, in particular in a wavelength range mentioned herein.
  • The device according to the invention may have, besides retention means or as an alternative thereto, perforations or blind holes which may likewise accommodate light-curable material.
  • In some inventive embodiments of the device, said device is made of or comprises a first material, and is intended to be bonded by means of the light-curable material to a structure which is made of or comprises a second material. In this case, the first and the second material are different from one another. Said difference may concern in particular the surface properties thereof, and more particularly the roughness thereof. For instance, the device may be made of a smoother material or with a smoother surface than the structure or the surface thereof.
  • In some embodiments according to the invention, the device is or comprises a corner protector or a protection device of any type. The device may be a corner protector or protection device for household furniture. The device according to the invention may be as a corner protector for covering corners or edges of furniture. The protective function of the device according to the invention may correspond to those corner protectors which are nowadays attached to furniture in order to protect children, with the aim of reducing the likelihood of children injuring themselves on the furniture.
  • In some embodiments, the device according to the invention has at least one reservoir for a quantity of light-curable material and/or at least one light-emitting unit for curing the light-curable material.
  • In some embodiments according to the invention, the at least one light-emitting unit is an LED lamp.
  • In some embodiments according to the invention, the device according to the invention has a housing which is completely impermeable to light or which is impermeable to light at least in sections thereof.
  • The impermeability to light may in certain embodiments be completely or substantially limited to light of a wavelength that leads to the curing of the curable material.
  • In some embodiments according to the invention, the at least one reservoir is located entirely in an interior of the device.
  • In certain embodiments, the housing of the device has the form of a pen, a writing instrument in general or another hand tool. The housing may have particularly ergonomic sections, for example a finger rest for the index finger and thumb. In some embodiments according to the invention, the finger rest has a slip-resistant texture when gripped by the hand. In some embodiments according to the invention, the finger rest has a surface texture in which it differs from other sections and/or from the main or largest sections of the device.
  • In some embodiments according to the invention, the at least one reservoir has a volume in the range between 2 to 10 milliliters (mL), in particular in the range between 2 to 6 mL, and in particular for 4 mL.
  • The reservoir preferably has an opening, through which the light-curable material can exit. The size of the opening, for example the cross-section of the opening, may be designed with a view to the metering of the reservoir volume, that is to say a small opening size for a fine metering and a larger opening for a rough metering.
  • The cross-section of the opening may be round or non-round.
  • The light-emitting unit may be an LED lamp. In some embodiments, this is an LED-based high-power polymerization lamp. The LED lamp may emit predominantly or exclusively light having a wavelength of 405 nm. In this case, the light may have this wavelength due to the nature of the LED lighting element and/or due to a light filter that is optionally used.
  • The emitted light is blue in some embodiments according to the invention. Alternatively, it is white.
  • The preferred wavelength range of the light device may lie between 390 and 405, in particular between 395 and 400 nm.
  • In some embodiments according to the invention, the device has a metering mechanism for discharging light-curable material from the reservoir and/or from the device.
  • In certain embodiments according to the invention, the metering mechanism is an expelling mechanism which does not or does not primarily serve for precise metering.
  • In some embodiments according to the invention, the metering mechanism is designed with a displacement unit and/or a pressing unit for exerting pressure on the reservoir. In some embodiments according to the invention, the metering mechanism is designed in a similar way to a mechanism of a pen and/or has a push-button.
  • In certain embodiments according to the invention, the metering mechanism is a section of the housing that is deformable or that is designed in such a way that it can be deformed. In some embodiments, the metering mechanism is designed as a deformable reservoir for discharging the light-curable material.
  • In some embodiments according to the invention, the metering mechanism has at least one component which, for metering purposes, is designed to be displaceable relative to the (optionally to the rest of the) housing of the device.
  • The metering mechanism may be manually controlled or manually actuated.
  • A manually controlled metering mechanism may be a mechanism which releases a predefined volume by hand, for example by a pressure pulse on a piston. In a manner similar to a pipetting unit, by which different volumes can be released via the pipette by manual pressure, here a specific volume of light-curable material can be discharged by means of the metering mechanism. The specific volume may be predefined by the size of the piston, which is activated for example by a press-switch or push-button.
  • The press-switch or push-button is preferably arranged on the opposite end face of the device, relative to the exit opening of the reservoir.
  • A manually controlled metering mechanism may also be a mechanism which displaces a specific volume by means of a rotary movement, preferably with individual stages during the rotation. This may take place, for example, by converting a rotary movement into a translational piston movement. The piston movement may deform the reservoir and thus cause a specific quantity of light-curable material to exit.
  • The manually controlled metering mechanism for rotary movement may be a rotary mechanism which is arranged as part of the housing on the opposite end face of the device relative to the reservoir opening.
  • In certain embodiments according to the invention, the metering mechanism has at least one component that must be actuated for metering purposes.
  • The reservoir may be arranged in the housing in such a way that, as a result of a deformation of the housing, for instance due to pressure being exerted by the index finger and/or thumb in the region of the finger rest, the reservoir is likewise deformed. Light-curable material can exit as a result of this deformation of the reservoir.
  • In certain embodiments, the housing is deformable only in the region of the reservoir, in particular without being damaged and/or under use conditions. In other embodiments according to the invention, it is deformable to a greater extent or completely.
  • In some embodiments according to the invention, the device has the reservoir and the light-emitting unit, for example the at least one LED lamp, at two opposite ends (relative to a longitudinal axis of the device). These regions may also be referred to as end regions.
