US20200089276A1 - Magnetic layout in electronic devices and accessory devices for electronic devices - Google Patents

Magnetic layout in electronic devices and accessory devices for electronic devices Download PDF

Info

Publication number
US20200089276A1
US20200089276A1 US16/415,649 US201916415649A US2020089276A1 US 20200089276 A1 US20200089276 A1 US 20200089276A1 US 201916415649 A US201916415649 A US 201916415649A US 2020089276 A1 US2020089276 A1 US 2020089276A1
Authority
US
United States
Prior art keywords
section
electronic device
magnetic elements
magnetic element
segment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US16/415,649
Other versions
US10671121B2 (en
Inventor
Hao Zhu
Yang Zhou
Thomas R. Matzinger
Guangtao Zhang
Ming Yu
Jaime G. CHAVEZ RUIZ GARZA
Florence W. Ow
James A. Stryker
Travis C. PEDLEY
Melody L. Kuna
Taylor Harrison Gilbert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Apple Inc
Original Assignee
Apple Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Apple Inc filed Critical Apple Inc
Assigned to APPLE INC. reassignment APPLE INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GILBERT, TAYLOR HARRISON, KUNA, MELODY L., STRYKER, JAMES A., ZHANG, GUANGTAO, CHAVEZ RUIZ GARZA, Jaime G., MATZINGER, THOMAS R., OW, FLORENCE W., PEDLEY, Travis C., YU, MING, ZHOU, YANG, ZHU, HAO
Priority to US16/415,649 priority Critical patent/US10671121B2/en
Priority to PCT/US2019/033823 priority patent/WO2020055463A1/en
Priority to KR1020217006502A priority patent/KR102550089B1/en
Priority to CN201980058967.6A priority patent/CN112672661A/en
Priority to CN202211602731.4A priority patent/CN116033693A/en
Priority to CN201920936372.3U priority patent/CN209980127U/en
Publication of US20200089276A1 publication Critical patent/US20200089276A1/en
Priority to US16/848,335 priority patent/US10955875B2/en
Publication of US10671121B2 publication Critical patent/US10671121B2/en
Application granted granted Critical
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/1633Constructional details or arrangements of portable computers not specific to the type of enclosures covered by groups G06F1/1615 - G06F1/1626
    • G06F1/1637Details related to the display arrangement, including those related to the mounting of the display in the housing
    • AHUMAN NECESSITIES
    • A45HAND OR TRAVELLING ARTICLES
    • A45CPURSES; LUGGAGE; HAND CARRIED BAGS
    • A45C11/00Receptacles for purposes not provided for in groups A45C1/00-A45C9/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/62Means for facilitating engagement or disengagement of coupling parts or for holding them in engagement
    • H01R13/6205Two-part coupling devices held in engagement by a magnet
    • AHUMAN NECESSITIES
    • A45HAND OR TRAVELLING ARTICLES
    • A45CPURSES; LUGGAGE; HAND CARRIED BAGS
    • A45C13/00Details; Accessories
    • A45C13/005Hinges
    • AHUMAN NECESSITIES
    • A45HAND OR TRAVELLING ARTICLES
    • A45CPURSES; LUGGAGE; HAND CARRIED BAGS
    • A45C13/00Details; Accessories
    • A45C13/02Interior fittings; Means, e.g. inserts, for holding and packing articles
    • AHUMAN NECESSITIES
    • A45HAND OR TRAVELLING ARTICLES
    • A45CPURSES; LUGGAGE; HAND CARRIED BAGS
    • A45C13/00Details; Accessories
    • A45C13/10Arrangement of fasteners
    • A45C13/1069Arrangement of fasteners magnetic
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/1615Constructional details or arrangements for portable computers with several enclosures having relative motions, each enclosure supporting at least one I/O or computing function
    • G06F1/1622Constructional details or arrangements for portable computers with several enclosures having relative motions, each enclosure supporting at least one I/O or computing function with enclosures rotating around an axis perpendicular to the plane they define or with ball-joint coupling, e.g. PDA with display enclosure orientation changeable between portrait and landscape by rotation with respect to a coplanar body enclosure
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/1626Constructional details or arrangements for portable computers with a single-body enclosure integrating a flat display, e.g. Personal Digital Assistants [PDAs]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/1628Carrying enclosures containing additional elements, e.g. case for a laptop and a printer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/1632External expansion units, e.g. docking stations
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/1633Constructional details or arrangements of portable computers not specific to the type of enclosures covered by groups G06F1/1615 - G06F1/1626
    • G06F1/1656Details related to functional adaptations of the enclosure, e.g. to provide protection against EMI, shock, water, or to host detachable peripherals like a mouse or removable expansions units like PCMCIA cards, or to provide access to internal components for maintenance or to removable storage supports like CDs or DVDs, or to mechanically mount accessories
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/1633Constructional details or arrangements of portable computers not specific to the type of enclosures covered by groups G06F1/1615 - G06F1/1626
    • G06F1/1656Details related to functional adaptations of the enclosure, e.g. to provide protection against EMI, shock, water, or to host detachable peripherals like a mouse or removable expansions units like PCMCIA cards, or to provide access to internal components for maintenance or to removable storage supports like CDs or DVDs, or to mechanically mount accessories
    • G06F1/166Details related to functional adaptations of the enclosure, e.g. to provide protection against EMI, shock, water, or to host detachable peripherals like a mouse or removable expansions units like PCMCIA cards, or to provide access to internal components for maintenance or to removable storage supports like CDs or DVDs, or to mechanically mount accessories related to integrated arrangements for adjusting the position of the main body with respect to the supporting surface, e.g. legs for adjusting the tilt angle
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/1633Constructional details or arrangements of portable computers not specific to the type of enclosures covered by groups G06F1/1615 - G06F1/1626
    • G06F1/1662Details related to the integrated keyboard
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/02Input arrangements using manually operated switches, e.g. using keyboards or dials
    • G06F3/0202Constructional details or processes of manufacture of the input device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/66Structural association with built-in electrical component
    • H01R13/6608Structural association with built-in electrical component with built-in single component
    • H01R13/6633Structural association with built-in electrical component with built-in single component with inductive component, e.g. transformer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/66Structural association with built-in electrical component
    • H01R13/665Structural association with built-in electrical component with built-in electronic circuit
    • H01R13/6683Structural association with built-in electrical component with built-in electronic circuit with built-in sensor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R24/00Two-part coupling devices, or either of their cooperating parts, characterised by their overall structure
    • H01R24/66Two-part coupling devices, or either of their cooperating parts, characterised by their overall structure with pins, blades or analogous contacts and secured to apparatus or structure, e.g. to a wall
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K5/00Casings, cabinets or drawers for electric apparatus
    • H05K5/0017Casings, cabinets or drawers for electric apparatus with operator interface units
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K5/00Casings, cabinets or drawers for electric apparatus
    • H05K5/02Details
    • H05K5/03Covers
    • AHUMAN NECESSITIES
    • A45HAND OR TRAVELLING ARTICLES
    • A45CPURSES; LUGGAGE; HAND CARRIED BAGS
    • A45C11/00Receptacles for purposes not provided for in groups A45C1/00-A45C9/00
    • A45C2011/003Receptacles for purposes not provided for in groups A45C1/00-A45C9/00 for portable computing devices, e.g. laptop, tablet, netbook, game boy, navigation system, calculator
    • AHUMAN NECESSITIES
    • A45HAND OR TRAVELLING ARTICLES
    • A45CPURSES; LUGGAGE; HAND CARRIED BAGS
    • A45C2200/00Details not otherwise provided for in A45C
    • A45C2200/15Articles convertible into a stand, e.g. for displaying purposes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2200/00Indexing scheme relating to G06F1/04 - G06F1/32
    • G06F2200/16Indexing scheme relating to G06F1/16 - G06F1/18
    • G06F2200/163Indexing scheme relating to constructional details of the computer
    • G06F2200/1632Pen holder integrated in the computer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2200/00Indexing scheme relating to G06F1/04 - G06F1/32
    • G06F2200/16Indexing scheme relating to G06F1/16 - G06F1/18
    • G06F2200/163Indexing scheme relating to constructional details of the computer
    • G06F2200/1633Protecting arrangement for the entire housing of the computer

Definitions

  • the following description relates to accessory devices suitable for use with portable electronic devices.
  • the following description relates to accessory devices with magnets designed to magnetically couple with magnets in portable electronic devices as well as other magnets within the accessory device.
  • Accessory devices can provide a protective cover for electronic device. Accessory devices can cover a cover glass and a housing of the electronic device.
  • an accessory device for an electronic device may include a first section.
  • the first section may include a first magnetic element capable of magnetically coupling with a first device magnet of the electronic device and aligning the electronic device with the first section.
  • the first section may further include electrical contacts that electrically couple with device contacts of the electronic device.
  • the first section may further include a second magnetic element capable of magnetically coupling with a second device magnet of the electronic device and aligning the device contacts with the electrical contacts.
  • the accessory device may further include a second section rotationally coupled with the first section.
  • the second section may include a channel capable of receiving the electronic device.
  • the second section may further include a keyboard separate from the channel and in electrical communication with the electronic device via the electrical contacts.
  • an accessory device for an electronic device may include a first section that includes a first magnetic element capable of magnetically coupling with a first device magnet of the electronic device.
  • the accessory device may include a second section rotationally coupled with the first section, the second section that includes a second magnetic element capable of magnetically coupling with a second device magnet of the electronic device.
  • the accessory device may further include a first compensating magnetic element located in the first section.
  • the accessory device may further include a second compensating magnetic element located in the second section. In some instances, the first compensating magnet and the second compensating magnet neutralize the first magnetic element and the second magnetic element.
  • an accessory device for an electronic device may include a first section that includes a first magnetic element and a second magnetic element.
  • the first magnetic element may provide a magnetic attraction force with a device magnet of the electronic device.
  • the second magnetic element may provide a magnetic repulsion force with the device magnet.
  • the accessory device may include a second section rotationally coupled with the first section.
  • the second section may include a keyboard in communication with the electronic device.
  • FIG. 1 illustrates a front isometric view of an embodiment of an electronic device, in accordance with some described embodiments
  • FIG. 2 illustrates a rear isometric view of the electronic device shown in FIG. 1 , showing additional features of the electronic device;
  • FIG. 3 illustrates a plan view of the electronic device, showing several internal components of the electronic device
  • FIG. 4 illustrates a plan view of the electronic device, showing an object positioned against the sidewall
  • FIG. 5 illustrates an isometric view of an embodiment of an accessory device for use with the electronic device, in accordance with some described embodiments
  • FIG. 6 illustrates a plan view of the accessory device shown in FIG. 5 , showing various internal components of the accessory device
  • FIG. 7 illustrates a side view of the accessory device shown in FIG. 6 , showing the electronic device coupled to the accessory device and positioned in the first channel, in accordance with some described embodiments.
  • FIG. 8 illustrates a side view of the accessory device shown in FIG. 6 , showing the electronic device positioned in the second channel;
  • FIG. 9 illustrates an isometric view of an alternate embodiment of an accessory device, in accordance with some described embodiments.
  • FIG. 10 illustrates a plan view of the accessory device shown in FIG. 9 , showing additional features in the accessory device;
  • FIG. 11 illustrates an isometric view of an alternate embodiment of an accessory device, in accordance with some described embodiments.
  • FIG. 12 illustrates a plan view of the accessory device shown in FIG. 11 , showing several magnetic elements in the accessory device;
  • FIG. 13 illustrates a plan view of the accessory device shown in FIG. 12 , showing the electronic device coupled to the accessory device;
  • FIG. 14 illustrates a side view of the an accessory device and electronic device shown in FIG. 13 , showing magnetic elements in the accessory device providing a magnetic repulsion force to magnetic elements in the electronic device;
  • FIG. 15 illustrates a side view of the accessory device, showing back surfaces engaged with each other, in accordance with some described embodiments
  • FIG. 16 illustrates a side view of an embodiment of an accessory device, showing an electronic device positioned between, and engaged with, a first section and a second section of the accessory device, in accordance with some described embodiments;
  • FIG. 17 illustrates accessory devices coupled with the electronic devices, showing the accessory devices engaged with, and suspended from, a magnetically attractable material using magnets in the accessory devices, in accordance with some described embodiments.
  • FIG. 18 illustrates a block diagram of an electronic device, in accordance with some described embodiments.
  • Electronic devices described herein may include portable computing devices, such as tablet computing devices, smartphones, and laptop computing devices.
  • Accessory devices described herein may be referred to as portable accessory devices, accessory cases, accessory covers, or folios, as non-limiting examples.
  • Accessory devices described herein may include a cover having segments foldable with respect to each other, as well as a keyboard coupled with the cover in a manner that allows rotational movement between the cover and the keyboard.
  • the cover may further include electrical contacts designed to engage electrical contacts of the electronic device and place the electronic device in electrical communication with the accessory device.
  • Accessory devices described herein may include several magnetic elements designed and positioned not only to magnetically couple with magnetic elements in an electronic device, but also with other magnetic elements within the accessory device. Further, accessory devices described herein may include magnetic elements that generate an external magnetic field sufficient enough to retain the electronic device, even when gravitational forces are acting on the electronic device that would otherwise cause the electronic device to fall off of the accessory device. Further, based on the position of the various magnetic elements, accessory devices described herein may be configured in various manners, providing additional flexibility and benefits to users.
  • Some accessory devices described herein include multiple sections, with some sections providing foldable covers while other sections provide keyboards (in some instances). Further, some accessory devices described herein include channels used to retain an edge of an electronic device. These accessory devices may include additional magnetic elements surrounding the channels in order to magnetically couple with magnetic elements in the electronic device.
  • FIG. 1 illustrates an isometric front view of an embodiment of an electronic device 100 , in accordance with some described embodiments.
  • the electronic device 100 may be referred to as a portable electronic device.
  • the electronic device 100 is a laptop computing device.
  • the electronic device 100 is a mobile wireless communication device, such as a smartphone.
  • the electronic device 100 is a tablet computing device designed for user interaction and wireless communication.
  • the electronic device 100 may include an enclosure 102 , or housing, designed to provide an internal volume (not labeled) to store several components, including (as non-limiting examples) circuit boards, processor circuits, memory circuits, battery (or batteries), audio modules (such as speakers), microphones, cameras, light emitters and receivers, and flexible circuitry that electrically connect at least some of the aforementioned components to each other.
  • the enclosure 102 may include a back wall and multiple sidewalls that extend from, and combine with, the back wall define the internal volume.
  • the enclosure 102 may include a rigid material, including a metal (such as aluminum or an alloy that includes aluminum), ceramic, or hardened plastic, as non-limiting examples.
  • the electronic device 100 may further include a display assembly 104 (shown as a dotted line). Although not shown, the display assembly 104 may include multiple layers, including a display layer designed to provide visual information. The display assembly 104 may further include a touch input layer designed to receive a touch input, and provide a location of the touch input. The touch input layer may include capacitive touch technology used to form an electrostatic field and use changes in the electrostatic field to locate the touch input.
  • the electronic device 100 may further include a transparent cover 106 positioned over the display assembly 104 and coupled with the enclosure 102 . The transparent cover 106 may provide a protective cover to the display assembly 104 as well as the aforementioned components stored in the internal volume.
  • the transparent cover 106 may include a see-through material, such as glass, plastic, sapphire or the like.
  • the electronic device 100 may further include a border 108 that extends around a perimeter of the transparent cover 106 and covers edges of the display assembly 104 .
  • the border 108 may provide an opaque barrier that hides or obscures electrical connections between the display assembly 104 and other components (not shown in FIG. 1 ).
  • the border 108 may be applied to an internal surface of the transparent cover 106 , and accordingly, the border 108 faces the internal volume. However, in some instances (not shown), the border 108 may be applied to an external surface.
  • the border 108 may include a uniform dimension along the X-axis as well as the Y-axis. In this manner, the border 108 may appear uniform along a two-dimensional plane, thereby providing the electronic device 100 with an aesthetic and consistent finish.
  • the border 108 is opaque, or at least substantially opaque, some portions of the border 108 can be removed to form an opening (or openings). Further, the opening(s) in the border 108 can be filled with a material that provides a light transmission (or translucent) quality, while also matching, or at least substantially matching, the appearance (in terms of color and/or reflectivity) of the border 108 .
  • the border 108 may include an opening with a material 110 that fills the opening.
  • the material 110 may include an ink material (as a non-limiting example) that includes an appearance that matches that of the border 108 . For example, if the border 108 appears black, the material 110 may also appear black while still allowing light passage.
  • the electronic device 100 may include a vision system used for user authentication, as well as light sensors that detect an amount of light incident on the electronic device 100 . These features will be shown below.
  • the enclosure 102 When the enclosure 102 is formed from a metal, some parts of the enclosure 102 may undergo a machining operation to remove the metal, and a non-metal may fill the void in the enclosure 102 left from the machining operation.
  • the enclosure 102 may include a sidewall 114 a having an opening, or window, that opens into the internal volume of the electronic device 100 , and a non-metal material 116 a that fills the opening.
  • the non-metal material 116 a may include plastic, resin, and/or adhesives.
  • the electronic device 100 may include components, such as an inductive charging unit and antennae (not shown in FIG. 1 ), positioned in the internal volume along the non-metal material 116 a .
  • the non-metal material 116 a provides minimal, if any, blockage of radio frequency communication to and from the antennae. Accordingly, the non-metal material 116 a may be referred to as a radio frequency window. Further, the non-metal material 116 a provides minimal, if any, blockage of induced electrical current from the inductive charging unit. As a result, the inductive charging unit can be used to charge an object or an accessory, such as a digital stylus, that is used to provide a touch input to the display assembly 104 . These features will be shown below.
  • the enclosure 102 may further include through holes, or openings, that lead to the internal volume.
  • the sidewall 114 b may include through holes 118 a and through holes 118 b .
  • the through holes 118 a and the through holes 118 b may be used to allow acoustical energy generated by audio modules (not shown in FIG. 1 ) to exit the electronic device 100 .
  • at least some of the through holes 118 a and the through holes 118 b may be used to receive acoustical energy, thereby allowing a microphone(s) (not shown in FIG. 1 ) in the electronic device 100 to process the acoustical energy.
  • the electronic device 100 may include a connector 120 located in a through hole of the sidewall 114 b .
  • the connector 120 may electrically couple with a central processing unit (not shown in FIG. 1 ) on a circuit board in the internal volume, as well as a battery (or batteries, not shown) in the internal volume. In this manner, the electronic device 100 may receive and transmit data for the central processing unit, and may also receive electrical energy use to charge and re-charge the battery (or batteries).
  • the connector 120 may include a Universal Serial Bus (“USB”) connector, including a connector with USB-C protocol. However, the connector 120 may take the form of other standardized connectors.
  • USB Universal Serial Bus
  • the electronic device 100 may include an input mechanism 122 a located on the sidewall 114 a .
  • the input mechanism 122 a is a switch or a button mechanically coupled to an internal switch.
  • the input mechanism 122 a may be designed for actuation (such as a depression or lateral movement) to generate a command to alter the display assembly 104 or provide some other function, such as controlling the volume of the audio modules (not shown in FIG. 1 ).
  • the input mechanism 122 a is located on the sidewall 114 a , other locations (both on the sidewall 114 a and other sidewalls) are possible.
  • FIG. 2 illustrates an isometric back view of the electronic device 100 shown in FIG. 1 , showing additional features of the electronic device 100 .
  • the enclosure 102 may include a wall 124 , also referred to as a bottom wall or back wall, with several openings to allow for additional features.
  • the wall 124 may include an opening filled with a non-metal material 116 b .
  • the non-metal material 116 b may include plastic, resin, and/or adhesives, as non-limiting examples. In this manner, the wall 124 may permit radio frequency into and out of the enclosure 102 by way of the non-metal material 116 b .
  • the wall 124 may further include openings for a camera assembly 126 , a flash module 128 , and a microphone 129 .
  • the enclosure 102 may further include a sidewall 114 c that includes an opening 118 d for a microphone (shown later).
  • the sidewall 114 c may further include an input mechanism 122 b and an input mechanism 122 c , both of which may include any feature previously described for the input mechanism 122 a (shown in FIG. 1 ).
  • the enclosure 102 may include a sidewall 114 d having through holes similar to the through holes 118 a and the through holes 118 b (shown in FIG. 1 ). The through holes in sidewall 114 d can be used for additional audio modules and microphones (shown below).
  • the electronic device 100 may include an electrical contact 123 a , an electrical contact 123 b , and an electrical contact 123 c . These contacts may be referred to as device contacts.
  • the electrical contact 123 a , the electrical contact 123 b , and the electrical contact 123 c may include metal contacts designed to electrically couple with an accessory device (not shown in FIG. 2 ), such as a cover, a folio, and/or a cover-keyboard accessory.
  • FIG. 3 illustrates a plan view of the electronic device 100 , showing several internal components of the electronic device 100 .
  • the transparent cover 106 and the display assembly 104 are removed to show additional features.
  • the enclosure 102 may define an internal volume 130 that provides a space to carry the components of the electronic device 100 .
  • the internal volume 130 may provide space for a circuit board that carries several processor circuits, some of which may serve as a central processing unit, a graphics processing unit, and a memory circuit.
  • the internal volume 130 may also provide space for battery modules, microphones, and flexible circuits, as non-limiting examples.
  • the electronic device 100 may include several audio modules in the internal volume 130 of the enclosure 102 .
  • the electronic device 100 may include an audio module 134 a and an audio module 136 a .
  • the audio module 134 a is designed to generate acoustical energy, in the form of audible sound, approximately in the range of 2,000-20,000 Hertz (“Hz”), but in some case the range may be higher than 20,000 Hz.
  • the audio module 136 a is designed to generate acoustical energy, in the form of audible sound, approximately in the range of 20-5,000 Hz.
  • the audio module 134 a may be referred to as a tweeter, and the audio module 136 a may be referred to as a woofer.
  • the audio module 136 a may secure with internal walls 138 a that extends from the wall 124 .
  • the internal walls 138 a may be integrally formed with the wall 124 .
  • the enclosure 102 may be formed from a block of material that undergoes a machining operation such that the wall 124 and the internal walls 138 a are formed as a continuous structure. As shown in FIG. 3 , the internal walls 138 a are positioned between the sidewalls of the enclosure 102 .
  • the electronic device 100 may further include additional audio modules, including an audio module 134 b , an audio module 134 c , and an audio module 134 d , that include similar features described for the audio module 134 a .
  • the electronic device 100 may further include additional audio modules, including an audio module 136 b , an audio module 136 c , and an audio module 136 d , that include similar features described for the audio module 136 a , with the audio module 136 b , the audio module 136 c , and the audio module 136 d secured with internal walls 138 b , internal walls 138 c , and internal walls 138 d , respectively.
  • the sidewalls of the enclosure 102 may include several through holes, or openings, that allow acoustical energy generated by at least some of the audio modules to exit the electronic device 100 .
  • the audio module 136 a may include a permanent magnet (not shown in FIG. 2 ) as well as an electromagnet (not shown in FIG. 2 ).
  • additional magnetic elements may be housed between the internal walls 138 a that secure the audio module 136 a .
  • the electronic device 100 may include magnetic elements 140 a positioned between the internal walls 138 a .
  • the magnetic elements 140 a (shown as dotted lines) are covered by a cap that is part of the audio module 136 a .
  • the magnetic elements 140 a are separate (both physically and functionally) from magnets used by the audio module 136 a .
  • the magnetic elements 140 a may be secured with the wall 124 by adhesives, as a non-limiting example.
  • magnetic elements shown and described in the electronic device 100 may be referred to as device magnets.
  • the magnetic elements 140 a may include multiple rows of discrete magnetic elements. Further, the magnetic elements 140 a are arranged in a pattern in which some of the magnetic elements include a North Pole (or North-facing polarity) denoted by a “+” that faces away from the wall 124 , while remaining magnetic elements of the magnetic elements 140 a include a South Pole (or South-facing polarity) denoted by a “ ⁇ ” that faces away from the wall 124 . As shown, the magnetic elements 140 a include a 3 ⁇ 6 matrix of magnetic elements. However, the number of magnetic elements may vary.
  • the electronic device 100 may include further magnetic elements 140 b and magnetic elements 140 c positioned between the internal walls 138 b . Similar to the magnetic elements 140 a , the magnetic elements 140 b and the magnetic elements 140 c are covered by a cap that is part of the audio module 136 b , and are separate (both physically and functionally) from magnets used by the audio module 136 b . As shown in the second enlarged view 150 b , the magnetic elements 140 b may include multiple rows of discrete magnetic elements. Further, the magnetic elements 140 b are arranged in a pattern in which some of the magnetic elements include a North Pole that faces away from the wall 124 , while remaining magnetic elements of the magnetic elements 140 b include a South Pole that faces away from the wall 124 .
  • the magnetic elements 140 b include a 2 ⁇ 6 matrix of magnetic elements. However, the number of magnetic elements may vary. Also, the magnetic elements 140 c may include a single column of magnetic elements, some of which include a North Pole that faces away from the wall 124 , while others include a South Pole that faces away from the wall 124 .
  • the electronic device 100 may include further magnetic elements 140 d positioned between the internal walls 138 c . Similar to the magnetic elements 140 a , the magnetic elements 140 d are covered by a cap that is part of the audio module 136 c , and are separate (both physically and functionally) from magnets used by the audio module 136 c .
  • the electronic device 100 may include further magnetic elements 140 e and magnetic elements 140 f positioned between the internal walls 138 d . Similar to the magnetic elements 140 b , the magnetic elements 140 e are covered by a cap that is part of the audio module 136 d , and are separate (both physically and functionally) from magnets used by the audio module 136 d .
  • the magnetic elements 140 d may include a 3 ⁇ 6 matrix of magnetic elements, which may be arranged in a similar layout/arrangement as that of the magnetic elements 140 a .
  • the layout/arrangement may differ.
  • the magnetic elements 140 e and the magnetic elements 140 f may include a 2 ⁇ 6 matrix and a single column of magnetic elements, respectively.
  • the layout/arrangement of the magnetic elements 140 e and the magnetic elements 140 f may be similar layout/arrangement as that of the magnetic elements 140 b and the magnetic elements 140 c , respectively.
  • the layouts/arrangements may differ.
  • the aforementioned magnetic elements may magnetically couple with magnetic elements in various accessory devices described herein, thereby coupling the electronic device 100 with the accessory devices.
  • the magnetic coupling between the magnetic elements in the electronic device 100 with accessory devices described herein provide a magnetic attraction force that allows accessory devices to hold and retain the electronic device 100 , and even overcome gravitational forces acting against the magnetic attraction force.
  • the aforementioned magnetic elements in the electronic device 100 may provide a large-scale adjustment of the electronic device 100 relative to the accessory device by, for example, providing a force that moves the electronic device 100 approximately a few centimeters to align the corners of the electronic device 100 with the corners of the accessory device.
  • the electronic device 100 may include magnetic elements 140 g and magnetic elements 140 h designed and positioned to magnetically couple with magnetic elements accessory devices.
  • the magnetic coupling of the magnetic elements 140 g and magnetic elements 140 h with magnetic elements in an accessory device may provide a small-scale adjustment of the electrical contacts 123 relative to electrical contacts of the accessory device by, for example, providing a force that moves the electronic device 100 approximately a few millimeters to align the electrical contacts 123 with the electrical contacts of the accessory device and ensure engagement, thereby placing the electronic device 100 in electrical communication with the accessory device.
  • the aforementioned magnetic elements may include permanent magnets such as neodymium.
  • the remanence of the aforementioned magnetic elements may vary among the discrete magnetic elements. For example, some magnetic elements may include a relatively high remanence to increase locally increase external magnetic field and provide an additional magnetic attraction force, while some magnetic elements may include a relatively low remanence to locally reduce the overall external magnetic field and prevent the external magnetic field from interacting with magnetically-sensitive items (such as credit cards) placed externally on the wall 124 of the electronic device 100 .
  • the electronic device 100 may further include an inductive charging unit 142 .
  • the inductive charging unit 142 may include a ferrite coil designed to receive an alternating electrical current from an internal power source (not shown in FIG. 3 ), such as a battery module.
  • the direct current (“DC”) provided by the battery module may pass through an inverter (not shown in FIG. 3 ) to generate the alternating electrical current.
  • the inductive charging unit 142 can subsequently provide an alternating electromagnetic field (not shown in FIG. 3 ), and act as a transmitter coil to inductively charge a power source (not shown in FIG. 3 ) of an object that is external to the electronic device 100 , such as a digital stylus positioned against the sidewall 114 a . This will be shown below.