  • In one form of the housing as a writing instrument, the device may be used on the one hand for discharging and metering the light-curable material, and on the other hand, when the device is rotated through for example 180 degrees about a central or transverse axis, for curing the light-curable material by means of the light-emitting unit, for example the LED lamp.
  • The light-emitting unit, for example the LED lamp, can in some embodiments be removed from the device. The light-emitting unit can then be used as a stand-alone unit as a curing lamp. The light-emitting unit may be attached by means of an elastic clip-fastening or snap-fastening to the housing, which is configured for example as a plastic housing, preferably in such a way that it can be removed again therefrom without any damage being caused.
  • In some embodiments according to the invention, the device has a section for fitting an attachment onto the device, wherein a discharging and/or metering of the light-curable material is aided by the attachment. The attachment may be designed as a nozzle for example. In certain embodiments, the reservoir can be filled (for the first time or refilled) with light-curable material via the attachment.
  • In some embodiments according to the invention, the device has an adaptable connection or an attachment for discharging and metering the light-curable material and/or for filling the reservoir.
  • The adaptable connection or the attachment may be able to be detached again, or it may alternatively not be able to be detached again. In certain embodiments, a connection or attachment that cannot be detached again is formed by a snap-fastening, for example an elastic hook, which snaps in after being placed onto the device. In some embodiments, the connection or attachment that can be detached again is pushed on, screwed on, fixed by means of a bayonet fastening or connected by a different type of fastening.
  • A connection or attachment that can be detached again may be detached again after a single use or after multiple uses. By way of example, a different adapter having in each case a different opening cross-section or opening profile for different metering quantities can be used depending on the application.
  • The same adapter or attachment as used for discharging and metering may be used for filling the reservoir. However, a different adapter that is specifically suitable for filling purposes may also be used. This may have, for example, a specific shape for the placement and/or fixing of an external filling container. Furthermore, the opening cross-section of the adapter may be much greater than that used for discharging and metering, in order to carry out the filling process rapidly so as, for example, largely to avoid premature curing by light components during the filling process.
  • In some embodiments according to the invention, the device has a closure cap which is placed onto the housing, in a manner such as to be able to be detached again, onto the end-face opening of the reservoir or the discharge path thereof. The closure cap may be fixed onto or to the housing, in particular temporarily, by a friction pairing or another method or device known to the person skilled in the art.
  • This closure cap is preferably impermeable to light, at least for light having wavelength ranges at which the light-curable material cures. The closure cap may be placed on with or without an adaptable connection for discharging and metering purposes.
  • The present invention proposes a method for discharging and/or for curing the light-curable material using a device according to the invention having at least one reservoir for a quantity of light-curable material and/or a light-emitting unit, in particular an LED lamp.
  • The discharging of the light-curable material may take place by applying manual pressure to the housing, to a pressing or displacement unit and/or to the reservoir. By virtue of a manual application of pressure, metering can advantageously take place with the precision required for the respective application.
  • In one inventive embodiment of the method, a manually controlled metering mechanism is actuated in order to discharge the light-curable material from the reservoir in a metered manner.
  • In some inventive embodiments of the method, it is proposed which, after the curing of the material, comprises a rotation, turning-over or tilting of the device about a transverse axis of the device, with subsequent activation of the curing by the light-emitting unit, for example the LED lamp.
  • The set comprises at least one device according to the invention and a quantity of light-curable material.
  • In certain embodiments, the set further comprises a closure cap for the device and/or one or more attachments for metering the light-curable material for the device.
  • In some embodiments, the set according to the invention is packaged by means of visible packaging (which is also referred to as blister packaging), which comprises the device according to the invention having a reservoir and/or an LED lamp, a quantity of light-curable material and a closure cap for the device.
  • When mention is made herein of a light source, flashlight device or other device according to the invention which is suitable and/or intended and/or designed for curing the light-curable material, the device in question may be liquid-proof or waterproof. Here, the term liquid-proof or waterproof is to be understood to mean that the curing device can be used for repeated use in liquid or in water. This suitability may be brought about by means of suitable seals, coatings, insulations and/or the like.
  • By means of the flashlight device according to the invention, it is advantageously possible to glue or to permanently or temporarily bond objects to one another using cost-effective means. With the modeling, it is possible to produce hooks or pegs, for example, in addition to depicting objects. Due to and depending on the light-curable materials used, it is possible to produce, for example, hooks or the like which adhere to glass, flows, wood, plastic, stone, etc.
  • The use of the method according to the invention differs from known methods and from the “conventional” adhesive systems of the prior art inter alia in that, according to the invention, there is no need to wait for the “adhesive” material used, that is to say the light-curable material, to cure. The bonding effect of the light-curable material is obtained virtually immediately.
  • In some embodiments, therefore, bonding can take place in a time-saving manner by means of the method according to the invention. In addition, there is no need for tiresome holding of parts of elements that are to be bonded. These parts and elements can be placed in position and, once the position has been checked, are fixed to one another by targeted illumination. The fixing takes place at the moment of curing. This may take place within a fraction of a second. A primary fixing of elements can thus be achieved in the blink of an eye. A primary fixing is achieved after just 300-500 ms. The curing process is complete after approximately 5-8 s. Any subsequent reinforcements of the bonding sites can be taken care of without any time pressure.
  • Depending on the choice of the light-curable material used, this can be removed again at any time without leaving a residue. Bonds can be dissolved quickly and without any problem, and surfaces remain absolutely unharmed. In some embodiments, therefore, the method according to the invention can be carried out without hesitation in rented homes and holiday homes, exhibitions and trade fairs and the like. The cured adhesive can be removed without leaving any residue.
  • In the private, industrial or commercial and non-dental sector, the method according to the invention can be used in crafts and model-making as well as in architecture, planning and engineering offices, in electronics and medical technology and even applications in the hobby and household sector.
  • Depending on the power of the flashlight device or polymerization lamp that is used, a higher performance and an associated shorter curing time can be achieved.
  • A high viscosity of the light-curable material means a sufficient stability. This property, paired with the single moment of curing, offers the possibility of creating or building objects in layers. The light-curable material used can optionally be post-processed by milling and polishing.
  • By means of the method according to the invention, small-area bonds and spot-type bonds as well as bonds between uneven surfaces can be achieved particularly well, especially when also using the flashlight device according to the invention.
  • Furthermore, any objects such as jewelry, decorative articles, art, etc. can advantageously be duplicated. To this end, it may be sufficient to make an impression or a mold of an object and, once the object has been removed from the mold, to fill said mold with the light-curable material. The latter can be cured within the mold by the flashlight device according to the invention or by the LED standard lamp. Once the solid material has been removed from the mold, it can if necessary be briefly illuminated again from all sides. If desired, the finished “clone” can be subsequently worked on using tools.
  • Therefore, by means of the present invention, using only a light-curable composite material and a novel light system, for the first time an inexpensive and above all easy-to-handle solution can be used by anyone instead of the cost-intensive UV adhesive technology used in industry.
  • The bonds achieved may be reversible. The light-curable material used can be removed without leaving any residue and does not attack the surfaces of the objects.
  • By means of the method according to the invention, it is advantageously possible to fill joins. In some embodiments, this can also advantageously be used to seal against the ingress or escape of moisture or liquid. In this case, too, it is advantageously possible to work without any time pressure: the material used is not hard until the user wishes it to be and causes it to be as a result of applying light. In this case too, therefore, positioning can first take place calmly and then curing can take place within a matter of seconds.
  • By means of the method according to the invention, objects can moreover advantageously be created in layers. In some embodiments, the method according to the invention is therefore also highly suitable for the three-dimensional printing of objects or for constructing objects in some other way from the light-curable material used or for the additional processing thereof.
  • By means of the device, in some of the embodiments according to the invention, on the one hand the light-curable material can easily be applied by holding and operating the device with one hand. Advantageously, by rotating, tilting or turning the device through, for example, 180 degrees (i.e. about a transverse axis of the device), the applied material can then be cured by means of the LED lamp on the opposite end face of the device. The sequence of activities, applying and then, after rotating the device, curing, advantageously prevents the light-curable material from running out of the device even when no closure cap has been placed on a discharge opening of the reservoir. Said closure cap is not necessary during this handling, which can make it very easy and pleasant to work with the device according to the invention. Overall, the device is easy and safe to handle.
  • One possible use example of the present invention is the gluing-on of artificial fingernails, as is known in a nail studio. The present invention can in this case advantageously contribute to a considerable time saving.
  • Another use example of the present invention is the gluing, repairing, attachment, etc. of objects such as tiles, fixings or the like, which are present in a liquid. For instance, in some embodiments for example, a crack in a tile can be fixed by means of the method according to the invention using the light-curable material under water and thus in the wet. According to the invention, there is no need to leave the water in order then to close the crack in a dry environment. This advantageously makes it possible to make a saving in terms of effort and costs in connection with work carried out on objects located underwater for example, such as the hull of a ship.
  • The present invention will be explained by way of example below with reference to the appended drawing, in which identical reference signs denote identical or similar components. In the figures, which are in part shown in highly simplified form:
  • FIG. 1 schematically shows, in simplified form, a device according to the invention in the form of a corner protector 100, in a perspective view. It is not only suitable but rather is expressly intended for being bonded to a structure (not shown in FIG. 1).
  • Such a bonding may take place by means of a flashlight device 105 or other suitable light devices. The corner protector 100 has two retention means 110, wherein the number two is to be understood here to be purely by way of example.
  • The retention means 110 are intended to accommodate a quantity of light-curable material 120. The latter can be cured by means of the flashlight 105 in order to bond the corner protector 100 to the structure 200. The light-curable material 120 is shown darker in contrast in FIG. 1 relative to the rest of the corner protector 100, which is transparent here by way of example.
  • As can be seen in FIG. 1 and also FIG. 2, the retention means 110 are designed as an undercut within the corner protector 100. By means of the retention means and the associated possibility of accommodating light-curable material therein, it is advantageously possible for the corner protector 100, after curing, to be held on the household furniture 200 even when the corner protector 100 has no surface properties for permanent or stable or reliable bonding by means of the light-curable material 120. By providing the retention means 110, it may be possible to produce a reliable hold between the corner protector 100 and the structure 200 even when the light-curable material 120 is not suitable for generating an or a sufficiently stable adhesive bond between the corner protector 100 and the light-curable material 120. The bond is generated to a lesser extent or not at all by the adhesive effect between the corner protector 100 and the light-curable material 120; instead, it is generated by a force fit and/or form fit in that the light-curable material 120 cures in the retention means 110 and is bonded to the corner protector 100 by the curing.