  • a partial cross section of the sidewall 114 a is shown in order to show the non-metal material 116 a .
  • the inductive charging unit 142 is aligned with the non-metal material 116 a and the electromagnetic field generated by the inductive charging unit 142 may pass through the non-metal material 116 a and induce electrical current into the object.
  • the electronic device 100 may include magnetic elements 140 i and magnetic elements 140 j positioned along the sidewall 114 a , including the non-metal material 116 a .
  • the magnetic elements 140 i and magnetic elements 140 j are designed to magnetically couple with magnets in the object that can be positioned against the sidewall 114 a and inductively charged by the inductive charging unit 142 . Further, the magnetic elements 140 i and magnetic elements 140 j can be used to generally carry and store the object through magnetic attraction.
  • the electronic device 100 may include an antenna 144 a and an antenna 144 b located along the non-metal material 116 a .
  • the antenna 144 a and the antenna 144 b may enable wireless communication. Further, each antenna may provide radio frequency communication within a specific range of frequencies. For instance, the antenna 144 a may provide Wi-Fi communication and the antenna 144 b may provide Bluetooth® communication. Other antennae (not shown in FIG. 3 ) may enable cellular network communication.
  • the electronic device 100 may include magnetic elements 140 k and magnetic elements 140 l positioned along the sidewall 114 c .
  • the magnetic elements 140 k and magnetic elements 140 l are designed to magnetically couple with magnetic elements in an accessory device (not shown in FIG. 3 ), such as a cover, a folio, or a cover-keyboard accessory. Further, the magnetic elements 140 k and magnetic elements 140 l may position the electronic device 100 in a manner such that the sidewall 114 c defines a base for the electronic device 100 . This will be shown below.
  • the electronic device 100 may further include magnetic elements 140 m designed to magnetically couple with magnets of an accessory device (not shown in FIG. 3 ) designed to cover the electronic device 100 .
  • the electronic device 100 may include a compass 146 .
  • the compass 146 may include a magnetometer designed to determine the Earth's magnet field.
  • FIG. 4 illustrates a plan view of the electronic device 100 , showing an object 150 positioned against the sidewall 114 a .
  • a partial cross sectional view of the sidewall 114 a shows the non-metal material 116 a .
  • the object 150 may include a digital stylus capable of interacting and providing an input to the display assembly 104 , and in particular, the touch input layer (not shown in FIG. 4 ) of the display assembly 104 .
  • the object 150 requires a battery 152 to supply electrical current to a capacitive component and to radio frequency components (not shown in FIG. 4 ) of the object 150 , both of which may be used to communicate with the electronic device 100 .
  • the battery 152 of the object 150 may include a rechargeable battery.
  • the inductive charging unit 142 of the electronic device 100 can charge the battery 152 .
  • the inductive charging unit 142 may act as transmitter coil and inductively charge the battery 152 by inducing an alternating current (“AC”) to a receiver coil 154 of the object 150 .
  • the induced current may pass through an AC-to-DC converter, such as a rectifier, and may subsequently be used to charge or recharge the battery 152 .
  • the inductive charging unit 142 and the object 150 are positioned along the non-metal material 116 a .
  • the magnetic elements 140 i and the magnetic elements 140 j may magnetically couple with magnetic elements 305 a and magnetic elements 305 b , respectively, in the object 150 .
  • the antenna 144 a and the antenna 144 b are positioned along the non-metal material 116 a , thereby allowing the antenna 144 a and the antenna 144 b to send and receive RF communication.
  • FIG. 5 illustrates an isometric view of an embodiment of an accessory device 200 for use with the electronic device 100 , in accordance with some described embodiments.
  • the accessory device 200 is designed as a complementary device for an electronic device 100 .
  • the accessory device 200 may include a first section 202 a and a second section 202 b connected to the first section 202 a .
  • the accessory device 200 may include a hinge 204 a that connects the first section 202 a with the second section 202 b .
  • the hinge 204 a allows the first section 202 a to rotate or pivot with respect to the second section 202 b , and vice versa.
  • the hinge 204 a may include a flexible material (such as polyurethane, as a non-limiting example) that defines an outer layer (or layers) extending across both the first section 202 a and the second section 202 b.
  • the first section 202 a may define a receiving surface for the electronic device 100 , with the receiving surface having a size and shape to receive a back surface of the enclosure 102 (which defines a major surface of the enclosure 102 ).
  • the first section 202 a may include a first segment 206 a and a second segment 206 b that define that collectively define the receiving surface.
  • the first segment 206 a is separated from the second segment 206 b by a hinge 204 b positioned between the first segment 206 a and the second segment 206 b .
  • the hinge 204 b allows rotational movement of the first segment 206 a relative to the second segment 206 b , and vice versa.
  • the hinge 204 b may be formed from the layer(s) used to form the hinge 204 a .
  • the first segment 206 a and the second segment 206 b are the same size, generally.
  • the first segment 206 a is larger than the second segment 206 b .
  • the first segment 206 a and the second segment 206 b may each include a microfiber layer (not labeled). In some instances, the microfiber layer is restricted to the first segment 206 a and the second segment 206 b such that the microfiber layer does not cover the hinge 204 b.
  • the second section 202 b also referred to as a keyboard section or a keyboard cover, may include a keyboard 208 .
  • the keyboard 208 may include several keys (not labeled) arranged in a QWERTY configuration, as a non-limiting example.
  • the second section 202 b may further include one or more channels designed to provide a location that is below or sub-flush with respect to a remaining location of the second section 202 b .
  • the second section 202 b may include a first channel 212 a and a second channel 212 b .
  • the first channel 212 a and the second channel 212 b are designed to receive the electronic device 100 (or a portion of the electronic device 100 ) in order to place and position the electronic device 100 in a manner such that the electronic device 100 can be used with the keyboard 208 .
  • the second section 202 b may include a dimension 203 a measured from a rear surface of the second section 202 b to a key of the keyboard 208 .
  • the second section 202 b may include a dimension 203 b measured from a rear surface of the second section 202 b to a section that surrounds the first channel 212 a and the second channel 212 b .
  • the dimension 203 a may be the same as, or substantially similar to, the dimension 203 b , such that the keys of the keyboard 208 are planar with respect to the section surrounding the first channel 212 a and the second channel 212 b . In this manner, when the electronic device 100 is coupled to the first section 202 a and the first section 202 a is folded over the second section 202 b , the electronic device 100 may lie flat, or horizontal, on the second section 202 b.
  • the first section 202 a may include electrical contacts 214 designed to engage electrical contacts 123 of the electronic device 100 , and place the accessory device 200 in communication (including electrical communication) with electronic device 100 .
  • the electrical contacts 214 may be referred to as device contacts.
  • the keyboard 208 can be used to provide inputs and commands to the electronic device 100 to control the display assembly 104 .
  • the electrical contacts 214 are located on the first segment 206 a . However, other locations are possible (such as the second segment 206 b ).
  • the electrical contacts 214 can be at any location corresponding to the location of the electrical contacts 123 such that the electronic device 100 lies within an outer perimeter of the first section 202 a when the electronic device 100 is in contact with the first section 202 a .
  • the electrical contacts 214 represent a physical/direct communication between the accessory device 200 and the electronic device 100
  • the accessory device 200 and the electronic device 100 may also be in communication via wireless communication, such as Bluetooth® communication, as a non-limiting example.
  • the first section 202 a may further include an opening 216 , or through hole, designed to receive the camera assembly 126 and the flash module 128 (shown as dotted lines). As shown, the opening 216 is located on the first segment 206 a . However, other locations are possible. Generally, the opening 216 can be at any location corresponding to the location of the camera assembly 126 and the flash module 128 such that the electronic device 100 lies within an outer perimeter of the first section 202 a when the electronic device 100 is in contact with the first section 202 a.
  • FIG. 6 illustrates a plan view of the accessory device 200 shown in FIG. 5 , showing various internal components of the accessory device 200 .
  • the first section 202 a and the second section 202 b may include several magnetic elements.
  • the magnetic elements located in the first section 202 a may be referred to as cover magnetic elements or cover magnets, as the first section 202 a may be referred to as a cover or a cover section.
  • the magnetic elements located in the second section 202 b may be referred to as keyboard magnetic elements or keyboard magnets, as the second section 202 b may be referred to as a keyboard or keyboard section.
  • the first segment 206 a of the first section 202 a may include several magnetic elements designed to magnetically couple with magnetic elements in the electronic device 100 (shown in FIG. 2 ) to retain the electronic device 100 against the first section 202 a .
  • the first segment 206 a may include magnetic elements 240 a , magnetic elements 240 b , and magnetic elements 240 c .
  • the magnetic elements described herein for the accessory device 200 may be represented by a rectangular structure. However, the magnetic elements include a layout/arrangement similar to that of the magnetic elements shown in FIG. 3 for the electronic device 100 , in terms of the number of rows and/or columns, as well as the number of discrete magnetic elements.
  • the magnetic elements 240 a may include a layout/arrangement similar to the magnetic elements 140 a . However, the polarity of the discrete magnetic elements of the magnetic elements 240 a may be reversed in order to form several magnetic circuits (with a magnetically attractable North-South pair) between the magnetic elements 240 a and the magnetic elements 140 a.
  • the first segment 206 a may further include magnetic elements 240 d , magnetic elements 240 e , and magnetic elements 240 f .
  • At least some of the magnetic elements 240 a , the magnetic elements 240 b , and the magnetic elements 240 c may magnetically couple with at least some of the magnetic elements 140 a , the magnetic elements 140 b , and the magnetic elements 140 c (shown in FIG. 3 ).
  • at least some of the magnetic elements 240 d , the magnetic elements 240 e , and the magnetic elements 240 f may magnetically couple with at least some of the magnetic elements 140 d , the magnetic elements 140 e , and the magnetic elements 140 f (shown in FIG. 3 ).
  • the first section 202 a may further include magnetic elements 240 g and magnetic elements 240 h capable of magnetically coupling with the magnetic elements 140 g and the magnetic elements 140 h (shown in FIG. 3 ), respectively. This may provide the small-scale alignment to align and engage the electrical contacts 214 with the electrical contacts 123 of the electronic device 100 (shown in FIG. 3 ).
  • the first section 202 a may further include magnetic elements 240 i and magnetic elements 240 j designed to magnetic couple with magnets in the electronic device 100 (shown in FIG. 3 ), such as the magnetic elements 140 c and the magnetic elements 140 f (shown in FIG. 3 ).
  • the first section 202 a and the second section 202 b are designed to engage each other, and remain engaged through magnetic coupling.
  • the first section 202 a may include magnetic elements 240 k , magnetic elements 240 l , magnetic elements 240 m , and magnetic elements 240 n are designed to magnetically couple with magnetic elements 242 k , magnetic elements 242 l , magnetic elements 242 m , and magnetic elements 242 n , respectively, located in the second section 202 b .
  • a back surface not shown in FIG. 6
  • the aforementioned magnetic elements magnetically couple such that the back surfaces remain engaged with each other.
  • the first section 202 a may include magnetic elements 240 o and magnetic elements 240 p (located in the second segment 206 b ) designed to magnetically couple with magnetic elements 242 o and magnetic elements 242 p (located in the second segment 206 b ), respectively.
  • the magnetic elements in the first segment 206 a can (collectively) retain the electronic device 100 (shown in FIG. 5 ) against the first section 202 a by magnetic attraction, even overcoming gravitational forces acting on the electronic device 100 .
  • the first section 202 a may not require mechanical retaining features, such as sidewalls and/or locks, designed to wrap around and/or interlock with the electronic device 100 to retain the electronic device 100 .
  • the first segment 206 a is the same size (or at approximately the same size) as that of the second segment 206 b . In the embodiment shown in FIG. 6 , the size of the first segment 206 a is different from the size of the second segment 206 b . This may facilitate positioning the first section 202 a in a desired manner to support the electronic device 100 . This will be shown and described below.
  • the second section 202 b may further include magnetic elements along an edge (of the second section 202 b ).
  • the second section 202 b may include magnetic elements 242 a , magnetic elements 242 b , magnetic elements 242 c , and magnetic elements 242 d .
  • These magnetic elements are designed to magnetically couple with magnetic elements (or magnetically attractable materials) in the electronic device 100 (shown in FIG. 3 ) in order to retain the electronic device 100 with the second section 202 b along the edge.
  • the second section 202 b may include additional magnetic elements.
  • the second section 202 b may include a magnetic assembly 244 a and a magnetic assembly 244 b (both shown as dotted lines), with each magnetic assembly including two or more magnetic elements positioned around the first channel 212 a .
  • the magnetic assembly 244 a and the magnetic assembly 244 b are designed to magnetically couple with magnetic elements, or magnetically attractable materials, in the electronic device 100 (not shown in FIG. 6 ) in order to retain a portion of the electronic device 100 within the first channel 212 a .
  • the second section 202 b may further include a magnetic assembly 244 c and a magnetic assembly 244 d (both shown as dotted lines), with each magnetic assembly including two or more magnetic elements positioned around the second channel 212 b .
  • the magnetic assembly 244 c and the magnetic assembly 244 d are designed to magnetically couple with magnetic elements, or magnetically attractable materials, in the electronic device 100 (not shown in FIG. 6 ) in order to retain a portion of the electronic device 100 within the second channel 212 b .
  • Each of the magnetic assembly 244 a , the magnetic assembly 244 b , the magnetic assembly 244 c , and the magnetic assembly 244 d may form a Halbach array designed to provide an additive or increased external magnetic field at one location, while providing a resultant decreased external magnetic field at another location.
  • the additive or increased external magnetic field may pass through the first channel 212 a and the second channel 212 b to enhance the magnetic attraction force between magnets in the electronic device 100 and the aforementioned magnetic assemblies. That may provide allow fewer magnetic elements along the first channel 212 a and the second channel 212 b , which may result in less weight and less cost.
  • the accessory device 200 may include sensors designed to detect an external magnetic field generated from magnetic elements in the electronic device 100 to determine the position of the electronic device 100 .
  • the accessory device 200 may include a first sensor 232 a and a second sensor 232 b .
  • the first sensor 232 a and the second sensor 232 b are designed to detect when the electronic device 100 is positioned in the first channel 212 a and the second channel 212 b , respectively, and provide an input that activates the electronic device 100 .
  • the first sensor 232 a and the second sensor 232 b are Hall Effect sensors designed to detect an external magnetic field generated by magnetic elements in the electronic device 100 .
  • the accessory device 200 may include a third sensor 232 c designed to detect when the electronic device 100 lies flat over the keyboard 208 , and provide an input that deactivates the electronic device 100 .
  • the electronic device 100 may include a compass 146 .
  • the electronic device 100 When the electronic device 100 is positioned on the first section 202 a (in FIG. 6 ), at least some of the magnetic elements may provide an interfering external magnetic field that causes the compass 146 to inaccurately determine the Earth's magnetic field, and as a result, in inaccurately determine the proper direction (such as North, South, East, or West).
  • FIG. 6 shows a location 246 of the compass 146 superimposed on the first section 202 a .
  • the accessory device 200 may include a first compensating magnetic element 248 a and a second compensating magnetic element 248 b .
  • the first compensating magnetic element 248 a and the second compensating magnetic element 248 b may be modified to provide an external magnetic field (not shown in FIG. 6 ) that is non-normal or non-perpendicular with respect to surfaces defined by the first section 202 a and the second section 202 b (as positioned in FIG. 6 ), whereas the magnetic elements in the accessory device 200 may provide an external magnetic field (not shown in FIG. 6 ) that is generally normal or perpendicular with respect to surfaces defined by the first section 202 a and the second section 202 b .
  • the first compensating magnetic element 248 a and the second compensating magnetic element 248 b may offset external magnetic fields of the magnetic elements in the accessory device 200 such that the compass 146 works properly.
  • the first compensating magnetic element 248 a and the second compensating magnetic element 248 b are shown in the first section 202 a and the second section 202 b , respectively. However, other locations are possible.
  • FIG. 7 illustrates a side view of the accessory device 300 shown in FIG. 6 , showing the electronic device 100 coupled to the accessory device 200 and positioned in the first channel 212 a , in accordance with some described embodiments.
  • the magnetic elements 140 k are magnetically coupled with a first magnet 254 a and a second magnet 254 b of the magnetic assembly 244 a (also shown in FIG. 6 ).
  • a force in the direction of an arrow 179 a
  • a rotational force in the direction of the arrow 179 b
  • the magnetic assembly 244 a may counter the rotational force.
  • the first magnet 254 a may include a size and shape that is greater than that of the second magnet 254 b .
  • the first magnet 254 a may include a stronger external magnetic field as compared to that of the second magnet 254 b .
  • the relatively stronger external magnetic field of the first magnet 254 a provides a force in the direction of an arrow 179 c that is opposite to the force in the direction of the arrow 179 b , thereby counteracting the rotational force.
  • the magnetic coupling between the magnetic elements 140 k and the second magnet 254 b provides a force in the direction, or at least approximately in the direction, of gravity to maintain the electronic device 100 in the first channel 212 a .
  • the magnetic assembly 244 b may include a number of magnets and associated features described for the magnetic assembly 244 a .
  • the magnetic elements 140 l may magnetically couple with the magnetic assembly 244 b.
  • the magnetic assemblies may form a Halbach array to enhance the magnetic attraction force.
  • the electronic device 100 may include modified magnetic elements to further enhance the magnetic attraction force.
  • the first magnet 254 a and the second magnet 254 b are polarized such that the magnetic field is normal relative to a surface of the first magnet 254 a and the second magnet 254 b , as indicated by arrows superimposed on the first magnet 254 a and the second magnet 254 b .
  • the magnetic elements 140 k may be polarized to include some non-normal angle respect to a surface of a magnetic element of the magnetic elements 140 k .
  • an arrow superimposed on the magnetic elements 140 k indicates the magnetic field is at an angle 183 that is non-normal with respect to a surface of the magnetic elements 140 k .
  • the angle 183 is 40 degrees.
  • the angle 183 may be in the range of 30 to 80 degrees.
  • FIG. 8 illustrates a side view of the accessory device 200 shown in FIG. 6 , showing the electronic device 100 positioned in the second channel 212 b .
  • the magnetic elements 140 k are magnetically coupled with a first magnet 254 c and a second magnet 254 d of the magnetic assembly 244 c .
  • the magnetic assembly 244 c may counter the force.
  • the second magnet 254 d may include a size and shape that is greater than that of the first magnet 254 c .
  • the second magnet 254 d may include a stronger external magnetic field as compared to that of the first magnet 254 c .
  • the relatively stronger external magnetic field of the second magnet 254 d provides a force in the direction of an arrow 179 e that is opposite to the force in the direction of the arrow 179 d , thereby counteracting the force.
  • the magnetic coupling between the magnetic elements 140 k in the electronic device 100 and the first magnet 254 c provides a force to maintain the electronic device 100 in the second channel 212 b .
  • the magnetic assembly 244 d (shown in FIG. 3 ) may include a number of magnets and associated features described for the magnetic assembly 244 c .
  • the magnetic elements 140 l may magnetically couple with the magnetic assembly 244 d.
  • FIGS. 7 and 8 show the first section 202 a supporting the electronic device 100 in an upright configuration such that a user can interact with both the keyboard 208 and the display assembly 104 .
  • the disparate size between the first segment 206 a and the second segment 206 b allows the first section 202 a to adjust, thereby allowing the electronic device 100 to be positioned in the first channel 212 a and the second channel 212 b.
  • FIG. 9 illustrates an isometric view of an alternate embodiment of an accessory device 300 , in accordance with some described embodiments.
  • the accessory device 300 is designed for use with an electronic device 100 , including portable electronic devices such as mobile wireless communication devices and tablet computer devices.
  • the accessory device 300 may be referred to as a case, a cover, a protective cover, a protective case, a folio, or the like.
  • the accessory device 300 may include a first section 302 a coupled to a second section 302 b .
  • the first section 302 a may define a back cover or back panel for the electronic device 100 .
  • the first section 302 a may define a receiving surface 304 that receives the electronic device 100 , and in particular, the enclosure 102 .
  • the first section 302 a may retain the electronic device 100 one or more magnets. This will be shown and discussed below.
  • the first section 302 a may further include an opening 316 , or through hole, designed to receive the camera assembly 126 , the flash module 128 , and the microphone 129 .
  • the second section 302 b is designed to wrap around and cover the electronic device 100 , including the display assembly 104 .
  • the second section 302 b may be referred to as a front panel or front cover.
  • the second section 302 b may include multiple segments.
  • the second section 302 b may include a first segment 306 a , a second segment 306 b , and a third segment 306 c .
  • Each segment is rotatable or moveable with respect to the remaining segments.
  • a discrete number of segments may vary in other embodiments.
  • the second section 302 b is coupled to the first section 302 a by a hinge 312 such that the first section 302 a is rotatable with respect to the second section 302 b , and vice versa.
  • the hinge 312 may be formed in part by one more continuous pieces of material that extend(s) along the first section 302 a and the second section 302 b .
  • the materials that form the layer(s) may include polymers, such as polyurethane, that wrap around a fiberglass material.
  • the fiberglass material and/or other relatively rigid or stiff materials may not be located at the hinge 312 and in locations between the segments. This will be shown and described below.
  • a soft, non-abrasive material such as microfiber, may cover the first segment 306 a , the second segment 306 b , and the third segment 306 c .
  • the soft, non-abrasive materials do not cause damage when in contact with the transparent cover or the display assembly 104 .