  • The device, which is configured by way of example as a corner protector 100, may in this case be made of or comprise a first material; the structure 200 may be made of or comprise a second material, wherein the first and the second material are different from one another or are identical.
  • The structure 200 may be an item of household furniture or any other structure.
  • FIG. 3 shows a further device according to the invention in the form of a hook 300. The latter is shown as a side view in the left-hand diagram of FIG. 3 and as a front view in the right-hand diagram. The hook 300 has a hook section 310 with a retention space 320. The hook 300 further has a base retention plate 330. The retention plate 330 contains perforations 340. The latter can accommodate excess light-curable material prior to the curing of the latter. In this way, the excess material is “cleared away”; it may also make its own contribution to the adhesive strength that can be achieved between the hook 300 and the wall surface (not shown).
  • FIG. 4 shows a flashlight device according to the invention for curing the light-curable material, in the form of a lamp/magnifying glass combination 400. The latter stands on a base 410 and is designed to be flexible in a region 420. The lamp/magnifying glass combination 400 carries one magnifying glass 430 or a plurality of magnifying glasses, optionally of different strength. A first lamp 440 emits the light necessary for curing purposes. A second, optional lamp 450 emits any desired light and can be used, for example, for working or illumination purposes. In certain embodiments, the second lamp 450 emits any desired light but not light used for curing purposes. In some embodiments, the second lamp 450 emits no or substantially no light in the wavelength range of the first lamp 440.
  • A foot-operated switch, a hand-operated switch, an acoustic switch or the like may be provided for actuating the first lamp 440.
  • The base 410 may be able to be attached by means of a clamp, a magnet, a pedestal or the like. It may have an anti-slip coating or may comprise an anti-slip material.
  • FIG. 5 shows a further device according to the invention in the form of a pen 500 having a reservoir 510 for the light-curable material 120 and having an LED lamp 520 as an example of a light-emitting unit.
  • For use purposes, the pen 500 is intended to be held by one hand. A finger rest 530, which is not absolutely necessary, is provided for an advantageously precise and secure guidance and handling of the pen 500 by the hand.
  • The housing 540 of the pen 500 is advantageously impermeable to light and is made of plastic for production reasons. The housing 540 is softer or more flexible in the region of the finger rest 530 than in the rest of the housing 540. As a result, using the fingers, pressure can be exerted on the housing 540 via the finger rest 530 and thus pressure can be exerted on the internal reservoir 510. As a result of this pressure, the reservoir 510 is compressed in the middle and rear, closed part of the reservoir 510. As a result, the light-curable material 120 is discharged from the reservoir 510 through the exit opening or reservoir opening 515 out of the pen 500.
  • The exit opening 515 is adjoined by an (optional, not absolutely necessary) adapter 550 which is intended to adapt or to hold a push-on or screw-on, preferably light-impermeable, nozzle 560 (as an example of an attachment). The movement direction of the nozzle, both when being pushed on and when removing the nozzle 560, is illustrated by the arrow 565. By virtue of this nozzle 560, the light-curable material 120 to be applied can be finely metered according to the nozzle opening cross-section. The nozzle 560 can also be used to fill the reservoir 510 with light-curable material 120.
  • Furthermore, a closure cap 570 can be pushed onto the housing 540 in one of the end regions of the device. The closure cap 570 is, inter alia, impermeable to light so that, for example, remaining light-curable material 120 in the closure cap does not cure, for instance by means of ambient light. The closure cap 570 can moreover offer advantageous protection against general dirt and can serve as protection during transport, etc. The closure cap 570 is pushed on and/or removed in the illustrated direction 575.
  • The LED lamp 520 is located at the other end region or end of the housing 540, relative to the longitudinal axis 580 of the device. This LED lamp 520 is, for example, inserted in the housing 540. It is preferably fixed by means of an undercut in the housing 540, which may be made of or comprises an elastic plastic. In certain embodiments, therefore, the LED lamp 520 can be removed from the device. In the embodiment shown in FIG. 5, the LED lamp 520 can be switched on and off by finger pressure by means of a switch 525. After being switched on, the LED lamp 520 may be lit permanently until it is switched off or may turn itself off again for example by means of a time control.
  • The LED lamp 520 can also be switched on in the housing 540 and can emit light outward, for example by means of a flap (not shown here). The LED lamp 520 can thus optionally be operated internally, that is to say while remaining in the housing 540, or externally, after being removed from the housing 540, in order to cure the applied light-curable material 120.
  • FIG. 6 shows the device of FIG. 5 in one possible use.
  • The pen 500 is held in the hand, the index finger and thumb of the hand are located on the finger rest 530. The index finger and thumb can exert pressure on the housing 540, which is more flexible at this location, and on the reservoir 510 located therebelow. As a result of this pressure being exerted, the light-curable material 120 is transported or applied outward from the reservoir 510 through the nozzle 560.
  • By rotating the pen 500 about the transverse axis 585 (see also FIG. 5), the pen can be held the opposite way round in the hand 600. A curing of the applied light-curable material 120 is then possible for example when the internal LED lamp 520 is switched on and LED light can exit for example through an opening at the rear end of the pen 500. At the same time, however, advantageously no additional light-curable material can drop out of the reservoir 510 counter to the force of gravity.
  • The present invention is not limited to embodiments described herein; reference should be had to the appended claims.
  • LIST OF REFERENCE NUMERALS
      • 100 corner protector
      • 105 flashlight device
      • 110 retention means
      • 120 light-curable material
      • 200 structure; household furniture
      • 300 hook
      • 310 hook section
      • 320 retention space
      • 330 base retention plate
      • 340 perforations
      • 400 lamp/magnifying glass combination
      • 410 base
      • 420 flexible region
      • 430 magnifying glass
      • 440 first lamp
      • 450 second lamp
      • 500 pen
      • 510 reservoir
      • 515 reservoir opening
      • 520 LED lamp
      • 530 finger rest
      • 540 housing
      • 550 adapter
      • 560 nozzle
      • 565 movement direction of nozzle
      • 570 closure cap
      • 575 movement direction of closure cap
      • 580 longitudinal axis
      • 585 transverse axis
      • 600 hand

Claims (20)

What is claimed is:
1. A set for at least one of gluing, bonding, modeling and repairing of an object, the set comprising:
a housing comprising a first end, a second end, and a reservoir;
a light-curable material arranged in the reservoir; and
a lamp configured to emit a light having a wavelength or a spectrum of wavelengths at which the light-curable material is selectively cured and to be coupled to the housing at the second end so that the light emitted by the lamp is only emitted in a direction which faces away from the first end,
wherein,
the reservoir comprises an exit opening which is configured to selectively discharge the light-curable material at the first end; and
the housing is completely impermeable to light.
2. The set as recited in claim 1, wherein,
the lamp is selected from an LED lamp and a noble gas discharge device,
the lamp is configured to be detachably coupled to the housing.
3. The set as recited in claim 1, further comprising:
a closure cap configured to be detachably arranged on the exit opening.
4. The set as recited in claim 1, wherein the reservoir comprises at least one section which is configured to be deformable so as to facilitate a selective discharge of the light-curable material from the reservoir via an exertion of a manual pressure.
5. The set as recited in claim 4, wherein the at least one section is provided as a finger rest for at least one of an index finger and a thumb.
6. The set as recited in claim 4, wherein the at least one section comprises a texture which is slip-resistant.
7. The set as recited in claim 1, wherein,
the housing further comprises a finger rest for a user of the set arranged on an outside surface of the housing, the finger rest comprising at least one of a slip-resistant texture and a surface texture which differs from other surface textures of the housing,
the housing forms the reservoir, and
the housing is a pen-type housing.
8. The set as recited in claim 1, further comprising:
a blister packaging which comprises the housing and the lamp.
9. The set as recited in claim 1, wherein the light-curable material is an acrylic-based material or contains acrylic components.
10. The set as recited in claim 1, wherein the light of the lamp is emitted at wavelengths of between 390 nm and 405 nm.
11. A hand-held device for at least one of gluing, bonding, modeling and repairing of an object, the hand held device comprising:
a housing which is completely impermeable to light, the housing comprising a first end region and a second end region which is configured to face away from the first end region;
at least one reservoir arranged in the housing, the at least one reservoir being configured to hold a light-curable material, the at least one reservoir comprising an exit opening for the light-curable material;
a closure cap configured to close the exit opening;
at least one light-emitting unit which is configured to emit a light at a wavelength or a spectrum of wavelengths at which the light-curable material is selectively cured when removed from the at least one reservoir via the exit opening; and
a switch which is configured to turn the light of the at least one light-emitting unit on and off,
wherein,
the exit opening of the at least one reservoir is arranged at the first end region of the housing, and
the at least one light-emitting unit is arranged at the second end region of the housing so that the light emitted by the at least one light emitting unit is only emitted in a direction which faces away from the first end region of the housing.
12. The hand-held device as recited in claim 11, further comprising:
a metering mechanism configured to discharge the light-curable material out of the exit opening.
13. The hand-held device as recited in claim 12, wherein,
each of the at least one reservoir and the housing are configured to be deformable at least in sections thereof,
the housing is provided as the metering mechanism to discharge the light-curable material, and
the housing further comprises a finger rest for a user of the set arranged on an outside surface of the housing, the finger rest comprising at least one of a slip-resistant texture and a surface texture which differs from other surface textures of the housing,
or
the at least one reservoir is configured to be deformable, the at least one reservoir being provided as the metering mechanism to discharge the light-curable material, and
the housing further comprises a finger rest for a user of the set arranged on an outside surface of the housing, the finger rest comprising at least one of a slip-resistant texture and a surface texture which differs from other surface textures of the housing.
14. The hand-held device as recited in claim 11, further comprising:
a nozzle arranged at the exit opening; and
an adaptor configured to at least one of adapt and hold the nozzle,
wherein,
the nozzle is configured to be pushed onto or screwed onto the first end of the housing, and
the closure cap is further configured to close the nozzle.
15. The Hand-held device as recited in claim 11, wherein,
the light of the at least one light-emitting unit is provided as a lamp,
the lamp is configured to be detachable from the second end of the hand-held device;
the lamp, when attached at the second end of the hand-held device, only faces away from the first end region of the housing and only emits light in the direction which faces away from the first end region of the housing, and
the lamp is selected from an LED lamp and a noble gas discharge device.
16. A method for discharging and for curing a light-curable material for at least one of gluing, bonding, modeling or repairing of an object, the method comprising:
providing the hand-held device as recited in claim 12;
removing an amount of the light-curable material from the reservoir; and
curing the amount of the light-curable material removed with the light emitted by the at least one light-emitting unit.
17. The method as recited in claim 17, wherein the removing of the amount of the light-curable material from the reservoir is performed by manually actuating the metering mechanism.
18. The method as recited in claim 17, further comprising:
after removing the amount of the light-curable material from the reservoir and prior to curing the amount of the light-curable material with the at least one light-emitting unit, rotating or turning the hand-held device; and then
turning at least one light-emitting unit on via the switch.
19. A set comprising:
the hand-held device as recited in claim 11; and
a light-curable material.
20. The set as recited in claim 19, wherein the hand-held device further comprises:
a metering mechanism configured to discharge the light-curable material out of the exit opening.
US16/752,701 2010-09-30 2020-01-27 Flashlight device for curing light-curable materials, method and set Abandoned US20200155287A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/752,701 US20200155287A1 (en) 2010-09-30 2020-01-27 Flashlight device for curing light-curable materials, method and set