  • FIG. 10 illustrates a plan view of the accessory device 300 shown in FIG. 9 , showing additional features in the accessory device.
  • the accessory device 300 may include magnetic elements 340 a , magnetic elements 340 b , magnetic elements 340 c , and magnetic elements 340 d .
  • the magnetic elements 340 a , the magnetic elements 340 b , the magnetic elements 340 c , and the magnetic elements 340 d are designed to magnetically couple with magnets in the electronic device 100 (shown in FIG. 3 ) to retain the electronic device 100 with the receiving surface 304 .
  • the first section 302 a may not require mechanical features (such as retaining walls, sidewalls, or mechanical interlocks) to retain the electronic device 100 .
  • the magnetic elements described herein for the accessory device 300 may be represented by a rectangular structure. However, the magnetic elements include a layout/arrangement similar to that of the magnetic elements shown in FIG. 3 for the electronic device 100 , in terms of the number of rows and/or columns, as well as the number of discrete magnetic elements.
  • the magnetic elements 340 a may include a layout/arrangement similar to the magnetic elements 140 a or the magnetic elements 140 c .
  • the polarity of the discrete magnetic elements of the magnetic elements 340 a may be reversed in order to form several magnetic circuits (with a magnetically attractable North-South pair) between the magnetic elements 340 a and the magnetic elements 140 a.
  • the accessory device 300 may further include magnetic elements 340 e , magnetic elements 340 f , and magnetic elements 340 g in the first section 302 a that are designed to magnetically couple with magnetic elements 340 h , magnetic elements 340 i , and magnetic elements 340 j , respectively, in the second section 302 b .
  • These magnetic couplings may occur when, for example, the second section 302 b is rotated over and onto the receiving surface 304 or when a back surface (not shown in FIG. 10 ) of the second section 302 b is rotated over and onto a back surface (not shown in FIG. 10 ) of the first section 302 a via the hinge 312 , with the back surface of the first section 302 a being opposite the receiving surface 304 .
  • the accessory device 300 may further include magnetic elements 340 k and magnetic elements 340 l located in the first section 302 a that are designed to magnetically couple with magnetic elements 340 m and magnetic elements 340 n , respectively, located in the second section 302 b , and in particular, the second segment 306 b .
  • the magnetic elements 340 m and the magnetic elements 340 n are parallel (or aligned) with each other, while the magnetic elements 340 k are offset (or misaligned) with respect to the magnetic elements 340 l .
  • the magnetic elements 340 k and the magnetic elements 340 l are offset with respect to the magnetic elements 340 m and the magnetic elements 340 n , respectively.
  • the degree of offset between the magnetic elements 340 k and the magnetic elements 340 m may differ from that of the magnetic elements 340 l and the magnetic elements 340 n .
  • the magnetic attraction between the magnetic elements 340 k and the magnetic elements 340 m may differ from the magnetic attraction between the magnetic elements 340 k and the magnetic elements 340 m .
  • the magnetic attraction between the magnetic elements 340 k and the magnetic elements 340 m may be greater than the magnetic attraction between the magnetic elements 340 k and the magnetic elements 340 m .
  • the magnetic elements 340 k are no longer coupled to the magnetic elements 340 m
  • the magnetic elements 340 l are no longer coupled to the magnetic elements 340 n .
  • This may be part of a comprehensive process in that when the first segment 306 a is pulled away from the back surface of the first section 302 a , the second segment 306 b and the third segment 306 c are subsequently pulled away from the back surface of the first section 302 a without any additional force required other than to pull the first segment 306 a away from the back surface of the first section 302 a .
  • the second segment 306 b and the third segment 306 c may automatically fall away from the back surface.
  • the accessory device 300 may further include magnetic elements 340 o located in the first section 302 a that are designed to magnetically couple with magnetic elements 340 p located in the second section 302 b , and in particular, the third segment 306 c .
  • the magnetic elements 340 o magnetically couple with magnetic elements 340 p .
  • the magnetic elements 340 p magnetically couple with the that magnetic elements 340 o prior to the back surface of the second section 302 b being fully positioned on the back surface.
  • the magnetic coupling can provide a magnetic attraction force that pulls the second section 302 b in a manner that aligns the back surface of the second section 302 b with the back surface of the first section 302 a to prevent misalignment between the back surface of the second section 302 b and the back surface of the first section 302 a .
  • the second section 302 b will not be crooked with respect to the first section 302 a as a result of the magnetic coupling between the magnetic elements 340 o and the magnetic elements 340 p.
  • some magnetic elements shown and described in FIG. 10 that are represented by a rectangle may include several discrete magnetic elements.
  • each magnetic element provides a relatively small external magnetic field, thereby reducing the magnetic attraction force during alignment.
  • the magnetic elements, as a group (such as the cluster of the magnetic elements 340 a ), may provide a similar collective external magnetic field as that of a single, larger magnetic element. The group of magnetic elements allows more movement as compared to a large, single magnet, thereby enhancing the alignment process.
  • the accessory device 300 may include certain dimensional characteristics.
  • the first segment 306 a may include a dimension 318 a that is less than a dimension 318 b of the second segment 306 b and less than a dimension 318 c of the third segment 306 c .
  • the dimension 318 b of the second segment 306 b can be the same as, or at least substantially similar, to the dimension 318 c of the third segment 306 c .
  • other dimensional relationships of the first segment 306 a , the second segment 306 b , and/or the third segment 306 c are possible.
  • the accessory device 300 may include magnetic elements 340 q , magnetic elements 340 r , and magnetic elements 340 s embedded in the first section 302 a .
  • the magnetic elements 340 h , the magnetic elements 340 i , and the magnetic elements 340 j can magnetically couple with the magnetic elements 340 q , the magnetic elements 340 r , and the magnetic elements 340 s , respectively.
  • FIG. 11 illustrates an isometric view of an alternate embodiment of an accessory device 400 , in accordance with some described embodiments.
  • the accessory device 400 is designed as a complementary device for an electronic device 100 .
  • the accessory device 400 may include a protective cover, a protective case, a folio, or the like.
  • the accessory device 400 may include a section 402 .
  • the accessory device 400 may further include an additional section (similar to the second section 202 b , shown in FIG. 5 ) that is connected to the section 402 .
  • the accessory device 400 may include a hinge 404 that connects the section 402 with the aforementioned additional section.
  • the hinge 404 allows the section 402 to rotate or pivot with respect to the aforementioned additional section, and vice versa.
  • the hinge 404 may include a flexible material (such as polyurethane, as a non-limiting example) that defines an outer layer (or layers) extending across the accessory device 400 .
  • the section 402 also referred to as a first section, a cover, a cover portion, a cover section, an electronic device cover, or a segmented cover, may define a receiving surface for the electronic device 100 .
  • the section 402 may include a first segment 406 a rotationally coupled to a second segment 406 b by several embedded hinges (not shown in FIG. 11 ) positioned between the first segment 406 a and the second segment 406 b .
  • the embedded hinges allow rotational movement of the first segment 406 a relative to the second segment 406 b , and vice versa.
  • the embedded hinges support the section 402 to hold the electronic device 100 .
  • the embedded hinges allow the section 402 to hold and suspend the electronic device 100 such that the electronic device 100 is suspended from, and not in contact with, the aforementioned additional section.
  • the section 402 can rotate and re-position the electronic device 100 , whether the electronic device 100 is in contact, or is not in contact, with the aforementioned additional section.
  • the first segment 406 a may include several magnetic elements (not shown in FIG. 11 ).
  • the first segment 406 a may include any arrangement of magnetic elements shown for the first segment 206 a (shown in FIG. 6 ).
  • the first segment 406 a may include any arrangement of magnetic elements shown for the first segment 306 a and the second segment 306 b (shown in FIG. 10 ).
  • the first segment 406 a and the second segment 406 b are the same size, generally. In the embodiment shown in FIG. 11 , the first segment 406 a is larger than the second segment 406 b . Also, the first segment 406 a and the second segment 406 b may each include a microfiber layer (not labeled). In some instances, the microfiber layer is restricted to the first segment 406 a and the second segment 406 b such that the microfiber layer does not cover the embedded hinges.
  • the section 402 may further include electrical contacts (not shown in FIG. 11 ) designed to engage the electrical contacts 123 (shown in FIG. 3 ) of the electronic device 100 , and place the accessory device 400 in communication (including electrical communication) with electronic device 100 .
  • the aforementioned additional section also referred to as a keyboard section or a keyboard cover, may include a keyboard (not shown in FIG. 11 ) with several keys arranged in a QWERTY configuration, as a non-limiting example.
  • the keyboard can be used to provide inputs and commands to the electronic device 100 to control the display assembly 104 (shown as a dotted line) of the electronic device 100 .
  • the section 402 may further include an opening (not shown in FIG. 11 ), or through hole, designed to receive the camera assembly 126 , the flash module 128 , and the microphone 129 (shown in FIG. 2 ).
  • FIG. 12 illustrates a plan view of the accessory device 400 shown in FIG. 11 , showing several magnetic elements in the accessory device 400 .
  • the first segment 406 a may include magnetic elements 440 a , magnetic elements 440 b , magnetic elements 440 c , and magnetic elements 440 d .
  • the magnetic elements described herein for the accessory device 400 may be represented by a rectangular structure. However, the magnetic elements include a layout/arrangement similar to that of the magnetic elements shown in FIG. 2 for the electronic device 100 , in terms of the number of rows and/or columns, as well as the number of discrete magnetic elements.
  • the magnetic elements 440 a may include a layout/arrangement similar to the magnetic elements 140 c .
  • the polarity of the discrete magnetic elements of the magnetic elements 440 a may be reversed in order to form several magnetic circuits (with a magnetically attractable North-South pair) between the magnetic elements 440 a and the magnetic elements 140 c .
  • the polarity of the discrete magnetic elements of the magnetic elements 440 a is identical in order to magnetically repel (with a magnetically repulsive North-North or South-South pair) between the magnetic elements 440 a and the magnetic elements 140 c . This will be shown below.
  • FIG. 13 illustrates a plan view of the accessory device 400 shown in FIG. 12 , showing the electronic device 100 coupled to the accessory device 400 .
  • the magnetic elements of the electronic device 100 align with magnetic elements of the accessory device 400 .
  • some of the magnetic elements 140 c , the magnetic elements 140 b , the magnetic elements 140 e , and the magnetic elements 140 f (also shown in FIG. 3 ) of the electronic device 100 align with at some of the magnetic elements 440 a , the magnetic elements 440 b , the magnetic elements 440 c , and the magnetic elements 440 d , respectively, of the accessory device 400 .
  • These “aligning” magnetic elements may magnetically couple with each other in order to maintain the electronic device 100 with the accessory device 400 .
  • the magnetic elements 440 a , the magnetic elements 440 b , the magnetic elements 440 c , and the magnetic elements 440 d of the accessory device 400 include an additional array (in this case, an additional row) of magnetic elements, as compared to the magnetic elements 140 c , the magnetic elements 140 b , the magnetic elements 140 e , and the magnetic elements 140 f , respectively, of the electronic device 100 .
  • the magnetic elements 140 c and the magnetic elements 140 b of the electronic device 100 include one array and two arrays, respectively, of magnetic elements
  • the magnetic elements 440 a and the magnetic elements 440 b in the accessory device 400 include two arrays and three arrays, respectively, of magnetic elements.
  • the additional array of magnetic elements in the accessory device 400 may provide a magnetic repulsion force to at least some of the magnetic elements in the electronic device 100 .
  • FIG. 14 illustrates a side view of the an accessory device 400 and electronic device 100 shown in FIG. 13 , showing magnetic elements in the accessory device 400 providing a magnetic repulsion force to magnetic elements in the electronic device 100 .
  • the magnetic elements 140 c includes a magnetic element 540 a that is magnetically coupled with a magnetic element 640 a of the magnetic elements 440 a in the accessory device 400 , as opposing magnetic poles are aligned.
  • the magnetic elements 440 a of the accessory device 400 further include a magnetic element 640 b that magnetically repels the magnetic element 540 a in the electronic device 100 , as the same magnetic poles are aligned.
  • the magnetic repulsion provides a force (generally against gravitational forces) in the direction of the arrow 480 a , and provides an additional force that retains the electronic device 100 with the accessory device 400 .
  • the magnetic elements 440 a include additional elements that magnetically couple with additional magnetic elements of the magnetic elements 140 c (similar to the magnetic element 640 a and the magnetic element 540 a ).
  • the magnetic elements 440 a include additional elements that magnetically repel additional magnetic elements of the magnetic elements 140 c (similar to the magnetic element 640 b and the magnetic element 540 a ).
  • the magnetic elements 140 b includes a magnetic element 540 b and a magnetic element 540 c that is magnetically coupled with a magnetic element 640 c and a magnetic element 640 d , respectively, of the magnetic elements 440 b in the accessory device 400 , as opposing magnetic poles are aligned.
  • the magnetic elements 440 b of the accessory device 400 further include a magnetic element 640 e that magnetically repels the magnetic element 540 c in the electronic device 100 , as the same magnetic poles are aligned.
  • the magnetic repulsion provides a force (generally against gravitational forces) in the direction of the arrow 480 b , and provides an additional force that retains the electronic device 100 with the accessory device 400 .
  • the magnetic elements 440 b include additional elements that magnetically couple with additional magnetic elements of the magnetic elements 140 b (similar to the magnetic element 640 c and the magnetic element 540 b ). Also, it should be noted that the magnetic elements 440 b include additional elements that magnetically repel additional magnetic elements of the magnetic elements 140 b (similar to the magnetic element 640 e and the magnetic element 540 c ). Although not shown, the described relationships between the magnetic elements 440 d of the accessory device 400 and the magnetic elements 140 f of the electronic device 100 (shown in FIG. 13 ) may be similar to those between the magnetic elements 440 a and the magnetic elements 140 c .
  • the described relationships between the magnetic elements 440 c of the accessory device 400 and the magnetic elements 140 e of the electronic device 100 may be similar to those between the magnetic elements 440 b and the magnetic elements 140 b.
  • FIGS. 15-17 show and described various configurations for accessory devices.
  • the accessory device 200 (shown in FIG. 5 ), the accessory device 300 (shown in FIG. 9 ), and the accessory device 400 (shown in FIG. 11 ) may be configured in at least some configurations shown in FIGS. 15-17 .
  • the accessory devices shown and described in FIGS. 15-17 may include several features (including magnetic elements and arrangement of magnetic elements) described herein for the accessory device 200 (shown in FIG. 5 ), the accessory device 300 (shown in FIG. 9 ), and the accessory device 400 (shown in FIG. 11 ).
  • FIG. 15 illustrates a side view of the accessory device 700 , showing back surfaces engaged with each other, in accordance with some described embodiments.
  • the accessory device 700 includes a first section 702 a and a second section 702 b .
  • a rear surface (or back surface) of the first section 702 a is engaged with a rear surface (or back surface) of the second section 702 b .
  • the first section 702 a can remain engaged with the second section 702 b through magnet attraction.
  • the first section 702 a includes a magnetic element 740 a that magnetically couples with magnetic element 742 a in the configuration of the accessory device 700 shown in FIG. 15 .
  • Additional magnetic elements (not labeled) in the first section 702 a may magnetically couple with additional magnets (not labeled) in the second section 702 b.
  • FIG. 16 illustrates a side view of an embodiment of an accessory device 800 , showing an electronic device 900 positioned between, and engaged with, a first section 802 a and a second section 802 b of the accessory device 800 , in accordance with some described embodiments.
  • the electronic device 900 may include any features described herein for the electronic device 100 (shown in FIG. 1 ).
  • the electronic device 100 may magnetically couple with both the first section 802 a and the second section 802 b .
  • the electronic device 900 includes magnetic elements 940 a magnetically coupled with both magnetic elements 840 a in the first section 802 a and magnetic elements 842 a in the second section 802 b .
  • the electronic device 900 may include magnetic elements 940 b magnetically coupled with magnetic elements 842 b located along an edge of the second section 802 b .
  • the electronic device 900 may include additional magnetic elements (not shown in FIG. 16 ), with each additional magnet magnetically coupled with edge magnets of the accessory device 800 (similar to the magnetic elements 242 a , the magnetic elements 242 b , the magnetic elements 242 c , and the magnetic elements 242 d shown in FIG. 6 ).
  • a first sensor 832 a and/or a second sensor 832 b of the accessory device 800 may detect an external magnetic field generated from a magnet (or magnets) in the electronic device 900 , thereby generating a subsequent command to activate a keyboard (not labeled), even though the keyboard is inaccessible.
  • the accessory device 800 may include a third sensor 832 c capable of detecting an external magnetic field from a magnetic element 940 c .
  • the third sensor 832 c can send an input to a processor circuit on a circuit board of the electronic device 900 (not shown in FIG. 16 ) when the external magnetic field is detected.
  • the processor circuit can then generate a command that deactivates the keyboard.
  • an input from the third sensor 832 c can override inputs from the first sensor 832 a and the second sensor 832 b .
  • the accessory device 800 may initiate an inactive state of the electronic device 900 when the electronic device is covered and unusable, as shown in FIG. 16 .
  • FIG. 17 illustrates accessory devices coupled with the electronic devices, showing the accessory devices engaged with, and suspended from, a magnetically attractable material 1080 using magnets in the accessory devices, in accordance with some described embodiments.
  • the magnetically attractable material 1080 (shown as a dotted line) may be integrated with a chalkboard, a dry erase board, or refrigerator, as non-limiting examples. As shown, the magnetically attractable material 1080 is integrated with a dry erase board 1082 that is hung vertically.
  • an accessory device 1000 includes a sufficient number of magnetic elements (such as the magnetic elements 1040 a and the magnetic elements 1040 b ) that generate (collectively) an external magnetic field that can magnetically couple with the magnetically attractable material 1080 and support the weight of and accessory device 1000 and the electronic device 1100 (coupled with the accessory device 1000 via magnetic elements), as well as counter the effects of gravity.
  • the magnetic elements in the first section 1002 a alone provide an external magnetic field sufficient to support the weight of the accessory device 1000 and the electronic device 1100 , as well as counter the effects of gravity.
  • the magnets in the second section 1002 b alone provide an external magnetic field sufficient to support the weight of the accessory device 1000 and the electronic device 1100 , as well as counter the effects of gravity.
  • the accessory device 1000 is similar to the accessory device 200 (shown in FIG. 5 ). However, the accessory device 300 (shown in FIG. 9 ) and the accessory device 400 (shown in FIG. 11 ) may provide the same capabilities as those of the accessory device 1000 .
  • an accessory device 1200 may cover an electronic device (not shown in FIG. 17 ) and rely on magnetic elements (not labeled) in a single section (such as the section 1202 a ) to magnetically couple with the magnetically attractable material 1080 and remain suspended against gravity. As shown, the accessory device 1200 is similar to the accessory device 300 (shown in FIG. 9 ). However, the accessory device 200 (shown in FIG. 5 ) and the accessory device 400 (shown in FIG. 11 ) may provide the same capabilities as those of the accessory device 1000 .
  • FIG. 18 illustrates a block diagram of an electronic device 1300 , in accordance with some described embodiments. As least some components in the block diagram may be implemented in accessory devices described herein. In particular, the detailed view illustrates various components that can be included in the electronic device 100 illustrated in FIG. 1 . Also, at least some components can be included in the accessory devices described herein.
  • the electronic device 1300 can include a processor 1302 that represents a microprocessor or controller for controlling the overall operation of electronic device 1300 .
  • the electronic device 1300 can also include a user input device 1308 that allows a user of the electronic device 1300 to interact with the electronic device 1300 .
  • the user input device 1308 can take a variety of forms, such as a button, keypad, dial, touch screen, audio input interface, visual/image capture input interface, input in the form of sensor data, etc.
  • the electronic device 1300 can include a display 1310 (screen display) that can be controlled by the processor 1302 to present visual information to the user.
  • a data bus 1316 can facilitate data transfer between at least a storage device 1340 , the processor 1302 , and a controller 1313 .
  • the controller 1313 can be used to interface with and control different equipment through an equipment control bus 1314 .
  • the electronic device 1300 can also include a network/bus interface 1311 that couples to a data link 1312 .
  • the network/bus interface 1311 can include a wireless transceiver.
  • the electronic device 1300 also include a storage device 1340 , which can include a single disk or a plurality of disks (e.g., hard drives), and includes a storage management module that manages one or more partitions within the storage device 1340 .
  • storage device 1340 can include flash memory, semiconductor (solid state) memory or the like.
  • the electronic device 1300 can also include a Random Access Memory (RAM) 1320 and a Read-Only Memory (ROM) 1322 .
  • the ROM 1322 can store programs, utilities or processes to be executed in a non-volatile manner.
  • the RAM 1320 can provide volatile data storage, and stores instructions related to the operation of the electronic device 1300 .
  • the various aspects, embodiments, implementations or features of the described embodiments can be used separately or in any combination.
  • Various aspects of the described embodiments can be implemented by software, hardware or a combination of hardware and software.
  • the described embodiments can also be embodied as computer readable code on a computer readable medium for controlling manufacturing operations or as computer readable code on a computer readable medium for controlling a manufacturing line.
  • the computer readable medium is any data storage device that can store data which can thereafter be read by a computer system. Examples of the computer readable medium include read-only memory, random-access memory, CD-ROMs, HDDs, DVDs, magnetic tape, and optical data storage devices.
  • the computer readable medium can also be distributed over network-coupled computer systems so that the computer readable code is stored and executed in a distributed fashion.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Mathematical Physics (AREA)
  • Casings For Electric Apparatus (AREA)
  • Telephone Set Structure (AREA)