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
DE102010046993.9 2010-09-30
DE102010046993A DE102010046993A1 (en) 2010-09-30 2010-09-30 Flash light device comprises at least one device for generating flash light, and at least a device for focusing the generated flash light
DE102010060422.4 2010-11-08
DE102010060422A DE102010060422A1 (en) 2010-11-08 2010-11-08 Flash light device i.e. xenon discharge device, for use by dental physician for e.g. gluing of light-curing material in mouth space of children, has focusing device for focusing flash light produced by gas discharge device
DE102011050223.8 2011-05-09
DE102011050223 2011-05-09
US201114394007A 2011-09-30 2011-09-30
PCT/EP2011/004888 WO2012041510A2 (en) 2010-09-30 2011-09-30 Flashlight device for curing light-curable materials, method and set
US14/796,532 US20150316701A1 (en) 2010-09-30 2015-07-10 Flashlight Device for Curing Light-Curable Materials, Method and Set
US15/585,339 US20170231734A1 (en) 2010-09-30 2017-05-03 Flashlight Device for Curing Light-Curable Materials, Method and Set
US16/212,701 US10595974B2 (en) 2010-09-30 2018-12-07 Flashlight device for curing light-curable materials, method and set
US16/752,701 US20200155287A1 (en) 2010-09-30 2020-01-27 Flashlight device for curing light-curable materials, method and set

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US16/212,701 Continuation US10595974B2 (en) 2010-09-30 2018-12-07 Flashlight device for curing light-curable materials, method and set

Publications (1)

Publication Number Publication Date
US20200155287A1 true US20200155287A1 (en) 2020-05-21

Family

ID=54355131

Family Applications (3)

Application Number Title Priority Date Filing Date
US15/585,339 Abandoned US20170231734A1 (en) 2010-09-30 2017-05-03 Flashlight Device for Curing Light-Curable Materials, Method and Set
US16/212,701 Active US10595974B2 (en) 2010-09-30 2018-12-07 Flashlight device for curing light-curable materials, method and set
US16/752,701 Abandoned US20200155287A1 (en) 2010-09-30 2020-01-27 Flashlight device for curing light-curable materials, method and set

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US15/585,339 Abandoned US20170231734A1 (en) 2010-09-30 2017-05-03 Flashlight Device for Curing Light-Curable Materials, Method and Set
US16/212,701 Active US10595974B2 (en) 2010-09-30 2018-12-07 Flashlight device for curing light-curable materials, method and set

Country Status (1)

Country Link
US (3) US20170231734A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013107548A1 (en) * 2013-07-16 2015-01-22 Thomas Offermann Dosing apparatus for manually controlled dosing of a light-curing material

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3830230A (en) * 1972-09-22 1974-08-20 Weck E & Co Surgical headlamp
US5975895A (en) * 1997-11-12 1999-11-02 Coltene/Whaledent Strobe light curing apparatus and method
US20030209836A1 (en) * 2002-05-07 2003-11-13 3D Systems, Inc. Flash curing in selective deposition modeling
US20040021255A1 (en) * 2001-12-27 2004-02-05 Bilanin Alan J. Lossy fiber UV curing method and apparatus
US20110284123A1 (en) * 2010-05-24 2011-11-24 Bouix Herve F Metered Dose Applicator With Light For Activating Product
US9694383B2 (en) * 2012-07-12 2017-07-04 Kds Holding Gmbh Applicator for in particular manually controlled application of a light-curable composite material and arrangement of a light source on the applicator
US9707590B2 (en) * 2012-03-15 2017-07-18 Kds Holding Gmbh Set for processing a light-curing material
US10173239B2 (en) * 2012-03-15 2019-01-08 Kds Holding Gmbh Set for processing a light-curing material