Abstract

Electronic devices and accessory devices for electronic devices are described. In some instances, an accessory device includes a keyboard and a cover rotatable with respect to the keyboard. In some instances, an accessory device includes a back panel and a foldable cover rotatable with respect to the back panel. These accessory devices may include several magnetic elements designed to magnetically couple with, and retain, an electronic device without any additional mechanical or other interlocking devices. In this regard, the magnetic elements in the accessory devices provide an external magnetic field sufficiently strong enough to retain the electronic device, and can counter gravitational forces and/or the weight of the electronic device. However, some accessory devices include additional magnetic elements that provide an external magnetic field that repels magnetic elements in the electronic device. Also, the magnetic elements may also be used to hold different sections of the accessory device together.

Description

    CROSS-REFERENCE TO RELATED APPLICATION(S)
  • This application claims the benefit of priority to U.S. Provisional Application No. 62/731,608, filed on Sep. 14, 2018, titled “MAGNETIC LAYOUT IN ELECTRONIC DEVICES AND ACCESSORY DEVICES FOR ELECTRONIC DEVICES,” the disclosures of which are incorporated herein by reference in their entirety.
  • FIELD
  • The following description relates to accessory devices suitable for use with portable electronic devices. In particular, the following description relates to accessory devices with magnets designed to magnetically couple with magnets in portable electronic devices as well as other magnets within the accessory device.
  • BACKGROUND
  • Accessory devices can provide a protective cover for electronic device. Accessory devices can cover a cover glass and a housing of the electronic device.
  • SUMMARY
  • In one aspect, an accessory device for an electronic device is described. The accessory device may include a first section. The first section may include a first magnetic element capable of magnetically coupling with a first device magnet of the electronic device and aligning the electronic device with the first section. The first section may further include electrical contacts that electrically couple with device contacts of the electronic device. The first section may further include a second magnetic element capable of magnetically coupling with a second device magnet of the electronic device and aligning the device contacts with the electrical contacts. The accessory device may further include a second section rotationally coupled with the first section. The second section may include a channel capable of receiving the electronic device. The second section may further include a keyboard separate from the channel and in electrical communication with the electronic device via the electrical contacts.
  • In another aspect, an accessory device for an electronic device is described. The accessory device may include a first section that includes a first magnetic element capable of magnetically coupling with a first device magnet of the electronic device. The accessory device may include a second section rotationally coupled with the first section, the second section that includes a second magnetic element capable of magnetically coupling with a second device magnet of the electronic device. The accessory device may further include a first compensating magnetic element located in the first section. The accessory device may further include a second compensating magnetic element located in the second section. In some instances, the first compensating magnet and the second compensating magnet neutralize the first magnetic element and the second magnetic element.
  • In another aspect, an accessory device for an electronic device is described. The accessory device may include a first section that includes a first magnetic element and a second magnetic element. The first magnetic element may provide a magnetic attraction force with a device magnet of the electronic device. The second magnetic element may provide a magnetic repulsion force with the device magnet. The accessory device may include a second section rotationally coupled with the first section. The second section may include a keyboard in communication with the electronic device.
  • Other systems, methods, features and advantages of the embodiments will be, or will become, apparent to one of ordinary skill in the art upon examination of the following figures and detailed description. It is intended that all such additional systems, methods, features and advantages be included within this description and this summary, be within the scope of the embodiments, and be protected by the following claims.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The disclosure will be readily understood by the following detailed description in conjunction with the accompanying drawings, wherein like reference numerals designate like structural elements, and in which:
  • FIG. 1 illustrates a front isometric view of an embodiment of an electronic device, in accordance with some described embodiments;
  • FIG. 2 illustrates a rear isometric view of the electronic device shown in FIG. 1, showing additional features of the electronic device;
  • FIG. 3 illustrates a plan view of the electronic device, showing several internal components of the electronic device;
  • FIG. 4 illustrates a plan view of the electronic device, showing an object positioned against the sidewall;
  • FIG. 5 illustrates an isometric view of an embodiment of an accessory device for use with the electronic device, in accordance with some described embodiments;
  • FIG. 6 illustrates a plan view of the accessory device shown in FIG. 5, showing various internal components of the accessory device;
  • FIG. 7 illustrates a side view of the accessory device shown in FIG. 6, showing the electronic device coupled to the accessory device and positioned in the first channel, in accordance with some described embodiments.
  • FIG. 8 illustrates a side view of the accessory device shown in FIG. 6, showing the electronic device positioned in the second channel;
  • FIG. 9 illustrates an isometric view of an alternate embodiment of an accessory device, in accordance with some described embodiments;
  • FIG. 10 illustrates a plan view of the accessory device shown in FIG. 9, showing additional features in the accessory device;
  • FIG. 11 illustrates an isometric view of an alternate embodiment of an accessory device, in accordance with some described embodiments;
  • FIG. 12 illustrates a plan view of the accessory device shown in FIG. 11, showing several magnetic elements in the accessory device;
  • FIG. 13 illustrates a plan view of the accessory device shown in FIG. 12, showing the electronic device coupled to the accessory device;
  • FIG. 14 illustrates a side view of the an accessory device and electronic device shown in FIG. 13, showing magnetic elements in the accessory device providing a magnetic repulsion force to magnetic elements in the electronic device;
  • FIG. 15 illustrates a side view of the accessory device, showing back surfaces engaged with each other, in accordance with some described embodiments;
  • FIG. 16 illustrates a side view of an embodiment of an accessory device, showing an electronic device positioned between, and engaged with, a first section and a second section of the accessory device, in accordance with some described embodiments;
  • FIG. 17 illustrates accessory devices coupled with the electronic devices, showing the accessory devices engaged with, and suspended from, a magnetically attractable material using magnets in the accessory devices, in accordance with some described embodiments; and
  • FIG. 18 illustrates a block diagram of an electronic device, in accordance with some described embodiments;
  • Those skilled in the art will appreciate and understand that, according to common practice, various features of the drawings discussed below are not necessarily drawn to scale, and that dimensions of various features and elements of the drawings may be expanded or reduced to more clearly illustrate the embodiments of the present invention described herein.
  • DETAILED DESCRIPTION
  • Reference will now be made in detail to representative embodiments illustrated in the accompanying drawings. It should be understood that the following descriptions are not intended to limit the embodiments to one preferred embodiment. To the contrary, it is intended to cover alternatives, modifications, and equivalents as can be included within the spirit and scope of the described embodiments as defined by the appended claims.
  • In the following detailed description, references are made to the accompanying drawings, which form a part of the description and in which are shown, by way of illustration, specific embodiments in accordance with the described embodiments. Although these embodiments are described in sufficient detail to enable one skilled in the art to practice the described embodiments, it is understood that these examples are not limiting such that other embodiments may be used, and changes may be made without departing from the spirit and scope of the described embodiments.
  • The following disclosure relates to electronic devices and accessory devices designed for use with electronic devices. Electronic devices described herein may include portable computing devices, such as tablet computing devices, smartphones, and laptop computing devices. Accessory devices described herein may be referred to as portable accessory devices, accessory cases, accessory covers, or folios, as non-limiting examples. Accessory devices described herein may include a cover having segments foldable with respect to each other, as well as a keyboard coupled with the cover in a manner that allows rotational movement between the cover and the keyboard. The cover may further include electrical contacts designed to engage electrical contacts of the electronic device and place the electronic device in electrical communication with the accessory device.
  • Accessory devices described herein may include several magnetic elements designed and positioned not only to magnetically couple with magnetic elements in an electronic device, but also with other magnetic elements within the accessory device. Further, accessory devices described herein may include magnetic elements that generate an external magnetic field sufficient enough to retain the electronic device, even when gravitational forces are acting on the electronic device that would otherwise cause the electronic device to fall off of the accessory device. Further, based on the position of the various magnetic elements, accessory devices described herein may be configured in various manners, providing additional flexibility and benefits to users.
  • Some accessory devices described herein include multiple sections, with some sections providing foldable covers while other sections provide keyboards (in some instances). Further, some accessory devices described herein include channels used to retain an edge of an electronic device. These accessory devices may include additional magnetic elements surrounding the channels in order to magnetically couple with magnetic elements in the electronic device.
  • These and other embodiments are discussed below with reference to FIGS. 1-18. However, those skilled in the art will readily appreciate that the detailed description given herein with respect to these Figures is for explanatory purposes only and should not be construed as limiting.
  • FIG. 1 illustrates an isometric front view of an embodiment of an electronic device 100, in accordance with some described embodiments. The electronic device 100 may be referred to as a portable electronic device. For example, in some embodiments, the electronic device 100 is a laptop computing device. In other embodiments, the electronic device 100 is a mobile wireless communication device, such as a smartphone. In the embodiment shown in FIG. 1, the electronic device 100 is a tablet computing device designed for user interaction and wireless communication.
  • The electronic device 100 may include an enclosure 102, or housing, designed to provide an internal volume (not labeled) to store several components, including (as non-limiting examples) circuit boards, processor circuits, memory circuits, battery (or batteries), audio modules (such as speakers), microphones, cameras, light emitters and receivers, and flexible circuitry that electrically connect at least some of the aforementioned components to each other. The enclosure 102 may include a back wall and multiple sidewalls that extend from, and combine with, the back wall define the internal volume. The enclosure 102 may include a rigid material, including a metal (such as aluminum or an alloy that includes aluminum), ceramic, or hardened plastic, as non-limiting examples.
  • The electronic device 100 may further include a display assembly 104 (shown as a dotted line). Although not shown, the display assembly 104 may include multiple layers, including a display layer designed to provide visual information. The display assembly 104 may further include a touch input layer designed to receive a touch input, and provide a location of the touch input. The touch input layer may include capacitive touch technology used to form an electrostatic field and use changes in the electrostatic field to locate the touch input. The electronic device 100 may further include a transparent cover 106 positioned over the display assembly 104 and coupled with the enclosure 102. The transparent cover 106 may provide a protective cover to the display assembly 104 as well as the aforementioned components stored in the internal volume. The transparent cover 106 may include a see-through material, such as glass, plastic, sapphire or the like. The electronic device 100 may further include a border 108 that extends around a perimeter of the transparent cover 106 and covers edges of the display assembly 104. The border 108 may provide an opaque barrier that hides or obscures electrical connections between the display assembly 104 and other components (not shown in FIG. 1). The border 108 may be applied to an internal surface of the transparent cover 106, and accordingly, the border 108 faces the internal volume. However, in some instances (not shown), the border 108 may be applied to an external surface. Also, the border 108 may include a uniform dimension along the X-axis as well as the Y-axis. In this manner, the border 108 may appear uniform along a two-dimensional plane, thereby providing the electronic device 100 with an aesthetic and consistent finish.
  • While the border 108 is opaque, or at least substantially opaque, some portions of the border 108 can be removed to form an opening (or openings). Further, the opening(s) in the border 108 can be filled with a material that provides a light transmission (or translucent) quality, while also matching, or at least substantially matching, the appearance (in terms of color and/or reflectivity) of the border 108. For example, the border 108 may include an opening with a material 110 that fills the opening. The material 110 may include an ink material (as a non-limiting example) that includes an appearance that matches that of the border 108. For example, if the border 108 appears black, the material 110 may also appear black while still allowing light passage. In this manner, the electronic device 100 may include a vision system used for user authentication, as well as light sensors that detect an amount of light incident on the electronic device 100. These features will be shown below.
  • When the enclosure 102 is formed from a metal, some parts of the enclosure 102 may undergo a machining operation to remove the metal, and a non-metal may fill the void in the enclosure 102 left from the machining operation. For example, the enclosure 102 may include a sidewall 114 a having an opening, or window, that opens into the internal volume of the electronic device 100, and a non-metal material 116 a that fills the opening. The non-metal material 116 a may include plastic, resin, and/or adhesives. In this manner, the electronic device 100 may include components, such as an inductive charging unit and antennae (not shown in FIG. 1), positioned in the internal volume along the non-metal material 116 a. The non-metal material 116 a provides minimal, if any, blockage of radio frequency communication to and from the antennae. Accordingly, the non-metal material 116 a may be referred to as a radio frequency window. Further, the non-metal material 116 a provides minimal, if any, blockage of induced electrical current from the inductive charging unit. As a result, the inductive charging unit can be used to charge an object or an accessory, such as a digital stylus, that is used to provide a touch input to the display assembly 104. These features will be shown below.
  • The enclosure 102 may further include through holes, or openings, that lead to the internal volume. For example, the sidewall 114 b may include through holes 118 a and through holes 118 b. The through holes 118 a and the through holes 118 b may be used to allow acoustical energy generated by audio modules (not shown in FIG. 1) to exit the electronic device 100. Also, at least some of the through holes 118 a and the through holes 118 b may be used to receive acoustical energy, thereby allowing a microphone(s) (not shown in FIG. 1) in the electronic device 100 to process the acoustical energy. Although a discrete number of through holes are shown in the sidewall 114 b, the number of through holes may vary. The electronic device 100 may include a connector 120 located in a through hole of the sidewall 114 b. The connector 120 may electrically couple with a central processing unit (not shown in FIG. 1) on a circuit board in the internal volume, as well as a battery (or batteries, not shown) in the internal volume. In this manner, the electronic device 100 may receive and transmit data for the central processing unit, and may also receive electrical energy use to charge and re-charge the battery (or batteries). The connector 120 may include a Universal Serial Bus (“USB”) connector, including a connector with USB-C protocol. However, the connector 120 may take the form of other standardized connectors.
  • Also, the electronic device 100 may include an input mechanism 122 a located on the sidewall 114 a. In some embodiments, the input mechanism 122 a is a switch or a button mechanically coupled to an internal switch. The input mechanism 122 a may be designed for actuation (such as a depression or lateral movement) to generate a command to alter the display assembly 104 or provide some other function, such as controlling the volume of the audio modules (not shown in FIG. 1). Although the input mechanism 122 a is located on the sidewall 114 a, other locations (both on the sidewall 114 a and other sidewalls) are possible.
  • FIG. 2 illustrates an isometric back view of the electronic device 100 shown in FIG. 1, showing additional features of the electronic device 100. The enclosure 102 may include a wall 124, also referred to as a bottom wall or back wall, with several openings to allow for additional features. For example, the wall 124 may include an opening filled with a non-metal material 116 b. The non-metal material 116 b may include plastic, resin, and/or adhesives, as non-limiting examples. In this manner, the wall 124 may permit radio frequency into and out of the enclosure 102 by way of the non-metal material 116 b. The wall 124 may further include openings for a camera assembly 126, a flash module 128, and a microphone 129.
  • The enclosure 102 may further include a sidewall 114 c that includes an opening 118 d for a microphone (shown later). The sidewall 114 c may further include an input mechanism 122 b and an input mechanism 122 c, both of which may include any feature previously described for the input mechanism 122 a (shown in FIG. 1). Also, the enclosure 102 may include a sidewall 114 d having through holes similar to the through holes 118 a and the through holes 118 b (shown in FIG. 1). The through holes in sidewall 114 d can be used for additional audio modules and microphones (shown below).
  • In addition to the connector 120, other features can place the electronic device 100 in communication with external devices. For example, the electronic device 100 may include an electrical contact 123 a, an electrical contact 123 b, and an electrical contact 123 c. These contacts may be referred to as device contacts. The electrical contact 123 a, the electrical contact 123 b, and the electrical contact 123 c may include metal contacts designed to electrically couple with an accessory device (not shown in FIG. 2), such as a cover, a folio, and/or a cover-keyboard accessory.
  • FIG. 3 illustrates a plan view of the electronic device 100, showing several internal components of the electronic device 100. For purposes of simplicity illustration, the transparent cover 106 and the display assembly 104 are removed to show additional features. Several additional features may not be included in FIG. 3 as well. As shown, the enclosure 102 may define an internal volume 130 that provides a space to carry the components of the electronic device 100. Although not shown, the internal volume 130 may provide space for a circuit board that carries several processor circuits, some of which may serve as a central processing unit, a graphics processing unit, and a memory circuit. The internal volume 130 may also provide space for battery modules, microphones, and flexible circuits, as non-limiting examples.
  • The electronic device 100 may include several audio modules in the internal volume 130 of the enclosure 102. For example, the electronic device 100 may include an audio module 134 a and an audio module 136 a. In some embodiments, the audio module 134 a is designed to generate acoustical energy, in the form of audible sound, approximately in the range of 2,000-20,000 Hertz (“Hz”), but in some case the range may be higher than 20,000 Hz. In some embodiments, the audio module 136 a is designed to generate acoustical energy, in the form of audible sound, approximately in the range of 20-5,000 Hz. In this regard, the audio module 134 a may be referred to as a tweeter, and the audio module 136 a may be referred to as a woofer.
  • While both the audio module 134 a and the audio module 136 a may be secured (including adhesively secured) with the wall 124, the audio module 136 a may secure with internal walls 138 a that extends from the wall 124. The internal walls 138 a may be integrally formed with the wall 124. In other words, the enclosure 102 may be formed from a block of material that undergoes a machining operation such that the wall 124 and the internal walls 138 a are formed as a continuous structure. As shown in FIG. 3, the internal walls 138 a are positioned between the sidewalls of the enclosure 102. The electronic device 100 may further include additional audio modules, including an audio module 134 b, an audio module 134 c, and an audio module 134 d, that include similar features described for the audio module 134 a. Also, the electronic device 100 may further include additional audio modules, including an audio module 136 b, an audio module 136 c, and an audio module 136 d, that include similar features described for the audio module 136 a, with the audio module 136 b, the audio module 136 c, and the audio module 136 d secured with internal walls 138 b, internal walls 138 c, and internal walls 138 d, respectively. Also, although not shown, the sidewalls of the enclosure 102 may include several through holes, or openings, that allow acoustical energy generated by at least some of the audio modules to exit the electronic device 100.
  • As known in the art for audio modules, the audio module 136 a may include a permanent magnet (not shown in FIG. 2) as well as an electromagnet (not shown in FIG. 2). However, additional magnetic elements may be housed between the internal walls 138 a that secure the audio module 136 a. For example, the electronic device 100 may include magnetic elements 140 a positioned between the internal walls 138 a. The magnetic elements 140 a (shown as dotted lines) are covered by a cap that is part of the audio module 136 a. However, the magnetic elements 140 a are separate (both physically and functionally) from magnets used by the audio module 136 a. The magnetic elements 140 a may be secured with the wall 124 by adhesives, as a non-limiting example. Also, magnetic elements shown and described in the electronic device 100 may be referred to as device magnets.
  • As shown in the first enlarged view 150 a, the magnetic elements 140 a may include multiple rows of discrete magnetic elements. Further, the magnetic elements 140 a are arranged in a pattern in which some of the magnetic elements include a North Pole (or North-facing polarity) denoted by a “+” that faces away from the wall 124, while remaining magnetic elements of the magnetic elements 140 a include a South Pole (or South-facing polarity) denoted by a “−” that faces away from the wall 124. As shown, the magnetic elements 140 a include a 3×6 matrix of magnetic elements. However, the number of magnetic elements may vary.
  • The electronic device 100 may include further magnetic elements 140 b and magnetic elements 140 c positioned between the internal walls 138 b. Similar to the magnetic elements 140 a, the magnetic elements 140 b and the magnetic elements 140 c are covered by a cap that is part of the audio module 136 b, and are separate (both physically and functionally) from magnets used by the audio module 136 b. As shown in the second enlarged view 150 b, the magnetic elements 140 b may include multiple rows of discrete magnetic elements. Further, the magnetic elements 140 b are arranged in a pattern in which some of the magnetic elements include a North Pole that faces away from the wall 124, while remaining magnetic elements of the magnetic elements 140 b include a South Pole that faces away from the wall 124. As shown, the magnetic elements 140 b include a 2×6 matrix of magnetic elements. However, the number of magnetic elements may vary. Also, the magnetic elements 140 c may include a single column of magnetic elements, some of which include a North Pole that faces away from the wall 124, while others include a South Pole that faces away from the wall 124.
  • The electronic device 100 may include further magnetic elements 140 d positioned between the internal walls 138 c. Similar to the magnetic elements 140 a, the magnetic elements 140 d are covered by a cap that is part of the audio module 136 c, and are separate (both physically and functionally) from magnets used by the audio module 136 c. The electronic device 100 may include further magnetic elements 140 e and magnetic elements 140 f positioned between the internal walls 138 d. Similar to the magnetic elements 140 b, the magnetic elements 140 e are covered by a cap that is part of the audio module 136 d, and are separate (both physically and functionally) from magnets used by the audio module 136 d. Although not discretely shown, the magnetic elements 140 d may include a 3×6 matrix of magnetic elements, which may be arranged in a similar layout/arrangement as that of the magnetic elements 140 a. However, the layout/arrangement may differ. Also, although not discretely shown, the magnetic elements 140 e and the magnetic elements 140 f may include a 2×6 matrix and a single column of magnetic elements, respectively. The layout/arrangement of the magnetic elements 140 e and the magnetic elements 140 f may be similar layout/arrangement as that of the magnetic elements 140 b and the magnetic elements 140 c, respectively. However, the layouts/arrangements may differ.
  • The aforementioned magnetic elements may magnetically couple with magnetic elements in various accessory devices described herein, thereby coupling the electronic device 100 with the accessory devices. Moreover, the magnetic coupling between the magnetic elements in the electronic device 100 with accessory devices described herein provide a magnetic attraction force that allows accessory devices to hold and retain the electronic device 100, and even overcome gravitational forces acting against the magnetic attraction force.
  • When magnetically coupled with magnetic elements in the accessory device, the aforementioned magnetic elements in the electronic device 100 may provide a large-scale adjustment of the electronic device 100 relative to the accessory device by, for example, providing a force that moves the electronic device 100 approximately a few centimeters to align the corners of the electronic device 100 with the corners of the accessory device. Further, the electronic device 100 may include magnetic elements 140 g and magnetic elements 140 h designed and positioned to magnetically couple with magnetic elements accessory devices. The magnetic coupling of the magnetic elements 140 g and magnetic elements 140 h with magnetic elements in an accessory device may provide a small-scale adjustment of the electrical contacts 123 relative to electrical contacts of the accessory device by, for example, providing a force that moves the electronic device 100 approximately a few millimeters to align the electrical contacts 123 with the electrical contacts of the accessory device and ensure engagement, thereby placing the electronic device 100 in electrical communication with the accessory device.
  • Also, the aforementioned magnetic elements may include permanent magnets such as neodymium. Further, the remanence of the aforementioned magnetic elements may vary among the discrete magnetic elements. For example, some magnetic elements may include a relatively high remanence to increase locally increase external magnetic field and provide an additional magnetic attraction force, while some magnetic elements may include a relatively low remanence to locally reduce the overall external magnetic field and prevent the external magnetic field from interacting with magnetically-sensitive items (such as credit cards) placed externally on the wall 124 of the electronic device 100.
  • The electronic device 100 may further include an inductive charging unit 142. The inductive charging unit 142 may include a ferrite coil designed to receive an alternating electrical current from an internal power source (not shown in FIG. 3), such as a battery module. The direct current (“DC”) provided by the battery module may pass through an inverter (not shown in FIG. 3) to generate the alternating electrical current. As a result, the inductive charging unit 142 can subsequently provide an alternating electromagnetic field (not shown in FIG. 3), and act as a transmitter coil to inductively charge a power source (not shown in FIG. 3) of an object that is external to the electronic device 100, such as a digital stylus positioned against the sidewall 114 a. This will be shown below. A partial cross section of the sidewall 114 a is shown in order to show the non-metal material 116 a. The inductive charging unit 142 is aligned with the non-metal material 116 a and the electromagnetic field generated by the inductive charging unit 142 may pass through the non-metal material 116 a and induce electrical current into the object. The electronic device 100 may include magnetic elements 140 i and magnetic elements 140 j positioned along the sidewall 114 a, including the non-metal material 116 a. The magnetic elements 140 i and magnetic elements 140 j are designed to magnetically couple with magnets in the object that can be positioned against the sidewall 114 a and inductively charged by the inductive charging unit 142. Further, the magnetic elements 140 i and magnetic elements 140 j can be used to generally carry and store the object through magnetic attraction.
  • The electronic device 100 may include an antenna 144 a and an antenna 144 b located along the non-metal material 116 a. The antenna 144 a and the antenna 144 b may enable wireless communication. Further, each antenna may provide radio frequency communication within a specific range of frequencies. For instance, the antenna 144 a may provide Wi-Fi communication and the antenna 144 b may provide Bluetooth® communication. Other antennae (not shown in FIG. 3) may enable cellular network communication.
  • The electronic device 100 may include magnetic elements 140 k and magnetic elements 140 l positioned along the sidewall 114 c. The magnetic elements 140 k and magnetic elements 140 l are designed to magnetically couple with magnetic elements in an accessory device (not shown in FIG. 3), such as a cover, a folio, or a cover-keyboard accessory. Further, the magnetic elements 140 k and magnetic elements 140 l may position the electronic device 100 in a manner such that the sidewall 114 c defines a base for the electronic device 100. This will be shown below. The electronic device 100 may further include magnetic elements 140 m designed to magnetically couple with magnets of an accessory device (not shown in FIG. 3) designed to cover the electronic device 100. Also, in order to assist in determining a user's orientation, the electronic device 100 may include a compass 146. The compass 146 may include a magnetometer designed to determine the Earth's magnet field.
  • FIG. 4 illustrates a plan view of the electronic device 100, showing an object 150 positioned against the sidewall 114 a. A partial cross sectional view of the sidewall 114 a shows the non-metal material 116 a. The object 150 may include a digital stylus capable of interacting and providing an input to the display assembly 104, and in particular, the touch input layer (not shown in FIG. 4) of the display assembly 104. In order for the object 150 to interact with the touch input layer, the object 150 requires a battery 152 to supply electrical current to a capacitive component and to radio frequency components (not shown in FIG. 4) of the object 150, both of which may be used to communicate with the electronic device 100. The battery 152 of the object 150 may include a rechargeable battery.
  • The inductive charging unit 142 of the electronic device 100 can charge the battery 152. The inductive charging unit 142 may act as transmitter coil and inductively charge the battery 152 by inducing an alternating current (“AC”) to a receiver coil 154 of the object 150. The induced current may pass through an AC-to-DC converter, such as a rectifier, and may subsequently be used to charge or recharge the battery 152. To induce the current to the battery 152, the inductive charging unit 142 and the object 150 are positioned along the non-metal material 116 a. In order to maintain the object 150 against the sidewall 114 a (or against the non-metal material 116 a), the magnetic elements 140 i and the magnetic elements 140 j may magnetically couple with magnetic elements 305 a and magnetic elements 305 b, respectively, in the object 150. Also, as shown, the antenna 144 a and the antenna 144 b are positioned along the non-metal material 116 a, thereby allowing the antenna 144 a and the antenna 144 b to send and receive RF communication.
  • FIG. 5 illustrates an isometric view of an embodiment of an accessory device 200 for use with the electronic device 100, in accordance with some described embodiments. The accessory device 200 is designed as a complementary device for an electronic device 100. As shown, the accessory device 200 may include a first section 202 a and a second section 202 b connected to the first section 202 a. The accessory device 200 may include a hinge 204 a that connects the first section 202 a with the second section 202 b. The hinge 204 a allows the first section 202 a to rotate or pivot with respect to the second section 202 b, and vice versa. The hinge 204 a may include a flexible material (such as polyurethane, as a non-limiting example) that defines an outer layer (or layers) extending across both the first section 202 a and the second section 202 b.
  • The first section 202 a, also referred to as a cover, a cover portion, a cover section, an electronic device cover, or a segmented cover, may define a receiving surface for the electronic device 100, with the receiving surface having a size and shape to receive a back surface of the enclosure 102 (which defines a major surface of the enclosure 102). The first section 202 a may include a first segment 206 a and a second segment 206 b that define that collectively define the receiving surface. The first segment 206 a is separated from the second segment 206 b by a hinge 204 b positioned between the first segment 206 a and the second segment 206 b. The hinge 204 b allows rotational movement of the first segment 206 a relative to the second segment 206 b, and vice versa. The hinge 204 b may be formed from the layer(s) used to form the hinge 204 a. In some embodiments (not shown in FIG. 5), the first segment 206 a and the second segment 206 b are the same size, generally. In the embodiment shown in FIG. 5, the first segment 206 a is larger than the second segment 206 b. Also, the first segment 206 a and the second segment 206 b may each include a microfiber layer (not labeled). In some instances, the microfiber layer is restricted to the first segment 206 a and the second segment 206 b such that the microfiber layer does not cover the hinge 204 b.
  • The second section 202 b, also referred to as a keyboard section or a keyboard cover, may include a keyboard 208. The keyboard 208 may include several keys (not labeled) arranged in a QWERTY configuration, as a non-limiting example. The second section 202 b may further include one or more channels designed to provide a location that is below or sub-flush with respect to a remaining location of the second section 202 b. For example, the second section 202 b may include a first channel 212 a and a second channel 212 b. The first channel 212 a and the second channel 212 b are designed to receive the electronic device 100 (or a portion of the electronic device 100) in order to place and position the electronic device 100 in a manner such that the electronic device 100 can be used with the keyboard 208. Also, the second section 202 b may include a dimension 203 a measured from a rear surface of the second section 202 b to a key of the keyboard 208. The second section 202 b may include a dimension 203 b measured from a rear surface of the second section 202 b to a section that surrounds the first channel 212 a and the second channel 212 b. The dimension 203 a may be the same as, or substantially similar to, the dimension 203 b, such that the keys of the keyboard 208 are planar with respect to the section surrounding the first channel 212 a and the second channel 212 b. In this manner, when the electronic device 100 is coupled to the first section 202 a and the first section 202 a is folded over the second section 202 b, the electronic device 100 may lie flat, or horizontal, on the second section 202 b.
  • The first section 202 a may include electrical contacts 214 designed to engage electrical contacts 123 of the electronic device 100, and place the accessory device 200 in communication (including electrical communication) with electronic device 100. The electrical contacts 214 may be referred to as device contacts. When the accessory device 200 is in communication with the electronic device 100, the keyboard 208 can be used to provide inputs and commands to the electronic device 100 to control the display assembly 104. As shown, the electrical contacts 214 are located on the first segment 206 a. However, other locations are possible (such as the second segment 206 b). Generally, the electrical contacts 214 can be at any location corresponding to the location of the electrical contacts 123 such that the electronic device 100 lies within an outer perimeter of the first section 202 a when the electronic device 100 is in contact with the first section 202 a. Also, while the electrical contacts 214 represent a physical/direct communication between the accessory device 200 and the electronic device 100, the accessory device 200 and the electronic device 100 may also be in communication via wireless communication, such as Bluetooth® communication, as a non-limiting example.
  • The first section 202 a may further include an opening 216, or through hole, designed to receive the camera assembly 126 and the flash module 128 (shown as dotted lines). As shown, the opening 216 is located on the first segment 206 a. However, other locations are possible. Generally, the opening 216 can be at any location corresponding to the location of the camera assembly 126 and the flash module 128 such that the electronic device 100 lies within an outer perimeter of the first section 202 a when the electronic device 100 is in contact with the first section 202 a.
  • FIG. 6 illustrates a plan view of the accessory device 200 shown in FIG. 5, showing various internal components of the accessory device 200. For purposes of illustration, the keys of the keyboard 208 (shown in FIG. 5) are removed. The first section 202 a and the second section 202 b may include several magnetic elements. Also, the magnetic elements located in the first section 202 a may be referred to as cover magnetic elements or cover magnets, as the first section 202 a may be referred to as a cover or a cover section. Also, the magnetic elements located in the second section 202 b may be referred to as keyboard magnetic elements or keyboard magnets, as the second section 202 b may be referred to as a keyboard or keyboard section.
  • The first segment 206 a of the first section 202 a may include several magnetic elements designed to magnetically couple with magnetic elements in the electronic device 100 (shown in FIG. 2) to retain the electronic device 100 against the first section 202 a. For example, the first segment 206 a may include magnetic elements 240 a, magnetic elements 240 b, and magnetic elements 240 c. The magnetic elements described herein for the accessory device 200 may be represented by a rectangular structure. However, the magnetic elements include a layout/arrangement similar to that of the magnetic elements shown in FIG. 3 for the electronic device 100, in terms of the number of rows and/or columns, as well as the number of discrete magnetic elements. For example, the magnetic elements 240 a may include a layout/arrangement similar to the magnetic elements 140 a. However, the polarity of the discrete magnetic elements of the magnetic elements 240 a may be reversed in order to form several magnetic circuits (with a magnetically attractable North-South pair) between the magnetic elements 240 a and the magnetic elements 140 a.
  • The first segment 206 a may further include magnetic elements 240 d, magnetic elements 240 e, and magnetic elements 240 f. At least some of the magnetic elements 240 a, the magnetic elements 240 b, and the magnetic elements 240 c may magnetically couple with at least some of the magnetic elements 140 a, the magnetic elements 140 b, and the magnetic elements 140 c (shown in FIG. 3). Further, at least some of the magnetic elements 240 d, the magnetic elements 240 e, and the magnetic elements 240 f may magnetically couple with at least some of the magnetic elements 140 d, the magnetic elements 140 e, and the magnetic elements 140 f (shown in FIG. 3). These aforementioned magnetic coupling provide the magnetic attraction force for the large-scale alignment to align the corners of the electronic device 100 (shown in FIG. 5) with the corners of the first section 202 a. The first section 202 a may further include magnetic elements 240 g and magnetic elements 240 h capable of magnetically coupling with the magnetic elements 140 g and the magnetic elements 140 h (shown in FIG. 3), respectively. This may provide the small-scale alignment to align and engage the electrical contacts 214 with the electrical contacts 123 of the electronic device 100 (shown in FIG. 3). The first section 202 a may further include magnetic elements 240 i and magnetic elements 240 j designed to magnetic couple with magnets in the electronic device 100 (shown in FIG. 3), such as the magnetic elements 140 c and the magnetic elements 140 f (shown in FIG. 3).
  • The first section 202 a and the second section 202 b are designed to engage each other, and remain engaged through magnetic coupling. For example, the first section 202 a may include magnetic elements 240 k, magnetic elements 240 l, magnetic elements 240 m, and magnetic elements 240 n are designed to magnetically couple with magnetic elements 242 k, magnetic elements 242 l, magnetic elements 242 m, and magnetic elements 242 n, respectively, located in the second section 202 b. For instance, when the first section 202 a is rotated such that a back surface (not shown in FIG. 6) of the first section 202 a engages a back section (not shown in FIG. 6) of the second section 202 b, the aforementioned magnetic elements magnetically couple such that the back surfaces remain engaged with each other. To further retain the back surfaces with each other, the first section 202 a may include magnetic elements 240 o and magnetic elements 240 p (located in the second segment 206 b) designed to magnetically couple with magnetic elements 242 o and magnetic elements 242 p (located in the second segment 206 b), respectively.
  • The magnetic elements in the first segment 206 a (and in some cases, the first segment 206 a and the second segment 206 b) can (collectively) retain the electronic device 100 (shown in FIG. 5) against the first section 202 a by magnetic attraction, even overcoming gravitational forces acting on the electronic device 100. In this regard, the first section 202 a may not require mechanical retaining features, such as sidewalls and/or locks, designed to wrap around and/or interlock with the electronic device 100 to retain the electronic device 100.
  • In some embodiments, the first segment 206 a is the same size (or at approximately the same size) as that of the second segment 206 b. In the embodiment shown in FIG. 6, the size of the first segment 206 a is different from the size of the second segment 206 b. This may facilitate positioning the first section 202 a in a desired manner to support the electronic device 100. This will be shown and described below.
  • The second section 202 b may further include magnetic elements along an edge (of the second section 202 b). For example, the second section 202 b may include magnetic elements 242 a, magnetic elements 242 b, magnetic elements 242 c, and magnetic elements 242 d. These magnetic elements are designed to magnetically couple with magnetic elements (or magnetically attractable materials) in the electronic device 100 (shown in FIG. 3) in order to retain the electronic device 100 with the second section 202 b along the edge.
  • The second section 202 b may include additional magnetic elements. For example, the second section 202 b may include a magnetic assembly 244 a and a magnetic assembly 244 b (both shown as dotted lines), with each magnetic assembly including two or more magnetic elements positioned around the first channel 212 a. The magnetic assembly 244 a and the magnetic assembly 244 b are designed to magnetically couple with magnetic elements, or magnetically attractable materials, in the electronic device 100 (not shown in FIG. 6) in order to retain a portion of the electronic device 100 within the first channel 212 a. The second section 202 b may further include a magnetic assembly 244 c and a magnetic assembly 244 d (both shown as dotted lines), with each magnetic assembly including two or more magnetic elements positioned around the second channel 212 b. The magnetic assembly 244 c and the magnetic assembly 244 d are designed to magnetically couple with magnetic elements, or magnetically attractable materials, in the electronic device 100 (not shown in FIG. 6) in order to retain a portion of the electronic device 100 within the second channel 212 b. Each of the magnetic assembly 244 a, the magnetic assembly 244 b, the magnetic assembly 244 c, and the magnetic assembly 244 d may form a Halbach array designed to provide an additive or increased external magnetic field at one location, while providing a resultant decreased external magnetic field at another location. The additive or increased external magnetic field may pass through the first channel 212 a and the second channel 212 b to enhance the magnetic attraction force between magnets in the electronic device 100 and the aforementioned magnetic assemblies. That may provide allow fewer magnetic elements along the first channel 212 a and the second channel 212 b, which may result in less weight and less cost.
  • It may be advantageous to selectively activate or deactivate the keyboard 208 based upon the position of the electronic device 100 (not shown in FIG. 6) relative to the accessory device 200. In this regard, the accessory device 200 may include sensors designed to detect an external magnetic field generated from magnetic elements in the electronic device 100 to determine the position of the electronic device 100. For example, the accessory device 200 may include a first sensor 232 a and a second sensor 232 b. The first sensor 232 a and the second sensor 232 b are designed to detect when the electronic device 100 is positioned in the first channel 212 a and the second channel 212 b, respectively, and provide an input that activates the electronic device 100. In some embodiments, the first sensor 232 a and the second sensor 232 b are Hall Effect sensors designed to detect an external magnetic field generated by magnetic elements in the electronic device 100. The accessory device 200 may include a third sensor 232 c designed to detect when the electronic device 100 lies flat over the keyboard 208, and provide an input that deactivates the electronic device 100.
  • Referring again to FIG. 3, the electronic device 100 may include a compass 146. When the electronic device 100 is positioned on the first section 202 a (in FIG. 6), at least some of the magnetic elements may provide an interfering external magnetic field that causes the compass 146 to inaccurately determine the Earth's magnetic field, and as a result, in inaccurately determine the proper direction (such as North, South, East, or West). FIG. 6 shows a location 246 of the compass 146 superimposed on the first section 202 a. In order to offset or neutralize any magnetic elements that may affect the compass 146, the accessory device 200 may include a first compensating magnetic element 248 a and a second compensating magnetic element 248 b. The first compensating magnetic element 248 a and the second compensating magnetic element 248 b may be modified to provide an external magnetic field (not shown in FIG. 6) that is non-normal or non-perpendicular with respect to surfaces defined by the first section 202 a and the second section 202 b (as positioned in FIG. 6), whereas the magnetic elements in the accessory device 200 may provide an external magnetic field (not shown in FIG. 6) that is generally normal or perpendicular with respect to surfaces defined by the first section 202 a and the second section 202 b. As a result, the first compensating magnetic element 248 a and the second compensating magnetic element 248 b may offset external magnetic fields of the magnetic elements in the accessory device 200 such that the compass 146 works properly. The first compensating magnetic element 248 a and the second compensating magnetic element 248 b are shown in the first section 202 a and the second section 202 b, respectively. However, other locations are possible.
  • FIG. 7 illustrates a side view of the accessory device 300 shown in FIG. 6, showing the electronic device 100 coupled to the accessory device 200 and positioned in the first channel 212 a, in accordance with some described embodiments. As shown, the magnetic elements 140 k are magnetically coupled with a first magnet 254 a and a second magnet 254 b of the magnetic assembly 244 a (also shown in FIG. 6). When a force (in the direction of an arrow 179 a) is applied to the electronic device 100, a rotational force (in the direction of the arrow 179 b) may cause the electronic device 100 to leave the first channel 212 a. However, the magnetic assembly 244 a may counter the rotational force. For example, the first magnet 254 a may include a size and shape that is greater than that of the second magnet 254 b. In this manner, the first magnet 254 a may include a stronger external magnetic field as compared to that of the second magnet 254 b. The relatively stronger external magnetic field of the first magnet 254 a provides a force in the direction of an arrow 179 c that is opposite to the force in the direction of the arrow 179 b, thereby counteracting the rotational force. Also, the magnetic coupling between the magnetic elements 140 k and the second magnet 254 b provides a force in the direction, or at least approximately in the direction, of gravity to maintain the electronic device 100 in the first channel 212 a. It should be noted that the magnetic assembly 244 b (shown in FIG. 6) may include a number of magnets and associated features described for the magnetic assembly 244 a. Furthermore, the magnetic elements 140 l (shown in FIG. 3) may magnetically couple with the magnetic assembly 244 b.
  • As described in FIG. 6, the magnetic assemblies (such as the magnetic assembly 244 a) may form a Halbach array to enhance the magnetic attraction force. The electronic device 100 may include modified magnetic elements to further enhance the magnetic attraction force. For example, the first magnet 254 a and the second magnet 254 b are polarized such that the magnetic field is normal relative to a surface of the first magnet 254 a and the second magnet 254 b, as indicated by arrows superimposed on the first magnet 254 a and the second magnet 254 b. However, the magnetic elements 140 k may be polarized to include some non-normal angle respect to a surface of a magnetic element of the magnetic elements 140 k. As shown, an arrow superimposed on the magnetic elements 140 k indicates the magnetic field is at an angle 183 that is non-normal with respect to a surface of the magnetic elements 140 k. In some embodiments, the angle 183 is 40 degrees. Generally, the angle 183 may be in the range of 30 to 80 degrees.
  • FIG. 8 illustrates a side view of the accessory device 200 shown in FIG. 6, showing the electronic device 100 positioned in the second channel 212 b. As shown, the magnetic elements 140 k are magnetically coupled with a first magnet 254 c and a second magnet 254 d of the magnetic assembly 244 c. When a force (in the direction of an arrow 179 d) is applied to the electronic device 100, the electronic device 100 may be lifted out of the second channel 212 b and away from the second section 202 b. However, the magnetic assembly 244 c may counter the force. For example, the second magnet 254 d may include a size and shape that is greater than that of the first magnet 254 c. In this manner, the second magnet 254 d may include a stronger external magnetic field as compared to that of the first magnet 254 c. The relatively stronger external magnetic field of the second magnet 254 d provides a force in the direction of an arrow 179 e that is opposite to the force in the direction of the arrow 179 d, thereby counteracting the force. Also, the magnetic coupling between the magnetic elements 140 k in the electronic device 100 and the first magnet 254 c provides a force to maintain the electronic device 100 in the second channel 212 b. It should be noted that the magnetic assembly 244 d (shown in FIG. 3) may include a number of magnets and associated features described for the magnetic assembly 244 c. Furthermore, the magnetic elements 140 l (shown in FIG. 3) may magnetically couple with the magnetic assembly 244 d.
  • FIGS. 7 and 8 show the first section 202 a supporting the electronic device 100 in an upright configuration such that a user can interact with both the keyboard 208 and the display assembly 104. Further, the disparate size between the first segment 206 a and the second segment 206 b (that is, the first segment 206 a being larger than the second segment 206 b) allows the first section 202 a to adjust, thereby allowing the electronic device 100 to be positioned in the first channel 212 a and the second channel 212 b.
  • FIG. 9 illustrates an isometric view of an alternate embodiment of an accessory device 300, in accordance with some described embodiments. The accessory device 300 is designed for use with an electronic device 100, including portable electronic devices such as mobile wireless communication devices and tablet computer devices. In this regard, the accessory device 300 may be referred to as a case, a cover, a protective cover, a protective case, a folio, or the like.
  • As shown, the accessory device 300 may include a first section 302 a coupled to a second section 302 b. The first section 302 a may define a back cover or back panel for the electronic device 100. The first section 302 a may define a receiving surface 304 that receives the electronic device 100, and in particular, the enclosure 102. In this regard, the first section 302 a may retain the electronic device 100 one or more magnets. This will be shown and discussed below. The first section 302 a may further include an opening 316, or through hole, designed to receive the camera assembly 126, the flash module 128, and the microphone 129.
  • The second section 302 b is designed to wrap around and cover the electronic device 100, including the display assembly 104. In this manner, the second section 302 b may be referred to as a front panel or front cover. The second section 302 b may include multiple segments. For example, the second section 302 b may include a first segment 306 a, a second segment 306 b, and a third segment 306 c. Each segment is rotatable or moveable with respect to the remaining segments. Also, while a discrete number of segments may vary in other embodiments.