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT160436B (en) 1941-05-26 Elise Schulz Tube with permanent head.
DE3137760A1 (en) 1981-09-23 1983-07-14 Bayer Ag, 5090 Leverkusen DEVICE FOR DOSING PASTOESE SUBSTANCES
DE3731321A1 (en) 1987-09-17 1989-04-06 Albert Kreitmair Irradiation device for photopolymerisable plastics
CA2137632A1 (en) 1993-12-17 1995-06-18 Douglas S. Dunn Ablative flashlamp imaging
DE29502079U1 (en) 1995-02-09 1995-05-11 Schwarzkopf Wassertechnik, 94506 Schöllnach Device for dispensing toothpaste
US5853241A (en) 1995-10-16 1998-12-29 Streamlight, Inc. Convertible flashlight
AU1204199A (en) 1997-10-31 1999-05-24 Jeneric/Pentron Incorporated Apparatus for inert gas lamp cure
DE102009012272B4 (en) 2009-03-11 2011-06-09 Wellmann, Stefanie, Dr. Dual-curing UV adhesives and their uses

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3830230A (en) * 1972-09-22 1974-08-20 Weck E & Co Surgical headlamp
US5975895A (en) * 1997-11-12 1999-11-02 Coltene/Whaledent Strobe light curing apparatus and method
US20040021255A1 (en) * 2001-12-27 2004-02-05 Bilanin Alan J. Lossy fiber UV curing method and apparatus
US20030209836A1 (en) * 2002-05-07 2003-11-13 3D Systems, Inc. Flash curing in selective deposition modeling
US20110284123A1 (en) * 2010-05-24 2011-11-24 Bouix Herve F Metered Dose Applicator With Light For Activating Product
US9707590B2 (en) * 2012-03-15 2017-07-18 Kds Holding Gmbh Set for processing a light-curing material
US10173239B2 (en) * 2012-03-15 2019-01-08 Kds Holding Gmbh Set for processing a light-curing material
US9694383B2 (en) * 2012-07-12 2017-07-04 Kds Holding Gmbh Applicator for in particular manually controlled application of a light-curable composite material and arrangement of a light source on the applicator

Also Published As

Publication number Publication date
US20190105143A1 (en) 2019-04-11
US20170231734A1 (en) 2017-08-17
US10595974B2 (en) 2020-03-24

Similar Documents

Publication Publication Date Title
US6419483B1 (en) Method and apparatus for curling light-curable dental materials
DE202010018477U1 (en) Flash device and apparatus for curing light-curable materials and set
US20200155287A1 (en) Flashlight device for curing light-curable materials, method and set
US9539073B2 (en) Low pass filter attachments for use with dental curing lights
US7074040B2 (en) Ball lens for use with a dental curing light
US20090323733A1 (en) Blue laser and light cure polymers
US20150316701A1 (en) Flashlight Device for Curing Light-Curable Materials, Method and Set
US8366441B2 (en) Air/light dental device
DE69812036D1 (en) Dental hand-held device with a light source contained therein
SE0302971L (en) Systems and devices for the production of dental replacement equipment and such equipment
DE60313911D1 (en) Dentalbindemasse in a single bottle
US20040214131A1 (en) Spot curing lens used to spot cure a dental appliance adhesive and systems and methods employing such lenses
JP6623172B2 (en) Dental light irradiation device
ATE430527T1 (en) DENTAL HANDLE
US20180153668A1 (en) Dental light curing device
US20170157637A1 (en) Applicator for Applying a Photocurable Composite Material over a Large Surface of an Object, and Applicator Element for an Applicator
WO2002085243A1 (en) Light radiating device
ATE496588T1 (en) DENTAL HANDLE
WO2011123738A1 (en) Dental curing light having long pulse mode for more extensive curing
WO2000076366A1 (en) Artificial nail forming method and set of artificial nail forming implements
CN220495094U (en) Light-cured lamp cap and light-cured lamp
EP3603566B1 (en) A dental light polymerization device
Radzi et al. Light curing units: Tips for orthodontists
JP2022165927A (en) dental laser treatment device
JPH0350889Y2 (en)

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO PAY ISSUE FEE