  • The second section 302 b is coupled to the first section 302 a by a hinge 312 such that the first section 302 a is rotatable with respect to the second section 302 b, and vice versa. The hinge 312 may be formed in part by one more continuous pieces of material that extend(s) along the first section 302 a and the second section 302 b. The materials that form the layer(s) may include polymers, such as polyurethane, that wrap around a fiberglass material. However, in order to promote flexibility and relative movement of the aforementioned sections and segments, the fiberglass material (and/or other relatively rigid or stiff materials) may not be located at the hinge 312 and in locations between the segments. This will be shown and described below. Also, a soft, non-abrasive material, such as microfiber, may cover the first segment 306 a, the second segment 306 b, and the third segment 306 c. In this manner, when the second section 302 b wraps around and covers the display assembly 104 (which may include transparent cover overlaying the display assembly 104), the soft, non-abrasive materials do not cause damage when in contact with the transparent cover or the display assembly 104.
  • FIG. 10 illustrates a plan view of the accessory device 300 shown in FIG. 9, showing additional features in the accessory device. As shown, the accessory device 300 may include magnetic elements 340 a, magnetic elements 340 b, magnetic elements 340 c, and magnetic elements 340 d. The magnetic elements 340 a, the magnetic elements 340 b, the magnetic elements 340 c, and the magnetic elements 340 d are designed to magnetically couple with magnets in the electronic device 100 (shown in FIG. 3) to retain the electronic device 100 with the receiving surface 304. As a result, the first section 302 a may not require mechanical features (such as retaining walls, sidewalls, or mechanical interlocks) to retain the electronic device 100. The magnetic elements described herein for the accessory device 300 may be represented by a rectangular structure. However, the magnetic elements include a layout/arrangement similar to that of the magnetic elements shown in FIG. 3 for the electronic device 100, in terms of the number of rows and/or columns, as well as the number of discrete magnetic elements. For example, the magnetic elements 340 a may include a layout/arrangement similar to the magnetic elements 140 a or the magnetic elements 140 c. However, the polarity of the discrete magnetic elements of the magnetic elements 340 a may be reversed in order to form several magnetic circuits (with a magnetically attractable North-South pair) between the magnetic elements 340 a and the magnetic elements 140 a.
  • The accessory device 300 may further include magnetic elements 340 e, magnetic elements 340 f, and magnetic elements 340 g in the first section 302 a that are designed to magnetically couple with magnetic elements 340 h, magnetic elements 340 i, and magnetic elements 340 j, respectively, in the second section 302 b. These magnetic couplings may occur when, for example, the second section 302 b is rotated over and onto the receiving surface 304 or when a back surface (not shown in FIG. 10) of the second section 302 b is rotated over and onto a back surface (not shown in FIG. 10) of the first section 302 a via the hinge 312, with the back surface of the first section 302 a being opposite the receiving surface 304.
  • The accessory device 300 may further include magnetic elements 340 k and magnetic elements 340 l located in the first section 302 a that are designed to magnetically couple with magnetic elements 340 m and magnetic elements 340 n, respectively, located in the second section 302 b, and in particular, the second segment 306 b. The magnetic elements 340 m and the magnetic elements 340 n are parallel (or aligned) with each other, while the magnetic elements 340 k are offset (or misaligned) with respect to the magnetic elements 340 l. Also, the magnetic elements 340 k and the magnetic elements 340 l are offset with respect to the magnetic elements 340 m and the magnetic elements 340 n, respectively. However, the degree of offset between the magnetic elements 340 k and the magnetic elements 340 m may differ from that of the magnetic elements 340 l and the magnetic elements 340 n. In this manner, when the back surface of the second section 302 b is positioned against the back surface of the first section 302 a, the magnetic attraction between the magnetic elements 340 k and the magnetic elements 340 m may differ from the magnetic attraction between the magnetic elements 340 k and the magnetic elements 340 m. For example, the magnetic attraction between the magnetic elements 340 k and the magnetic elements 340 m may be greater than the magnetic attraction between the magnetic elements 340 k and the magnetic elements 340 m. As a result, when the magnetic elements 340 k are no longer coupled to the magnetic elements 340 m, the magnetic elements 340 l are no longer coupled to the magnetic elements 340 n. This may be part of a comprehensive process in that when the first segment 306 a is pulled away from the back surface of the first section 302 a, the second segment 306 b and the third segment 306 c are subsequently pulled away from the back surface of the first section 302 a without any additional force required other than to pull the first segment 306 a away from the back surface of the first section 302 a. In other words, when the first segment 306 a is removed from the back surface, the second segment 306 b and the third segment 306 c may automatically fall away from the back surface.
  • The accessory device 300 may further include magnetic elements 340 o located in the first section 302 a that are designed to magnetically couple with magnetic elements 340 p located in the second section 302 b, and in particular, the third segment 306 c. When the back surface of the second section 302 b is positioned against the back surface of the first section 302 a, the magnetic elements 340 o magnetically couple with magnetic elements 340 p. Further, while the back surface of the second section 302 b is rotated over and onto the back surface of the first section 302 a, the magnetic elements 340 p magnetically couple with the that magnetic elements 340 o prior to the back surface of the second section 302 b being fully positioned on the back surface. The magnetic coupling can provide a magnetic attraction force that pulls the second section 302 b in a manner that aligns the back surface of the second section 302 b with the back surface of the first section 302 a to prevent misalignment between the back surface of the second section 302 b and the back surface of the first section 302 a. In words, the second section 302 b will not be crooked with respect to the first section 302 a as a result of the magnetic coupling between the magnetic elements 340 o and the magnetic elements 340 p.
  • As noted above, some magnetic elements shown and described in FIG. 10 that are represented by a rectangle may include several discrete magnetic elements. By using several, smaller discrete magnetic elements, as opposed to using fewer, but larger magnetic elements, the ease of aligning the electronic device 100 (shown in FIG. 9) with the first section 302 a increases. For example, each magnetic element provides a relatively small external magnetic field, thereby reducing the magnetic attraction force during alignment. However, the magnetic elements, as a group (such as the cluster of the magnetic elements 340 a), may provide a similar collective external magnetic field as that of a single, larger magnetic element. The group of magnetic elements allows more movement as compared to a large, single magnet, thereby enhancing the alignment process.
  • The accessory device 300 may include certain dimensional characteristics. For example, the first segment 306 a may include a dimension 318 a that is less than a dimension 318 b of the second segment 306 b and less than a dimension 318 c of the third segment 306 c. Further, the dimension 318 b of the second segment 306 b can be the same as, or at least substantially similar, to the dimension 318 c of the third segment 306 c. However, other dimensional relationships of the first segment 306 a, the second segment 306 b, and/or the third segment 306 c are possible.
  • Additionally, the accessory device 300 may include magnetic elements 340 q, magnetic elements 340 r, and magnetic elements 340 s embedded in the first section 302 a. In some instances, when the first segment 306 a is engaged with the second segment 306 b, the magnetic elements 340 h, the magnetic elements 340 i, and the magnetic elements 340 j can magnetically couple with the magnetic elements 340 q, the magnetic elements 340 r, and the magnetic elements 340 s, respectively.
  • FIG. 11 illustrates an isometric view of an alternate embodiment of an accessory device 400, in accordance with some described embodiments. The accessory device 400 is designed as a complementary device for an electronic device 100. In this regard, the accessory device 400 may include a protective cover, a protective case, a folio, or the like. As shown, the accessory device 400 may include a section 402. Although partially shown, the accessory device 400 may further include an additional section (similar to the second section 202 b, shown in FIG. 5) that is connected to the section 402. The accessory device 400 may include a hinge 404 that connects the section 402 with the aforementioned additional section. The hinge 404 allows the section 402 to rotate or pivot with respect to the aforementioned additional section, and vice versa. The hinge 404 may include a flexible material (such as polyurethane, as a non-limiting example) that defines an outer layer (or layers) extending across the accessory device 400.
  • The section 402, also referred to as a first section, a cover, a cover portion, a cover section, an electronic device cover, or a segmented cover, may define a receiving surface for the electronic device 100. The section 402 may include a first segment 406 a rotationally coupled to a second segment 406 b by several embedded hinges (not shown in FIG. 11) positioned between the first segment 406 a and the second segment 406 b. The embedded hinges allow rotational movement of the first segment 406 a relative to the second segment 406 b, and vice versa. The embedded hinges support the section 402 to hold the electronic device 100. Further, in some instances, the embedded hinges allow the section 402 to hold and suspend the electronic device 100 such that the electronic device 100 is suspended from, and not in contact with, the aforementioned additional section. Although a particular position (of the section 402) is shown, the section 402 can rotate and re-position the electronic device 100, whether the electronic device 100 is in contact, or is not in contact, with the aforementioned additional section. Also, in order to hold the electronic device 100, the first segment 406 a may include several magnetic elements (not shown in FIG. 11). The first segment 406 a may include any arrangement of magnetic elements shown for the first segment 206 a (shown in FIG. 6). Alternatively, the first segment 406 a may include any arrangement of magnetic elements shown for the first segment 306 a and the second segment 306 b (shown in FIG. 10).
  • In some embodiments, the first segment 406 a and the second segment 406 b are the same size, generally. In the embodiment shown in FIG. 11, the first segment 406 a is larger than the second segment 406 b. Also, the first segment 406 a and the second segment 406 b may each include a microfiber layer (not labeled). In some instances, the microfiber layer is restricted to the first segment 406 a and the second segment 406 b such that the microfiber layer does not cover the embedded hinges.
  • The section 402 may further include electrical contacts (not shown in FIG. 11) designed to engage the electrical contacts 123 (shown in FIG. 3) of the electronic device 100, and place the accessory device 400 in communication (including electrical communication) with electronic device 100. The aforementioned additional section, also referred to as a keyboard section or a keyboard cover, may include a keyboard (not shown in FIG. 11) with several keys arranged in a QWERTY configuration, as a non-limiting example. When the accessory device 400 is in communication with the electronic device 100, the keyboard can be used to provide inputs and commands to the electronic device 100 to control the display assembly 104 (shown as a dotted line) of the electronic device 100. The section 402 may further include an opening (not shown in FIG. 11), or through hole, designed to receive the camera assembly 126, the flash module 128, and the microphone 129 (shown in FIG. 2).
  • FIG. 12 illustrates a plan view of the accessory device 400 shown in FIG. 11, showing several magnetic elements in the accessory device 400. As shown, the first segment 406 a may include magnetic elements 440 a, magnetic elements 440 b, magnetic elements 440 c, and magnetic elements 440 d. The magnetic elements described herein for the accessory device 400 may be represented by a rectangular structure. However, the magnetic elements include a layout/arrangement similar to that of the magnetic elements shown in FIG. 2 for the electronic device 100, in terms of the number of rows and/or columns, as well as the number of discrete magnetic elements. For example, the magnetic elements 440 a may include a layout/arrangement similar to the magnetic elements 140 c. In some instances, the polarity of the discrete magnetic elements of the magnetic elements 440 a may be reversed in order to form several magnetic circuits (with a magnetically attractable North-South pair) between the magnetic elements 440 a and the magnetic elements 140 c. However, in some instances, the polarity of the discrete magnetic elements of the magnetic elements 440 a is identical in order to magnetically repel (with a magnetically repulsive North-North or South-South pair) between the magnetic elements 440 a and the magnetic elements 140 c. This will be shown below.
  • FIG. 13 illustrates a plan view of the accessory device 400 shown in FIG. 12, showing the electronic device 100 coupled to the accessory device 400. As shown, at least some of the magnetic elements of the electronic device 100 align with magnetic elements of the accessory device 400. For example, some of the magnetic elements 140 c, the magnetic elements 140 b, the magnetic elements 140 e, and the magnetic elements 140 f (also shown in FIG. 3) of the electronic device 100 align with at some of the magnetic elements 440 a, the magnetic elements 440 b, the magnetic elements 440 c, and the magnetic elements 440 d, respectively, of the accessory device 400. These “aligning” magnetic elements may magnetically couple with each other in order to maintain the electronic device 100 with the accessory device 400. However, as shown, the magnetic elements 440 a, the magnetic elements 440 b, the magnetic elements 440 c, and the magnetic elements 440 d of the accessory device 400 include an additional array (in this case, an additional row) of magnetic elements, as compared to the magnetic elements 140 c, the magnetic elements 140 b, the magnetic elements 140 e, and the magnetic elements 140 f, respectively, of the electronic device 100. For example, the magnetic elements 140 c and the magnetic elements 140 b of the electronic device 100 include one array and two arrays, respectively, of magnetic elements, while the magnetic elements 440 a and the magnetic elements 440 b in the accessory device 400 include two arrays and three arrays, respectively, of magnetic elements. The additional array of magnetic elements in the accessory device 400 may provide a magnetic repulsion force to at least some of the magnetic elements in the electronic device 100.
  • FIG. 14 illustrates a side view of the an accessory device 400 and electronic device 100 shown in FIG. 13, showing magnetic elements in the accessory device 400 providing a magnetic repulsion force to magnetic elements in the electronic device 100. As shown in the enlarged view, the magnetic elements 140 c includes a magnetic element 540 a that is magnetically coupled with a magnetic element 640 a of the magnetic elements 440 a in the accessory device 400, as opposing magnetic poles are aligned. However, the magnetic elements 440 a of the accessory device 400 further include a magnetic element 640 b that magnetically repels the magnetic element 540 a in the electronic device 100, as the same magnetic poles are aligned. The magnetic repulsion provides a force (generally against gravitational forces) in the direction of the arrow 480 a, and provides an additional force that retains the electronic device 100 with the accessory device 400. It should be noted that the magnetic elements 440 a include additional elements that magnetically couple with additional magnetic elements of the magnetic elements 140 c (similar to the magnetic element 640 a and the magnetic element 540 a). Also, it should be noted that the magnetic elements 440 a include additional elements that magnetically repel additional magnetic elements of the magnetic elements 140 c (similar to the magnetic element 640 b and the magnetic element 540 a).
  • Also, the magnetic elements 140 b includes a magnetic element 540 b and a magnetic element 540 c that is magnetically coupled with a magnetic element 640 c and a magnetic element 640 d, respectively, of the magnetic elements 440 b in the accessory device 400, as opposing magnetic poles are aligned. However, the magnetic elements 440 b of the accessory device 400 further include a magnetic element 640 e that magnetically repels the magnetic element 540 c in the electronic device 100, as the same magnetic poles are aligned. The magnetic repulsion provides a force (generally against gravitational forces) in the direction of the arrow 480 b, and provides an additional force that retains the electronic device 100 with the accessory device 400. It should be noted that the magnetic elements 440 b include additional elements that magnetically couple with additional magnetic elements of the magnetic elements 140 b (similar to the magnetic element 640 c and the magnetic element 540 b). Also, it should be noted that the magnetic elements 440 b include additional elements that magnetically repel additional magnetic elements of the magnetic elements 140 b (similar to the magnetic element 640 e and the magnetic element 540 c). Although not shown, the described relationships between the magnetic elements 440 d of the accessory device 400 and the magnetic elements 140 f of the electronic device 100 (shown in FIG. 13) may be similar to those between the magnetic elements 440 a and the magnetic elements 140 c. Also, although not shown, the described relationships between the magnetic elements 440 c of the accessory device 400 and the magnetic elements 140 e of the electronic device 100 (shown in FIG. 13) may be similar to those between the magnetic elements 440 b and the magnetic elements 140 b.
  • FIGS. 15-17 show and described various configurations for accessory devices. The accessory device 200 (shown in FIG. 5), the accessory device 300 (shown in FIG. 9), and the accessory device 400 (shown in FIG. 11) may be configured in at least some configurations shown in FIGS. 15-17. Also, the accessory devices shown and described in FIGS. 15-17 may include several features (including magnetic elements and arrangement of magnetic elements) described herein for the accessory device 200 (shown in FIG. 5), the accessory device 300 (shown in FIG. 9), and the accessory device 400 (shown in FIG. 11).
  • FIG. 15 illustrates a side view of the accessory device 700, showing back surfaces engaged with each other, in accordance with some described embodiments. As shown, the accessory device 700 includes a first section 702 a and a second section 702 b. A rear surface (or back surface) of the first section 702 a is engaged with a rear surface (or back surface) of the second section 702 b. The first section 702 a can remain engaged with the second section 702 b through magnet attraction. For example, the first section 702 a includes a magnetic element 740 a that magnetically couples with magnetic element 742 a in the configuration of the accessory device 700 shown in FIG. 15. Additional magnetic elements (not labeled) in the first section 702 a may magnetically couple with additional magnets (not labeled) in the second section 702 b.
  • FIG. 16 illustrates a side view of an embodiment of an accessory device 800, showing an electronic device 900 positioned between, and engaged with, a first section 802 a and a second section 802 b of the accessory device 800, in accordance with some described embodiments. The electronic device 900 may include any features described herein for the electronic device 100 (shown in FIG. 1). In order to maintain the engagement, the electronic device 100 may magnetically couple with both the first section 802 a and the second section 802 b. For example, the electronic device 900 includes magnetic elements 940 a magnetically coupled with both magnetic elements 840 a in the first section 802 a and magnetic elements 842 a in the second section 802 b. Furthermore, the electronic device 900 may include magnetic elements 940 b magnetically coupled with magnetic elements 842 b located along an edge of the second section 802 b. The electronic device 900 may include additional magnetic elements (not shown in FIG. 16), with each additional magnet magnetically coupled with edge magnets of the accessory device 800 (similar to the magnetic elements 242 a, the magnetic elements 242 b, the magnetic elements 242 c, and the magnetic elements 242 d shown in FIG. 6).
  • Also, in the configuration shown in FIG. 16, a first sensor 832 a and/or a second sensor 832 b of the accessory device 800 may detect an external magnetic field generated from a magnet (or magnets) in the electronic device 900, thereby generating a subsequent command to activate a keyboard (not labeled), even though the keyboard is inaccessible. However, the accessory device 800 may include a third sensor 832 c capable of detecting an external magnetic field from a magnetic element 940 c. The third sensor 832 c can send an input to a processor circuit on a circuit board of the electronic device 900 (not shown in FIG. 16) when the external magnetic field is detected. The processor circuit can then generate a command that deactivates the keyboard. In other words, an input from the third sensor 832 c can override inputs from the first sensor 832 a and the second sensor 832 b. As a result, the accessory device 800 may initiate an inactive state of the electronic device 900 when the electronic device is covered and unusable, as shown in FIG. 16.
  • FIG. 17 illustrates accessory devices coupled with the electronic devices, showing the accessory devices engaged with, and suspended from, a magnetically attractable material 1080 using magnets in the accessory devices, in accordance with some described embodiments. The magnetically attractable material 1080 (shown as a dotted line) may be integrated with a chalkboard, a dry erase board, or refrigerator, as non-limiting examples. As shown, the magnetically attractable material 1080 is integrated with a dry erase board 1082 that is hung vertically.
  • As shown, an accessory device 1000 includes a sufficient number of magnetic elements (such as the magnetic elements 1040 a and the magnetic elements 1040 b) that generate (collectively) an external magnetic field that can magnetically couple with the magnetically attractable material 1080 and support the weight of and accessory device 1000 and the electronic device 1100 (coupled with the accessory device 1000 via magnetic elements), as well as counter the effects of gravity. In some instances, the magnetic elements in the first section 1002 a alone provide an external magnetic field sufficient to support the weight of the accessory device 1000 and the electronic device 1100, as well as counter the effects of gravity. In some instances, the magnets in the second section 1002 b alone provide an external magnetic field sufficient to support the weight of the accessory device 1000 and the electronic device 1100, as well as counter the effects of gravity. As shown, the accessory device 1000 is similar to the accessory device 200 (shown in FIG. 5). However, the accessory device 300 (shown in FIG. 9) and the accessory device 400 (shown in FIG. 11) may provide the same capabilities as those of the accessory device 1000.
  • Further, an accessory device 1200 may cover an electronic device (not shown in FIG. 17) and rely on magnetic elements (not labeled) in a single section (such as the section 1202 a) to magnetically couple with the magnetically attractable material 1080 and remain suspended against gravity. As shown, the accessory device 1200 is similar to the accessory device 300 (shown in FIG. 9). However, the accessory device 200 (shown in FIG. 5) and the accessory device 400 (shown in FIG. 11) may provide the same capabilities as those of the accessory device 1000.
  • FIG. 18 illustrates a block diagram of an electronic device 1300, in accordance with some described embodiments. As least some components in the block diagram may be implemented in accessory devices described herein. In particular, the detailed view illustrates various components that can be included in the electronic device 100 illustrated in FIG. 1. Also, at least some components can be included in the accessory devices described herein.
  • As shown in FIG. 18, the electronic device 1300 can include a processor 1302 that represents a microprocessor or controller for controlling the overall operation of electronic device 1300. The electronic device 1300 can also include a user input device 1308 that allows a user of the electronic device 1300 to interact with the electronic device 1300. For example, the user input device 1308 can take a variety of forms, such as a button, keypad, dial, touch screen, audio input interface, visual/image capture input interface, input in the form of sensor data, etc. Still further, the electronic device 1300 can include a display 1310 (screen display) that can be controlled by the processor 1302 to present visual information to the user. A data bus 1316 can facilitate data transfer between at least a storage device 1340, the processor 1302, and a controller 1313. The controller 1313 can be used to interface with and control different equipment through an equipment control bus 1314. The electronic device 1300 can also include a network/bus interface 1311 that couples to a data link 1312. In the case of a wireless connection, the network/bus interface 1311 can include a wireless transceiver.
  • The electronic device 1300 also include a storage device 1340, which can include a single disk or a plurality of disks (e.g., hard drives), and includes a storage management module that manages one or more partitions within the storage device 1340. In some embodiments, storage device 1340 can include flash memory, semiconductor (solid state) memory or the like. The electronic device 1300 can also include a Random Access Memory (RAM) 1320 and a Read-Only Memory (ROM) 1322. The ROM 1322 can store programs, utilities or processes to be executed in a non-volatile manner. The RAM 1320 can provide volatile data storage, and stores instructions related to the operation of the electronic device 1300.
  • The various aspects, embodiments, implementations or features of the described embodiments can be used separately or in any combination. Various aspects of the described embodiments can be implemented by software, hardware or a combination of hardware and software. The described embodiments can also be embodied as computer readable code on a computer readable medium for controlling manufacturing operations or as computer readable code on a computer readable medium for controlling a manufacturing line. The computer readable medium is any data storage device that can store data which can thereafter be read by a computer system. Examples of the computer readable medium include read-only memory, random-access memory, CD-ROMs, HDDs, DVDs, magnetic tape, and optical data storage devices. The computer readable medium can also be distributed over network-coupled computer systems so that the computer readable code is stored and executed in a distributed fashion.
  • The foregoing description, for purposes of explanation, used specific nomenclature to provide a thorough understanding of the described embodiments. However, it will be apparent to one skilled in the art that the specific details are not required in order to practice the described embodiments. Thus, the foregoing descriptions of the specific embodiments described herein are presented for purposes of illustration and description. They are not targeted to be exhaustive or to limit the embodiments to the precise forms disclosed. It will be apparent to one of ordinary skill in the art that many modifications and variations are possible in view of the above teachings.

Claims (21)

1. An accessory device for an electronic device, the accessory device comprising:
a first section comprising:
a receiving surface configured to receive the electronic device, the receiving surface comprising:
a first segment having a first dimension; and
a second segment having a second dimension different from the first dimension,
a first magnetic element capable of magnetically coupling with a first device magnet of the electronic device and aligning the electronic device with the receiving surface,
electrical contacts that electrically couple with device contacts of the electronic device, and
a second magnetic element capable of magnetically coupling with a second device magnet of the electronic device and aligning the device contacts with the electrical contacts;
a second section comprising
an input mechanism for communicating with the electronic device; and
a hinge coupled with the first section with the second section, wherein the second segment is positioned between the hinge and the first segment.
2. The accessory device of claim 1, wherein the first section defines a receiving surface, and wherein the electrical contacts are positioned on the receiving surface.
3. The accessory device of claim 1, wherein the first section comprises:
a first segment having a first dimension; and
a second segment having a second dimension different from the first dimension.
4. The accessory device of claim 3, wherein the first dimension is greater than the second dimension.
5. (canceled)
6. The accessory device of claim 1, further comprising a Halbach array of magnets that surround the channel.
7. The accessory device of claim 1, further comprising:
a third magnetic element located in the first section; and
a fourth magnetic element located in the second section, wherein when the third magnetic element magnetically couples with the fourth magnetic element, a first back surface of the first section remains engaged with a second back surface of the second section.
8. An accessory device for an electronic device, the accessory device comprising:
a first section comprising a first magnetic element capable of magnetically coupling with a first device magnet of the electronic device;
a second section rotationally coupled with the first section, the second section comprising a second magnetic element capable of magnetically coupling with a second device magnet of the electronic device;
a first compensating magnetic element located in the first section; and
a second compensating magnetic element located in the second section, wherein the first compensating magnetic element and the second compensating magnetic element neutralize the first magnetic element and the second magnetic element.
9. The accessory device of claim 8, wherein the first section comprises:
a first segment having a first dimension;
a second segment rotationally coupled with the first segment and having the first dimension; and
a third segment rotationally coupled with the second segment and having a second dimension different from the first dimension.
10. The accessory device of claim 9, further comprising a third magnetic element located in the second segment, wherein the first segment is capable of rotating with respect to the second segment such that the first magnetic element magnetically couples with the third magnet element.
11. The accessory device of claim 8, further comprising:
electrical contacts that electrically couple with device contacts of the electronic device, the electrical contacts located on a receiving surface having a size and shape to receive the electronic device;
a third magnetic element capable of magnetically coupling with a third device magnet of the electronic device and aligning the device contacts with the electrical contacts.
12. The accessory device of claim 8, further comprising:
a third magnetic element located in the first section; and
a fourth magnetic element located in the second section, wherein when the third magnetic element magnetically couples with the fourth magnetic element, a first back surface of the first section remains engaged with a second back surface of the second section.
13. The accessory device of claim 8, further comprising:
a channel located in the second section; and
a Halbach array of magnetic that surround the channel.
14. The accessory device of claim 8, further comprising a third magnetic element located in the first section and capable of magnetically coupling with a second device magnet, wherein the first magnetic element and the third magnetic element retain the electronic device and overcome gravitational effects.
15. An accessory device for an electronic device, the accessory device comprising:
a first section comprising a first magnetic element and a second magnetic element, the first magnetic element providing a magnetic attraction force with a device magnet of the electronic device, the second magnetic element providing a magnetic repulsion force with the device magnet; and
a second section rotationally coupled with the first section, the second section comprising a keyboard in communication with the electronic device.
16. The accessory device of claim 15, wherein the first section comprises:
a first segment that carries the first magnetic element and the second magnetic element; and
a second segment rotationally coupled with the first segment.
17. The accessory device of claim 16, wherein the first segment and the second segment suspend the electronic device such that the electronic device lacks contact with the second section.
18. The accessory device of claim 15, further comprising:
electrical contacts that electrically couple with device contacts of the electronic device, the electrical contacts located on a receiving surface defined by the first section;
a third magnetic element located in the first section, the third magnetic element capable of magnetically coupling with a second device magnet of the electronic device and aligning device contacts of the electronic device with the electrical contacts.
19. The accessory device of claim 15, further comprising a fourth magnetic located in the first section, the fourth magnetic element capable of magnetically coupling with a third device magnet of the electronic device and aligning the electronic device with the first section.
20. The accessory device of claim 15, further comprising:
a third magnetic element located in the first section; and
a fourth magnetic element located in the second section, wherein when the third magnetic element magnetically couples with the fourth magnetic element, a first back surface of the first section remains engaged with a second back surface of the second section.
21. The accessory device of claim 1, wherein the first segment is rotatable with respect to the second segment.
US16/415,649 2018-09-14 2019-05-17 Magnetic layout in electronic devices and accessory devices for electronic devices Active US10671121B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US16/415,649 US10671121B2 (en) 2018-09-14 2019-05-17 Magnetic layout in electronic devices and accessory devices for electronic devices
CN202211602731.4A CN116033693A (en) 2018-09-14 2019-05-23 Magnetic layout in an electronic device and accessory device for an electronic device
KR1020217006502A KR102550089B1 (en) 2018-09-14 2019-05-23 Magnetic layout in electronic devices and accessory devices for electronic devices
CN201980058967.6A CN112672661A (en) 2018-09-14 2019-05-23 Magnetic arrangement in an electronic device and accessory device for an electronic device
PCT/US2019/033823 WO2020055463A1 (en) 2018-09-14 2019-05-23 Magnetic layout in electronic devices and accessory devices for electronic devices
CN201920936372.3U CN209980127U (en) 2018-09-14 2019-06-21 Accessory device for an electronic device
US16/848,335 US10955875B2 (en) 2018-09-14 2020-04-14 Accessory device for an electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201862731608P 2018-09-14 2018-09-14
US16/415,649 US10671121B2 (en) 2018-09-14 2019-05-17 Magnetic layout in electronic devices and accessory devices for electronic devices

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/848,335 Continuation US10955875B2 (en) 2018-09-14 2020-04-14 Accessory device for an electronic device

Publications (2)

Publication Number Publication Date
US20200089276A1 true US20200089276A1 (en) 2020-03-19
US10671121B2 US10671121B2 (en) 2020-06-02

Family

ID=69772492

Family Applications (2)

Application Number Title Priority Date Filing Date
US16/415,649 Active US10671121B2 (en) 2018-09-14 2019-05-17 Magnetic layout in electronic devices and accessory devices for electronic devices
US16/848,335 Active US10955875B2 (en) 2018-09-14 2020-04-14 Accessory device for an electronic device

Family Applications After (1)

Application Number Title Priority Date Filing Date
US16/848,335 Active US10955875B2 (en) 2018-09-14 2020-04-14 Accessory device for an electronic device

Country Status (4)

Country Link
US (2) US10671121B2 (en)
KR (1) KR102550089B1 (en)
CN (2) CN112672661A (en)
WO (1) WO2020055463A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200183458A1 (en) * 2012-01-03 2020-06-11 Samsung Electronics Co., Ltd. Mobile apparatus
WO2021201512A1 (en) * 2020-03-31 2021-10-07 삼성전자 주식회사 Accessory-mountable electronic device
US11239710B2 (en) * 2019-09-30 2022-02-01 Microsoft Technology Licensing, Llc Charging system including orientation control
US20220244759A1 (en) * 2020-09-14 2022-08-04 Qianhai Junda (Shenzhen) Equity Investment Co., Ltd. Bracket and electronic device
WO2022250346A1 (en) * 2021-05-26 2022-12-01 삼성전자 주식회사 Electronic device including wireless charging structure
US11675440B2 (en) 2019-09-30 2023-06-13 Microsoft Technology Licensing, Llc Solvent free textile coating
US20230195176A1 (en) * 2021-12-16 2023-06-22 Lenovo (Singapore) Pte. Ltd Display device

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD788784S1 (en) * 2016-03-21 2017-06-06 Apple Inc. Keyboard
DE102017006284A1 (en) * 2017-07-03 2019-01-03 Merck Patent Gmbh Thioether derivatives of dibenzothiophene and dibenzofuran
US11249519B2 (en) * 2019-10-01 2022-02-15 Microsoft Technology Licensing, Llc Magnetic hinge connection
WO2023076335A1 (en) * 2021-11-01 2023-05-04 Poésie LLC Modular packaging container system
WO2023250402A2 (en) 2022-06-22 2023-12-28 Antlera Therapeutics Inc. Tetravalent fzd and wnt co-receptor binding antibody molecules and uses thereof
US20240094783A1 (en) * 2022-09-15 2024-03-21 Hewlett-Packard Development Company, L.P. Shape-memory alloys to selectively secure components

Family Cites Families (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI285305B (en) * 2005-11-07 2007-08-11 High Tech Comp Corp Auto-aligning and connecting structure between electronic device and accessory
US7331793B2 (en) 2005-12-16 2008-02-19 Motorola, Inc. Magnetic connector
US8997983B2 (en) 2010-05-20 2015-04-07 Salman Sajid Combination protective case and stand for a tablet device and keyboard
US8344836B2 (en) * 2010-09-17 2013-01-01 Apple Inc. Protective cover for a tablet computer
US8390412B2 (en) * 2010-09-17 2013-03-05 Apple Inc. Protective cover
US9729685B2 (en) * 2011-09-28 2017-08-08 Apple Inc. Cover for a tablet device
KR101850818B1 (en) 2012-01-03 2018-04-23 삼성전자주식회사 Mobile apparatus
US9158383B2 (en) * 2012-03-02 2015-10-13 Microsoft Technology Licensing, Llc Force concentrator
US8705229B2 (en) * 2012-04-25 2014-04-22 Hewlett-Packard Development Company, L.P. Foldable electronic devices including a first and a second magnet
US8947874B2 (en) * 2012-06-08 2015-02-03 Bartley K. Andre Portable computing device with a housing secured by a magnetic element and related method
WO2014070130A1 (en) * 2012-06-08 2014-05-08 Apple Inc. Smart cover peek
TWI480720B (en) * 2012-07-24 2015-04-11 Quanta Comp Inc Portable electrical device
US8878637B2 (en) * 2012-08-08 2014-11-04 Jared A. Sartee Accessory device
US9244535B2 (en) 2013-03-15 2016-01-26 Logitech Europe S.A. Protective cover for a tablet computer
GB2524926B (en) * 2013-01-31 2020-09-02 Hewlett Packard Development Co Lp Display mounting system
TWI482575B (en) * 2013-07-11 2015-04-21 Wistron Corp Electronic system and connecting mechanism thereof
US9149100B2 (en) 2013-08-07 2015-10-06 ACCO Brands Corporation Case for a portable electronic device
US9474345B2 (en) * 2013-08-13 2016-10-25 Apple Inc. Magnetic related features of a cover for an electronic device
US9419669B2 (en) * 2013-09-04 2016-08-16 Apple Inc. Case for an electronic device and manufacturing methods for making a case
US9300083B2 (en) 2013-09-30 2016-03-29 Apple Inc. Stackable magnetically-retained connector interface
WO2015070321A1 (en) 2013-11-13 2015-05-21 Szeto Timothy Jing Yin Magnetic connectors
US9277661B2 (en) * 2014-02-20 2016-03-01 Apple Inc. Magnetic latch
US20150237979A1 (en) 2014-02-21 2015-08-27 Chen-Yuan Huang Protective and supporting cover for a tablet
EP3379549B1 (en) 2014-03-24 2020-10-21 Apple Inc. Magnetic connection and alignment of connectable devices
US10164688B2 (en) 2014-04-30 2018-12-25 Apple Inc. Actuator assisted alignment of connectible devices
KR20170069285A (en) 2014-10-20 2017-06-20 나노포트 테크놀로지 인크. Connectors with movable magnetic components and method of connecting devices
US9971379B2 (en) 2015-08-26 2018-05-15 Apple Inc. Attachment features for an accessory device
KR20180029259A (en) * 2015-09-03 2018-03-20 애플 인크. Magnetically aligned accessory to device connection
WO2017040093A1 (en) * 2015-09-04 2017-03-09 Apple Inc. Flexible keyboard accessory for a portable electronic device
US10579097B2 (en) * 2015-09-04 2020-03-03 Apple Inc. Electronic device with contacts flush with housing
US9778705B2 (en) * 2015-09-04 2017-10-03 Apple Inc. Electronic device with moveable contacts at an exterior surface
US9740245B2 (en) * 2015-10-05 2017-08-22 Microsoft Technology Licensing, Llc Locking mechanism
CN105573430A (en) * 2015-12-16 2016-05-11 联想(北京)有限公司 Electronic equipment and manufacturing method of connection part
KR102401718B1 (en) * 2015-12-21 2022-05-26 삼성전자 주식회사 Electronic device including structure for connecting
CN205355397U (en) * 2015-12-30 2016-06-29 合肥联宝信息技术有限公司 Adsorption structure and dull and stereotyped electronic equipment based on magnet array
CN108268092B (en) 2017-01-04 2020-09-29 华硕电脑股份有限公司 Protective sleeve
US10672548B2 (en) * 2017-11-28 2020-06-02 Microsoft Technology Licensing, Llc Magnetic fastener and hinged device using same
CN209980127U (en) * 2018-09-14 2020-01-21 苹果公司 Accessory device for an electronic device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200183458A1 (en) * 2012-01-03 2020-06-11 Samsung Electronics Co., Ltd. Mobile apparatus
US10948948B2 (en) * 2012-01-03 2021-03-16 Samsung Electronics Co., Ltd. Mobile apparatus
US11239710B2 (en) * 2019-09-30 2022-02-01 Microsoft Technology Licensing, Llc Charging system including orientation control
US11675440B2 (en) 2019-09-30 2023-06-13 Microsoft Technology Licensing, Llc Solvent free textile coating
WO2021201512A1 (en) * 2020-03-31 2021-10-07 삼성전자 주식회사 Accessory-mountable electronic device
US20220244759A1 (en) * 2020-09-14 2022-08-04 Qianhai Junda (Shenzhen) Equity Investment Co., Ltd. Bracket and electronic device
WO2022250346A1 (en) * 2021-05-26 2022-12-01 삼성전자 주식회사 Electronic device including wireless charging structure
US20230195176A1 (en) * 2021-12-16 2023-06-22 Lenovo (Singapore) Pte. Ltd Display device

Also Published As

Publication number Publication date
US10955875B2 (en) 2021-03-23
KR102550089B1 (en) 2023-06-30
US20200241598A1 (en) 2020-07-30
WO2020055463A1 (en) 2020-03-19
US10671121B2 (en) 2020-06-02
CN116033693A (en) 2023-04-28
CN112672661A (en) 2021-04-16
KR20210031520A (en) 2021-03-19

Similar Documents

Publication Publication Date Title
US10671121B2 (en) Magnetic layout in electronic devices and accessory devices for electronic devices
US20210099026A1 (en) Magnetic alignment systems for electronic devices
US10162388B2 (en) Modules and connections for modules to couple to a computing device
US10664012B1 (en) Accessories for portable electronic devices
US8073324B2 (en) Magnet array for coupling and aligning an accessory to an electronic device
US8395465B2 (en) Cover for an electric device
US8143983B1 (en) Electronic device with magnetic attachment
US8242868B2 (en) Methods and apparatus for configuring a magnetic attachment system
US10739825B2 (en) Keyboard accessory for a portable electronic device
EP2663056B1 (en) Mobile terminal
US10491728B2 (en) Key module and mobile terminal having same, and method of assembling key module
BR122017012008B1 (en) TABLET-TYPE COMPUTER DEVICE
KR102207039B1 (en) Protecting cover
US10126777B2 (en) Portable display device
KR20130000246A (en) Wireless charging device for mobile terminal
CN106936953A (en) Mobile terminal
US20220091640A1 (en) Accessory device with dual angle setting using a single fulcrum point
CN114069137A (en) Magnetically attachable battery pack
CN209980127U (en) Accessory device for an electronic device
KR101028093B1 (en) Mobile terminal
US20240036610A1 (en) Computing Device
US20210044124A1 (en) Dock Base for Wirelessly Charging Intelligent Handheld Devices
KR20160062455A (en) Mobile display device

Legal Events

Date Code Title Description
AS Assignment

Owner name: APPLE INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ZHU, HAO;ZHOU, YANG;MATZINGER, THOMAS R.;AND OTHERS;SIGNING DATES FROM 20190405 TO 20190510;REEL/FRAME:049215/0153

FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4